琉球大学学術リポジトリ

Locally Trivial Fiber Spaces and Stiefel－Whitney Classes

メタデータ	言語：
	出版者：琉球大学理工学部
	公開日：2012－06－07
キーワード（Ja）：	
	キーワード（En）： 作成者：Maehara，Ryuji，前原，竜二 メールアドレス： 所属：
URL	http：／／hdl．handle．net／20．500．12000／24620

Locally Trivial Fiber Spaces and Stiefel-Whitney Classes

Ryuji MaEhara*

Abstract

E. Fadell [3] generalized the notion of a plane bundle, and gave a definition of generalized tangent bundle τ_{M} for a topological manifold M. In this paper, we prove

Theorem Let $F \xrightarrow{j} \underset{\rightarrow}{p} \rightarrow B$ be a locally trivial fiber space such that F, B, E are topological manifolds. Then there exist generalized plane bundles ξ, η over E with the properties:

$$
\tau_{\mathrm{F}}=j^{*}(\eta), \quad \xi \stackrel{*}{\sim} *\left(\tau_{\mathrm{B}}\right) \quad \text { and } \tau_{\mathrm{E}} \stackrel{*}{\sim} \xi \oplus \eta
$$

where $j^{*}(\eta), p^{*}\left(\tau_{\mathrm{B}}\right)$ denote the generalized plane bundles indvced from η, τ_{B} by $j, p, r e s p e c t i v e l y ; ~ \underset{\sim}{\sim}$ denotes fiber homotopy equivalence; and \oplus denotes the Whitney sum.

Some consequences and applications of the theorem will be discussed in sections 4,5 .

1. Preliminaries

Consider the following commutative diagram of spaces and maps:

where the unlabelled arrows are inclusion maps and $F=p^{-1}\left(b_{0}\right), F_{0}=p_{0}{ }^{-1}\left(b_{0}\right)$ $\left(b_{\circ} \in B\right)$. Such a diagram (denoted $\xi=\left(E, E_{0}, p, B\right)$) is called a (locally trivial) fibered pair with fiber (F, F_{0}) if for each point b in B we can find an open set U containing b and a homeomorphism of pairs

$$
\phi:\left(U \times F, U \times F_{\circ}\right) \longrightarrow\left(p^{-1}(U), p_{0}^{-1}(U)\right)
$$

with the property $p \phi\left(b^{\prime}, x\right)=b^{\prime}$. When E o is the empty subset of E, the above fibered pair reduces to a (locally trivial) fiber space $F^{j} \rightarrow E^{p} B$.

In a fibered pair $\xi=\left(E, E_{0}, p, B\right)$, suppose the base space B is paracompact. Then it is known that $p: E \longrightarrow B$ and $p_{0}: E_{0} \longrightarrow B$ are Hurewicz fiber spaces. In fact, the map p admits a lifting function

$$
\lambda:\left\{(z, \ell) \in E \times B^{\mathrm{I}} \mid p(z)=\ell(o)\right\} \longrightarrow E^{\mathbf{I}}
$$

such that $p \lambda(z, \ell)=\ell$ and if $z \in E_{0}$ then $\lambda(z, \ell)$ is a path in E_{0} (where X^{I} denotes
the space of paths in X with the compact-open topology). See [3].
Let $\xi=\left(E, E_{0}, p, B\right)$ and $\xi^{\prime}=\left(E^{\prime}, E_{0}^{\prime}, p^{\prime}, B\right)$ be fibered pairs with the same base space B. A map of fibered pairs $\alpha: \xi \longrightarrow \xi^{\prime}$ is a map $\alpha:\left(E, E_{0}\right) \longrightarrow$ ($E^{\prime}, E_{o}^{\prime}$) such that $p^{\prime} \alpha=p$. i.e. α is fiber preserving. If $\beta: \xi \longrightarrow \xi^{\prime}$ is another map of fibered pairs, then $\alpha \stackrel{\approx}{\sim} \beta$ (read fiberwise homotopic) provided there exists a homotopy $h:\left(E, E_{0}\right) \times I \rightarrow\left(E^{\prime}, E_{0}^{\prime}\right)$ such that $h(z, o)=\alpha(z), h(z, 1)=\beta(z)$ and $p^{\prime} h(z, t)=p(z)$ for all $t \in I$. ξ and ξ^{\prime} are said to be fiber homotopy equi-
 Both α and α^{\prime} will be called fiber homotopy equivalences.

