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APPLICA TION OF DISCRETE V ARIA TIONAL TECHNIQUES 

TO THE ANAL YSIS OF LATTICED 

SHELLS 

by 

Takeshi Oshiro* 

ABSTRACT 

The techniques of discrete field mechanics， a new concept in structural analysis， 

are used in conjunction with energy methods to obtain an exact mathematical model 

to represent a latticed shell subjected to flexure and corresponding solutions. The 

method developed is designated here as the discrete variational approach and its use-

fulness has proven especially effective for the analysis of latticed shells with general 

types of boundary supports， such as free or ribbed polygonal edges. 

Essentially， the method is based on the application of the calculus of variations 

in discrete field mechanics developed in Appendix A to the concept of the Micro 

Approach used in field analysis. The immediate resu1ts are: 

( a ) The mathematical model which can be used for the linear or non-linear analysis 

of latticed structures 

(b) A clear statement of the natural boundary conditions associated with each 

system 

(c) Closed form solutions to the total model described by the steps (a) and (b) 

A further development of the method， the modified discrete variational method 
analogous to the method of Lagrange multipliers， is presented in the same appendix 

and enables one to obtain with relative ease closed form solutions to structures 

which were not amenable by conventional methods because of the complexity of the 

boundary conditions. Such solutions are valid over the entire structure and are inde-

pendent of the size of the system. 

The buckling condition of Jatticed shells is also investigated by this method in 

the work presented in Chapter IV which clarifies on a rational basis the behavior of 

the compressed members as an integral part of the entire system. 

Each solution presented in this paper has been investigated numericaJly and com-

pared with resu1ts obtained by open form methods. The comparison shows significant 

accuracy and the great reliability of the technique proposed here. 
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NOTATION 

The letter symbols used in this dissertation have the following definitions: 

A1 A2 

A 

a1， a2 

E 

EI2' EI3 
Ei2' EIs 

e1' e2' e3 

: Cross sectional area of a member for the α1-and α2-polygons 

: Projection of the unit vector along the polygon member on the 

tangent at the corresponding node 

: Length of element cable of a net 

: Boole's displacement operator defined in Appendix B 

: Flexural rigidities of the polygon members 

: Principal coordinate system of a member 
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FR， FL : Force vectors at the right or the left end of a member 

F 

Fよn'F!n' F!n 

FA， FB 

GJ1> GJ1 

K 

L1> L2 

tα， [， L 

M 

租R，ML 

Me 

N 

R 

S， S 

Tk 

[Tlj]， [Tlj'] 

U 

UR 

Uα1 

u 

FR=F?51+F352+F553 

FL = Fye1 + F~ë2 + F~ë3 

: External force vector acting at a node 

F
e 

= Fi + F2 + F3 

: Euler coefficients for the external loads 

: Axial force prior to and during buckling 

: Torsional rigidity of a member inα1-and α2・polygons

: Curvature of α1-polygon defined in difference geometry as K = 2sinψα 

: Length of a mem ber in α1-and α2・polygons

: Span lengths and total length of the continuous beam shown in 

Appendix A 

: N um ber of nodes in the α1-direction 

: Moment vector at the right or the left end of a member 

MR = M~ë1 + M~ë2 + M~ë3 

日L=M551+M552+MH3

: :External moment vector acting on a node 

悶e = M'1t1 + Mit2 + M3N 

: N umber of nodes inα2・direction

: Tension forces of cables in the α1 direction shown in Appendix A 

: Tension forces of cables in the α2 direction shown in Appendix A 

: With k=l， 2， ・・・…・・ 6，it respectively represents all the external loads 

F'1， F2， F3， M'1， M2， M3， i. e. T'1 = F'1 

: Matrix coefficients defined by Eqs. (2・16)and (2・17)

: Total potential energy of a structural system 

: DispJacement vector at the right end of a member， 

aR=11TEl+u?52+U153 

: Displacement vector of a polygon at node α1・

aα1 = Ut αfα1 + Unαnα1 + Ubαba1 

: Displacement vector of the joint (α1，α2) of a latticed shell 

u = Ud1 + U2工2+ U3 ¥J 

Uよn'U!n， U!n : E uler coefficients for the displacement functions 

Vα1， Vα2 : :Strain energy in a member V 1玄 andin a member V 2文

V : Total strain energy of the parametric polygon 

W 1， W 2 : Weighting functions defined by Eqs. (3-4)， (3・5)

WkA， WkB : Deformation prior to and during buckling; with k = 1， 2， 3， 4， they 
represent respectively u 1， U 3， () 1， () 2 
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文 (α1.α2)

Yk 

Eα1. nα1， bαl 

h， '2， N 
jjR， jjL 

: Position vector of a typical joint (α1，α2) 

: Represent deformations. k = 1，…… 6 gives respectively u 1， u 2， u 3， 

。1，82， 83 

: Local trihedron of the α1・ polygon

: Local trihedron of a latticed shell at a joint (α1，α2) 

: Rotation vector at the right and at the left end member 

jjR= 8~ê1 + 8~ê2 + 8号e3

jj L = B r邑1 + B ~ ('2 +θ~ e3 

8α1 : Rotation vector of a polygon 

5α1 = 8 tα一α1+ 8nα百α1+ B bαBα1 

O : Rotation vector of a latticed shell at a joint (α1，α2) 

o =θ1tt 十 {l2t2 + B 3N 

。ょn' 8よn'θ!n : Euler coefficients for the rotation functions 

α1， α2 : Discrete variables; α1， = 0， 1， 2， …… M α2 = 0， 1， 2， ・・・… N 

8U : First energy variation 

b 1， 'y 1， b 1， 'i 1 : Coefficients related to axial force in the α1・polygondefined by Eq. 

821 

Ekhk 

Am 

ai1，Si1 

V， 11， N 

9B  

0・10)with the subscrip 2， they denote similar quantities for the α2・

polygon 

: Kronecker delta defined by Eq. (3-23) 

: Variation of the deformations 

: Euler coefficient for the modification function 

: Inverse difference operator or summation operators defined in Appen-

dix B 

: First difference operators defined in Appendix B 

: Second difference operators defined in Appendix B 

CHAPTER 1 

INTRODUCTION 

A latticed shell can be defined as a three dimensional assembly of one dimensional 

element that resists arbitrary loads. The capacity and efficiency of such structures to 

carry loads are obvious， since every member is a part of the three dimensional latticed 

shell path which is chosen to be the most effective. This has been demonstrated in 

many applications of latticed shells， such as in roofs， space vehicles， communication 

towers and reflectors. 

With a repetitive framework pattern， a latticed shell provides the advantage of stand-

ardization of member length and size， although for some structures there is the difficulty 

of joining in space the members which meet at different angles. This chief barrier is 

now being overcome. Several excellent co即時ctorshave been produced mainly for pre-
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fabricated steel or aluminum latticed shells and are illustrated in a reference， "Space 

Structures" (8). Through mass production their cost can be kept low and their use 

even enables the erection of highly complex latticed shells by semi.ski11ed personnel. 

Since the demand for these structures has increased more eHective and efficient 

methods for their analysis must be developed. Presently there is no unified approach 

to the rational analysis of these structures. 

The analytical methods appearing in the literature can be divided into the following 

two methods: 

(1) Continuum Approach 

This method approximates the actual discrete system by an equivalent shell membra. 

ne or anisotropic shell. The equivalent shell membrane method was presented by M. 

Pagano (31) in 1962， and by D. T. Wright (42) in 1965. Essentially the membrane forces 

and buckling loads for latticed shells are predicted by using modified shell formulas ob. 

tained by replacing the discrete structure by an equivalent continuum. The anistropic 

shell method was explained by W. Flugge (15). A work done by J. D. Renton (32) in 

1967， and Heki， K and Y Fujitani (18) in 1967， relates the discrete variables to their 

equivalen s in the continuum by use of Taylor's series expansions. Using this technique 

the governing diHerence equations of plane and space grids are transformed to differential 

equations，ぬusyielding continuum models. 

It is obvious that the continuum approximation may lead sometimes to erroneous 

resul s as it approximates discrete properties by continuum ones when no clear analogy 

between both exists. However， this approach may be useful for an approximate analysis 

in the preliminary design stage. 

(2) Discrete Approach 

Two categories are found in this approach. They are the open form methods of 

which the matrix methods are the most popular and the discrete field methods on which 

this work is based. 

(a) Open Form Methods 

Matrix methods are becoming very popular in the computer age. Typical works on 

this method have been presented by Eiseman， Lin Woo， and Namyet (14) in 1962， P. H. 

Cheng (6) in 1964， M. Berenyl (2) in 1967， and J. Michalos (28) in 1967. This method 

requires the solution of a set of simultaneous equations for the unknown forces or de. 

formations of all the joints of the structure. It will give correct solutions for a latticed 

shell with a limited number of joints. However， as the number of these joints increases， 

the round.off error and the excessive computation time will make the application of this 

method impractical. 

(b) Discrete Field Analysis 

In this analysis the concepts of discrete field mechanics and of difference geometry 

are utilized to obtain the mathematical model， a two dimensional partial difference equation. 
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Pioneering work for latticed shells was introduced by L. A. Larkin (26)， D. L. Dean 

(9， 10， 11) and C. P. Ugarte (10， 39). The first of these appeared in publication in 1960. 

Exact closed form field solutions were obtained for latticed shells with moment1ess connec. 

tions. These analyses are feasible and satisfactory for certain types of loading conditions， 

but a more realistic approach requires the consideration of f1exure in such structures since 

most joints provide at least partial restraint. Field solutions are valid over the entire lat. 

ticed shell and are essentially independent of the number of joints and the size of the 

latticed shell. 

w. Gutkowski (17) presented a circular cylindrical latticed shell with rigid joints in 

1965， but his solution did not satisfy all the boundary conditions. A master's thesis by 

S. Ch. Shrivastava (34) in 1967 also takes the f1exure of the members into consideration. 

However， his solu ion is limited to a special boundary condition. Mithaiwala's treatment 

(29) has also similar restrictions. 

The difficulty in directly finding proper solutions of high order difference equations 

for arbitrary boundary conditions proves to be the major weakness in the previous works. 

This suggests that a new method be found to overcome the difficulty. 

The primary objective of this dissertation is to provide a rational method to utilize 

the concepts of difference geometry and the calculus of finite diHerence to obtain in an 

efficient manner solutions to the latticed shells with general boundary supports. This is 

accomplished by the application of the calcul.us of variations to discrete field mechanics. 

To the knowledge of this author this is the first attempt to apply this new branch of 

discrete field mechanics to the analysis of latticed shells. 

The calculus of variations in continuum mechanics was applied by Bernoulli， Euler， 

and Lagrange in such fjelds as geometry and physics. Today it is a highly advanced 

branch of modern mathematics closely related to the theory of differential equations by 

which various statics and dynamics problems have been effectively handled. Applications 

in engineering have been presented by Bleich (3)， SokolnikoH (35) and other authors. 

This theory deals with the calculation of the extreme values of functions defined by certain 

integrals whose integrands contain one or more functions of continuous variables. 1n 

con inuum mechanics this problem is concerned with finding equilibrium states and the 

condi ions necessary to achieve such states. 

As in continuum mechanics， the equilibrium state of a latticed shell can be related to 

an extremum. However， since the variables are discrete and the functional describing the 

problem is a summation instead of an integral， the existing theory needs to be modified 

to establish the properties needed in discrete field mechanics problems. An introductory 

work done by Goudreau (16) in 1963 applied the technique to the problems of a lamella 

beam. This author extended further this work and developed a theory which provides a 

more general mathematical treatment of the calculus of variations in discrete field mechan. 

ics. A significant application of this theory enables the author to obtain closed form 

solutions of latticed shells with general boundary conditions for which no solution is 
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available in the literature 

Buckling is a serious problem that should be considered in the design and construction 

of most latticed shells. An inadequate resistance to buckling contributed to the recent 

failure of a large span latticed dome in Bucharest， Rumania in January， 1963. 

Considerable research on the stability of latticed shells has been performed in recent 

years， and it can be divided into the following categories: 

(a) Modification of the known linear theory for shell membranes， using energy cri-

teria， which yields a differential equation. This is represented by von Karman and 

Tsien (40)， Pagano (31)， Kloppel and Jungbluth (24)， and Wright (42). 

(b) Application of perturbation techniques， using digital computers were presented 

by Keller and Reiss (23) and Weinitschke (41). 

Most of the works except that of Pagano have been performed on spherical domes. 

However， no rational analysis for the buckling of cylindrical latticed shells has yet been 

obtained. 

A second objective of this dissertation is to develop an analysis for the elastic stability 

of cylindrical latticed shells. 1t is believed that this is the first attempt at a rigorous 

treatment of this problem. The concept of calculus of variations has been utilized in 

this analysis. 

Although the princ;ples of the calculus of variations was applied to circular cylindrical 

latticed shells， it can also be applied in the same manner to solve other types of latticed 

shells. 

The effectiveness of this technique will be demonstrated through a comparison of the 

numerical results of the closed form solution with those of the open form method. 

CHAPTER 1I 

ENERGY FORMULATION OF CYLINDRICAL LATTICED SHELLS 

A key step in the analysis of a structural system is an adequate and efficient mathe-

matical model to represent the system under consideration. For latticed shells， such a 

model can be obtained by the application of the concepts of difference geometry and of 

the calculus of finite d.ifferences， or by the application of the calculus of variations in 

discrete field mechanics as it will be demonstrated in this chapter. The later technique 

proves to be a powerful tool for the analysis of latticed shells as it exploits certain 

broad minimum principles that characterize the equilibrium states of such structures. 

Knowledge of the principles involved in the energy methods is indispensable for a thorough 

understanding of the calculus of variations and the mathematical procedures to be applied. 

The fundamental theorem of the calculus of variations and the corresponding deri-

vations are shown in Appendix A. The results given there will be applied to obtain the 

governing equations for the general flexural analysis of cylindrical latticed shells， and 

the natural boundary conditions associated with the corresponding mathematical model. 
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ll. 1. TOTAL POTENTIAL ENERGY OF CYLINDRICAL LATTICED SHELLS 

A latticed shell may be described as a disc問、 surfacegenerated by two independent 

sets of parametric polygons α1 and α2・ Thelatticed shell s rface can then be described 

by the position vector，玄 (α1，α2)，of its typical node (α10α2). The interval of definition 

of the independent variables (α10α2) is given by the field of integer numbers， 0 L.αlL.M 

and 0 L.α2 L.N as s own in Figure 1. 

A local coordinate system defined by the t'nit tangents to the space polygons and by 

the normal to the latticed s rface shown in Figure 2 has proven to be the most convenient 

reference system for the formulation of the total potential energy of latticed shells. The 

unit vector tl and t2 denote the unit tangent vectors to the αl-polygon and the α2・polygon，

respectively. The unit vector N is called the latticed shell normal defined by 

~-T t1 X f2 
'-， sm 1Jf (2-1) 

where 1Jf is the angle between h and t2' (Fig. 2b). 

Since this study is of cylindrical latticed shells as shown in Fig. 3， the case of 

interest is the or叫 onalone， i. e. 1Jf =子

FIG. 1. LATTICED SHELL ELEMENT 
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X¥ 

FIG.2a SURFACE ELEMENT 

N 

(dHI，cL'l) 

FIG.2b TANGENT PLANE AND LATTICED SURFACE NORMAL 
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~~ ふ〉

FIG.3 ELEMENT OF A CIRCULAR CYLINDRICAL LATTICED SHELL 

Before any attempt is made to apply the variational techniques of Appendix A to 

the f1exural analysis of latticed shells， it should be understood that the connections of 

such structures can develop restraint against all types of flexural effects. 

Using the basic knowledge of the surface the total potential energy of a cylindrical 

latticed shell is formulated l1sing the equivalent moment and force vectors acting at the 

nodes. 

II. la STRAlN ENERGY IN A TYPICAL MEMBER Vl玄OFTHE 

αl-POLYGONS 

The objective of this section is to formulate the strain energy of a member of a 

latticed shell using the local trihedron Ct1> t2' N). However， since this energy is more 

easily obtained when the principal coordinate system (e1> e2， es) of Fig. 6a， b is used 

this wi11 be done first as an intermediate step. The desired energy can then be obtained 

by using a proper matrix transformation. Consider a typical member Vl文 wtihits 

forces and deformations about jhe principal coordinate system (e1> e2J es) shown in Fig. 

4 and Fig. 6a， b. The strain energy， Vα1> in the member Vl玄 isequal to the work 

done by the forces (applied gradually) as they induce corresponding deformations (33)， 
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や

FIG. 4 PLANE POL YGON 

FIG.5 FORCE AND MOMENT VECTORS AT A NODE (α) 

that is 

Va1 = 11:α(FR・uR +班R. l}R) (2-2) 

in which 11α=(1+Ea1)/2 is the backward mean operator and FR，団R，uR， OR denote 

the force， moment， displacement and rotation vectors， respectively. The superscripts R 

and L serve to indicate the quantities acting respectively at the right or left of the joint 
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α1>α2. 1t can伺 silybe seen that compatibility of deformations requires 

E'd1 (FR・uR)= FL・uL (2-3) 

The force-deformation relations for a straight prismatic beam subjected to an axial 

force are available (13). 1n djHerence notation， these relations are 

T1 ...1 GJ 1 _ n R 
M1 = -My = L了 Va (J 1 (2-4a， b) 

一一
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FIG. 6a FORCES ON MEMBER VX (α) 

~IR 

FIG.6b DEFORMATIONS ON MEMBER vx (α) 
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や

FIG. 4 PLANE POL YGON 

FIG.5 FORCE AND MOMENT VECTORS AT A NODE (α) 

that is 

Va1 = 11{α(FR • uR + MR. jjR) (2-2) 

in which 11α=(1+Ea1)/2 is the backward mean operator and FR， MR， uR， jjR denote 

the force， moment， disp1acement and rotation vectors， respective1y. The superscripts R 

and L serve to indicate the quantities acting respectively at the right or left of the joint 
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α1，α2. lt can easily be seen that compatibility of deformations requires 

Ea1 (FR・uR)= FL・uL (2ーの

The force-deformation relations for a straight prismatic beam subjected to an axial 

force are avai1able (13). In difference notation， these relations are 

1? ...1. GJ 1 _ ^ 1? 
MJ;< =一 M~ 一一τ'- Va 8 i 1 - L， (2-4a， b) 

(M51hall-v 
= 1)1王子

M~ J - I (1-1'1) Va +1'1 
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Fヰ=-Fr与企VaUIR 
""1 
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(2ー7a，b) 

E 1 s 'y 1 1，_ n¥" R ， 2 _ __ R 1 F号=-F~=b 一一一一 i (Va -2) e 号+一-:-Vau~}一 2- Ul ~ ~ 1 ~ v a -"'J U 3 T L 1 va u -2 J (2-8a， b) 

R _ D L _ ;-_ E 1 2 'f 1 1，_ 1")¥" R 2 _ R 1 
F~=- F~=-bl 一一一←2_ i (Vaー 2)e写一一=-Va U号}::1 ~ ::1 -- U .  L 1 L 1 l ¥ Y u -"  v 2 L 1 v" u 3 J (2-9a， b) 

where 

マαisthe partial backward differenCe operator. 

i. e.， VαUIR = UIR - UIL 

GJ 1， EI2， EIs are the torsional and f1exural rigidities in el-e2 plane and in el -eS plane， 
respectively. 

AlI L1 represent the area of the cross section and the length of the member Vl玄re-

spectively 

b1，γ1 are the coefficients related to the axial force defined by 

(2-10a， b) 
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(2-11) 
ゅ2一一 L12F 

1 --1IT3~' 1 

T 2 

bll 'f 1 are the coefficients ob帥 edby replacing o 1 by O! =ーすた F1 into Eqs. 

(2-10 a. b). 

