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Locally Trivial Fiber Spaces and Stiefel-Whitney Classes 

Ryuji MAEHARA* 

E. Fadell (3J generalized the notion of a plane bundle, and gave a definition 

of generalized tangent bundle t"M for a topological manifold M· In this paper, 

we prove 

Theorem Let F _j_~ E _p_~ B be a lOCIJlly trivial fiber space such 

that F, B, E are topological manifolds Then there exist generalized plane bundles 

e , 1J over E with the Properties: 

t"F = J*(TJ), ~,!. }* (t"B) and t"E .!. eEBTJ 

where j*(TJ) . p*(t"s) denote the generalized plane bundles indvced from 1) , t"B 

by j, p, respecti1•ely; .!. denotes fiber homotopy equivalence; and EB denotes the 

Whitney sum. 

Some consequences and applications of the theorem will be discussed in 

sections 4, 5. 

I . Preliminaries 

Consider the following commutative diagram of spaces and maps: 

F ----> E _1!__, B 

co l l p II 
Fo -- -> Eo-0 -> B 

where the unlabelled arrows are inclusion maps and F=p-t (b 0 ), Fo =Po -l(b 0 ) 

(b 0 t: B). Such a diagram (denoted e = (E, E 0 , p, B)) is called a (locally trivial) 

fibered pair with fiber (F, F 0 ) if for each point b in B we can find an open set 

U containing b and a homeomorphism of pairs 
t/J : (UxF, UxFo) --+ (p-t(U), Po -t(U)) 

with the property p t/J (b', x) =b'. When Eo is the empty subset of E, the above 

fibered pair reduces to a (locally trivial) fiber space F- j_-> E - 1!_->B. 

In a fibered pair ~ = (E, E 0 , p, B), suppose the base space B is paracompact. 

Then it is known that p:E--+B and Po :Eo--+ B are Hurewicz fiber spaces. In 

fact, the map p admits a lifting function 

1 : {(z, £) "ExBI I p(z) = e (o)} --+El 

such that p 1 (z, e)= e and if z t: Eo then 1 (z, e) is a path in Eo (where XI denotes 
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Locally Trivial Fiber Spaces and Stiefel-Whitney Classes 

the space of paths in X with the compact-open topology). See (3) . 

Let e = (E, Eo, p, B) and e I = (E1 
' E~ ' P' ' B) be fibered pairs with the 

same base space B. A map of fibered pairs a : ~ ~ ~ 1 is a map a : (E, Eo )­

(E1 ' E~ ) such that P' a = p. i.e. a is fiber preserving. If f3 : e - ~ I is another 

map of fibered pairs, then a .!- f3 (read fiberwise homotopic) provided there exists 

a homotopy h : (E , Eo) xl-+(E' , E~ ) such that h(z, o)= a (z), h(z, 1) = f3 (z) 

and P' h(z, t) = p(z) for all t E I. ~ and ~' are said to be fiber homotopy equi-
a 

valent if there are maps of fibered pairs ~ =:; f such that a' a !. 1 and a a' !. 1 . 
a' 

Both a and a' will be called fiber homotopy equivalences. 

Let ~ and ~' be as in the preceding paragraph. The Whitney sum e EB $' 

of e and ~I is defined by ~ EB ~I = (E' Eo' p ' B) where 

{
~ = {(z, z') E ExE' l p(z)=P'.:_z' ),} 

Eo= ((ExE~ ) u CEo xE' )) nE, 

P (z, Z 1
) = p(z) ( = P' (z') ). 

It is not difficult to see that ~ EB ~' is a fibered pair. 

A fibered pair ~ = (E , Eo , p , B) with fiber (F, F 0 ) is called a generalized 

p-plane bundle (abbreviated n-gpb) if it satisfies the following properties: 

i) p : E-+ B admits a cross-section s : B-+ E (i.e., ps = 1) such that Eo= 

E-s (B), 

ii) (F, F 0 )-(Rn,Rn- o) where Rn is a Euclidean n-space, o is theoriginof 

Rn, and - designates homotopy equivalence of pairs. If ~ is an m-gpb and if 7J 

is an n-gpb with the same base space as that of ~ , then e EB 7J is an (m + n)­

gpb (see (3) ). 

