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I. Introduction 

Analysis of Continuous Beams & Cable Nets 

by Finite Difference Calculus 

Takeshi OsHIRO* N aohiko TOKASHIKI * * 
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With the application of high-speed electronic computers, the matrix methods 

have become prominent means for analyzing complex engineering structures and the 

advantages of the matrix methods have been shown in many cases. While the 

techniques of the matrix methods are simple and straight forwards, a problem of 

large matrix orders becomes apparent in general caces, which results in the need for 

large storage facilities in a computer. Also the round-off error and the excessive 

computation time make the methods less applicable. 

Generally, many engineering structures are arranged in uniform (i. e., beams 

on equidistant supports, cables with equal spaces.) For such structures, the discrete 

field analysis gives more advantages and it will be shown that this method is supe

rior to the matrix methods. This is the direct application of finite difference 

calculus and the mathematical models are difference equations. Exact closed form 

field solution can be found for many regular cases and such solutions are valid over 

entire structures. Therefore, the solutions are essentially independent of the size of 

structures, that is, the same solution form holds for the structure with a very small 

or a very large number of nodes or elements. For more complex structures with 

irregular patterns, this method also can be applied. A closed form solutions are not 

to be found easily for these cases. However, the numerical technique called as 

"walk through u gives solutions, which is out of presentation of this paper. 

This paper presents the application of the discrete field analysis using simple exam

ples such as continuous beams and cable nets. The closed form solutions are 

obtained, which are in the forms of single and double finite Fourier series. 

While the same examples are analyzed by the first author using the variatio· 
(5) 

nal technique, this paper presents the direct application of the force equilibrium on 

node points. It will be noticed that same difference equations are obtained. The 

validity of this technique can be proven theoretically by the general concept of the 

variational technique. Comparing with the variational technique, this method yields 

simple forms. This paper emphasizes on the numerical calculations, which were not 
(5) 

presented in the previous paper. 
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2. Analysis of Continuous Beams 

A continuous beam on equidistant supports in Fig. 1 is considered. The 

governing equation and the boundary conditions are obtained which are a set of 

second order difference equations. Corresponding closed form solution is obtained in 

the form of single Fourier series. 

M~ 
KJ ~ 
@ A ~s A EI a Zi Zi Zi A ss Zi 

a = 0 a ~ l a-11. La Ja a+l a +2 a + 3 M-1 

............. --® 
M 

Fig. 1 Continuous Beam 

M _ 1 r-"ea- 1 ~ 
a \ ""'l :...;;?' 

a - 1 C( 

Fig. 2 Beam Element 

2. 1 Governing Equation 

The governing equation for the subject problem is found by substituting the 
(2) 

general force-defomation relations into the equilibrium equation which is obtained 

by summing joint moments at a typical support. 

The equilibrium equation at a typical supports (a) in Fig. 3 is 

M~ + M~ = M~ (1) 

M~ Mk~ M)i M~ 

~ I) (g) Q ~ 
a 

Fig. 3 Equilibrium of Moments at a Typical Node 

in which M~ is the equivalent applied joint moment load, that is, the actual 

applied joint moment minus the result of fixed end moments. Fixed end moments 

are these dueto midspan loads when joint deformations are zero. The general 
( 2) 

force-deformation relations for this problem are written as 



M~ = bk(.6.+ r)fJa l 
M~ = bk(r -'\7)8 a 
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( 2 a. b) 

where k, beam stiffness, equals flexural rigidity at a reference point divided by 

beam length; Ela /La, and b and r are slope-deflection coefficients, which are 2 

and 3 for prismatic members, respectively. The symbols, .6. and V', are the first 

forward and backward operators, respectively and are defined as .6. (} (a) = (} (a + 
1)- (} (a), and V' (} (a)=(} (a)-(} (a- 1 ), respectively. 

Substitution of the force-deformation relations, Eqs. ( 2 a, b) into the equilib

rium equation, Eq. ( 1 ) yields the following equation as, 

bk (9 + 2r) 8rx -M~ = 0 (3) 

where 9 denotes the second central difference operator and is defined as 9 (} (a)= 

(} (a + 1 ) - 2 (} ( a ) + (} ( a - 1 ). 

