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APPLICATION OF DISCRETE VARIATIONAL TECHNIQUES
TO THE ANALYSIS OF LATTICED
SHELLS

by
Takeshi Oshiro*

ABSTRACT

The techniques of discrete field mechanics, a new concept in structural analysis,
are used in conjunction with energy methods to obtain an exact mathematical model
to represent a latticed shell subjected to flexure and corresponding solutions. The
method developed is designated here as the discrete variational approach and its use-
fulness has proven especially effective for the analysis of latticed shells with general
types of boundary supports, such as free or ribbed polygonal edges.

Essentially, the method is based on the application of the calculus of variations
in discrete field mechanics developed in Appendix A to the concept of the Micro
Approach used in field analysis. The immediate results are:

(a) The mathematical model which can be used for the linear or non-linear analysis
of latticed structures

(b) A clear statement of the natural boundary conditions associated with each
system

(c) Closed form solutions to the total model described by the steps (a) and (b)

A further development of the method, the modified discrete variational method
analogous to the method of Lagrange multipliers, is presented in the same appendix
and enables one to obtain with relative ease closed form solutions to structures
which were not amenable by conventional methods because of the complexity of the
boundary conditions. Such solutions are valid over the entire structure and are inde-
pendent of the size of the system.

The buckling condition of latticed shells is also investigated by this method in
the work presented in Chapter IV which clarifies on a rational basis the behavior of
the compressed members as an integral part of the entire system.

Each solution presented in this paper has been investigated numerically and com-
pared with results obtained by open form methods. The comparison shows significant

accuracy and the great reliability of the technique proposed here.

Received May 1, 1974
* Ph. D., Professor, Section of Engineering Mechanics & Applied Mathematics, Sci. &Eng. Div.,

University of the Ryukyus.
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TR, FL : Force vectors at the right or the left end of a member

FR = FRe, + F¥e, + FEg,

I

Fl = Fle, + Fe, + Fle,
fe : External force vector acting at a node

F* =F% + P + 7}

Fl., F2., F2. : Euler coefficients for the external loads
Fa, Fs : Axial force prior to and during buckling
GJ1, GJ1 : Torsional rigidity of a member in «y- and as- polygons
K : Curvature of ai-polygon defined in difference geometry as K = 2sinVa
Li, Ls : Length of a member in a3- and «s- polygons
Lo, £, L : Span lengths and total length of the continuous beam shown in
Appendix A
M : Number of nodes in the «y- direction
VR, ML : Moment vector at the right or the left end of a member
MR = Mfe, + MEe, + MRe,
MY = Mie, + MLE, + MhE,
Me : :External moment vector acting on a node
M° = M{f; + M3i, + M3N
N : Number of nodes in az- direction
R : Tension forces of cables in the a; direction shown in Appendix A
S, § : Tension forces of cables in the a; direction shown in Appendix A
T : With k=1, 2, - 6, it respectively represents all the external loads
1, F§, F§ M{, M3, M3, ioe. T = FS
[Tyl [Ty’ : Matrix coefficients defined by Egs. (2-16) and (2-17)
U : Total potential energy of a structural system
iR : Displacement vector at the right end of a member,
iR = ufe, + ufe, + ufe,
o] : Displacement vector of a polygon at node «;.
iy = lta far + Una Her + Oba Hea:
v] : Displacement vector of the joint (a1, as) of a latticed shell

= uifs + uztz + uzy

Ul., U2., U3 : Euler coefficients for the displacement functions

Vai, Vas : :Strain energy in a member VX and in a member V232X

v : Total strain energy of the parametric polygon

Wi, W2 : Weighting functions defined by Egs. (3-4), (3-5)

Wka, Wis : Deformation prior to and during buckling; with k = 1, 2, 3, 4, they

represent respectively uji, us, 61, 42
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X (a1, a2) : Position vector of a typical joint (ay, a2)
Yx : Represent deformations. k = 1, «--.- 6 gives respectively uj, uz, us,
01, 63, 03
fay, fa1, bai : Local trihedron of the «j- polygon
t1, "2, N : Local trihedron of a latticed shell at a joint (a1, a2)
AR, 5 : Rotation vector at the right and at the left end member
gR = 0% s, + 0% e, + 0% ¢4
L = 0% e, + 056, + 05 ¢4
fa1 : Rotation vector of a polygon
far = Grwaar + Onaba1 + Ovabai
] : Rotation vector of a latticed shell at a joint (a1, ag)
6 = 61t1 + 02f2 + 63N
0Ll., 62., 02, : Euler coefficients for the rotation functions
a1, a9 : Discrete variables; a1, = 0, 1, 2, -+ Maz = 0,1, 2, -+eee N
sU : First energy variation

b1, Y1, b1, 71 : Coefficients related to axial force in the «) - polygon defined by Eq.
(2-10) with the subscrip 2, they denote similar quantities for the ag -

polygon
dml : Kronecker delta defined by Eq. (3-23)
exhk : Variation of the deformations
Am : Euler coefficient for the modification function
A7t, &31 : Inverse difference operator or summation operators defined in Appen-

dix B
v, U, N : First difference operators defined in Appendix B
Y : Second difference operators defined in Appendix B

CHAPTER |
INTRODUCTION

A latticed shell can be defined as a three dimensional assembly of one dimensional
element that resists arbitrary loads. The capacity and efficiency of such structures to
carry loads are obvious, since every member is a part of the three dimensional latticed
shell path which is chosen to be the most effective. This has been demonstrated in
many applications of latticed shells, such as in roofs, space vehicles, communication
towers and reflectors.

With a repetitive framework pattern, a latticed shell provides the advantage of stand-
ardization of member length and size, although for some structures there is the difficulty
of joining in space the members which meet at different angles. This chief barrier is
now being overcome. Several excellent connectors have been produced mainly for pre-
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fabricated steel or aluminum latticed shells and are illustrated in a reference, “Space
Structures” (8). Through mass production their cost can be kept low and their use
even enables the erection of highly complex latticed shells by semi-skilled personnel.

Since the demand for these structures has increased more effective and efficient
methods for their analysis must be developed. Presently there is no unified approach
to the rational analysis of these structures.

The analytical methods appearing in the literature can be divided into the following
two methods:

(1) Continuum Approach

This method approximates the actual discrete system by an equivalent shell membra-
ne or anisotropic shell. The equivalent shell membrane method was presented by M.
Pagano (31) in 1962, and by D. T. Wright (42) in 1965. Essentially the membrane forces
and buckling loads for latticed shells are predicted by using modified shell formulas ob-
tained by replacing the discrete structure by an equivalent continuum. The anistropic
shell method was explained by W. Fliigge (15). A work done by J. D. Renton (32) in
1967, and Heki, K and Y Fujitani (18) in 1967, relates the discrete variables to their
equivalen s in the continuum by use of Taylor’s series expansions, Using this technique
the governing difference equations of plane and space grids are transformed to differential
equations, thus yielding continuum models.

It is obvious that the continuum approximation may lead sometimes to erroneous
resul s as it approximates discrete properties by continuum ones when no clear analogy
between both exists. However, this approach may be useful for an approximate analysis
in the preliminary design stage.

(2) Discrete Approach

Two categories are found in this approach. They are the open form methods of
which the matrix methods are the most popular and the discrete field methods on which
this work is based.

(a) Open Form Methods

Matrix methods are becoming very popular in the computer age. Typical works on
this method have been presented by Eiseman, Lin Woo, and Namyet (14) in 1962, P. H.
Cheng (6) in 1964, M. Berenyl (2) in 1967, and J. Michalos (28) in 1967. This method

requires the solution of a set of simultaneous equations for the unknown forces or de-

formations of all the joints of the structure. It will give correct solutions for a latticed
shell with a limited number of joints. However, as the number of these joints increases,
the round-off error and the excessive computation time will make the application of this
method impractical.

(b) Discrete Field Analysis

In this analysis the concepts of discrete field mechanics and of difference geometry

are utilized to obtain the mathematical model, a two dimensional partial difference equation.
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Pioneering work for latticed shells was introduced by L. A. Larkin (26), D. L. Dean
(9, 10, 11) and C. P. Ugarte (10, 39). The first of these appeared in publication in 1960.
Exact closed form field solutions were obtained for latticed shells with momentless connec-
tions. These analyses are feasible and satisfactory for certain types of loading conditions,
but a more realistic approach requires the consideration of flexure in such structures since
most joints provide at least partial restraint. Field solutions are valid over the entire lat-
ticed shell and are essentially independent of the number of joints and the size of the
latticed shell.

W. Gutkowski (17) presented a circular cylindrical latticed shell with rigid joints in
1965, but his solution did not satisfy all the boundary conditions. A master’s thesis by
S. Ch. Shrivastava (34) in 1967 also takes the flexure of the members into consideration.
However, his soluion is limited to a special boundary condition. Mithaiwala’s treatment
(29) has also similar restrictions.

The difficulty in directly finding proper solutions of high order difference equations
for arbitrary boundary conditions proves to be the major weakness in the previous works.
This suggests that a new method be found to overcome the difficulty.

The primary objective of this dissertation is to provide a rational method to utilize
the concepts of difference geometry and the calculus of finite difference to obtain in an
efficient manner solutions to the latticed shells with general boundary supports. This is
accomplished by the application of the calculus of variations to discrete field mechanics.
To the knowledge of this author this is the first attempt to apply this new branch of
discrete field mechanics to the analysis of latticed shells.

The calculus of variations in continuum mechanics was applied by Bernoulli, Euler,
and Lagrange in such fields as geometry and physics. Today it is a highly advanced
branch of modern mathematics closely related to the theory of differential equations by
which various statics and dynamics problems have been effectively handled. Applications
in engineering have been presented by Bleich (3), Sokolnikoff (35) and other authors.
This theory deals with the calculation of the extreme values of functions defined by certain
integrals whose integrands contain one or more functions of continuous variables. In
con inuum mechanics this problem is concerned with finding equilibrium states and the

condi ions necessary to achieve such states.

As in continuum mechanics, the equilibrium state of a latticed shell can be related to
an extremum. However, since the variables are discrete and the functional describing the
problem is a summation instead of an integral, the existing theory needs to be modified
to establish the properties needed in discrete field mechanics problems. An introductory
work done by Goudreau (16) in 1963 applied the technique to the problems of a lamella
beam. This author extended further this work and developed a theory which provides a
more general mathematical treatment of the calculus of variations in discrete field mechan-
ics. A significant application of this theory enables the author to obtain closed form
solutions of latticed shells with general boundary conditions for which no solution is
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available in the literature.

Buckling is a serious problem that should be considered in the design and construction
of most latticed shells. An inadequate resistance to buckling contributed to the recent
failure of a large span latticed dome in Bucharest, Rumania in January, 1963.

Considerable research on the stability of latticed shells has been performed in recent
years, and it can be divided into the following categories:

(a) Modification of the known linear theory for shell membranes, using energy cri-

teria, which yields a differential equation. This is represented by von Karman and

Tsien (40), Pagano (31), Kloppel and Jungbluth (24), and Wright (42).

(b) Application of perturbation techniques, using digital computers were presented

by Keller and Reiss (23) and Weinitschke (41).

Most of the works except that of Pagano have been performed on spherical domes.
However, no rational analysis for the buckling of cylindrical latticed shells has yet been
obtained.

A second objective of this dissertation is to develop an analysis for the elastic stability
of cylindrical latticed shells. It is believed that this is the first attempt at a rigorous
treatment of this problem. The concept of calculus of variations has been utilized in
this analysis.

Although the principles of the calculus of variations was applied to circular cylindrical
latticed shells, it can also be applied in the same manner to solve other types of latticed
shells.

The effectiveness of this technique will be demonstrated through a comparison of the

numerical results of the closed form solution with those of the open form method.

CHAPTER I
ENERGY FORMULATION OF CYLINDRICAL LATTICED SHELLS

A key step in the analysis of a structural system is an adequate and efficient mathe-
matical model to represent the system under consideration. For latticed shells, such a
model can be obtained by the application of the concepts of difference geometry and of
the calculus of finite differences, or by the application of the calculus of variations in
discrete field mechanics as it will be demonstrated in this chapter. The later technique
proves to be a powerful tool for the analysis of latticed shells as it exploits certain
broad minimum principles that characterize the equilibrium states of such structures.
Knowledge of the principles involved in the energy methods is indispensable for a thorough
understanding of the calculus of variations and the mathematical procedures to be applied.

The fundamental theorem of the calculus of variations and the corresponding deri-
vations are shown in Appendix A. The results given there will be applied to obtain the
governing equations for the general flexural analysis of cylindrical latticed shells, and

the natural boundary conditions associated with the corresponding mathematical model.
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I. 1. TOTAL POTENTIAL ENERGY OF CYLINDRICAL LATTICED SHELLS

A latticed shell may be described as a discre*e surface generated by two independent
sets of parametric polygons «a; and as. The latticed shell s rface can then be described
by the position vector, X (a1, az), of its typical node (ay, az). The interval of definition
of the independent variables (a1, as) is given by the field of integer numbers, 0 £ a3 LM
and 0L as £N as s own in Figure 1.

A local coordinate system defined by the vnit tangents to the space polygons and by
the normal to the latticed s rface shown in Figure 2 has proven to be the most convenient
reference system for the formulation of the total potential energy of latticed shells. The
unit vector {; and f» denote the unit tangent vectors to the a;-polygon and the a:-polygon,
respectively. The unit vector N is called the latticed shell normal defined by

N= mr (-1
where ¥ is the angle between f; and i, (Fig. 2b).

Since this study is of cylindrical latticed shells as shown in Fig. 3, the case of

interest is the orthogonal one, i. e. ¥ = ——.

Xl

FIG. 1. LATTICED SHELL ELEMENT
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oL 1- POLYGON

X\

FIG. 2a SURFACE ELEMENT

|

TANGENT PLANE

(atl,d241) (cbl41,e2)

(ot )l 2-1)

X\

FIG. 2b TANGENT PLANE AND LATTICED SURFACE NORMAL
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FIG. 3 ELEMENT OF A CIRCULAR CYLINDRICAL LATTICED SHELL

Before any attempt is made to apply the variational techniques of Appendix A to
the flexural analysis of latticed shells, it should be understood that the connections of
such structures can develop restraint against all types of flexural effects.

Using the basic knowledge of the surface the total potential energy of a cylindrical
latticed shell is formulated using the equivalent moment and force vectors acting at the

nodes.

I. la STRAIN ENERGY IN A TYPICAL MEMBER v; X OF THE
a;-POLYGONS

The objective of this section is to formulate the strain energy of a member of a
latticed shell using the local trihedron (i1, Tz, N). However, since this energy is more
easily obtained when the principal coordinate system (&i, &2, &3) of Fig. 6a, b is used
this will be done first as an intermediate step. The desired energy can then be obtained
by using a proper matrix transformation. Consider a typical member Vv; ¥ wtih its
forces and deformations about the principal coordinate system (&1, &2, &s) shown in Fig.
4 and Fig. 6a, b. The strain energy, Vai, in the member y; X is equal to the work
done by the forces (applied gradually) as they induce corresponding deformations (33),
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N\

FIG. 4 PLANE POLYGON

FIG. 5 FORCE AND MOMENT VECTORS AT A NODE (a)

that is
Vay = Uy (FR-GR + MR- §R) (2—-2)

in which Ug=(1+E3!)/2 is the backward mean operator and FR, MR, GR, §R denote

the force, moment, displacement and rotation vectors, respectively. The superscripts R
and L serve to indicate the quantities acting respectively at the right or left of the joint
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a1, az. It can easily be seen that compatibility of deformations requires

E_al (FR « GR) = FL . gL

2-3)

137

The force-deformation relations for a straight prismatic beam subjected to an axial

force are available (13). In difference notation, these relations are

Gl1
Mll2 = — MII‘ =1 Va Glf
. =
MR 5. 71 i oR
) ) EI, T1—Va L, \% 2
= D1 Ll 7
M} (1-71) Ve+71 T+ Ve || u}
/ v 3
Mlg - 71—Va ﬁVa 0l§
= b, 3
L Ly 71
My \(1-—'71) Va+71 T, Va u,

(2—5a, b)

(2—6a, b)

I 7 .z,
g R G B— s i RY AR
{ ‘tlz(on / i t '
NZL F2L / FZR ﬂzg
FIG. 6a FORCES ON MEMBER VX (a)
| .
8 u, /i/ ) Us" 8%
R 7 T 8k
gt ut ———— ] ——— ] uR
( 22(a0)
82! U’L/ X // uR O

FIG. 6b DEFORMATIONS ON MEMBER VX (a)
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.\;\

FIG. 4 PLANE POLYGON

FIG. 5 FORCE AND MOMENT VECTORS AT A NODE (a)

that is
Vai; = Ug (FR-GR + MR - §R) 2—-2)
in which Ug=(1+E3!)/2 is the backward mean operator and FR, MR, @R, §R denote

the force, moment, displacement and rotation vectors, respectively. The superscripts R
and L serve to indicate the quantities acting respectively at the right or left of the joint



Bull. Science & Engineering Div., Univ. of the Ryukyus (Engineering) 137

ay, az. It can easily be seen that compatibility of deformations requires
EZ! (FR-@R) = FL - il 2-3)

The force-deformation relations for a straight prismatic beam subjected to an axial

force are available (13). In difference notation, these relations are

Gl

R - . L _ R
MT = — My = L; Ve 03 (2—4a, b)
{ _ ¥ N
ME EI 71— Va {—i Va 0%
= b1 . . (2—5a, b)
M} (1—71) Va+f1 1 va || uB
( MR Y1—Va Y1 va |f 6%
Elj L
= b1 L, 'y (2—6a, b)
ML (1=71) Va+71 11 Va || U,

X
-t
-V}
&-’-“\
-
I
|
l
)
Z
——
I
\I
—_
e |
*—
=

AN
-
"~
»
=X
“n

. b
8 ut WY Ta@) Us" 8k
7( I\ VAR 1S oR
o] ut - Uy
( 22(x0)
82! U’L/ e // uR 8%

FIG. 6b DEFORMATIONS ON MEMBER VX (a)
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FR=-FL EL? Va wR (2—7a, b)
Fj=—Fy=b, Els 7 ~2) 03+~ Ve u} } (2—8a, b)
. Bla
FR=—Fl=—f1 = - {(va_z)ak—i—va u}} (2—9a, b)
where

Va is the partial backward difference operator.
i e, Va ;R = yyR — u4L

GJi, El,, Els are the torsional and flexural rigidities in &;—&; plane and in &;—&;s plane,

respectively. ‘
A,, L; represent the area of the cross section and the length of the member Vy; X re-

spectively
by, 71 are the coefficients related to the axial force defined by

¢y csc p1—1 _ ¢1 (1—cos ¢4)
i 2o by T hsm b (2—10a, b)
1
in which
2 __ Li2
$1=— 51 F1 (2—11)
- L2
1, 71 are the coefficients obtained by replacing §1 by §2 = — — F; into Eqgs.
¢ 1 E1l,
(2—10 a. b).

