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Locally Trivial Fiber Spaces and Stiefel-Whitney Classes

Ryuji MAEHARA*

E. Fadell (3] generalized the notion of a plane bundle, and gave a definition
of generalized tangent bundle 7y, for a topological manifold /. In this paper,
we prove

Theorem Let FI E-? B bea locally trivial fiber space such
that F, B, E are topological manifolds Then there exist generalized plane bundles
&, 7 over E with the pyoperties:

Tp = %), §2 j*(tp) and 75 X EODY
where j*(7), p*(tp) denote the generalized plane bundles indvced from 7, tg
by §, p. respectively; X denotes fiber homotopy equivalence; and @ denotes the
Whitney sum.

Some consequences and applications of the theorem will be discussed in
sections 4, 5.

1. Preliminaries

Consider the following commutative diagram of spaces and maps:

F-———E-2.p

@ 17 1 |

By~ By Ploa B

where the unlabelled arrows are inclusion maps and F=p-1(d,), F,=p,~1(b,)
(b, € B). Such a diagram (denoted & = (E, E,, p, B)) is called a (locally trivial)
fibered pair with fiber (F, F,) if for each point b in B we can find an open set
U containing » and a homeomorphism of pairs

¢ : (UxXF, UxF,) — (p~XWD, p.~2U))
with the property p ¢ (&', x)=b". When E, is the empty subset of E, the above
fibered pair reduces to a (locally trivial) fiber space F = S E-g—»B.

In a fibered pair & =(E, E,, p, B), suppose the base space B is paracompact.
Then it is known that p:E——B and p, :E, — B are Hurewicz fiber spaces. In
fact, the map p admits a lifting function

A2:{(z,8) e ExXB| p(2)= ¢ (0)} —E!

such that p1(z,4)=¢and if z¢ E, then 2(z, ¢) is a path in E, (where X! denotes
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2 Locally Trivial Fiber Spaces and Stiefel-Whitney Classes

the space of paths in X with the compact-open topology). See (3] .

Let ¢ =(E, E,,p,B) and &’ =(F’ , E, , p , B) be fibered pairs with the
same base space B. A map of fibered pairs ¢ : £ —> ¢’ is a mapa : (E, E, ))—
(E' ,E; ) such that p'a=p. i.e.a is fiber preserving. If g :§— ¢’ is another
map of fibered pairs, then @ X § (read fiberwise homotopic) provided there exists
a homotopy % : (E , E,))xI—(E’ , E, ) such that k(z,0)=« (2), h(z, 1) =8 (&)
and p'h(z, t)=p(z) for all tel. & and & are said to be fiber homotopy equi-

(44
valent if there are maps of fibered pairs &% & such thate’ a %1 and oo’ X 1.
al

Both @ and «’ will be called fiber homotopy equivalences.
Let &€ and &' be as in the preceding paragraph. The Whitney sum ¢ @ &’

of & and £’ is definedby ¢ @ ¢’ = (E, E,, p , B) where
E = {(& ) ¢ExE | p)=p/ (&'}
E,= ((EXE, YY(E,xE')] ~E
PG z)=p@ (=9 @))

It is not difficult to see that &£ @ & is a fibered pair.
A fibered pair & =(E, E,, p,B) with fiber (F, F,) is called a generalized
p-plane bundle (abbreviated n-gpb) if it satisfies the following properties:

i) p: E — B admits a cross-section s : B— E (ie., ps = 1) such that E =
E—s (B),

i)y (F, F,)~(Rn, R~ — 0) where Rn is a Euclidean n-space, o is the origin of
Rn, and ~ designates homotopy equivalence of pairs. If & is an m-gpb and if 7
is an z-gpb with the same base space as that of £, then £ @ 7 isan (m + »n)—
gpb (see (33 ).

An n-manifold is a connected paracompact space which is locally homeomorphic
to Euclidean #-space B» (# = 1). Given an z-manifold M, let

T.M) = {geM | ¢@Wx¢(@ fora<t=1l},
let T(M) be the union of T',(M) and the constant paths on M, and give T'(M)
the compact-open topology. Define # : T(M) =M byx (£)= ¢ (0). Then

=T 0D, T M),z , M)
is an #-gpb (see (3] ). =v will be called the tangent n-gpb of M. If M possesses
a differentiable structure and if we let (F, g, M) denote the tangent bundle of M
and (E,, q,, M) the sub-bundle of non-zero vectors, then (E, E,, g, M) is clearly
an n-gpb. Itis known that there exists a fiber homotopy equivalence = £ (F,
E,, q, M). See (3] .