Equation ( 3 ) represents the governing difference equation of the continuous 

beam. 

2.2 Boundary Conditions 
Considering the moment equilibrium at a = o in Fig. 4 the boundary condition 

is obtained as 

M~ 

~M§: M§ 

Keo(~)(~l ~ 
a=O 

Fig. 4 Equilibrium of Moments at Boundary (a =0) 

where Ko is the spring constant at the boundary. 

(4) 

The substitution of the force-deformation relation, Eq. ( 2 a), into the above 

equation, Eq. ( 4 ), yields 

bk (.6.+r)fJo + Ko fJo -M~ =0 (5) 

Similarly, at the other boundary at a =M, the boundary condition is obtained as 

(6) 



118 Analysis of Continuous Beams & Cable Nets by Finite Difference Calculus 

where KM is the spring constant at a =M. 

2. 3 Modification of Governing Equation and Boundary Conditions 

Several attempts have been tried to solve the second order difference equations, 
(1) (2} (6) 

Eqs. (3), (5) and (6). However, none of these gave a satisfactory solution. If 

possible, Fourier series solution is known to be the simplest form. The difficulties 

is to find the series solution to satisfy both the governing equation and the boundary 

conditions. The significance of the following technique is to modified the series 

solution to satisfy all the necessary conditions. 

The solution is going to be assumed for this problem as Eq. (18) and the folio· 

wing proper orthogonality relation in Eq. (7), is to be applied. 

~ Wa COSAmtl' • COSA 1 
mil' = l 0 M 2 'm ~ 

a=o ~ Wacos " "'" 
a=o 

(7) 
Am= Am 

where A m=m 1r /M and A' m=m' 1r /M. 

Accordingly, the governing equation, Eq. (3), and the boundary conditions, 

Eqs. (5) and (6), have to be modified. The governing equation, Eq. (3), is to be 

written including both boundaries; a= 0 and a =M: 

Me 
w a ( b k ( L17 + 2r) 8 a - -~ J = 0 

Wa 

where wa is the weighting function, and is defined as 

and M 

a:t=o and M 

(8) 

Since the governing equation extended over the boundaries, the boundary 

conditions, Eqs. (5) and (6), have to be modified accordingly. The introduction of 
(5) 

modification factors made possible to find closed form Fourier series solution and 

the same factors are also introduced here. The physical meanings of the factors are 

explained as the forces applied at boundaries which connect the modified boundary 

conditions and the governing equations. Using the modification factors, the assumed 

finite Fourier series solution is modified to satisfy all the neccesary conditions. 

The boundary condition at a= o, Eq. (5), can be rewritten as 

b k (.6. + r ) 8 o + Ko 8 o - M~ 

=( ~k 8 8o + Ko 8o + ).
2
1 

)++(bk(L17+2r)8o -2M~- ). 1 J (9) 

Also, the boundary condition at a =M can be rewritten as 
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b k (a - '\7) 8 M+ KM (} M-MM 

= (-~k 8 (} M+ KM (} M + ~~) ++ (b k (L17 + 2 r) (} M- 2MM: - A 2) (10) 

where the symbol 8, multa, denotes the second mean difference operotor, and is 
defined as L17 (} (a) = (} (a + 1 ) - (} (a - 1 ). 

The terms in the first bracket on the right side of Eqs. (9) and( 10) represent 

the modified boundary conditions at a= o and a =M, respectively. Therefore, the 

problem becomes to find the solution to satisfy the following equations. 

At a= 0,1 ,-, M 
e 

wa(bk(L17+2r)Oa_Ma -A1 o~ -A2 o~J =0 
Wa 

At a= 0, 

(11 a, b, c,) 
· b k L17 (} o + Ko (} o +_1_1__ =- 0 

2 2 

At a=M, 

- bk A2 
-

2
- L17 (} M + KM 8 M +-

2
- = 0 

where kronecker delta~ function, o a 1 = 0 for a =F a 1 and o a 1 = 1 for a = a 1 , is a a 

used. 

(6) 
Exactly same equations are obtained by the first author and, consequently, 

the procedures to find the solution are same. Therefore, further explanations are 

considered to be unnecessary. Instead, several examples are calculated to present 

the significance of this technique. 