Let ξ and ξ^{\prime} be as in the preceding paragraph. The Whitney sum $\xi \oplus \xi^{\prime}$ of ξ^{\prime} and ξ^{\prime} is defined by $\xi \oplus \xi^{\prime}=\left(\bar{E}, \bar{E}_{0}, \bar{p}, B\right)$ where

$$
\left\{\begin{array}{l}
\bar{E}=\left\{\left(z, z^{\prime}\right) \in E \times E^{\prime} \mid p(z)=p^{\prime}\left(z^{\prime}\right),\right\} \\
\bar{E}_{0}=\left[\left(E \times E_{0}^{\prime}\right)^{\cup}\left(E_{0} \times E^{\prime}\right)\right] n \bar{E} \\
\bar{p}\left(z, z^{\prime}\right)=p(z)\left(=p^{\prime}\left(z^{\prime}\right)\right)
\end{array}\right.
$$

It is not difficult to see that $\xi \oplus \xi^{\prime}$ is a fibered pair.
A fibered pair $\xi=\left(E, E_{0}, p, B\right)$ with fiber $\left(F, F_{0}\right)$ is called a generalized p-plane bundle (abbreviated n-gpb) if it satisfies the following properties:
i) $p: E \rightarrow B$ admits a cross-section $s: B \rightarrow E$ (i.e., $p s=1$) such that $E_{0}=$ $E-s(B)$,
ii) ($\left.F, F_{\mathrm{o}}\right) \sim\left(R^{\mathrm{n}}, R^{\mathrm{n}}-o\right)$ where R^{n} is a Euclidean n -space, o is the origin of R^{n}, and \sim designates homotopy equivalence of pairs. If ξ is an m-gpb and if η is an n-gpb with the same base space as that of ξ, then $\xi \oplus \eta$ is an $(m+n)-$ gpb (see [3]).

An n-manifold is a connected paracompact space which is locally homeomorphic to Euclidean n-space $R^{\mathrm{n}}(n \geqq 1)$. Given an n-manifold M, let

$$
T_{\circ}(M)=\left\{\ell \in M^{1} \mid \ell(t) \neq \ell(o) \text { for } a<t \leqq 1\right\},
$$

let $T(M)$ be the union of $T_{\mathrm{o}}(M)$ and the constant paths on M, and give $T(M)$ the compact-open topology. Define $\pi: T(M) \rightarrow M$ by $\pi(\ell)=\ell(o)$. Then
$\tau_{\mathrm{M}}=\left(T(M), T_{0}(M), \pi, M\right)$
is an n-gpb (see [3]). τ_{M} will be called the tangent n-gpb of M. If M possesses a differentiable structure and if we let (E, q, M) denote the tangent bundle of M and (E_{0}, q_{0}, M) the sub-bundle of non-zero vectors, then (E, E_{0}, q, M) is clearly an n-gpb. It is known that there exists a fiber homotopy equivalence $\tau_{\mathrm{M}} \stackrel{*}{\sim}(E$, $\left.E_{0}, q, M\right)$. See [3].

2. Two propositions.

Suppose $F \xrightarrow{\mathrm{j}} E \xrightarrow{\mathrm{p}} B$ is a locally trivial fiber space. We define
$\xi=\left(H, H_{0}, \pi, E\right)$ and $\eta=\left(V, V_{0}, \pi, E\right)$ as follows:
$(\xi)\left\{\begin{array}{l}H_{0}=\left\{\ell \in E^{\mathrm{I}} \mid p \ell(o) \neq p \ell(t) \text { for } o<t \leqq 1\right\}, \\ H=H_{0} \cup\{\text { constant paths in } E\}, \\ \pi(\ell)=\ell(o) ;\end{array}\right.$
$(\eta)\left\{\begin{array}{l}V_{0}=\left\{\ell \in E^{1} \mid \ell(o) \neq \ell(t) \text { and } p \ell(o)=p \ell(t) \text { for } o<t \leqq 1\right\}, \\ V=V_{0} \cup\{\text { constant paths in } E\}, \\ \pi(\ell)=\ell(o) .\end{array}\right.$
The theorem stated in the beginning devides into the following two propositions:
Proposition 1. With the above notations, if F is an n-manifold, then η is an $n-g p b$ and $\tau_{\mathbf{F}}=j^{*}(\eta)(=t h e n$-gpb induced from η by j).

Proposition 2. If F is an n-manifold and B is an m-manifold, then ξ is an $m \cdot g p b$ and

$\xi \stackrel{*}{\sim} p^{*}\left(\tau_{\mathrm{B}}\right), \tau_{\mathrm{E}} \stackrel{*}{\sim} \xi \oplus \eta$.

In the proof of these propositions, the following elementary lemma will be needed. Let D^{n} denote the n-ball in Euclidean n-space R^{n}, i.e. $D^{\mathrm{n}}=\left\{x \in R^{\mathrm{n}}\right\}$ $\|x\| \leqq 1\}$ and let V^{n} denote the interior of D^{n}. If $k<n$ we may regard $R^{\mathrm{k}}=$ $\left\{\left(x_{1}, \cdots, x_{\mathrm{n}}\right) \in R^{\mathrm{n}} \mid x_{\mathrm{k}+1}=\cdots=x_{\mathrm{n}}=0\right\}$ and hence $D^{\mathrm{k}} \subset D^{\mathrm{n}}, V^{\mathrm{k}} \subset V^{\mathrm{n}}$.

