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THE RIEMANNIAN VOLUME OF 
THE MODULI SPACE OF PLANAR 
QUASI-EQUILATERAL POLYGONS 
WITH VERTEX NUMBER 4, 5 OR 6 

YASUHIKO KAMIYAMA 

Abstract 

Let P( n, r) be the moduli space of n-gons in R2 whose edge lengths are 1, ... , 1 
and r. There is an inclusion P(n,r) '-> (R2 )n. Restricting the usual Riemannian 
metric on (R2)n, we regard P(n,r) as a Riemannian manifold. In this paper, with 
the aid of a computer, we compute the volume of P( n, r) for n = 4, 5 and 6. 

1 Introduction 

Given a string (r1, ... , rn) of n positive real numbers, one considers the mod
uli space of closed polygonal linkages in Rd having side lengths ri. Two n-gons 
are identified if there exists an orientation-preserving isometry of JRd which sends 
vertices of one polygon to another one. For these 20 years, the space has been 
studied by many people. Particular interests were paid for the cases d = 2 and 3 
because the moduli spaces are typical examples in certain fields in mathematics. 
The details are explained below. 

First, we explain the cased= 2. Recall that Jordan-Steiner [6] and Kapovich
Millson [10] proved the universality theorem of planar mechanical linkages: Every 
compact real algebraic variety is homeomorphic to some components of the config
uration space of a planar mechanical linkage. (As explained in [10], such a problem 
was already studied in the 19th century.) 

Since the polygonal linkages are typical examples for planar mechanical link
ages, it is natural to study this in detail. Motivated by this, the study of the moduli 
space of planar polygon spaces was started by Hausmann [2], Kapovich-Millson [8] 
and Walker [13]. The study has a long history and there are many references. For 
example, the homology groups of planar polygon spaces of arbitrary edge lengths 
have been determined in Farber and Schiitz [1]. (See Theorem 1 for some other 
results.) 

Next, we explain the cased= 3. The study originated in Kapovich and Millson 
[9]. They proved that the moduli space is a typical example for the symplectic 
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quotient, and hence the space has a natural symplectic structure. Motivated by 
this, Tezuka and the author [7] computed the symplectic volume of the moduli 
space for the case (rl> ... , rn) = (1, ... , 1). The result is given by a simple formula 
involving the binomial coefficient. 

The work of [7]leads us to the following question: What is the volume of the 
planar polygon space? In contrast to the spatial case, the planar polygon does not 
have a symplectic structure. Instead of this, we can naturally regard the space 
as a lliemannian submanifold of (JR2 )n. In this paper, we numerically compute 
the volume for n = 4, 5, 6 and (rl> ... , rn) = (1, ... , 1, r). (Such a polygon is 
sometimes called a quasi-equilateral polygon.) 

This paper is organized as follows. In §2, we summarize our results. In §3, 
we explain the method of computations. In §§4,5 and 6, we state our results for 
n = 4, 5 and 6, respectively. In §7, we compute the volume when r approaches 0 
by another method. 

2 Summary of the results 

Let r be a positive real number. As in §1, let P(n,r) be the moduli space of 
planar quasi-equilateral n-gons of edge lengths 1, ... , 1 and r. Since two n-gons 
are identified if there exists an orientation-preserving isometry of JR2 which sends 
vertices of one polygon to another one, we may assume that the end points of the 
last edge is 0 and ( r, 0). Thus we can define P( n, r) as follows: 

P(n, r) = {(u1, ... , Un) E (R.2t; Ut = 0, Un = (r, 0) (1) 
and llui+l- uill = 1 for 1 :5 i :5 n- 1}. 

(See Fig.l.) 

Ut =0 us=(r,O) 

Figure 1: P(5, r) 

Many topological properties of P(n.r) are known. For example, it is clear that 
P(n,r) = 0 for r > n-1 and P(n,n-1) ={one point}. For 0 < r < n-1, P(n,r) 
has singular points if and only if n - r is odd. In general, dimP( n, r) = n - 3. 

-2-



The main interest in this paper is the cases for n = 4, 5 and 6. The following 
results are known. 