The substitution of Eq. (2-4) through Eq. (2-9) into Eq. (2-2) yields the express-

ion for the strain energy of the member as follows: 

EI，， (f，__ _， "R 'Y1_  ..Rl 
Val=告 b1τ:8l t (γl-Va) o~ -l~ Va u ~} 0号

+({(l-γ1)れ+叶 θ5-fivaU5)

x ( トVa)o~ +や{(Va-2) o~ +手:Va u~ } Va U引
" Ll ‘ Ll  -"  -， 

+告bl守({('fl-V 

+ [~ Va U~}) (1-Va) o~ 一七{(マα-2〉 63-tvαu ~} Va U~) 

(2日 12)
EA1 ，_~..R\21 1 GJ 

+告 tf(vauT〉Z+をτf(va。?〉2
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To transform the above equation into a function of the deformations along the local 

trihedron of the polygon， consider the orthogonal system composed by the unit tangent， 
tα， the unit normal， iiα， and the unit binormal vector， bα， at its typical node shown in 

Fig. 5. The displacement components of a node along the principal coordinate system 

can be related to displacement components along the local trihedron by the matrix 

transformation 

U~) ( HUtα(α 1> α2) ) 

u号1= 1 TII 11 U n a (α1> α2) 1 

U~J l JlUba (α1，α2) J 

(2-13) 

Similarly， the relation between the roation components becomes 
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where 

( e1(α) • ta 1 (α〉

[TIIJ = I e2(α) • ta 1 (α〉

¥ ea(α) • ta 1 (α〉

e1(α) • na 1 (α〉

e2(α〉・ nal(α〉

ea(α〉・ Oal(α〉

邑1(α〉・ bal(α))

e1(α〉・ bal(α)I 

e1(α〉・ bal(α)) 

(2-15) 

Transformation of the matrices [ut， u~ ， u~J T and [81 ， θ~ ， 8~J T into the matrices 

[Uta (α1-1，α2)， Una (α1-1，α2)， Uba (α1-1，α2)J T and [8ta (α1-1，α2)，θna (α1-1，α2)， 

8ba (a1-1，α2)コT respectively， can be done by the transformation matrix coefficient 

[T:IJ・

The transformation matrIX coefficients [TIIJ and [Tら]are obviously functions of the 

intrinsic geometric properties of the space polygon. Since， in general， ~ orsion and curvature 

determine these properties， the matrIx coefficients [TIIJ and [T訂 willexhibit quantities 

which m伺 surethese properties. For plane polygons such as the ones encountered in 

cylindrical latticed shells， torsion vanishes. 

The matrIx transformation coefficients then become 

-K(α)/2 

[TIlJ = I K(。α)/2 A(α〉

。

l…… 。
[TiIJ = I -K(α-1)/2 A(α-1) 。

。 。 1 

(2-16) 

(2-17) 
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where A (α) = cos lf!α 

K (α) = 2 sin lf!α 

lf!αis the angle betw田 nthe forward or backward polygon member and the 

unit tangent t (α1) s own in Fig. 2b. 

To formulate the total potential energy of a cylindrical latticed shell， one needs the 

components of deformations along the local trihedron composed of the units tangents， tl 

and 1:2， and the normal to the latticed shell， N. Therefore， proper transformation matrix 

coefficients for transforming vector components froni tα1>Uα1>bα1 to t1> h， N are required. 

Using the theory of difference geometry these relations are fourtd easily as follows: 

Eα1 = tl' Uα1 = - N， bα1 - h (2-18) 

T1-erefore， the deformations in the local coordinate system are transformed accordingly 

as follows: 

Utα=、U1> Unα= - US， Ubα= U2 

θzα=θ1> 8nα = - 8s， θbα=θ2 

(2-19) 

(2-20) 

Substituting the results mentioned above， Eq. (2-13) through Eq. (2-20) into Eq. 

(2-12) one obtains the strain energy of a typical member Vl玄 asa function of the 

deformations in the latticed shell coordinate system. Thus 

b， EI~ ( n '" -n n -( ，. ， ~ 1 = ~1 ~.L312γ1 111 82・θ2-1 (1-γ1) Vl +γ1 .θ2・V1822 Lll-"--'-. -. l'- ..， .....J 

+主主r-4111 82十三fK111uI-AVIUs11 f K111uI-AV1 Us 11 
L 1  ¥ L 1、 IJ ~ I J 

1 .-EI2 ( ( T7  "" n' '" n .，，， n， _ n 1 +←ーb1"';"'21 i K (71-2) 11181-A (71-2) V1 83 • ~"- 81 2 U.L L 1 II ...... ".L _"....6. J..... .L ...... " J. -， Y .l"''' J 

+ [ K (111 + ~1 V1-~1 )θ1-A {(1-71)V1怖いsl --，--.a.' 2 ".1. 2" -.，L ....... l ，- ，...， T ，L I ， .L J 

x ( ~ V181十AV183) +七 {KV183-4A111 83 + i1 V1 U2} Vl U2 

+よ主，1E(AV1U1+K111u3)2+-J-~J1 X (AV181+K11183)2 2 L1 ，..... -. • ----. _0' 2 L1 (2-21) 

Following a similar procedure to that mentioned above， one obtains the strain ene培y

of a typical member V2X of the α2・polygon，shown in Fig. 1. It is 

= ~ b2 ~Î3 r 2γ2 112 81・81- f (1-'Y2) V2+'Y2! 81・V2812 "'u L2l-'u-"'''''''.1. "'.1. l''- ，，，，，， ...u ， ''''') 

立叶 -4MA+jLV2us}vzus l+lhEIE L 2 l ---. -.. L 2 •• -U J •• -U)' 2 ". L 2 

x ( 272 J/h 83・83ー {C1-ωV2+叶 83oV283

)， 1 A 2 E，_ .. ¥ 2 ， 1 GJ 1 +ヱι(411288+ T
2
. V2 U1) V2 U1 1 + 一一 (V2U2)2 +ー竺主 (V282)2 )' 2 L2 ". -.， 2 L2 

(2-22) 
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where 

GJ 1， EI2， Efs are the torsional and flexural rigidity in the et (αリ-e2(α2)plane and in 

the et(α2)-e3(α2) plane， respectively. Unit vectors e1 (α2)，邑2(α2)， e3 (α2) form the 

principal coordinate system of the member V2玄.

A2' L2 are the 紅白 ofthe cross section and length of the member， respectively. 

b2， b2'γ 2， 'i2 are the cooefficients defined by similar relations to Equations 

(2-10) & (2-11). 

][ . 1b TOT AL POTENTIAL ENERGY OF CYLlNDRICAL LA TTICED SHELLS 

The total potential energy of the cylindrical latticed shell shown in Fig. 3 is obtained 

by adding the total strain energy of the parametric polygons， V， and the potential euergy 

due to the external load， W， as follows: 

U= V + W  (2-23) 

Since the strain energy stored in an individual member of a cylindrical latticed shell 

is obtained by Eqs. (2-21) and (2-22)， the total strain energy is obtained by summing 

that of all members， that is， 

V = 
M 

Z 
α1=1 

N-l 
L:: Va1 + 

α2=1 

M-l 

2 
α1=1 

N 
L:: Va2 

α2=1 

1M IN 
=A-; ムー~ [Va1+Va2J 1--.1---. +ムー;vα1

|α1=11α2=1 ~ 

1M 
+ 1::. -~ Vα2 atα2 =N  I 

品 lα1=1

where the inverse delta operator is 

1 1M M-l 

ム~ Vα1 I = L:: Vαl 
• 1α1=1α1=1 

The potential energy due to external loads is 

W=  
M-l 

2 
α1=1 

N-l 
L:: W(α 1>α2) + 

α2=1 

M-l I 
+ L:: W(αbα2) Iα2= 0 

a 1= 1 1α2=N 

N-l I 
L:: W(α1， a2) I α1= 0 

α2= 1 1αl=M 

-圃 1M IN 
=ム~ II ~ W (α1> 1)2) I I 

品“ lα1=11α2=1

(2四 24)

(2-25) 
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where 

IN 
+o，-'-!W(α1，α2) atα1= 0 I 

“ u1=M Iα2=1 

1M 
+Å-~W(α1 ， α2) atα2=0 I 

.α2=N  Iα1=1 

W(α1・a2)= - Fe • u - N!e .0 

(2-26) 

(2-27) 

Fe and N!e are the force and moment vectors， respectively， acting at a joint (αh的).

These vectors can be expressed by the fol1owing components: 

F e = F i ft + F ~ t2 + F ~ N 

鼠e= M~ b 十 M~ t2 + M~ N (2-28a， b) 

Therefore， the total potential energy of a cylindrical latticed shel1 is expressed as 

U=A-ir;[山 V山 (α1，叶
IN 1M 

+ Å-~ Vα1 atαI=M I +ムー:vαzatαz=N I 
" Iα2 = 1 L Iα1 = 1 

IN 1M 
+ A-! W (α1，α2) atα1=01- +Å-~W(α1 ， α2) atα2=01 

4αi=MIα2  = 1 < α 2 = N | α 1 = 1  

(2-29) 

The resultant expression， Eq. (2-29)， is a summation equation with respect to the two 

variables，α1 and α2， as opposed to the integral equation which would be obtained for 

anisotropic shells. 

Substituting Eq. (2-21)， (2-22) and (2-26) into Eq. (2-29) one obtains the expression 

for the total potential energy in terms of the deformation components along the local 

trihedron of the latticed shel1. 

H. 2 APPLICATION OF THE CALCULUS OF VARIATIONS TO 

THE ANAL YSIS OF CYLlNDRICAL LATTICED SHELLS 

From the theorem of the minimum potential energy， it is known that a stable equil-

ibrium configuration requires that the total potential energy in Eq. (2-29) must have a 

stationary value， that is 

U = V + W = Stationary (2-30) 
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Therefore， applying the theorem of the discrete variational calcu1us developed泊

Appendix A one obtains the necessary condition for U to be stationary. This is 

6 
a U = 2J a U K = 0 (2-31) 

K=1 

where 

-1 • -1 I aVα1 ， aVα2 ~ e ， ， • aVα1 • aVα2 I 
8 UK=AIA213YF+3YE-TK(α1，ω-A1布市 -A2荷万五|

I M I N ，. -1 r r aVα1 ， aVα1 ..... e 1 
×山t(…叶α1=11α2=1+Azli苛 ζ+布y1k-T~ Jα1:Jhfk(M，ω 

I "'U_. 、 lN
-{E13手 +T日 E山 (0，α2)I 

l UY1J.K ~Jα1= 0 Jα2=1 

-1 I I完Va2 . aVα2 ~e I 
1113vf+お疋t-Tki Ek hk(αb N) L l U 1 k UY2 J. k A Jα2=N 

( ">"一、 lN
-~弘幸毛主 +T~~ fkhk(α1， 0) 1 

l uY2J.k "Jα2= 0 Jα1=1 (2-32) 

where Yk， Tk' k = 1，2，…H ・H ・， 6 refer to a11 deformations (U1' U2， U3， e 1， e 2， e 3) 
and externa110ads (F1， F2' F3' M1' M2' M3) at a typica1 joint (α17的). For e玄amp1e，the 

terms invo1ved in the doub1e summation of the above equation are written for k = 1， i. e. 

Y1 = U1 as 

-1 • -1 I avα1 含Va2 ~ e ， • aVa. aVα2 1 
ム IA2|石 了+百子 -F1(α1，ω-A1布式-A2柘函|

1M IN 
X f1 h1 (α1，α2) I I 

|α1=11α2=1 (2-33) 

As stated in Appendix A， the vari且tionsfk hk， k = 1， 2，………， 6 are completely 

arbitrary. Thus Eq. (2-32) can vanish on1y if the coefficients of the variatioDs each 

vanish individually. Using this condition one obtains from the coefficients of the variations 

in the double summation， six equations which represent the equilibrium equations for the 
flexural ana1ysis of a 1atticed shell and a set of conditions which are designated as the 

natural boundary conditions. 

The equilibrium equations are compactly given by the expression 

aVα1 ， aVα2 • aVα1 • aVαz 
3YE+3YF-A1詩疋瓦-À2 丙立下一 T~ = 0 (2-34) 

where k = 1， 2，……… 6， i. e. U17 U2， U3， e 17 e 2， e 3 

For examp1e， the above expression for k = 1， i. e. U1> is shown in the bracket of 
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Eq. (2-33). 

These are valid over all interior nodes， i. e. 1Lα1 LM-1， 1Lα2 LN  -1. Substitution 

of Eqs. (2-21)， (2-22) and (2-26) into Eq. (2-32) yields the governing partial difference 

equations of latticed shells listed in Table 1. 

Natural Boundary Conditions 

If one considers the summations in Eq. (2-32) one finds that the summation over the 

edges of constant α1 and α2 are respectively 

r ， .....n ~ . .....n ~. ) ( .....n _. ) I N 
-1 I lavα1 ， avα1 ~ e I ， '1¥6 _. '- )δVα1 I I"T"¥ e t L ， 1"¥ _. '¥. I ; I i百 ζ+布 百一 TkjAVM，α2)-iE1可 ，'fk+ T~Jα出k( 0，ω|α2=1 

k = 1， 2，……， 6 (2-35) 

r ( .....n ~. .....u ~ . ) ( .....n _.)  I M 
I I aVa2 ， av a2 ~ e I " ..." I ~ avα2 I .，....el l'  1"'0， 1 A-~ 11治ぞ+ゑ乞-T:fαfzb山 1，N)-iE2

柘 Yi+TKα:dk
札

k = 1，2，……， 6 (2-36) 

As a consequence of Eq. (2-33) the terms involving the arbitrary deformation varia-

tions in the above summation must each vanish. Thus， it is required that 

一=0 {El救+吋khk = 0 

k = 1，…… 6 (2-37a， b) 

lavα. avα. _e I {司 王ー T~ ~ fk hk = 0 1 ;_ J.Y~ 1云云ι+
丙疋k

-~ k 1 tJ( >1J( 

k = 1，…… 6 

The above expressions yield the following six "natural" boundary conditions at edges 

of constant α1: 

avα1 ~e 
atα1 = 0， Fk = E1荷疋五 +TK=O YK=O (2-38a， b) 

δVα1 ， avα1 
atα1=M，F K= 3YE + 荷百五一 T~ = 0 Yk = 0 (2-39a， b) 

where Fk， k = 1，2…・・・， 6 represent the total resultant forces at the boundaries， i. e. F 1> F2， 

Fa， Mh M2' M3. For example， the above expression is written for k = 1 as 

aVa. 
F. = E. 一一 ~_' + F: = 0， 且.

aVl Ul 
U 1 = 0 (2-40a， b) 
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Similarly， on the edge of constant α2， one obtains 

oVa. 
倒的=0， Fk = E 一一竺竺ー+T~ = 0， 

広 2OV2Yk T .1 k 

oVa. oVα2 
2 = N， Fk =一一竺竺十一一;-';，.~ - T: = 0 

K - OYk 'OV2Yk 

Yk = 0 

Yk = 0 

145 

(2，41a， b) 

(2，42a， b) 

A study of the above conditions shows that Eqs. (2-38a)， (2-39a)， (2-41a) and (2-42a) 

represent the physical boundary conditions and Eqs. ぐ'2-38b)，(2-39b)， (2・41b)，and (2-42b) 

the geometric boundary conditions. 

Alternate expressions of the above natural boundary conditions in terms of defor-

mations are shown in Table 2 and Table 3， and specific examples are given in Eq. (3-54) 

of Chapter ][. 

Some combinations of the natural boundary conditions which often arise in the a~alysis 

of a latticed shell are the following: 

a. Ribbed Support 

F1 = F2 = 九=M1 = M2 = Ms = 0 (2-43) 

b. Clamped Support 

U1 = U2 = Us = 8 1 = 8 2 = 8 s口 O (2-44) 

c. Diaphragm Support (or Simply Support) 

F 2 = M1 = Ms = U1 = Us = 8 2 = 0 (2-45) 

d. Diaphragm Support with Rotational Constraint 

日=Ms = U1 = Us = 8 1 = 8 2 = 0 (2-46) 

Other combinations can of course be conceived but， in any event， one must be certain 
to select only one condition from each of the pairs given by Eqs. (2-38a， b)， (2-39a， b)， 

(2-41a， b)， (2-42a， b) or else the first energy variatio~ Eq. (2-35) will be violated. That 

is， one cannot specify both the force and the deformation in a given dir，田tionat the edge 

of a latticed shell. 
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CHAPTER ill 

FLEXURAL ANALYSIS OF CIRCULAR CYLINDRICAL 

LATTICED SHELLS WITH V ARIOUS BOUNDARY CONDITIONS 

In recent y回目 cylindricallatticed shells have been widely used. Their applications 

range from recreational stadiums to attractive world's fair pavilions. However， despite the 

obvious structural advantages， the theoretical analysis poses many f undamental problems. 

The energy approach obtained in the previous chapter has b田 oshown useful in deriv-

ing the governing equations and in particular in determining the number and nature of the 

feasible boundary conditions to be used for any latticed shell. However， the direct u田

of the first energy variation is a more powerful method to obtain the difficult closed form 

solutions and also enables a clear mathematical insight into the problem under consideration. 

The following three cases are treated in this chapter and for ea ch of these伺 ses

numerical comparisons between their closed form solutions and their open form solutions 

are presented. 

ill. 1. CIRCULAR CYLlNDRICAL LATTICED SHELLS 

WITH DIAPHRAGM BOUNDARY CONDITIONS 

It is assumed that the two end circular polygons of the latticed shell as shown in Fig. 

7 have stiffnesses equal to one-half that of the interior polygons atα2=0 and α2 = N. It 

is further assumed that the two end spans of the circular polygons have stiffnesses equal 

to one-half that of the regular span. These assumptions are made to consider a practical 

problem which can be solved using the mathematical properties of finite trigonometric 

senes. 

Although the first energy variation will be used directly to obtain the closed form 

solutions， the gover凶ngequations and the natural boundary conditions， as derived from 

the energy expression， are shown in Tables 1， 2 and 3. Only the boundary conditions at 

α1=0 and α2=0 are listed since those conditions wi11 be applicable at the edges 向 =M

and α2=N， when the problem is unfolded into its symmetric and anti-symmetric solutions. 

For half-stiffness members at the boundaries of the latticed shell， the expression for 

the first energy variation in Eq. (2-沼)must be modified accordingly as follows: 

6 
oU = ~ OUk = 0 

k=l 
(3-1) 
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where 

su-l- 1「仇1 仇 2 ~e 山1 仇~1 FIr h"lM IN 
日 1'.6.2'lVay:， +vay:~- T~ (a1 ， a2)- 6. 1研一同ÿ~kJ Ek hk 1α1=11α2=1 

i ( :lU ~ ':IU ~ _)  1 N + 1 
+ザ|叶需十議t-W1巾 1，(2) ~α1誠k (M， (2)1 

1 laVa2 • avα2 ¥ ，_ ~H _. _lN ，___ i T.' avα1 __'T'e，_. _.，1 
τ{百子-.6.2高y2k)α1=d山 (M，a2)ll十W2i-E1翫 YL-W1TK(α1，α2)tα1=0 

×山

-1 1___ iaVa2 . aVa2 _e ， ， ) " "'TJM+l 
+6.1'lW1iπて+拓yt-wzTK(α1.α叶α2=NEkhk(α1，N)1。

1 laVat . avι 、 1M ._ ( ...， aVa2 
+τht-A1杭 )α2イ khk(α1，N)11刊一E28Wt

_)  1 M + 1 1， ':IU ~ ::>U ~‘ IMl 
-W2 T~ (α1，α2)九三乍(α1，0)10 +す(五マーム1話去)α2V(α1，0)11J 

(3-2) 

Extending the range of the double summation over the boundaries one obtains the 

expression for the first energy variation as follows: 

( "U  _. "U  _. "U  _. "¥U _.) I M + 11 N + 1 
TT __ __ .-1 .-1 laVα1 ， avα2 ~ e • avα1 • avα2 1 ，_ 1 n~"""'1 ÒUk=…6.~' 6.;' faY:' +百Y:.-T~ -.6.1同 一色同I

Ek hk 
10 I。

+苧;
1 I {警_1.+ (.6.t+2)

仇
11E山町川学.1.+仙+2)笠生)

L 1 aYk 
.，.. l.a1 荷疋'kfα1=M 1 品 VtYkfα1= 

1 IN + 1 _. . i，.，u ~ .，"1' ~ ) 
X Ekhk(O，α2) 11"

.，..... 
+竿.6.:-11 ~学!+(.6.2+2)評判

110
ん， L lυ .1 k UV2.L kJα2=N 

(-，u_. "¥U_. ) IM+l I aVa2 . ，. • ̂ ' avα2 1 L ， _. ^' I 
X Ekhk(α1，N) + ~U，，~""2 + (6.2+2)雪_ v三~ Ekhk(α1， 0) I 

lOIk 'OV2Ik)α2';; 6 I 0 (3-3) 

where the loading components at the boundary nodes are expressed with the weighting 

functions deHned by 

for α1 = 1， (1)， M - 1 

for α1 = 0，α1 = M (3-4) 

for α2 = 1， (1)， N - 1 

for α2 = 0，α2 = N (3-5) 

These functions are related to the half stiffnesses of the edge members. 
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It should be noti ed that the range of summation in Eq. (3-3) has been extended 

over the boundary nodes which enables one to use the orthogonality properties with 

respect to the special weighting functions， Wl and W2， of he finite trigonometric series. 