The substitution of Eq. (2—4) through Eq. (2—9) into Eq. (2—2) yields the express-

jon for the strain energy of the member as follows:

Var=4 by ZLo({(ri—ve) 6§ - 21 ve ui} o}
+({(1“')’1) Va+'>’1} 0%—%%1 u%]

X (1-va) 08 + 72 {(va—2) 05 + 2 va u§} va uf)

$5 EL2({i-va) 08 + Tiva ug} 08 + ({a—70 va+tri} 65
+ 11 ve uB})a-ve) 0§ — 2 {(va—2) 0§ — 2, Va ul} va u})

+ 4 ELA;I (Ve ulf)z + % '—%J: (Va 0?)2 (2-12)
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To transform the above equation into a function of the deformations along the local
trihedron of the polygon, consider the orthogonal system composed by the unit tangent,
tas the unit normal, Gig, and the unit binormal vector, by, at its typical node shown in
Fig. 5. The displacement components of a node along the principal coordinate system
can be related to displacement components along the local trihedron by the matrix

transformation

uk Uta (@, as)
u 123 = Tij Unea (a 1 ag) (2"13)
ul Upe (a1, ag)

Similarly, the relation between the roation components becomes
0 lf 0 ta (a 1, & 2)
6% | =|[Tyl||bna (a1, as) (2-14)
6 l3z 0b a (a 1L & 2)

where

gi(a) ta1(a) e&(a)+fer1(a) e(a) bai(a)
[Tl =|eela) s ta1(a) es(a) fia1(ea) &(a)-bai(a) (2-15)
gs(a) ta1(a) és(a) + fa1(a) g1(a) - bai(a)

Transformation of the matrices [ull’, ulé', ng]T and [0%, 6%, 015]7 into the matrices
[we (a1—1,as), tna (21—1, a3), Uba (@1—1, a2)] T and [ea (a1—1, a2), Ona (a1—1, a2),
fba (a1—1,a2) 1T respectively, can be done by the transformation matrix coefficient

[Ti’jj *
The transformation matrix coefficients [Ti;] and [T{;] are obviously functions of the

intrinsic geometric properties of the space polygon. Since, in general, ‘orsion and curvature
determine these properties, the matrix coefficients [Ty] and [Ty;] will exhibit quantities

which measure these properties. For plane polygons such as the ones encountered in

cylindrical latticed shells, torsion vanishes.

The matrix transformation coefficients then become

A(a) —K(a)/2 0
[Tyl = | K(a)/2 Ala) 0 (2-16)
0 0 1)
(ACa—1) K(a—1)/2 0
[Tl = | —K(a-1)/2 A(a-1) 0 (2-17)
| L 0 0 1
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where A (a) = cos Va
K («) = 2 sin ¥a
T« is the angle between the forward or backward polygon member and the

unit tangent t (1) s own in Fig. 2b.

To formulate the total potential energy of a cylindrical latticed shell, one needs the
components of deformations along the local trihedron composed of the units tangents, iy
and {;, and the normal to the latticed shell, N. Therefore, _proper transformation matrix
coefficients for transforming vector components from fyi, fix1, ba1 to T1, f2, N are required.

Using the theory of difference geometry these relations are found easily as follows:
far = t1 Go1 = — N, bar = T2 ‘ ‘ (2—18)

T%erefore, the deformations in the local coordinate system are transformed accordingly

as follows:
Uty = Uy, Ung = — U, Uby = Ug \ ’ 2-19)
big = 01, bng = — 03, Obg = 0, ' 4 (2—20)

\

Substituting the results mentioned above, Eq. (2—13) through Eq. (2—20) into Eq.
(2—12) one obtains the strain energy of a typical member VviX as a function of the

deformations in the latticed shell coordinate system. Thus

b, Els

Vd1——— [2')’1 Uy 65 65 — {(1 ’71)V1+')’1}02'V1 02

~4U; 6o+ -2 {KMlul—AVma}] {Ksus— AV us }]
b Ii:,_ [{K (F1—2) N101—A (71—2) V1 0s } % 01

K (M1+%~V1— %) 01— A { (1-71) V1+T1 } Os

(-I—2{~ Vi01+ AV 03) + ?—11 {KV1 0s—4 A, 05 + %VI uz}Vx us

L
2

Following a similar procedure to that mentioned above, one obtains the strain energy

+ (AV1 us+ KUy us)? + 1 GL X (AV1 01+ KW, 6s)* (2-21)

of a typical member V2X of the as-polygon, shown in Fig. 1. It is

01+ V204

Vaz= —%— bs }i:,l: [2')’2 Mz 0y« 01 — { (A—7:) Va+7e

v 2 - Els
+ L22 {——41/[201'*- 1.2 us}Vz us] Tb La

x (272 Ua 0 - 05 = {(1=T2) VatTa | 65 - V2 s

+ 17;22 (U, 85 + —I?;Vz u1) Ve 111] . % Alsz (V2 u2)® + ; (i]l (Ve 02)*

(2-22)
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where
GJ1, El:, Els are the torsional and flexural rigidity in the &i(w2) —z2(az) plane and in
the &1(a2) —e3(az) plane, respectively. Unit vectors &; (a2), ez (az), s (az) form the
principal coordinate system of the member Vv2X.
As, Ly are the area of the cross section and length of the member, respectively.
bz, b2, 72, 72 are the cooefficients defined by similar relations to Equations

(2-10) & (2—11).

I. 1b TOTAL POTENTIAL ENERGY OF CYLINDRICAL LATTICED SHELLS

The total potential energy of the cylindrical latticed shell shown in Fig. 3 is obtained
by adding the total strain energy of the parametric polygons, V, and the potential euergy
due to the external load, W, as follows:

U=V+ W (2—23)

Since the strain energy stored in an individual member of a cylindrical latticed shell
is obtained by Egs. (2—21) and (2—22), the total strain energy is obtained by summing

that of all members, that is,

M - N
v= 2 Vai + 2 Y Vaq
al=1 =1 az=1
T Lw] M N g N
= A 1 A 9 [Vai+Vaz ] + A 2 Va1 at a:=M
a;=1}|az=1 az=1
" M
+ A 1 Vaz at a2 =N (2-24)
a1=1
where the inverse delta operator is
-1 M M-1
A Vau = X Vam

The potential energy due to external loads is

M—-1 N-1
W= 3 W(ay, az) + 2 W (a1; a2) } a1= 0
al=1 az=1 al1=

+ 2 W (a1, az)

al=1

az= 0

az=N

M N

= AT AT} W (a1, a2)

a1=1}|a2=1
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+ AT Wes, @) at as= 0
a1=M

az=1

+ AT W (a1, @2) at a2=0
az=N

ai=1 (2-26)
where

W (a1s as) =~ F°-a — M®+8 (2-27)

F¢ and M® are the force and moment vectors, respectively, acting at a joint (a1, az).

These vectors can be expressed by the following components:

F® = + F$N

1

-0
VN
wo

F + F 2
M =M{f: +M§ts + M (2-28a, b)

-0
(XY
wo
2

Therefore, the total potential energy of a cylindrical latticed shell is expressed as

=i et M N
U=A 1 A o Vai1+Vaz+W(ai, az)
a1=1 a2=1
-1 N -1
+ A ZVal at a1=M + A Ide at ag=N
a2=1 a1=1
-1 N i M
+ A 2 W (a1, a2) at a1 =0 + A 1 W (a1, az) at a3=0
aT=M|az=1 as=N|a;=1
(2-29)

The resultant expression, Eq. (2-29), is a summation equation with respect to the two
variables, @1 and a2, as opposed to the integral equation which would be obtained for
anisotropic shells.

Substituting Eq. (2-21), (2-22) and (2-26) into Eq. (2-29) one obtains the expression
for the total potential energy in terms of the deformation components along the local

trihedron of the latticed shell.

I. 2 APPLICATION OF THE CALCULUS OF VARIATIONS TO
THE ANALYSIS OF CYLINDRICAL LATTICED SHELLS

From the theorem of the minimum potential energy, it is known that a stable equil-
ibrium configuration requires that the total potential energy in Eq. (2-29) must have a

stationary value, that is

U =V + W = Stationary (2-30)
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Therefore, applying the theorem of the discrete variational calculus developed in

Appendix A one obtains the necessary condition for U to be stationary. This is

6
U= 3 §Uxk=0 2-31)
K=1
where
_A-l,-1|2Vas |, 9Vay e oVay oVa,
3Uk =A" A7, [ oY, * oy, — Tk (a1, @2) — Ay VY Ag VeV
M N
-1 3VCE1 aval _ e M

X ex hx (@1, az) N - + A, [{ Zren * 5v,Ys Tk}alikh}[lk( , 0g)

8Va1 e N
- { E, V.Y + Tk} ai;kohk (o, az)] =

+ A—i [{ oVa, + CAL T;} eli\lhk (a1, N)

N
aVaz e }
= E + T €k h (a ’ 0)
{ ECI TR P ais =1 (2-32)
where Yk, Tﬁ, k=1, 2, -ceereeee , 6 refer to all deformations (uy, ug, us, 61, @32 83)

and external loads (F;, F32, Fs, My, My, M;) at a typical joint (a1, as). For example, the
terms involved in the double summation of the above equation are written for k =1, i e.

Y;=1u; as
-1 ,-1|oVay oVa e _ oVay, oVas
A 1 A 2 [aU1 + aul - Fl(al’ afz) Alavlul AZ aV2u1
M N
X €1 h1 (a1, dz)
ai=1|az=1 (2-33)
As stated in Appendix A, the variations ex hg, k = 1, 2, =-e+e-eet , 6 are completely

arbitrary. Thus Eq. (2-32) can vanish only if the coefficients of the variations each
vanish individually, Using this condition one obtains from the coefficients of the variations
in the double summation, six equations which represent the equilibrium equations for the
flexural analysis of a latticed shell and a set of conditions which are designated as the
natural boundary conditions.

The equilibrium equations are compactly given by the expression

oVa:  oVae oVa, oVas e _
oY T oY ~ Mov.¥y A avevy Tk = O @38

where k = 1, 2, «soreeees 6, i. e. uy, ug, us, 01, G2 O3

For example, the above expression for k=1, i. e. u;, is shown in the bracket of



144 Oshiro : APPLICATION OF DISCRETE VARIATIONAL TECHNIQUES
TO THE ANALYSIS OF LATTICED SHELLS

Eq. (2-33).

These are valid over all interior nodes, i. e. 1Za; LM~—1, 1Las LN —1. Substitution
of Egs. (2-21), (2-22) and (2-26) into Eq. (2-32) yields the governing partial difference
equations of latticed shells listed in Table I.

Natural Boundary Conditions

If one considers the summations in Eq. (2-32) one finds that the summation over the
edges of constant a; and as are respectively

[ {Be R i appoveo- {m R i s,
b= 1, By sy B (2-35)
1 [ foVa, | oVas e oVas e M
A7) _{_é"ﬁ"'a_vEY—k— Tk}“26£§k<al’N)~{EzaV2Yk+ Tk}azk:}(l)k(al, 0) I
k=1,2 w6 (2-36)

As a consequence of Eq. (2-33) the terms involving the arbitrary deformation varia-

tions in the above summation must each vanish. Thus, it is required that

aVaI e
at ¢y = 0 {E16V1Yk+ Tk}fkhk =0
K 5 L, oo B (2-37a, b)
_ oVa, oVay e _
at a, =M {—a*Yk—‘{“ aVIYk - Tk}Ekhk = 0
k = 1’ 000000 6

The above expressions yield the following six “natural” boundary conditions at edges

of constant aj:

oVa
at @y = 0, Frx = Eq 3V1Y1k e TE =0 Ye=0 (2-38a, b)
— _9Vas | oVay e _ -
at @y = M, Fgx = Y + 5v: Vs T, =0 Ye=0 (2-39a, b)
where Fi, k = 1, 2.0+ , 6 represent the total resultant forces at the boundaries, i. e. Fy, F2,

Fs, M;, M;, M. For example, the above expression is written for k = 1 as

oVai | pe _ o, Uy=0 (2-40a, b)

By = By oViuy 1
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Similarly, on the edge of constant a», one obtains

. _ aVaz e -
atag—O,Fk—EzaVZYk-’er—O, Ye=0 (2,41a, b)
@ =N, Fy = 2V | OVay ¢ -9, Ye=0 (2,42a, b)

oYk oveYx "k

A study of the above conditions shows that Eqs. (2-38a), (2-39a), (2-41a) and (2-42a)
represent the physical boundary conditions and Egs. (2-38b), (2-39b), (2-41b), and (2-42b)
the geometric boundary conditions.

Alternate expressions of the above natural boundary conditions in terms of defor-
mations are shown in Table 2 and Table 3, and specific examples are given in Eq. (3-54)
of Chapter 1I.

Some combinations of the natural boundary conditions which often arise in the analysis

of a latticed shell are the following:

a. Ribbed Support
F1=F2=F3=M1=M2=M3=O (2-43)

b. Clamped Support
Uy =uz=ug= ;= @2= 05=0 (2-44)

¢. Diaphragm Support (or Simply Support)
Fo=Mi=Mg=uy=us= =0 (2-45)

d. Diaphragm Support with Rotational Constraint
Fo=Msg=u =ug=6,=60:=0 (2~46)

Other combinations can of course be conceived but, in any event, one must be certain
to select only one condition from each of the pairs given by Eqs. (2-38a, b), (2-39a, b),
(2-41a, b), (2-42a, b) or else the first energy variation Eq. (2-35) will be violated. That
is, one cannot specify both the force and the deformation in a given direction at the edge
of a latticed shell.
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CHAPTER I

FLEXURAL ANALYSIS OF CIRCULAR CYLINDRICAL
LATTICED SHELLS WITH VARIOUS BOUNDARY CONDITIONS

In recent years cylindrical latticed shells have been widely used. Their applications
range from recreational stadiums to attractive world’s fair pavilions. However, despite the
obvious structural advantages, the theoretical analysis poses many fundamental problems.

The energy approach obtained in the previous chapter has been shown useful in deriv-
ing the governing equations and in particular in determining the number and nature of the
feasible boundary conditions to be used for any latticed shell. However, the direct use

of the first energy variation is a more powerful method to obtain the difficult closed form
solutions and also enables a clear mathematical insight into the problem under consideration.

The following three cases are treated in this chapter and for each of these cases
numerical comparisons between their closed form solutions and their open form solutions
are presented.

I. 1. CIRCULAR CYLINDRICAL LATTICED SHELLS
WITH DIAPHRAGM BOUNDARY CONDITIONS

It is assumed that the two end circular polygons of the latticed shell as shown in Fig.
7 have stiffnesses equal to one-half that of the interior polygons at ;=0 and a3 =N. It
is further assumed that the two end spans of the circular polygons have stiffnesses equal
to one-half that of the regular span. These assumptions are made to consider a practical
problem which can be solved using the mathematical properties of finite trigonometric
series.

Although the first energy variation will be used directly to obtain the closed form
solutions, the governing equations and the natural boundary conditions, as derived from
the energy expression, are shown in Tables 1, 2 and 3. Only the boundary conditions at
a;=0 and a,=0 are listed since those conditions will be applicable at the edges a; =M
and a;=N, when the problem is unfolded into its symmetric and anti-symmetric solutions.