Theorem 1. For 0 < r < n - 1, the following results are known. 

(i) The case of n = 4. 

(a) For 0 < r < 1, there is a homeomorphism P( 4, r) ~ 8 1 ll 8 1 • 

(b) The topological type of P(4, 1) is given by the following figure. 

Figure 2: P(4, 1) 

In particular, there is a homotopy equivalence P(4, 1) ~ VS1 • 
4 

(c) For 1 < r < 3,we have P(4,r) ~ 8 1 . 

(ii) The case of n = 5. 

(a) ([3, 13]). Havel and Walker proved that for 0 < r < 2, there is a homeo
morphism P(5, r) ~ l:4, where l:4 denotes a connected closed orientable 
surface of genus 4. 

(b) ([12]). Toma determined the topological type of P(5, 2). The result is 
given by Fig.3. More precisely, P(5, 2) is obtained from P(4, 1) by at
taching a space as indicated by the first figure and the attaching map is 
given by the second figure. 

Thus P(5, 2) is obtained from 1:4 by collapsing the middle circle con
tained in each of four handles to a point. Hence, there is a homotopy 
equivalence P(5, 2) ~ 8 2 v vs1 . 

4 
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Figure 3: P(5, 2). (Taken from [12, Corrections, p.95].) 

(c) For 2 < r < 4, we have P(5,r) ~ S 2 . 

(iii) The case of n = 6. 

(a) For 0 < r < 1, we have P(6, r) ~ S1 x P(5, 1). 

(b) ([11, 5]) By [2, 8], it was known that P(6, 1) has 10 singular points such 
that the neighborhood of a singular point is c ( S1 X S1). 

• We define P(6, 1)' = P(6, 1)- {singular points}. Kojima, Nishi 
and Yamashita proved that P(6, 1)' is homeomorphic to the moduli 
space of semi-stable marked 6 point configurations on the circle, 
which was known to be homeomorphic to a hyperbolic 3-manifold 
with ten cusps. 

• Hirano advanced one step further: The space P(6, 1) is actually 
equal to the space obtained from P(6, 1)' by compactifying each end 
with a point. In order to prove this, he constructed a natural cellular 
decomposition of P(6, 1) by 16 copies of a polyhedron with 10 faces. 
(See §6 for related topics.) 

(c) ([4]). Hinokuma and Shiga proved that for 1 < r < 3, there is a homeo
morphism P(6,r) ~ #(S1 x S2 ). 

5 
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(d) ([4]). There is a homotopy equivalence P(6,3):::::: S3 v VS1 . 
5 

(e) For 3 < r < 5, we have P(6,r) ~ S3 . 

Note that (1) gives an inclusion P(n,r) <-> (1R2 )n. Restricting the usualllie
mannian metric on (JR2 )n, we regard P(n, r) as a Riemannian manifold. We define 
V(n, r) be the volume of P(n, r) with respect to the Riemannian metric. 

Remark 2. In order to define a Riemannian metric on P(n,r), we embedded 
P(n,r) into (JR2 )n using the vertices. It is also possible to embed P(n, r) into (JR2 )n 
using the edges. More precisely, we define an embedding f: P(n,r)-> (JR2 )n as 
follows: Setting ai = ui+I - Ui, we define 

f(u1, ... ,un) = (al> ... ,an)· 

In contrast to ( 1), we have 

f(P(n, r)) = {(ab ... , an) E (1R2)n; a1 + .. ·+an = 0, 

llaill = 1 (1 :5 i :5 n -1) and an= (-r,O)}. 

The Riemannian metric using vertices and that using edges are not isometric. But 
since the results are quite similar, we consider only V(n,r) in this paper. 

We give the results on V(n, r) for n = 4, 5 and 6 in §§4,5 and 6, respectively. 
We study the value lim V(n, r) in §7. In this section, we summarize the results. 

r->+0 

Theorem A . (i) The graph of V ( 4, r) is given by Fig. 6. The graph increases 
when 0 < r < 1 and decreases when 1 < r < 3. 

(ii) We also have the graph of V~; r) in Fig. 7. Prom this, we can read the con

cavity of Fig. 6. 

