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SURVEY ON THE RANK AND
STRUCTURE THEORY OF GROUP
C*-ALGEBRAS OF LIE GROUPS

TAKAHIRO SUDO

ABSTRACT. This article is a survey on the rank and structure the-
ory of group C™-algebras of Lie groups, studied and developed
mainly by the author recently or formerly. The main points are
the stable rank and connected stable rank estimations of these C*-
algebras in terms of groups, and the decomposition of group C*-
algebras of some Lie groups into finite or infinite composition series.
In addition, some improvements of former results are obtained.

§0. INTRODUCTION

This paper is organized as follows:

§1.
§2.
3.
4.
§5.
86.

Solvable Lie groups of type I

Amenable Lie groups of type I

Non-amenable Lie groups of type I

Solvable Lie semi-direct products of non type I
Solvable Lie groups of type R or non type R

Tables of examples of Lie groups

In each section except §6, we will show some results and their meth-
ods for the matter explained in the abstract (cf.[Sd1-7] and [ST1,

ST2)).
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We shall start with reviewing some notations and facts about the
stable rank and connected stable rank for C*-algebras.

Notations: For a C*-algebra 2, we denote by A = A" its spec-
trum of all irreducible representations of 2l up to unitary equivalence.
We denote by C*(G) the (full) group C*-algebra of a Lie group G
(¢f.[Dx]), and by G the space of all 1-dimensional representations
of G. Note that the unitary dual G of G is identified with C*(G)".
Denote by G oo the subspace of all infinite dimensional, unitary rep-
resentations of G in G. For a locally compact Hausdorft space X, we
denote by Cy(X) the C*-algebra of all continuous complex-valued
functions on X vanishing at infinity, and let C(X) = Cy(X) when X
is compact. We denote by K = K(H) the C*-algebra of all compact
operators on a countably infinite dimensional Hilbert space H.

For a C*-algebra 2, we denote by sr(2), csr(A) € {1,2,---, 00}
its stable rank and connected stable rank respectively [Rf].

Theorem [Rf], [Nsl1]. Let X be a compact Ty-space. Then
sr(C(X)) = [dim X/2] 4+ 1 = dim¢ X,
cst(C(X)) < [(dimX +1)/2] + 1
where [x] means the least integer > x.

Remark. We have by [Sh] that for S™ the n-dimensional sphere,

2 =1, a5id 1 if n= 2,

csr(Co(R™)) = csr(C(S™)) = { (n+1)/2]+1, n>3.

Theorem [Rf], [Sh]. Let 0 - J — A — A/T — 0 be an ezract

sequence of C*-algebras. Then we have that

sr(J) Vsr(A/T) < sr(A) < sr(T) Vsr(A/T) Vesr(A/T)
csr(A) < esr(T) Vesr(A/T)

where V. means the maximum.

Theorem [Rf], [Sh|, [Nsl]. For any C*-algebra U, we have that
sr(AR@K) =2Asr(™A), csr(ARK) < 2Acsr(A)

where N\ means the minimum.



§1. SOLVABLE LIE GROUPS OF TYPE [

Nilpotent Lie groups.

Theorem [ST1], [Sd4]. Let G be a connected, nilpotent Lie group.
Then )
sr(C*(G)) = dime Gy.

Remarks. The simply connected case is due to [ST1], and its gener-
alization to the connected case is due to [Sd4]. The above formula
for G' a nilpotent semi-direct product of the form R™ x R was first
obtained by [Sh].

For a connected solvable Lie group G, we have the following iso-
morphisms as a topological group:

G, = (G/[G,G)" = R" x Z*

for some n, k > 0, where [G,G] is the commutator group of G. If G
is simply connected, we have that

G1 = (G/IG,G)" = (8")¢ =R"

for n > 1, where ®&* is the real dual space of the Lie algebra & of G,
and (®*)¢ is the fixed point space under the coadjoint action of G.

