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STRUCTURE OF GROUP C*-ALGEBRAS
OF LIE SEMI-DIRECT PRODUCTS
OF R OR C BY LIE GROUPS

TAKAHIRO SUDO

ABSTRACT. This paper is devoted to the case by case study on
structure of group C*-algebras of the Lie semi-direct products of
the 1-dimensional real or complex Lie groups by connected Lie
groups, in particular, by commutative Lie groups or the general-
ized Heisenberg Lie groups. As corollaries, we determine existence
and nonexistence of projections of these special group C*-algebras
in terms of groups, and obtain some generalized results for more
general C*-algebras by another methods.

§1. INTRODUCTION

We first recall that the (2n + 1)-dimensional, generalized Heisen-
berg Lie group Hap, 41 consists of all (n 4+ 2) x (n + 2) matrices as
follows:

1 a9 -+ a, ¢
1 by
(¢,b,a) = : a;,bi,c € R(1 <i<n)
1 5,
0 1

with @ = (a;),b = (b;) € R®. Then Hj,,1 is a simply connected
nilpotent Lie group, and isomorphic to the Lie semi-direct product
R"*! %, R™ with the action a of R™ on R™*! defined by a,(c,b) =

(C + Z?:l aib.,;, b)
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We now set up some notations. For a locally compact Haus-
dorff space X, we denote by Cy(X) the C*-algebra of all continuous
complex-valued functions on X vanishing at infinity, and by C(X) it
when X is compact. We denote by K the C*-algebra of all compact
operators on a countably infinite dimensional Hilbert space. For a
Lie group G, we denote by C*(G) its group C*-algebra (cf.[Dx]).

We next review the structure of C*(Hagp41). Since Hoy,qq is iso-
morphic to R*"*! x, R™, we have that C*(Ha,41) is isomorphic to
the crossed product C*(R™*!) x, R™. Then the Fourier transform
induces the isomorphism: C*(R™*1)x,R™ 2 Co(R" 1) x4R™, where
the action & is defined by é,(c', V') = (¢, (b + a;c’)) for a;, b, € R
with b’ = (b}) € R™. Since the action & is trivial on {0} x R"™, and free
and wandering on (R\ {0}) x R™ (See [Gr1] for the precise definition
of “wandering”), we get the following exact sequence:

0 — Co((R\ {0}) x R™) x R™ — Co(R™1) x4 R™ — Co(R*™) — 0,

and Co((R\ {0}) x R™) x R™ = Cy(R \ {0}) ® K by Green’s result
[Gr1, Corollary 15]. Refer to [Grl], [Gr2], [Rs], [Sd1,2,3] and [Zp] for
more other cases.

In this paper we first consider structure of group C*-algebras of
the (solvable) Lie semi-direct products of R by R™ or Hj, 41 in de-
tails. By the same way, we next analyze the cases of the (solvable) Lie
semi-direct products of C by connected commutative Lie groups or
Hj, 1. As corollaries, we determine the conditions that these group
C'*-algebras have nontrivial projections or does not have in terms of
groups. For analysis of structure of basic building blocks of these
group C*-algebras, Green’s imprimitivity theorem [Gr2, Corollary
2.10] serves a crucial role. More general cases for the Lie semi-direct
products of commutative Lie groups R* x C” by connected Lie groups
with diagonal actions are investigated in [Sd3] on the similar manner.
This research gives the more exact description for the cases where
u = 0 or v = 0. About the projection problem for more general
(group) C*-algebras, some results are obtained in each chapter.

§2. LIE SEMI-DIRECT PRODUCTS OF R BY R™ OR Hyp 41

Lie semi-direct products of R by R".
In this subsection we analyze structure of group C*-algebras of
the Lie semi-direct products G = R x, R®. Then we may assume



that the action o of R™ on R is given by
ag(t) = e(2i= gik)lf, g=(g9;) e R",teR

where {ix}}_; is a subset of {¢}7 ;. If v is trivial, then we have
C*(G) = Co(R™*1). We assume that « is nontrivial in the following.
By the Fourier transform, C*(G) = Cy(R) x4 R™ where & = « in
this case. Since the origin {0} of R is fixed under &, we have that

0— C()(R \ {O}) x R" — C()(R) X & R"™ — Co(Rn) — 0.