Lemme 3. (See [3, p.492]). Let M be an n-manifold. Suppose U is an open set in M such that its closure \bar{U} is homeomorphic to the unit ball D^{n} with U corresponding to the interior V^{n} of D^{n}. For $k<n$, let $U^{(\mathrm{k})}$ be the subset of U which corresponds to the subset $V^{\mathrm{k}}\left(\subset V^{\mathrm{n}}\right)$. Finally, let $G(M)$ be the space of homeomorphisms of M with the compact-open topology. Then there exists a map
$r: U \times U \longrightarrow G(M)$
satisfying the following properties:
i) $\quad r(a, b)(a)=b$,
ii) $\quad r(a, a)=1$,
iii) $\quad \gamma(b, c) \gamma(a, b)=\gamma(a, c)$,
iv) $\quad r(a, b)(z)=z \quad$ for $z \in M-U$,
v) if $a, b \in U^{(\mathrm{k})}, r(a, b)$ maps $U^{(\mathrm{k})}$ onto $U^{(\mathrm{k})}$.

3. Proof of the propositions.

Proof of proposition 1. Let $z_{0} \in E$. Choose an open neighborhood U_{1} of $p\left(z_{0}\right)$ in B for which there exists a homeomorphism $\phi: U_{1} \times F \rightarrow p^{-1}\left(U_{1}\right)$ with the property $p \phi(b, x)=b$. This is possible because (E, p, B) is a locally trivial fiber space. When $\phi(b, x)=z$, we will write $x=q(z)$. Let $p\left(z_{0}\right)=b_{0}$ and $q\left(z_{0}\right)=$ x_{0}, i. e., $\phi\left(b_{0}, x_{0}\right)=z_{0}$. Since F is an n-manifold, there is a neighborhood U_{2} of x_{0} with $\left(U_{2}, U_{2}\right)$ homeomorphic to $\left(D^{\mathrm{n}}, V^{\mathrm{n}}\right)$. Let $W=\phi\left(U_{1} \times U_{2}\right)$. Obviously,
W is a neighborhood of z_{0}. We shall show the product structure of $\pi:\left(\pi^{-1}(\mathrm{~W})\right.$, $\left.\pi_{0}{ }^{-1}(W)\right) \rightarrow W$.

Let $\left(V^{\prime}, V_{o}^{\prime}\right)$ be the fiber at z_{0}, i. e., $\left(V^{\prime}, V_{0}^{\prime}\right)=\left(\pi^{-1}\left(z_{0}\right), \pi_{o}^{-1}\left(z_{0}\right)\right)$.
Define $\alpha: W \times\left(V^{\prime}, V_{o}^{\prime}\right) \rightarrow\left(\pi^{-1}(w), \pi_{o}^{-1}(w)\right)$ by
$\alpha(z, \ell)(t)=\phi\left(p z, \gamma\left(x_{0}, q z\right) q \ell(t)\right)$
where $r: U_{2} \times U_{2} \rightarrow G(F)$ is the map stated in Lemma 3. Clearly, α maps $W \times$ V_{0}^{\prime} into $\pi_{\mathrm{o}}^{-1}(W)$. To see the continuity of α, it suffices to see that $\gamma\left(x_{0}, q z\right)$ ($q \ell(t)$) is continuous with respect to (z, ℓ, t). But this follows from the continuity of r and,q and from the fact that the evaluation map $M^{\mathrm{M}} \times M^{\mathrm{I}} \times I \rightarrow M((q, w, t) \rightarrow$ $q w(t))$ is continuous owing to the local compactness of M and I. That α is fiber preserving, i.e., $\pi \alpha(z, \ell)=z$ or equivalently $\alpha(z, \ell)(0)=z$, is easily verified. Now, define $\alpha^{\prime}: \pi^{-1}(W) \rightarrow W \times V^{\prime}$ by

$$
\alpha^{\prime}(\bar{\ell})=\left(\bar{\ell}(0),\left(b_{0}, \gamma\left(q \bar{\ell}(0), x_{0}\right) q \bar{\ell}\right) .\right.
$$

An easy calculation shows that α^{\prime} is the inverse of α. Hence, α is a homeomorphism. Therefore, $\eta=\left(V, V_{0}, \pi, E\right)$ is a fibered pair. Note that η has the same fiber as the fiber of the tangent n-gpb of F. Thus η is an n-gpb. The last assertion $\tau_{F}=j^{*}(\eta)$ is clear.

Proof of Proposition 2. (1) First, we see the local product structure in $\xi=\left(H, H_{0}, \pi, E\right)$. For $z_{0} \in E$, let $U_{1}(\subset B), U_{2}(\subset F), W(\subset E), \phi, b_{0}, x_{0}$, and q be as in the preceding proof. We may assume (\bar{U}_{1}, U_{1}) is homeomorphic to ($D^{\mathrm{m}}, V^{\mathrm{m}}$) since B is an m-manifold. Let $\left(H^{\prime}, H_{0}^{\prime}\right)=\left(\pi^{-1}\left(z_{0}\right), \pi_{0}^{-1}\left(z_{0}\right)\right)$ (\subset $\left.\left(H, H_{0}\right)\right)$. The object is to define a homeomorphism of pairs $\beta: W \times\left(H^{\prime}, H_{o}^{\prime}\right) \rightarrow$ ($\pi^{-1}(W), \pi_{0}{ }^{-1}(W)$) with $\pi \beta=p_{1}$ ($=$ the projection onto W).