Note that C*(G) for G a connected solvable Lie group has the
following exact sequence:

0—=Jg = C"(G) > Cy(G1) = 0

where Jg = Goo. When G is of type I, Jg is also of type I. Then
Je has a composition series {jj}é\’zl (N < o0) such that its sub-
quotients J;/J;_1 have continuous trace. In the case of G a simply
connected, nilpotent Lie group, by [Sd1] we may take N finite and
J;/3;-1 are liminary with Hausdorff spectrums. In both situations,
the subquotients are stable C*-algebras of continuous trace by [Sd6,
Proposition 3.6], i.e., of the form

J;/35-1 =2 To(Xj, {K}ex, ) = To(X;, {Kliex,) ®K

where the middle side means a C*-algebra of continuous fields on a
locally compact Ta-subspace X of Jg.

To prove the rank theorem above, we applied the following theo-
rem inductively to another composition series of C*(G) ([ST2]):



Theorem [Ns2]. Let A be a C*-algebra having a closed ideal J of
continuous trace with any element of J oo-dimensional. Then

sr(A) < 2Vvsr(A/T).

Moreover, we used the following:

Theorem [ST1], [Sd4]. Let G be a connected nilpotent Lie group.
Then the following are equivalent:

(1) sr(C*(G)) = 1.

(2) G is isomorphic to either R or T or R x T,

(3) dime Gy = 1.
If G is simply connected, then the conditions (1) and (3) are equiv-
alent to that G = R.

Example 1.1. We denote by Hg,4; the real (2n + 1)-dimensional
Heisenberg Lie group, which consists of the following matrices:

1 a ¢
(C,b,(l) = ln bt € H2n+1 C GLTH,Q(R)
0 1
with (¢,b,a) = (¢,by,--- ,bp, a1, ,ay,) identified with elements of

the semi-direct product R**1 x R®. Then we have that
st(C*(Hany1)) = [2n/2] + 1 = dimg (Haopyg1)7,
and we have the following exact sequence (cf.[SA7)):
0— Co(R\ {0}) ® K — C*(Hany1) = Co(R*™) — 0.

Solvable Lie groups of type I.

Theorem [ST2]. Let G be a simply connected, solvable Lie group
of type 1. Then

st(C* (@) = (2 V dime G1) A dim G.

To prove this theorem, we applied Nistor’s theorem above to a
composition series of C*(G) with its suquotients having continuous
trace, obtained from being of type I, and used the following theorem:



Theorem [ST2]. Let G be a simply connected, solvable Lie group.
Then the following are equivalent:

(1) sr(C*(G)) = 1.
(2) G is isomorphic to R.

Example 1.2. Let A,,; (n > 1) be the real (n + 1)-dimensional,
extended az + b group defined by the following matrices:

t

€ a1
((l,t) - " € An+1 C GLn+1(R)
& @y
0 1
with (a,t) = (a1, - ,an,t) identified with elements of the semi-

direct product R® x R. Then we have that
st(C*(Any1)) =2V ([1/2] +1) = 2V dime(An41)7,

and C*(A,,41) has a finite composition series {J; ?:11 such that

_ Co(R) j=n+1,
JilFi1 = () +1-j -

1=/ Co((RA{0})" ™) xR 1<j<n

where @(";ﬂ) means the combination (nﬁ_j) times direct sum,

and the direct factors are C*-crossed products of Co((R\ {0})"+177)

by R. Since each connected component of (R\{0})"T!~7 are invariant

under the action of R, and the action on each is free and wandering
(cf.[Gr]), we have that

Co((R\ {0} ) R @ 7 Co(REF7) xR

. 2n+1Aj

>~ @ Co(RE7) ® K.

§2. AMENABLE LIE GROUPS OF TYPE [

Theorem [Sd3]. Let G be a connected, amenable Lie group of type
1. Then

dime G < sr(C*(G)) <2 Vv dime G



Remark. The solvable case is due to [ST2], which is included in this
theorem.

We have the following exact sequence: for G a simply connected,
amenable Lie group,

0— Jg — C*(G) = Co(R) @ C*(S) = 0

where R is the radical of G and S is a compact group such that
G2 RxS,and ]%‘f is the fixed point space of R; under the adjoint
action by S, and Je = Goo. Note that f%ls =G.

Without using Nistor’s theorem, if we use the composition series
as given above and in the nilpotent case, we obtain that

Theorem 2.1. Let G' be a connected, amenable Lie group of type 1.
Then

dime G < sr(C
C < 2Vesr(Cy(Gh)).