As a result， the boundary conditions are modified accordingly. These modified conditions 

derived from Eq. (3-3) are: 

aVat 九Vat
一一~1 + (Ad2)一一一よ=0 or Yk = 0 aY k ' '-1' -.1 av 1 Y k 

atα1 = 0， M， and ぬ=arbitrary 

aVa 宮司T~
百 f+〈A2+2)- yi=0 or YK=0 

i・ー 日

atα2 = 0， N， and α1 = arbitrary 

(3-6a， b) 

(3-7a， b) 

The relation between the actual and the modified boundary condition must be examined 

carefully since this is one of the key points of this analysis. To illustrate this consider 

the boundary node (0，α2). From Eq. (3-2) the boundary condition requires 

[仇1 __..... e ， 1 ( 川町 1
- E1布 YL-W1TUEbYE- 2両市)J ~1ミよくN-l = 0 (3-8) 

which can be rewritten as 

[{ Wl (程一 Al議一 T=)+ + (諜-A2救)} 

-Wl {警+(A1 + 2) 議~ Iα1= 0 = 0 
l aY k ' '-1 ， -.1 aVl Y k j J iくαzくN-l

(3-9) 

The first bracket shown in the first line of Eq. (3-9) which appears in the double sum-

mation， yields the modified governing equation; the second bracket represents the modified 

boundary conditions. Therefore， if the solution assumed satisfies the modified boundary 

conclition as well as the modified governing equation， this solution satisfies the true 

conditions， Eq. (3-9). 

The procedure for finding the solutions is to assume a set of deformation functions 

for Ul， U2， ua， 81> 82 and 83 that satisfy the vanishing of the first energy variation Eq. (3-3). 

Boundary Conditions 

Feasible boundary conditions for the general case of cylindrical latticed shells which 

frequently occur were discussed in the preceding chapter. It is assumecl that the cylin-

drical latticed shell is supported by a plane diaphragm. In practice， this condition can 

be met by a plane structure or a wall which is rigid in its own plane but offers no re-

sistance against displacement perpendicular to its plane (15). Mathematically this results 

in the following boundary conditions: 
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Atα1 = 0 

U2 = Ua = 01 = 0 

F1 = M2 = Ma = 0 

(3-10a， b， c) 

(3-11a， b， c) 

The first three boundary conditions are self.explanatory. The fourth condition， Eq. 

(3-11， a)， requires the vanishing of the total axial force in the I1 direction. The fifth and 

the sixth conditions， Eq. (3.11d， c)， require the vanishing of the total moment in the tJ 

and N directions， respectively. 

Similar conditions are assumed at α2 = O. These are 

Ul = Ua = 02 = 0 (3-12a， b， c) 

F2 = M1= Ma = 0 (3-13a， b， c) 

It wil1 be assumed that the boundary conditions are symmetric or anti.symmetric 
M N with respect to half of the span， i. e. ~， ';;， and therefore similar statements hold for 

the boundaries α1 = M and α2 = N. 

To examine the foregoing boundary conditions， Eqs. (3-11a， b， c)， these conditions 

are written in expanded form through Eq. (3-8). The r回 ultantexpr回 sionsare 

九Vat . 1 !avα2 . avα2¥ ~e F1=ーE 一一一土 +一一 ，-; "'~ -A2;:__:_ U.Z 1 lav山

=匂(ENIーザムーか)Ul一千(山N1)Ua-Cs KN1 O2-~ヂ82 83

-w〈 =0

aVal 1 lavα.. . avα.. ¥ "e M. = -E 一一史と+一一(...，~~.: ;:-2 _ A2 ~_: ~2 1 laV102 T 2¥  aθ;--~2 'ðV202J -vyt m.z 

=ーザN1Ul+叫 1…(長仏1叩)-示叫日1M;=o

九Va.. 1 !c司Va.. 'dVa. ¥ 
Ma = -El~ー竺三+~(~一一竺~-å2 一一一旦}ー
。且aVI08' 2 ¥ aOa -~ 'dVzθ8/ 

C2 '<S n.. _ _ .̂. ，Cs KAL1 1_ 1. ，... .. ¥ ，_ . I 
= ~~2 ~ð 82 Ul -Cl Cs A U2 + ~" 2子;-.i Ca (a1 +2-71) + C6 a1 t () 1 

J _ ̂  9 L1 1.  ，_.， ， C6 K2 Lll1.T ，C2 L1 I n ，1').. ¥ 1 +吋csAV(ム+γ1)+ヲ「 N1+百(L1i'2+272)t Oa一山;=0

(3-14a， b， C) 

It is s白 nthat Eqs. (3-14， a， b， c) app伺 rcomplicate and it will be almost impossible 

to seek solutions which satisfy these conditions. However， the modified boundary conditions 
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obtained by the energy approach result in simple 回 pressionswhich yield exactly the same 

physical meanings as shown in Eq. (3-9). The modified boundary conhitions are obtained 

from Eq. (3-6a). They are 

aVa. . '" .~， ;::司Va.
=一一竺.!+ (A1+2)一一一ーと=0 Ul '-1 ， ~/ aVIUl 

aVa. . '" .~， avα， 
=一一~ + (企t+2)一一ーと=0 a 82 ' ，-l'~' av 1 82 

aVa. . '" .~， ;::司Va.
=一";;"1 + (Al +2)一一一土=0 

δθsaV108  

Using Eqs. (2-21)， (2-22) one obtains the following equations: 

I K.A .n¥_ 12A_ .y，，_ .，， 1 
F1=叫 -i~ + 2C1A2)8山+Cs i e 01 +c1AK(01 +4) ~ U3 +CS81θ2=0 

2cs 'YIK ，..， 2CR 'YIA 
M2=士十21U1-fトムU3ー2csB182= 0 

Mhk寺 山1U2+CS {白紙一2'Y1)半}81 

I r_ K2、
+匂 (-2c2A2ーマニ)B183= 0 

(3-15a， b， c) 

(3-16a， b， C) 

Similarly， by the use of Eq. 。ー7a)the modified boundary condition at叫=0 is 

obtained a8 follows: 

F;=舎のUl+ω-02) 83 

M~ = 2~ 山1 -ーLL222us-2C82261
ー.2

司角山
M3=τ?2gzUI-2C822θs (3-17a， b， c) 

Thus， Eqs. (3-16a， b， c)， (3-17a. b. c) are the required statements of the diaphragmed 

cylindrical latticed shell in terms of the corresponding deformations. 

A procedure which can be applied to obtain solutions for latticed shells consists in 

arbitrarily assuming functions involving undetermined coefficients of the deformations Uh 

U2， U3， 81 82 an-:l 83. As in the energy rnethod in continuum mechanics the assumed 

functions must be able to describe the particular deformed shape of the latticed shell 

under consideratoin. The coefficients of the terms are the parameters to be found by 

the condition that the total potential energy is stationary. It is essential， however，泊

choosing the functions that they satisfy at least partially the boundary conditions of the 
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problem. 

For the analysis the solutions are assumed to de double finite Fourier series. There-

fore， their Euler coefficeints become the parameters or undetermined coefficients. 

Similar ly， it is convenient to represent the external loads F ~， F ~， F ~， M ~， M 2' and 

M; by double finite Fourier series in which the Euler coefficients of these fun 山田 are

obtained by the orthogonality properties of the corresponding trigonometric series. 

The following double finite Fourier series are assumed for the solutions of the cylin-

drical latticed shell with diaphragm boundary ιonditions: 

where 

M N-l 1 

Ul (α1，α2) = 1:: 1:: Uよn COSλmα1 sin λnα2 
m=O D= 1 一日

M.::.l !i TT2 
U2 (α1，α2) = 1:: t: U':n sioλmα1 COSλnα2 m=l D=l ...-. 

M-l N-l 0 

U8 (αhα2) = "1:: -1:: Uこn sioλmα1 sio A.Oα2 
m= 1 D= 1 一一

M.::.l !i Al 
81 (α1，α2) = 1:: 1:: 8::'n sio λmα1 COSλnαz 

m=l D=O 山日

M N-l ~ 
82 (α1，α1) = :t 1:: 8こn COSλmα1 sio λ010:2 

m=O D=l ..-

M N 0 

88 (α1，α2) = 1:: 1:: 8ニn COSλmα1 COSλnα2 
m=O D=O 一一

λ_  _El1I 
m 一一扇一

入 nπD=-r 

(3ー18a，……f)

The solutions described by Eqs. (3-18a，…f) satisfy the proposed boundary conditions. 

This is obvious with regard to the three conditions Eqs. (3. 10a， b， c). To show that 

Eqs. (3-16a， b， c) are satisfied by the assumed solutions， Eqs. (3-18a，…f) are substituted 

into Eqs. (3-16a， b， c). The results yield 

一lN-=-l r， K . n.  .n" n.' 'TTl 18A.λm 
F1=mElnEICB|(-u+2C1AZ〉(ー 2sioA.m) U~D - iLIA si02τ 

+ 仏 AKω引くD-2sio A.m 82mDJ 

x sio λmα1 sioλnα2 
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M;:，l N;::，1 _ I 4'YIK_，_ ，_ TTl ，8γlAλm TT3 
M2 = 目玉lnEIC8 | -IFsinλmU~n + τ 了 sin21FILEtn

+ 4sinλm e2mnJ sinλmα1 sin λnαz 

M~l N~1 
_ 

I 8c2γ1 ・ λmTT 2 ，1 
_ 

^ TT I A_'_9).m， A 'l_. ¥ 

M3=rnzl31 叫 -L了 sin2τ U~n + i C2 AK ~ -4sin2
す

+4-2γ1) 

_ C6 ~K} 山+ 2 (2C2 A2 +学)山山]
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x sin 入口1α1 sin λnαz (3-19a， b， C) 

From the above e玄pressoinsit is clear that the modified boundary conditions are 

satisfied at向=O. A similar procedure can be folIowed for the boundary at向=O. 

It shows that the condition Eqs. (3-12a， b， c) and (3-17a， b， c) are also satisfied. 

As it has been demonstrated， alI the boundary conditions are satisfied by the assumed 

solutions. The case of using these solutions for other supports in which some of the 

boundary conditions are violated will be discussed later. 

To proceed with the solution， the external loa JS must be expanded into appropriate 

finite double series: 

F~ M N-1 _， 
三-!--= :E :E F二n COSλmα1 
Wl m=O nc:l 

l.uU 

F~ M-1.!'! ~2 
τテー= :E f: Fこn sin λmα1 
W2 m=1 n=o ““ 

ρM-l N-1 令

F: =:E :E Fこn sin λmα1 
“ m~ 1 n= 1 山“

smλnα2 

cos ).nα2 

sin λ.nα2 (3-20a， b， c) 

The Euler coefficients can be derived from the following expressions: 

2 ，-1 ，-1 
Fmn=扇子mA1 4hz F1(α1・α2)cosλm山

F2 辺ー1.-1 ~τT与，- å~' a-;" F: (α1，α2) sin λmα1 
N l'n -1 -2 -2 

F 3 
= .:.. a -:-

1 
a -:-

1 
mn -ぜN å~ 企2F3(αhα2)sin畑山

2|::;|:=1 

2|:=1|::; 

E lril:二
(3-21a， b， C) 

where the following general orthogonality properties of finite series have been utilized 

MH1sinE生 sin 盟生=土旦Ò~IM士 K
ai二1

Y'" M V'" M 
-~ 2 

V
i 
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~ _. ~__ ilTα1 ~__ klTa1 _ n ，， 2IM:!:K 
W1 COS -'i¥';'= COS ←Iー~1 = ri Ò~ 

α1=0 !V.l !V.l 1 

in which 1 = 0， (1)，∞， 8iIM土kis the Kronecker delta defined dy 

i手 21M土K

i = 2iM土 K

and r m is a normalization factor defined by 

M TY>寸r~.rm;;:: 2j W1 COS竺古 竺
al=O J.U. 

(3-22a， b) 

(3-23) 

(3-24) 

Although the inclusion of the external loads M ~， M ~， M ~ d oes not require special 

techniques， they are disregarded here as they are of less importance in practical problems. 

In order to give Sp田 ificexamples of expanding loads into finite Fourier series， con-

si:ler an arbitrarily placed unit joint load which is represented by the Kronecker delta 

F:(αhα2) = F ~ (α1，α2) = F; (αhα2〉=8:18:2

wher勺 theKronecker deltas， o ~ 1 an:l o Z 2' are defined 

coefficients of the assumed series (3-21a， b， c) become 

1=-2-cosλm ~ sin λnマ
Mrm 

2=-2-sin λm ~ COSλnη Mrn 

3 =一生..-sin λm ~ sin λn 7J MN  

by 

(3-25) 

Eq. (2-23). The Euler 

(3-26a， b， c) 

To secure the desired solution the variations of the deformations in the first energy 

variation， fk hk in Eq. (3-3) need to be considered. They are regarded as kinematically 

infinitesimal deformations. For the case when k = 1 and 4， these variations wil1 take 

the forms 

M N-1 1 

E1 h1 = OUl = 2j 2j oUこ_COSλmα1 s1nλnα2 
m=O n=l ...“ 

M-l Nτ  
f4 h4 = O81 = 2j 2j o8二_sin A，mα1 COSλnα2 

m-l m=O …日

(3-27a， b) 

Substituting the solutions assumed for the deformations Eqs. (3-18a，…f)， the exter・

nal loads Eqs. (3-20a， b. c) and the variations of the deformations Eqs. (3-27a， b) into 

the first energy variation， Eq. (3-3)， and btting the coefficients of oUよn'oU;'n' oUJ，n， 
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òO~n' oO;'n' ò O~n vanish， one obtains six simultaneous algebraic equations for the un-

known Euler coefficients of the double series Eq. (3-18， a…f). This procedure will be 

i1lustrated for the first of these six equations as follows: 

lavιavιe  aVa， aVaー 1 _ IM+IIN+1 
W2 å~' a;' i否両主+石 f-FI-A1可 t-h拓三{E1h1Io I。

-1 • -1 I _ 1 K2 ， ~ ." A2 ~ I c"AK = W1 W2 a1 • a2 • I Cs i 2L
1 

(，171 +4)ーC11::
1 
C2 LV 2 ( U1一主τ (2+C1)81 U3 

1 IM+IIN+1 
ーザω+4)θ2ーω 85zoa-F:ld11 10 

M-N I _ J K2 . 2Cl A2 ， 4K2 ， I K2 2C1 A2¥ ___ ，_ 4C2 ___， _ I 
=4一|吋τ+τ了 +工工+~ L1一τ 了 )COS Am一ECOSM111mn

R AK ，.... ， _ ， _!_ ，__ T T 3 -完了 (2+Cl)sinλmUmn一CsK(l + cos胤)O;'n + 2cs Cs sin An O;n 

nu 一一n
 

l

m

 

U
 

尽

O

『

B
I
E
1
t
s
t」

n
 

l

m

 

pι 

It should be pointed out that the terms in the brackets shown in the adove equations 

are zero by the明 uilibrium equation at any node including the boundaries in the tl 

direction. The complete list of these equilibrium equations are shown in Table 1. To 

simplify the forthcoming expression， it wi1l be assumed that the members of the latticed 

shell are prismatic. It follows that the coefficients of the force-deformation relation.s for 

the bending of the lattice member become 

b1 = 1>1 = 2 

γ1 = 71 = 3 

The resultant expressions of the six simultaneous equations can be represented. 
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(3-30) 

Numerical Example 

As an i1lustration of the preceding formulas， consider the circular cylindrical latticed 

shell shown in Fig. 7. The following two cases are considered: 

Case 1 Vertical Load， Po = 0.1 kip at every node except at the boundary 

nodes， where Po/2 is applied. 

T ABLE 4 MARIX (Amnコ

An 。A13 。A15 A16 

。A22 。A24 。A26 

A13 。A33 A34 A35 。
。A24 A34 A44 。A46 

A15 。A35 。Ass 。
A16 A26 。A46 。A66 

where 

K2 ，. . ___， ，. 2C1A2 
All =一一 (l+cosλm)+一一一一 (l-cosλm)+弓竺 (l-cosλ叫Ll ，~，--_...~.t' Ll ，~--_.....， L2 

m
 

、ん
n
 

pν +
 

n
L
 

M
E
 

A
 

A15 = - K (l+cosλm) 

A16 = 2C2 sin A.n 

A22 =ぞいωm)+告(1一cosA.n) 

A24 = caK(l-cos A.m) 

A26 =ー 2caA sin λm 
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A4A2cz  K2 ぉ=i: (l-cos )..m) + ~2L'了 (l+cos 入m) +官 (l-cωn)

A34 = -2cs sin λm 

A35 = 2A sin λm 

4C5 Lz 2L1 fCs K2 ，~ ^ 2 ¥ ~~~ ，_ I 2C5 L2 A“=す (C3K2 + 2C6 A2) +一一一一トー+C6 A2)∞s凶+一了cos)..n 3 3 ¥ 4 '-U -- I 

A4s= _ KAI 46 = - .I.lo.~ ....1 (C3ーC6)sin 入m

Aぉ=与 (4+2c7)+ 2cos)..m -2C7 c飢 n)

A鉛 = 1;，1 (4C3 A2 + C6 n
K2

) +坐出+L1{2cA2+C6mcosλm+生2L2 cos)..n ¥ ....3.n.--r--2- j -r---3--r--3-¥ "'''3.n.--r--2- j 

Case 2 Vertical Load， P = 0.1 kip at nodes (1， 2)， (3， 2)， (1， 3) and (3， 3). 

Under these symmetric loading conditions only one quarter of the 

latticed shell needs to be considered. 

The geometric and member properties used in the examples are: 

A = cos JI = cos ---，一一--- 12 

A1 = Az = 2.2lin.2 

Iz = I2 = O. 77in:' 

4
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Jl = Jl = 0.054in.4 

L1 = Lz = 60. in. 

The Euler coefficients [XmnJ in Eq. (3-30) are computed for the two cases above. 

They require the inversion of a 6 x 6 matrix for each combination of indices m and n. 
M .N Since only symmetrical loads with respect to .~A. and ~ are considered， the indices take 2 ~..~ 2 

only odd integer values. The Euler coefficients are substituted into Eqs. (3-18a，…の to

obtain the displacements and rotations at each node. The calculations were carried out 

by a digital computer. The results which represent the closed form solutions for the 

latticed shell are listed in Table 5. The above cases were also computed by open form 

method. Thirty simultaneous equations were established using the governing difference 

equation in Table 1， and the boundary conditions in Tables 2 and 3. The results obtained 

after inverting a 30 x 30 matrix are also listed in Table 5. It should be noticed that if 

the number of joinst is increased， the closed form solutions will still require the inversion 

of a 6 x 6 matrix. However， the matrix needed for the solution by open form method 
will increase considerable as one needs to add six unknown deformations for each addi. 

tional node. 
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The comparisons of these results show surprisingly good agreement and give confi. 

dence in tbe method proposed here. The displacements in the t2 direction， U2 (α1，α2) 

are not listed， since the results show that the order of these values is about 1/1000 of 

those for Ul (αhα2) and Ua (α1，α2) . The largest values for the displacements Ul 

(α1，α2) and Ua (α1，α2) and the rotations fl! (α1，α2) ，θ2 (α1，α2) and 83 (α1，α2) 

occur at nodes (0， 2)， (2， 2)， (2， 0)， (0， 2) and (0， 0) respectively. 

For the design of the member of the latticed shell， one may desire to have the values 

of the deformations about the principal coordinates， but this should not present a problem 

as they can be easi1y obtained by using the relations shown in Eqs. (2-13)， (2-14)， (2-19) 

and (2-20). The values thus obtained are substituted into the force.deformation relations 

Eqs. (2-2) through (2-9)， which may be needed for the design of members of the 

latticed shell. 

t Q.S) (4.~) 

tO.Q) (4.0) 

FIG.7 CIRCULAR CYLINDRICAL LATTICED SHELL 
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this analysis. The other set of boundary conditions are 

α1 = 0 and α1 = M 

U2 = U3 = 81 = F1 - M2 = M3 0 (3-32a，・・・f)

For a more efficient treatment the general problem will be unfolded into the following 

two cases: 
N (a) Symmetric behavior of the latticed shell with respect to 2" thus the deformation 

N 
components U1， U3， 82 are symmetric with respect to 2' ， while components U2， 81， 

83 are anti・symmetric.
N 

(b) Anti.symmetric behavior of the latticed shell with r巴spectto "'; ， which requires that 
2 

the deformation compone附 U1，U3， (12 be anti-symmetric with respect to ~， while 
the components U2， 81. 83 would be symmetric. 

Only the first case will be discussed in detai! since the second case can be treated 

by following the same procedure. 

Symmetric Case 

Solutions are ssumed to be 

M N-l ， 
U1 (α1 ，α2) = I; I; Uよn cosλmα1 sin:¥nα2 

m=O n= 1 一一

M-l N η 
U2 (α1 ，α2) = L: L: U二n sin λmα1 cos入nα2

口1=ln=1 ... 