For half-stiffness members at the boundaries of the latticed shell, the expression for

the first energy variation in Eq. (2-32) must be modified accordingly as follows:

6
38U = kz Uk = 0 (3-1)
=1
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TABLE 2 NATURAL BOUNDARY CONDITION AT 0(1=O
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U, U2 Us O 02 O3 Load
7“5.(47.+4) 5 £e
Tk m s) -zt g | O - R (@) | —26:N, | T || UilHer=o
— 2C2 Do “i
La
Fe
2
O |-&m-Sa| O -y, ® SAE | <5 ||Vstsuer=e
AK %lﬁ*g—?{“’t C-N A @) E Us(es,0)=0
E(Z'*C-)H; @) +4)_%272 2Cg Ny —a B, Cs 3,
-GL(#ira M
O _.CLK.,{V‘ "'Cs A =25)- C;?,IL'ZV, @) "—-—<KALl C,-C‘)HZ _6—8 B.(x,0)=0
4 -}Cst(A‘i’f;) 41
rz V2
7 L Me
-Kigsa)| O 2 & O Yo, O Ca || =0
N
SRLUm2) | Me
C:a: -4, O Kb gyg O |[SREa)| T || Giane)=o

r o)

(Burresurduy) sn&yndy oy3 jo Aty “Ayq Juuesurduy 29 douUsIOG ‘[ng

6¥1



150 Oshiro : APPLICATION OF DISCRETE VARIATIONAL TECHNIQUES
TO THE ANALYSIS OF LATTICED SHELLS

where
_Aa-1s-1|3Vas , dVas e oVas _ , dVae M N
SU’k—A1 AZ [aYk -+ Yk Tk (a1, a2)— Ay aviYx As aszk] €x hk _ _
ai;=1 ag-—l
N+1
-1 aVCh aVa1 e
+ A [m{ oY Tovays V2T (@ az)}alilﬁk M, az)
N
1 aVaz oVas _ oVay . e
+ (aYk —A; aszk)alzNikhk(M’az) 1+W2{ E1a——V1Yk W1Tk (duaz)}al:()
+1 N
Xex hk (0,as) +i(aa\;6;2—A aaVV;Cszzk) €k hk (0, az) :l
- oV M+1
+ A 1 |:w1{ achf +0‘9V\:C‘;2k — Wy Tz (a1, az) }az= Gkhk(al;N)‘ 5
TOe B (1 WP B, i, )| o wa { —E, 2V
2 aYk lalek a2=Nek kid1, 1 & 28V2Yk
M+1 1 79V M
_ e 1 ay oVa,
W2 Tk (al,az)}a:ihk(al, 0) + D) ( oV Ay 6V1Yk)a:ih0k(a1’0> .
(3-2)

Extending the range of the double summation over the boundaries one obtains the
expression for the first energy variation as follows:

N+1
0

oVas oVas oVas M+1

oVai -
Wi~ e 259,72 v, Yk}‘khk "

oY k

4

Uk =w, waAIIAgl{

Wy ,—1| JaVay Va, aVay Va,
+54, [{BY +(A1+2) V¥ }a:illlvlf(M,az)-l-{aYk +(A1+2)av1Yk S

X exhx (0 ,az)]

N+1
Wi, —1 oVas oVaz
L [{ TV x + (Az+2)aV2Yk}a -

oYk

anz

+ (Ag +2)

X exhi (a1, N) + { } exhk(ai, 0)
as=0

(3-3)

where the loading components at the boundary nodes are expressed with the weighting
functions defined by

{1 fora; =1, (1), M — 1
Wi =

+ fora; =0, a =M (3-4)
{1 for s = 1, (1), N — 1
Wa =
+ fora; =0, az = N (3-5)

These functions are related to the half stiffnesses of the edge members.
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It should be noti ed that the range of summation in Eq. (3-3) has been extended
over the boundary nodes which enables one to use the orthogonality properties with
respect to the special weighting functions, w; and ws, of he finite trigonometric series.
As a result, the boundary conditions are modified accordingly. These modified conditions
derived from Eq. (3-3) are:

aVa, oVa,

3V + (A1+2) ov.V5 = 0 or Yx =0 (3-6a, b)
at ay = 0, M, and a. = arbitrary

oVae oVae _ _

EVE + (A2+2) 5V—2Y_k =0 or Yr,=0 (3-7a, b)

at @z = 0, N, and a; = arbitrary

The relation between the actual and the modified boundary condition must be examined
carefully since this is one of the key points of this analysis. To illustrate this consider
the boundary node (0, az). From Eq. (3-2) the boundary condition requires

_ aVa1 _ e __1_ aVaz _ aVaz _ = -
[ E, WiYi 1 Tk + 2 ( Y% ? 5v.Yx )] ?1£a02<N—1 0 (3-8)
which can be rewritten as
8Va1 aVal e 1 oVas e 3Va2
[{W‘ (577~ 2amys ~ Te) + 2 (57, ~ 2o an.4s )}
- Ve, Ve, & -
W1 { oV + (A1 +2) ov.Yx }:l ‘;_1<—a02<N—1 =0 3-9)

The first bracket shown in the first line of Eq. (3-9) which appears in the double sum-
mation, yields the modified governing equation; the second bracket represents the modified
boundary conditions. Therefore, if the solution assumed satisfies the modified boundary
condition as well as the modified governing equation, this solution satisfies the true
conditions, Eq. (3-9).

The procedure for finding the solutions is to assume a set of deformation functions

for uj, ug, ug, 81, 02 and 05 that satisfy the vanishing of the first energy variation Eq. (3-3).

Boundary Conditions

Feasible boundary conditions for the general case of cylindrical latticed shells which
frequently occur were discussed in the preceding chapter. It is assumed that the cylin-
drical latticed shell is supported by a plane diaphragm. In practice, this condition can
be met by a plane structure or a wall which is rigid in its own plane but offers no re-
sistance against displacement perpendicular to its plane (15). Mathematically this results
in the following boundary conditions:
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At a1 = (
ug = ug = 1= 0 (3-10a, b, c)
Fi=M;=M;= 0 (3-11a, b, c)

The first three boundary conditions are self-explanatory. The fourth condition, Eg.
(3-11, a), requires the vanishing of the total axial force in the f; direction. The fifth and
the sixth conditions, Eq. (3-11d, c), require the vanishing of the total moment in the f2
and N directions, respectively.

Similar conditions are assumed at as = (. These are
u =ug = gz = 0 (3-12a, b, ¢)
Fe =M;=M; = 0 (3-13a, b, c)
It will be assumed that the boundary conditions are symmetric or anti-symmetric
with respect to half of the span, i. e. %I, g, and therefore similar statements hold for
the boundaries a; = M and a; = N.

To examine the foregoing boundary conditions, Eqs. (8-lla, b, c), these conditions

are written in expanded form through Eq. (3-8). The resultant expressions are

_ oVa, 1 /oVa, oVa e
Fl - El av,\h + T( ouy —As 8V2u1) _WIFI
2 2
= Cg (%—;Nl-— C}f} A1 e %:—A;'z)ul —CS—IﬁI“{ (A1+01 Nl) Us—Cg KN1 92— czzcsﬂz 03

—W1F‘; =0

_ _p. 9%as 1 (oVa, , 9Va, e
M: = — Eagopg -+ 2% A"’awez) —wiM,

= — %ENx ui+cg AA, ua+¢s{% (Ar+71) —1‘21,7(;71172}92—W1 M: =0

N aVas 1 anz 8Va:2 _ e
M, = E’avlo,’LT( 00, “Aﬂavzes) w1M,

= (:Lc‘§52u1—c103Auz+cs—KAI;1 Cs (A1+2—11) +cgl1; 01
2 291

2
+ cg{cs Az % (Ar+v1) + °6§71L‘N1+ czzvl;‘ (1172+272)} fs—wi M; =0
(3-14a, b, ¢)

It is seen that Eqs. (3-14, a, b, c) appear complicate and it will be almost impossible

to seek solutions which satisfy these conditions. However, the modified boundary conditions
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obtained by the energy approach result in simple expressions which yield exactly the same
physical meanings as shown in Eq. (3-9). The modified boundary conhitions are obtained
from Eq. (3-6a). They are

’ 8Va1 aval —
F= ouy + (A:+2) oviuy
’ 8Va1 anj, -
M, = Shy © (A1+2) V.e: = °
M; — aa\‘reasl + (A1+2) aaV‘/1a013 =0 (3—153, b, c)

Using Eqs. (2-21), (2-22) one obtains the following equations:

F; =C3(-*I:K;+ZC1A2)51U1+C8{%”1+CIAK(A71+4)}US+C85l g:=10

M; = ZCBLZIKglul — 2—(:-§I%é471\13—'20351 f2=0

M; =2c—21‘%4171 uz+Cg {C2AK(A71+4—2‘71) —_CSQK} -

+C8('—2C2A2—c62K2)51 9:=0 (3—163, b, C)

Similarly, by the use of Eq. (3-7a) the modified boundary condition at az = 0 is
obtained as follows:

Fj = T2 Faui + 2@~ 75 0o

M; =2(}f%472ua—203192 01

M) = =222 7y uy — 205 41 6o (3-17a, b, c)

Thus, Egs. (3-16a, b, ¢), (3-17a.b. ¢) are the required statements of the diaphragmed
cylindrical latticed shell in terms of the corresponding deformations,

A procedure which can be applied to obtain solutions for latticed shells consists in
arbitrarily assuming functions involving undetermined coefficients of the deformations uj,
ug, us, §1 2 and gs. As in the energy method in continuum mechanics the assumed
functions must be able to describe the particular deformed shape of the latticed shell
under consideratoin. The coefficients of the terms are the parameters to be found by
the condition that the total potential energy is stationary. It is essential, however, in
choosing the functions that they satisfy at least partially the boundary conditions of the
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problem,
For the analysis the solutions are assumed to de double finite Fourier series. There-
fore, their Euler coefficeints become the parameters or undetermined coefficients.
Similarly, it is convenient to represent the external loads F}, Fj, F§, M}, M}, and
M3 by double finite Fourier series in which the Euler coefficients of these fun tions are
obtained by the orthogonality properties of the corresponding trigonometric series.

The following double finite Fourier series are assumed for the solutions of the cylin-
drical latticed shell with diaphragm boundary conditions:

M N-1
u; (@1, ag) = 20 b U;m COs MM @3 Sin An ds
m= n=1

M-1 N

uz (@1, @) = 3 X U:m sin Am @3 COS An g
m=] n=1
M—1N=-1__5 .
us (@1, @2) = & x U, sinima; sinin as
m=] n=
M-1 N 1 .
01 (a1, az) = 2 6, Sin Mm@y cos Ana;
m=] n=¢(
M N"‘l 2 % 3
02 (@1, 1) = ¥ X 6., cosim a; sinin'ax
m=0 n=1 =
M N 3 ’
s (@1, @2) = > 3 4., COSAm a; COSAD (3-18a, -eer f)
m=( n=0
where
mT[ nil

The solutions described by Egs. (3-18a,---f) satisfy the proposed boundary conditions.
Fhis is obvious with regard to the three conditions Egs. (3. 10a,b,c). To show that
Eqs. (3-16a, b, c) are satisfied by the assumed solutions, Eqs. (3-18a,---f) are substituted
into Eqs. (3-16a, b, ¢). The results yield

» _M-1N-1 K ’ 1 8A . ,am
F, = m§1 n§1 Cg {(— ., T 2cy 52) (—2inwm)U_ - {T; sin? ="
+ 4¢3 AK cos? ZVZE} U:m — 2sin Am eZmn]

X sin Mm @; Sin An a»
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» _ M=1Nz1 _4mK . 1 8y1A . oM 03
Mz—nEl n§1 Cg[ T sin mU_  + L sin? = U s

+ 4sin A\m 02mn] sin \m @; sin An a»

s MZ1N=1 8Cav: .. o AM ;2  eing M _
& —mgl ngl = I:- L, Sln2TUmn+ o AK( 4sin 2 +4 271)

Cg AK
2

} 9lmn + 2 (2::2 A2 4 c62K2 ) sin Am 93mn]

X sin Mm a4 sin An . (3-19a, b, c)

From the above expressoins it is clear that the modified boundary conditions are
satisfied at a; = 0. A similar procedure can be followed for the boundary at a: = 0.
It shows that the condition Eqs. (3-12a, b, ¢) and (3-17a, b, c) are also satisfied.

As it has been demonstrated, all the boundary conditions are satisfied by the assumed
solutions. The case of using these solutions for other supports in which some of the
boundary conditions are violated will be discussed later.

To proceed with the solution, the external loals must be expanded into appropriate
finite double series:

Fi M N=1

1 "
= F__cos \m a; sin An a»
Wi m=( ngl mn 4

M-1 N _o
— = F? sin \m a; cos A»n «
We m§1 n§0 mn L 2

M"l N—'l 3 i .
= ¥ ¥ F’ sin \m @y sin An as (3-20a, b, c¢)
m=] n=1 mn

e
F3

The Euler coefficients can be derived from the following expressions:

2 M+1|N

T -1 ,—-1pe .
an_M_PmAl A2 F1 (a1. az) cos m @y Sin An az Y -
P2 o2 AL ACLPS ¢ ) sin : ? MRt
mn——m 1 2 2 a1, 2) SIN AN &1 COS ANl X2 a1=1 a2=0
B3 o gl a-Lpt g in \ in ) M-1 Nt
mn = MN 21 9 3 a1, @2) Sin Am @; sin An a: g 1l e

(3-21a, b, ¢)
where the following general orthogonality properties of finite series have been utilized

-1 &
Mz: sinm%sin%= +

al=]

M §2IMEK
2 i
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M +
> Wi Ccos ﬂa—l cos klg-‘ = I 3.ZIM‘K (3-22a, b)

al=0 1

in which I = 0, (1), oo, B%IMik is the Kronecker delta defined dy

. 0 i2IM+K
MK _ { (3-23)
i 1 i=2M+K

and I'm is a normalization factor defined by

M

I'm= > w; cos m [ as (3-24)
al=0 M

Although the inclusion of the external loads M}, M3, M does not require special

techniques, they are disregarded here as they are of less importance in practical problems.

In order to give specific examples of expanding loads into finite Fourier series, con-

sier an arbitrarily placed unit joint load which is represented by the Kronecker delta
F (a1, as) = F§ (a1, ) = F (as, as) = 85, 8, (3-25)

where, the Kronecker deltas, 851 anl 387,, are defined by Eq. (2-23). The Euler

coefficients of the assumed series (3-21a, b, c) become

Fin = M—i;cos Am £ sin An 7

Fin = ~Lsin Am £ cos An 7
m MI'n

Fon = J——-sin Mm £ sin An (3-26a, b, ¢)
mn MN 7 . s Dy

To secure the desired solution the variations of the deformations in the first energy
variation, e¢x hx in Eq. (3-3) need to be considered. They are regarded as kinematically
infinitesimal deformations. For the case when k = 1 and 4, these variations will take

the forms

€1 hy = duy = 2 2 8U , COS Am a; sin An ap
=0 n=1

50, = 2 E 89 mp Si0 MM a; COS An as (3-27a, b)

m-—1 m=0

i

€ hy

Substituting the solutions assumed for the deformations Egs. (3-18a,---f), the exter-
nal loads Eqs. (8-20a, b, ¢) and the variations of the deformations Eqs. (3-27a, b) into

the first energy variation, Eq. (3-3), and lstting the coefficients of SUL,, SUZ,, U3,
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3010, 8624, 863, vanish, one obtains six simultaneous algebraic equations for the un-
known Euler coefficients of the double series Eq. (3-18, a---f). This procedure will be
illustrated for the first of these six equations as follows:

8Va'1
8u1

anz
au1

-1 ,-1 e oVa, oVae
W1W2A1 AZ { + '—'FI—Alm— 2m}61h1

M+1|N+1
0

-1 - K2 A2
=w,w$A11A21[CS{QTI(A71+4)'°‘TT02A72}u1_CSﬁK(HCI) e
M+1|N+1
_(:—821—{(471+4)02—C2085293—Fi]€1h1 ’0

mn

M-N K2 2cy A2 4K?2 K2 2cy A2 4c, 1
i [Cs{L—1+ i 7o + Tk + (L—1— L, )cosh.m . cosxn}U

cg AK . 3 . 3
i (2+c¢y) sinam U — cg K(1 + cos Am) 0%, + 2cgcgsining,

1 1
—-an]SUmn =0

It should be pointed out that the terms in the brackets shown in the adove equations
are zero by the equilibrium equation at any node including the boundaries in the i,
direction. The complete list of these equilibrium equations are shown in Table 1. To
simplify the forthcoming expression, it will be assumed that the members of the latticed
shell are prismatic. It follows that the coefficients of the force-deformation relations for
the bending of the lattice member become

by = by = 2
71 = 71 = 3

The resultant expressions of the six simultaneous equations can be represented.

[Amn] [an] = | Fmn ] (3-29)
where, matrix | Amn is shown in Table 4.
1 2 3 1 2 3 T
matrix | Xmn | = [Umn, Ui Vo Oowr e hw

T
matrix an = [F;n/cs’ F:zn/CS F:ln/cs 0) 0’ 0’]
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Therefore, [an is given by

[xmn] - [Amn]_l [FmJ (3-30)

Numerical Example

As an illustration of the preceding formulas, consider the circular cylindrical latticed

shell shown in Fig. 7. The following two cases are considered:

Case 1 Vertical Load, Pp = 0.1 kip at every node except at the boundary
nodes, where Pg/2 is applied.

TABLE 4 MARIX (Amn)

An| O | As| O | As | As

O Az | O Ay | O A

A | O | Az | A} As | O

O A | A | Ay | O A

Ais| O | Ass| O Ass | O

Ag | A | O | Ass| O | Aes

where

4C2

2cL A2 (1—cosAm) + L, (1—cos An)

L1

K2
Ap = Ta (1+cos Am) +

A= — % (24+c1) sinam

Ajis= — K (1+cos\m)

A6 = 2c; sin An

Ap = 41?

5. (1—cos wm) + z—fi (1—cos An)
1 2

Az = csK(1—cos Am)

Ay = — 2c3 A sin xm
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2
Az = % (1—cos Am) + C—QII%Z (14+cos Mm) + 51%5 (I—cos An)

A3y = — 2c5 sin am

Azs = 2A sin am

Ay = Ié‘ (cs K2+42cq A2) + dcs Ly _ 2L, (c3K2 +cg A2) cos Am + %%I‘Ecos An

3 3 4
A= — K%LI (cs—cCg) sin Am
L,
Az = 3 (4+2cq) + 2cosxm — 2cy cos An)
2 2
Ag = Ié‘ (4c3 Az + C“ZK ) + 40231‘2 + Ii; (ch Az + c62K ) cosym + -——2ch2 cosan

Case 2 Vertical Load, P = 0.1 kip at nodes (1, 2), (3, 2), (1, 3) and (3, 3).
Under these symmetric loading conditions only one quarter of the
latticed shell needs to be considered.

The geometric and member properties used in the examples are:

= il = 2sinJL
A = cos <5 K = 2sin 13
A; = A, = 2.2lin2 Is = Is = 6. 00in.*
I, = Is = 0.77in4 Ji = J1 = 0.054in+

Ly = L; = 60. in.

The Euler coefficients [Xmn] in Eq. (3-30) are computed for the two cases above.
They require the inversion of a 6 X 6 matrix for each combination of indices m and n.