3. Numerical Procedures 

While the following examples can be calculated even by a desk calculator, the 

computer FACOM 230-15, of computer-center, university of the Ryukyus, was used 

for convenience. 

The examples are treated as the superposition of symmetric and anti-symmetric 

case, which makes the calculation simple. The following procedures are followed 

for this calculation. 

For symmetric case, the modification factor, A $, is calculated first, which is 

written as 

M 
-2K L Mm 

m=0,2,4, Cm 
(12) 

M 1 +-1-
K m=~2,4, Cm rm 2 
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where Cm = 2bk (cos Am - 1 + r), K is spring constant and Mm is the Euler coeff· 

icient of finite Fourier series which is written as 

(13) 

where 

M I___M_ m=FO M rm= l: Wacos2 A ma = 2 , 
a=O M m=O,M 

(14) 

For an external load with the magnitude of one applied at a = a o , Kronecker 

delta function is used as 

and the coefficient, Mm, is obtained as 

Mm= - 1- COS A mao rm 

(15) 

(16) 

The coefficientMm and A $ are substituted into the coefficient of rotations, 

fJ m, which takes the form as 

0 m= (Mm+ ~~J /Cm (17) 

Finally, the rotations at any nodes are calculated by the following solution 

M 
fJ (a)= l: (J m cos Am a 

m=0,2;4 
(18) 

For anti-symmetric case, exactly same equations are applied except that the 

integer number m takes only odd. 

4. Example : Continuous Beam on Equidistant Supports with various Spring Cons

tants at End Boundaries 

4.1 Symmetire Case 

The following data are used to calculate rotations at a = 0 , 1 , 2 , 3 , 4 , 5 

and the resuts are listed in Table 1. Data: M= 5, M~/bk = M: /bk = 1, r = 3, 

K =variable. 

While the spring constant takes several values, the equations are not necessary 

to be changed. They are calculated changing the value of K in the Euler coefficient, 

fJ m· External loads are applied at a = 1 and a = 4 , symmetrically with respect to 

M/2, that is, a= 1 and a=4 for this case. The values of M~ /bk and M4/bk 

are assumed to be magnitude of one. 
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According to general structural analyses with Fourier series, Eq. (18), is never 
assumed to solve the continuous beam with fixed end (i.e., K = oo ), because zero 
deformations at boundaries are not obtained by cosine series. However, the modification 
of cosine series makes the solution exact, which is one of the significance of this 
techniques. 

Table 1 Numerical Results for Symmetric Case 

- ----- - - --· 

M'i = 1 Me 
K t. _4_= 1 bk bk K 

~ I ~ ~ I ti) A lbk n I n h 
a =0 a=l a=2 a =3 a= 4 a=S 

~a ot) 81 82 I 83 84 85 K ------.. I 

0 -O. J.515 0.3030 -0.0606 -0.0606 0.3030 -0 .1515 

1 -0.0962 0.2885 -0.0577 -0.0577 0.2885 -0. 096.2 

10 -0.0224 0.2691 -0.0538 I -0.0538 0.2691 -0.0224 

-

100 -0.0026 0.2638 -000528 -0.0528 0.2638 -0.0026 

- ----

I 
(X) 0.0000 0.2632 -0.0526 -0.0526 0.2632 0.0000 

I I 

4. 2 Anti-symmetric Case. 

Same problem as described above is calculated with external loads at a = 1 
and 4, applied anti-symmetricaly with respect to M/ 2. For this case, the integer 
number m takes only odd numbers, that is, m=l, 3, 5,. Results are listed in Table 2. 