M-l N-l 0 

U3 (α1，α2) = L: L: U二n sinλmα1 sin ~nα2 
m= 1 n= 1 山日

M-l N 
81 (α1 ，α2) = L: I; 

m= 1 n= 0 
。;nmλmα1

M N-l 0 

cosλnα2 

82 (α1，α2) = L: I; 8二n COS入mα1 sin:¥nα2 
m=O n= 1 一一

M N 0 

83 (α1 ，α2) = I; I; 8ニn COSλmα1 COSλnα2 
m= 0 n = 0 一一

where， m ニ 0，1， 2，…， M. n = 1，3，5， N (or N-1) odd numbers only. 

(3-33a，…f) 

As it has been pointed out in the previous section the above solutions satisfy al1 the 

modified boundary conditions except one， i. e. 

。1= 0 atα2 = 0 and α2 = N (3-34) 

By using Eq. (3-33d) this condition becomes 
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T ABLE 5 -N umerical Result (Diaphragm Supports) 

Case d l Case 1 Case 2 
Close Open Closed 
Form Form Form 

Ul (0，1) 0 岨13 1 0421 一 O.1292 
Ul (1.1) - O. 2977 I - O. 2977 - O. 0913 
UI (0，2) - O. 6702 I - O. 6703 - O. 2190 
Ul (1. 2) - O. 4737 I - O. 4738 一 O.1541 

U3 (1.1) - O. 4609 - O. 4610 - O. 1417 
U3 (2，1) - O. 6497 - O. 6498 - O. 1988 
U3 (1.2) - O. 7332 - O. 7332 - O. 2423 
U3 (2，2) - 1. 0344 - 1. 0344 一 O.3326 

。1(1.0) - 1. 2325 - 1. 2326 - O. 2134 。1 (2，0) - 1. 7366 - 1. 7367 - O. 2993 。1 (1.1) - O. 9693 - O. 9694 - O. 1677 
()] (2，1) - 1. 3678 - 1. 3679 - O. 2360 。1 (1.2) - O. 3531 - O. 3531 - O. 0610 。1 (2，2) - O. 4995 - O. 4995 - O. 0863 

02 (0，1) O. 7200 O. 7201 。2 (1.1) O. 5032 O. 5033 O. 0862 。2 (0，2) 1. 1441 1. 1442 O. 1986 。2 (1.2) O. 8022 O. 8022 O. 1377 

。3(0，0) O. 5373 O. 5374 O. 0931 。3(1.0) O. 3798 O. 3798 O. 0657 
(}3 (0，1) O. 4262 O. 4262 O. 0737 
(}3 (1.1) O. 3013 O. 3013 O. 0521 
03 (0，2) O. 1575 O. 0272 。3(1，2) O. 1114 O. 1114 O. 0192 

)1. 2 CIRCULAR CYLINDRICAL LA TTICED SHELLS 

WITH CLAMPED CONDITIONS 

Case 2 
Open 
Form 

- O. 1292 
- O. 0926 
- O. 2190 
- O. 1541 

- O. 1418 
- O. 1988 
- O. 2423 
- O. 3326 

- O. 2134 
- O. 2993 
- O. 1677 
- O. 2360 
- O. 0610 
- O. 0863 

O. 1252 
O. 0862 
O. 1986 
O. 1377 

O. 0931 
O. 0657 
O. 0737 
O. 0521 
O. 0272 

Note 

ln 

ln 

× 一一1一一
150 

× 一一1← 

150 

× 一一1← ー

150 

The objective of the following section is to modify the double series solutions， Eqs. 

(3-18a， f) to satisfy the boundary conditions of the two other practical cases for which 

c10sed form solutions are desired. 

If， instead of the boundary condition at α2  = 0 and α 2  = N， Eqs. (3-12) and (3-13)， 

the edges which are c1amped but free to move axially are considered. The boundary 

conditions at these edges are 

Ul = U3 = ()t = 02 F2 M3 = 0 (3-31a， ...f) 

A study of the feasibi1ity of using solutions Eqs. (3-18a，一.f)to solve this problem 

shows that they satisfy all the boundary conditions except condition Eq. (3-31c). 

A search in the literature reveals no solution to these boundary supports but the 

following discrete modified variational method solves the problem. 

As in the previous section， the edge members with half-stiffnesses are considered in 
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1 • m 11 a， ~ 
:E:Eθ _smー古，=-"= 0 
m n ...-- .L1'.L 

(3-35) 

Since the above expression should be satisfied for all values of α1， it follows that 

:E e.:_ = 0 (3-36) 
n ... 

This condition， which would be the one violated by solutions Eq. (3-33a，…f)， is called 

the constraint condition. 

The first energy variation Eq. (3-2) will be modified as follows: 

lavα1 ， avα2 ~ e • avα1 • avα2 I ~ 0 ~N ¥ 
OUk = W1 W2 ム;ム;~fay:l +苛E-Tk-A136u-hB6u-いα2ーに2) 

k 1~+11:+1 町 1+両院+日お~}
l IN + 1 ... . I (引Y山 引TA. 

X fk hk (α1 ，α2) Iα1= 0 I +主_!Å~l I ~三主主+ (A2 +2)若手
jαl=MIO '" ~ Ll U .Lk υV 2.L k 

) l IM+l 
+ O! (ワ2_ Ô~ 2 )λ(αl)(fkhk(α1，α2) 1α2=o|=0 

) Jα2=NIO 
(3-37) 

(1 for K = 4 
where， O ~， is the Kronecker delta defined by O ~ = 1 lO for K手 4

tion function defined atα2 _ 0 and N 

and W1， W2 represent weighting functions Eqs. (3-4)， (3-5). 

Expanding the modification function λ(α1) in the following series one obtains 

入 (α1)is a modifica-

M-1 
λ(α1) = :E ~m sin A.mα1 

m=1 
(3-38) 

The modification function入 (α1)is defined only at the boundaries and has charac-

teristics similar to the Lagrange multiplier in a functional form. Physically the functions 

are related directly to forces which should be applied to the boundaries in order to obtain 

the solution which will satisfy the true boundary conditions. 

It should be observed that the term (822 _ ò~ 2) X okλ(α1) appeari昭 inEq. (3-37) 

is subtracted from the first bracket and exactly the same term is added in the third 

term. Therefore， there is no change in the first energy variation. 

The terms in the double summation which are shown in the first line of Eq. (3-37) 

will be designated as the modified first energy variation. They take the form， 

-1 . -1 I avα唱 aVa2 _e avα4δVαa 3D = W1 W2 A ム | 王+ 一一三一 T:;. _ A1 ，，-_. ~/--ーム →一一乙
1213Yk aYK K13V1YK23V2YK 
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From the above considerations it is seen that the problem reduces to one of solving 

the modified first energy variation Eq. (3-39) and the boundary constraint condition Eq. 

(3-36) . 

The external loads F1 ' F~ ， and F~ are expressed by the same type of finite double 

series considered in the previous section， Eqs. (3-20a， b， c)， but the index n takes only 

odd integer values. 

Substituting the external loads Eqs. (3-20a， b， c)， the double finite series solution for 

the deformations， Eqs. (3-33a，…f) ， and the modification function Eq. (3-38)， into the 

modified first energy variation， Eq. (3-39)， one obtains a set of simultaneous algebraic 

equations represented by the foUowing matrix 

、l
i
l
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-
J

m
 

、ん+
 

、E
E
l
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E
pz'

n
 

m
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l
 一一
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E
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(3-40) 

where 

‘、....... ，E
，，，
 

n
 

m
 

A
 

f
'
E

・E

・----‘、
is shown in Table 4 

(吋 =(Uよnu;n u;n 。ょno;n 仏r
(叫 =(Fよn/c8. Fふ/c8. F! n / c8， 0， 0， 0 r 
ト)= [ 0， 0， 0学入m，0，0 r 
The resultant matrix， Eq. (3-40)， establishes the relation between the Euler coeffi-

cients [XmnJ， the coefficients of the external loads [FmnJ and the coefficients of the yet 

unknown modification function，元m.

A solution for the coefficients of the unknown deformations is indicated below 

(叶=(叶-1 (吋+(Amn r1 

(川 (3-41) 

If the matrix [Di j (m， n) ] represents the inverse of the 6 x 6 matrix [Am n J， the 

term eよncan be written as 

。ln=ト(m引叶+雫D44 (3-42) 

where [D4j (m， n) ] j = 1. 2， 6， are the components of the inverse matrix [Dij (m， n) ]・

Substitution of the solution Eq. (3-42) into the constraint condition， Eq. (3-36) 

yields the solution for ~m. These steps are shown in the equations which follows: 
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言。よn ヨlD4i川 (FmnJ十 hwnM山 =0 ゆ

).m =一
N ~ (D4i (m，刈 (Fmn)

4 L: wn D44 (m， n) 
n 

where n = 1，3，5，…， N (or N-1) odd number only 

N : number of nod巴sin the α2 -direction 

(3-44) 

Introducing the above solution into Eq. (3-41) the Euler coefficients， Uよn'U~n ' U~n' 

oよn'8~n'θふ， are obtained in terms of the konwn coefficients [FmnJ. These solutions 

satisfy the necessary condition that the total potential energy be stationary， Eq. (3-37)， 

since they satisfy the modified firste energy variation， Eq. (3-39)， as well as all of the 

modified boundary conditions. 

Numerical Example 2 

To illustrate the preceding formulas the circular cylindrical latticed shell shown in Fig. 

7 is again considered. The two cases of loading of Example 1 are also investigated by 

closed form and open form methods. Therefore， there is no need to list the data shown 

in the previous example. 

Computational Procedure 

As shown in Eqs. (3-41) and (3-44)， the closed form solutions require 6 x 6 matrix 

arithmetic. The open form formulations obtained by using Tables 1， 2， and 3 give 28 

simultaneous equations since the boundary conditions 81 (1， 0) = 81 (2， 0) = 0， are 

prescribed. The values obtained by the two different methods are listed in Table 6 

and the comparison of these values shows an excellent agreement. From the above 

presentation and the illustrated examples， it can be concluded that the discrete modified 

variational method is an effective procedure in obtaining exact closed form solutions to 

structural problems. 

A study of the results shown indicates that the largest values of the deformations， 

Ul (α1 ，α2)， us (α1，α2)， 81 (α1，α2)， (12 (α1，α2) and (}3 (α1 ，α2) occur at nodes (0， 2)， 

(2， 2)， (0， 2)， (2， 1) and (0， 0)， whHe the maximum value of 8 s (α1，α2) occurs at (0， 1) 

for Case 2. 

It is interesting to compare the results of Examples 1 and 2， since they differ only by 

the restraint condition imposed atα2 = 0， N in Example 2. All the deformations corre. 

sponding to the later example decrease significantly as expected. For example， the largest 

displacement in the N direction for Case 1 is -1. 034 in. in Example 1， while it has the 

value of -0. 418 in. in Example 2. 

The above results also imply that the proper design of supports can provide great 

saving in materials. 
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U1 (0，1) 
U1 (1.1) 
U1 (0，2) 
u1 (1.2) 

U3 (1.1) 
U3 (2，1) 
U3 (1.2) 
U3 (2，2) 

。1(1，1) 
81(2，1) 。1(1，2) 
81(2，2) 

82(0，1) 
82(1，1) 
82(0，2) 
82(1.2) 

83(0，0) 
83(1，0) 
83(0，1) 
83(1，1) 
83(0，2) 
83(1，2) 

TO THE ANAL YSIS OF LATTICED SHELLS 

T ABLE 6 -Numerical Result 2 (Diaphragm Supports 
With Rotation Constraints) 

Case 1 Case 1 Case 2 
Closed Open Closed Oqen 
Form Form Form Form 

- O. 1257 - O. 1258 - O. 0412 - O. 0412 
- O. 0888 - O. 0888 - O. 0290 -o. 0290 
- O. 2717 - O. 2717 - O. 1003 - O. 1003 
- O. 1919 - O. 1919 - O. 0702 - O. 0701 

-o. 1376 - O. 1376 - O. 0455 - O. 0455 
- O. 1927 - O. 1928 - O. 0626 - O. 0626 
- O. 2975 - O. 2976 - O. 1125 - O. 1126 
- O. 4183 - O. 4183 - O. 1491 - O. 1491 

- O. 4958 - O. 4958 - O. 1831 - O. 1831 
- O. 6965 - O. 6966 - O. 2442 O. 2443 
- O. 2318 -o. 2318 - O. 1053 - O. 1053 
- O. 3276 - O. 3277 - O. 1332 -o. 1333 

O. 2162 O. 2162 O. 0732 O. 0732 
O. 1479 O. 1479 O. 0470 O. 0470 
O. 4662 O. 4664 O. 1892 O. 1892 
O. 3228 O. 3229 O. 1059 O. 1060 

O. 1715 O. 1715 O. 0546 O. 0546 
O. 1209 O. 1209 O. 0384 O. 0384 
O. 1682 O. 1682 O. 0627 O. 0627 
O. 1189 O. 1189 O. 0441 O. 0441 
O. 1010 O. 1009 O. 0409 O. 0409 
O. 0713 O. 0713 O. 0288 

][. 3 CIRCULAR CYLINDRICAL LA TTICED SHELLS WITH 

POLYGONAL RIBBED BOUNDARY A Tα2 = 0， N 

Note 

1n 

1n 

x 1 
150 

x_l 
150 

x 1 
150 

In the previous two sections it has been assumed that diaphragm supports exist 

atα1 - 0， M and α2 0， N. The following section analyses a more general type of 

boundary condition which occurs frequently in the design of roofs. 

It is assumed that the two straight edge members atα1 ニ oand M have stiffnesses 

which are those half of the interior ones， but the two polygonal edge members at α2 = 0 

and N are the same as the interior ones. 

With these boundary members， the expression for the first energy variation Eq. 

(2-32) must be modified accordingly. Similar to Eqs. (3-1) and (3-2) one can write as 

where 

3U =会 OUK
K=l 

山=ムー 1~: 1 I ~~α1 ， avα2 ~e • avα1 avn1 h|M |N 同+可-T~ ーム157iyyh布ÿ~J E山
|α1=11α2=1 

(3-45) 
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1 [" (oVa， • oVα. _e 1 ".， ，IN+1 1 {oVa. . oVa2 ¥ 
; 1 II百i'+ ~òYi~ -Wl T ~!ょ詰 (M，ベ。+吉岡t ーム2a日主)αI=M

IN ，1 T.' o Vα1eI|N+1  
X fKhK(M， a2) 11刊 -E1万 y'K-Wl T';)ょ?(いρ|。

+ {- (誌を -å2お)点叶~J

å~l [Wl{諜+紘一札iT!?+l

+(仇1 仇_.f~hK (al， N) I~ 3Y正一ム1丙 YL)N25hk(α1，N) I 
{ ':>U_. 1 IM+1 

+ Wl < -E2 ~手守一 T:~ fKhKI 
l UY2J.K. ~Jα2= 0 10 

+(程-a1お )α23M1

ぺ
(3-46) 

Extending the range of double summation in order to use the orthogonality properties of 

trigonometric series the following expression for the first energy variation is obtained: 

8UK = W1 a -:-1 d -:-1 J~~α!+~yαZTe 企 òVα1 企 òVα~L"， h"， 1
M十1IN+1 

UK= Wl品 1a2 FfYi(-r-aYK 
-1 K-a1

8VIY正
-a2

荷πKifKUK 
10 1 

， • r (コU_. 宮、T_.) l IN+l 
+ドγ11~y:l 十 (å 1 十お元号~}fKhKIα1=0|

L l
一 一一

J I山 =MIO

+ Wl å~ 1 
[(E2お )AK(α1間一(主主+歳)JK(α1，0)]十=0

The modified boundary conditions derived from Eq. (3-47) are written as 

Atα1 = 0 and M， and α2 = arbitrary 

'dVa，九Va1
吉元+(a1十 2)丙元主=0 or YK (α1 ，α2) = 0 

Atα2 = 0， and α1 -arbitrary 

'dVa2 'dVa2 
ー 一三+一一ーと=0 or YK (α1，α2) = 0 
'dYK ' OV2 YK 

Atα2 = N， and α1 
_ arbitrary 

Eavrva 
;'~_=O or YK(α1，α2) = 0 2

'dV2YK 

(3-47) 

(3-48a， b) 

(3-49a， b) 

(3-50a， b) 
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The following. boundary conditions are to be imposed: 

(a) Diaphragm supports atα1 = 0， and α1 = M， that is 

U2 - Us = (}1 = F 1 = M2 = M3 = 0 (3-51a，… f) 

(b) Polygonal ribbed supports at α2 = 0 and α2 = N， which imply that these edges are 

free supports. The mathematical stat叩 lentof these boundary conditions requires 

F1 = F2 = F3 = M1 = M2 = M3 = 0 (3-52a，… f) 

Using Eq. (3-46) the boundary conditions in Eqs. (3-52a，… f) are represented by the 

following expression: 

δVα2 _e  dVa， dVα唱

HK = -E2;:; ... : ';r~ -T: +一一一王_̂. !v Y (.，(..1 2言V2Y記 K T dYK -~1 dV疋玉 (3-53) 

where， k = 1， 2，・"，6gives H1 = Fl' H2 = F2' H3 = F3' H4 = Mt， Hs = M2' H6 = M3. 

If the above equations are written in terms of the deformations and external Ioads， they 

take .the form 

j K2 (n I A¥ c1A2 n 2C2 A 1__ csAK 
F1=叶z(21+4)-t F1-EhiU1-17 (糾 c1)81U3

一手(L)71+4)82-2c2CsN2 83一円 =0

日=Cs(ーモL)71- ~~ ~ 2 )u2-Kω891 (}1+Ac3C881 83一円 =0

F-C8Ak j2A2 K2CE l 3 = =-zC-(糾 C1)81一 8)-τL)71十五了(め+4)-t722ius

+2C5CSN2 81-Acs81 82-F; = 0 (3-54a，…f) 

)c3K2L1 
M1 =一 =-""2

0--L)71 U2-CS C5山 +hhr(F1十4ー2γ1)-A2T 21

L2 /> ，_.， I ̂ ，csKAL1 
+守 (~2 +ω~ (}1 + ~ö~4子ア (b3 -bo) 82 (} 3一Ml=0 

M恥2戸=一 E苧2ヂ~(ωF仇1 叫山附一+河CωsA 81 U3附…a什山+判cs~主~1 (ω91十2制γhω1ρ)一壬主.!_c山7lγ1γ1  -， -- ~ 

csKAL1 ，_ _， ~ ^ ， _ ¥ M3 =ωS ~2U1-Ac3Cs 81 U2+百 f(C6ーC3)81 れ+叶A2 ~会主(L)7 1 + 271) 

CR L， K2 ， 
_ 

"' c. L. .. ， I +::!!←土ー (L)7d4)十 二 一主体 2+γ2)> (}3-M: = 0 4γ 1γ2  ，-" 1 1"1 
( 
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A close examination of the above equations shows that it will be very difficult to find 

solutions which satisfy the above conditions by ordinary methods. However， the follow. 

ing approach reduces them to simple expressions called modified boundary conditions. 

Eq. (3-53) can be rewritten as 

HK = H~ + H長 (3-55) 

where 

Hm N 49VNae 月VN42宅ι
一一一」十一，:，"""- T:. -a， ~-_' ';/ーム2 一一一一一δYK 'OYK ~K -1  oV1YK -. oV2YK 

H.2. = -(c:_':.α2 ， òVα~ì 
K --¥否YKT oV2Y五j (3-56a， b) 

It is observed that H~， Eq. (3-56a)， is the same expression which appears in the 

bracket of the double summation of Eq. (3-46). Sitice Hk = 0 is an equilibrium con. 

dition atα2 = 0， Hi = 0 can be considered the modified boundary condition stated in 

Eq. (3-49a). They are 

I 2C2 _ _ ".. _， A I 
H1=F l=C8i-IJV2U1ー C2(2 -V2)θ3 ~ = 0 

2 ~ 1 C" c. H~=F~= 一一午工 V2 U2 = 0 
白白 ""'2 

) 2C5 
H: = F ~ = Cs ~ー←一"-V2 U3 + C5 (2 -V2) 

I L2 
nu 一一

、a
E
t

〉，E
E
J

'A 
A
U
 

Hトト C8{ C5 V2 U3 -乎 (3-V2) f}tトo

Hi=M;=ー皇子.!_V2 (}2 = 0 

ペ=M~ = c81-C2 V2 Ul ーす~ (3 -V2) (}3ド 0I _ C2 L2 ，.... _， A I (3-57a，… f) 

For simplicity the properties of the members of the latticed shell used in the above 

expressions correspond to those of prismatic members. 

To accomplish the desired solution， one needs to find expressions which would satisfy 

the modified boundary conditions， Eq. (3-57，...f) and the vanishing of the first energy 

variation， Eq. (3-46). 

Prior to this work no closed form solution which satisfies all these conditions has 

been obtained. 