Since only symmetrical loads with respect to 1;—4 and g are considered, the indices take

only odd integer values. The Euler coefficients are substituted into Egs. (3-18a, ---f) to
obtain the displacements and rotations at each node. The calculations were carried out
by a digital computer. The results which represent the closed form solutions for the
latticed shell are listed in Table 5. The above cases were also computed by open form
method. Thirty simultaneous equations were established using the governing difference
equation in Table 1, and the boundary conditions in Tables 2 and 3. The results obtained
after inverting a 30 X 30 matrix are also listed in Table 5. It should be noticed that if
the number of joinst is increased, the closed form solutions will still require the inversion
of a 6 X 6 matrix. However, the matrix needed for the solution by open form method
will increase considerable as one needs to add six unknown deformations for each addi-
tional node.
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The comparisons of these results show surprisingly good agreement and give confi-
dence in tbe method proposed here. The displacements in the f. direction, us (@1, a2)
are not listed, since the results show that the order of these values is about 1/1000 of
those for u; (@1, a2) and us (a1, a2). The largest values for the displacements u;
(a1, az) and us (@1, «@2) and the rotations @1 (a1, a2), 62 (@1, az) and @3 (a1, @2)
occur at nodes (0, 2), (2, 2), (2, 0), (0, 2) and (0, 0) respectively,

For the design of the member of the latticed shell, one may desire to have the values
of the deformations about the principal coordinates, but this should not present a problem
as they can be easily obtained by using the relations shown in Egs. (2-13), (2-14), (2-19)
and (2-20). The values thus obtained are substituted into the force-deformation relations
Egs. (2-2) through (2-9), which may be needed for the design of members of the
latticed shell,

(4.5)

(0.0) (4.0)

FIG. 7 CIRCULAR CYLINDRICAL LATTICED SHELL
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this analysis. The other set of boundary conditions are

a; = 0and ay = M
U = uz = 1 = F1 = M; =Ms =0 (3-32a,---f)

For a more efficient treatment the general problem will be unfolded into the following
two cases:

(a) Symmetric behavior of the latticed shell with respect to H thus the deformation

7’
components u;, us, §: are symmetric with respect to g, while components us, 41,
gs are anti-symmetric.

(b) Anti-symmetric behavior of the latticed shell with respect to g, which requires that

the deformation components u;, us, #» be anti-symmetric with respect to g, while
the components ug, §;, 63 would be symmetric.
Only the first case will be discussed in detail since the second case can be treated

by following the same procedure.

Symmetric Case

Solutions are ssumed to be

M N-1 .
u (a1, a2) = 32 3 Urim Cos AMm @3 Sin An aq
m={_) n=1
M-1 N 2 .
ue (a1, dz) = 3 Umn sin A\m a3 COS An as
m=1 n=1
M—1N-=1 _ . .
us (a1, az) = 3 3 Umn sin Mm @ sin An as
m=]1 n=]
M-1 N 1 .
01 (ay, az) = T 6., sinAmai cosAna:
m=] n=(
M N1 9 \
O: (@1, @2) = 3 X 6, cosima; sininas
m=() n= I
M N 3
03 (ay, @2) = > 3 @, COSAMM @i COSAD @ (3-33a,---f)
m=( n=(

where, m =0,1,2,---, M. n=1,3,5, N (or N—1) odd numbers only.
As it has been pointed out in the previous section the above solutions satisfy all the
modified boundary conditions except one, i. e.

01 =0at az =0 and a: = N (3-34)

By using Eq. (3-33d) this condition becomes
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TABLE 5 - Numerical Result (Diaphragm Supports)
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Case 1 Case 1 Case 2 Case 2
Closed Open Closed Open Note
Form Form Form Form
u1 (0,1) — 0. 4213 - 0. 4219 — 0. 1292 —= 0, 1292
ur (1,1) — 0. 2977 — 0. 2977 - 0. 0913 — 0. 0926 T
u1 (0,2) — 0. 6702 — 0. 6703 — 0. 2190 — 0. 2190
ur (1,2) — 0. 4737 — 0. 4738 — 0. 1541 — 0. 1541
us (1,1) — 0. 4609 — 0. 4610 - 0. 1417 — 0. 1418
us (2,1) — 0. 6497 — 0. 6498 -~ 0. 1988 — 0. 1988 "
us (1,2) - 0. 7332 - 0. 7332 — 0. 2423 — 0. 2423
us (2,2) — 1. 0344 — 1. 0344 — 0. 3326 — 0. 3326
01 (1,0) — 1. 2325 — 1. 2326 — 0. 2134 — 0. 2134
01 (2,0) -~ 1. 7366 — 1. 7367 — 0. 2993 — 0. 2993
f1 (1,1) — 0. 9693 — 0. 9694 — 0. 1677 — 0. 1677 X 1
01 (2,1) — 1. 3678 — 1. 3679 — 0. 2360 — 0. 2360 150
01 (1,2) ~ 0. 3531 - 0. 3531 — 0. 0610 — 0. 0610
01 (2,2) — 0. 4995 — 0. 4995 — 0. 0863 — 0. 0863
f2 (0,1) 0. 7200 0. 7201 0. 1252 0. 1252
02 (1.1) 0. 5032 0. 5033 0. 0862 0. 0862 % 1
f2 (0.2) 1. 1441 1. 1442 0. 1986 0. 1986 150
02 (1,2) 0. 8022 0. 8022 0. 1377 0. 1377
A3 (0,0) 0. 5373 0. 5374 0. 0931 0. 0931
fs (1,0) 0. 3798 0. 3798 0. 0657 0. 0657
03 (0,1) 0. 4262 0. 4262 0. 0737 0.0737 |y _1_
03 (1,1) 0. 3013 0. 3013 0. 0521 0. 0521 150
fs (0,2) 0. 1575 0. 1575 0. 0272 0. 0272
03 (1,2) 0. 1114 0. 1114 0. 0192 0. 0192

. 2 CIRCULAR CYLINDRICAL LATTICED SHELLS
WITH CLAMPED CONDITIONS

The objective of the following section is to modify the double series solutions, Egs.
(3-18a, f) to satisfy the boundary conditions of the two other practical cases for which
closed form solutions are desired.

If, instead of the boundary condition at @ = 0 and a, = N, Egs. (3-12) and (3-13),
the edges which are clamped but free to move axially are considered. The boundary
conditions at these edges are

U = Us = @1 = g2 = Fp = My =0 (3-3la,---)

A study of the feasibility of using solutions Egs. (3-18a,---f) to solve this problem
shows that they satisfy all the boundary conditions except condition Eq. (3-31c).

A search in the literature reveals no solution to these boundary supports but the
following discrete modified variational method solves the problem.

As in the previous section, the edge members with half-stiffnesses are considered in
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1 .. mlla
E %T 6, Sin ~—M-1 =0 (3-35)

Since the above expression should be satisfied for all values of «y, it follows that
1
%‘, 0pn = 0 (3-36)

This condition, which would be the one violated by solutions Eq. (3-33a, ---f), is called
the constraint condition.
The first energy variation Eq. (3-2) will be modified as follows:

aVal aVaz
Y, Tovy T

N+1
Wo =1 8Va1 an
0 +7A2 |:{ oYk +(A:+2) aVIYk}

oVay OVa, (50 sN )

3 1. -1 e oavay OV( . o
Uk =wiw2 A" A, { k Al8V1Yk 2ov: Yk a2 22

M+1

XBltX (al)}ek hi

X ek hi (ay, dz):l

Wi, -1 !8‘/0&2 oVas
+ 2 Al \:{aYk + (A2 +2) VaYr

M+1
=0 (3-37)

+Bi(822 ——31:2))» (aﬂ}ek hk (@i, az)} az=10 0

az=N

1 for K= 14

where, Sﬁ, is the Kronecker delta defined by S;i = %0 for K o= 4

A (1) is a modifica-
tion function defined at a2z = 0 and N
and wi, w, represent weighting functions Eqs. (3-4), (3-5).
Expanding the modification function A («;) in the following series one obtains

M—1
M) = 3 Im sin dm ay (3-38)
m=1]1

The modification function M (a,) is defined only at the boundaries and has charac-
teristics similar to the Lagrange multiplier in a functional form. Physically the functions
are related directly to forces which should be applied to the boundaries in order to obtain
the solution which will satisfy the true boundary conditions.

It should be observed that the term (89, — 8Y,) X 8¢ X\ (a1) appearing in Eq. (3-37)
is subtracted from the first bracket and exactly the same term is added in the third
term. Therefore, there is no change in the first energy variation.

The terms in the double summation which are shown in the first line of Eq. (3-37)

will be designated as the modified first energy variation. They take the form,

_— -1 ,~-119Va;  °Vas € oVa, oVas
U = w1 W Al AZ [BYK_FBW—TK—AlaVIYK—A2aV2YE
M+1|{N+1

— (89, -8, )80 (al)} ex hx (3-39)
a1=0 d2=0
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From the above considerations it is seen that the problem reduces to one of solving
the modified first energy variation Eq. (3-39) and the boundary constraint condition Eq.
(3-36).

The external loads F{, F3, and F§ are expressed by the same type of finite double
series considered in the previous section, Egs. (3-20a, b, c), but the index n takes only
odd integer values.

Substituting the external loads Egs. (3-20a, b, ¢), the double finite series solution for
the deformations, Egs. (3-33a,---f), and the modification function Eq. (3-38), into the
modified first energy variation, Eq. (3-39), one obtains a set of simultaneous algebraic
equations represented by the following matrix

(Amn] [an] = [an] + [ Am ] . (3-40)

where
Amn is shown in Table 4
1 2 3 1 2 3 &
Xmn | = U Unine u- .. onr Do Gmn]

T
Fmn | = Fnlm/c& F:m/c& F:m/c& 0, 0, 0]

N

4 T
am | =0, 0, 0, 2V ym, 0, 0]

The resultant matrix, Eq. (3-40), establishes the relation between the Euler coeffi-
cients [Xmn], the coefficients of the external loads [Fmn] and the coefficients of the yet

unknown modification function, xm.
A solution for the coefficients of the unknown deformations is indicated below

o] o]

If the matrix [Dy; (m, n) ] represents the inverse of the 6 X 6 matrix [Amn], the

-1
+ [Aan [ Am ] (3-41)

term gL, can be written as

erim = [Du (m, n)} [anil + 4";1“ D4y (m,n) Im (3-42)

where [Dy; (m,n) ] j= 1.2, 6, are the components of the inverse matrix [Di; (m, n)]
Substitution of the solution Eq. (3-42) into the constraint condition, Eq. (3-36)
yields the solution for im. These steps are shown in the equations which follows:
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4

+ W 2 Wn D44. (m, 1’1) Zm =0 (3"43)

mn

Tel = z[mi (m, n)] [an
n n

~ N2 (DM (m, n)) [an]
m = — L (3-44)
4 T wn D44 (m, n)

where n=1, 3,5, ---, N (or N—1) odd number only
N : number of nodes in the a, — direction

Introducing the above solution into Eq. (3-41) the Euler coefficients, Uk, Bl Ul

0k, 02, 62,, are obtained in terms of the konwn coefficients [Fma]. These solutions
satisfy the necessary condition that the total potential energy be stationary, Eq. (3-37),
since they satisfy the modified firste energy variation, Eq. (3-39), as well as all of the
modified boundary conditions.

Numerical Example 2

To illustrate the preceding formulas the circular cylindrical latticed shell shown in Fig.

7 is again considered. The two cases of loading of Example 1 are also investigated by

closed form and open form methods. Therefore, there is no need to list the data shown
in the previous example.

Computational Procedure

As shown in Eqgs. (3-41) and (3-44), the closed form solutions require 6 X 6 matrix
arithmetic. The open form formulations obtained by using Tables 1, 2, and 3 give 28
simultaneous equations since the boundary conditions 61 (1, 0) = 61 (2, 0) = 0, are
prescribed. The values obtained by the two different methods are listed in Table 6
and the comparison of these values shows an excellent agreement. From the above
presentation and the illustrated examples, it can be concluded that the discrete modified
variational method is an effective procedure in obtaining exact closed form solutions to
structural problems.

A study of the results shown indicates that the largest values of the deformations,
u; (@1, as), us (@1, as2), 61 (@1, az), 2 (a1, a2) and @s (a1, az) occur at nodes (0, 2),
2,2), (0,2), (2,1) and (0, 0), while the maximum value of g3 (a1, a2) occurs at (0, 1)
for Case 2.

It is interesting to compare the results of Examples 1 and 2, since they differ only by
the restraint condition imposed at @, = 0, N in Example 2. All the deformations corre-
sponding to the later example decrease significantly as expected. For example, the largest
displacement in the N direction for Case 1 is —1. 034 in. in Example 1, while it has the
value of —0. 418 in. in Example 2.

The above results also imply that the proper design of supports can provide great
saving in materials.
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TABLE 6 - Numerical Result 2 (Diaphragm Supports
With Rotation Constraints)

gilse é 8ase 1 Czlise g 8ase 2

ase pen Close gen

Form Form Form Form Note
u1 (0,1) — 0. 1257 — 0. 1258 — 0. 0412 — 0. 0412

ug (1,1) — 0. 0888 — 0. 0888 — 0. 0290 — 0. 0290 S
u1 (0,2) — 0. 2717 - 0. 2717 - 0. 1003 — 0. 1003

ut (1.2) — 0. 1919 — 0. 1919 - 0. 0702 — 0. 0701

us (1,1) — 0. 1376 — 0. 1376 — 0. 0455 — 0. 0455

us (2,1) — 0. 1927 — 0. 1928 — 0. 0626 — 0. 0626 in
us (1,2) — 0. 2975 — 0. 2976 — 0. 1125 — 0. 1126

us (2,2) — 0. 4183 — 0. 4183 — 0. 1491 — 0. 1491

91(1,1) — 0. 4958 — 0. 4958 — 0. 1831 — 0. 1831

91(2,1) | ~0.6965 | —0.6966 | —0.242 | —0.243 | 1
01(1,2) — 0. 2318 — 0. 2318 — 0. 1053 ~— 0. 1053 150
61(2,2) — 0. 3276 — 0. 3277 — 0. 1332 — 0. 1333

92(0,1) 0. 2162 0. 2162 0. 0732 0. 0732

#2Q,1) 0. 1479 0. 1479 0. 0470 0. 0470 % 1
0 2(0,2) 0. 4662 0. 4664 0. 1892 0. 1892 150
02(1,2) 0. 3228 0. 3229 0. 1059 0. 1060

03(0,0) 0. 1715 0. 1715 0. 0546 0. 0546

93(1,0) 0. 1209 0. 1209 0. 0384 0. 0384

93(0,1) 0. 1682 0. 1682 0. 0627 0. 0627 X 1
0s(1,1) 0. 1189 0. 1189 0. 0441 0. 0441 150
435(0,2) 0. 1010 0. 1009 0. 0409 0. 0409

03(1,2) 0. 0713 0. 0713 0. 0288 0. 0288

. 3 CIRCULAR CYLINDRICAL LATTICED SHELLS WITH
POLYGONAL RIBBED BOUNDARY AT a; =0, N

In the previous two sections it has been assumed that diaphragm supports exist
at @y = 0, M and a: = 0, N. The following section analyses a more general type of
boundary condition which occurs frequently in the design of roofs.

It is assumed that the two straight edge members at a; = 0 and M have stiffnesses
which are those half of the interior ones, but the two polygonal edge members at a; = 0
and N are the same as the interior ones.

With these boundary members, the expression for the first energy variation Eq.
(2-32) must be modified accordingly. Similar to Egs. (3-1) and (3-2) one can write as

6
8U = 3 8Uk (3-45)
K=1
where
_a-1,-1|9Vas  9Va: ,.e , oVay IVas M N
8UK_AI A2 |:8YK L oYk TK B 8V1YK—A2 aszK} ex hx ar=1|as=1
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N+1+l(aVa2_ 2Va )
2\ 9Yx 2aV2YK

~1 oVa; , 9Vay e }
+ A 4 =—wi T exhg M, «s)
2 [{ oYk oYk K a;=M

a1=M

N N+1
aVa1 _ e
X exkhx (M, a2) ) + (— E, v, Ye "t TK) exhx (0, az)

ay =
N:I
1
M+1
-1 aVaz aVag e}
+A Widav— Fagov-—T ex hk
' [l{aYK ovaYk " Xfg =N o

1 (8Va'2 Va,

+7(%ve ~ 2 a7,v%) afﬁ(])m{ e

n (an oVa;, )

M
BYe ~Mige.vx)  exbx (@, N) ll

M+1
0

aVaz
+ W]{_E2 vaYx T }agiKOhK

oVay oVay M %
+(Sre - ev—lﬁ)az SKbx (@1, 0 ll } e

Extending the range of double summation in order to use the orthogonality properties of
trigonometric series the following expression for the first energy variation is obtained:

1,1 [oVay , BVa aVay oVas M+1 |N+1
Uk =w, Al Az {§YE+87§— T — A v, Yk 2§"V—‘——2YK}€K hk .
N+1
1 aVa'l le -y
M+1
-1 oVa, 9Vay, | 9Vas _
+ W1 Al [(EZ SWYK)aGEI&K(aI,N) ( Y +aV2YK) EK(];JK <a1’0):| 1 =0
(3-47)
The modified boundary conditions derived from Eq. (3-47) are written as
At @y = 0 and M, and a; = arbitrary
T+ (A +D 2% =0 or Y (@, an) =0 (3-48a, b)
At a; = 0, and a; = arbitrary
ov oV
‘ﬁ% + avng =0 or Yx (a1, as) =0 (3-49a, b)

At a2 = N, and a; = arbitrary

oVas _ _
E, 3VaYK 0 or Yk (a1,az) =0 (3-50a, b)
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The following boundary conditions are to be imposed:
(a) Diaphragm supports at a@; = 0, and a1 = M, that is

U = Ug = @y = Fl = Mz = M8 =0 (3'—513,"'f)

(b) Polygonal ribbed supports at as = 0 and a2 = N, which imply that these edges are
free supports. The mathematical statement of these boundary conditions requires

Fl = Fz = F3 = M1 = Mz = Ms = O (3—528.,f)

Using Eq. (3-46) the boundary conditions in Egs. (3-52a,---f) are represented by the
following expression:

_ BVai_ aVal_ 8Va1 _ L
Hr=—Epo v~ Txt ave ~ 2ag, 75" sy

where, k =1, 2,---, 6 gives H; = F;, H, = F, Hy = F3, Hy = My, Hs = M;, Hg = M.