An n-manijold is a connected paracompact space which is locally homeomorphic 

to Euclidean n-space Rn (n ~ 1 ). Given an n-manifold M, let 

T 0 (M) = {& t:MI l t(t):s;:. t(o) foro< t ~ 1} , 

let T(M) be the union of T oCM) and the constant paths on M, and give T(M) 

the compact-open topology. Define 11: : T(M) -+ M by 11: ( £) = £ (o). Then 

-tM=(T(M), T 0 (M), tr:, M) 

is an n-gpb (see (3) ). z-M will be called the tangent n-gpb of M. If M possesses 

a differentiable structure and if we let (E, q, M) denote the tangent bundle of M 

and (E0 , q 0 , M) the sub-bundle of non-zero vectors, then (E, E 0 , q, M) is clearly 

an n-gpb. It is known that there exists a fiber homotopy equivalence z-M ..t (E, 

E 0 , q, M). See (3) . 

2. Two propositions. 

Suppose F - L-+ E · p_-+ B is a locally trivial fiber space. We define 
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~ = (H, H o• tr:, E) and TJ = (V, V o• rr, E) as follows: 

{

H o = U tEl i pe(o) ~ pe(t) for o < t ~ 1 } , 

( ~) H =Ho u {constant paths in E } , 

(TJ) 

rr U) = e (o); 

{

v - { e tEl I e (o) ~ e (t) and pe(o) = pe (t) foro < t ~ 1 J , 

V o ~ V o u {constant paths in E } , 

rr U) = &(o). 

The theorem stated in the beginning devides into the following two propositions : 

Proposition 1. With the above notations, ifF is an n-manifold, then TJ is 

an n-gpb and rF = j*( TJ) (=the n-gpb induced from TJ by j). 

Proposition 2. IfF is an n-manifold and B is an m-manifold, then ~ is 

an m-gpb and 

e ,!. p*( Ta ) ' TE ,!. ~ EB TJ • 

In the proof of these propositions, the following elementary lemma will be 

needed. Let Dn denote the n-ball in Euclidean n-space J?n, i.e. Dn = { x € Rn 1 

II x II~ 1} and let Vn denote the interior of Dn. If k<n we may regard Rk = 
{ (Xt , ···, Xn) € Rn I Xk+l = ·· · = Xn = 0} and hence Dk C Dn, Vk c Vn. 

Lemme 3. (See (3, p.492) ) . Let M be an n-manifold. Suppose U is an 

open set in M such that its closure T! is homeomorphic to the unit ball Dn with U 

corresponding to the interior Vn of Dn. For k<n, let U<kl be the subset of U which 

corresponds to the subset Vk (c Vn ). Finally, let G (M) be the space of home­

omorphisms of M with the compact-open topology. Then there exists a map 

r: u x U--+G(M) 

satisfying the following properties: 

i) r (a, b) (a) = b, 

ii) r (a, a) = 1, 

iii) r (b,c) r (a,b)= r (a,c), 

iv) T(a,b) (z)=z for HM-U, 

v) if a, b £ U<k>, r (a,b) maps U<kl onto U<k>. 

3. Proof of the propositions. 

Proof of proposition 1. Let Z 0 £ E. Choose an open neighborhood U1 of 

p(zo) in B for which there exists a homeomorphism ¢> : Ut xF- p-1 CU1) with 

the property p ¢> (b,x) =b. This is possible because (E, p, B) is a locally trivial 

fiber space. When ¢> (b, x) =z, we will write x=q (z). Let p(zo) =bo and q(z0 ) = 
Xo , i. e., ¢> (bo ,Xo ) = Zo • Since F is an n-manifold, there is a neighborhood U2 of 

Xo w1th CD2, U2) homeomorphic to (Dn, Vn ). Let W = ¢> (U1 x U2 ). Obviously, 
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W is a neighborhood of Zo. We shall show the product structure of 1r: ( rr- 1 (W), 

1ro-1 (W))-+ W. 
Let (V', V~) be the fiber atzo ., i.e., (V', V~ )=(rr-1 (z0 ), rr.;- 1(zo)). 