As the subspace R, of all positive real numbers of R\ {0} is in-
variant under «, the above ideal is isomorphic to the 2-direct sum
®2%(Co(R4) x R™). Since the action of R™ on R, is transitive,
by Green’s imprimitivity theorem [Gr2, Corollary 2.10], each direct
summand is isomorphic to the following C*-tensor product:

Co(Ry) % R™ = Co(R™/(R™)1) » R™ = C*((R")1) ® K

where (R™); is the stabilizer of 1 € Ry, which is isomorphic to the
product group of R®™" and the closed subgroup of R* defined by the
hyperplane

{(gs )=t €R*: Y gi, =0},

k=1

Hence (R?); 2 R*"~* x Rv~1 2 Rn—1,

Summing up we get the following:

Theorem 2.1. Let G be a nontrivial Lie semi-direct product of R
by R™. Then C*(G) has the following exact sequence:

0 —= ®*(Co(R*" 1) ®K) = C*(G) = Cy(R™) — 0

where the stabilizer of 1 € Ry under the action of R™ is isomorphic
to R"1,

Remark. When n = 1, G is the proper az + b group R x R (cf.[Zp]).



Corollary 2.2. Let G be a nontrivial Lie semi-direct product of R
by R™. Then we have that

nontrivial projections when n =1,
C*(G) has { i

no nontrivial projections if n > 2.

Proof. We remark that for any noncompact, connected locally com-
pact space X and any C*-algebra 2, both Cy(X) and Cp(X) @ A
have no nontrivial projections.

If n =1, the ideal K® K has nontrivial projections. Then so does
C*(G).

If n > 2, the ideal and quotient in the above exact sequence have
no nontrivial projections. Hence so does C*(G).

O

Remark. We notice that any automorphic action of T on R is trivial.
So if G is a Lie semi-direct product R x (R™ x T™), then we have
that

C*(G) = C*(R x R™) ® Cy(Z™).

Therefore, we have that C*(G) has no nontrivial projections if and
only if n = 1, that is, G is isomorphic to (R x R) x T™ (m > 0).

Lie semi-direct products of R by Hyp, 1.

In this subsection we consider structure of group C*-algebras of
the Lie semi-direct products G = R x4 Hy, 1. Then we may assume
that the action a of Ha,4; on R is given by

a(c,b,a)(t) = (k=1 big k=1 25 )¢ (¢c,b,a) € Hapy1,t € R

for some 0 < u,v < n. Denote by w the cardinal number of the
union of {ix}y_; and {jkx}}_,- We assume that « is nontrivial. By
the Fourier transform, we have C*(G) = Co(R) x4 Hant1, where
& = « in this case. Since the origin {0} of R is fixed under &, the
following exact sequence is obtained:

0 = Co(R\ {0}) » Hant1 = @*(Co(Ry) > Hanta)
—)C()(R) X H2n+l — C*(H2n+1) — 0.



Moreover, the action of Ha,41 on Ry is transitive. So by Green’s
imprimitivity theorem [Gr2],

Co(Ry) % Hopy1 = Co(Hont1/(Hant1)1) X Hapt1
= C*((H2n41)1) ®K

where (Hap41)1 is the stabilizer of 1 € Ry, which is isomorphic to

{ (R x R*"1) %, R™ if u # 0,
R+ %, R if u=0

with the actions 7y, p defined by

Ya(c, ( z;én = (c+ Z arbr — ag, Z blk’ '1,:,é1.1

k:,éll
p(ak)k¢ (C + Z akbk - Z ajk)bjl?b)'
k#71 k=71

Then by the same methods as the analysis of C*(Ha,41) in the
introduction, each C*((Hap41)1) is decomposed into the following:

0— C()(R \ {0}) QK — C*((H2n+1)1) — C()(R2n_1) — 0.

