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The Coupling of L-0 Phonons and Plasmons in Polar Semiconductors 

Katsukuni YoNASHIRO* 

Abstract 

The coupling between longitudinal optical phonons and plasmons in polar 

semiconductors has been investigated. 

At the appropriate carrier density (1017 -1018 em - 3 in m- V semiconductor 

compounds) the frequency of carrier plasma oscillations is comparable with that 

of the lattice vibrations of the optical modes and remarkable coupling between 

them is to be expected. 

In the long wavelength limit the coupled eigen frequencies of the coupled oscil­

lations is obtained by relating the one particle Boltzmann-Vlasov equation as well 

as the single particle Liouville equation describing the motion of free carriers to the 

equations of Born and Huang for the optical lattice vibrations in ionic crystals. 

I . Introduction 

The electron-phonon interaction has given very important informations 
clarifying various properties of solids. 

In this paper, we will obtain the coupled frequencies of plasma oscillations 

of longitudinal collective motion of free carriers and longitudinal optical phonons 

of collective motion of the lattice vibrations in polar semiconductors. As is well· 

known, the spectra of the lattice vibration in polar semiconductor have acoustic 

branch and optical branch. In acoustic branch the positive and the negative ions 

move in unison, but in the optical branch they oscillate in anti-phase. Consequently, 

the polarization field produced by electric polarization with the longitudinal wave 

of optical branch shakes free carriers. Since the polarization field propagates as 

a wave motion with lattice 

polarization field are bunched. 

vibration in crystal, the carriers shaked by the 

The carriers thus bunched produce electric field 

in themselves and then the electric field acting upon the ions provides reaction to 

the lattice vibrations. 

I. Yokotal> first predicted the existence of the frequencies of the coupled 

oscillations described above and dealt with this problem theoretically. The Yokota's 

idea was as follows: When carrier concentration in a polar semiconductor amounts 

to 1017 
;..._ 1018cm - 3 

, the frequency of carrier plasma oscillations becomes of the same 

order in magnitude as that of the lattice vibrations of the optical modes and 
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remarkable coupling between them is to be expected. For example, taking carrier 

effective mass, m* = 0.3m, optical dielectric constant, E= = 10, and carrier 

· 017 - 3 h 1 "11 · f ( 4
1!"n e2 ) { concentrat10n, n=l em , t e p asma osc1 at10n requency, cop= -E=m*- , 

results in 1013 sec-1 ,which is of the order in magnitude of Reststrahlen frequency 

in typical ionic crystals. I. Yokota obtained the coupled freguencies by relating 

hydrodynamic equations of motion describing the plasma oscillations of carriers 

of long wavelengths to equations of Born and Huang2) describing the lattice 

vibration of the optical modes of wavelengths in ionic crystals. His result is as 
follows; 

2 l { 2 2 ( 2 2 2 2 2 J Yz} co = 2 (coP+co1 ) ± (coP+co1 ) -4copcot , 

where cot and co 1 are the transverse optical and longitudinal optical phonon 

frequencies, respectively. 

B. B. Varga3l has shown later that in the long-wavelength limit, the valence 

electrons, the polar lattice vibrations, and the conduction electrons make additive 

contributions to the total dielectric constant. Free longitudinal oscillations then 

occur in the system, whenever the conditions are such that the total dielectric 

constant equals zero. In this method he obtained the same result of Yokota's. 

In the section 2, we will derive the coupled eigenfrequencies by relating 

the one particle Boltzmann-Vlasov equation and the single particle Liouville equation 

for the motion of free carriers to the equation of Born and Huang describing the 

optical lattice vibrations in ionic crystals. 

In the section 3, the obtained result is discussed. 

2. Calculation 

In this section we will obtain the coupled eigenfrequencies of the coupled 

oscillations by relating the Boltzmann-Vlasov equation for free carrier plasma 

oscillations to the equations of Born and Huang describing the lattice vibrations 

of the optical modes in ionic crystals. Then by using the single particle Liouville 

equation instead of the Boltzmann-Vlasov equation, the same coupled frequencies 

above will be obtained. 