(iii) We have 
lim V(4,r) = 4v'271'. 

r->+0 

Theorem B . (i) The graph ofV(5,r) is given in Fig.9. The graph is monotone 
decreasing. 

(1.1') ur l h h h 1 V(5,r) · F' 10 "'- h' d h vve a so ave t e grap o ------a;;:- m ~g. . r·t'Om t ~, we can rea t e 

concavity of Fig.9. 

Before we state the results on V(6,r), we remark that it is not easy to find 
parametrizations of P(6, r) from which the multiple integral for V(6, r) is com
putable. 

Theorem C. There are parametrizations ofV(6,r) from which V(6,r) is com
putable. The graph ofV(6,r) is given in Fig.12. 

Our final result is about lim V(n,r). 
r-+O 
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Theorem D . (i) We set 
V(n,O)= lim V(n,r). 

r~+o 
(2) 

Then, there is a method to compute V(n, 0) from the parametrizations of 
P(n -1, 1). 

(ii) In particular, V(4, 0) is as given in Theorem A (iii). The values of V(5, 0) 
and V(6, 0) are given in Theorem 5. The results are consistent with the data 
ofV(5,r) in Theorem Band V(6,r) in Theorem C, respectively. 

3 Preliminaries 

3.1 The definition of V(n, r) 

For completeness, we recall the definition of V ( n, r). We fix r in 0 < r ::; n - 1. 
Let D be a closed domain in !Rn-3 . We call a COCJ fnnction p: D--+ P(n,r) to be 
a parametrization if rank df = n- 3 holds for all points on Int D. 

Let s E N and assume that a parametrization p; : D --+ P(n, r) is given for 
each i = 1, 2, ... , s. (Actually, we will take s to be 2, 4 or 4 according as n = 4, 5 
or 6.) We assume the following conditions: 

s 

(i) U p;(D) = P(n, r). 
i=l 

(ii) p;(lnt D) npi(Int D)= 0 for all1 $ i < j $ s. 

In this case, we have 
s 

V(n,r) = LCi, 
i=l 

where c; is defined as follows. Let (x1 , ... , xn-3 ) be the coordinate of .IRn-3 . Let 
M; be the (n- 3) x (n- 3) matrix whose (j, k)-th element is given by 

ap; ap; 
axi . EJxk. 

Moreover, we set G; = y'det M;. (Note that G; dx1 1\ · · · 1\ xn-3 is the pull-back 
the volume form of P(n,r) by p;: D--+ P(n,r).) Then, we define e; to be 

c; = J · · ·l G;dx1 ••• dxn-3 . 

3.2 About Pn,O 

Theorem Dis proved by considering a new space P(n, 0). Formally, Pn,o is defined 
by setting r = 0 in (1). More precisely, we set 

P(n, 0) = {(u!o ... , Un-1) E (JR2t-1 ; U! = 0 

and llui+I-u;ll=1 for1$i$n-1}, 
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where we understand Un to be u1. (See Fig.4.) 

U1 =0 
Figure 4: P(6, 0) 

Lemma 3. Regard Ui to be a column vector. Then, the map 

¢: 80(2) x P(n- 1, 1) --+ P(n, 0) 

defined by 
4> (g, ( U1, · · ·, Un-1)) = (gull···, gun-1) 

is a homeomorphism. Recall that u1 = 0 and Un-1 = (~). 

Proof. Let (wl! ... , Wn-1) E P(n, 0). IT Wn-1 = (wi-1), then we set 
Wn-1 

Then, it is easy to check that ¢-1 is given by 

¢-1(w1, ... , Wn-1) = (g, (g-1w1, ... ,g-1Wn-1)). 

Now we have the following commutative diagram, where i is the inclusion. 

80(2) x P(n- 1, 1) _ ___:_!----+- P(n, 0) 

~ /. 

