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Abstract

After a natural disaster and during the post-disaster reconstruction time, on-line
newspapers, social networks and blogs become very active describing many events
interrelated. This work proposes several unsupervised models to extract main fea-
tures and patterns from high dimensional text data generated during natural dis-
asters. The main idea is to provide automatic and independent analysis tools of
complex data which can be used rapidly when it is most needed.
Firstly, we explore dimensionality reduction and patterns discovering by principal
components analysis; an evolutionary description of news through the time is pro-
posed by showing the activated principal components. News are entered sequentially
into a proposed algorithm and most influential patterns are shown describing their
evolution. Components’ meaning is extracted by finding strongest variables within
each pattern, in order to improve the analysis.
Secondly, spatial and temporal properties of a news data set are extracted by self
organizing maps (SOM). A model is proposed to obtain a low dimensional repre-
sentation of the input data as quantization points; these new vectors are clustered
on map by K-means algorithm to detect potential patterns. A semantic component
is added to support interpret-ability. Temporal dependency is detected by tracking
SOM units activation over the time by a time-dependency matrix, units are clus-
tered and temporal patterns show up.
Besides that, a linear prediction model is proposed to discover trend topics on news
stream by uncovering the most influential variables. Each input is classified on the
fly within 2 dummy categories and entered into a linear model with shrinkage op-
erators where strongest variables prevail while those with negligible characteristics
are removed.
In addition, a random forest model composed for more than 200 decision trees is
proposed to uncover predominant features from a large set of tweets, features are
organized as a hierarchy of main variables where rules and an approximation of how
information flows during an emergency are detected.
Furthermore, particle filtering is applied to track a set of related words, a defined
topic, within a news stream. Topic’ relevance is estimated through the time by using
a state-space model based on uni-gram model. Sampling importance re-sampling
(SIR) algorithm is used to compute the posterior distribution value using available
observations. An observation based correction term is incorporated to SIR every
time particles and their associated weights are generated, improving the estimation
of the posterior probability.
Finally, a Bayesian model called Latent Dirichlet Allocation (LDA) is adapted to
discover topics on Twitter stream text data, uncovering natural disaster related top-
ics over the time; the inferences expose the concept of potential significant issues on
real time.
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Main Features Extraction in Natural Disaster Text Sources

Natural disaster are unexpected events with negative impact in social, economical,
cultural, environmental, psychological, and technological aspects of a society. We
believe the proposed models in our work can serve as an alternative to supervised
models which, most of the times, requires much more time and energy for imple-
mentation.
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Chapter 1

Introduction

1.1 Introduction

Natural disasters shocks society every time they occur. Trough the time several
countries and organizations have been improving their predictions, readiness, and
response plans in case of any scale of emergencies, from a small one to a massive
contingency. Although, we are still not ready at all for what will happened in com-
ing years, people are becoming aware of their impact on the world around them and
the fact that everything we do to the world, whether destructive or creative, will
eventually be reflected in that world. Sad and hard experiences, like March 2011 in
Japan, demonstrated that planning and assistance must be improved, by all means.
A recent and important means is web 2.0, where news and social media play the
important role of providing information. Web 2.0 is a more social, collaborative,
interactive and responsive web. It is a change in the philosophy of web companies
and web developers, but more than that, Web 2.0 is a change in the philosophy
of society as a whole. In [Kaplan and Haenlein, 2010] Web 2.0 is defined as ideo-
logical and technological foundations where new internet-based applications known
as “social media” allow the creation and exchange of user-generated content. The
social interaction among people in which they create, share or exchange information
and ideas in virtual communities and networks is the predominant characteristic.
A clear and new example of how web 2.0 assist during natural disasters is Google
Person Finder [Inc., 2011]. This application helps people reconnect with loved ones
in the aftermath of humanitarian and natural disasters. Person finder was launched
during the Japanese earthquake of 2011, and utilized again during the devastation
caused by Typhoon Haiyan in the Philippines. Worried friends and relatives can
search for the status of a missing person, other users can fill in the gaps and, in the
best cases, reunification can happen. In times when phone services are collapsed or
interrupted, the web 2.0 and its online tools can be extremely beneficial.
Following disaster, people frequently feel disoriented, with a variety of thoughts and
feelings such as anxiety and fear; however, they produce a huge amount of infor-
mation by sharing comments on social media. Besides that, on-line newspaper and
blogs become very active describing many situations interrelated. People talk about
concerns, worries, and several other aspects that deserve to be analyzed; it might
lead to uncover the main characteristics and patterns of an emergency situation.
Discovered features may help to assess the consequences of a natural disaster and to
identify needs, physical assets, damages, economic losses, and other related aspects.