If the above equations are written in terms of the deformations and external loads, they
take the form :

FI-CS{ZL TRNEE 2C2A2} ~SAR 210 1 ug

ek (7144) 02—-2c2 cy N 93—F° =0

3

F2=c3( ZC" 1171———A2)u2—Kc3 cs /1 61+Acscg F1 93— =0
Fy — °8AK @+c) A u1+cg{ 2 A% g Bl L (71 +4) - }us
+2c5¢5 Nz 91—Acs 1 —F;, =0 (3-54a, - f)
M; = —9-3;&4171 Uz —Cs C5 Ag u3+ca{caK L, (F1+4—2y,) — A2C6I;1A71
+ Sk (A2+'>'2)} 01+ AL (b, —bg) 73 05~ M =0
Ms= - S (7,14 nitcea 51u3+c8{ gi (W1 +271) —%07 Az} 02 -M =0
Ms =czCg Az us—Acs Cs 41 u2+c_gK_Alﬂ (Ce—Cs) H1 01+c8{ 2631‘1 (7 1+2v4)
+C—L °2L2 (A2+72)}93—Me =0
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A close examination of the above equations shows that it will be very difficult to find
solutions which satisfy the above conditions by ordinary methods. However, the follow-
ing approach reduces them to simple expressions called modified boundary conditions.

Eq. (3-53) can be rewritten as

Hx = H} + HE (3-55)
where
1 oVa, Vaq _ e 8Va1 . oVas
HK oYk * oYx TK A oviYk As ovaYx
2 oVas oVas 2
Hg = — ( s a—_szK) (3-56a, b)

It is observed that Hé, Eq. (3-56a), is the same expression which appears in the
bracket of the double summation of Eq. (3-46). Since Hf{ = 0 is an equilibrium con-
dition at @z = 0, HZ = 0 can be considered the modified boundary condition stated in
Eq. (3-49a). They are

H2=F1=Cg{——21?2—2‘V2U1—‘C2 (2 - ve) 93}20

H2=F1=Cs{—“2Lc2iV2Ua+Cs(2”‘V2) 91}=0

H2=M1=C3{C5V2U3—c5—3];2(3—V2) 01}=0
H: =M= - SClig, o -0
Hz-:M;:Cs{—Cszul—cz—?}z‘@_Vz) 03}=0 (3-57a, -+ f)

For simplicity the properties of the members of the latticed shell used in the above
expressions correspond to those of prismatic members.

To accomplish the desired solution, one needs to find expressions which would satisfy
the modified boundary conditions, Eq. (3-57,---f) and the vanishing of the first energy
variation, Eq. (3-46).

Prior to this work no closed form solution which satisfies all these conditions has
been obtained.

The objective of this section is to modify the available solutions to obtain solutions
to this new problem. As in the previous section, the solution of the general problem is
obtained by superimposing solutions for the cases of symmetry and anti-symmetry about
N/2. '
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The following solutions are assumed for the displacments and rotations. The as-
sumption takes account of the possibility that neither the displacements nor the rotations
at the boundaries, a; = 0 and N, are zero. Only the symmetric case will be given in
detail since the anti-symmetric case follows exactly the same procedure. The solutions are

_ 1 " 1
uy (ay, az) = E %} Umn cosMm «; Sin An (az + *2*)
we(a, az) = 2 2 U? sin Ama; COS An (dz + —1—)
) m n mB 2
us(a, az) = 2 X U3 sin Amay sin An (az + L)
; m n oI 2
(a1, az) = 2 2 01 sin Amea; cos An (a + —1—)
) =l mn 1 2 2
f2(a:, as) = ¥ T 62 cos xmay sin An (az + ~1—)
’ m n MmN 2
s (a1, az) = § %: H:m COS AMma; COS An (az + —%) (3-58,---f)

wherem =1, (1), ,M. n=1,3,5 , N (or N+1 odd number only

R ..U W —1\’;%

The solutions, Egs. (3-58a,---f) were assumed to be composed of functions of the
independent variables a; and a;. For the problem under consideration, the boundary
conditions at @; = 0 and M are the same in the last section and for this reason that
part of the solution will remain the same. Substituting Eqgs. (3-58a,---f) into the modified
boundary conditions one finds that only F; = 0 is satisfied.

Therefore, the modification of the solutions used in the previous cases is required.
This is better explained by considering the first energy variation,

6
U= 3 8Uk=0 (3-59)
K=1
where
_ -1 ,-1)0Vas , 9Vay e oVa; . 9Vas 1 0

U = w;, Al AZ {*aY;'F B TK'—AI _aV1YK 28V2YK )"K (a1) 8«2

" X M+1 |N+1

=y (@) 8, rex hi (@1, a2)
. 0

N+1
1 -1 oVay oVa, M 0
+—2— AZ [{—aYE‘*‘ (AI +2)5—V‘1YT<} (Sal—sul) thK (al, a2)i| 0
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-1 oVas 2 _)9Vay , oVas
+ Wy Al I:{ (Az +1) ov.Yx + )"K (@1) }a2€§§1{ (a1, N) { oYk + ovaYx
1 M~+1
— Mg (a1) } ek hg (a1, 0) (3-60)
o= a1 =0

where xé (a1) and )»1% (a1), k=1, 2, --- 6 are modification functions defined at az = 0

and as = N, respectively, and assumed as follows:

= M _
7\1 (@) = lf (1) = X Zim COSs Am a;
m=0
1 =9 M—-1 _ "
A, (a)=—1, (a1) = lzm sin Mm ay
m=1
1 =2 M—-1 _ "
My (@) = 25 (@) = T I3m sin Mm ai
=]
1 <D M-—1 _ .
My (a1)=-—).4 (1) = ¥ A4m sin Mm a;y
m=
1 it M _
7\45 (a1) = 25 (1) = ¥ ZA5m C€OS MM a4
m={
1 - M _
Ag (@)=—73¢ (@) = 3 em COS MM ai (3-61)
m=0

It should be noted that the terms )\é, )“12( are subtracted from the first bracket and
exactly the same terms are added to the third bracket. Therefore, by comparing Eq.
(3-60) with Eq. (3-46), one finds no changes in the first energy variation. It will be
seen from these expressions that the bracket of the double summation yields equilibrium
equations which contain the modification fuctions. The bracket of the single summation
with respect to @» and «; yields respectively the modified boundary conditions at a; = 0
and M, and the modified boundary condition with the modification function at a; =0
and N,

The modification functions A (a:) in the previous section were used to satisfy the
geometric boundary condition which was not fulfilled by the solutions assumed.

A similar use will be required of the modification functions, ké (1) and >»12< (as),
k=1, 2, ..-6. Physically, these functions relate the forces which should be applied
along the boundary edges a2 = 0 and a2 = N, in order to satisfy the prescribed boundary
conditions. ‘

A study of the boundary conditions which includes the modification functions can be
made by considering Eqs. (3-46) and (3-60). The results yield the condition required at
@z = 0, which is
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aVaz aVa1 8Va1

Hk = ¥ E2 aﬁYK = T =+ aY A1 aVlYK (3—62)

The above expression can be rewritten as
1 —2
Hg =g, + T, (3-63)
where
1 _ 8Va1 8Va2 __ _ anl aVaz 1 0

A= 3% * % ~ Tk~ A1 on T 2 amve e @) S

_ oV oV

A = - *achf — aV:;?K +ag (@) 82, (3-64a, b)

Similar equations will be obtained at @, = N. It should be noticed that fi} =0, Eq.
(3-64a), represents the governing equation of the system. Therefore, the problem becomes
that of solving this equation extended over the boundary and the modified boundary con-
ditions prescribed as fZ.

Since the symmetric case is being considered only the boundary conditions at as = 0
need be examined.

The modified boundary conditions with modification function, HE(, are represented by
the following equations:

ITI? = Fi = — ZCECS Va2 U3 — Ca Cg (2 Vz) Gs + )" (al) =0

ITI;: F;:——cics Vz'llg"i‘)\: (a1)—0
H§=F;=—Eﬁc—8Vzus+cscg(2 Va) 61+ M) (1) =0
ﬁi:Mi:+c5c8V2us—-C5—(;’8—I~‘g—(3—Vz) 81+ A, (@) =0
al=Ml=—S%lig y il =0

5 V2T 3 BURT s VT

A2 =M!=—cicovou — 3933—1‘—2 B—v2) 05 + A} (1) =0 (3-65a,--f)

Substitution of Egs. (3-58a, ---f) and (3-6la,---f) into Eqgs. (3-65a, ---f) yields the
following expressions at a., = constant.

bk iiE”—s'n——U +ZCzcosz‘rl¢93 = Alm
L. 2

P l:—4c—5—sm——U3 « 265 coslhzri ol } e
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3 M 1 | I4m
% — 2c5 sm U T Cs L2 cos o aan e
= ( sin M0 0 } Asm
n Cs
§ LZC2 sin }zrl Unl'ln + ¢z Ls cos 2”211 0311] = 166:’ (3-66a,---f)
where n =1, 3, 5, N (or N + 1) odd integer numbers only
It can be easily concluded from Egs. (3-66a, c, d, f) that
—4m = = Lzz Z3m, zem = ‘%‘Zlmn (3—673: b)

Therefore, the foregoing conditions which will be called the

constraint conditions,

are reduced to the three algebraic equations summed over n. For convenience, they are
written in the following matrix form:

elo] - [son] -

where

G

1 2 3
[anJ = {Umn. € iy Umn.

T
[ im ] = [Il/ca, 12/Cs, Z3/Cs, is/Cs:l

) [

(3-68)
0 0 0 0  2cscos 12“—
0 0 0 0 0

4cs An an
0 Ty sin —— 2 2c5c0s 2 0 0
2c 7L 1 . AN

0 0 0 3 Sin ——2' 0

(3-69)
1 2 s |7

On Ooan 6mn} (3-70)
3-71)

and (]} is the unit matrix with a 4 x 4 dimension.

To satisfy U = 0, Eq. (3-60), the external loads will be expanded into appropriate

finite double series:

F (Of1 % az) Z F

= mn

F; (a1, a2) = 5 5 Fri

- n

=

cos \ma; sin An (az + %—)

sin Ameai cos An (az +- —;—)
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F (ay, az) = Z: F3 sin xma; sin An (az ¥ —1——) (3-72a, b, ¢)

q A 2

The Euler coefficients, F,, FZ,, F3, are obtained for arbitrarily unit joint loads

and the solutions corresponding to these loads are usually known as Green’s function
solutions.
For the loads, one can write

F (@1, @) = F; (a1, @) = F; (an, @) =85 87, (3-73a, b, ©)

After use is made of the orthogonality properties of the trigonometric functions one
obtains the coefficients as follows:

T 1
an =T (N+1) cos Am ¢ sin Xn( +-§—)

2 4yn L
F: = N S am £ cos An (ﬂ < —2—)

F:nx = TVITI‘%LT sin Axm & sin An (1, + %—) (3-74a, b, ¢)

wherem =1, (1), M, n=1, 3, 5---N (or N + 1) odd numbers only.
I'm is a normalization factor defined by Eq. (3-24).
v¥n is a weighting function defined by

1 0
¥n=1- - 8 (3-75)

General orthogonality properties which were used in the above derivations are

N i 1 kT 1y  N+1 21 N+1) *K -
ey S NHT (a2 + 5)cos xop (e + 5) = 297 O (3-76)

in which +; is defined by Eq. (3-75) replacing n by i.

N . i T k
2 sin “I\;% (“2+ 2)51" NR (“2+ 2

1 ) N+1 §21 M+1) 2K
a2=0

== —2~ ; @-77)

Following the same procedure shown in the previous section, the solutions assumed
for the defomations, Eqs. (3-58a, --- f), the modification fuctions, Eqgs. (3-61a,---f), and
the external loads, Egs. (3-72a, b, c), are substituted into Egs. (3-59) and (3-60).

By establishing that the coefficients of §UL,, sU2,, U2, 56L,, 86.2,, 663, must

vanish, six simultaneous algebraic equations are obtained. They are written in the foll-
owing matrix form:

[smn] [xmm] = 42 [Fm] -3 [en] [:m] @78)
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where [ Ama ] is listed in Table 4 in which

n = Nﬂ
[an] as defined by Eq. (3-70)

[ m } as defined by Eq. (3-71)

v¥rn is the weighting function defined by Eq. (3-75)

and
sin —"2‘3- 0 0 0
0 cos Azn— 0 0
0 0 sin )“Tn 0
C =
[ In] . g L; cos -)% . (3-79)

0 0 0 sin 71

—[éi cos —)\'23 0 0 0

The resultant matrix form, Eq. (3-78), relates the Euler coefficients of the deforma-
tions, [Xmn], to the coefficients of external load, [Fmn], and to the coefficients of the
modification functions, [Amn]. Substituting the matrix [Xmna] into the constraint equation,
Eq. (3-68), one obtains a matrix equation from which the solution for the matrix [im]
can be obtaineid. The solution is then substituted into Eq. (3-78), and the resultant
matrix equation is solved for a new set of modified coefficients with known coefficients.

The steps to be followed are indicated below. Solving Eq. (3-78) for [ Xmn] one finds

-1 - -1
[an] = n [Amn} [an + %% [Amn] [Cl n] [ im ] (3-80)

Substitution of Eq. (3-80) into Eq. (3-68) yields
p3 [«lrn [an} I:Amn].1 [an— + %% [Cz n] [Amu]_1 [Cln] lim:”
()

From the above result one obtains
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] [[1]- st g e ][]

% 5 [m [czn] [Amn]“1 {an” (3-82)

and

X X [«pn [czn] [AmnTI [an]] (3-83)

Numerical Example 3

As an illustration of the preceding formulas, the following two models are considered.
The first model is identical to the one considered in the previous sections and is shown
in Fig. 7. The second one is a smaller model in which M = 2 and N = 3 as shown in
Fig. 8. It will be designated as the 2 x 3 model.

The following loading cases are illustrated: For the 4 x 5 model,

Case 1: A vertical load Po = 0.1 kip at every node except at the boundary nodes

a1 = 0 and a; = M, where Po/2 is applied.

Case 2. A vertical load Po = 0.1 kip at nodes (1, 2), (1, 3), (3, 2) and (3, 3)
For the next 2 x 3 model

A vertical load Po = 0. 1 kip at nodes (1, 1) and {1, 2)

Under these symmetric loading conditions, one needs to consider only one quarter of

the latticed shell. The data used here are the same as that used in the previous examples.

Computalional Procedure

Eqgs. (3-58a,---f), (3-82) and (3-83) were programmed for a digital computer and
the results are listed in Table 7. The displacements, us: (@i, a:) were neglected in the
calculations of the closed form solutions since they were small in comparison with the
other displacements. Therefore, the procedure required a 5 x 5 matrix arithmetic. The
formulation needed for the open form solutions were obtained by using Tables 1 and 2
and Eqs. (3-54a,---f). It yielded 36 simultaneous equations in the unknown deformations.

The result obtained for Case 1 indicates that each circular polygon of the latticed
shell behaves similar to the others; that is, the interconnecting members do not carry
any load. However, under the loading condition considered in Case 2 they distribute the
external loads more efficiently.

Numerical results for both cases are listed in Table 7 and their comparisons show a
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good agreement between the values obtained by the two different methods. The largest
displacements of us (a3, @2), us(ai, az) and the rotation g2 (a1, @) for Case 1 are re-
spectively u; (0, @), us (2, as), 620, @) with as =0,1,2, For Case 2 the largest de-
formations, ui(a:, @s), us(ai, asz), 01(a1, az), f2(ar, as) and ga(a:, a2) are respec-
tively u4 (0, 2), us(2, 2), 61(2, 0), 2(0, 2) and 95 (0, 1).

Similar computations were performed for the 2 X 3 model and the results are listed
in Table 8. For this case, the open form methods require the solution of a 12 x 12
matrix inversion.

From the potential value of the method represented and the numerical comparisons
shown, the effectiveness of the closed form solutions proposed here appears obvious.

TABLE 7 - Numerical Result (Diaphragm and Ribbed Supports)

Case 1 Case 1 Case 2 Case 2
Closed Open Closed Open Note
| Form Form Form Form

uz (0,0) — 2. 1053 — 2. 0993 — 0. 3032 — 0. 3027
ui (1,0) — 1. 4800 — 1. 4842 — 0. 2138 — 0. 2141
up (0,1) — 2. 1053 — 2. 0993 — 0. 3684 — 0. 3673 in
up (1,1) — 1. 4800 — 1. 4842 — 0. 2588 — 0. 2596
uz (0,2) — 2. 1053 — 2. 0993 — 0. 4220 — 0. 4197
ul (1,2) — 1. 4800 — 1. 4842 — 0. 2943 — 0. 2960
us (1,0) — 2, 2970 — 2. 2944 — 0. 3310 — 0. 3305
us (2,0) — 3. 2389 — 3. 2425 — 0. 4674 — 0. 4679
ug (1,1) — 2. 2970 — 2. 2944 — 0. 4019 — 0. 4018 in
usg (2,1) — 3. 2389 — 3. 2425 — 0. 5665 — 0. 5667
ug (1,2) - 2, 2970 — 2. 2944 — 0. 4595 — 0. 4615
us (2,2) — 3. 2389 — 3. 2425 - 0. 6453 — 0. 6426
01(1,0) 0.0 0.0 — 0. 1759 — 0. 1758
91(2,0) 0.0 0.0 — 0. 2481 — 0. 2486
91(1,1) 0.0 0.0 — 0. 1730 —-0.1778 | 1
91(2,1) 0.0 0.0 — 0. 2422 — 0. 2357 150
01(1,2) 0.0 0.0 - 0. 0839 — 0. 0889
01(2,2) 0.0 0.0 — 0. 1169 — 0. 1100
6200,0) 3. 5560 3. 5730 0. 5136 0. 5135
02(1,0) 2. 5320 2. 5199 0. 3645 0. 3645
9200,1) 3. 5560 3. 5730 0. 6220 0.6275 | , 1
62(1,1) 2. 5320 2. 5199 0. 4432 0. 4393 150
6 2(0,2) 3. 5560 3. 5730 0. 7066 0. 7322
0s(1,2) 2. 5320 2. 5199 0. 5078 0. 4898
03(0,0) 0.0 0.0 0. 0456 0. 0455
03(1,0) 0.0 0.0 0. 0315 0. 0319
0s(0,1) 0.0 0.0 0. 0801 0.0786 |, 1
6s(1,1) 0.0 0.0 0. 0541 0. 0553 150
93(0,2) 0.0 0.0 0. 0349 0. 0337
93(1,2) 0.0 0.0 0. 0227 0. 0237
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TABLE 8 - Numerical Result 4 (Ribbed Support)

Closed Form Open Form Note
u1 (0,0) — 0. 0375 — 0. 0375
u1 (0,1) — 0. 1629 =0.1629 |1
8s (1,0) — 0. 1395 — 0. 139 15
us (1,1) — 0. 6070 — 0. 6071
61(1.0) — 0. 9178 — 0. 9180
61(1,1) — 0. 4663 — 0. 4663
92(0,0) 0. 3130 0.3130 |, 1
62(0,1) 1. 3600 1. 3601 1500
6500,0) 0. 0206 0. 0211
635(0,1) 0. 0559 0. 0560
(2,0)
LOIQ /
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\ !/
\ /
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\ /
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FIG. 8 2x 3 MODEL
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CHAPTER W
STABILITY OF CIRCULAR CYLINDRICAL LATTICED SHELLS

The advantages of latticed shells have been pointed out in the previous discussions;
however, very little has been said about one of the most important problems, stability.
One must consider this when the members of the latticed shell are subjected to com-
pressive forces. Because of the rigid connections between the members of the latticed
shell, the deflection of one member in the buckling state causes distortion of the other
members. Each member is elastically restrained by the others and the degree of restraint
of any particular element depends upon the flexural rigidity of all members. Thus, the
study of the stability of the latticed shell is necessary in order to obtain the actual buck-
ling condition of the entire system or to clarify on a rational basis the role of compressed
members as a part of the latticed shell rather than as isolated members.