Define a: Wx (V', V~ ) -+ ( rr-I (w), rr,;-I(w)) by 

a (z, £ )(t)= if> (pz, r(Xo, qz) q £ (t)) 

where r: U2 x U2-+ G(F) is the map stated in Lemma 3. Clearly, a maps W x 

V o' into rr.;-I (W). To see the continuity of a, it suffices to see that r (xo, qz) 

(q £ (t) ) is continuous with respect to (z, t ,t). But this follows from the continuity 

of rand ,q and from the fact that the evaluation mapMMxM' xI -+M ( (q,w,t)-+ 

qw(t) ) is continuous owing to the local compactness of M and /. That a is 

fiber preserving, i.e., 1r a (z, t )=z or equivalently a (z, £ )(o)=z, is easily verified. 

Now, define a' : 1r-I (W) -+ W x V' by 

a' Ci) = ( "j(o),(bo, r (q "j(o), Xo )q "[). 

An easy calculation shows that a' is the inverse of a . Hence, a is a homeomorphism. 

Therefore, TJ =(V, V 0 , 1r, E) is a fibered pair. Note that TJ has the same fiber 

as the fiber of the tangent n-gpb of F. Thus TJ is an n-gpb. The last assertion 

1:p = j* ( TJ) is clear. 

Proof of Proposition 2. (1) First, we see the local product structure in 

~ =(H, Ho, 1r, E). For z0 e E, let UI (cB), U2 (cF), W(cE), if>, bo, Xo, and 

q be as in the preceding proof. We may assume (OI, VI) is homeomorphic to 

(Dm, Vm) since B is an m-manifold. Let (H', Ho') = . ( 1r-l (zo ), 1r.;-I( Zo ) ) ( c 
(H, Ho) ). The object is to define a homeomorphism of pairs f3 :Wx (H', Ho' ) -+ 

( 1r-t (W), 7r0 -1 (W)) with 1r f3 =PI (=the projection onto W). 

We can find a homeomorphism (W, W) ~ (Dm+n, Vm+n) so that W<n> = 

p-1 (bo)" W corresponds to Vn (c Vm+n ). So, Lemma 3 gives us the map 

r 2 : WCnl xWCnl c WxW -+G(E). Note that T2 (a, b)(z) = z for z £ E-W and 

r 2 (a,b) maps p-1 (bo) onto p-l (b0 ). On the other hand, since (VI, U1) ~ 

(Dm, Vm), we have the map TI : UI x UI -+ G(B). Define r : Ui x UI -+ 

G(p-I (U) ) by 

F (hi, b2 )(z)= if> ( Ti(bi, b2 )(pz), qz). 

We can regard r as a map from u, x Ut into G(E) by defining r(bt, b2 )(z)= 

z for Z£ E-p-1 (U). 

Now define f3 : Wx (H', Ho')-+ ( 7r-l (W), rr0 -1 (W)) by 

f3 (z, t )(t)= F(bo, p (z)) T2 (zo, if> (bo, q(z)) t (t). 

The continuity of f3 is quaranteed by the local compactness of E and /. f3 1s 

fiber preserving; in fact, 

7r f3 (z, £ )= f3 (z, t)(o)= F(bo, pz) T2 (zo, if> (bo, qz) )Zo 

= F(bo, pz) rp (bo, qz) rp (pz, qz)=z. 

f3 is a homeomorphism since it has inverse j3' given by {3' ( l) = (z, £) where 
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{

z = t (o) 

£ = T2 ( rp (bo, q"[(o) ), Zo) F(pl(o), bo) l· 
Therefore, e has a local product structure. 

(2) To see that e = (H, Ho , tr, E) is an m-gpb, defineS : E-. H by S(z) = 
z(the constant path at z). S is a cross-section, and Ho =H-S(E) holds. All that 

remains is to show (H', Ho') -(Rm, Rm - 0). But this follows from (3, Prop. 

4.1) because (H', Ho') is identical to the fiber of the "normal fiber space" of 

the imbedding F c E. 

(3) Next, we show that e.! p*( '<B). Let '<B = (T(B), To (B), tr', B) be 

the tangent m-gpb of B. Then, by definition, we have p*( '<B) = CH, Ho , PI , E) 

where 

{

H.= { (z,£)fEXT(B) IP(z) =£(o)}, 

Ho = { (z, £) f Ex To (B) I p(z)= £ (o)} = H. n (Ex To (B)), 

P1 (z, £ )=z. 