According to Born and Huang the lattice vibrations of long wavelengths in 

ionic crystals are described by following equations: 
2---" a w 2 ____. ___._ 

--2- = - (I) t w + b1z-E , at 
(2.1) 

(2.2) 
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where W is the displacement of the positive ion relative to the negative, u+-u-, 
multiplied by the square root of the reduced mass, M = M+M-/(M++M-), per 

unit volume: W = ,J ~ (u+- u_), va the volume of the unit cell, P the 
a 

-"' £-£ ~ 
dielectric polarization, E the self-consistent electric field, b12= b21 = wt ( 0 

4
1f "") 

and e0 the static dielectric constant. 

In equation (2.1) the forces acting on the lattice are the force obeying 
->. 

Hook's law, and the self-consistent electric field E. Equation (2.2) relates the 

macroscopic polarization Pin a given region to the relative displacements as well 
-"' 

as to the field E polarizing the ions. 

On the other hand, a carrier plasma collective motion is described by the 

Boltzmann· Vlasov equation in the gas plasma theory ··with the collision term 

neglected. The neglection of the collision term means to neglect of short range 

fluctuation and is valid in the long wavelength limit. 

we assume that we have one kind of free carriers, say electrons, with 

isotropic effective mass m* and charge- e. The distribution function of carriers 

is expressed as follows: 

Jet. v: t) =fa cw)+/1 c-r.tt. t). (2.3) 

where /
0 

(1/) is the equilibrium distribution for the case without selfconsistent 

field and /1 cr. v. t) is the deviation from the fo (V), which is considered to be 

of the same order as electric field. The linearized one particle Boltzmann· Vlasov 
equation4l is given as follows: 

aJl ..... -"' e _, ........ 
7JT + (v • Y' r )/1 - m* (E • Y' v) fo= 0 (2.4) 

where Vr = !~ and "f! = aa_. . In obtaining this result we have used the fact that 
Q 1 v v 

aJo = Vv/
0 

= 0. In equation (2,4) E is the self-consistent electric field acting at 
on individual electrons and depends on the distribution function f (7, 11, t ). The 

deviation from the equilibrium distribution produces the charge density; 

P (T, t) = - en f /1 Ct.v'. t) d3v, (2.5) 

where n is the carrier density. This charge density p (Y, t) in turn would 
_.. 

produce the Coulomb field in vacuum : the vacuum electric field, Evac is 

expressed as follows: 

Evac= _.... J P (j'. t) d"r' =- J 7'-7' <P ... , f! (~' ~, t)d3-", -Vr l r--r· I en ['t-r' 3 r 1 r ,v, v. (2.6) 
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From the Poisson's equation in electrostatics 

V(E+47rP) = 47r P, 
-' ....> ~ 

the following relation holds between Evac , E and P 

E=Ev - 47r7''. ac 
(2.7) 

Because of the linearity of the equations appeared above, we can consider a single 

Fourier component of W,' 

W= ! w(q, w)exp(iq•r-iwt ) . 
I q I 

(2.8) 

Here we have used the fact that since a carrier collective plasma oscillations are 

longitudinal, only longitudinal modes of optical lattice vibrations can be coupled 

with them. Accordingly, the deviation /
1 

from the equlibrium distribution /
0 

will 

have the form 

/
1 

(7,1f,t) =[J(V)exp(iq•r- iwt). (2.9) 

Putting eq. (2.9) into eq. (2,6) and carrying out the integration with respect tor' 

we find 

E_.. _ _,. 4 rr ne . ( ._, __,. . ) J ('rll) dL' vac = t q -
1
-=..- :.; -- e x p t q • r - t w t • 9 u v . q ,. 