We can find a homeomorphism $(W, W) \cong\left(D^{\mathrm{m}+\mathrm{n}}, V^{\mathrm{m}+\mathrm{n}}\right)$ so that $W^{(\mathrm{n})}=$ $p^{-1}\left(b_{0}\right) \cap W$ corresponds to $V^{n}\left(\subset V^{\mathrm{m}+\mathrm{n}}\right)$. So, Lemma 3 gives us the map $r_{2}: W^{(\mathrm{n})} \times W^{(\mathrm{n})} \subset W \times W \rightarrow G(E)$. Note that $\gamma_{2}(a, b)(z)=z$ for $z \in E-W$ and $r_{2}(a, b)$ maps $p^{-1}\left(b_{0}\right)$ onto $p^{-1}\left(b_{0}\right)$. On the other hand, since ($\left.\bar{U}_{1}, U_{1}\right) \cong$ $\left(D^{\mathrm{m}}, V^{\mathrm{m}}\right)$, we have the map $\gamma_{1}: U_{1} \times U_{1} \rightarrow G(B)$. Define $\Gamma: U_{1} \times U_{1} \rightarrow$ $G\left(p^{-1}(U)\right)$ by

$$
\Gamma\left(b_{1}, b_{2}\right)(z)=\phi\left(r_{1}\left(b_{1}, b_{2}\right)(p z), q z\right) .
$$

We can regard Γ as a map from $U_{1} \times U_{1}$ into $G(E)$ by defining $\Gamma\left(b_{1}, b_{2}\right)(z)=$ z for $z \in E-p^{-1}(U)$.

Now define $\beta: W \times\left(H^{\prime}, H_{0}^{\prime}\right) \rightarrow\left(\pi^{-1}(W), \pi_{0}{ }^{-1}(W)\right)$ by

$$
\beta(z, \ell)(t)=\Gamma\left(b_{0}, p(z)\right) \gamma_{2}\left(z_{0}, \phi\left(b_{0}, q(z)\right) \ell(t) .\right.
$$

The continuity of β is quaranteed by the local compactness of E and $I . \quad \beta$ is fiber preserving; in fact,

$$
\begin{aligned}
\pi \beta(z, \ell) & =\beta(z, \ell)(o)=\Gamma\left(b_{0}, p z\right) \gamma_{2}\left(z_{0}, \phi\left(b_{0}, q z\right)\right) z_{0} \\
& =\Gamma\left(b_{0}, p z\right) \phi\left(b_{0}, q z\right) \phi(p z, q z)=z .
\end{aligned}
$$

β is a homeomorphism since it has inverse β^{\prime} given by $\beta^{\prime}(\bar{\ell})=(z, \ell)$ where

$$
\left\{\begin{array}{l}
z=\bar{\ell}(o) \\
\ell=\gamma_{2}\left(\phi\left(b_{0}, q \bar{\ell}(o)\right), z_{0}\right) \Gamma\left(p \bar{\ell}(o), b_{0}\right) \bar{\ell}
\end{array}\right.
$$

Therefore, ξ has a local product structure.
(2) To see that $\xi=\left(H, H_{0}, \pi, E\right)$ is an m-gpb, define $S: E \rightarrow H$ by $S(z)=$ \tilde{z} (the constant path at z). S is a cross-section, and $H_{0}=H-S(E)$ holds. All that remains is to show $\left(H^{\prime}, H_{o}^{\prime}\right) \sim\left(R^{\mathrm{m}}, R^{\mathrm{m}}-O\right)$. But this follows from [3, Prop. 4.1] because ($H^{\prime}, H_{\mathrm{o}^{\prime}}$) is identical to the fiber of the "normal fiber space" of the imbedding $F \subset E$.
 the tangent m-gpb of B. Then, by definition, we have $p^{*}\left(\tau_{\mathrm{B}}\right)=\left(\bar{H}, \bar{H}_{0}, p_{1}, E\right)$ where

$$
\left\{\begin{array}{l}
\bar{H}=\{(z, \ell) \in E \times T(B) \mid p(z)=\ell(0)\}, \\
\bar{H}_{0}=\left\{(z, \ell) \in E \times T_{0}(B) \mid p(z)=\ell(0)\right\}=\bar{H} \cap\left(E \times T_{0}(B)\right) \\
p_{1}(z, \ell)=z .
\end{array}\right.
$$

Let λ be a lifting function of the fiber space (E, p, B) such that if ℓ is the constant path at $p(z)$ then $\lambda(z, \ell)$ is the constant path at z. We define maps of pairs
$\left(\bar{H}, \bar{H}_{\mathrm{o}}\right) \underset{\mathrm{g}}{\stackrel{f}{\rightleftarrows}}\left(H, H_{\mathrm{o}}\right)$ by

$$
\left\{\begin{array}{l}
f=\lambda, \text { i.e., } f(z, \ell)(t)=\lambda(z, \ell)(t), \\
g(\bar{\ell})=(\bar{\ell}(0), p \bar{\ell}) .
\end{array}\right.
$$