Table 2 Numerical Results for Anti-Symmetric Case 

M'f Mj 
K 

---g;- = 1 <l ---g;-=1 
K 

~ I " @ ~ zs: bk zs: I zs: zs: I 

a = 0 a=1 a= 2 a= 3 a = 4 a =5 

~Oa ot) 
I 81 82 83 84 I 85 K ----....__ __ 

-·I 

0 - 0.].579 0.3158 -0.1053 0.1053 -0.3] 58 
I 

0.1579 

1 -0.1000 0.3000 -0.1000 0.1000 
I 

-0.3000 
I 

0.1000 
- --- - -·~·------

10 -0.0233 0.2791 -0.0930 0 .0930 
I 

-0.2791 0.0233 

100 -0.0027 0.2735 -0.0912 0.0912 -0.2735 0.00.27 

(X) 0.0000 0.2727 -0.0909 0.0909 -0.2727 ! 0.0000 
I 
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4 . 3 Continuous Beam with 2.0 Spans 

The significance of this technique can be understood easily if the number of 

the span becomes large. According to general matrix methods, corresponding simu

ltaneous equations have to be solved, where high matrix inversion is required. For 

instance, the example shown in Fig. 5 requires the inversion of 11 x 11 matrix. 

However the calculation proposed here can be done even by using a desk calculator 

since the summation with respect to integer number min Eq. (18), is only required. 

This example is calculated by two methods and the results are listed in Table 

3 , which shows the same results if allowable errors are considered. 

Mi ~- 1 M{l M1~ 
""""bk= 1 bk t ---g;- = I - --bk" - I 

"" " 
l""'l ! 

........_ 
rt~ LS. A A A zs: A A Zi u Zi 

• -o a - 1 a- 2 a -8 a - 9 a - 10 a ~ 11 a - 12 a - 18 a - 19 a -20 
( M- 20) 

Fig. 5 A Continuous Beam with Simple Supports 

Table 3 Numerical Comparisons for Continuous Beam in Fig. 5 

~I 80 
I 81 I 82 I 83 

I 
07 I 05 I 

()6 
I 07 I 

()8 
I 

() 

I 
() 10 9 

Closed 0.0414 -0.0829 0.2901 -0.0776 0.0204 -0.0040 -0.0045 0 .0218 -0 .0828 0.3094 -0.1647 Form 
- - - - --

Matrix 0 .0414 -0.0829 0.2901 -0 .0776 0 .0204 -0.0039 - 0. 0044 0.0218 - 0. 0827 0 .3094 - 0. 1547 Form 
-- - - -

6 . Analysis of Cable Net 

The application of the technique to the two dimensional case is illustrated in 

the analysis of cable net in Fig. 6 . 

The net shown in Fig. 6 is assumed to have simple supports at a 2 = 0 , N and 

free supports at a 1 = 0 , M. Therefore, it allows boundary deflections at the later 

edges. R, S, and s are horizontal component of cable tensions in cables parallel to 

t:q axis, a2 axis, (except boundaries) and at boundaries, respectively. 

6 . 1 Governing Equation 

The general governing equation at a typical node (a 1 , a 2 ) is obtained by 

summing the forces noma! to the reference line as shown in Fig. 7 . 

The nomal components of the forces are obtained by simple geometry shown 

in Fig. 7 and the result takes the form as 

(19) 



s s 

(0 , 0) 

R 

R 

R 

R 

R 

( 0, N) 

s s 

J 
az 

Fig.6 

Ja, 
J ~ (a 1 -1 , a 2) 

W · R 

123 

s s s s s\ 

( M,O) 
...;....;;..,:_ ..... a! 

( al, az -1 ) -

(aJ-1 , az ) (a!, a z ) 
~ 

] 
R 

- R 

R 

(M ,N) 

sws s s s 
a') 

Cable Net with Simple and Free Supports 

~az 

,! (at, a z - 1 ) 
s --Q.... 

R : Horizontal Component 
of cable tension in 
a1 axis 

s, S : Horizontal component 
of cable tension in 
a2 axis 

.6zw · 
._&--_S 

(at, az+l) 

Fig. 7 Polygon Elements for a1 and a2 Direction 

where E-1 is the Boole's backward displacement oprator defined as E1- 1 w (a 1 , a 2 ) 

=w( a 1 -1, a 2) and E2-l w (a 1 , a 2) = w( a 1 , a 2 -1). 

Eq. (19) , is the governing equation of the cable net and is rewritten using 

difference operetors as 

-P (20) 
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where symbols 91 and 92 , denote the second partial difference operators with 

respect to the variable a 1 and a 2 , respectively. For instance, the definition of 

the operator for the variable a1 is, Ll71w(a1, a2) =w (a1 +1, a2)- 2w(a1, 

a2)+w(a1-1, a2). 