0 

By the restriction using i, we define the Riemannian metric on P(n, 0). We denote 
by vol(P(n, 0)) the volume of P(n, 0) with respect to the Riemannian metric. 
Then, by the continuity of the volume form, we have · 

V(n, 0) = vol(P(n, 0)), 
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where V(n, 0) is defined in {2). 
Actually, vol{P{n, 0)) is computable by the following method: By the pull-back 

using i o ifJ, we define the Riemannian metric on S0{2) x P(n- 1, 1). Let Vn be 
the volume of S0{2) x P(n -1, 1) with respect to the metric. Since ifJ is isometric, 
we have 

vol(P(n, 0)) = Vn· 

Thus we have 
V(n,O) = Vn· (3) 

The above is a content of Theorem D (i). In §7, we explain more details. 

4 Results on V(4, r) 

We give results about Theorem A. We define parametrizations of P( 4, r) as follows. 
We set u2 = (cos8,sin8). Note that u3 is determined in two positions. Hence we 
haves= 2 in §3.1. {See Fig.5.) 

Ut =0 u4 = (r,O) 
Figure 5: The parametrizations of P( 4, r) 

In the notation of §3.1, we have 

where 

Hence 

where 

D = {8 E [0,211"]; ll(r,O)- (cos8,sin8)11 :52}. 

j h(IJ) 

c.; = Gi(8) d8, 
-h(IJ) 

h(8) = {11" (r2_3 ) 
arccos 2r 

0<r:51 
1 :5 r :53. 

Using this, we compute the values of V(4,r) as follows. 
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r V(4,r) r V(4,r) r V(4,r) 
0.1 17.78 1.1 15.90 2.1 7.30 
0.2 17.83 1.2 13.95 2.2 6.79 
0.3 17.91 1.3 12.61 2.3 6.29 
0.4 18.02 1.4 11.59 2.4 5.76 
0.5 18.18 1.5 10.76 2.5 5.21 
0.6 18.41 1.6 10.06 2.6 4.63 
0.7 18.70 1.7 9.43 2.7 3.98 
0.8 19.12 1.8 8.85 2.8 3.22 
0.9 19.73 1.9 8.32 2.9 2.26 
1.0 15.16 2.0 7.80 3.0 0 

Table 1: V(4,r) 

The graph of V ( 4, r) is given as follows. 

20 

15 

10 

5 

o.s 1.0 l.S 2.0 2.5 3.0 

Figure 6: V(4,r) 

Note that the graph increases when 0 < r < 1 and decreases when 1 < r < 3. 

Next, the graph of dV ~!' r) is given as follows. 
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20 

10 

-10 

-20 

15 2.0 

dV(4,r) 
Figure 7: -d-::-r~ 

From Fig.7, we can read the concavity of Fig.6. 

5 Results on V(5, r) 

25 30 

We give results about Theorem B. We define parametrizations of P(5, r) as follows. 
We set U3 = (u,v). Note that u2 and U4 are determined in two positions. Hence 
we haves= 4 in §3.1. (See Fig.8.) 

U3 = (u,v) 

us=(r,O) 

Figure 8: The parametrizations of P( 5, r) 

In the notation of §3.1, we have 

D = {(u, v) E 1R2 ; ll(u, v)ll :s:; 2 and ll(r, 0)- (u, v)ll :s:; 2}. 
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By definition, we have 

e;. = JL G;(u,v)dudv. 

From this and the symmetry of D, it is easy to see that 

1
r/21.J4-(u-r)2 

ci=4 G;(u,v)dudv. 
r-2 0 

(4) 

But if we set 

v=J4-(u-r)2- J 4 -(u-r)2 
w 

and transform (4) to an infinite integral 

-41rf2J,ooa ( J4 ( )2 J4-(u-r)2) J4-(u-r)2d d 
Ci - ; u, - u- r - 2 u w, 

r-2 1 W W 

then one may obtain the results more quickly. Now using this, we compute the 
values of V(5, r) as follows. 