From the above analysis we get the following:

Theorem 2.3. Let G be a nontrivial Lie semi-direct product of R by
Hoy 1. Then C*(G) decomposes into the following exact sequence:

0 = ®%(C*((Hans1)1) ® K) = C*(G) = C*(Hznq1) — 0.
Moreover, we have that
0— Co(R\ {0}) @ K = C*((Hzny1)1) = Co(R*™*1) = 0.

Combining the above theorem with the structure of C*(Hzp41)
given in the introduction, we obtain that



Corollary 2.4. If G is a nontrivial Lie semi-direct product of R by
Hany1, then there exists a composition series {J;}]_, of C*(G) such
that

J3/32 2 Co(R\ {0}) ® K J4/T3 =2 Co(R*")
71 2 @*(Co(R) ® K) J2/71 = ®&*(Co(R™ 1) @ K)

Moreover, we deduce from the same reason with Corollary 2.2 that

Corollary 2.5. If G is a (solvable) Lie semi-direct product of R by
Hsp 1, then C*(G) has no nontrivial projections.

Remark. We have that C*(Hazp,41) itself has no nontrivial projec-
tions. More generally, it is shown by [Sd1] that the group C*-algebras
of simply connected nilpotent Lie groups have no nontrivial projec-
tions.

In a more general situation, we have that

Proposition 2.6. Let G be a nontrivial Lie semi-direct product of
R by a connected Lie group N. Then C*(G) has the following exact
sequence:

0— ®%(C*(N1) @K) = C*(G) = C*(N) = 0

where N1 means the stabilizer of 1 € R.

Proof. We notice that the quotient group N/[N, N] by the commu-
tator [N, N] of N is isomorphic to R*™™ x T™ for some n > 1,
m > 0. Since R is 1-dimensional, it is clear that the action of N on
R is reduced to that of N/[N, N]. Moreover, the action of T™ on R
is trivial. Therefore, we have the same conclusion of the first exact

sequence of Theorem 2.3.
]

Theorem 2.7. Let G be a Lie semi-direct product of R by a simply
connected nilpotent Lie group N. Then

nontrivial projections if N = R,

C*(G) has{

no nontrivial projections if otherwise.

Proof. By Proposition 2.6, if C*(N) and C*(N;) ® K have no non-
trivial projections, then so does C*(G). We note that N/N; = R.



Thus N =2 N; x R. Therefore, N is a simply connected nilpotent
Lie group. By [Sd1], C*(N) and C*(N;) have no nontrivial projec-
tions. Tensoring K with the structure of C*(NN;) obtained in [Sd1],
we deduce that C*(N;) ® K also has no nontrivial projections if Ny
is nontrivial.

OJ

§3. LIE SEMI-DIRECT PRODUCTS OF C BY
COMMUTATIVE LIE GROUPS OR Haojpq

Lie semi-direct products of C by commutative Lie groups.
In this subsection we consider structure of group C*-algebras of
the Lie semi-direct products of C by connected commutative Lie
groups. It is well known that any connected commutative Lie group
is isomorphic to R™ x T™ for some n,m > 0..
First of all, we consider the case G = C x4, R™®. Then the auto-
morphic action « is given by

ag(z) = eZk=1290) 2 g = (g;) €R™, 2,2, €C

for 0 < u < n. Then C*(G) = Cy(C) x4R™ by the Fourier transform,
where &, is given by the complex conjugate of crg. Since the origin
{0} of C is fixed under &, we obtain that

0 — Co(C\{0}) x R™ = Cy(C) x R™ — Cy(R™) — 0.

First suppose that all (z;,)}_, are purely imaginary. Then the
action on the radius direction of C is trivial, so that

Co(C\ {0}) x R™ = Co(Ry) ® (C(T) » R™).