It is easy to see that f and g are fiber preserving, i.e., $\pi f=t_{1}$ and $p_{1} g=\pi$. Furthermore, since $g f(z, \ell)=g(\lambda(z, \ell))=(\lambda(z, \ell)(o), p \lambda(z, \ell))=(z, \ell)$, we have $g f=1$. Now, let us show $f g \stackrel{*}{\sim} 1$. For a path $w \in E^{\mathbf{l}}$ and $s \in I$, let w_{s} denote the path given by

$$
w_{s}(t)= \begin{cases}w(s+t), & 0 \leqq t \leqq 1-s \\ w(1), & 1-s \leqq t \leqq 1\end{cases}
$$

We define a homotopy $h:\left(H, H_{0}\right) \times I \rightarrow\left(H, H_{0}\right)$ by

$$
h(w, s)(t)=\lambda(w(t(1-s)), p w t(1-s))(s t) .
$$

h is a fiberwise homotopy since

$$
\pi h(w, s)=h(w, s)(0)=\lambda\left(w(0), p w_{0}\right)(0)=w(0)=\pi(w) .
$$

h is a homotopy between I and $f g$; in fact,
$h(w, 0)(t)=\lambda\left(w(t), p w_{t}\right)(0)=w(t)$, i.e., $h(w, 0)=w$, and
$h(w, 1)(t)=\lambda\left(w(0), p w_{0}\right)(t)=\lambda(w(0), p w)(t)=f g(w)(t)$, i.e., $h(w, 1)=f g(w)$. Hence, $f g \stackrel{*}{\sim} 1$. This proves $\xi \stackrel{*}{\sim} p^{*}\left(\tau_{\mathrm{B}}\right)$.
(4) The proof of the final assertion $\tau_{\mathrm{E}} \stackrel{*}{\sim} \xi \oplus \eta$ is essentially same as the argument in the proof of [3, Theorem 4.11], and hence, is omitted.

4. Characteristic classes.

Let $\xi=\left(E, E_{0}, p, B\right)$ be a fibered pair with fiber $\left(F, F_{0}\right)$. Then the fundamental group $\pi_{1}\left(B, b_{0}\right)$ acts on $H_{*}\left(F, F_{0} ; G\right)$. If this action is trivial, ξ is called a G-orientable fibered pair. An n-manifold M is said to be G-orientable when its tangent n-gpb τ_{M} is G-orientable as a fibered pair.

Let Λ denote a commutative ring with unit.
Theorem 4 (See Fadell [3]). If $\left(E, E_{0}, p, B\right)$ is a Λ-orientable n - $g p b$ with fiber $\left(F, F_{0}\right)$, then there exists an element $U \in H^{n}\left(E, E_{0} ; \Lambda\right)$ satisfying the following properties:
i) The inclusion map $j:\left(F, F_{0}\right) \rightarrow\left(E, E_{0}\right)$ induces an isomorphism j^{*} : $H^{\mathrm{n}}\left(E, E_{\mathrm{o}} ; \Lambda\right) \rightarrow H^{\mathrm{n}}\left(F, F_{\mathrm{o}} ; \Lambda\right)$, and if we identify $H^{\mathrm{n}}\left(F, F_{0} ; \Lambda\right)$ with Λ, U corresponds to the unit of Λ under j^{*}
ii) The homomorphism defined by cup praduct, ${ }^{\cup} U: H^{\mathrm{i}}(E ; \Lambda) \rightarrow H^{\mathrm{i}+\mathrm{n}}\left(E, E_{0} ; \Lambda\right)$
is an isomorphism for every i.
U is called a Λ-orientation of the n-gpb, and from property (i), it is determined uniquely by the choice of identification $\Lambda=H^{\mathrm{n}}\left(F, F_{0} ; \Lambda\right)$. Now, note that $p^{*}: H^{\mathbf{i}}(B ; \Lambda) \rightarrow H^{i}(E ; \Lambda)$ is an isomorphism since the total fiber F is contractible. Hence, from (ii), the composition
$\phi: H^{\mathrm{i}}(B ; \Lambda) \xrightarrow{P^{*}} H^{\mathrm{i}}(E ; \Lambda) \xrightarrow{u U_{\rightarrow}} H^{\mathrm{i}+\mathrm{n}}\left(E, E_{0} ; \Lambda\right)$
is an isomorphism. ϕ is the Thom isomorphism associated to U. The Euler class $X(\xi)$ of the $n-\mathrm{gpb} \xi$ is defined by
$X(\xi)=\phi^{-1}(U \cup U) \in H^{n}(B ; \Lambda)$.
When $\Lambda=Z_{2}(=$ the ring of integers mod 2), the Stiefel-Whitney classes
$W_{\mathbf{i}}(\xi)(i=0,1,2 \cdots)$ of ξ are defined by

$$
W_{\mathbf{i}}(\xi)=\phi^{-1} S_{\varphi}^{i}(U) \in H^{\mathbf{i}}\left(B ; Z_{2}\right)
$$

where $S_{q}^{i}: H^{\mathrm{n}}\left(E, E_{0} ; Z_{2}\right) \rightarrow H^{\mathrm{n}+\mathrm{i}}\left(E, E_{0} ; Z_{2}\right)$ denotes the i-th Steenrod operation. Note that in defining $W_{\mathrm{i}}(\xi)$ we do not need to worry about the orientability of ξ since every n -gpb is Z_{2}-orientable.

