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The k-th power free kernels of sequence a*n_n+1
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The k—th power free kernels of sequence aj+1

Akira TAKAKU*

1. Let k£ be aninteger=2 and fixit. Let N be any positive integer and let N=
DX* Then D is uniquely determined and called the k— th power free kernel of N.
Let {a,} be any sequence of positive integers and a@;»>c as #—>oo. Then we
prove following

THEOREM 1. If k=5, then the sequence {ai+1} has infinitely many distinct
k—th power free kernels.

THEOREM 2. Let {a,} be any sequence of even integers. Then the sequence
{@r+1} has infinitely many distinct k—th power free kernels.

In particular, for 2=2 Theorem 2 shows that the odd sequence a}+1
generates infinitely many real quadratic fields Q (v a:+1).
2. PROOF.

Proof of Theorem 1. Assume that there are a finite number of A—th
power free kernels of a@j+1 when # runs all natural numbers. We denote
them D,, D,..,Ds. Let p,,..p be all distinct prime divisors of D,,..,Ds and m

any positive integer. Put
n=(p—1)...(p:—1)km.

If we take m sufficiently large, then by Tijdeman’s result [2, Theorem 1] and

our assumption we can write
a+1=D,X*

for some D;>1 and we may assume D;#2 by the result of Domar [1]

Taking any prime divisor p;#2 of D; by Fermat’s theorem we have
—1=ai=(ai® ")»'=0 or 1(mod p),

which is a contradiction since p;+2.

Proof of Theorem 2 is similar to one of Theorem 1. In this case every
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piis not 2.
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