The problems of framework stability have been treated by Bleich (3) and Timoshenko
and Gere (37). The equivalent continuum method has been studied for domes by several
current researches (31, 42). However, no rational analysis is available for the problem
under consideration.

The following study may be the first attempt to treat the problem by discrete field
mechanics, which deals with the exact mathematical model.

A similar procedure to that presented in Chapter [ will be followed to derive the
governing equations. To avoid duplication only the additional terms needed to obtain
the corresponding mathematical model will be presented.

Two aspects of the buckling problem are usually distinguished.

(a) Local Buckling: This case may be illustrated in a cylindrical latticed shell, by

observing that a member of a circular or other type of plane polygon might buckle

locally under the given loading. This would have the effect of reducing the stiffness
of the latticed shell which might then buckle overall.

(b) General Buckling: Under this type of buckling the latticed shell might itself

buckle before the members buckle locally.

This work considers only the general buckling of a latticed shell under a constant
joint load applied in the normal direction.

V. 1 DERIVATION OF THE EQUILIBRIUM EQUATIONS

Due to the influence of the axial forces in the members, the force-deformation
relations, Egs. (2-8a, b) must be modified. The new expression takes the form

R _ Ty Els v R 2 R &A_l R

FZ = — Fz = by T, Ts { (Va—2) g5 + —I:I—Va u, } + L? (Vau))? 4-1)
The other force-deformation relations are the same as those given by Eq. (2-4) through
Eq. (2-9). Following the same procedure shown in Chapter [. 1 the additional strain

energy due to the axial force is obtained. It is
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Y, axil = %- { (Ki; u; — AV: us)? (AV: uy + KH; us } 4-2)
1

Thus, the strain energy stored in a typical member of the a;—polygon is
\7a1 = le + V(X1, axial (4‘3)

where Va, is defined by Eq. (2-21).
The total potential energy of a cylindrical latticed shell shown in Fig. 3, is obtained

by adding the total strain energy of the parametric polygons, V, and the potential enery
due to external load, W, as follows:

U=V + W (4-4)
where
M N-1 _ M-1 N
V= 3 > Var + X > Vas (4-5)
al=1 a2=1 al=1 a2=1
M—-1 N-1
W= x = W (a1, as) + 2 W (a1, az2) |a1=
al=1 a2=1 a1 =
-+ 2 W ((X1,d2) (4__6)
al=1 2___N
W (@, @) = — F;. N @

Applying the theorem of the calculus of variations in discrete field mechanics given

in Appendix A, one obtains the necessary condition for U, given by Eq. (4-4), to be
stationary. This is

A [%\ﬁl ’ %YY% O T = & aavvcslfl - aavzc\tfz]eKhK lc\:llsl i:l
[{ aw:; - aav?ﬁ{ ~0¢ Te }a,i‘i/{h“ M, a2)
{E1 aavvosézl e 5 TS }alilbhk (, a2>}i&:1
[{%_Ya* a%\f%zK o TK}a‘z;I%\IhK (a1, N)
. {Ez aavVoSc{z +02 T }agi%hK (a1, 0)-J1:1=0:o (4-8)

It will be assumed that members of the end polygons at a2 = 0, @z = N and those
of end spans at @; = 0 and @y = M have a flexural stiffness which is half those of the
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corresponding interior members.
For diaphragm type boundary supports, the first energy variation, Eq. (4-8), is

written as
_ -1 Va1 , oVas 3 e oVa, oVas
oU = wy we Al AZ { Y. + ENe —51{ Tk-—A1 aVlYk—Az aVzYk}
M+1|N+1
X ex hi
0
S N+1
Wg -1 0 M oVa, 8Va1
+ 5 AZ [(Bal—%-Bal) {aY +(A1+2) }ekhk "
M+1
Wi o, -1 0 N oVas oVa, N
+TA1 [(5a2+5a2) {aY +(A2+2)8V Yk}ekhk 0 = 0

(4-9)

It should be observed that Eq. (4-9) includes the equilibrium conditions valid at all
nodes as well as the modified boundary conditions.

Substitution of Egs. (2-4), (2-22), (4-2) and (4-7) into Eq. (4-9) yields the expres-
sion for the term §U, which appears in the double summation of Eq. (4-9). It takes
the following form:

_ — 2
5U1=W1W2A11A21[[c8{~2% (1171+4)—c1%471—c”ig172}u1

-2 ot g

+4) 92

2
+ 5= A E (Avyyu;s + KM;y us) {IZ(ZVI +4)u, *A2K51U3}:]€1h1

2 2
CsAK 24 cy) fiur + cs 24 A71+CIK (W1 us
Ly 41,
+C5Cs F2 01 —Cs A 4 92~F§+ L2 (Aviu, + Kl uy)
1
X(%IS>51U1—A2L’|71u3)]63 hs
+[—Cscsﬂ2u3+C8{—g3K Ly Wy +4—271)
5 _

— 58 13,1 L: N1 ci,ilz (2 + 2')’2)} 91J€4h4 + [" “m— (F1+4) un+cs AfF 1 us

esly M+1 |N+1
= {(1171 +2v1) —¢q 1172} 62]65 hy =0 (4-10)

e @1=0 |az=0
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where the deformations us and ¢; have been neglected since they are very small for
the type of loading and supports considered. It should be pointed out that the above
equation involves non-linear terms which arise from the interaction of the axial forces.
This author will not solve this non-linear equation but will use this to obtain the buckling
condition.

Buckling Condition

The prebuckling (equilibrium prior to buckling) and the buckling conditions are
obtained using Eq. (4-10). The total deformations during buckling, ui, us, 41, g2 are as-
sumed to be separable as

Wk = Wka + Wks K =1,2,3,4 (4-11)

where Wx represents the deformations, K takes respectively the values 1, 2, 3, 4 Wxka
designates the deformations which appear prior to buckling, and Wxs defines the infini-
tesimal deformations which appear during buckling.

Since the latticed shell must be in equilibrium during buckling, the total potential
energy must be stationary. Using Eq. (4-11) the deformations appearing in Eq. (4-10)
are replaced by terms with the subscripts A and B, However, since the latticed shell
must also be in equilibrium prior to the buckling state, the condition, Eq. (4-10), ob-
tained as a result of replacing the terms Wx by Wxa must also be satisfied. Subtracting
the second condition, §U (Wxa) = 0, from the first condition, §U (Wka + Wks) = 0, one
obtains the buckling equations which must be satisfied when a state of buckling is
reached. 7

Following the same notations used for the deformations, the axial force in a member

is written as
F (a1, a2) = Fa(ar, a2) + Falai, az) (4-12)

where Fa(ai, a») is the axial force prior to buckling and Fr(a;, @:) denotes the axial
force during buckling.

The following assumptions are made for this problem; the members considered are
prismatic and the effect of axial force upon the bending moments are ignored. There-
fore, the coefficients used in the force-deformation relations, Eq. (2-4) through Eq.
(2-9) are:

For the prebuckling condition

by = b1 = b2 = b2 =2, Y1 =F1 =% =72 =3
For the buckling condition
b1 =be=b=2 F1 =92 =% =3

The coefficients by and v, are defined by Eq. (2-10a, b) and (2-11).
It will be noticed that the prebuckling condition is exactly the same as the equation
obtained in Chapter [[. 1, if we retain only linear terms. This equation will not be
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duplicated here.
The governing equation for buckling condition is obtained by satisfying the following

requirement:
0U; (Wks) = 8U;y (Wka + Wks) — 8U; (Wka) (4-13)

Retaining only the linear terms in the bubkling deformation, Wxs, the following equation

is obtained:

- - 2
5U1(WKB)=W1W2A11A21[[ {ZL (ZV1+4)——L%‘ 1
«AK
—'“ZLCZi }UIB—Ezér 2 +c1) f1uzp — CSZK

2
><(LV:+4)023+FA{—41§T(A71+4)u113~—?g{ AVNHB” h,
+[C8AK (2+01)H1UIB+C8{ - N1+ 4L (A71+4)

2Cy

—*Lz—ﬂz}uss-cscsﬁz 018 —CcsA /1028

+FA(“A2£51111B—A2A71113B]63113

+ [*CsCsﬂzuaB-i-Cs{—&%;%(51‘*‘4—271)

- cszi./zlLl 7 cst s +2'>’z)}6213Je4h4

+[- f 5 +4) uip+csAF1usp
cs Ly M+1 |N+1

+ == (1 +2v1) — € 2y BB |eshs =0 (4-14)
71 a1=0 |a2=0

The term, A B ’ (A vius A + KM us A), which appeard in obtaining Eq. (4-14)

and defines the ax1al force prior to buckling, is assumed to be constant and written as

Fa in Eq. (4-14).
Following the procedure explained, the modified boundary condition for the diaphragm
supports similar to Egs. (3-15) and (3-17) will be obtained.

F. 2 DOUBLE FINITE SERIES SOLUTIONS

To obtain solutions for the buckling state which satisfy the diaphragm boundary
conditions, the buckling deformations are taken as
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M  N-1 )
uip (a1, az) = >3 X U;m cos Ama; sin Mnas
m=() n=]
M_‘l N—l 3 " i 2 .
uzp (@1, az) = U sin xma; sin Ana:
m=] n=1
M=1 N i e
018 (@1, az) = >3 0,,, Sin Mmay €os Ana:
m=1 n=(
M N-1 o .
f2B (@1, @2) = >3 >3 @°_ €Os Ama; sin Anas
Mmoo n=p mn
where Am = ml\;[IT and An = nllr (4-15a, --- d)

Substitution of Eqs. (4-15a,.--d) into Eq. (4-14) yields four simultaneous algebraic
equations which give the criteria for buckling. Since these equations are homogeneous,
the feasibility of a solution is expressed by the well-known condition.

A, A 0 Az
A, Ay As Ag
= (4-16)
0 Ay Aq 0
A, Ag 0 Ag
where
2
Ai=-T—7v@®D  A=25,mD A=-KD
1 1
2
Ay = 4{: v (¢) Dg — %25 D4, As = —c5Ds5, Ag = ADy
A7=~2—C%L2~De, As:lI_‘L(D3+%>
Y1
Di =1+ cosxm, Dy =sinxm, D3 =cosym — 1 (4-17a, --- t)

Dy =cosan — 1, Dy =sinan, Dg = 2 + cos An

_ Ls _ Ts __ ¢z
¢=-¢~, k=771, v@®=55 -1
NO L2
7 s - |
¢ E13 R C5 Z.k, , N FA

The expansion of the determinant, Eq. (4-16), yields the following transcendental

equation as follows:
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B 92 (¢) + Bav2 () 71 + Bay () + Bay () v1 + Bsyi =0

where
_ g _ ¢(l—cosg) _ bescp—1
"/(‘b)—‘zvlbl -1, 71 = T —sing b1~&fan£_
¢ 2

2

—4D3D6A2(4D3 £+ gf )

i

By

Bz=—4A2D6(4Daz + g% )

Bs = 2c5 Ds (8D4 D¢ + 3D§)

305 D%
A2 Dg ¢

805 D4
Az ¢

B4:2A2D6£( —2D? +

Bg = ey Dy (8D4D6 % 3D§)

+D? — 4D, Dy )

' (4-18)

(4-19a, b, c)

(4-20a, ---, €)

The functions, v($), vi, b: appearing in the transcendental equation depend on ¢
which is a function of the parameters m, n, 1, and k. The parameter 1 defines the ratio
between the length of a member of a generator, L, to the length of a member of a cir-
cular polygon, L;. The parameter K defines the ratio between the moment of inertia of

a member of a circular polygon, Is, to that of a generator, Is.

The transcendental equation Eq. (4-18) can be solved directly by a digital computer
but some modifications were made in order to use the subprogram provided by the com-

puter center at the University of Delaware.

The series expansion for the transcendental functions by, v,, used are as follows (13)

b1=2(1+ qég +2é?q;:)0+ ......... )
7 =8{1- gé —12?4600_ """"" )

(4-21a, b)

Substitution of the first two terms of the above series into Eq. (4-18) yields a pol-

ynomial of the third degree in the parameter ¢

~oag (— 36Bs + 6B, — B;) #

+ —5— (36 B, + 180 B, — 6 By — 63 B, + 15 By) §2

1

T g

(144 B, — 504 B; +- 84 Bs + 324 By — 124 B3 ) ¢
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+ 144 B + 3B — Bs — 3B, +3Bs) =0 (4-22)
NO L2
where ¢ =¢2 = vaIsL (4-23)

Solving the above equation, Eq. (4-22), for §, the buckling load of a member can be
calculated as follows:

Ne=g Bl (4-24)
Li
The nondimensional parameter § is calculated for all values of m, n, k, 1. They are
shown in the numerical example which follows,
Once the buckling load of a member is known, the applied load in the direction op-
posite to the latticed shell normal, P, is obtained from the relation

P = 2No/K (4-25)

where K represents the curvature of the circular polygon defined by K = 2sin ;.

When & is 72, NO represents the Euler load for a pinned-end column. As seen in
the numerical example, the values obtained for ¢ are always smaller than T 2, depending
upon the geometry, K, and the member properties, 1, k.

Numerical Example 4

The following numerical calculations have been performed to illustrate the buckling
problem of a circular cylindrical latticed shell.
Consider a 3 x 4 model, that is, M =3 and N = 4. As discussed previously, the
geometric properties of the latticed shell, the ratio of the members length, 1 = % , and
1
the ratio of the moment of inertia of the two types of members, k = —Is— , are important
3

factors to be considered. The data used in the numerical example are:

€08 Py = €08 —h— = 0.9650

= 12

1 = 1.0, 2.0, 3.0, 4.0, 5.0

k = 0.25, 0.50, 0.75, 1.00, 2.00, 3.00, 4.00, 5.00, 10.00, 100.00
m = number of half waves in a; — direction =1, 2, 3

n = number of half waves in as — direction=1, 2, 3, 4

Computational Procedure

Eq. (4-23) is solved for all combinations of m, n and the parameters described above.
The minimum value of @ obtained is listed in Table 9. It is interesting to note that the
buckling load occurs when m = 3 and n = 1 for most of the values of k and 1, with the
buckling mode depending upon the values of k and 1. It is observed that k is decreased,
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that is, when the flexural rigidity of the members of the «a. - polygon (straight generator)
becomes weak in bending, the latticed shell tends to buckle with m =1 and n=1. On
the other hand, by increasing the values up to k = 100.00 (computed only for the theo-
retical interest) the buckling mode becomes m = 1 and n = 4. However, this is not the
only factor determines the buckling mode, as it can be shown that value of 1 has also
considerable influence. For example, for 1 = 2.0 and k = 10.00, the buckling load occur-
red when m = 3 and n = 1.

The results of the calculations can be presented in a graph in which the abscissas
represent the k values and the ordinates the buckling parameter §. Then, for each value
of 1, a line is obtained. Several lines of this type are shown in Fig. 9. It is seen that
for smaller values of 1, the buckling parameter § increases rapidly when the value of k
increases. For large values of 1, the buckling parameter ¢ increases slightly.

As an illustration of the results shown in Table 9, consider the case of k = 1.00 and
1=1. 0. One obtains ¢ = 1.2281 from Table 9. If this value is substituted into Egs.
(4-24) and (4-25), one obtains
El,

P =4.7450 | §

which representsthe buckling load of the latticed shell under the conditions considered.

TABLE 9 - Buckling Parameter For 3 x 4 Model

N 1.0 2.0 3.0 4.0 5.0 Note
0.25 | *0.9769 | 0.9435 |  0.9355 | 0.9335 | 0.9328
0.5 | 1.1106 | 0.9550 | 0.9389 | 0.9349 |  0.933
0.75 | 11968 | 0.9663 | 0.9423 | 0.9364 | 0.933 | M=3
1.00 | 1.2281 | 0.9777 | 0.9457 | 0.9378 | 0.9350 | N=1
2.00 | 1.6007 | 1.0228 | 0.9592 | 0.9435 | 0.9379 | ex-
cept
3.00 | 1.8044 | 1.0675 | 0.9727  0.9493 | 0.9409 | wy_,
4.00 | 21657 | 1.1116 | 0.9862 | 0.9550 | 0.9438 & N=!
**M=1'
5.00 | 2.4171 | 1.1551 | 0.9 | 0.9607 | 0.9468 | N=4
10.00 | **2.5803 | 1.3659 | 1.0661 | 0.9892 |  0.9614
100.00 | **2.6361 | **2.6061 | 2.0941 | 1.468¢ | 1.2164
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FIG. 9 BUCKLING PARAMETER ¢

CHAPTER ¥
CONCLUSIONS

In the preceding chapters the application of the concepts of difference geometry,
calculus of finite difference, and discrete variational calculus has proved useful in for-
mulating an adequate and efficient mathematical model for latticed shells. Indeed, the
application of the calculus of variations enables one to find closed form solutions for
cases in which the mathematical model and its corresponding solution appears intractable.
The technique has also proven very effective in the stability analysis of latticed structures.