2. Two propositions.

Suppose F --— E -2 B is a locally trivial fiber space. We define
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¢ =H, H,n, E)and 7 = (V, V,, n, E) as follows:
H, = {¢€¢E']| pr(o) = pt(®) foro<t =<1},
(¢) (H =H_,"Y ({constant pathsinE } ,
T(£) = 4(0);
Vo= {6eE' | 4@ ¢ @ andpt0) =ps ) foro<t =<1},
7) V =V,"Y {constant paths in E } ,
7 (4) =4 (0.

The theorem stated in the beginning devides into the following two propositions :

Proposition 1. With the above notations, if F is an n-manifold, then 7 is
an n-gpb and ty = j*(1) (=the n-gpb induced from 2 by j).

Proposition 2. If F is an n-manifold and B is an m-manifold, then & is
an m-gpb and

§ X p*(rg), e X2 £§D7.

In the proof of these propositions, the following elementary lemma will be
needed. Let Dn denote the #z-ball in Euclidean #-space Rn, ie. D = {x ¢ Rn |
| x|ls1} and let Vn denote the interior of Dn. If k<n we may regard Rk =

{ (x1, -, Zn) € R0 | xx41 = -« = xn = 0} and hence Dk c Dn, VkcVn,

Lemme 8. (See (3,p.492) ). Let M be an n-manifold. Suppose U is an
open set in M such that its closure T[] is homeomorphic to the unit ball D» with U
corresponding to the interior V2 of Dn. For k<n, let UK be the subset of U which
corresponds to the subset Vk (cVn). Finally, let G (M) be the space of home-
omorphisms of M with the compact-open topology. Then there exists a map

T:UxU—GWM)
satisfying the following properties:

1)) r(ab) (@) =0,

i) r(a,a) =1,

iii) 7 (b,0) 7 (@,b)= 7 (a,c),

iv) r(ab) &)=z for ze M-U,

v) if a, be U | 7 (a,b) maps UK onto UK .

3. Proof of the propositions.

Proof of proposition 1. Let z, € E. Choose an open neighborhood U; of
p(z0) in B for which there exists a homeomorphism ¢ : Uy XF— p-1 (U1) with
the property p ¢ (b,x)=>5b. This is possible because (E, p, B) is a locally trivial
fiber space. When ¢ (b, x)=2, we will write x=¢(2). Let (20 ) =bo and g2, )=
Xo, e, 6(bo,x0) = 2o. Since F is an n-manifold, there is a neighborhood U3 of
xo with (U2, U2 ) homeomorphic to (D», Vn). Let W = ¢ (U1 x Uz). Obviously,
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W is a neighborhood of z,. We shall show the product structure of = : (z=1 (W),
o1 (W)) - T,

Let (V/, Vi ) be the fiber at 2o, i.e., (V/,V}, )=(7"1(2,), 751(20)).

Define a:WxV',V, ) — (z-1 (w), =5 (w)) by

a (2,4)@)=9¢(pz, T (%0,42) g4 () )

where 7 : Uz X Uz — G(F) is the map stated in Lemma 3. Clearly, @ maps W X
V, into w51 (W). To see the continuity of @, it suffices to see that7 (%o, gz)
(g ¢ () ) is continuous with respect to (z, ¢ ,2). But this follows from the continuity
of 7 and ,g and from the fact that the evaluation map MMxM! x I — M ( (qw,t)—
qw(?) ) is continuous owing to the local compactness of M and I. That « is
fiber preserving, i.e.,# a (2, 4)=z or equivalently @ (z, £)(0)=z, is easily verified.
Now, define a’: 2= (W) - WxV’by

a’ (2)=(20),(bo,7 (g2 (0), %0 )q ).

An easy calculation shows that &’ is the inverse of @. Hence, @ is 2 homeomorphism.
Therefore, 7 =(V, Vo, =, E) is a fibered pair. Note that 7 has the same fiber
as the fiber of the tangent z-gpb of F. Thus 7 is an n-gpb. The last assertion
tp = j* () is clear.

Proof of Proposition 2. (1) First, we see the local product structure in
§=(H, Ho, m, E). For z, & E, let U1 (cB), Uz (cF), W(CE), ¢,bo, %o, and
g be as in the preceding proof. We may assume (U1, U1) is homeomorphic to
(Dm, V'm) since B is an m-manifold. Let (H', HY) = (7-1(2 ), 751(20) ) (C
(H, Ho ) ). The object is to define a homeomorphism of pairs § :WxH’, Ho' )—
(z=Y (W), mo=! (W) ) with z p =p1 (=the projection onto W).