Let ~ be a lifting function of the fiber space (E, p, B) such that if £ is the 

constant path at p(z) then ~ (z, £) is the constant path at z. We define maps 

of pairs 

f 
(ii, Ho) ~ (H, Ho) by 

g 

{

f= ~.i.e., f(z,£)(t)= A(z,£)(t), 

g(l)=(!(o), pl). 

It is easy to see that f and g are fiber preserving, i.e., trf= fJI and PIg = tr. 

Furthermore, since gf (z, £) =g(l (z, £)) = (l (z, £)(o), p ~ (z, £)) = (z, £ ), we 

have gf = 1. Now, let us show f g.!. 1. For a path w f E 1 and sf I, let Ws 

denote the path given by 

{

w(s+t) , o ~ t ~ 1-s 
w (t) = 

s w(1), , 1-s ~ t ~ 1. 

We define a homotopy h : (H, H 0 ) X I-> (H, Ho ) by 

h(w,s)(t) = ~ (w(t(1-s) ), pwt(1-s) ) (st). 

h is a fiberwise homotopy since 

rr h(w, s)=h(w, s)(o)= ~ (w(o), pwo)(o)=w(o)= rr (w). 

h is a homotopy between 1 and f g; in fact, 

h (w,o)(t)= ~ (w(t), Pwt) (o) = w(t), i.e., h(w, o) = w, and 

h (w, 1)(t) = A(w(o), pwo)(t) = l(w(o), pw)(t) = f g(w)(t), i.e., 

h (w, 1) = f g(w). Hence, fg.! 1. This proves e .! p*( -rB ). 

( 4) The proof of the final assertion -rE .!. HB 7J is essentially same as the 

argument in the proof of (3, Theorem 4.11) , and hence, is omitted. 
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4. Characteristic classes. 

Let e = (E, Eo, p, B ) be a fibered pair with fiber (F, Fo ). Then the fun­

damental group tr 1 (B, bo) acts on H*(F, Fo; G). If this action is trivial, e is 

called a G-orientable fibered pair. An n-manifold M is said to be G-orientable 

when its tangent n-gpb rM is G-orientable as a fibered pair. 

Let A denote a commutative ring with unit. 

Theorem 4 (See Fadell (3) ). If (E, Eo , p, B) is a A -orient able n-gpb 

with fiber (F, Fo ), then there exists an element U f Hn (E, Eo ; A) satisfying the 

following properties: 

i) The inclusion map j : (F, Fo ) -+ (E, Eo ) induces an isomorphism j* : 

Hn(E, Eo; A) -+Hn(F, Fo; A), and if we identify Hn(F, Fa; A) with A, U 

corresponds to the unit of A under j* 

ii) The homomorphism defined by cup product, 

uu : Hi (E; A) -+Hi+n (E, Eo; A) 

is an isomorphism for every i. 

U is called a A-orientation of the n-gpb, and from property (i), it is 

determined uniquely by the choice of identification A =Hn (F, Fo ; A). Now, note 

that p* : Hi (B; A) -+Hi (E; A) is an isomorphism since the total fiber F is 

contractible. Hence, from (ii), the composition 

rp : Hi (B; A) _!!!-+Hi (E; A) _t.!Jl -+Hi+n(E, Eo; A) 

is an isomorphism. rp is the Thorn isomorphism associated to U. The Euler class 

X( e) of the n-gpb ~ is defined by 

X( e)= rp -1 (U u V) f Hn (B; A). 

When A =Zz ( = the ring of integers mod 2), the Stiefel-Whitney classes 

Wi ( ~) (i =0, 1, 2· .. ) of e are defined by 

Wi c ~ )= rp - 1 st (U) E Hi (B; Zz) 

where sj : Hn (E, Eo ; Zz) -+ Hn+i (E, Eo ; Zz) denotes the i·th Steenrod operation. 

Note that in defining Wi ( ~ ) we do not need to worry about the orientability of 

e since every n-gpb is Zz·orientable. 