*(@)) < 2V dime Gy V est(Co(Gh)),
csr(C(G)) <

Proof. We first show that
sr(Jg) <2, csr(Jg) <2

where Jg = G oo, which is deduced from applying the rank formulas
in the introduction to the structure of Js (a composition series with
its subquotients stable). Next, applying the rank formula for exact
sequences of C*-algebras, we get the conclusion (cf.[Sd3]). O

Remark. In the above theorem, we note that

2V dim¢ G’l if dim@l even,
dime G; + 1 if dim G5 odd.

2V dimg G V esr(Co(G)) < {

As a note, there exist some connected, amenable Lie groups of type
I such that their group C*-algebras have stable rank one. For ex-
ample, it i1s the semi-direct product of R* by SO(n) with the action
by matrix multiplication. As a simply connected example, we may
take the semi-direct product of R™ by Spin(n) the universal covering

group of SO(n) (cf.[Sd3]).



Theorem [Sd3]. Let G be a simply connected, amenable Lie group
with its radical commutative. Then G is of type I and

st(C*(G)) = (2 Adimg(R1/G)) A dime G

where ]?1/6' means the orbit space under the adjoint action of G.

Theorem [Sd3]. Let G be a simply connected, amenable Lie group
of type I with R its radical. Then

(2 A dime (R, /G)) A dime Gy < st(C*(G))
< (2Vdime G1) A (dim RV 1).

Example 2.2. Let G = R" %, Spin(n) (n > 2), where Spin(n) is
the universal covering group of SO(n) and « is induced from the
action of SO(n) by matrix multiplication (cf.[Sd3]). Then we have
that

st(C*(G)) =1=1[0/2] + 1 = dim¢ G,

where G is the trivial representation of G, and R" /G = R, and
0— Co(Ry) @ C*(Spin(n),) ® K —» C*(G) — C*(Spin(n)) — 0
where Spin(n), is the stabilizer of the trivial representation x of

R™, and we note that C*(Spin(n)), C*(Spin(n),) are isomorphic to
restricted direct sums of matrix algebras over C (See [Sd3]).

§3. NON-AMENABLE LIE GROUPS OF TYPE I

We denote by C}(G) the reduced group C*-algebra of a nona-
menable Lie group G. Note that C¥(G) is a quotient of C*(G).

Theorem [Sd2]. Let G be a non-compact, connected, real semi-
stmple Lie group. Then

sr(Cr(G)) =2 Arr(G)

where vr(G) means the real rank of G.



Theorem 3.1 ([Sd2]). Let G be a non-amenable, connected, real
reductive Lie group with Z its center. Then

st(C(G)) = 2 A (1x([G, G]) V (dim Z + 1)).

Remark. The following structure of C*(G) for G' a connected reduc-
tive Lie group was obtained by [Ws:

C: (G) = @(P,U})Q’U)[(CO(A) b2 K(Hw)) Xa@1 Ww]Qw

where @p,, means a restricted direct sum over equivalence classes
(P,w) with P = M AN a cuspidal parabolic subgroup of G' and w
a representation of discrete series of M, and H,, is a representation
space of a representation of G induced from w, and W,, is the sta-
bilizer of w in the Weyl group of A, and ¢, is a suitable projection
of the multiplier of the crossed product (Co(A) @ K(Hy)) Xagr W
associated with a W,-cocycle. See [Ws] for details.

Remark. A mistake of the proof of Theorem 3.1 was pointed out by
A. Vallett [Math. Review, 99a:46126]. However, the proof is right if
G is assumed to be simply connected. So we will make a correction
of the proof in the following.

Proof of Theorem 3.1. Note that if G is simply connected, by using
the methods of [Sd2] we have the above rank formula. Now suppose
G is not simply connected. Let G be the universal covering group of
G Then G = G/F for T' a discrete, central subgroup of G. Then we
have the quotient
C*(G) = C*(G) = 0
since T' is an amenable, closed normal subgroup of G. Therefore we
get that
sr(C(G)) = s1(C*(G)).

On the other hand, dim Z” for the center Z of G is preserved under

the quotient by I'. Hence, applying the proof of [Sd2] to C*(G)
similarly, we get the conclusion. [

Remark. On board to Tokashiki Island on the Ichi:San Kenshu 2000,
Professor T. Maeda suggested me the map from G to GG in the case
of GLy(C) such as

(o S en(y 0= Y)



from (C\ {0}) x SL2(C) to GLy(C), which inspired me to the above
proof. I would like to thank him here.