We can find a homeomorphism (W, W) =~ (Dm+n, YVm+n) so that W) =
p~1 (bo)~ W corresponds to Vn (c Vm+n), So, Lemma 3 gives us the map
72 : W) XxXWm c WxW —G(E). Note that 72 (q,8)(2) =z for z¢e E-W and
72 (a,b) maps p~1(bo) onto p~! (b,). On the other hand, since (U1, U1) =
(Dm, Vm), we have the map 71 : U1 X Ur— G(B). Define I' : U1 x Ui —
GO (U) )by

I (b1, b2)@)=¢(11(d1, b2 )(p2), g2).

We can regard I" as a map from Ui X U1 into G(E) by defining '(b1, b2 )(2)=
z for ze E—-p~1 (U).
Now define g : WxH’, Hy') — (-1 (W), ==t (W)) by
B ¢XHD=TIo,p@)) 12(20, $(bo, q(2)) 4.
The continuity of p is quaranteed by the local compactness of E and I. § is
fiber preserving; in fact,
7B (2,8)=Pp(2,£)0)=T(bo, pz) T2 (20, ¢ (bo, g2) )20
=T (bo, p2) ¢ (bo,qz) ¢ (P2, gz)=2.
B is a homeomorphism since it has inverse p’ given by g’ (7)=(z, ¢) where
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z= 7 (0)
{ £=12(8Cbo,q200)), 20) I'(p(0), bo)z.
Therefore, & has a local product structure.
(2) To see that & =(H, Ho, 7, E) is an m-gpb, define S : E — H by S(2)=
Z (the constant path at z). S is a cross-section, and H, =H—S(E) holds. All that
remains is to show (H’, Ho') ~(Rm™, Rm — (), But this follows from (3, Prop.
4,13 because (H’, Hy') is identical to the fiber of the ‘normal fiber space” of
the imbedding F c E.
(3) Next, we show that & X p*(B). Let B =(T'(B), To (B),7’, B) be
the tangent m-gpb of B. Then, by definition, we have p*(zB) = (H,Ho, p1, E)
where
H = {(28)eEXT@B)|p() =¢@@},
Ho= { (2,8)€EXToB) | p(@)=¢40)} = H »n (ExTo(B)),

pl (Z, g )=Z.
Let 2 be a lifting function of the fiber space (E,p,B) such that if ¢ is the
constant path at p(z) then A(z, ¢) is the constant path at z. We define maps
of pairs

(H, fo) = (H, Ho) by
g
{f: 2, ive, £z 8)(B)= 1z, ),
g(H=(7 ), pD).

It is easy to see that f and g are fiber preserving, ie., af=fand prg = 7.
Furthermore, since gf (2, £)=g(1(2,8))=C1(z,£)0), p21(z,4)) = (2,£), we
have gf =1. Now, let us show fg* 1. For a path w ¢ E! and sel, let w;
denote the path given by

w ()= {
$ w(l), , 1-sst =1
We define a homotopy # : (H,Ho) X I —(H, Ho) by
h(w,s)(®)= 2 (w(t(1—5) ), pwt(1—s) ) (st).

h is a fiberwise homotopy since

© h(w, s)=h(w, s)(0)= 2 (w(0), pwo)(0)=w(0)= 7 (w).
h is a homotopy between I and f g; in fact,

h (w,0)(t)= 2 w(@), pwt) (0) = w(), ie., h(w, 0) = w, and

kB (w, 1)@= 2w(0), pwo)(@®) = A (w(0), pw)(®) = fgw)(®), ie.,
h (w,1)=fg(w). Hence, fg X 1. This proves & % p*(tp).

(4) The proof of the final assertion zg X & @ 71is essentially same as the
argument in the proof of (3, Theorem 4.11]) , and hence, is omitted.

w(s+t), 0£ts1-s
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4. Characteristic classes.

Let & =(E, Eo, p, B) be a fibered pair with fiber (¥, Fo ). Then the fun-
damental group 7z, (B, do) acts on Hy(F, Fo; G). If this action is trivial, & is
called a G-orientable fibered pair. An x-manifold M is said to be G-orientable
when its tangent n-gpb 7y is G-orientable as a fibered pair.

Let A denote a commutative ring with unit.