Characteristic classes $X(\xi), W_{i}(\xi)$ satisfy the naturality property in the following sense : Let $f: B^{\prime} \rightarrow \mathrm{B}$ be a map and let $f^{*} \xi$ be the n-gpb induced from ξ by f;then

$$
X\left(f^{*} \xi\right)=f^{*} X(\xi), \quad W_{\mathbf{i}}\left(f^{*} \xi\right)=f^{*} W_{\mathbf{i}}(\xi)
$$

Furthermore, characteristic classes are invariances of fiber homotopy equivalence; that means, $\xi \stackrel{*}{\sim} \xi^{\prime}$ implies

$$
X(\xi)=X\left(\xi^{\prime}\right) \text { and } W_{\mathrm{i}}(\xi)=W_{\mathrm{i}}(\xi)
$$

Therefore, Proposition 1 gives the following corollary. The fact stated there was recently proved by Gottlieb [4] in a slightly different method.

Corollary 5 (to Proposition 1). Let $F^{\mathrm{j}} \rightarrow E \stackrel{\mathrm{p}}{\rightarrow} B$ be a locally trivial fiber space such that F is an n-manifold. Then

$$
W_{k}\left(\tau_{\mathrm{F}}\right) \in j^{*} H^{\mathrm{k}}\left(E ; Z_{2}\right), k=o, 1,2, \cdots, n
$$

If F is orientable (ie, Z-orientable) and $\pi_{1}(E)=O$, then

$$
X\left(\tau_{\mathrm{F}}\right) \in j^{*} H^{\mathrm{n}}(E ; Z)
$$

The author does not know whether or not the above corollary remains valid for a Hurewicz fiber space $F \longrightarrow E \longrightarrow B$ instead for a locally trival fiber space.

Example Let $P^{2 \mathrm{n}}{ }^{\mathrm{j}} \rightarrow E \xrightarrow{\mathrm{p}} \rightarrow B$ be a locally trivial fiber space where $P^{2 \mathrm{n}}$ is the real projective space of dimension $2 n$. Then $j^{*}: H^{\mathrm{k}}\left(E, Z_{2}\right) \rightarrow H^{\mathrm{k}}\left(P^{2 \mathrm{n}}, Z_{2}\right)$ is onto for every k.

Proof The cohomology ring $H^{*}\left(P^{2 n}, Z_{2}\right)$ is generated by the unique nonzero element u in $H^{1}\left(P^{2 n}, Z_{2}\right) . u$ is the first Stiefel-Whitney class of $P^{2 n}$ (see [5]) and hence, u is in the image of j^{*}.

Proposition 2 gives
Corollary 6. Let $F \xrightarrow{\mathrm{j}} E \xrightarrow{\mathrm{p}} B$ be a locally trivial fiber space such that both B and F are (topological) manifolds. Then
$W_{\mathrm{k}}\left(\tau_{\mathrm{F}}\right)=j^{*} W_{\mathrm{k}}\left(\tau_{\mathrm{E}}\right), k=0,1, \cdots, \operatorname{dim} F$.
If $\pi_{1}(E)=O, X\left(\tau_{\mathrm{E}}\right)$ is a decomposable element.
Proof Proposition 2 says:

$$
\tau_{\mathrm{E}} \stackrel{*}{\sim} \xi \oplus \eta, \tau_{\mathrm{F}}=j^{*}(\eta), \quad \xi \stackrel{*}{\sim} p^{*}\left(\tau_{\mathrm{B}}\right) .
$$

Hence,

$$
\begin{aligned}
W_{\mathrm{k}}\left(\tau_{\mathrm{E}}\right) & =W_{\mathrm{k}}(\xi \oplus \eta) \\
& =\sum_{\mathrm{i}=0}^{\mathrm{k}} W_{\mathrm{i}}(\xi) \cup \mathbf{W}_{\mathrm{k}-\mathrm{i}}(\eta) \quad(\text { see }[3, \text { Theorem 6.11]) } \\
& =\sum_{\mathrm{i}=\mathrm{o}}^{\mathrm{k}} p^{*} W_{\mathrm{i}}\left(\tau_{\mathrm{B}}\right)^{\cup} W_{\mathrm{k}-\mathrm{i}}(\eta) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
j^{*} W_{\mathrm{k}}\left(\tau_{\mathrm{E}}\right) & =\sum_{\mathrm{i}=\mathrm{o}}^{\mathrm{k}} j^{*} p^{*} W_{\mathrm{i}}\left(\tau_{\mathrm{B}}\right)^{j^{*}} W_{\mathrm{k}-\mathrm{i}}(\eta) \\
& =W_{\mathrm{o}}\left(\tau_{\mathrm{B}}\right){ }^{\cup} j^{*} W_{\mathrm{k}}(\eta) \quad(\text { since } p j=0) \\
& =j^{*} W_{\mathrm{k}}(\eta)=W_{\mathrm{k}}\left(\tau_{\mathrm{F}}\right)
\end{aligned}
$$

The second assertion follows from

$$
X\left(\tau_{\mathrm{E}}\right)=X(\xi \oplus \eta)=X(\xi)^{\cup} X(\eta)
$$

The assumption $\pi_{1}(E)=O$ quarantees the orientability of $\tau_{\mathrm{E}}, \xi, \eta$.
Example Let $F{ }^{j} \stackrel{\rightarrow}{\rightarrow} \stackrel{p}{\longrightarrow} B$ be as in Corallary 6. If E is orientable then so is F.