(2.10) 

Eliminating P from eq • (2.2), eq • (2. 7) and substituting 

(2. 7) leads to 

c;q • (2,10), equation 

It= _I 11 _ 4_rrb21w 
ecr. vac <' oo 

...... 41t'ne ( 7!- ..... =tq , = 2 exp i"•r-iwt)• 
€"" I q , 

J 9 (V' )d3V' - 4 7rf~21w(q, w ) i exp (il/·r- i (J) t ). 

(2.11 ) 

This ]!;'will be entered into equations of Born and Huang, and Boltzmann· Vlasov 

equation. By substituting this result into eq• (2.1) , we obtain 

a 2 w 2--"- bi2 ....... 
--;---12 - w, W + - E 

u ' f, vac 

or 

( :? . 12) 

where we used the relation of Lyddane-Sacks·Teller: w~ = .!.~. w~ 
f o 

On the other hand substitutions of eq • (2.9) and eq • (2.11) into eq · ( 2.4) 

(_,, )d3,.,, 4 1r b21e ~ )~ _.. )/ . 
fJ v v +---r---= w ( q,w \.Q'\'v "=U. 

m~ f"" ·q_ -

( 2.13) 
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Here we introduced plasma frequency: 
2 

w 
p 

4rr:ne2 
m* {oo • 

Combining above equation 

with eq. (2.13) and eliminating w('q, w ), we arrived at the following equation : 

w2 w2 wz 
(w -C7f·v)JsCv) + I"QI~ (1+ )=w~) ·(7/·Vv )fo fsCv')d

3
v'=O, 

therefore, 
2 

(JJP 
1 + ~­

iq I 

Assuming that 

2 2 _,_._ 

w - w t _ f ( q • \1 v ) fo d3v = 0 . 
wz- wi w -(q•v) 

7/=(q,o,o) and w~(q•v), we get 

J (q•Vv)fod~ - _ q
2
_ ( 1 +_2_ <v2 >q2+·· ····J, ()) -c7/·v) - ())2 ())2 

where < v2 > = [ v cos (q 1\v)/
0 
d~. 

(2.14) 

(2.15) 

Hence in the long wavelength limit q __. o according to eq. (2.14) we thus 

obtain coupled eigen frequencies of the coupled oscillations: 

()) 2 = l f c ()) 2
1 
+ ()) 2 ) + (c ()) 2

1 
+ ()) 2 i _ 4 ()) 2 ()) 2 J r2} 

2' p- p pt 
(2.16) 

This result coincides with the Yokota's. 

Next we shall examine the derivation by using the Liouville equation for 

the single particle density matrix. Let's consider the following single particle 

Hamiltonian 

H = H
0 
+ V(r,t), 

where H
0 

is the free elctron Hamiltonian: H
0 

= Jilhm and V(r, t) is the self­

consistent potential regarded as perturbation describing the interaction of the lattice 

vibrations <and density fluctuations. The eigenfunctions lf!CT. t) of H may be 

expanded in terms of eigen functions of Ho : 

lf!(t;t)='La (t)u (r'), 
0 

n n 

l _, 

here uk (r) = Q 2 exp (ik • r), Q is volume of the system. Then the elements of 

the density matrix p are given by 

<n i P I m> o= p = a*iz-. nm m n , 

where the bar denotes the ensemble average5l. The time dependence of the density 

matrix obeys the following single parttcle Liouville equation, which is obtained 

from the Schriiclingcr eq uatiou: 

in a_r:_ 
at (2.17) 
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here (H, p) =H p- pH. We separate the density matrix into unperturbed and 

perturbed parts: P = P 
0 

+ P1 • The operator P 
0 

describes an ensemble which 

does not change with time. The k-th diagonal element of P 
0 

is 

(2.18) 

where the function f(k) is the ensemble average of the probability that the particle 
~ 

described by 1Jf be in state k, that is, the distribution function. Therefore, 

Po i k > = f (k) I 1 > . 