Theorem 4 (See Fadell (3) ). If(E, Eo, p, B) is a A -orientable n-gpb
with fiber (F, Fo ), then there exists an element U ¢ Ho (E, Eo; A) satisfying the
Sollowing properties:

1) The inclusion map j : (F, Fo) — (E, Eo) induces an isomorphism j* :
Hn(E, Eo; A) —Hn(F, Fo; A), and if we identify Hn(F, Fo; A) with A, U
corresponds to the unit of A under j*

11) The homomorphism defined by cup product,

YU : Hi(E; A) —»Hi+n (E, Eq; A)
is an isomorphism for every i.

U is called a A-orientation of the #-gpb, and from property (z), it is
determined uniquely by the choice of identification A =Hn(F, Fo; A). Now, note
that p* : Hi (B; A) —Hi (E; A) is an isomorphism since the total fiber F is
contractible. Hence, from (7%), the composition

¢ 1 H(B; A) T Hi (B A) YWoHI(E, Eo; A)
is an isomorphism. ¢ is the Thom isomorphism associated to U. The Euler class
X(&) of the n-gpb & is defined by

X(&)=9¢"1(UVU) eHn(B; A).

When A =Z2 ( = the ring of integers mod 2), the Stiefel-Whitney classes
Wi (&) (i=0,1,2---) of & are defined by

Wi ()=¢-1S§U) eHi (B; Z2)
where S} : Ho(E, Eo ; Zz) — Hnti (E, Eo; Z2) denotes the i-th Steenrod operation.
Note that in defining Wi (&) we do not need to worry about the orientability of
& since every n-gpb is Z-orientable.

Characteristic classes X(§), Wi (§) satisfy the naturality property in the
following sense : Let f: B’— B be a map and let f* £ be the #n-gpb induced from
¢ by f;then

XU*e)=r*X(&), Wi (f*&)=r*Wi (&).

Furthermore, characteristic classes are invariances of fiber homotopy equivalence;
that means, & X &’ implies

X(&)=X(¢&") and Wi( &)=Wi(¢).

Therefore, Proposition 1 gives the following corollary. The fact stated there was
recently proved by Gottlieb (4] in a slightly different method.
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Corollary 5 (to Proposition 1). Let F-3 S FE P B be a locally trivial
[fiber space such that F is an n-manifold. Then
Wr(ep)ej* Hk(E; Z2), k=0,1, 2, n.
If F is orientable (ie, Z-orientable) and =, (E)=0, then
X(tp) e j*Hn(E; Z).
The author does not know whether or not the above corollary remains valid
for a Hurewicz fiber space F——sE—B instead for a locally trival fiber space.

Example Let P2n -3 — E-" B be a locally trivial fiber space where P
is the real projective space of dimension 2n. Then j* : HX(E, Z2 )—Hk (P, 73 )
is onto for every k.

Proof The cohomology ring H*(P2n, Z3 ) is generated by the unique nonzero
element % in H! (P%, Z3). u is the first Stiefel-Whitney class of P?n(see (5] ) and
hence, #% is in the image of j*.

Proposition 2 gives

Corollary 6. Let F —1— E —2— B be a locally trivial fiber space such that
both B and F are (topological) manifolds. Then

Wy Ctp)=7*Wx(1g), k=0, 1, -, dim F.

If =y (E)=0, X(tg) is a decomposable element.

Proof Proposition 2 says:

g 2§D, tr =7%(7), §Xp*(7R).
Hence,
Wk (tg) =Wk (6D 7)

= i§ Wi(§)"Y Wi—i(7) (see (3, Theorem 6.113 )
=0

Il

E 0t Wirg) Y Wiei (1),
Therefore,

Wi Crg) = B 3% 9 (7D %% Wiews (1)
= Wo (1) Vj*Wik(7) (since pj=0)
= * W (D) =Wi(zp).

The second assertion follows from
X(z) = X(§@®1) = X(§)VX(9).

The assumption =z, (E)= O quarantees the orientability of Bae &5 W

Example Let F- Eon B wosr B be as in Corallary 6. If E is orientable

then so is F.
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Proof In general, a (topological) manifold M is orientable if and only if
Wi (7)) = 0 (see (6,p. 3497 ). Corollary 6 says W (zp)=j*Wi1(zg). Hence,

Wi(zg) = 0 implies WI(TF) = 0,

6. Applications
Let K be a field. For a map f:X —Y, we will use the following notations.
Notation
Imf* = the image of * : H*(Y, K) —» H*(X, K).
Umf*) = {ve H*(X, K) | x Y y = 0 for some nonzero y in Imf*} .
Let PB be the space of paths in B starting at b,. The path fibration
n : PB—B is the map defined by # (£)=¢4Q). If f : Y-B is a map, f induces
a fibration( = Hurewicz fiber space) ¢ : X — Y ;

{X: {(e)eYXPB|f(D=¢Q)} ,

a(3,2)=y.
The fiber of q at yo (€ /-1 (8o ) ) is o X QB, which we shall identify with QB
(the loop space of B at by ). A fibration, as above, which is induced from a path
fibration will be called a principal fibration.