Characteristic classes X( e), Wi (e) satisfy the naturality property in the 

following sense : Let j : B'-+ B be a map and let f * e be the n·gpb induced from 

e by f;then 

X(f* 0=/*XCO, Wi (f* 0 =f*Wi CO-
Furthermore, characteristic classes are invariances of fiber homotopy equivalence; 

that means, e !. e implies 

XCO=X(e') and Wi(e)=Wi(O. 
Therefore, Proposition l gives the following corollary. The fact stated there was 

recently proved by Gottlieb (4J in a slightly different method. 
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Corollary 5 (to Proposition 1). Let F-- j ....... E P . ....... B be a locally trivial 

fiber space such that F is an n·manifold. Then 

Wk(~F)t::j*Hk(E; Z2), k = o, 1, 2,···, n. 

IfF is orientable (ie, Z-orientable) and tr1 (E) =0, then 

X( ~F) t:: j* Hn (E; Z). 

The author does not know whether or not the above corollary remains valid 

for a Hurewicz fiber space F--+E--+B instead for a locally trival fiber space. 

Example Let p2n _) --+ E _p__ --+ B be a locally trivial fiber space where P 2n 

is the real projective space of dimension 2n. Then j* : Hk (E, Z2 )-+Hk (P2n, Z2) 

is onto for every k. 
Proof The cohomology ring H*(P2n, Z2 ) is generated by the unique nonzero 

element u in Hl (P2n, Z2 ). u is the first Stiefel-Whitney class of p2n(see (5J ) and 

hence, u is in the image of j*. 

Proposition 2 gives 

Corollary 6. Let F _L_ E __!>__--+ B be a locally trivial fiber space such that 

both Band Fare (topological) manifolds. Then 

Wk ( ~F)=j*Wk( ~E), k = 0, 1, ···,dim .f: 

If tr1 (E) =0, X( ~E) is a decomposable element. 

Hence, 

Proof Proposition 2 says: 

!"I!: ,!, .; ffi 77 • ~F = j*( 77 ), .; ,!, p*( t"R ). 

Wk c~E) =WkUE97J) 
k 

= L Wi ( 0 u Wk-i ( 77) (see (3 , Theorem 6.11J ) 
i•o 

k 
_L P* Wi (~8 ) u Wk-i (77). 
1=0 

Therefore, 
k 
_L i* p*wi c~8 )ui* wk-i C77) 
1=0 

Wo ( ~8 ) u j* Wk ( 77) (since pj=O) 

j* Wk ( 7J )=Wk ( -rF ). 

The second assertion follows from 

X(~E) = X(.;E97J) = X(0uX(7J). 

The assumption tr1 (E)= 0 quarantees the orientability of ~E' .; , 77. 

Example Let F · L _ E __ P. _ B be as in Corallary 6. If E is orientable 

then so is F. 
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Proof In general, a (topological) manifold M is orientable if and only if 

W1 ( rM) = 0 (see (6,p. 349) ) . Corollary 6 says W1 ( r F)= j* W 1 ( r E). Hence, 

W1 ( rll;) = 0 implies WI ( rF) = 0. 

6. Applications 

Let K be a field. For a map f : X-+ Y, we will use the following notations. 

Notation 

lmf* = the image of f* : H*(Y, K) -+ H*(X, K). 

(lmf*)' = {XI E H*(X, K) I x u y = 0 for some nonzero y in lmf*} 

Let PB be the space of paths in B starting at bo. The path fibration 

11: : PB-+B is the map defined by 11: (e)= e (1). If j : Y-+B is a map, f induces 

a fibration( = Hurewicz fiber space) q :X-+ Y; 

{
X= {(y,t)EYxPBlf(y)=t(l)}, 

q (y, e)= y. 

The fiber of q at Yo ( E j-1 (bo) ) is Yo X n.B, which we shall identify with n.B 

(the loop space of B at bo ). A f1bration, as above, which is induced from a path 

fibration will be called a principal fibration. 

Lemma 7. Let n.B _ i-+ X __g___. Y be a princiPal /ibratiw. Then x 

E (lm q*)' implies i*(x) = 0. 