In Chapter ] the energy formulation for the flexural analysis of cylindrical latticed
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shells has been presented in detail. The total potential energy has been formulated as a
function of the discrete variables and reflects the geometrical properties of the latticed
shell. The concepts of the discrete variational calculus developed in Appendix A were
then utilized to obtain the first energy variation which is the condition to be satisfied for
a state of stable equilibrium. Even though the energy formulations were used directly to
obtain the solutions which appear in the next chapter, the equilibrium equations and the
natural boundary conditions derived from the variational technique were shown and
discussed in detail. These equations were utilized in expanded matrix form to solve the
latticed shells by open form methods.

Applications of the first energy variation to perform a flexural analysis of circular
cylindrical latticed shells with various boundary conditions were presented in Chapter [ .
The technique proposed here proved a powerful tool in obtaining closed form solutions to
difficult problems and in providing a clear insight into the behavior of the mathematical
model.

Closed form solutions were obtained for the following three cases:

(1) Diaphragm supports at all four edges.

(2) Diaphragm supports at the edges, a; = constant, and diaphragm supports
with rotational constraints at the edges, as = constant.

(3) Diaphragm supports at two edges and ribbed polygonal supports at the
other two edges.

The comparison of numerical results calculated by closed and open form methods
shows that the two results are identical, even though the size of the matrix used for
these methods is quite different. The results may not have the close agreement for
latticed shells with large numbers of nodes as the error from the open form methods
may increase considerably.

In Chapter Iy the stability of circular cylindrical latticed shells was presented. Be-
cause of the rigid connectivity, each member is elastically restrained by the type of
connector provided and by the flexural rigidity of the other members. The energy
techniques derived in Appendix A were directly utilized to obtain the buckling load of
the system. A numerical example is illustrated which shows the influence of the various
parameters on the buckling loads and mode shape of failure. The interaction of these
factors is reflected on the factor, ¢, which must be considered on design of latticed
shells.

In Appendix A the calculus of variations in continuum mechanics has been modified,
yielding the formulation of the fundamental theorem of calculus of variations in discrete
field mechanics. The usefulness of this theorem has been described in the preceding
chapters.

Two illustrative examples, the analysis of a continuous beam with spring boundaries
and that of a cable net with boundary deflections were presented to show specific appli-
cations of the theorem in obtaining closed form solutions for one-dimensional and two-
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dimensional structures.

Two distinctive types of field analysis (12), the Micro and the Macro Approach, have
been defined in discrete field mechanics. The method proposed here may be considered
as the application of energy methods to the Micro Approach. The author believes that
similar energy formulations can be obtained for the Macro Approach.

A modified discrete variational method, similar to the method of Lagrange multipliers
in continuum mechanics, has also been presented in the appendix. This method has
proven especially useful in obtaining closed form solutions to problems for which this type
of solution appears very cumbersome or intractable, and has simplified the procedure of
obtaining the solutions of a structure for which the analysis for other types of boundary
conditions is known.

Through the numerical computation of the problems considered in this dissertation,
the author feels that the method proposed here is practical, more accurate and less time
consuming than the methods in use.

It is hoped that the present work can be effectively extended to solve other types
of discrete systems.
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APPENDIX A
CALCULUS OF VARIATION IN DISCRETE FIELD MECHANICS

The calculus of variations has been until recently a branch of modern mathematics
closely related to the theory of differential equations, which has been successfully ap-
plied in continuum mechanics to solve various problems in statics and dynamics.

The objective of this appendix is to transform the theory used in continuum mechan-
ics to one applicable to discrete field mechanics and to establish a mathematical model,
two dimensional difference equations, for latticed shells.

(A) One-dimensional Case

It has been shown in mechanics that a stable equilibrium configuration is reached
when the total potential energy of the system is stationary. When the corresponding
necessary conditions to reach such a state are applied one may be able to obtain the
governing equations and the associated natural boundary conditions. Therefore, for the
equilibrium state of one-dimensional system with an unknown deformation, Y (a), as
function of a discrete variable, «, the problem reduced to that of finding this function
from the stationary potential energy.

Let the total potential energy take the form

X N+1
U (Y) = 2 F (a, Y) VY’ VZY) =A"1F (ay Y: VY’ VZY) 1 (A"l)
a=1]

where Y, VY, v2Y are functions of the discrete variable «, and v and A~ are respec-
tively the standard backward and inverse difference operators defined as follows:

VY (@ =Y (@ —Y(@—-D

ViY(@ =V 1Y (@ (A-2a, b)
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a=N a=N+1
S Y@ =A"1Y (@) (A-3)
a=] a=1
It is assumed that Y = Y (a) is the discrete function which will make Eq. (A-1) sta-
tionary.
Let ¢h(a) be an arbitrary but discrete function defined in the interval o << @ <{ N,
where « takes only integer values and ¢ be a smaller number.
A new function can then be defined as follows:

Y (@) =Y (@) + eh(a) (A-4)

The second term in Eq. (A-4), ¢h(a), will be designated as the variation of Y (a). If ¢
is taken sufficiently small such that eh(a) remains below a small quantity for all integer
values of «, the new function, Y, will lie in the close neighborhood of Y. The definite

sum,
U® =ULY + ¢ (o) ] (A-5)

becomes a continuous function, U(e), of the parameter ¢, and this function will coincide
with this stationary value sought when ¢ = 0. With reference to Eq. (A-1) one can
write

a=N+1
U(Y)=U@ =A"1F (@, Y +éh, VY + evY,v2Y + ev2Y) . (A-6)
a=
Since Eq. (A-6) is a continuous function of the parameter ¢ the necessary condition
that U (¢) be stationary is obtained as

oU (&

> = i (A-T)

e=0 B
Performing the differentiation indicated by Eq. (A-7) on Eq. (A-6) according to
the familiar rules of the differential calculus, one obtains

U (& _a1 (2 oY OF vy . oF ovy ) N+1
de |._o oF 2 T av¥ e ' ov:¥ 0 )|y 1lc—o
N+1
_ .-1( OF oF oF _
=27 (Fyh+ pop VR + 5oay V' Y) il =0 @B

Applying the techniques of the summation by parts of the calculus of finite differences
(22), Eq. (A-8) is written as

A-1 Ii{%F{*_ A(Aa%“ + A? (é‘:zLY)}h‘F{ﬁaavFY - A(ang)}E—l h

N+ 1
4 I i vh] =0 (A-9)

ov*Y a=1

In which E-! and A represent respectively the Boole’s displacement operator and the
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first forward difference operator, defined as follows:
E-'lf( =f (-1
Af () = (@a+1) — f () (A-10)

Muiltiplying Eq. (A-9) by e and rearranging the limits of the summation, Eq. (A-9)
can be rewritten in the form

=N
s {3 -2 () - (i) far | T

\%
oF oF oF oF

oF oF oF

The left side of Eq. (A-11) is called the first variation of the definite sum, U, defined
by Eq. (A-1). If one designates this variation by sU, the necessary condition for U being
stationary becomes

3U =0 (A-12)

It can be shown that the first factor defined at all interior nodes 1< a < N — 1,
represents the governing difference equation of the system, while the other factors
defined at @ = 0, N represent the feasible boundary conditions. The method will be
illustrated on a multispan beam with spring constraints at the end supports.

(B) Two-dimentional Case

The problem of determining stationary values of a double summation leads to a par-
tial difference equation which defines the unknown function Y (@, a2).

Consider the following example which is used in analysis of cylindrical latticed shell:

M N-1
U (Y) =i %1 22_1 F (aly X2, Y) VIY) VZY)
M-1 N
+ = 22;1 F (a1, a2, Y, V1 Y, v2Y) (A-13)

where Y is a function of two discrete independent variables, @i, as.
The partial difference operators, V1, V2 and the inverse difference operators A7 1 A5 L)
are defined as
V1Y (a1, @2) =Y (a1, @) — Y (@1 — 1, as)
veY (a1, a2) =Y (@i, a2) — Y (@1, a2 — 1) (A-14a, b)

M+1

M=

1 Y (a1, a2) = AII Y (a1, a2)

a

—

a1=1
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N+1
(A-15a, b)

a

M -
2}_11 Y (a1, a2) = A LY (a1, as)

az=1

Considering an arbitrary function h (ai, @) of the two discrete variables a; and as,
defined in the interval 0 L @1 LM, 0 L a2 £ N, and following the procedure obtained for
the one-dimensional case one finds that the condition for U being stationary is as follows:

M N

d1=1

- 1 oF oF oF
+ A, H( oY +§'VTY)€h (a1 Kh)}al:M—{(AI +1) a_le‘h (al,az)}m:O]

-1 oF oF oF
+ Al [{(~5Y+m)eh(a1,az)} N—{(Az+1)av—2Y£h(d1,a2)}a2=0]

=0 (A-16)

_oA—l -1 oF oF oF
6U = Al Az {( aY T AI aVIY = A2 asz) Gh (al, a2)}

a2=1

N
az=1
M

A= a1=1

The significance of the above expression can only be obtained by its careful examination.
It has been previously stated that the variation, e¢h (a1, a2) is completely arbitrary. Thus,
the first factor in Eq. (A-16) can vanish as required only if the coefficient of the var-
iation vanishes. Using this reasoning one obtains, from the vanishing of the coefficient
of the variation in the double summation, the following difference equation:

oF oF eF )
oY ~ A ey, Y T A5y, y =0 (A-17)

The above equation represents the conditions which must be fulfilled to secure at stable
equilibrium at all interior nodes and, therefore, constitutes the governing difference equa-
tion defined at l L a1 L M —-1,and 1 Las £ N — 1.

By considering the second factor, a single summation with respect to the variable a.,

one finds, as a consequence of Eq. (A-16), that the terms involving the arbitrary var-
iations must each vanish. Thus, it is required that

oF
A1 + 1) s~ ¢h (a3, a2) =0
( : ) oA Y T =
oF _ oF _
(oy topy)d@an| =0 e L

Each of the above equations will be satisfied if the appropriate conditions are prescribed.
Therefore, the following natural boundary conditions are provided at a, = constant,

at ¢, =0

3
(a0 + 1)?\7%? =0, or ¢h(0,a)=0 (A-19a, b)

N
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ata1=M

oF oF

W + m == 0 ) or Gh (M, az) == 0 (A—Zoa) b)

Similar conditions can beobtained at ay = constant; they are:

at Ag = 0
e + 1 F o or  ¢h (@i, 0) =0 (A-21a, b)
2 asz = € 1, = 3
at a2 = N
OF 2
e .ava =0 or ¢ (@, N) =0 (A-22a, b)

In order to gain more insight into the applicability and effectiveness of the method
just described, the analysis of a single layer cable net with boundary conditions different
to those treated in the literature will be presented.

(C) Modified Discrete Variational Method

In the previous sections, a discrete variational technique has been demonstrated in
obtaining the equilibrium equations and the natural boundary conditions of a standard
system. However, a more valuable application of this technique is to provide closed form
solutions for general boundary conditions for which no such solutions are available.

Similar to the method used in continuum mechanics, the procedure in finding a solu-
tion is to choose an algebraic or trigonometric series to be capable of describing the par-
ticular deformed shape. Since trigonometric series are functions whose behavior is well
known, they will be the type of functions to be used in connection with the discrete
variational methods. The proper orthogonality properties of trigonometric series are
shown in Eqs. (3-22a, b), (3-76) and (3-77). A study of these properties requires the
extension of the range of summation over the boundaries and, accordingly, the terms in
the first energy variation have to be rearranged.

Considering the one-dimentional case one can rewrite the first energy variation Eq.
(A-11) as

a=N
5U:A-1“ gg —A(aaVFY)}eh(a)] g

a=
oF oF
+ I:(aY + VY )eh (aﬁ)} weN
oF

where the terms involving v?Y, v2¢h («) were disregarded in order to have a more
simple presentation.
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The above equation can be rearranged by extending the range of summation over
the boundaries as

_ oOF oF a=N+1
0U = a7 H“ay— - A(‘aﬂ*‘)}fh ("‘)} =0
oF
0 [{ (a+1) 5y }eh (a):\ N

A close examination of Eq. (A-24) shows that this equation contains the equilibrium
equation valid also at the boundaries and a set of modified natural boundary conditions.

If the solution assumed is composed by a sum of orthogonal functions which satisfies
the modified boundary conditions at « = 0 and @ = N, the solution can be obtained by
standard procedures. But, such a solution cannot be found easily unless special restric-
tions are made.

Structural systems with general boundary conditions will be analyzed by the use of
modification parameters A1, A2 which are defined only at boundaries. These parameters
will modify a solution which does not satisfy boundary conditions and thus behave similar
to the Lagrange multipliers. Physically, the parameters A1 and A2 are related to the
forces which must be applied at the boundaries in order to satisfy that part of the bound-
ary condition not fulfilled by assumed solution. By use of the modified parameters Eq.
(A-24) can be rewritten as

3U = A™1 H—gf{-— A(%) — M 82—t 51:}eh (a)]
oF N
+ H(A +1) oy t M5, }eh (a)] -

oF oF 0 o E
- HWJF =8l }eh (a)} T ‘ (A-25)

It should be observed that the unknown quantities A! at @ =0 and A2 at @ =N have
been subtracted from the first bracket, which results the equilibrium equation at all nodes

a=N+1

a=0

and exactly the same quantities have been added to the second and third bracket, re-
spectively. Therefore, the value of the first energy variation has not been changed.
The terms involved in the summation operator is designated as the modified first energy
variation, dU.

A study of Eq. (A-25) shows that the problem, 6U = 0 has been reduced to

a=N+1
=0 (A-26)

oY ovyY

a:x:f‘[ MY )~ma§—xza§]eh(a)
a=0
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oF oF

_a_Y_+7V—Y——>~1=O, or Y (O) =0
at @ =0 (A-27a, b)
and
oF
(a51) G ox =0, or a0 =0

ata =N (A-28a, b)

The expression 67J represents the modified first energy variation and Egs. (A-27) and
(A-28) are the corresponding modified natural boundary conditions at « = O and @ =N,
respectively.

When the orthogonality property with respect to a specific weighting function is
defined, as shown in Eq. (3-22b), the above equations have to be changed as follows:

x A=l oF oF 0 N =N+l
i0=A Wa|: 5y~ A(ale) — M4, —? 51} ¢h - (A-29)
oF oF
S +(A+2)~—~avY +A=0, or Y0 =0
ata =0 (A-30a, b)
and
oF oF
ata =N (A-3la, b)

Similar technique is also applicable for the two dimensional case. The first energy

variation, Eq. (A-16), is written by extending the range of double summation over the
boundaries, that is

M+1|N+1

A~ 1 a1 oF oF oF
U = A7 A {( 57— At aey —Azm)eh (al,az)}

a1=0|a2=0

-1 oF
+ A Ay + 1) s—=s¢h (a,a)}
2 [{( 1 )aV1Y 1 & a1=M

oF N

oF
- {(maY + —3V1Y) eh (a1, as2) }al:o}

- fe)
+ Al1 \:{ (Az + 1)5—6%?611 (ay, az)}

o_'2=1

az=N

M
oF oF
B+ ooy) b “2)},12:0] el L
Consider the case where the solutions assumed satisfy the modified boundary conditions
at a; = constant as shown in the second line of Eq. (A-32). Then, one needs to modify
the solution at the boundaries @z = 0 and a: = N. Following a similar technique to that
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used in the one-dimensional case, modification parameters can be defined at each unsat-
isfied node, a; = 0, 1,---, M. However, this approach will yield a set of simultaneous
equations, which for the case of large number of nodes may be cumbersome to solve.
This author proposes to express the parameters in a functional form called a modification
function. In order to make effective use of the orthogonality properties of the assumed
solution the modification function is assumed to have the same form as the solution does
along the aj-direction. The modification functions defined at a; = 0 and a; = N are
designated by M (a:) and M2 (a;), respectively.
By use of these functions, Eq. (A-32) is rewritten

M+1 |[N+1
= oF oF oF 0 N
U=a7laT! [{ o e B e e g — S L) B, — N8 ey} B }ehj‘
1 2 oY 'oviY ov2Y Y az 1 a2 a;=0]|az=0
N
-1 oF oF oF
+ A A +1 ——eh(a,a)} —{——+— eh(a,a)}
2 |:{( A )aAlY A % d1=M (aY aVlY) 1 & d1=0 a2=1
1 oF
+ A Az +1 ————-i—)\.z(a)}eh(a,a):l
. [l:{( 2 ) ov:Y 1 1, Q2 2y =N
M
oF oF
— [ S + o — M (a)}eh (a,a)} ] =0 (A-33)
|i{ aY asz ' ' ’ a2=0 a1=1
Therefore, the problem being considered in Eq. (A-33) is reduced to thefollowing:
G I | oF oF oF 0
07 = AI AZ [{'—ar— Alm— Asm—)ﬂ (a1) 542
- M+1 |N+1
— A2 (al) 6&2 }Eh (al, az) =0 (A"34)
a1=0]|az=0
oF oF _
—-a"Yv—'l‘m:O or Y (a1,a2) = 0 .
at a; = 0, a2 = constant . (A-35a, b)
oF _
(A1+1)§V—1Y‘=0 0rY(a1,a2)—'0
at @; = M, a: = constant (A-36a,b)
oF oF _ _
o=t T g M (a1)) =0, orY (a1, @) =0
at @2 = 0, @y = constant (A-37a,b)
oF _
(as + 1)5627 FA2(ar) =0, or Y (as, @z) = 0
at a; = N, a; = constant (A-38a, b)

When several functions Yk, k =1, 2..., Which do not satisfy the boundary conditions
are considered in the problem, one can assume modification functions, M1 (a;) and A2y
(a1), k=1, 2,---, corresponding to Y. This problem is illustrated in the analysis of a
cylindrical latticed shell with polygonal ribbed supports.
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EXAMPLE 1 - ONE-DIMENSIONAL CASE: CONTINUOUS BEAM
WITH SPRING CONSTRAINTS

To illustrate the one-dimensional discrete variational techniques, consider the regular
continuous beam with spring constraints at the ends shown in Fig. A-1.