Lemma 7. Lot QB —— X -2 Y be a principal fibration. Then x
€ (Img*) implies i*(x) = O.

Proof Define m : QBXxX—X by

m(a, (3, 8))=©, 2x4)

where A*¢ denotes the product path. Observe that if A1, is the constent path
at b then the map (¥, 10) »m( 20, (¥, £)) is homotopic to the identity map
of X, and the map 2 —»m(2, (3o, 1o) is homotopic to the inclusion map i: QB
—X. Consider the diagram

QBxX X4 _, oBxY

] |+

Bl sy

where pr is the projection. Clearly the diagram is commutative. Now, from the
above observation on m, we can write
m*(x) =i* (@) R1+1Qx + T2’ @ x"” ¢ H*(Q BK)Q H*X, K)
where 0<deg x’ <deg x. On the other hand, since xe¢ (Im g¢*)’, there is a
nonzero element y € Im g*with x¥Y y = 0. Let y = ¢*(2) for z¢ H*(Y, K).
Then m*(y) = m* ¢*(2) = (A1XP* pr*(2) = U xP*(1®=2)
= 1®¢*(2) = 18.
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Hence,
o =m*(x" y)=m*(x) " m*(y)
=(* 2 R1+1QRQx+ I RxNHVAR®Y)
=¥y +1Qxy+ 22’ Qx"y
=*) @y + =&’ Q2"
The assumption on deg x’ implies i*(x) ® ¥ = o, and hence i*(x) = o.

Theorem 8 Let F—-— E—"— B be a fiber space. Let f:X—F be a map

with jf = 0. Then xe (Im j*) implies f*(x)=o.
Proof Itis well-known that the fiber inclusion map j factors as F oy
-4_, E, where % 1s a homotopy equivalence and ¢ is a principal fibration with fiber

QB (F-2 > E is the fibration mduced by p from the path fibration over B; for
example, see (2] ). By assumbtion, O=jf = ghf; hence, hf factors through QB
in the homotopy sense; more precisely there is a map 2 : X — QB such that the
left triangle i the following diagram commutes 1n the homotopy sense.

QB - i.s F i+ - E
N 7

h]/

k\ff‘

X

It is easy to see that x € (Im j*)’ comes from some x’' ¢ (Im q*)’ via k*. Thus
f¥x) =f*h**' ) =ki*@x') =0
since i*(a’) = o by the preceding lemma.

Let M be a manifold. Let G be the space of homeomorphisms of M onto
itself and Go the subspace consisting of such homeomorphisms that do not move
the base point xo of M. Then the evaluation map w : G— Mw(g) = g(xs) )
is a locally trivial fiber space with fiber w1 (x5 ) = Go. The local product structure
in w: G—M can be easily shown by using Lemma 3.

Recall now the following fact ( (1, p. 553 ): There is a locally trival fiber
space M —4 . Bgo —2-— Bg with jw = O. We have information about the image
of j* : H*(Bgo, Z2) — H*(M, Z2) (Corollary 5). Thus Theorem 8 gives some

results on the evaluation map w : G - M.

Example If M is nonorientable, then
wx=0 : HH(M, Zz) — Hn (G, Z2)
where n = dim M.
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Proof If M is nonorientable, there is the nonzero element W, (7)) in the
image of j* : H1(Bgo, Z2) — H! (M, Z2). Hence, Hn (M, Z2) c (Im j*) cker
w*.

Example (Gottlieb (4] ). If M is compact and its Euler-Poincare number
is odd, then

w* =0 : H(M, Z2 ) — H* (G, Z2)
Jor every k > O.
Proof The hypothesis implies Wy (70 * O (n=dim M). See (6, p. 348] .

Wa (zyp) is in Imj* . Hence, Hx (M, Z2 ) c Umj*) C ker w*.
Proposition 8. Let M be a compact triangulated manifold with odd Euler-

Poincare number. Let M - — E —P— B be a locally trivial fiber space. Then
HY(M, Z2 )%0 (kx0) implies i | Mk+150, where M*+! denotes the (k+1)—skelton.

Proof Similar to the preceding example. If i | M*+1=0, the homomorphism
HY(M, Z; ) — H&(Mk+! | Z3) would be trivial.
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