The objective of this section is to modify the available solutions to obtain solutions 

to this new problem. As in the previous section， the solution of the general problem is 

obtained by superimposing solutions for the cases of symmetry and anti.symmetry about 

N/2. 
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The following solutions are assumed for the displacments and rotations. The as-

sumption takes account of the possibility that neither the displacements nor the rotations 

at the boundaries，α2 = 0 and N， are zero. Only the symmetric case will be given in 

detail since the anti-symmetric case follows exactly the same procedure. The solutions are 

U1(α1，α2) = L: L: U~_ cosλmα1 sin 入n(α2+Jー
m n 一 、“'

112 (α1 ，α2) = L: L: U.:_ sin A.mα1 cos A.n (α2 + ~~) 
m n 一一 、 “ ' 

U3(α1 ，α2) = L: L: U.:_ sin 入mα1sin A.n (αz 十 一~ ) 
m n 、“'

θ1 (α1 ，α2) = L: L: e~_ sin λmα1 COS入n(α2+ ~-) 
m n 、“ '

e2(α1 ，α2) = L: L: e.:_ cos畑 山 sin入n(α2+ι} 
m n 、ー，

e3(α1，α2) = L: L: e.:_ cos A.mα1 cos A.n (α2 +~) 
ロ1 n 、“ '

(3-58，...f) 

where m = 1， (1)， ，M. n = 1， 3， 5， ，N (or N +1) odd number only 

入 m寸 n廿
m=一斑 λn=lil'ヰT

The solutions， Eqs. (3-58a，…f) were assumed to be composed of functions of the 

independent variables α1 and α2・ Forthe problem under consideration， the boundarr 

conditions at α1 = 0 and M are the same in the last section and for this reason that 

part of the solution wil1 remain the same. Substituting Eqs. (3-58a，…f) into the modified 

boundary conditions one finds that only F;; = 0 is satisfied. 

Therefore， the modification of the solutions used in the previous cases is required. 

This is better explained by considering the first energy variation， 

oU =会 OUK= 0 
K=l 

(3-59) 

where 

-1 • -1 I avα1 ， avα2 ~ e • avα1 • avα2 
oU = W1 å~. a;.i ~aÿ瓦+百y-';_ -T Kーム1荷立正-a2荷万五一日 (α1)o: 2 
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+ Wl .::l ~ 1 I ~ (.::l2 + 1)ごα乞+は (α1)~ EK hK (α1j)-lph+笠αι
• I l uY2.1.ι.， )α2=N l V~ 比 v ~ ~.t\. 

141: (3-60) 

where λk (α1) andλk (α1)，k=1，2，… 6 are modification functions defined atα2 = 0 

and α2 = N， respectively， and assumed as follows: 

1 ~2 M 
入;(α1) = ~ ~ (α1) = L:: ~ 1 m COSλmα1 

m=O 

1 ， ~2 " M.:.l 
入~ (α1)=-~; (α1) = 'E ~2m sin λmα1 

m=l 

1 ， ~2 M.:.l 
入;(α1) = ~; (α1) = L:: ~3m sin λmα1 

m=l 

1 ， ~2 ， Mー 1
入~ (α1)=-~~ (α1) = L:: ~4m sin).，mα1 

m=l 

1 ， ~2 M 
入5(α1) = ~; (α1) = L:: ~5m COSλmα1 

m=O 

1 ， ~~ ， ~ 2 ， M 
入6(α1) = -~~ (α1) = L:: ~6m COSλmα1 

m=O 
(3-61) 

It should be noted that the termsは，入長 aresubtracted from the first bracket and 

exactly the same terms are added to the third bracket. Therefore， by comparing Eq. 

(3“ 60) with Eq. (3-46). one finds no changes in the first energy variation. It will be 

seen from these expressions that the bracket of the double summation yields equilibrium 

equations which contain the modification fuctions. The bracket of the single summation 

with respect toα2 and α1 yields respectively the modified boundary conditions atα1 = 0 

and M， and the modified boundary condition with the modification function at α2 = 0 

and N. 

The modification functions λ(α1) in the previous section were used to satisfy the 

geometric boundary condition which was not fulfilled by the solutions assumed. 

A similar use will be required of the modification functions，入k(α1) andλk (α2) ， 

k = 1， 2，… 6. Physically， these functions relate the forces which should be applied 

along the boundary edges α2 = 0 and α2 = N， in order to satisfy the prescribed boundary 

conditions. 

A study of the boundary conditions which includes the modification functions can be 

made by considering Eqs. (3-46) and (3-60). The results yield the condition required at 

α2 = 0， which is 
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δVα2 ~e ， aVa. aVa. 
H k = -E2 a'J，，，;;'Y長一 T~ +苛t-A1可式

The above expression can be rewritten as 

HK=Ei+日;
where 

aVal 月Va2 ~e aVa， avα2 _ 
1， .. ~ 0 =一一:::!.+ -~:7~ < -T:' -A ♂ー';/-A 一一~.ー λι(α1) o: δYK ' aYK 

- .I.

K 
- ~1 8Y'lYK 

-~2 aY'2YK 

aVa2 (司Vao，

_ 

1， ， ~ O 
R~ = - ~aY:. -有元 +λえ(α1)o ~ 2 

(3-62) 

(3-63) 

(3-64a， b) 

Similar equations will be obtained atα2 = N. It should be noticed that Rk = 0， Eq. 

(3-64a)， represents the governing equation of the system. Therefore， the problem becomes 

that of solving this equation extended over the boundary and the modified boundary con・

ditions prescribed as R~. 
Since the symmetric case is being considered only the boundary conditions atα2 = 0 

need be examined. 

The modified boundary conditions with modification function， R~， are represented by 

the following equations: 

H~ = 

自;=

日;=

F~ =一句デマ2Ulーいs(2 -V2) (}3 +λ~ (α1) = 0 

市 C...CR 
j=

一一ーマ
2U2 +λ; (α1) = 0 

.l.J2 

F! = -竺71V2ua+い 8(2 -V2) (}1 +λ! (α1) = 0 

2 "..1 ，_  
_ 

_ 
__ C5 Cs L2 

宜 = M ~ = + C5 Cs Y'2 U3一一一一一一 (3-Y'2) (}1 +λ (α1) = 0 
3 

F四CsL1 
百 =M~=- .::2_万一~ Y'2 (}2 +λ (α1) = 0 

5 -'-2 3 

C2 Cs L2 
H~ = M~ = -C2 Cs V2 U1一一一一一一(3-V2)θ3 +λ; (α1) = 0 

3 
(3-65a，...f) 

Substitution of Eqs. (3-58a，…f) and 

following expressions at α2 = constant. 

(3-61a，…f) into Eqs. (3-65a，… f) yields the 

ーI4C2 .入nTT  1 入n"3 I ~lm 
~ I ~~. sin -'-~~ U' + 2C2 cos -'-:"~θI=~ -; 1-[;' "'"1 -2-U mn ' <-'"'2 

，"，v.:> -2-(7mn I - C8 

~2m = 0 

~ I 4C5λn TT 3 n 
_ _ _ _ x'n "1 I ~ EliSIn--U-2C5Cos--o|-3m 

七|工;-"'111 -2-U mn -<-'"'5 ，"，v'" -2-(7mn I ----C;; 
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I n_ _，__ -̂n TT  3 入n~l I A.4m 
L:Iー 2cssinミー U':_+ C5 L2 COS ィ o:"_1=三ヂ1
nl ゐ..... .， "... I '-8 

z|2C7L1J-W02115m ._----"・..- ・一 一~ I 3 剖 u 2-umnlー C8

|丸nTT  1 ， A.n _ 3 I ).内
L: 12c2 sin二一U 十 C2L2 COSζ'-0". 1=三手旦
n I 白 ‘““"“.U I ¥，，8 

(3-66a，...f) 

where n = 1， 3， 5， N (or N + 1) odd integer numbers only 

It can b巴 easilyconcluded from Eqs. (3-66a， c， d， f) that 

A4m = -与A3m，
- .~.? -
).6m =ヲ-).lmn (3-67a， b) 

Therefore， the foregoing conditions which will be called the constraint conditions， 

are reduced to the three algebraic equations summed over n. For convenience， they are 

written in the following matrix form: 
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(3-70) 

(3-71) 

and C 1コisthe unit matrix with a 4 x 4 dimension. 

To satisfy oU = 0， Eq. (3-60)， the external loads will be expanded into appropriate 

finite double series: 

F~ (α1 ，α2) = L: L: F~_ cos岡山 sin -̂n (α2 +↓} 
1 ' -， -， in ~ mn - ¥ - ~ I 

ピ(α1，α2)= L: L: F，:_ sinλmα1 cos ̂-n (α2+J叶z m mn 、ヌ jn ・・.， 
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F: (αh山)= L: L: F ~ _ sin入malsin入n(α2十一1-i。 m-;;- mn ¥:l  I 
(3-72a， b， c) 

The Euler coefficients， Fよn'F;'n' F~n are obtained for arbitrarily unit joint loads 
and the solutions corresponding to these loads are usually known as Green's function 

solutions. 

For the loads， one can write 

F;(α1 ，α2) = F~ (α1 ，α2) = F~ (αhα2) = o:， o守α1 -a 2 (3-73a， b， c) 

After use is made of the orthogonality properties of the trigonometric functions one 

obtains the coefficients as follows: 

Un=π示芋万∞sA.m t sinλn (η+f) 

F2 4ψn _，_、-，_ーー、一(l]+-!-imn =-rviてN芋I了:>lIlん山吉l;U!:;んIl¥布十す}

F3-4. 、少.、 /η~-) 
τ7冗'r-:-τ「 λ ξ A.n Iη+一一lmn - M(N+l) 内 b 仰い 2 J (3-74a， b， c) 

where m = 1， (1)， M， n = 1， 3， 5…N (or N + 1) odd numbers only. 

r m is a normalization factor defined by Eq. (3-24). 

ψn is a weighting function defined by 

ψn = 1ー }si (3-75) 

General orthogonality properties which were used in the above derivations are 

!'! ___ nf 1_. ， 1 ¥ ___ klf 1_. 1 ¥ _ N+l ，，21 (N+1)士ki。∞s~+ 1 ~α2 +τ ) cos ii+l ~α2 +τ)=W7δi (3-76) 

in which ψi is defined by Eq. (3-75) replacing n by i. 

立 si i甘 い +_~_ ) sin ，，~!， (α2 +斗=土旦_::t-lò ~1 (N+1) ::K よ onRI い 万一J"111 N + 1 ¥ '-'2 T 2 ) -::I: --2- U i (3-77) 

Following the same procedure shown in the previous section， the solutions assumed 

for the defomations， Eqs. (3-58a，…f)， the modification fuctions， Eqs. (3-61a，…f)， and 

the external loads， Eqs. (3-72a， b， c)， are substituted into Eqs. (3-59) and (3-60). 

By establishing that the coefficients of oU';'n' oU;'n' ôU~n ' oBJ，n' oθAn，soAn must 

vanish， six simultaneous algebraic equations are obtained. They are written in the foll-

owing matrix form: 

ト][xmn] = Yn [ Fmn J +品卜lnJト! (3-78) 
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where [Amn] is listed in Table 4 in which 

λ_  ml了 λn= ..t;1f m一 一M-・I¥oil - N王I

[叶一山 Eq. (3-70) 

[ ~m ] as defin山 Eq. (3-71) 

ψn is the weighting function defined by Eq. (3-75) 

and 

入n
sm -2- 。 。 。
。 。 。

一-
1
1
1
1
1
1」

n
 

円し

'
'
E
E
E
E
E
E
E

、

。 。 入n
sm --2 

L2 入n
一 一←ニー cos-一一一

2 --- 2 

。
(3-79) 。 。 。

。 。 。 入n
smョー

L. A.n 
ーニーcos一一一2 --- 2 

。 。 。
The resultant matrix form， Eq. (3-78)， relates the Euler coefficients of the deforma-

tions， [Xmn]， to the coefficients of external load， [Fmn]， and to the coefficients of the 

rriodification functions， DmnJ. Substituting the matrix [XmnJ into the constraint equation， 

Eq. (3-68)， one obtains a matrix equation from which the solution for the matrix DmJ 

can be obtaineid. The solution is then substituted into Eq. (3-78)， and the resultant 

matrix equation is solved for a new set of modified coefficients with known coefficients. 

The steps to be foIIowed are indicated below. Solving Eq. (3-78) for [XmnJ one finds 

[xmnJ =ψn卜mnr1 

[FmnJ +給[叶-1[叶[叶 (3一朗)

Substitution of Eq. (3-80) into Eq. (3-68) yields 

写司咋[卜ψn [c←C吋2nJ仲 ]

=[十(ド11ト[ドト1加叶ml 
From the above result one obtains 
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and 

[叶=[[1.1-時IVnド2n J [叶-1 [川fl

x L2 [ペ叶[叶-l[Frnrl

[xmnトベAmnII [Fmn ] +ね[Amn T 1 r C 1 n J 

x([刊1]一詰品1L2 -yrn [叶

x L2 [ -yrn [叫 [Aイ 1[FmnJJ 

Numerical Example 3 

(3-82) 

(3-83) 

As an il1ustration of the preceding formulas， the following two models are considered. 

The first model is identical to the one considered in the previous sections and is shown 

in Fig. 7. The second one is a smaller model in which M = 2 and N = 3 as shown in 

Fig. 8. It will be designated as the 2 x 3 model. 

The following loading cases are illustrated: For the 4 x 5 model， 

Case 1: A vertical load PO = O. 1 kip at every node except at the boundary nodes 

α1 = 0 and α1 = M， where Po/2 is applied. 

Case 2. A vertical load Po = O. 1 kip at nodes (l， 2)， (1， 3)， (3， 2) and (3， 3) 

For the next 2 x 3 model 

A vertical load Po = O. 1 kip at nodes (1， 1) and (1， 2) 

Under these symmetric loading conditions， one needs to consider only one quarter of 

the latticed shell. The data used here are the same as that used in the previous examples. 

Computalional Procedure 

Eqs. (3-58a，… f)， (3-82) and (3-83) were programmed for a digital computer and 

the results are listed in Table 7. The displacements， U2 (α1 ，α2) were neglected in the 

calculations of the closed form solutions since they w巴resmall in comparison with the 

other displacements. Therefore， the procedure required a 5 x 5 matrix arithmetic. The 

formulation needed for the open form solutions were obtained by using Tables 1 and 2 

and Eqs. (3-54a，…f). It yielded 36 sImultaneous equations in the unknown deformations. 

The result obtained for Case 1 indicates that each circular polygon of the latticed 

shell behaves similar to the others; that is， the interconnecting members do not carry 

any load. However， under the loading condition considered in Case 2 they distribute the 

external loads more efficiently. 

Numerical results for both cases are listed in Table 7 and their comparisons show a 
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good agreement between the values obtained by the two different methods. The largest 

displacements of Ul (α1，α2)， Ua (α1，α2) and the rotation θ2 (α1 ，α2) for Case 1 are re-

spectively Ul (0，α2) ， U3 (2，α2)， (}2(0，α2) with α2 = 0， 1， 2. For Case 2 the largest de-

formations， Ul (α1 ，α2) ， U3 (α1 ，α2)， (}1(α1，α2)， (}2(α1，α2) and (}a (α1，α2) are respec-

tively Ul (0， 2)， Ua (2， 2) ，θ1 (2， 0)， (}2 (0， 2) and (}a (0， 1). 

Similar computations were performed for the 2 x 3 model and the results are listed 

in Table 8. For this case， the open form methods require the solution of a 12 x 12 

matrix inversion. 

From the potential value of the method represented and the numerical comparisons 

shown， the effectiveness of the cIosed form solutions proposed here appears obvious. 

T ABLE 7 -Numerical Result (Diaphragm and Ribbed Supports) 

Case 1 I Case 1 
Closed I Open 

i Form Form 
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T ABLE 8 -Numerical Result 4 (Ribbed Support) 

U1 (0，0) 

U1 (0，1) 

83 (1，0) 

U3 (1， 1) 

。1(1.0)
81(1.1) 

82(0，0) 

82(0.1) 

83(0.0) 

83(0.1) 

~ 0，0) 

、
、、、

[ωForm I Op山 rm I 

- O. 0375 

- O. 1629 

- O. 1395 

- O. 6070 

-o. 9178 

-o. 4663 

O. 3130 

1. 3600 

O. 0206 

O. 0559 

¥ I 

¥ .. 
、低'
~ 、，
v 

， 

， 
f 
r ， 

， 
J 

- O. 0375 

- O. 1629 

一O.1395 

- O. 6071 

-o. 9180 

- O. 4663 

O. 3130 

1. 3601 

O. 0211 

O. 0560 

FIG. 8 2 x 3乱lODEL

Note 

×ユ (in)
15 

x -←l 一一
1500 

( 2，現J



Bul1. Science & Engineering Div.. Univ. of the Ryukyus CEngineering) 179 

CHAPTER lV 

STABILITY OF CIRCULAR CYLINDRICAL LATTICED SHELLS 

The advantages of latticed shells have been pointed out in the previous discussions; 

however， very little has been said about one of the most important problems， stability. 

One must consider this when the members of the latticed shell are subjected to com-

pressive forces. Because of the rigid connections between the members of the latticed 

shell， the deflection of one member in the buckling state causes distortion of the other 

members. Each member is elastically restrained by the others and the degree of restraint 

of any particular element depends upon the flexural rigidity of all members. Thus， the 

study of the stability of the latticed shell is necessary in order to obtain the actual buck-

ling condition of the entire system or to clarify on a rational basis the role of compressed 

members as a part of the latticed shell rather than as isolated members. 

The problems of framework stability have been treated by Bleich (3) and Timoshenko 

and Gere (37). The equivalent continuum method has been studied for domes by several 

current researches (31， 42). However， no rational analysis is available for the problem 

under consideration. 

The following study may be the first attempt to treat the problem by discrete field 

mechanics， which deals with the exact mathematical model. 

A similar procedure to that presented in Chapter n wi11 be followed to derive the 

governing equations. To avoid duplication only the additional terms needed to obtain 

the corresponding mathematical model will be presented. 

Two aspects of the buckling problem are usually distinguished. 

(a) Local Buckling: This case may be illustrated in a cylindrical latticed shell， by 

observing that a member of a circular or other type of plane polygon might buckle 

locally under the given loading. This would have the effect of reducing the stiffness 

of the latticed shel1 which might then buckle overall. 

(b) General Buckling: Under this type of buckling the latticed shell might itself 

buckle before the members buckle locally. 

This work considers only the general buckling of a latticed shell under a constant 

joint load applied in the normal direction. 

lV. 1 DERIVATION OF THE EQUILIBRIUM EQUATIONS 

Due to the influence of the axial forces in the members， the force-deformation 

relations， Eqs. (2-8a， b) must be modified. The new expression takes the form 

Elaγ1 1 /_ ..." AR ， 2 _ __R I ， EA F~ =一片=b1τ -l~ ~ (れーめ e~ + τVαuzj+134(VαU~) 2 (4-1) 

The other force-deformation relations are the same as those given by Eq. (2-4) through 

Eq. (2-9). Following the same procedure shown in Chapter 1. 1 the additional strain 

energy due to the axial force is obtained. It is 
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AE I 
Vα1， axial = 一一γ~ (KM1 Ul -AVl U3) 2 (AVl Ul十 Kl11Ua 

2Lf l 

Thus， the strain energy stored in a typical member of the α1 -polygon is 

マα1= Vα1 + Vα1， axial 

where Vα1 is defined by Eq. (2-21). 

(4-2) 

(4-3) 

The total potential energy of a cylindrical latticed shell shown in Fig. 3， is obtained 

by adding the total strain energy of the parametric polygons， V， and the potential enery 

due to external load， W， as follows: 

u = V+W  (4-4) 

where 

M N-l M-1 N 
v=  :E :Eマα1+ :E :E Vα2 (4-5) 

α1=1 a2=1 α1 = 1α2=1 

M-l N-1 N-1 I 
W= :E :E W (α1，α2) + .:E W (α1，α2) Iα1= 0 

a1=1 α2=1 a2=1 IαI=M 

M-1 I 
十:E W(αh山)I α2= 0 

al=1 Iα2=N 
(4-6) 

W(α1，α2) = -F;. N (4-7) 

Applying the theorem of the calculus of variations in discrete field mechanics given 

in Appendix A， one obtains the necessary condition for U， given by Eq. (4-4)， to be 

stationary. This is 

i-::. .. ，_. -::.u_. ，"，u.. ，"，u .. l 1M IN 
oU = .:l-:-1 .:l-:-1ドマα1 δVα2 J Te-A  avα1 • avα~ lfKhK 1

m 
I 

=.:l1-.:l2-"否YE+BYE-OK K 1布百 -'-'2 雨ÿ~ 1 fKhKIα1=11α2=1 

+ .:l; 1 [ {宗主一説-MiJK(Mα2)

( 軒目 白 ) lM 
l 九Va・~ ~e I .~， I 

- ~ E1ミ云宅三一+o; T;:' > fk hk (0，的)I 
l uy 1 J. K n. n. )α1=0 Iα=1 

+ベ 1[{誌を+歳 -0円 lAhk同

(4-8) 
(，，>u .. ) -1M 1 D avα2 ~ 3 "...， e t 'L / _. A¥. I -i E2柘 YK+SKTkjα25hk(α1，叶

α12J

It will be assumed that members of the end polygons at α2 = 0，α2 = N and those 

of end spans atα1 = 0 and α1 = M have a flexural stiffness which is half those of the 
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corresponding interior members. 