r V(5,r) r V(5, r) r V(5,r) r V(5,r) 
0.1 154.37 1.1 105.67 2.1 54.91 3.1 18.80 
0.2 145.75 1.2 102.10 2.2 49.02 3.2 16.37 
0.3 139.21 1.3 98.49 2.3 44.19 3.3 14.05 
0.4 133.74 1.4 94.79 2.4 40.00 3.4 11.81 
0.5 128.91 1.5 90.95 2.5 36.26 3.5 9.65 
0.6 124.53 1.6 86.90 2.6 32.86 3.6 7.57 
0.7 120.45 1.7 82.53 2.7 29.70 3.7 5.57 
0.8 116.59 1.8 77.67 2.8 26.75 3.8 3.63 
0.9 112.88 1.9 71.96 2.9 23.97 3.9 1.78 
1.0 109.25 2.0 63.70 3.0 21.32 4.0 0 

Table 2: V(5,r) 

The graph of V(5,r) is given as follows. 
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ISO 

100 

so 

2 

Figure 9: V(5,r) 

Note that the graph is monotone decreasing. 

Next, the graph of dV~~,r) is given as follows. 

-20 

-40 

2 

dV(5,r) 
Figure 10: -d"':...r-'---'-

From Fig.lO, we can read the concavity of Fig.9. 

6 Results on V(6, r) 
We give results about Theorem C. It is not easy to find parametrizations of P(6, r) 
from which we can compute the multiple integral. For most parametrizations, 
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computers return data that V(6,r) :=::: oo. As far as the author tries, only the 
following parametrizations are successful for computer calculations: We set 

( cos8 sin8) ua = u- - 2-,v- - 2- ( cos8 sin8) and U4 = u+ - 2-,v+ - 2- . 

Note that u2 and u4 are determined in two positions. Hence we haves= 4 in §3.1. 
(See Fig.ll.) 

~=0 ~=~~ 
Figure 11: The parametrizations of P(6,r) 

In the notation of §3.1, we have 

{ ( cos8 sin8) D = (u,v,8) E IR2 x [0,21r]; II u- - 2-,v- - 2- II~ 2 (5) 

( cos8 sinO) } and ll(r,O)- u+-2-,v+-2- 11~2 · 

By definition, we have 

Ci = j j £ Gi(u,v,8) dudvd8. 

Using this, we compute the values of V(6,r) as follows. 
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r V(6,r) r V(6,r) r V(6,r) r V(6,r) r V(6,r) 
0.1 875.09 1.1 749.92 2.1 437.40 3.1 160.03 4.1 41.40 
0.2 863.55 1.2 718.14 2.2 409.27 3.2 141.89 4.2 38.88 
0.3 874.81 1.3 685.42 2.3 381.41 3.3 124.77 4.3 32.69 
0.4 890.25 1.4 649.92 2.4 347.96 3.4 110.00 4.4 4.00 
0.5 869.69 1.5 618.50 2.5 314.16 3.5 90.94 4.5 3.52 
0.6 872.39 1.6 581.38 2.6 290.44 3.6 74.41 4.6 3.08 
0.7 856.26 1.7 555.66 2.7 265.26 3.7 67.53 4.7 2.62 
0.8 825.58 1.8 515.55 2.8 233.76 3.8 57.16 4.8 1.82 
0.9 800.97 1.9 486.70 2.9 206.83 3.9 48.75 4.9 1.07 
1.0 778.94 2.0 443.66 3.0 182.16 4.0 37.75 5.0 0 

Table 3: V(6,r) 

The graph of V(6, r) is given as follows. 

600 

400 

200 

2 3 5 

Figure 12: V(6,r) 

Remark 4. For our reference, we give two other parametrizations of P(6, r). But 
we cannot get satisfactory data from them. 

(i) One method is to set 

u2 = (cosl/t,sin81), u3 = (cos81 +cos82,sin81 +sin82) 

and U4 = (cos 81 +cos 82 +cos 83, sin 81 +sin 82 +sin 83). 

In this case, u5 is determined in two positions. (See Fig.13.) 
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~=0 ~=~~ 

Figure 13: The parametrizations P( 6, r) by fh, 82 and 83 

In the notation of §3.1, we have 

D = {(81! 82 ,83 ) E [0, 21r] x [0, 21r] x [0, 21r]; 

ll(r, 0)- (cos81 + cos8a + cos8g, sin81 + sin8a + sin8g)ll ~ 2}. 