Proof Define m: n.BxX-+X by 

m (l' (y, e) ) = (y, he) 

where l * e denotes the product path. Observe that if l o is the constent path 

at bo then the map (y, A o)-+ m( A o, (y, t)) is homotopic to the ident1ty map 

of X, and the map A -+ m( A , (Yo , A o ) is homotopic to the inclusion map i: n.B 

-+X. Consider the diagram 

QBxX ~-+ QBxY 

X ----"-q ---+ y 

where Pr is the projection. Clearly the diagram is commutative. Now, from the 

above observation on m, we can write 

m*(x) = i*(x) 0 1 + 1 0 x + ~ x' 0 x" E H*(O B,K)0 H*(X, K) 

where o<deg x' < deg x. On the other hand, since x E (Im q*)', there is a 

nonzero element y E Im q* with xu y = o. Let y = q*(z) for z E H*(Y, K). 

Then m*(y) = m* q*(z) = (1 xq)* Pr *(z) = (1 xq)*(10z) 

= 1 0 q*(z) = 10y. 
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Hence, 

o =m*(x u y) =m*(x) u m*(y) 

= (i*(x) ® 1 + 1 ® x + ~x' ® x") u (1 ® y) 

=i*(x) @y + 1 @xy + ~x' @x" y 

=i*(x) ® y + ~x' ® x" y. 
The assumption on deg x' implies i*(x) ® y = o, and hence i*(x) = o. 

Theorem 8 Let F _i - E _!)_- B be a fiber space. Let f:X -F be a map 

with jf ::::: 0. Then x IE (lm j*)' implies f*(x)=o. 

Proof It 1s well-known that the fiber inclusion map j factors as F __ !! __ F 

!!_ E, where h 1s a homotopy equivalence and q is a principal fibration with fiber 

!l B (F _!1_- E is the fibration mduced by p from the path fibration over B; for 

example, see (2) ). By assumbtion, O=jf= qhf; hence, hf factors through OB 

in the homotopy sense; more precisely there is a map k : X - OB such that the 

left triangle m the following diagram commutes m the homotopy sense. 

OB ___ i__ F q - E 

'~ hjy' 
~ F 

~I 
X 

It is easy to see that x IE (lm j*)' comes from some x' E (lm q*)' via h*. Thus 

f*(x) = f* h*(x') = k* i*(x') = o 

since i*(x') = o by the precedmg lemma. 

Let M be a manifold. Let G be the space of homeomorphisms of M onto 

itself and Go the subspace consisting of such homeomorphisms that do not move 

the base point Xo of M. Then the evaluation map w : G- M(w(g) = g(x0 ) ) 

is a locally trivial f1ber space with fiber w-1 (xo ) =Go . The local product structure 

in w : G - M can be easily shown by using Lemma 3. 
Recall now the following fact ( (1, p. 55) ): There is a locally trival fiber 

space M _j - BGo _!)_- BG with jw = 0. We have information about the image 

of j* : H*(BGo , Z2 ) - H*(M, Z2 ) (Corollary 5). Thus Theorem 8 gives some 

results on the evaluation map w : G -M. 

Example If M is nonorientable, then 

w* = 0 : Hn (M, Z2 ) - Hn (G, Z2 ) 

where n = dim M. 
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Proof If M is nonorientable, there is the nonzero element W 1 ( t" M) in the 

image of j* : J!l (EGo , Zz ) -+ J!l (M, Z 2 ). Hence, Hn (M, Zz ) c (lm j*)' c ker 
w*. 

Example (Gottlieb (4J ). If M is compact and its Euler-Poincare number 
is odd, then 

w* = 0 : Hk (M, Z2 ) ___. Hk (G, Zz) 

for every k > 0. 

Proof The hypothesis implies W n ( t" M) ~ 0 (n =dim M). See (6, p. 348J . 

Wn C t"M) is in Imj* . Hence, Hk (M, Zz) c (Imj*)' c ker w*. 

Proposition 9. Let M be a compact triangulated manifold with odd Euler· 

Poincare number. Let M _ _j___ E ~- B be a locally trivial fiber space. Then 

Hk(M, Zz )~0 (k~o) implies i 1 Mk+I::J:::O, where Mk+ldenotesthe (k+1)-skelton. 

Proof Similar to the preceding example. If i 1 Mk+l:=Q, the homomorphism 
JJk (M, Zz ) --. Hk (Mk+l , Z2 ) would be trivial. 
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