Since the nontrivial action of R™ on T is transitive, Green’s imprim-
itivity theorem [Gr2] implies that

C(T) x R™ = C(R"/(R™);) x R" = C*((R™)1) @ K

where the stabilizer (R™); of 1 € T is isomorphic to the product
group of R®™* and the closed subgroup of R* defined by the union
Uiez Py of the hyperplanes

Pr={(gi, -+ »9:.) ERY Yz, 9i =2tmi}, teL.
k=1



Therefore, we get that (R"); = Z x R*~! x R*~*. Hence we have
C*((R™);) = Co(T x R*1).

Next suppose that for some 0 < [ < u, (2;,);_, are purely imagi-
nary and (z;, )¥_, 41 are not purely imaginary. Then we may assume
that the nontrivial action of R™ on C\ {0} is transitive. By Green’s
imprimitivity theorem,

Co(C\ {0}) ¥ R™ = Cp(R™/(R™);) x R" 2 C*((R");) ® K

where (R™); is equal to the product group of R*~* and the closed
subgroup of R* defined by the union Usez(PNQ;) of the intersections
P N Q; of the hyperplanes defined by

u
P = {(gin" ' 7giu) = R* : Z R’e(z’ik)gik = 0}
k=Il+1

and the hyperplanes defined by

u
Qt = {(9iy>+ ,9i.) ER™: ZIm(zik)gik = 2w}
k=1

for t € Z, where Re(z), Im(2z) mean the real, imaginary parts of z
respectively. Thus we obtain that (R™); = Z x R*~2 x R*~ so that
C*((R™);) = Co(T x R*~2).

Finally suppose that all (z;, )}_; are not purely imaginary. We
first note that the crossed product Co(C\ {0}) x R™ is isomorphic to
Co(R" %) ® (Co(C\ {0}) x R*). Then the action of R* on C\ {0} is
not transitive if and only if all (2;,)}_, are linearly dependent as a
vector of R?. In this case we may assume that all (z;,);_, are real.
Hence we get that

Co(C\ {0}) x R* = C(T) ® (Co(Ry) x R).

Since the action of R* on R, is transitive, by Green’s imprimitivity
theorem [Gr2],

Co(Ry) x RY 22 Co(R*/(R%),) x R* = C*((R*);) ® K



where the stabilizer (R*); is isomorphic to the closed subgroup of
R* defined by

{(95)k=1 ER*: > 2i,0:, = 0}
k=1

Hence (R*); = R*~!. Thus C*((R%);) = Co(R*™1).
If the action of R* on C\ {0} is transitive, then Green’s imprim-
itivity theorem gives that

Co(C\ {0}) x R* = Cp(R*/(R")1) x R* =2 C*((R*)1)) ® K,

where the stabilizer (R*); is given by the union Uiez (P’ NQ}) of the
intersections P’ N @} of the hyperplane

P'= {(9i k=1 ER*: ZRe(z’ik )gi = 0}
k=1

and the hyperplanes (¢t € Z)

u
Qt = {(9i)k=1 € R : Zlm(zik)gik = 2t}
k=1

Thus (R%); = Z x R*~2. Hence C*((R%)1) = Co(T x R*~2).
Summing up, we get that

Theorem 3.1. Let G be a nontrivial Lie semi-direct product of C by
R™ with the action a. Then C*(G) has the following exact sequence:

0= Co(C\ {0}) xR™ = C*(G) = Cop(R™) — 0.
Moreover, the above ideal is isomorphic to

Co(Tx R")®@K if O(z) = T for any z € C\ {0},
Co(TxR*"1H®K ifO(z) Ry for any z € C\ {0},
Co(Tx R*"2) @K if a is transitive on C\ {0} and n > 2

where O(z) means the orbit of z under the action &.

As a corollary, we obtain that



Corollary 3.2. Let G be a Lie semi-direct product of C by R™. Then
C*(G) has nontrivial projections if and only if

GN{(CXQR with Ry = {0}, or
| € %o R? with (R?); =

)

where Ry, (R2)1 means the stabilizers of the unit of C under &.

Proof. The first case of G corresponds to the second case with n =
1 in the latter part of Theorem 3.1. And the second case of GG
corresponds to the third case with n = 2 in it.