The author thinks that the reason why these parametrization return bad answers 
is that this Dis much more complicated than (5). 

(ii) As explained in Theorem 1 (iii)(b), Hirano constructed a natural cellular 
decomposition of P(6, 1) by 16 copies of a polyhedron with 10 faces. We can use 
his idea to construct parametrizations of P(6, r), in particular, we haves= 16 in 
the notation of §3.1. We explain this below. For (ul! ... , u6 ) E P(6, r), we set 

We use (ll!l2 ,.e3 ) as parametrizations of P(6,r). In each of the following figures, 
u2 and U4 are determined in two positions. Hence there are 16 parametrizations. 
(See Fig.14.) 

Note that Fig.ll gives the inner triangle ~Ou3u4 by the coordinates of the 
vertices. On the other hand, Fig.14 gives ~Ou3u5 by its edge lengths. 
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Ut =0 us={r,O) 

Ug 

Ug 

Figure 14: Hirano's parametrizations of P(6,r) 
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In the notation of §3.1, Dis given by the triangle inequalities: 

D = {(£1, e2, £3) E IR3; 0 ~it, e2, e3 ~ 2 and Ill - £21 ~ l3 ~ el + £2}. 

7 Results on V(n, 0) 

We prove Theorem D. (3) tells us that in order to compute V(n, 0), it will suffice to 
compute Vn· As we see below, Vn is computable in the same way as in §3.1: Recall 
that the Riemannian metric on S0(2) x P(n- 1, 1) is defined by identifying the 
space with (i o ¢)(S0(2) x P(n -1, 1)). For parametrizations Pi : D---+ P(n -1, 1) 
(where 1 ~ i ~ s), we define parametrizations 

Pi: [0, 211'] x D---+ (i o ¢)(S0(2) x P(n -1, 1)) 

by 

- ( 1 n-4) ((cosa -sina) ( 1 n-4)) Pi a, x , ... , x = sin a cos a Pi x , ... , x . 

Note that this is the right-hand side of Lemma 3. 
To the parametrization Pi, we associate an (n- 3) x (n- 3) matrix Ni in the 

same way as in §3.1. More precisely, we define 

8pi 8pi 
~j,k = BxJ · Bxk for 1 ~ j, k ~ n- 4 

/'. = 8pi . 8pi 
'>J BxJ aa for 1 ::; j ::; n - 4 

and 

Then, we set 

6,1 6,2 
6,1 6,2 

~n-4,1 
(1 

~n-4,2 
(2 

We define Hi = ,!det Ni and 

6,n-4 

6,n-4 

~n-4,n-4 
(n-4 

(1 
(2 

(n-4 
). 

di = 12
"' J · · · L Hi dx1 ••• dxn-4da. 

Then, by the definition of Vn, we have 

-17-
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The computations of ei,k and (j are easy. In fact, 

{}pi 8pi ( &pi) (8g ) 
ei,k = 8xi . 8x"' and (i = g 8xi . 8a.Pi ' 

. (cos a. - sin a.) where we wnte . by g. But we need to be careful about >.. In fact, 
sma. cosa. 

due to the last term of Lemma 3, we have 

n-1 

where if Pi= (ul, ... ,un_l), then we set IJPiiJ2 := L IJuviJ 2 • 

Theorem 5. We have the following results. 

(i) V4 = 4\f'27T ~ 17.77. 

(ii) vs = 169.58. 

(iii) v6 = 885.11. 

v=l 

(7) 

Proof. (i) We claim that H1 (9) = H2 (9) = v'2 for all(} E [0,27r]. In fact, recall 
that P(3, 1) = {two points}. For (g, (u17 u2 , u3 )) E S0(2) x P(3, 1), we have 
1Ju2 1J = 1Ju3 1J = 1. Hence by (7), >. = 2 and we have H1(9) = H2 (9) = \1'2. Now 
(i) follows from (6). 

(ii) and (iii) also follow from (6). 0 

Remark 6. Comparing with Theorem 5, Table 1 is probably a result with high 
numerical precision and Tables 2 and 3 are reliable results. 
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