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The k-th power free kernels of sequence a~+1

Akira T AKAKU'

1. Let k be an integer~2 and fix it. Let N be any positive integer and let N=

DXk
• Then D is uniquely determined and called the k- th powerfree kernel of N

Let {an} be any sequence of positive integers and an- oo as n--+oo. Then we

prove following

THEOREM 1. If k~5, then the sequence {a~+ I} has infinitely many distinct

k-th power free kernels.

THEOREM 2. Let {an} be any sequence of even integers. Then the sequence

{~+ I} has infinitely many distinct k-th power free kernels.

In particular, for k=2 Theorem 2 shows that the odd sequence ~+1

generates infinitely many real quadratic fields Q (/~+ 1).

2. PROOF.

Proof of Theorem 1: Assume that there are a finite number of k-th

power free kernels of ~+ 1 when n runs all natural numbers. We denote

them Dh D2, ••• ,Ds. Let PJ, ... ,Pt be all distinct prime divisors of Dh... ,Ds and m

any positive integer. Put

n= (PI-I)...(Pt-1)km.

If we take m sufficiently large, then by Tijdeman's result [2, Theorem 1] and

our assumption we can write

for some D; >1 and we may assume D;*- 2 by the result of Domar [1].

Taking any prime divisor Pi*- 2 of D;, by Fermat's theorem we have

which is a contradiction since Pi*- 2.

Proof of Theorem 2 is similar to one of Theorem 1. In this case every
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pj is not 2.
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