11
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The present work presents a number of contemporary and new unsupervised arti-
ficial intelligence techniques applied on static and streaming data generated during
natural disasters on web 2.0.

1.2 Unsupervised extraction

Main sources on web 2.0 are text; text main disadvantage is its high-dimensionality, if
we take in account that each single word represents a different variable, it is challeng-
ing to process and visualize features and relationships, fortunately, groups of vari-
ables often move together; one reason for this is that more than one variable might
be measuring the same driving principle governing the system’s behavior. Text data
from a widespread social network called Twitter has been used after March 2011
earthquake in Japan to extract information; [Neubig et al., 2011] described a system
to mine information regarding the safety of people in the disaster-stricken area by
using segmentation, named entity recognition, and tweet classification. Previously
[Corvey et al., 2012] described extraction of linguistic and behavioral information
from tweets by named entity recognition as well. Text sources, also, has been used
in an earthquake detector proposed by [Sakaki et al., 2010], where an algorithm
to monitor tweets and to detect a target event is proposed based on a classifier of
tweets.
Most of the related works propose algorithm and systems that depend on a su-
pervised learning. Named entity recognition requires a big amount of annotations
on training set to extract the desired information. In [Neubig et al., 2011], after
tsunami hit Japan coast, a big effort of a group of volunteers allowed to create a
reliable training data set in a relative short time. Classifiers of tweets also required
of a training data set to recognize the new input. When it comes to emergencies,
time and speed are everything; to gather the information, to organize the volunteer’s
team, to build the tools, to prepare the training data, to implement system in pro-
duction; are tasks that might be thought in an unsupervised way. Our work explores
unsupervised tools and adapts them in order to get main features and patterns of
natural disaster text sources.

1.3 Unsupervised Classification for Main Features

Extraction

In the following chapters, it is shown the application of classic methods, such as
Principal Component Analysis, Self-Organized Maps, and linear Models, as well as
modern techniques like Random Forests, Particle Filtering and Latent Dirichlet Al-
location to extract in a purely unsupervised way main characteristics of an emergency
event.
The application of the mentioned algorithm includes for each case novel adaptations
and complementary algorithms to generate new insides from data. The techniques
were carefully adapted to process huge amount of data effectively and to reduce
the dimensionality of input data set as much as possible. In addition, visualization
and output of the topology and features extracted are organized using weights or
hierarchies.
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In real situations, to guaranty decision making process, it is needed to extract and
organize most important information as soon as possible to avoid adding more con-
fusion; we believe that the proposed tools in this work can contribute to generate
an unsupervised model for faster natural disaster assessment without the large load
of preparing reliable training data.

Chapter 1 Carlos Enrique Gutierrez 13



Chapter 2

Text Patterns Discovery by
Principal Component Analysis

2.1 Introduction

After a natural disaster, many aspects and events are described by newspapers on-
line, that could be deeply analyzed by data mining and machine learning methods.
It may lead us to discover dynamic of variables and text patterns. Text sources are
considered high-dimensional data, therefore it is needed a manageable method not
only to discover patterns but to reduce the dimensionality of the entire data set. In
this chapter we describe Principal Component Analysis (PCA) and how this well-
known process can be used to reach these two objectives, obtaining at the same time
a good visualization of the inherent structure and topology of the data collection.
PCA allows the discovery of new variables known as principal components. In the
following sections it is described how strongest principal components are related to
text patterns discovery and it is presented a simple but novel algorithm to obtain
the semantic meaning of components. Text sources, mainly, are pre-processed and
arranged as numerical matrices, it will allow to apply PCA and transform the data
set in an meaningful output described at the end of the chapter.