O

Remark. The complex ax + b group C x, C with a,(w) = zw for
z,w € C (cf.[Rs]) is a special case of C x, R? with (R?); & Z.

In a slightly general situation, we have the following:

Theorem 3.3. Let G be a nontrivial Lie semi-direct product of C
by the direct product R™ x T™ with the action o. Then C*(G) has
the following exact sequence:

0= Co(C\{0}) x (R" x T™) = C*(G) = Cop(R™ x Z™) — 0.
Moreover, the above ideal is 1somorphic to

Co(R™"! x Z™ 1)@ K if the action of R™ is trivial,

and otherwise,

Co(TxR*xZ™) @K if O(z) = T for any z € C\ {0},
Co(Tx R xZ™M)@K if O(z) ® Ry for any z € C\ {0},
Co(TxR*2xZ™) @K if a is transitive on C\ {0}.

Proof. We first note that the action of T on C is trivial or the ro-
tation by multiplication. So we may have the decomposition T™ =
T™o x T™~™0 where T™° acts on C trivially and each direct factor
of T™~™0 acts on C by the rotation. Then, we have that

C*(C x (R™ x T™)) = Co(C) »x (R™ x T™)
= Co(ZmO) & (Co(C) A (Rn X Tm—mo)).



Moreover, we have the following exact sequence:

0 — Co(C\ {0}) x (R™ x T™~™0)
= Cp(C) x (R™ x T™™™0) — C*(R™ x T™~™0) — 0.

Now suppose that any orbit in C\ {0} is homeomorphic to T. Then
the above ideal is isomorphic to Cp(R4) ® (C(T) x (R™ x T™=™0)).
Since the action of R*™™ x T™~™0 on T is transitive, we have that
C(T) » (B" x T")

C((® x T=") /(" x T""™),) @ K
*((Rn x T™m— mo) )@K

IIZ

HZ

If the restriction of « to R™ is trivial, the stabilizer (R™ x T™~™0),
is given by

R™ x {(ws) ™ € T ; T ™o, = 13,

so that it is isomorphic to R™ x T™~™0~! If the restriction of a to
T™~"™o is trivial, the stabilizer is isomorphic to Zx R?~! x T™~™0 by
the argument before Theorem 3.1. In the case where both restrictions
of  to R™ and T™~ ™0 are nontrivial, the stabilizer has the fiber
structure on the base space T parameterized by T™~™°~1 such that
w = I ™ w; € T with fibers isomorphic to Z x R™~!, which is
induced by the equation

e( iz 29N M0 = 2tmi, 2, 0: € R,t € Z.

By the local triviality of this fiber structure, we have in fact that the
stabilizer is isomorphic to R™ x Tn="0~1,

For other cases, we note that the action of T™ on the radius di-
rection of C\ {0} is trivial. Thus we can repeat the similar argument
as before Theorem 3.1.

O

Theorem 3.4. Let G be a Lie semi-direct product of C by the direct
product R™ x T™ with the action o. Then C*(G) has nontrivial
projections if and only if
GN{(CN(RX']I"”) with (R x T™); 2 T™, or
L Cx (R? x T™) with (R?2 x T™); 2 Z x T™



where (R x T™); and (R? x T™); are the stabilizers of the unit of C
under &.

Proof. Theorem 3.3 tells us that if R™ acts on C nontrivially, C*(G)
has nontrivial projections if and only if the second case with n = 1
and the third one with n = 2 among the three cases, that is, G is
isomorphic to the two cases in this statement.

If R*® (n > 1) acts on C trivially, we deduce from Theorem 3.3
that C*(G) has no nontrivial projections.

If n = 0, we note that C*(G) is regarded as the C*-algebra of
continuous fields over {0} U R, vanishing at infinity with fibers 2,
given by

Ao = Co(Z™), Az =Co(Z™ @K fort € Ry

(cf.[Dx]). Now suppose that C*(G) has a nontrivial projection p.
Then the function p : t — ||p(¢)]| with p(t) € A; must be continu-
ous and vanishing at infinity. Since p(t¢) is also a projection of 2,
llp(t)|| = 0 or 1. Since p is nontrivial and continuous, p must be the
constant function 1 over {0} U R, which is the contradiction.

