琉球大学学術リポジトリ

The k-th power free kernels of sequence a^n_1+1

メタデータ	言語:
	出版者: 琉球大学理工学部
	公開日: 2012-05-18
	キーワード (Ja):
	キーワード (En):
	作成者: 高久, 章
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/24394

Bull. Sci. & Eng. Div., Univ. Ryukyus, (Math. & Nat. Sci.) No. 23, 1977.

The k-th power free kernels of sequence a_n^n+1

Akira TAKAKU*

1. Let k be an integer ≥ 2 and fix it. Let N be any positive integer and let $N = DX^k$. Then D is uniquely determined and called the k-th power free kernel of N. Let $\{a_n\}$ be any sequence of positive integers and $a_n \rightarrow \infty$ as $n \rightarrow \infty$. Then we prove following

THEOREM 1. If $k \ge 5$, then the sequence $\{a_n^n+1\}$ has infinitely many distinct k—th power free kernels.

THEOREM 2. Let $\{a_n\}$ be any sequence of even integers. Then the sequence $\{a_n^n+1\}$ has infinitely many distinct k—th power free kernels.

In particular, for k=2 Theorem 2 shows that the odd sequence a_n^n+1 generates infinitely many real quadratic fields $\mathbf{Q}(\sqrt{a_n^n+1})$. 2. PROOF.

Proof of Theorem 1: Assume that there are a finite number of k—th power free kernels of a_n^n+1 when n runs all natural numbers. We denote them D_1 , D_2 ,..., D_s . Let p_1 ,..., p_t be all distinct prime divisors of D_1 ,..., D_s and m any positive integer. Put

 $n = (p_1 - 1) \dots (p_t - 1) km.$

If we take m sufficiently large, then by Tijdeman's result [2, Theorem 1] and our assumption we can write

$$a_n^n + 1 = D_i X^k$$

for some $D_i > 1$ and we may assume $D_i \neq 2$ by the result of Domar [1]. Taking any prime divisor $p_j \neq 2$ of D_i , by Fermat's theorem we have

$$-1 \equiv a_n^n \equiv (a_n^{n/(p_j-1)})^{p_j-1} \equiv 0 \text{ or } 1 \pmod{p_j},$$

which is a contradiction since $p_j \neq 2$.

Proof of Theorem 2 is similar to one of Theorem 1. In this case every

Received Oct. 31, 1976

*Division of General Education, Ryukyu University

 p_j is not 2.

References

- [1] Domar, Y., On the diophantine equation $|Ax^n By^n| = 1$, $n \ge 5$. Math. Scand., 2 (1954) 29-32 (Mordell, Diophantine Equations § 28 Theorem 12, p. 274)
- [2] Tijdeman, R., On the equation of Catalan, Acta Arith. 29 (1976) 179-209.