In general, we obtain that

Theorem 3.2 ([Sd2]). Let G be a non-amenable, connected Lie
group of type 1. Then

st(Cr(G)) <2, est(CH(G)) < 2.

Remark. The stable rank estimation is due to [Sd2]. If rr(G/R) > 2
for R the radical of G, then st(C*(G)) = 2 ([Sd2]). If S is a connected
semi-simple Lie group with real rank one and finite center and its
discrete series non empty, then the K-group K;1(C}(R x S)) is non
empty (cf.[V1]). By [Eh], we get csr(CX(R x S)) > 2.

On the other hand, we have that

Theorem 3.3. Let G be a minimally almost periodic, topological
group of type 1. Then

{ sr(C7(G))

< csr(C*(G))
sr(CF(G)) <

27
csr(CH(@G)) < 2.

IA AN

2,
2,
Proof. We recall that a topological group is minimally almost pe-
riodic if there exist no continuous almost periodic functions on G
except constant functions, which is equivalent to that there exist no
finite dimensional, unitary representations of G except the trivial
representation (cf.[JMS, 33 almost periodic function], [Dx]). Hence

we have that

0—->Jg—>C*"(G) - C—-0

where 3¢ = Guo, and Jg is the kernel of the representation of C*(G)
associated with the trivial representation of G. Next, we use the same
methods as in Theorem 2.1. Also note that C¥(G)* = Cx(G).,. O

Remark. Any non-compact, connected simple Lie group is a mini-
mally almost periodic group (cf.[JMS, Section 33]). T would like to
thank Professor K. Kikuchi for drawing my attention to the connec-
tion between almost periodic functions on groups and finite dimen-
sional, unitary representations of groups.

In the above theorem, we note that sr(C*(G)) = 1 if and only
if sr(Jg) = 1, which is obtained by [Ns2] since the index map of
K-groups from K;(C) = 0 to Ko(Jg) is trivial.



Example 3.4. We note that there exists a minimally almost pe-

riodic, topological group of non type 1. Let M5 = C? x, R be the

real 5-dimensional Mautner group, where ay(z,w) = (e?™%z, e2"t%)

for t € R, z,w € C with # an irrational number. Then we let
G = (M5 x Ms) xg SL2(R), where 3 is the matrix multiplication on
R x R of Mg x Ms5 and trivial elsewhere. Then we have that

0= J®C*(SLy(R)) = C*(G) = Co(R?) x5 SLa(R) — 0,
0 — Co(R?* \ {0}) x5 SLa(R) = Co(R?) x5 SLy(R)
— C"(SLy(R)) = 0, andsr(C*(G)) =2, csr(C*(G)) <2

where 0 = J — C*(Ms x Ms) — Co(R?) — 0, and 3 means the dual
action of 5. Then J is of non type I, so is C*(G) (cf.[Sd5]). Since
SL,(R) is minimally almost periodic (cf.[Sg]), we deduce from the
above structure that G = {1} U G.

§4. SOLVABLE LIE SEMI-DIRECT PRODUCTS OF NON TYPE I

Lie semi-direct products of C* by R.

Theorem [Sd5]. Let G be a Lie semi-direct product C* x R. Then
C*(G) has a finite composition series {J;}7< such that its subquo-
tients are given by

Co(G1) = Cp(C™* x R), j=K,

Co(Ctsi x (C\{0})Y xT)®K, or

Co(Cmotss x (C\{0}) xR) @K, or

Co(C™* x RY ) ®UAe, ®K, for1<j<K-1,

g, =

where g, is a noncommutative torus of the form C(T ~1) x Z,
and 0 <ng <n and 0 < s5,t; <n-—ng and 2 < u; <n—ng and
5;+t;+1<n-mng and s; + u; <n—ng.

Moreover, using the structure theorem above, we have that

Theorem [Sd5]. Let G be a Lie semi-direct product C* x R. Then

2V dime G; < sr(C*(G)) < dimge Gl -1,
2 < esr(C*(G)) < dime Gy + 1.
