For diaphragm type boundary supports， the first energy variation， Eq. (4-8)， is 

written as 

一1I avα1 . aVa2 .3 ...，...6 • aマα1 • avα2 ， oU = W1 W2 a-:-1 A-:: 1 ~ ~~~1 + 一~2 _ o~ T~ -a1 ~v_v ，:，/ - A2一一一一一 L1 .." -1 -2 1 ay k ' aY k V k ~ k -1 aV 1 Y k 話 aV2Y k f 

×山 1:十 11:+
1

+引l[(8:141)(警十い)ZZtjEkhk|:+1

+ト;1[(s:2+812)(金+(a2 + 2)救 )Ekf+1=o

(4-9) 

It should be observed that Eq. (4-9) includes the equilibrium conditions valid at all 

nodes as well as the modified boundary conditions. 

Substitution of Eqs. (2-4)， (2-22)， (4-2) and (4-7) into Eq. (4-9) yields the expres-

sion for the term OU， which appears in the double summation of Eq. (4-9). It takes 

the following form: 

11 I K2 ，~" A9 ~ 2 ~ 1 。Ul=WIW2å~ ム;i I C8 ) -2L1 
(，171十 4)ー C1tm-C2fiF2jU1 

CRAK .~ ，_  C内 K-2L;~ (2十 Cl)81 ua -γ(91 + 4) 82 

A1E / A  
_ 

TT.. ， I K2 / ~" AK _ 
'1 

+工ff(AV1U1十 K111ω
iT (91十 4)U1-721叶 IEl h1 

十[叫 l貯引弓瓦~下日了戸(σ2 + Cl) 81 Ul + C8 
i i: 91斗 E 仙十 4)ーか2}ua 

e A1E 
十 C5C88281ー C8A 81 82 -Fつ+っ'--(AVIU1+KlAua)

" Lt 

x (A?IS_ 81 u~ -A2 91 U3) 1 "~~- 81 Ul -A2 91 U3) 'Ea ha 

1 ~ I C~ K2 L， 、
+1-C5C8B2Ua十 C8~ -::.." ;:. 

-， (91 + 4 -2ft) 
I I せ 11

C6 A2 L1 ，f7 C5 L2 1，f7 ，<) _. ¥ 1 ~ -， 1.. ，r C8 K 
77 J  217f(22+2h)iO1|山+1-':'_~H (91 +4)…8 A81 U3 
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where the deformations U2 and (}a have been neglected since they are very small for 

the type of loading and supports considered. It should be pointed out that the above 

equation involves non-linear terms which arise from the interaction of the axial forces. 

This author will not solve this non-linear equation but will use this to obtain the buckling 

condition. 

Buckling Condition 

The prebuckling (equilibrium prior to buckling) and the buckling conditions are 

obtained using Eq. (4-10). The total deformations during buckling， U1， Ua， (}1， (}2 are as-

sumed to be separable as 

WK = WKA + WKB K = 1， 2， 3，4 (4-11) 

where W K represents the deformations， K takes respectively the values 1， 2， 3， 4 W KA 

designates the deformations which appear prior to buckling， and WKB defines the infini-

tesimal deformations which appear during buckling. 

Since the latticed shell must be in equilibrium during buckling， the total potential 

energy must be stationary. Using Eq. (4-11) the deformations appearing in Eq. (4-10) 

are replaced by terms with the subscripts A and B， However， since the latticed shell 

must also be in equi1ibrium prior to the buckling state， the condition， Eq. (4-10)， ob-

tained as a result of replacing the terms W K by W KA m ust also be satisfied. Subtracting 

the second condition， oU (WKA) = 0， from the first condition， oU (WKA十 WKB)= 0， one 

obtains the buckling equations which must be satisfied when a state of buckling is 

reached. 

Following the same notations used for the deformations， the axial force in a member 

is written as 

F(α1 ，α2) = F A(α1 ，α2) + FB(α1，α2) (4-12) 

where F A(α1 ，α2) is the axial force prior to buckling and FB (α1 ，α2) denotes the axial 

force during buckling. 

The following assumptions are made for this problem; the members considered are 

prismatic and the effect ofaxial force upon the bending moments are ignored. There晴

fore， the coefficients used in the force-deformation relations， Eq. (2-4) through Eq. 

(2-9) are: 

For the prebuckling condition 

b1 = b1 = b2 = b2 =2， 

For the buckling condition 

b1 = b2 = b2 = 2 

γ1 = 1'1 =γ2 = 1'2 = 3 

1'1 =γ2 = 1'2 = 3 

The coefficients b1 and "/1 are defined by Eq. (2-10a， b) and (2-11). 

It will be noticed that the prebuckling condition is exactly the same as the equation 

obtained in Chapter 1II. 1， if we retain only linear terms. This equation will not be 
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duplicated here. 

The governing equation for buckling condition is obtained by satisfying the following 

requirement: 

oU1 (WKB) = 8U1 (WKA + WKB) -8U1 (WKA) (4-13) 

Retaining only the linear terms in the bubkling deformation， WKB， the following equation 

is obtained: 

一1• -1 11 _ 1 KZ ， ~ ."  Cl A 
oU1 (WKB) = Wl W2 å~ < a; <" Cs ) -2L-1 (91 + 4)一王子91

1 cQAK -~L: 92 ( UIB一一2L了 (2+ Cl) 81 U3Bー土ず

1 K2 ，_ • " AK _ 1 I ， 
x (91 + 4) 8 2 B + F A i -iL--;-(91 + 4) U 1 B 一一~L: 91 U3B i I fl h1 

| 舟AK ，~. ， _  1 2 A2 _ . C， K2 
+ ' _::_~i:;~ (2 +ω 81 U 1 B + Cs i ~ i: 91 + ~4i;'了 (91 + 4) 

一与92}町一 C5日 81Bー山182B 

AK  _ .n ~ 1 
+ FA ( H

2
U 81 UIB -A2 91 U3B 'E3 ha 

r _ _ r7 .. ，_) ca K2 1 
+1 一 C5 Cs 82 U3B+CS Î 一寸石~ (91 + 4 -2 ]'1) 

R A2 L， _ c. L~ ，_ ~ ，1 _ 1 
一 二旦τア よ 91→二乙 (92+ 2γ2) ~ 82 B I E4 h4 

"1 "2 I I 

+ [-王子ω+4) UIB +叫81町

内 τ( 1 1 IM+1 IN+1 

+T L川 1+ 2γ1)一川市2B I E5 h51 al = 0 I a2ー
= 0 (4-14) 

A，E 
The term， ~t一一 (A Vl Ul A + K111 US A)， which appeard in obtaining Eq. (4-14) 

and defines the axial force prior to buckling， is assumed to be constant and written as 

F A in Eq. (4-14). 

Following the procedure explained， the modified boundary condition for the diaphragm 

supports similar to Eqs. (3-15) and (3-17) will be obtained. 

11. 2 DOUBLE FINITE SERIES SOLUTIONS 

To obtain solutions for the buckling state which satisfy the diaphragm boundary 

conditions， the buckling deformations are taken as 
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M N-l 1 

UIB (α1 ，的)= ~ ~ u二四 cos畑山 sinA.nα2 
m=O n=l ...•• 

M-1 N-1 ， 
U3B (α1，α2) = ~ ~ uム sinA.mα1 sin A.n仇

m=l n=l ...“ 

M-l N 唱

θ1 B (α1，α2) = ~ ~θよ n sinλmα1 cos A.nα2 
m=l n=O ..品目

M N-l ry 

B2B (α1 ，α2) = ~ ~ 8ニn COS A.mα1 sm A.nαz 
m=O n= 1 ..・H

whereλm=引 and A.n =ヰ (4-15a，…d) 

Substitution of Eqs. (4-15a，…d) into Eq. (4-14) yields four simultaneous algebraic 

equations which give the criteria for buckling. Since these equations are homogeneous， 

the feasibility of a solution is expressed by the well-known condition. 

where 

A1 A2 。 Aa 

A2 A4 As A6 
I = 0 。 A5 A7 。

Aa A6 。 As 

K2 
A1= -EF-γ(φ) 01 

AK 
A2 = L:~ 'y (φ) D2 Aa = -K01 

4A2 __ /n  n 4cs 
A4=-E7 γ(φ) Da - i: 04， A5 == -C5 05， ' A6 = A02 

2c< L白 2L，
A7 = ~~，ト王 06 ， As = ーコァ:.!__(Oa +γ1) 

~ ~1 

D1 = 1 + cosλm， O2エ sinA.m， Oa -COSλm -1 

D4 = cosλn -1， 05 sin λn， 06 = 2 + cosλn 

や2 = 
NO q 
Ela 

k=寸?一，

C5 = .e. k， 

'+'2 
γ(や)=ーヱ一一 一2γ1 b1 

NO = - FA 

(4-16) 

(4-17a，…t) 

The expansion of the determinant， Eq. (4-16)， yields the following transcendental 

equation as follows: 



where 
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Bγ2 (や)+ B2γ2 (φ)γ1 + Baγ(φ) + B4ヴ (φ)γ1+ B5γ1 = 0 

，j，2 

γ(や)=示ot-1， 
γ 一 φ(1-cosφ)

1 一 φ~sinゆ

r、2
B1 = -4Da D6 A2 (4Da l +云十)

T、2
B2 = -4A2 D6 (4Da l +云子)

Ba = 2C5 D3 (8D4 D日+3D~) 

b， ，= φcscφ-1 
3‘-，' 2 L _ 1>望

φ山.，.2 ~ 

I 8C5 D4 t}1"'¥ 2 つC5D~ ，1"'¥2 A1"'¥ 1"'¥ ¥ B4=2 A 2D62{2D +-ii + D2-4D1Ds) ¥ A2 t -<"u 2 T A2 D6 t T..... 2 -"%.....1 .....a I 

B5 = C5 D1 (8 D4 D6 +叫)

185 

， (4-18) 

(4-19a， b， c) 

(4-20a，…， e) 

The functions，γ(ゆ)，γ1， b1 appearing in the transcendental equation depend onφ 

which is a function of the parameters m， n， 1， and k. The parameter 1 defines the ratio 

between the length of a member of a generator， L2， to the length of a member of a cir-

cular polygon， L1. The paratneter K defines the ratio between the moment of inertia of 

a member of a circular polygon， Ia， to that of a generator， Ia. 

The transcendental equation Eq. (4-18) can be solved directly by a digital computer 

but some modifications were made in order to use the subprogram provided by the com-

puter center at the University of Delaware. 

The series expansion for the transcendental functions b1，γ1， used are as follows (13) 

b， = 2 ( 1 + ~:- + ~~笠，~~ + ......... i 
1 - ~ ¥ ~， 60 '25， 200 ' J 

γ1 = 3 (1 一色 -H'rþ~^^ - ......... ) 
¥ ~ 30 12， 600 I 

(4-21a， b) 

Substitution of the first two terms of the above series into Eq. (4-18) yields a pol-

ynomial of the third degree in the parameter it 

ltF(-36B2+6L-B5)F 

+ーす (36B1 + 180 B2ー 6Baー 63B4十 日 BIS)it2 

+十 (1叫 -5似 B2+ 84 Ba + 324 B4 - 凶 B5)長
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where 

+ 144 (B1 + 3 B2 -B3ー 3B4 + 3 B6) = 0 

NOU 
手=伊=一一E-If

(4-22) 

(4-23) 

Solving the above equation， Eq. (4-22)， for (t， the buckling load of a member can be 

calculated as fol1ows: 

NO =;r， ~I =手一一一三一 (4-24) 
't' q 

The nondimensional parameter 手iscalculated for al1 values of m， n， k， 1. They are 

shown in the numerical example which follows. 

Onc巴 thebuckling load of a member is known， the applied load in the direction op・

posite to the latticed shel1 normal， P， is obtained from the relation 

P = 2NOjK (4-25) 

where K represents the curvature of the circular polygon defined by K = 2sinψ1・

When手isπ2， N 0 represents the Euler load for a pinned-end column. As seen in 

the numerical example， the values obtained for手arealways smaller than 1f 2， depending 

upon the geometry， K， and the member properties， 1， k. 

Numerical Example 4 

The fol1owing numerical calculations have been performed to il1ustrate the buckling 

problem of a circular cylindrical latticed shel1. 

Consider a 3 x 4 model， that is， M = 3 and N = 4. As discussed previously， the 

geometric properties of the latticed shell， the raωof山 memberslen仇 1=七， and 

恥 ratioof the moment of inertia of the two types of members， k = l!-' are im伊巾nt

factors to be considered. The data used in the numerical example are: 

A 一 cosVra1 = cos JI = 0.9659 - .....v..::J 'rUl  - .....v~ 

12 
1 = 1.0， 2.0， 3.0， 4.0， 5.0 

k = 0.25， 0.50， 0.75， 1.00， 2.00， 3.00， 4.00， 5.00， 10.00， 100.00 

m = number of half waves inα1 -direction = 1， 2， 3 

n = number of half waves in α2 -direction = 1， 2， 3， 4 

Computational Procedure 

Eq. (4-23) is solved for al1 combinations of m， n and the parameters described above. 

The minimum value of (t obtained is listed in Table 9. It is interesting to note that the 

buckling load occurs when m = 3 and n = 1 for most of the values of k and 1， with the 

buckling mode depending upon the values of k and 1. It is observed that k is decreased， 
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that is， when the flexural rigidity of the members of the α2 -polygon (straight generator) 

becomes weak in bending， the latticed shell tends to buckle with m = 1 and n = 1. On 

the other hand， by increasing the values up to k = 100.00 (computed only for the theo-

retical interest) the buckling mode becomes m = 1 and n = 4. However， this is not the 

only factor determines the buckling mode， as it can be shown that value of 1 has also 

considerable influence. For example， for 1 = 2.0 and k = 10.00， the buckling load occur-

red when m = 3 and n = 1. 
The results of the calculations can be presented in a graph in which the abscissas 

repr白 entthe k values and the ordiriates the buckling parameter~. Then， for each value 

of 1， a line is obtained. Several lines of this type are shown in Fig. 9. It is seen that 

for smaller values of 1， the buckling parameter手increasesrapidly when the value of k 

increases. For large values of 1， the buckling parameter ~ increases slightly. 

As an illustration of the results shown in Table 9， consider the case of k = 1.00 and 
1 = 1. O. One obtains手=1. 2281 from Table 9. If this value is substituted into Eqs. 

(4-24) and (4-25)， one obtains 

EI~ 
P = 4.7450工戸

which representsthe buckling load of the latticed shell under the conditions considered. 

T ABLE 9 -Buckling Parameter For 3 x 4 Model 
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CHAPTER V 

CONCLUSIONS 

vZ-ob 

‘色。。

In the preceding chapters the application of the concepts of difference geometry， 

calculus of finite difference， and discrete variational caJculus has proved useful in for-

mulating an adequate and efficient mathematical model for latticed shells. Indeed， the 

application of the calculus of variations enables one to find closed form solutions for 

cases in which the mathematical model and its corresponding solution appears intractable. 

The technique has also proven very effective in the stability analysis of latticed structures. 

In Chapter ][ the energy formulation for the flexural analysis of cylindrical latticed 
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shells has been presented in detail. The total potential energy has been formulated as a 

function of the discrete variables and reflects the geometrical properties of the latticed 

shell. The concepts of the discrete variational calcu1us deve10ped in Appendix A were 

then uti1ized to obtain the first energy variation which is the condition to be satisfied for 

a state of stab1e equilibrium. Even though the energy formu1ations were used direct1y to 

obtain the solutions which appear in the next chapter， the equilibrium equations and the 

natura1 boundary conditions derived from the variationa1 technique were shown and 

discussed in detail. These equations were utilized in expanded matrix form to solve the 

1atticed shells by open form methods. 

Applications of the first energy variation to perform a flexural analysis of circu1ar 

cy1indrica1 1atticed shells with various boundary conditions were presented in Chapter JI[. 

The technique proposed here proved a powerfu1 too1 in obtaining closed form solutions to 

difficult problems and in providing a clear insight into the behavior of the mathematical 

model. 

Closed form solutions were obtained for the following three cases: 

(1) Diaphragm supports at all four edges. 

(2) Diaphragm supports at the edges，α1 = constant， and diaphragm supports 

with rotational constraints at the edges，α2 = constant. 
(3) Diaphragm supports at two edges and ribbed polygonal supports at the 

other two edges. 

The comparison of numerical results calculated by closed and open form methods 

shows that the two results are identical， even though the size of the matrix used for 

these methods is quite different. The results may not have the close agreement for 

latticed shells with large numbers of nodes as the error from the open form methods 

may increase considerably. 

In Chapter lV the stability of circular cylindrical latticed shells was presented. Be-

cause of the rigid connectivity， each member is elastically restrained by the type of 

connector provided and by the flexural rigidity of the other members. The energy 

techniques derived in Appendix A were directly utilized to obtain the buckling load of 

the system. A numerical example is illustrated which shows the influence of the various 

parameters on the buckling loads and mode shape of failure. The interaction of these 

factors is reflected on the factor， ;P， which must be considered on design of latticed 

shells. 

In Appendix A the calculus of variations in continuum mechanics has been modified， 

yielding the formulation of the fundamental theorem of calculus of variations in discrete 

field mechanics. The usefulness of this theorem has been described in the preceding 

chapters. 

Two illustrative examples， the analysis of a continuous beam with spring boundaries 

and that of a cab1e net with boundary deflections were presented to show specific appli-

cations of the theorem in obtaining closed form solutions for one-dimensional and two-
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dimensional structures. 

Two distinctive types of field analysis (12)， the Micro and the Macro Approach， have 

been defined in discrete field mechanics. The method proposed here may be considered 

as the application of energy methods to the Micro Approach. The author believes that 

similar energy formulations can be obtained for the Macro Approach. 

A modified discrete variational method， simi1ar to the method of Lagrange multipliers 

in continuum mechanics， has also been presented in the appendix. This method has 

proven especially useful in obtaining c10sed form solutions to problems for which this type 

of solution appears very cumbersome or intractable， and has simplified the procedure of 

obtaining the solutions of a structure for which the analysis for other types of boundary 

conditions is known. 

Through the numerical computation of the problems considered in this dissertation， 

the author feels that the method proposed here is practical， more accurate and less time 

consuming than the methods in use. 

It is hoped that the present work can be effectively extended to solve other types 

of discrete systems. 

BIBLIOGRAPHY 

1. Argyris， J. H.， and Kelsey， S.， Energy Theorems and Structural Analysis， Butterworths， 

1960. 

2. Berenyl， M.，“Beitrag zur Berechn ung Eines Typs von Raumlichen Tragerrosten"， 

Sμce Structures， John Wiley and Sons， Inc.， 1967. 
3. Bleich， F.， Buckling Strength of Metal Structures，" McGraw-Hill， 1952. 

4. Block， D. L.， lnfluence of Ring Sti庁"enersand Prebuckling Deformations， Ph. D. Dis. 

sertation， Virginia Polytechnic Institute， 1966. 

5. Charlton， T. M.， Energy Princiρles in ApPlied Statics， Blackie and Son Limited， 

London， 1959. 

6. Cheng， P. H.，“Space Frame Analysis by Flexibility Matrix"， Int. J. Mech. Sci.， Vol. 

6， No. 5， Oct. 1964. 

7 Churchhill， R. V.， Fourier Series and Boundary Value Problems， Second Edition， 

McGraw-Hill， 1963. 

8. Davies， R. M.， Sμce Structures， John Wiley and Sons， Inc.， 1967. 

9. Dean， D. L.，“Analysis of Curved Lattices with GeneraJized Loading，" IABSE Pub-

lication， VoJ. 20， 1960. 

10. Dean， D. L. and Ugarte， C. P.，“Discussion of Membrane Forces and Buckling in 

Reticulated Shel1s"， (by D. T. Wright)， Journal of the Structural Division， ASCE， 

Oct. 1965. 

11. Dean， D. L.，“On the Statics of Latticed Shel1s"， IABSE Publication， VoJ. 25，1965. 

12. Dean， D. L.，“On the Techniques of Discrete Field Analysis， "Engineering Mechanics 

Division Sρeciality Conference， Raleigh， N. C.， 1967. 



Bull. Science & Engineering Div. Univ. of the Ryukyus (Engineering) 191 

13. Dean， D. L.， and Ugarte， C. P.，“Field Solutions for Two Dimensional Frameworks"， 

Int. J. Mech. Sci.， Vol. 10， 1968， Pergamon Press. 