It has to be noticed that Eq. (20) is the second order of the partial difference 

equation. 

5 . 2 Bounbary Conditions 

Similarly, the equilibrium of the noma! forces at the boundaries a 1 = 0 and 

a 1 = M are obtained, which is written as at a = 0 , 

(21) 

or, (21a) 

and, at a =N, 

(22) 

or, (22a) 

P ( 0 , az) r ;21 
... (.o_, oQ.a.._z- 1 ) 

t 'Vzw 
w w 

Fig.8 Polygon Elements for a1 and a2 Direction at Boundary a1 =0 

s 

The boundary conditions at a 2 = 0 and N are simple supports, which take the 

equation as 

w( a 1 , 0 ) = w( a 1 , N) = 0 (23) 

To provide closed form solutions for considered above, the modification factors, 

;. 1 (a 2), ;. 2 (a 2) are introduced into Eqs. (20), (21a) and (22a) as similar to the 

previous case, where ;. 1 (a 2) and ;. 2 (a 2) are considered physically as forces applied 

at the boundaries, i. e., a 1 = 0 , a 1 = M, and 0 < a 2 < N. The boundary conditions, 

Eqs. (21a) and (22a), are modified as follows; 
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(24) 
and, at a1 =M 

R S c R s-S M J -(il\71 w+az-LV2 w + P = -a;:-~1 w+--az-LV2 w- A 2 ( a2) o a 1 

+ ( ~ § 1 w+ ! J72 w+ P + .( 2 
( a2) o ~ 1 J 

(25) 

where o a 1 is Kronecker delta function defined as o a 1 = 1 for a 1 = a1 and 
a1 a1 

The factors, .( 1 ( a 2) and .( 2 ( a 2), are the modification factors at a 1 = 0 , and 

a 1 = M, respectively, where a2 take the value 0 < a2 < N. 

The terms in the first bracket of the right side of Eqs. (24) and (25), are the 

modified boundary conditions at a 1 = 0 and a 1 = M, and the terms in the second 

one are exactly same form as the governing equation, Eq. (20). Therefor, the gove· 

rning equation, Eq. (20), can be extended over the boundaries at a 1 = 0 and a 1 =M, 

and is written as 

which is valid over all interior and also boundary nodes at a 1 = 0 , M. From Eqs. 

(24) and (25), the modified boundary conditions are written as 

at a1 = 0 

(27) 

at a1 = M 

R s-S 2( ) M ---~1 w+--92 w- A a2 o a = 0 
~ ~ 1 

(28) 

and, at a 2 = 0 and N 

w( a 1, a2) = 0 (29) 

(5) 
It has to be noticed that above equations are exactly same as ones obtained. 

Therefore, further procedures follow same. Only the results are shown in the 
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numerical example without any explanations. 

6. Numerical Example of Cable Net 

The following example is treated as symmetric and anti -symmetric case which 

describe the load conditions applied symmetrically and anti- symmetrically with 

respect to a 1 = M/2 . 

The numerical calculation for symmetric case starts to find the Euler coeffici

ent of the external load which. is assumed as double Fourier series 

M N-1 1 
= ~ ~ Pmn cos~ (a1 + - -) • sin n1r a2 

m=0,2,4, n=l,2, M+1 2 N 
(30) 

Pmn 

M 
4~m ~ 

N (M+l) a 1=o,2 

N-1 
~ ) m1r 1 P (a 1 , a 2 cos - - ( a 1 + --) • 

a 2=1,2 M+1 2 

n7r 
sin N a 2 (31) 

A unit load applied at a node Ca1 , a2 ) is written as 

P(a1, a2)=o~~ o~; (32) 

for which the Euler coefficient is obtained as 

Pmn N(M+l) 
M N-1 m 7r (- 1 ) . n 7r _ 
~ ~ COSM+ 1 a1 + - 2- • SID ---w- a2 

a 2=1,2, a 1 =0,2 
(33) 