]

The same methods as the latter part of the proof of Theorem 3.4
implies that

Proposition 3.5. Let A be a C*-algebra of continuous fields over
a noncompact connected locally compact space. Then A has no non-
trivial projections.

Remark. The group C*-algebra C*(Hap41) is regarded as the C*-
algebra of continuous fields over R with fibers Co(R?") at 0 € R and
K over R\ {0}.

As a corollary, we get that (cf.[Sd1])
Corollary 3.6. Let A be a (liminal) C*-algebra with its spectrum a

noncompact and connected Hausdorff space. Then A has no nontriv-
1al projections.

Proof. Tt is known by [Dx, Theorem 10.5.4] that any (liminal) C*-
algebra with its spectrum a Hausdorff space is isomorphic to the

C™*-algebra of continuous fields over the spectrum.
O



Lie semi-direct products of C by Hy, ;.

In this subsection we analyze structure of group C*-algebras of
the Lie semi-direct products G = C xg Ha,,41. Then the action g of
Hj, 1 on C may be defined by

ﬁ(c,b,a)(z) = e(zzzl Zibip + 2ok wikaik)z

with (¢,b,a) € Hony1, 2,2i,,w;, € C for some 0 < u,v < n. Then
C*(G) is isomorphic to Co(C) x5 Hany1, where 3 is given by the

complex conjugate of 8. Since the origin of C is fixed under B, we
have that

0— C()(C \ {0}) X H2n+1 — C()(C) X H2n+1 — C*(H2n+1) — 0.

Moreover, we analyze the above ideal using the analysis given in the
above subsection. We note that Ho,y1/[Hony1, Hony1] = R?™ and
the action & is induced from than of R?".

First suppose that all orbits under 4 in C \ {0} are homeomor-
phic to T. Then Co(C \ {0}) x Hap41 splits into the tensor product
Co(R4) ® (C(T) x Hapt1). Moreover, by Green’s imprimitivity the-
orem,

C(T) X Hopy1 =2 C(Hant1/(Hant1)1) X Hony1
= C*((H2n+1)1) @ K.

And the stabilizer of 1 € T under R?" is isomorphic to Z x R?7~1,
Hence, (H2,41)1 is isomorphic to either

(C1) RXZxR" ) xgR* or R"™! x, (ZxR*1).
Then we have the next exact sequence respectively:

0 { Co((R\ {0}) x T x R*~1) x4 R™,
Co((R\ {0}) x R™) x4 (Z x R™"1)
— C*((H2n+1)1) — Co(T X R2n—1) — 0.
In the first case, & is transitive, and in the second case, it is free and

wandering. Hence by [Grl, Gr2], we get that the ideals in both cases
are isomorphic to the direct sum ®2(Co(R; x T) ® K).



Next suppose that all orbits in C\ {0} are homeomorphic to R .
Then the crossed product Co(C\{0}) % Hz, 41 has the decomposition
C(T)®(Co(R4+)»x Hap41). In this case we may assume that all z;, , w;,
(1 <k <wu,1<1<w)are real. Moreover, Green’s imprimitivity
theorem [Gr2] implies that

Co(Ry) x Hopy1 = Co(Hant1/(Hang1)1) ¥ Hong
= C*((Han+1)1) ® K.

And the stabilizer of 1 € R, under R?” is equal to the hyperplane

u

{(b, a) S R?" . Zzikbik + iwijai]. = O},

k=1 j=1
so that (Hapy1)1 is isomorphic to one of the following:

() (@R x R B

(R xR* 1) x,R*, R x,R"!
where if u # 0,

’Ya(cv (bi)?;éil) =\c—a,z 111 Zzlk blk + Z akbkv z;ézl
k?/:ll
and if u =0,
p(a,—)?#il (Cy b) b1,1 ’(Uzll Z ’U),L] al] + Z akbk,
k#—"l,l