Proof In general, a (topological) manifold M is orientable if and only if $W_{1}\left(\tau_{\mathrm{M}}\right)=0$ (see $\left.[6, \mathrm{p} .349]\right)$. Corollary 6 says $W_{1}\left(\tau_{\mathrm{F}}\right)=j^{*} W_{1}\left(\tau_{\mathrm{E}}\right)$. Hence, $W_{1}\left(\tau_{\mathrm{E}}\right)=0$ implies $W_{1}\left(\tau_{\mathrm{F}}\right)=0$.

6. Applications

Let K be a field. For a map $f: X \rightarrow Y$, we will use the following notations.
Notation

$$
\begin{aligned}
& I m f^{*}=\text { the image of } f^{*}: H^{*}(Y, K) \rightarrow H^{*}(X, K) . \\
& \left(I m f^{*}\right)^{\prime}=\left\{x \in H^{*}(X, K) \mid x^{v} y=0 \text { for some nonzero } y \text { in } I m f^{*}\right\}
\end{aligned}
$$

Let $P B$ be the space of paths in B starting at b_{0}. The path fibration $\pi: P B \rightarrow B$ is the map defined by $\pi(\ell)=\ell$ (1). If $f: Y \rightarrow B$ is a map, f induces a fibration($=$ Hurewicz fiber space) $q: X \rightarrow Y$;

$$
\left\{\begin{array}{l}
X=\{(y, \ell) \in Y \times P B \mid f(y)=\ell(1)\}, \\
q(y, \ell)=y .
\end{array}\right.
$$

The fiber of q at $y_{0}\left(\epsilon f^{-1}\left(b_{0}\right)\right)$ is $y_{0} \times \Omega B$, which we shall identify with ΩB (the loop space of B at b_{0}). A fibration, as above, which is induced from a path fibration will be called a principal fibration.

Lemma 7. Let $\Omega B \xrightarrow{i} X \xrightarrow{q} Y$ be a principal fibration. Then x $\epsilon\left(\operatorname{Im} q^{*}\right)^{\prime}$ implies $i^{*}(x)=0$.

Proof Define $m: \Omega B \times X \rightarrow X$ by

$$
m(\lambda,(y, \ell))=(y, \lambda * \ell)
$$

where $\lambda * \ell$ denotes the product path. Observe that if λ_{0} is the constent path at b_{0} then the $\operatorname{map}\left(y, \lambda_{0}\right) \rightarrow m\left(\lambda_{0},(y, \ell)\right)$ is homotopic to the identity map of X, and the map $\lambda \rightarrow m\left(\lambda,\left(y_{0}, \lambda_{0}\right)\right.$ is homotopic to the inclusion map $i: \Omega B$ $\rightarrow X$. Consider the diagram

where p_{r} is the projection. Clearly the dragram is commutative. Now, from the above observation on m, we can write

$$
m^{*}(x)=i^{*}(x) \otimes 1+1 \otimes x+\Sigma x^{\prime} \otimes x^{\prime \prime} \quad \in H^{*}(\Omega B, K) \otimes H^{*}(X, K)
$$

where $0<\operatorname{deg} x^{\prime}<\operatorname{deg} x$. On the other hand, since $x \in\left(\operatorname{Im} q^{*}\right)^{\prime}$, there is a nonzero element $y \in \operatorname{Im} q^{*}$ with $x^{\cup} y=0$. Let $y=q^{*}(z)$ for $z \in H^{*}(Y, K)$.
Then $m^{*}(y)=m^{*} q^{*}(z)=(1 \times q)^{*} p_{\mathrm{r}}{ }^{*}(z)=(1 \times q)^{*}(1 \otimes z)$

$$
=1 \otimes q^{*}(z)=1 \otimes y
$$

Hence,

$$
\begin{aligned}
o & =m^{*}\left(x^{\cup} y\right)=m^{*}(x)^{\cup} m^{*}(y) \\
& =\left(i^{*}(x) \otimes 1+1 \otimes x+\Sigma x^{\prime} \otimes x^{\prime \prime}\right)^{\cup}(1 \otimes y) \\
& =i^{*}(x) \otimes y+1 \otimes x y+\Sigma x^{\prime} \otimes x^{\prime \prime} y \\
& =i^{*}(x) \otimes y+\Sigma x^{\prime} \otimes x^{\prime \prime} y .
\end{aligned}
$$

The assumption on deg x^{\prime} implies $i^{*}(x) \otimes y=0$, and hence $i^{*}(x)=0$.
Theorem 8 Let $F \xrightarrow{\mathbf{j}} E \xrightarrow{\mathrm{p}} B$ be a fiber space. Let $f: X \rightarrow F$ be a map with $j f=0$. Then $x \in\left(\operatorname{Im} j^{*}\right)^{\prime}$ implies $f^{*}(x)=0$.