The modification factors for . symmetric case are assumed as the following 

series function in a 2 axis as 

$ 'N-1 
A (a2) = ~ 

n=1,2; 
A $ sin n 7r a 2 

n N (34) 

where A! denotes the Euler coefficient of the modification function. The Euler 

coefficient, A $, is obtained as 
n 

m7r 
COS 2 (M+l) • Pmn 

s-s M R s -2rn - - ~ 2 rm + 1___?.:.~ A! =-----a_2_m_=0,2,4, a 1 a2 

~j_m cos2 m 7r 
M+1 Z(M-.f- 1) 

1 + ~-:- S_ ro ~ -2Rrm + 2Sr;;--
a2 m=0,2,4, a1 

(35) 



where mlt' 
rm = 1 - cos M + 1 

nlt' 
rn = 1- cos-

N 

1 .Pm = 1--2-o~ 

1:17 

(36 a, b, c) 

The values of A~ for n=1,-, N are substituted into the Euler coefficient of 

the displacement, Eq. (37) and the displacements at any nodes, Eq. (38), are obtained 
as follow; 

p +4¢m ,$ m1r 
_ mn -+1 11 n COS 2-( +1)-

Wmn- M M (37) 

2 _Brm_+ 2 Srn 
a1 az 

M N-1 m 1t' 1 lilt' 
w(a1, az) = L L Wmn cos--(al +--) • sin --az (38) 

m=0,2,4, n=1,2, M + 1 2 N 

For anti-symmetric case, same equations hold except the integer number, m, 

takes only odd numbers. 

s s s s s 
f~.=O I 2 3 - 4 5 t 6 ( -.:.0 

0,0413 0,0564 0.0731 ,0.0756 

R 
I 

0.0751 0, II14 0,1603 0,1561 

\ 
2 

A·3006 \ 0,0908 0.1535 / 0,2284 

R 

3 ..___ R 

R I I 
4 

R 5 

-s -
6) l 1 

R 

s s s s s s s 

~ w 
oez 

Fig. 9 Results of Calculation for Cable Net 

R 

R3 
R 

R 

R 

R 
S/S =2.0 

R/S =I.O 
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The results of the numerical calculation for symmetric case are shown in 

Fig. 9 , where the following data are used; M = 6 , N= 6 , a1/ a2 = 1 , S jS = 2 , 

RjS = 1 , P ( 2 , 3 ) = P ( 4 , 3 ) = 1. 

Same example is calculated using a matrix method, which requires the inver· 

sion of 12 x 12 matrix. The numerical comparisons between two methods are shown 

in Table 4 which indicates validity of the technique proposed. Eqs. (35), (37) and 

(38), require only summations with respect to the integer numbers, which are calcu

lated without any difficulties. 

Table 4 Numerical Com~risons for Cable Net in Fig. 9 

Ca1. a2)1 w (a!, a2) ic a1, a2)1 w (a1, az) l(a1, a2)1 w (a1, az) l(a1, az)l w-~-::az~l 
• • ... ... I 0.0413 0.0564 0.0731 0.0756 

(0,1) (1,1) (2,1) (3,1) - ----1 
0.0413 0.0564 0.0731 0.0755 

* * * ... 
0.0751 0.1114 o. :;_6o3 0.1561 

(0,:1) (1,:1) (:1,:1) - ------ (3,:1) ---- -----

0.0751 0.1114 0.1603 0.1561 

-- - - -----
* * * * 0.0908 0.1535 0.3006 0.:1:184 

(0,3) (1,3) (:1,3) 

I 
(3,3) 

0.0908 0.1535 0.3006 0.2:184 

Note : Displacements indicated by * are the ones calculated by closed form 

solution and the others are caluculated by a matrix method. 

7. Conclusion 

! 

The governing equation and the boundary conditions are obtained for a conti

nuous beam and a cable net directly from the force equilibrium, where the deriva-
(5) 

tions are easier than the variational method. With the general concept shown in 

the variational method, the modification factors are also introduced to derive closed 

form solutions. The techniqus of the discrete field analysis are discussed with 

emphasis on the significance of finite Fourier series. 

Numerical examples are illustrated in the analyses of continuous beams and 

cable nets. The results show the validity of the techniques proposed. Also, the 

procedures in the numerical examples indicate the significance in the calculations for 

which any matrix inversions are not required. 
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