Noting that [ H
0

, p 
0 
J = a aPto = 0 , . and linearizing to the first order in 

V, we get equation (2.19) as follows 

(2.19) 

By taking the matri:l:' element of above equation between 7? and ""f + q, we obtain 

as follows-

= {Eck)-E(k+"q)} <"ll 1 P1 i k+q> + {f(k+if)- !Ck)J <li VI k+if>, 

(2.20) 

In the above equation, <-,; 1 V 1""t+q> is the q-th Fourier coefficient in the 

expansions, 

V(r,t)= k V(q,w)exP(iq•r-iwt). 
7/,(1) 

Assuming that P
1 

and V has the same time dependence, equation (2.23) yields 

-> ,. ~ - !cG+7/)- f(/i) ..... 
<k 1 pl 1 R+q> - E(k+q)-E(li)-"hw • V(q, w ). (2.21) 

Since the ensemble average of the expectation value of any single particle 

operator 0 is 

<0> = Tr (PO), 

the density increment n(r) is 

n(1) = Tr c PI 0 c-rop -Y)). 

Here "Y;,P is the position operator and o (1
0

P - Y) is the density operator. The 

trace may be written as 
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n(r)= ~ < 1l I oCr - r) 11> <k I P1 ll' >. 
k,k' op 

By introducing the complete set of eigenstates I x'> of the position operator we 

have the following : 

· n(t ) =fax~ <7i' Jx> OCx-r)<x I k> <I 1 P1 l'k' > 
'-, k;k ' 

where 

= n-l ~ exp {i0:-k')·r}<'kl PI IJt >. 
't .k ' 

I 

<x I k> = n- 2 exp (ik · x). 

Setting k' =k+q. the above equation takes the form 

n(r) = ~ exp (- iq•r) n-l ~ <k I PI I k+q>. 
Q k 

On the other hand if n(r) is expanded in Fourier series, we have 

n(r) = ~ n(ij) exp ( -iif'r). 
q 

By comparing these results and using equation (2,21) we obtain 

n(q) = V(7j, w) ~ ___ tq+v- /(k) 
!l k E(k+q)-E(li)-ttw . 

(2.22) 

The induced density change of free carriers is related to Evac in equation (2. 6) 

by the Poisson's equation: 

'\l·E = - 4rren( r). (2.23) 
vac 

By introducing the potential ¢ ( r ,t ) as V Cf,t) = - e ifJ (r,t ), the self consistent 

electric field E is given by 

E=- ~¢ (2.24) 

We now expand W, ¢ , and Evac in the Fourier series: 

W = ~ ~ w(q, w )exp(iq·r-i wt), 
7/,w q -

¢ = ~ ¢ (7/. w )exp(i7f·r- i w t ), (2.25) 
7/,w 

__. ~ 

E = L E (q~w )exp (iq•r-iwt). 
vac if,w vac 

Substitutions of eq. ( 2.24) and eq. ( 2 . 25) into eq. (2.1) yield 

( w
2 

- w: )w(q, w ) = - i b
12 

q ¢ (q, w ) . (2.26) 

Alternatively substitutions of eq. (2.22) , eq. (2,23), eq. ( 2 .24) and eq. (2.25) into 

eq. (2. 7) leads to 

{. 1 - 4 rre2 - 9- (7/, w ) Ji ¢ (7/, w ) - i4_Tr_I!j!__ w (7/, w ) (2. 27) 
c00 jqj2 fool q J 

In order for ¢ and w to have non-trivial simultaneous solutions of the eq. (2.26) 

and eq. (2. 27 ) , following equations mu st hold : 
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or 

== 0 t 

2 
4 1r b21 
---=~ = 0 

foo 

In the long wavelength limit we will show in Appendix that, 

I --' 12 
9 (7/. w) = n q 

m*w 2 

(2.28) 

By substituting this result into eq. (2.28), we would be able to derive identical 

result as the one given in eq. (2.16). 