Proof It is well-known that the fiber inclusion map j factors as $F \xrightarrow{h} \bar{F}$
$q_{\rightarrow} E$, where h is a homotopy equivalence and q is a princıpal fibration with fiber $\Omega B(\bar{F} \xrightarrow{q} \rightarrow E$ is the fibration induced by p from the path fibration over B; for example, see [2]). By assumbtion, $O \simeq j f=q h f$; hence, $h f$ factors through ΩB in the homotopy sense; more precisely there is a map $k: X \rightarrow \Omega B$ such that the left triangle in the following diagram commutes in the homotopy sense.

It is easy to see that $x \in\left(\operatorname{Im} j^{*}\right)^{\prime}$ comes from some $x^{\prime} \in\left(\operatorname{Im} q^{*}\right)^{\prime}$ via h^{*}. Thus

$$
f^{*}(x)=f^{*} h^{*}\left(x^{\prime}\right)=k^{*} i^{*}\left(x^{\prime}\right)=0
$$

since $i^{*}\left(x^{\prime}\right)=o$ by the preceding lemma.
Let M be a manifold. Let G be the space of homeomorphisms of M onto itself and G_{0} the subspace consisting of such homeomorphisms that do not move the base point x_{0} of M. Then the evaluation map $w: G \rightarrow M\left(w(g)=g\left(x_{0}\right)\right)$ is a locally trivial fiber space with fiber $w^{-1}\left(x_{0}\right)=G_{0}$. The local product structure in $w: G \rightarrow M$ can be easily shown by using Lemma 3 .

Recall now the following fact ($[1, \mathrm{p} .55]$): There is a locally trival fiber space $M \xrightarrow{\mathbf{j}} B_{\mathrm{Go}} \xrightarrow{\mathrm{p}} B_{\mathrm{G}}$ with $j w \simeq 0$. We have information about the image of $j^{*}: H^{*}\left(B_{\mathrm{Go}}, Z_{2}\right) \rightarrow H^{*}\left(M, Z_{2}\right)$ (Corollary 5). Thus Theorem 8 gives some results on the evaluation map $w: G \rightarrow M$.

Example If M is nonorientable, then

$$
w^{*}=O: H^{\mathrm{n}}\left(M, Z_{2}\right) \rightarrow H^{\mathrm{n}}\left(G, Z_{2}\right)
$$

where $n=\operatorname{dim} M$.

Proof If M is nonorientable, there is the nonzero element $W_{1}\left(\tau_{M}\right)$ in the image of $j^{*}: H^{1}\left(B_{\mathrm{Go}}, Z_{2}\right) \rightarrow H^{1}\left(\mathrm{M}, Z_{2}\right)$. Hence, $H^{\mathrm{n}}\left(M, Z_{2}\right) \subset\left(I m j^{*}\right)^{\prime} \subset k e r$ w^{*}.

Example (Gottlieb [4]). If M is compact and its Euler-Poincare number is odd, then

$$
w^{*}=O: H^{\mathrm{k}}\left(M, Z_{2}\right) \rightarrow H^{\mathrm{k}}\left(G, Z_{2}\right)
$$

for every $k>0$.
Proof The hypothesis implies $W_{\mathrm{n}}\left(\tau_{\mathrm{M}}\right) \neq O(n=\operatorname{dim} M)$. See [6, p. 348]. $W_{\mathrm{n}}\left(\tau_{\mathrm{M}}\right)$ is in $I m j^{*}$. Hence, $H^{\mathbf{k}}\left(M, Z_{2}\right) \subset\left(I m j^{*}\right)^{\prime} \subset$ ker w^{*}.

Proposition 9. Let M be a compact triangulated manifold with odd EulerPoincare number. Let $M \xrightarrow{\mathrm{i}} E \xrightarrow{\mathrm{p}} B$ be a locally trivial fiber space. Then $H^{\mathrm{k}}\left(M, Z_{2}\right) \neq O(k \neq 0)$ implies $i \mid M^{\mathrm{k}+1} \div O$, where $M^{\mathrm{k}+1}$ denotes the $(k+1)$-skelton.

Proof Similar to the preceding example. If $i \mid M^{\mathrm{k}+1} \simeq O$, the homomorphism $H^{\mathrm{k}}\left(M, Z_{2}\right) \rightarrow H^{\mathrm{k}}\left(M^{\mathrm{k}+1}, Z_{2}\right)$ would be trivial.

References

1 A. Borel, Topics in the homotopy theory of fibre bundles, Lecture notes in mathematics \# 36, Springer, 1967.
2 B. Eckmann and P. J. Hilton, Operators and cooperators in homotopy theory, Math. Annalen 141 (1960), 1-12.
3 E. Fadell, Generalized normal bundles for locally flat imbeddings, Trans. Amer. Math. Soc 114 (1965), 488-513.
4 D. H. Gottlieb, Homology tangent bundles and universal bundles, Proc. of Amer. Math. Soc. 36 (1972), 246-252.
5 J. Milnor, Lectures on characteristic classes, Princeton University, 1957.
6 E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