14. Eisemann， K.， Lin W 00， and Namyet， S.，“Space Frame Analysls by Matrices and 

Computers"， Journal of the Structural Division， ASCE， Vol. 88， ST6， Dec. 1962. 

15. Flugge， W.， Stresses in Shells， Springer-Verlag， 1962. 

16. Goudreau， G. L.， Variational Methods in Discrete Field Mechanics， M. S. Thesis， 

University of Delaware， 1963. 

17. Gutkowski， W.，“Cylindrical Grid Shells"， Bull. Acad. Polon. Sciences， Series Sci. 

Tech. Vol. XIII， No. 3， 1965. 

18. Heki， K. and Fujitani， Y.，“The Space Analysis of Grids Under the Action of Bend-

ing and Shear，" Sβace Structures， John Wiley and Sons， Inc.， 1967. 

19. Hi1debrand， F. B.， Finite Di.庁erenceEquations and Simulations， Prentice-Hall， Inc.， 

1968. 

20. Hoff， N. J.， The Analysis of Structures， John Wiley and Sons， Inc.， 1956. 

21. Hussey， M. ]. L.，“General Theory of Cyclically Symmetric Frames"， Journal of the 

Structural Division， ASCE， ST. 2， April， 1967. 

22. Jordan， C.， Calculus of Finite Differences， Chelsea， 1950. 

23. Keller， H. B. and Reiss， E. L.，“Spherical Cap Snapping，" J. Aero Stace Sci.， Vol. 26， 

Oct.， 1959. 

24. Kloppel， K. and Jungbluth， 0.，“Beitrag Zum Durchschlag problem dunnwandiger 

Kugel-schalen，" Stahlbau， Vol. 22 (6)， 1953. 

25. Kraus， H.， Thin Elastic Shells， John Wiley and Sons， Inc.， 1967. 

26. Larkin， L. A.， Analysis of Curved Latticed Surfaces， M. S. Thesis， University of 

Kansas， 1960. 

27. Lederer， F.，“Kugelshalen Uber Vieleckigem Grundriss"， Proceedings of the Symρosium 

on Shell Research， North Holland Publishing Co.， 1961. 

28. Michalos， J.，“The Structural Analysis of Space Networks，" Sμce Structures， John 

Wiley and Sons， Inc.， 1967. 

29. Mithaiwals， A. P.， Micro and Macro Analysis of Cylindrical Ribbed and Latticed 

Shells， Ph. D. Dissertation， University of Delaware， 1968. 

30. Novozhilov， V. V.， The Theory of the Thin Shells， Translated by P. G. Lowe， 

Groningen， P.， Noordhoff， 1959. 

31. Pagano， M.，“Theoretical and Experimental Research on Triangulated Steel Vaults"， 

Hanging Roofs， Proceedings， IASS Colloquium， Paris， 1962. 

32. Renton， J. D.， "The Related Behavior of Plane Grids， Space Grids and Plates"， Sμce 

Structures， John Wiley and Sons， Inc.， 1967. 

33. Rubinstein， M. F.， Matrix Comρuter Analysis of Structures， Prentice-Hall， Inc.， 1966. 

34. Shrivastava， S. Ch.， F/exura/ Analysis of Sμce Po/ygons and Orthogonal Latticed 

Shells， M. S. Thesis， University of Delaware， 1967. 

35. Sokolnikoff， 1. S.， Mathematical Theory of Elasticity， McGraw-Hill， 1956. 



192 Oshiro: APPLICATION OF DlSCRETE VARIATIONAL TECHNIQUES 
TO THE ANAL YSIS OF LA TTICEU SHELLS 

36. Suzuki， F.， Kitamura， H.， and Yamada， M.，“The Analysis of the Space Truss Plate 

by Difference Equations"， Stace Structures， ]ohn Wiley and Sons， Inc.， 1967. 

37. Timoshenko， S. P.， and Gere， ]. M.， Theory of Elastic Stability， Second Edition， 

McGraw-Hi1l， 1961. 

38. Timoshenko， S. and Wainowsky-Krieger， S.， Theory of Plates and Shells， Second 

Edition， McGraw-Hi1l， 1959. 

39. Ugarte， C. P.， Closed Analysis of Latticed Structural Shells. Ph. D. Dissertation， 

University of Delaware， 1965. 

40. Von Karman， T. and Tsien， H. S.，“The Buckling of Spherical Shells by External 

Pressure，" ]. Aeronaut. Sci.， 7 (2) 1939. 

41. Weinitschke， H.，“On the Stability Problem for Shallow Spherical Shells，" ]. Math. 

Phys. Vol. 38 (4)， 1960. 

42. Wright， D. T.，“Membrane Forces and Buckling in Reticulated Shells"， ]ournal of 

the Structural Division， ASCE， ST. 1 Feb. 1965. 

APPENDIX A 

CALCULUS OF V ARIATION IN DISCRETE FIELD MECHANICS 

The calculus of variations has been until recently a branch of modern mathematics 

c10sely related to the theory of differential equations， which has been successfully ap-

plied in continuum mechanics to solve various problems in statics and dynamics. 

The objective of this appendix is to transform the theory used in continuum m巴chan・

ics to one applicable to discrete field mechanics and to establish a mathematical model， 

two dimensional difference equations， for latticed shells. 

(A) One-dimensional Case 

It has been shown in mechanics that a stable equilibrium configuration is reached 

when the total potential energy of the system is stationary. When the corresponding 

necessary conditions to reach such a state are applied one may be able to obtain the 

governing equations and the associated natural boundary conditions. Therefore， for the 

equilibrium state of one-dimensional system with an unknown deformation， Y (α)， as 

function of a discrete variable，α， the problem reduced to that of finding this function 

from the stationary potential energy. 

Let the total potential energy take the form 

IN十1
U (Y) = 是 F (α， Y， VY， V2Y) =ムー1F (α， Y， VY， V2Y) I 

11 
(A--1) 

where Y， VY， V2Y are functions of the discrete variable α， and V andム-1 are respec-

tively the standard backward and inverse difference operators defined as follows: 

vY (α) = Y (α) - Y (α-1) 

v，. Y (α) = v (v，.ー 1Y (α) (A-2a， b) 
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lα=N+1 
gY(α)=d_-IY(α) I 

|α=1 

It is assumed that Y = Y (α) is the discrete function which wi11 make Eq. 

tionary. 

193 

(A-3) 

(A-1) sta-

Let Eh(α) be an arbitrary but discrete function defined in the interval 0く α< N， 

where αtakes only integer values and E be a smaller number. 

A new function can then be defined as follows: 

Y (α) = Y (α)十 εh(α) (A-4) 

The second term in Eq. (A-4)， Eh (α)， wi11 be designated as the variation of Y (α) . IfE 

is taken sufficiently small such that Eh(α) remains below a small quantity for all integer 

values ofα， the new function， Y， will lie in the close neighborhood of Y. The definite 

sum， 

U (y) = U [ Y + Eh (α)ユ (A-5) 

becomes a continuous function， U (E)， of the parameter E， and this function will coincide 

with this stationary value sought when E = O. With reference to Eq. (A-1) one can 

write 

ー lα=N+1
u (Y) = U (E) = d_-1 F (α， Y + Eh， VY十 EVY，V2y + EV2y) I 

|α=1 
(A-6) 

Since Eq. (A-6) is a continuous function of the 

that U (E) be stationary is obtained as 

parameter E， the necessary condition 

学 |=o=O (A-7) 

Performing the differentiation indicated by Eq. (A-7) on Eq. (A-6) according to 

the familiar rules of the differential calculus， one obtains 

3U (E) I _ A ー 1{3F 3y .IN斗 l3FδVY ， 3F 3V2y ¥ I 寸

一 ー 一一一一一
3E I E = 0 -... ¥ 3yδE 3VY 3E '3V2y δE  } Iα=11 E = 0 

'‘IN十11
A - 1 I 3F 1-.， 3F _1-.， 3F _9  V ¥ I n T .l I {¥ 

=a ¥3γ u  TBFYVUT丙守口}Iα=11E=0=u (A-8) 

Applying the techniques of the summation by parts of the calculus of finite differences 

(22)， Eq. (A-8) is written as 

d_-1 [{喜一ム(a'奈川(吉宗y)}h+{品-d_ (晶)} E-l h 

-::>1<' l N + 1 
+蒜YE-l Vh Iα=1=0 (A-9) 

In which E-1 and d_ represent respectively the Boole's displacement operator and the 
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first forward difference operator， defined as follows: 

E-1 f (α) = f (α-1) 

ムf(α) = f (α+ 1)ー f(α) (A-10) 

Multiplying Eq. (A-9) by " and rearranging the limits of the summation， Eq. (A-9) 

can be rewritten in the form 

a-
1 仰い(恭)一川否茄;事呉:斗y)恥}トいい川川f品似ω刊h削M川(似ω4α叫)

+ [{十品ーム(議)}fh (α) + (E吾ぷふ恥;手呉恥EL知Y司)マ柏山叩川E占副ω刊叫h削凶M叶(何ω叶αωa)]炉

一 [{E恭 -AJy)jfh(α)+ (晴)山)Jα=o=

The left side of Eq. (A-l1) is called the first variation of the definite sum， U， defined 

by Eq. (A-1). If one designates this variation by 3U， the necessary condition for U being 

stationary becomes 

3U = 0 (A-12) 

It can be shown that the first factor defined at all interior nodes 1く αく N-1， 

represents the governing difference equation of the system， while the other factors 

defined atα= 0， N represent the feasible boundary conditions. The method will be 

illustrated on a multispan beam with spring constraints at the end supports. 

(B) Two-dimentional Case 

The problem of determining stationary values of a double summation leads to a par-

tial difference equation which defines the unknown function Y (α1，α2) . 

Consider the following example which is used in analysis of cylindrical latticed shell: 

M N-1 
U (Y) = 2J -2J F (α1，α2， Y， V1Y， 'i12Y) 

α1=1α2=1 

M-1 N 
十2J 2J F(α1，仇， Y， Vl Y， V2Y) 

α1=1 a2=1 

where Y is a function of two discrete independent variables，α1，α2・

(A-13) 

The partial difference operators， V 1， V 2 and the inverse difference operators a i 1， a 21， 

are defined as 

V1Y (α1，α2) = Y (α1，α2) -Y (α1 -1，α2) 

V2Y (α1，α2) = Y (α1，α2) -Y (α1，α2ー 1)

u IM+1 
~ Y (α1，α2) = á~' Y (α1，α2) I 

1 • Iα1=1 

(A-14a， b) 
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M _， IN+1 
2J Y (α1，的)=a:'Y(α1，α2)I 

α2=1 “ |α2=1 
(A-15a， b) 

Considering an arbitrary function h (α1，α2) of the two discrete variables α1 and α2， 

defined in the interval 0 Lα1 LM， OLα2 L N， and following the procedure obtained for 

the one-dimensional case one finds that the condition for U being stationary is as follows: 

(， -:>v -:>v "'''' • )IM IN 
oU =ム~l a; 1 H喜一ム13y-hふ)ぬ (αl ， a2)~1αJα=1

+a;l[{(実+品)日

+à~l[{(袈+品)Eh (α1ぺ=N
-{(い1)晶 Eh(α1的

)}a2=oJ:=1

=0 (A-16) 

The significance of the above expression can only be obtained by its careful examination. 

It has been previously stated that the variation，ぬ (α1，α2)is completely arbitrary. Thus， 

the first factor in Eq. (A-16) can vanish as required only if the coefficient of the var-

iation vanishes. Using this reasoning one obtains， from the vanishing of the coefficient 

of the variation in the double summation， the following difference equation: 

(A-17) 

The above equation represents the conditions which must be fulfilled to secure at stable 

equilibrium at all interior nodes and， therefore， constitutes the governing difference equa-

tion defined at 1ζα1 L M -1， and 1 Lα2LN-1. 

By considering the second factor， a single summation with respect to the variable α2， 

one finds， as a consequence of Eq. (A-16)， that the terms involving the arbitrary var-

iations must each vanish. Thus， it is required that 
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(A-18a， b) 

Each of the above equations will be satisfied if the appropriate conditions are prescribed. 

Therefore， the following natural boundary conditions are provided at α2 = constant， 

atα1 = 0 

(45  al + 1)茄:Y = 0 ， or fh (い2)= 0 
υVl~ 

(A-l9a， b) 
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atα1 = M 

aF aF 
åY←+百~:Y = 0 ， or Eh (M，α2) = 0 

Similar conditions can beobtained at α1 = constant; they are: 

atα2 = 0 

at α2 = N 

θF 
(~2 十 1) 一 O

aV2Y 

aF aF ^ 

ay-T 吾V
2
Y - v 

or Eh (α1，0) = 0 

or Eh (α1， N) = 0 

(A-20a， b) 

(A-21a， b) 

(A-22a， b) 

In order to gain more insight into the applicability and effectiveness of the method 

just described， the analysis of a single layer cable net with boundary conditions different 

to those treated in the literature will be presented. 

(C) Modified Discrete Variational Method 

In the previous sections， a discrete variational technique has been demonstrated in 

obtaining the equilibrium equations and the natural boundary conditions of a standard 

system. However， a more valuable application of this technique is to provide closed form 

solutions for general boundary conditions for which no such solutions are available. 

Similar to the method used in continuum mechanics， the procedure in finding a solu-

tion is to choose an algebraic or trigonometric series to be capable of describing the par-

ticular deformed shape. Since trigonometric series are functions whose behavior is well 

known， they will be the type of functions to be used in connection with the discrete 

variational methods. The proper orthogonality properties of trigonometric series are 

shown in Eqs. (3-22a， b)， (3-76) and (3-77). A study of these properties requires the 

extension of the range of summat!on over the boundaries and， accordingly， the terms in 

the first energy variation have to be rearranged. 

Considering the one-dimentional case one can rewrite the first energy variation Eq. 

(A-l1) as 

1 I (aF . I aF ¥ 1 . . . lα=N 
au寸 -1I i 3Y -~ ¥研)f Eh (α) I a=l 

+ I (δFaF)| 引I ( .;;. +一一~v 1 Eh (α) I lay  avyjE|N-M 

I I I . • ¥ aF 1. . . I -li \~ + 1) 言語'yJ Eh (α) Iα=O = O (A-23) 

where the terms involving V2Y， V2Eh (α) were disregarded in order to have a more 

simple presentation. 
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The above equation can be rearranged by extending the range of summation over 

the boundaries as 

= a-
1 [{喜一ふ(恭)} Eh (引ゴ十l

+[{(a+l)恭 }Eh(α)Jα=N 

(A-24) 

A close examination of Eq. (A-24) shows that this equation contains the equilibrium 

equation valid also at the boundaries and a set of modified natural boundary conditions. 

If the solution assumed is composed by a sum of orthogonal functions which satisfies 

the modified boundary conditions atα= 0 and α= N， the solution can be obtained by 

standard procedures. But， such a solution cannot be found easi1y unless special restric-

tions are made. 

Structural systems with general boundary conditions wi11 be analyzed by the use of 

modification parameters :>，，1， A.2 which are defined only at boundaries. These parameters 

wi1l modify a solution which does not satisfy boundary conditions and thus behave similar 

to the Lagrange multipliers. Physically， the parameters A.l and λ2 are related to the 

forces which must be applied at the boundaries in order to satisfy that part of the bound-

ary condition not fulfi11ed by assumed solution. By use of the modified parameters Eq. 

(A-24) can be rewritten as 

= Aー1[{喜一ふ(恭)-ベ-叫h(α)Jゴ十1

+[{(a+l)恭+日々 }Eh (α)Jα=N 

一[{詳+議ーベ }Ehぺ (A-25) 

It should be observed that the unknown quantities入1 atα=0 and 入2 at α= N have 

been subtracted from the first bracket， which results the equilibrium equation at all nodes 

and exact1y the same quantities have been added to the second and third bracket， re-

spectively. Therefore， the value of the first energy variation has not been changed. 

The terms involved in the summation operator is designated as the modified first energy 

variation， dU. 

A study of Eq. (A-25) shows that the problem， dU = 0 has been reduced to 

…-1 [喜一刊誌)ーベ-刈]Ehぺ
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oF oF 
Iγ+苛 γ 一入1= 0 ， or Y (0) = 0 

atα=0 (A-27a， b) 

and 

(aF  A+1)Bvy+M=o， or Y(N)=0 

atα=N (A-28a， b) 

The expression o U represents the modified first energy variation and Eqs. (A-27) and 

(A-28) are the corresponding modified natural boundary conditions at α= 0 and α=N， 

respectively. 

When the orthogonality property with respect to a specific weighting function is 

defined， as shown in Eq. (3-22b)， the above equations have to be changed as follows: 

and 

i -::>v • -::>v • ..1 Iα=N+l 
8U4-lm|会-a (茶y)-MS:-W11dlpO(A-29) 

F . 1. . ̂  ¥ oF 
一二二一 + (a + 2) -::>--:':v +入1= 0 ， 
δY '，-' ~J ovY 

oF . f. ¥̂ oF 
+~å+2) -ð干す- >..2 = 0 

or Y (0) = 0 

atα=0 

or Y(N) = 0 

atα=N 

(A-30a， b) 

(A-31a， b) 

Similar technique is also applicable for the two dimensional case. The first energy 

variation， Eq. (A-16)， is written by extending the range of double summation over the 

boundaries， that is 

u= ム~l a;l{ (喜-A13yh晶 )AMilt;|乙
+ ム; 1 [{ ( ム1 + 1) 否諜品品3喜名令?ιレY下刊円E品山ωh川h(a似Mα

一イ-{ (ド(~喜ι+ 否恭掛;等各お?与知Y刊)eh (川

+叫叫å~l [μ(いい(いムいい川2什川+叶寸1サ)蒜品品Yγeh(a似α1 的 ) } α 2=N 

-{ (会+蒜)eh (α1ぺ=oJ:
(A-32) 

Consider the case where the solutions assumed satisfy the modified boundary conditions 

atα1 = constant as shown in the second line of Eq. (A-32). Then， one needs to modify 

the solution at the boundaries α2 = 0 and α2 = N. Following a similar technique to that 
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used in the one.dimensional case， modification parameters can be defined at each unsat. 

isfied node，α1 = 0， 1，…， M. However， this approach will yield a set of simultaneous 

equations， which for the case of large number of nodes may be cumbersome to solve. 

This author proposes to express the parameters in a functional form called a modification 

function. In order to make effective use of the orthogonality properties of the assumed 

solution the modification function is assumed to have the same form as the solution does 

along the α1 -direction. The modification functions defined atα2 = 0 and α2 = N are 

designated by A.l (α1) and入2(α1)， respectively. 

By use of these functions， Eq. (A-32) is rewritten 

sルu=リ叫イム叫ザψ;γlム心ザ;γ1[{葬3一ムム1品一vれ2志品Yγ戸ザ一→JλM川1円(

+叫叫a;1 [{ (a1 + 1) 品 fh ( α 1， a2) } α 1 =M  -{(葬+ 品)fh ( α 1 的 )} α 1=01:2=1 

ぶ~ ([ { (い1)品川 (α1)} fh (α1α2) ]日
-[{長十百三y一川

Therefore， the problem being considered in Eq. (A-33) is reduced to thefollowing: 

-1 . -1 I I oF oF oF _ . " . 0  
δD = a 1 • a2 • 11一吉y-a1可 ;y-A2荷 ZY-M(α1)δ;2

•. ) lIM+1IN+1 
一入2(α1) Oう。 }fh(α1，α2) 11 1 = 0 

“" J 11α1=01α2=0 

oF oF ^ -一一一一 一oY δV1Y 
- ~ or Y (α1，α2) = 0 

at α1 = 0，α2 = constant 

(A1+1)4y=。 or Y (α1，α2) = 0 

atα1 = M，α2 = constant 

oF oF 
a y +否Viy-M(α1)= 0， or Y (α1，α2) = 0 

atα2 = 0，α1 = constant 

(a2 + 1) o~~ a2 + 1)一一山2(的)= 0， or Y (α1，α2) = 0 
oV2Y 

I ，. ，~J/ -

atα2 = N，α1 = constant 

(A-34) 

(A-35a， b) 

(A-36a，b) 

(A-37a，b) 

(A-38a， b) 

When several functions Y k， k = 1， 2 ・・， Which do not satisfy the boundary conditions 

are considered in the problem， one can assume modification functions，入 1k (α1) and λ2k 

(α1)， k = 1， 2，…， corresponding to Y k・Thisproblem is illustrated in the analysis of a 

cylindrical latticed shell with polygonal ribbed supports. 
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EXAMPLE 1 -ONE-DIMENSIONAL CASE: CONTINUOUS BEAM 

WITH SPRING CONSTRAINTS 

To illustrate the one-dimensional discrete variational techniques， consider the regular 

continuous beam with spring constraints at the ends shown in Fig. A-1. 