3. Conclusions 

The coupled eigen frequencies of the coupling of L·O phonons and plasmons 

are obtained by relating the equations of Born and Huang to the single particle 

Liouville equation as well as the Boltzmann-Vlasov equation in the long wavelength 

limit. The obtained result completely agrees with Yokota's and is given as follows: 
1 

cu:= ~ {Cw~+ cu~)± (Cw~+cu!i-4cu~cu!) 2 }. 
In the cu+ mode the lattice and electronic polarizations point in the same 

direction, whereas in the cu_ mode they point in opposite directions. The 

cu2
j cu~ is illustrated in the figure below in terms of cu~ cu~, which is proportional 

to carrier concentration. 

-r­
/ 

/ 

/ 

/ 

W=~ ----
- - -(A)-=~ 

Figure. The eigen frequencies of the coupled mode cu 
2 I w ~ is plotted against cu! cu ~ ex: n. 
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For low carrier concentrations ( w P <( w t , w 
1 

) the w + mode corresponds to 

the lattice vibrations mixed slightly with plasma oscillations, whereas the w - mode 

corresponds to the plasma oscillations, slightly mixed with the lattice vibrations. 

In other words we may say that w + mode is the phonons dressed in plasmons, 

and w - mode is the plasmons dressed in the phonons. 

On the other hand for high carrier concentrations ( w P )> w t • w 1 ) w + mode 

corresponds to the plasmons dressed in the phonons, and w - mode corresponds to 

the phonons dressed in the plasmons. 

In the neighborhood of the carrier concentration w P = w 
1 

, since the both of 

w + and w- are equally mixed with phonons and plasmons, we cannot say which 

dress which. This circumstances are happening right on at the order of carrier 

t . 1017 - 3 • ted . 1 concentra ton em as potn out prevtous y. 

The experimental proof of the existence of the coupled frequencies thus 

predicted theoretically has been established by A. Moordian and G. B. Wright6l in 

1966. They have succeeded in observing the Raman scattering by plasmons in 

n-type GaAs which are coupled with longitudinal optical phonons. 

Finally we will show in Appendix that we can derive the same result as the 

one derived by D. Pines et a}7l.Sl , if we deal only induced electron density. 

Recently much work has been reported on the coupling of longitudinal 

optical and free carrier collective excitations in polar semiconductors in the 
presence of a magnetic field9l. 
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Appendix. 

We will examine that the derivation of eq. (2.29) and the plasma frequency 

in the long wavelength limit by dealing only induced electron density. 

By neglecting the lattice polarization and using eq. (2. 7), eq. (2.23) and 

eq. (2.24), we obtain 

2 
V if>= 4rren. (A. 1) 

By expanding if> and n into Fourier series and substituting eq. (A.l), eq. (2.22) 

yields 

1 
4 rr e2 j (k+tV- f(k) 
Jq 12 n ~ E (li+q)- E ( 'G) -7t w (A. 2) 
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This result corresponds to that of Pines et al. derived from the dielectric response 

function, f (Q, w )= 0, which is the equation to determine the self-excitation plasma 

frequency. 
By replacing 1i+q by kin the first term in the right hand side of eq. (A.2), 

we get the following: 

-1 ~ { .. -1 1 } (A 3) 
=ll ~:J(k) '-nw +ECii+l/)-E(i) + ""hw -E(Ii+7f)-+E(li) · . 

In the long wavelength limit q-+o, we have 
2 2 2 t _.. 

E (k+ {[) - E (k) = Jk (k+Q)2 
- ?m k

2 
::: 1t m. q (A.4) 

By expanding eq. (A.3) with respect to (E(1i+Q)-E(t);tew, and using the eq. 

(A.4) , we get the following: 

ff c"i/. w) = n -1 I:fek) -nzw_ { ECt+rw-E(k) + ( ECk+i)w-E(k)) 3 + .. .... } 
k 

2 
- nq 
- w2 ,;; . 

Therefore, eq (A.2) yields 

2 41t'ne2 
w = -----···-· 

m 

This is the plasma frequency w 
p 

in the long wavelength limit. 
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