For the upper two cases of (Hay,11)1, we see that C*((Hap41)1) splits
into Co(R) ® C*(Hg(n—1)+1), 50 that

0 — ®2(Co(R?) @ K) — C*((Hant1)1) = Co(RE=D+1) 5 0,
For the lower two cases of (Hap,y1)1, each dual action is given by

Yall, (M) is,) = (4, (M + ail)foss, + (—ai, 2i, 2, Do)

v

Plasyiye, (bm) = (4 (mi + ail) g, , (may —wi Uy wi,aq,)).
71=2



Then each C*((Hap41)1) has the following structure respectively:

0— { e — C*((Hzn11)1) = Co(R*™™1) — 0.

Co(R\ {0}) xR) @ K

Finally suppose that the action of Hy, 41 on C\ {0} is transitive.
Then Green’s imprimitivity theorem implies that

Co(C\ {0}) % Hopy1 = Co(Hans1/(Hany1)1) ¥ Hapgq
= C*((Hant1)1) ® K.

By the same way as above, we can deduce that (Hgp,y1)1 is isomor-
phic to one of the following:

(RxZxR"2)xR", (RxR*1)x(ZxR"1,

C3
Gy { R % (Z x R*™2), (RxZx R*" 1) xR!

where each action is induced by the equations of the hyperplanes as
given in the case of C x R™. When the action is a restriction of «,
the stabilizer (Ha,41)1 has R as a direct factor. Thus by the similar
argument as the case under the first assumption, the structure of

C*((Hany1)1) is given by
0= @*(Co(R? x T) @ K) = C*((Hans1)1) — Co(T x R™2) - 0.

Otherwise, for the upper and lower cases of (Hz,41)1, we have that
respectively

g s { ®?(Co(R x T) ® K)
®2(Co(R? x T) @ K)
— C*((H2n+1)1) — Co(']r X R2n_2) — 0.

Summing up, we get that

Theorem 3.7. Let G be a nontrivial Lie semi-direct product of C
by Hapy1. Then C*(G) has the following exact sequence:

0— Co((c \ {0}) el H2n+1 — C*(G) — C*(H2n+1) — 0.



Moreover, the above ideal is isomorphic to one of the three cases

Co(R) @ C*((Hzn+1)1eT) ® K
C(T) ® C*((H2n+1)1€R+) ®K
C*((Han+1)1ec\{0}) ® K,

where each (Han41)1 is given by (C1),(C2) and (C3). And for each
case, C*((Han+1)1) has the following structure respectively:

0 — ®2(Co(R x T) ® K) = C*((Hapn41)1et) — Co(T x R**~1) — 0,

0— { ECOER)) )) — C*((H2n+1)1€R+) — C()(Rzn_l) — 0,
. { ®2(Co(R? x T) ® K)
®%(Co(R x T) ® K)

— C*((H2n+1)1€C\{O}) — Co(T X RZn—Z) — 0.

Remark. The above theorem says that the building blocks of C*(G)
are given by

Co(R?™), Co(T* xR*)®K, (k=0or1,and s> 1).

Hence, C*(G) has no nontrivial projections.

In a more general situation, we obtain that

Proposition 3.8. Let G be a Lie semi-direct product of C by a con-
nected Lie group N. Then C*(G) has the following exact sequence:

0= Co(C\{0}) x N = C*(G) - C*(N) —0.
Moreover, the above ideal is isomorphic to one of the following:

Co(R) ® C*((N)1er) ® K
C(T)® C*((N)ier, ) ®K
C*((N)1ec\{0}) ® K.

Proof. The proof follows from the same argument as before Theorem
8.7



O

Remark. In the above proposition we assume that N is a simply
connected nilpotent Lie group. Then by Proposition 3.8 and the
similar reason with the proof of Theorem 2.7, we have that if N/N; =
T or R (the first and second cases above), then

C*(G) has { nontrivial projections if N =R and (N); =0,

no nontrivial projections if otherwise.

For the third case above, we conjecture that C*(G) has no nontrivial
projections.
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