~I_j}、
..IZ. 

Eldべ101.

F跡"品品
I 01.-1 cl( 

しん | 

品，" 品，
(lf.~ I M-2 

事
件

霧P

FIG. A-l CONTINUOUS BEAM WITH SPRING CONSTRAINTS 

Md.-I ~一吉でh
f刈正こLJ// eA9Nd 

FIG. A-2 ELEMENT MEMBER (αー1，α)

The symbols used in the figures have the following definitions: 

Kl， K2 represent the spring constants atα=0 and α= M， respectively 

EI a is flexural rigidity of. a member (α-1，α) 

M~ ， M~ ， M品 areexternal loads applied at a typical point，α=0 and α=M， 

respectively 

Fig. A-2 shows a typical member at the ends αand α-1 with moments Ma， Ma-l， 

and rotations (Ja，θa -1. The strain energy Va， in this element which is represented by 

its deformed configuration， is equal to the work done by the moments as they induce the 

rotations (33). That is 

Vα= を (Mα • (Ja + M← 1・(Ja-l) (A-39) 

Using a difference notation， the moments Mα， and M a -1 are written as functions 

of the rotations in the fol1owing form 

Ma = bα ka (γα -Va) (Jα 

M← 1 = bα ka ! (1 -γa) Vα+川 oα (A-40a， b) 

where for prismatic beam， ba = 2，γα= 3. 
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Substituting Eqs. (A-40a， b) into Eq. (A-39)， one obtains the strain energy of the 

typical element member 

ぃ+ba ka [(一川れ+{ (l-')'a)い α}8a (山

For the continuous beam of Fig. A-l， the total strain energy， V， is obtained as the 

sum of the strain energy in the individual elements and that due to end springs. The 

result is 

M J(. 0 J(n 。
V= 2j V a + 三~! ()~ +二子。ι (A-42) 

α=1 山 υ~ lU  

where Vαis the strain energy of a typical member， Eq. (A-41)， and M denotes the 

total number of elements. 

It can easily be recognized that the last two terms of Eq. (A-42) represent the 

strain energy of the elastic constraints where k1 and k2 are the. spring constants indi-

cating the degree of resistance against rotations atα= 0 and M. 

The potential energy due to external loads is 

w = -当 M~ 8a 
α=0 司

Therefore， the total potential energy of the continuous beam is 

u = V + w  

= b付 1[(γα-v) 8αoα+ { (l-')'a) 

+主!_8:十五号8.:ーさ M6
.θα

~ v .G lYJ. a = 0 -

(A-43) 

(A-44) 

Substitution of Eq. (A-44) into Eq. (A-ll) yields the following expression for the 

first energy variation: 

u=ムー 1[bK 山竹内一件。αI~

十 [{bK一一1θα-M: } E8α] a=O 

+ [同一)ー18α-M:い]α=M

= 0 

where bα= b and γα=γare assumed to be constant. 

(A-45) 
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The following condition established in the first bracket of the above equation repre-

sents the governing difference equation of the structure 

bk (，17 + 2γ)θα ー M;=O (A-46) 

The second and the third expressions yield the natural boundary conditions at α=0 

and α=M 

bk (i). +γ) 00 + K1 00 ー M~ 0， or 00 = 0 

at α=0 

bk (γ-V)θM + K2 OM 一~ = 0， or OM = 0 

atα=M 

(A-47a， b) 

(A-48a， b) 

To solve the above equations by a finite Fourier series a modification is necessary 

in order to apply the proper orthogonality relation of the finite series. The range of 

summation α= 1 toα= M -1 is extended overα= 0 and α=  M. Therefore， Eq. 

(A-45) is rewritten as 

= A-l Wα[bk山 γ)θα一語]fOα1:+
1 

+ [{ 号~90α + K1 θα
サい)

+ [{ト一」与子ドいFρ仰θ向…α (A-49) 

Since the standard finite Fourier series will not satisfy the arbitrary types of boundary 

conditions given in the above equations， the method similar to that of the Lagrange mul-

tipliers will be used here. 

Defining two unknown parameters >"1 and λ2， to be used to satisfy the required 

boundary conditions， Eq. (A-49) can be written as 

=ムー 1Wa  [bkω+2竹内一装 -M:-hsyJEOα1:十1

+ [{ b2k 90α+ K1いすい ]α
=0

+ [{手Fθα+K2いすい ]α=M=o
(A-50) 

It should be observed that the unknown quantities 入1 atα= 0 and λ2 atα= M have 

been subtracted from the first bracket and exactly the same quantities have been added 

to the second and third bracket， respectively. Therefore， the value of the first energy 

variation has not been changed. The terms involved in the summation operator will be 



Bull. Science & Engineering Div.， Univ. of the Ryukyus (Engineering) 203 

designated as the modified first energy variation，δ) . It has the form 

r.. ， _ • ~ ， _ M: . ~ 0 _ ~M l _ 1 M + 1 
o-T=A-1wαI bk. (9 + 2竹内ーー乞->"1 ò~ ->"2δ~ I dlα| L ，- .. -- wα a - a J ---11 (A-51) 

The problem has been reduced from Eq. (A-50) to that of solving the following equations 

S寸 = 0 

bk __ ..~ _ >..， 
_:2~ 88.α+ K1 8a十」テ=0 

at α=  0 

nu 一一
h
一2α

 

nσ K
 

+
 

α
 

β
U
 

F
 

K
一l

b
一2

atα=M (A-52a， b， c) 

where 

δU represents the modified first energy variation and the second， Eq. (A-52b)， 
and the third， Eq. (A-52c) are the modified boundary conditions. 

To solve the above equation the following solution is assumed 

M 
Oα=:L: θm cosλmα 

m=O 

where >..m =事 (A-53) 

The external load is expanded in a similar series with the weighting function 

M空 主主
一一三ー= す~ Mm cosλmα 
wα dご。

(A-54) 

The Euler coefficient Mm is obtained by using the orthogonality property of the 

trigonometric series， Eq. (3-22b). 

唱 IM+1
Mm=っι-A-lM砂 cosλmα1

rm a 10 
(A-55) 

where 

M 
rm = :L: wαcos2 >..mα 

α=0 
(A-56) 

The variation of the rotation is assumed as 

M 
f.Oα=oθα= :L: oOm cos >..mα 

m=O 
(A-57) 

Substitution of Eqs. (A-53)， (A-54)， (A-57) into the modified first energy variation， 

o [T， Eq. (A-51)， one obtains 
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咋(やCωO…一…γjωm一川m一λ̂-1一hい C∞…o
from which 

θm = {Mm十九(入1+ ̂-2… (A-59) 

where 

Cm = 2bk (cos λm -1 +γ) (A-60) 

Substitution of Eq. (A-53) into Eqs. (A-52b， c) gives 

K1iiom+与=0 
m=O ... 

K2さ30mmm寸+与 =0 
m=O 山

(A-61a， b) 

Since Om was obtained as a function of λ1 and入2，one substitutes Eq. (A-59) into 

Eqs. (A-61a， b) yielding 

K1当。{Mm+ Jm (λ1 +い…廿)} 
jCm +キ=0 

K2 m~o {Mm +土 (λ1+ ̂-2… (A-62a，b) 

The above equations can be written in a matrix form as 

一一

、、..... ，，EE
E
E
P

，r
 

唱
息

。

a

E内

1内

J

-

E

・E
・-E
，.，、
、

、、......... ，F
 

A
 

J
g
-
E

・E

・-
E
E

、、
M 1¥A"n句 rnc.T明Tr

-K  E。一cm山口

M Mm  

-K120モ孟一
(A-63) 

where the matrix (A) is defined as 

~ (cos mπ)2 1 
Kz:::8 

¥ _;，v 
';:'~J +

一一m~o rmCm 

(A-64) 

M. 1 ， 1 

()lK1207
市 +す

AI= 

I K2 m~。祭器，

M ('()" m寸「

K150う壬芯t

Therefore， using Eq. (A-63) it is obtained 

唱-、、，‘•• 
E

・E・-E
・E・-，
，

A
 

，，E
・E・-E.

.
 ‘.，.
E

・‘、
一一

、、‘.E
E

・E・-E
・E・-，，，

噌
品

。

a

入

、

ん

J
'
E
e
a

，SEE
・E・-E
，‘、
.

M MT n  ("nc TY¥iT 
-K 2 :::8 __::… 戸こ山川

m=O vU且

(A-65) 

M Mm  

-K120f t 
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Once ̂'1 and入2are obtained they are substituted into Eq. (A-59) to obtain the complete 

Euler coefficient which satisfies the spring boundary conditions. 

If one assumes equal spring constant atα= 0 and α= M， that is， K1 = K2 = K， the 

problem is simplified. It is always convenient to treat the problem as the superposition 

of the symmetric and the anti-symmetric cases with respect to告M. Only the symmetric 

case is discussed in detail， since the anti-symmetric case follows the same procedure. 

For the symmetric case (i. e.θα=θM-a)， the solution is assumed in the form 

Bull. Science & Engineering Div.， Univ. of the Ryukyus (Engineering) 

M 
Oα = 2j θm cosλmα 

m=O.2.4. 
(A-66) 

where the index m takes only even integer values. 

Similarly the external loads are expressed as 

α
 

m
 

、ん0
 

c
 

m
 

M
 

M
Z
M
 

一一

e 
M~ 
wα 

(A-67) 

The substitution of 8α， Eq. (A-66)， into Eq. (A-52， b. c.) yields the result 

(A-68) = 入2 =入S'̂I 

Accordingly， the modified first energy veriation is written 

å Ü イlWα[川市)θα 一長一ぃ~Jイ+1 (A-69) 

Introducing Eqs. (A-46) and (A-67) into Eq. (A-69) one obtains 

8m = (Mm +生 )jCm (A-70) 

Cm = 2bk (cosλm -1 +γ) where 

With the results of Eqs. (Aー70)and (A-61a)， it is found 

(行)七Mm+ー'--)jCm 十 一一 =0
L m I “ an噌

M
2
M
 

m
 

k
 

(A-71) 

M 1\，f~ 
_ K 2j 1.;竺"

m=O. 2.4 し III

且 I 1 . 1 ¥ 
m=i".2 ¥Cmrm T 2 J 

from which 

(A-72) λs = 
2K 

Euler Introducing the above results， Eq. (A-72)， into Eq. (A-30) 

coefficient for the symmetric case. 

The value of the parameter for the anti-symmetric case can be obtained by letting 

the index m to take only integer values in the preceding equations. One finds 

obtains the one 



206 Oshiro: APPLICATION OF DlSCRETE VARIATIONAL TECHNIQUES 
TO THE ANALYSIS OF LATTICED SHELLS 

"'8'0 = 

M 
-K L:: 

2K 

m=I.3 
M 
Z 

m= 1.3 

Mm  
Cm 

(dTm+;-) 

EXAMPLE 2 -TWO-DIMENSIONAL CASE: ANALYSIS OF A 

CABLE NET 

(A-73) 

To illustrate the two-dimensional case the analysis of the cable net shown in Fig. 

A -3 is presented. 

も
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FIG. A-3 NET WITH FREE BOUNDARY ATα1=0， M 

The net of Fig. A -3 is assumed to have simple supports atα2 = 0， N and free 

Therefore， it allows boundary deflection at the later edges. supports atα1 = 0， M. 
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FIG. A-4 a CABLE ELE乱1ENTATα2 = CONSTANT 

似1)c:A?・0 似l)d-'2) 

ω(d.1内・¥)f I I t 
s斗よ I I W{cJ， I)~ '1) 

↓'y '2 W ________ I ~ 
!::===-.  I I_s. 

FIG. A-4 b CABLE ELEMENT ATα1 =CONSTANT 

The cables parallel to the α1 axis are assumed to have the horizontal components of the 

cable tension， i. e. R = constant. Simi1ar assumption applies to the horizontal components 

of the tension in theα2ー cables. However， a different component S is considered for 

the boundary cables. 

The strain energy of an element (α1 -1，α2) (αhα2) shown in Fig. A -4a is 

obtained as 

R nT  ~ • TTT  R v (α1，α2) = -2; V1 w. W - 2; V1 W. E-l W =三五一 (V1W)2 (A-74) 

It follows that the total strain energy of cables parallel toα1 axis is 

~ M N-l 
V1ZEF22(V1W)2 

.α1=1α2=1 
(A-75) 

Simi1ar1y， the total strain energy of the cables parallel toα2 -axis， Fig. A -4b， is 

found to be 

c;:. M-l N C 10M、
V2 = ーと- Lj Lj (V2 W)2十 一二-1.:(V2W)2(Ò~ +ð'~') 2a2 ...... ¥ y ~ •• J ¥ va1 ' va1 J 

2α1~1α2=1z ， 
(A-76) 

The potential energy due to external loads is 

M N-l 
W=- Lj Lj P(α1， a2) W (α1， a2) (A-77) 

α1= 0α2=1 
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Therefore， the total potential energy of the cable net is 

R M N-1 .C;: M-1 N 

u= 云72Z(V1W)Z+ ー~~. ~ ~ (V2 W)2 
ー α1=1α2=1 --α1=1α2=1 

~ B__ ____ ~ { _ 0 _M ¥ M N -1 

+五戸~ (V1 W)2 ¥ oα1+8α1) - ~ _~ p (α1，α2). W 
α2=1α1=0α2=1  

(A-78) 

where the boundary conditions W (α1， 0) = W (α1， N) = 0 are used. 

To satisfy the nonhomogeneous boundary conditions at the edges α1 = constant， the 

modified discrete variational method in Appendix A is applied. Thus， two modification 

functions λ1 and 入2are defined accordingly 

I n"  __ l IM+1IN I R r-r TTT S........ .，.T T  T"¥ ....." "<1'10 ... <).1 "o:-M I TTT I J.V.L -1 -.L I 
δU=A;141|-:FlW-IF2W-P一日(仇)s;142(仇)弘 jEWj-o-. -1-1 

-A:1 I ~ -4-ム1W十三塁 LV2W -:>..2 (α2) oM ~ f.W 
~ L l a u α1  )αl=M 

+{与V1W +マM ー ν(α2)仏日=0 (A-79) 

The modification functions :>..1 (α2)， :>..2 (α2) have been subtracted from the first 

bracket and the same functions added to the second and third bracket. Therefore， the 

value of the first energy variation has not changed. 

The problem under consideration is further simplified if one considers separately the 

symmetric and the antisymmetric solutions. 

For the symmetric case it is assumed that the applied joint loads are such that W 
M 

(α1，α2) are symmetric with respect to .~. ， while for the anti-symmetric case the loads 
2 ' 

a勾柳州p即叫pμliedr叫 t in 似仙O町rm町m叫n

Only the symmetric case will be illustrated in detail and the anti-symmetric case can 

be obtained by following a similar procedure. 

For the symmetric case the terms in the first bracket of Eq. (A-79) can be reduced 

to 

I D 門 l IM+1IN 
3u =ム;141|-711W-L22W-P-W(仇 )8;11EW||l=O

(A-80) 

where δu represents the modified first energy variation and :>..1 (α2) =λ2 (α2) =ν(α2) 

is introduced. 

Because of symmetry only one boundary condition needs to be considered in the α1・

direction. This condition relates the modification function ν(α2) to the boundary state-

ments and is designated as the boundary constraint. 
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Atα1 = 0 it takes the form 

_g_V1 W +三洋02Wー ν(山)= 0 
(:¥1 "2  

The joint deformations W (山，仇)is assumed in the series 

M N-l n‘iT I 、 ー寸r_， 

W(α1，α宮)= ~ ~ Wmn∞sdtlT(α1 +告)sin竺r
m=o，2 n=1.2 

where the index m takes only even integer values. 

Similarly the external loads are expressed as 

p (α1，α2) = 
M N-l 

~ ~ 
m=o，2 n=l， 2 

旦~(α1 +告)sin nTI坐
恥1+1¥ ~l ， ~ J 

The modification function is assumed as 

ν(α2) = 
N-l 

2 
n=1，2 

1.n  Hiα2 S n sinー」主-.-

Substituting Eqs. (Aー82)，(A-83)， (A-84) into Eq. (A-83) and using the 

nality relations of the trigonometric series， one obtains 

(2Eγm+2Ln)wmA盟主Pmす+1)N-fNcos」 Lal 1[11 I a2 I n} ，.， ......&.u. 4φm 4ttm n̂ •. ~~~ 2(M+1) 

from which 

4φm "， 5 寸
W Pmn +耳石 l~ cos訳語布
mn = _ Rγm 2S 

2ーコ一一+一三一一 γn
"1 "2 

In the above expression the following notations have been used: 

γm = 1 - cos旦正
品 M+1 "In = 1ー∞S4J

。m=l-÷s:
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(A-81) 

(A-82) 

(A-83) 

(A-84) 

orthogo-

(A-85) 

(A-86) 

The substitution of Eqs. (A-84) and (A-86) into Eq. (A-81) yields the expression 

M 
Z 

m言。，2

s-s 寸下

ー一一一(-2"1 n) cos 1) ，; 一一~Wmn-~. = 0 2(M+1) 

If the results given by Eq. (A-87) are substituted into Eq. 

solution is obtained: 

(A-87) 

(A-81)， the following 



210 Oshiro : APPLICATIONOF DlSCRETE VARIATIONAL TECHNIQUES 

1;= 

TO THE ANALYSIS OF LATTlCED SHELLS 

一 m1f n一一
-2'Yn 三三竺 nLU32(M+l)A山 U

一 一 一
I n a2 官 2R _ ， 2S _ 

al 1m・ aiA 

A π 1川

8 ミー Sν h CosaZTMtI7 
1+司王T-----a;-r u吾E厨正マー2S'Yn

一一一al ・ ai

where the index m = 0， 2， 4， M even integer values. 

(A-88) 

The displacement of the cable net caI，l now be obtained by substituting the solution 

for :i:~ ， Eq. (A-88) into Eq. (A-86). 

A similar solution can be found for the anti-symmetric case by letting the index m 

take odd integer values only in Eq. (A-88) 

APPENDIX B 

DEFINITIONS AND FORMULAS FROM THE 

CALCULUS OF FINITE DIFFERENCES 

A list of operators from the Calculus of Finite Differences used in this work follows: 

Let f (α) be. a discrete function defined only in the region of the integer numbers. 

Then， the following Operators can be proper1y defined: 

Fi:γst 0γder Oterators 

Boole's Displacement Operator 

Ef (α) = f (α+1) 

E土nf(α) = f (α士n)

First Forward Difference Operator: Delta 

M(α) = f (α+1) -f (α)平 (E-1)f (α) 

First Backward Difference Operator: Nabla 

Vf (α) = f (α)ー f(α-1) = (1-E-l) f (α) 

Forward Mean Operator: Nu 

Nf (.α) =を [f(α)+f(α+1)J =告 (E+1)f (α) 

Backward Mean Operator: U n 

1M (α) =告 [f(α)+f(αー1)] =告 (1+E-l)f (α) 

Second Order 0拠γators

Second Central Difference Operator: Debla 

LVf (α) = f (α十1)ー 2f(α)十 f(α-1) = (Eー2十 E-l)f (α) 

Mean Difference Operator: Multa 

Bf (α) = f (α十1)ー f(αー1)= (E-E-l) f (α) 
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For functions of more than one independent variable partial operators E i， A i， V i ， 

N j'， J，f i， LV j， B i are defined in an analoguous manner. For example: 

Ed (α1，α2) = f (α1 +1，α2) 

Ad (α1，α2) = f (α1 +1，α2)ー f(α1，α2) 

Inverse Delta or Summation Oterator 

The inverse delta represented by A -1 behaves similar to the integration symbol in 

the continuum. It is defined as 

IM+1 M 

A-1 f (α) I =皐 f(α) 
|α =1α=1 

Formulas for the above operation are listed in standard book of Calculus of Finite 

Differences. The inversion of a product of two functions is usually obtained by using 

a technique similar to the integration by parts. The summation by parts can be accom-

plished by the following formula: 

A -1 [f (α) Ag (α)J = f (α) g (α)ーム-:1.[Af (α) Eg(α)J 

Difference Eq踊~tions

The equation 

[AnAn十An-1An-l……+ A2 A2 + A1 A+AoJ f (α) = U(α) 

which related the unknown function f (α) to its difference， is called a difference equation 

of the order n. The coefficients An may be functions of α. If they are constants the 

equation is a linear ordinary difference equation of the order n. 

Pa:γtial Difference Equations 

A difference equation which is a function of two or more independent variables is 

called partial difference equation. For example: 

G (α1，α2， f， Af， A2 f， A i f .….. ATf， Â~ f) = 0 

involves difference of two variables and， therefore， is designated as a partial difference 

equation of the order m and n with respect to the variables α1 and α2・

ACKNOWLEDGMENTS 

The author wishes to express his gratitude to Dr. Celina P. Ugarte for advice and 

c10se association with the author during the research 