(4
Ela 7N - M
5 8«
o=y o b M-2 M-1 M

FIG. A-1 CONTINUOUS BEAM WITH SPRING CONSTRAINTS

Mol
rx /md)Md\

o8

FIG. A-2 ELEMENT MEMBER (a-1, @)

The symbols used in the figures have the following definitions:

Ki, K: represent the spring constants at a=0 and a =M, respectively
El. is flexural rigidity of 'a member (a—1, )

Mg, M§, My, are external loads applied at a typical point, a=0 and a=M,
respectively

Fig. A-2 shows a typical member at the ends a and a—1 with moments M., M«-1,
and rotations §«, a«-1. The strain energy Ve, in this element which is represented by
its deformed configuration, is equal to the work done by the moments as they induce the
rotations (33). That is

Va:"%— (Ma' Oa +Ma-—1’ 04—1) (A—39)

Using a difference notation, the moments Ma, and M._; are written as functions

of the rotations in the following form
Ma = ba ka (')’a = Va) 0&'

Ma—1 = ba ke {(1 w ¥} Va F Fat G (A-40a, b)

where for prismatic beam, b. = 2, v« = 3.
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Substituting Egs. (A-40a, b) into Eq. (A-39), one obtains the strain energy of the
typical element member

Vo = % ba ke [(')’a'—Va) Oa * 9a+{ (1—7%a) Vatva } 0 (1—Va) Ba]
For the continuous beam of Fig. A-1, the total strain energy, V, is obtained as the
sum of the strain energy in the individual elements and that due to end springs. The

result is

+ Ko 2 (A-42)

b9 2 “m

M
22V0+

a=1

K o
2

where Va is the strain energy of a typical member, Eq. (A-41), and M denotes the
total number of elements.

It can easily be recognized that the last two terms of Eq. (A-42) represent the
strain energy of the elastic constraints where k, and k. are the spring constants indi-
cating the degree of resistance against rotations at « = 0 and M.

The potential energy due to external loads is

W=— 3 Mg, | (A-43)
@=0

Therefore, the total potential energy of the continuous beam is

U=V +W

2

0

e b“k"‘ [(')’a V) fa - 9a+{ (1—7va) V+'Ya}90‘ 1-v) ‘9“}
K.
T2

M 2
> M, - ba (A-44)

a=

Ky
Ty

o M

Substitution of Eq. (A-44) into Eq. (A-11) yields the following expression for the
first energy variation:

v M
oU = A-! [bK W+ 29) ba — Mj} fa

1

+[{bK(A+'y)0a+K1ﬁa—MZ}60a} i
a=

+ l:{bK (v — v) 0a+K10a—Mz}eﬂaJ
a=M

=0 (A-45)

where ba = b and ya = v are assumed to be constant.
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The following condition established in the first bracket of the above equation repre-
sents the governing difference equation of the structure

bk (F + 2v) 6o — M. = 0 (A-46)

The second and the third expressions yield the natural boundary conditions at a = 0
and a =M
bk(A+')’)00+K100—MZO, or Ay =0
ata =0 (A-47a, b)

bk (v — W) 9m+K20M—M:4=O, or Gy=0
ata =M (A-48a, b)

To solve the above equations by a finite Fourier series a modification is necessary
in order to apply the proper orthogonality relation of the finite series. The range of
summation ¢ =1 to a =M —1 is extended over @« =0 and @ = M. Therefore, Eq.
(A-45) is rewritten as

M+1
0

Wa

+ \i{—bzh—ﬁﬁa+K1 0a}e0a]
a=0
+ H——bz—k-ganeroa}eea]

Since the standard finite Fourier series will not satisfy the arbitrary types of boundary
conditions given in the above equations, the method similar to that of the Lagrange mul-
tipliers will be used here.

Me
5U=A"1Wa[:bk(47+2'y) Oa — a:‘eﬁa

=0 (A-49)
a=M

Defining two unknown parameters A; and Az, to be used to satisfy the required
boundary conditions, Eq. (A-49) can be written as

e M+1
oU = A~ ! wa [bk (7 +2v) ba — M %y 82 — Ns aM} eba
Wa @ a 0
+142E pon + Ky 0+ 22 et
2 2 a=0
+ [{—bzﬁﬁﬁa-}-Kz 0a+—)"22—}60a]a=M =0 (A-50)

It should be observed that the unknown quantities Ay at &« =0 and A, at @ = M have
been subtracted from the first bracket and exactly the same quantities have been added
to the second and third bracket, respectively. Therefore, the value of the first energy
variation has not been changed. The terms involved in the summation operator will be
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designated as the modified first energy variation, 6 J. It has the form
M+1
1 (A-51)

e

§7 = a1 Wa{bk (& +27) 0a—%§——x152 — 2 5’2} eba

The problem has been reduced from Eq. (A-50) to that of solving the following equations

57 =0
—bzligoa+K,ea+ "2‘ ~ 0
ata =0
‘%}Lﬁﬁa-}-Kzﬁa ng =0
ata = M (A-52a, b, ¢)

where
01U represents the modified first energy variation and the second, Eq. (A-52b),
and the third, Eq. (A-52c) are the modified boundary conditions.

To solve the above equation the following solution is assumed

M
fa = > 6Om COs \ma
m=()

_ m]l =
where am = & = (A-53)

The external load is expanded in a similar series with the weighting function

e
M. _ % Mm cos Ama (A-54)

Wa m=(

The Euler coefficient Mm is obtained by using the orthogonality property of the
trigonometric series, Eq. (3-22b).

1 A M+1 oy
Mm:TnTA Mmcos)»ma0 (A-55)
where
M
I'm = 31 wa cos? \ma (A-56)
a=()

The variation of the rotation is assumed as

M
efa = 00 = > 00m cos ama (A-57)

m=(

Substitution of Eqgs. (A-53), (A-54), (A-57) into the modified first energy variation,
0, Eq. (A-51), one obtains
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bk {2 (cos xm — 1) + 27} Imfm — I'm Mm — Ay — A2 COs mTr =0 (A-58)
from which | | |
om — {Mm " TlnT (vt + s cos mT) }/Cm (A-59)
where
Cm = 2bk (cosxm — 1 + %) (A-60)

Substitution of Eq. (A-53) into Eqs. (A-52b, ¢) gives

M
K12 fm + 7\'120

e 2

M
K, S1 6m cos mT] + ’“22 -0 (A-61a, b)
m=(Q

Since #/m was obtained as a function of A; and M., one substitutes Eq. (A-59) into
Eqgs. (A-6la, b) yielding

M
Ki > {Mm + —FL (M1 + A2 cos mT) }/Cm+ )”2‘ =0
m=0 L2
K M 1 Ao
2 ST <A{Mm + —— (M + Az cosmT) ¢ (cos mT[) /Cm + =0 (A-62a,b)
m=( I'm 2
The above equations can be written in a matrix form as
M Mm
- K ol
A1 ! mgo Cm
[ A = v M (A-63)
2 m cos mJ[
— K AR LOS LU
where the matrix (A] is defined as
M 1 i M cos mT[
K S mmemt 2 B 2 Tocm
Al = . , . (A-64)
M cosm]] (cos mT[) 1
Ha =y TmCm ° B 2y ImCm T2
Therefore, using Eq. (A-63) it is obtained
M Mm
A1 = Kl mF;"o Cm
2 “ K 3 Mm cos mT]

m=( Cm
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Once \; and ). are obtained they are substituted into Eq. (A-59) to obtain the complete
Euler coefficient which satisfies the spring boundary conditions.

If one assumes equal spring constant at @« = 0 and ¢ = M, that is, K; = K; = K, the
problem is simplified. It is always convenient to treat the problem as the superposition
of the symmetric and the anti-symmetric cases with respect to $+M. Only the symmetric
case is discussed in detail, since the anti-symmetric case follows the same procedure.

For the symmetric case (i. e. fa = fy—«), the solution is assumed in the form

M
o = 22 . fm cos \m « (A-66)
m=0,2,4,

where the index m takes only even integer values.

Similarly the external loads are expressed as

ME M 5
=L, — S Mm cos \m « (A-67)
Wa m=0,2,4 _

The substitution of 6x, Eq. (A-66), into Eq. (A-52, b. c.) yields the result
A = Ag = AS (A-68)

Accordingly, the modified first energy veriation is written

ME " M+1
50 = A™1 wa | bk (f/+27) ba — — % — 215 50 | efa (A-69)
Wa 0
Introducing Egs. (A-46) and (A-67) into Eq. (A-69) one obtains
_ 2\ i
fm = (Mm = )/Cm (A-70)
where Cm = 2bk (cos ym — 1 + v)
With the results of Egs. (A-70) and (A-6la), it is found
M AR AS v g
K > (Mm+Tm»)/Cm+—2f—0 (A-T1)
from which
M
-K, 3, T
AE e e E 0 i (A-72)
2K > (carm* 2)

Introducing the above results, Eq. (A-72), into Eq. (A-30) one obtains the Euler
coefficient for the symmetric case.

The value of the parameter for the anti-symmetric case can be obtained by letting
the index m to take only integer values in the preceding equations. One finds
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M Mm
- Mm
7\4"/3 - m=21,3 Cm
2K M ( 1 1
3 (earmt2)

EXAMPLE 2 - TWO-DIMENSIONAL CASE: ANALYSIS OF A
CABLE NET

(A-73)

To illustrate the two-dimensional case the analysis of the cable net shown in Fig.

A —3 is presented.

? S &
1 S S S
T T 7 1
- MQ o,
R = ohyd 1) 7
R < (O 1)ckn) }(oh,okzl i
a
R -t :R ] 2
R - >R
(O,N) | (N,N)
i | 1
8 ‘é S ll L L
Q\ l
Y

FIG. A-3 NET WITH FREE BOUNDARY AT a;=0, M

The net of Fig. A —3 is assumed to have simple supports at a: =0, N and free

supports at @y = 0, M. Therefore, it allows boundary deflection at the later edges.
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FIG. A-4a CABLE ELEMENT AT a; = CONSTANT

- R

(©l1,ch2-1) (@ 1,02)
512
w(d"":: W(ch,cha)
Vaw
o S
a?

FIG. A-4b CABLE ELEMENT AT a; = CONSTANT

The cables parallel to the @, axis are assumed to have the horizontal components of the
cable tension, i. e. R = constant. Similar assumption applies to the horizontal components
of the tension in the as — cables. However, a different component § is considered for

the boundary cables.
The strain energy of an element (@i — 1, a2) (@1, @) shown in Fig. A —4a is

obtained as

V (ai, az) =‘§%‘V1 W-W——;{{V1 W.E"1W=*§T (Vi W)2 (A-T74)

It follows that the total strain energy of cables parallel to «a; axis is

v, =8 5 5 w.we | (A-75)

28.1
ai1=1 =1

Similarly, the total strain energy of the cables parallel to «a: — axis, Fig. A —d4b, is

found to be
§ M-1 N g 0 M
Vim g 2 3 (W4 o (VW2 (8, +3,) (A-76)
ai1=1 a2=1
The potential energy due to external loads is
M N-1
W=~- 3 3 P (a1, a) W (a1, a2) (A-TD)

ai1=0 az=1
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Therefore, the total potential energy of the cable net is

R M N-1 § M-l N
U=~ 3 X W+ 55— 3 3 F:W):
boai=1 az=1 2 =1 az=1
S N 0 M M N-1
tg 3 W2 (o) +on ) - 3 3 Par, an. W (A-78)
az=1 a1=0 az=1

where the boundary conditions W (a1, 0) = W (a1, N) =0 are used.
To satisfy the nonhomogeneous boundary conditions at the edges a1 = constant, the

modified discrete variational method in Appendix A is applied. Thus, two modification
functions M and A2 are defined accordingly

M+1|N
S B | R S 0 M
U= A7 A, {—3471W—TA72W—P—>»1(a2) 80 —2* (as) 50‘1} wl o,
A I R AW+ SSS g w ot @y M L W
2 a b at g, =M
R §—8S 0 N
14—V W + = Ne W — A% (az2) 3 eW =90 (A-79)
a b at ) g, 0

The modification functions M (as), A2(a2) have been subtracted from the first
bracket and the same functions added to the second and third bracket. Therefore, the
value of the first energy variation has not changed.

The problem under consideration is further simplified if one considers separately the
symmetric and the antisymmetric solutions.

For the symmetric case it is assumed that the applied joint loads are such that W

(a1, a2) are symmetric with respect to % , while for the anti-symmetric case the loads

applied result in deformations, W (a1, a2), which are antisymmetric with respect to 1\24

Only the symmetric case will be illustrated in detail and the anti-symmetric case can
be obtained by following a similar procedure.
For the symmetric case the terms in the first bracket of Eq. (A-79) can be reduced
to
=0
1
(A-80)

M+1
57 = ATl ATl [—flﬁlW—%ﬁzw—P—sz i) 521] W ‘0

where 6 represents the modified first energy variation and M (a2) = A2 (a2) = M (@2)
is introduced.

Because of symmetry only one boundary condition needs to be considered in the a;-
direction. This condition relates the modification function \$ («2) to the boundary state-
ments and is designated as the boundary constraint.
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At a; = 0 it takes the form
Ry Ww+ETS oW —ns (@) =0 (A-81)
a i ag
The joint deformations W (a1, @) is assumed in the series
M N-1
W(a, @) = 3 > Wmncos g2 (e + 4)sin 202 (A-82)
m=0, 2 n=1,2
where the index m takes only even integer values.
Similarly the external loads are expressed as
M N-1 m] . nT a2
P (a1, az) = m}ﬂ} . H:V‘I, ] Pmn oS 3T (al + i)smT (A-83)

The modification function is assumed as
N-1
A (a2) = 23

= . nTTaz
An sin —=——
N
n=1, 2

(A-84)

Substituting Eqs. (A-82), (A-83), (A-84) into Eq. (A-83) and using the orthogo-
nality relations of the trigonometric series, one obtains

2R 2S M+DN _ Pmn(M+DN s mi _
(a—l Ym + g ’)’n) Wmn Igm dgm An N cos IM+D (A-85)
from which

dom s
Pmn + mln

. mll
COS M +1)
Wmn = Rym 55 (A-86)
2 a + a Yn
1 2

In the above expression the following notations have been used:

— 1 — cos DT —1— cos Il
Ym =1 cosM+1 ¥n =1 — cos N

The substitution of Eqs. (A-84) and (A-86) into Eq. (A-81) yields the expression

M §-S mT] =
m=20] , (—2vn) cos IM+1) Wmn — 7

c=0 (A-87)

If the results given by Eaq.

(A-87) are substituted into Eq.
solution is obtained:

(A-81), the following
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mT
Cos WMT].) Pmn
— 2%n 21 —
as m 2R 2S
- -aT rm+“a2'rn
A = (A-88)
2 g M o
148 8-S < O IM+T)
TM¥L a2 * % 2Rvm 2Sva
v + :
y ) a ag

where the index m =0, 2, 4, M even integer values.

The displacement of the cable net can now be obtained by substituting the solution
for 75, Eq. (A-88) into Eq. (A-86).

A similar solution can be found for the anti-symmetric case by letting the index m
take odd integer values only in Eq. (A-88)

APPENDIX B

DEFINITIONS AND FORMULAS FROM THE
CALCULUS: OF FINITE DIFFERENCES

A list of operators from the Calculus of Finite Differences used in this work follows:
o Let f (@) be a discrete function.defined only in the region of the integer numbers.
Then, the following operators can be properly defined:

First Order Operators

Boole’s Displacement Operator
Ef () =f (a+1)

B0 (@) = f (a+n) |
First Forward Difference Operator: Delta
Af (@) =f (@a+1) — f (@) = (E=D) £ (@)
First Backward Difference Operator: Nabla
vi(a) =f(@ —f(@-1) = 1A-EDf (a)
Forward Mean Operator: Nu
Nf (@) = $ [f(@)+f(a+1)] = 4+ (E+D) ()
Backward Mean Operator: Un
Uf (@) = %+ [f@)+fl@—1)] =+ A+E" D f (@)

Second Order Operators

Second Central Difference Operator: Debla

Jf (@ =f (@+1) — 2f () + f (a—1) = (E-2+E~ 1) f ()
Mean Difference Operator: Multa

Lf (@) =f (a+l) — f (a—1) = (E—E~ D f (@)
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For functions of more than one independent variable partial operators E;, A;, Vi,
Ni', Ui, #i, A i are defined in an analoguous manner. For example:

E:f (a1, as) =1 (@141, as)

A (a1, a2) =1 (a1 +1, az) — f (a1, as)

Inverse Delta or Summation Operator

The inverse delta represented by A~! behaves similar to the integration symbol in
the continuum. It is defined as

M+1 M
A~ f () = > f(a)
a=1 a=1

Formulas for the above operation are listed in standard book of Calculus of Finite
Differences. The inversion of a product of two functions is usually obtained by using
a technique similar to the integration by parts. The summation by parts can be accom-
plished by the following formula:

A"l [f () Ag (@)] =f (@) g (@) — A-L [Af (a) Eg(a)]

Difference Equations

The equation
[An An+Apn—q AR-1 coeens + Az A? + A; A+A] T (@) = Ula)

which related the unknown function f (@) to its difference, is called a difference equation
of the order n. The coefficients An may be functions of a. If they are constants the
equation is a linear ordinary difference equation of the order n.

Partial Difference Equations

A difference equation which is a function of two or more independent variables is
called partial difference equation. For example:

G (ai, as, f, Af, As f, A2 f ... AT, A20) =0

involves difference of two variables and, therefore, is designated as a partial difference
equation of the order m and n with respect to the variables a; and as.
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