2.2 Principal Component Analysis

Principal component analysis is a mathematical method that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into
a set of values of linearly uncorrelated variables called principal components. Each
principal component is a linear combination of the original variables, and all of
them are orthogonal to each other, therefore there is no redundant information.
The principal components as a whole form an orthogonal basis for the data space.
By using this method it is possible to identify patterns in data, and express them
in such a way as to highlight their similarities and differences. Its advantage is that
once you have found these patterns, it is possible to compress the data by reducing
the number of dimensions, without much loss of information [Smith, 2002].
Let’s X and Y be m x n matrices related by a linear transformation P (n x n); m
indicates the observation number with n variables. X is the initial data set and Y

14
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is a re-representation of X. PCA re-express the initial data as a linear combination
of its basis vectors:

Y = XP (2.1)

Let’s define the following:
pi are column vectors of P .
xi are row vectors of X.
yi are row vectors of Y .
Therefore, the explicit form of equation 2.1 is:

Y =


x1.p1 x1.p2 ... x1.pn
x2.p1 x2.p2 ... x2.pn
... ... ... ...

xm.p1 xm.p2 ... xm.pn

 (2.2)

Each row of has the form:

yi = [xip1...xipn] (2.3)

We recognize that each coefficient of yi is a dot product of xi with the corre-
sponding column in P , in other words, the jth coefficient of yi is a projection on to
the jth column of P . P represents a change of basis [Shlens, 2014]. Geometrically,
it is a rotation and a scale which again transforms X into Y .
By assuming linearity, the problem reduces to find the appropriate change of basis,
the columns vectors pi of P , also known as the principal components of X. But
first, let’s define Sx as the covariance matrix of X. Sx is a simple way to quantify
redundancy by calculating the spread between variables. X, usually, is in mean
deviation form because the means have been subtracted off or are zero.

Sx =
1

n− 1
XTX (2.4)

Sx is a square symmetric n x n matrix. Its diagonal terms are the variance of partic-
ular variables. The off-diagonal terms are the covariance between variables. From
Sx the eigenvectors with their corresponding eigenvalues are calculated. Eigenvec-
tors are a special set of vectors associated with a linear system of equations (i.e.,
a matrix equation), also known as characteristic vectors, proper vectors, or latent
vectors [Marcus, 1988]. Each eigenvector is paired with a corresponding factor so-
called eigenvalue by which the eigenvector is scaled when multiplied by its matrix.
A non-zero vector pi is an eigenvector of the covariance matrix Sx if there is a factor
λi such that:

Sxpi = λipi (2.5)

Generalizing:

SxP = ΛP (2.6)

The full set of eigenvectors is as large as the original set of variables. In PCA, the

Chapter 2 Carlos Enrique Gutierrez 15
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eigenvectors of Sx are the principal components of X. Matrix P (n x n) contains
n eigenvectors, arranged in a way such as p1 is the principal component with the
largest variances (the most important, the most “principal”); p2 is the 2nd most
important, and so on. In addition, the eigenvalues contained in diagonal matrix
Λ are arranged in descending order λ1 > λ2 > ... > λn and they represent the
variance of X captured by the principal components. This last relation is used for
dimensionality reduction when the amount of variables is large, as in the case of
text data sources.

Sxpi =σ2
i pi (2.7)

with

σ2
1 > σ2

2 >... > σ2
n

2.3 Text Dimensionality Reduction

Large variances have important dynamics; therefore, principal components with
larger associated variances represent data patterns while those with lower variances
represent noise. It is common to consider only the first few principal components
whose variances exceed 80% of the total variance of the original data. In order to
identify the most important components of a text data set, it is needed to represent
text by numbers, in that way the co-variance matrix can be calculated and its
eigenvectors and eigenvalues are determined.
To demonstrate PCA usability on text, a data set containing 421 text files (news)
is represented as a numerical matrix. The representation is simple and is explained
as a sequence of steps:

1. Extraction from each text file of words, creating a dictionary and computing
words frequency.

2. Deletion of special characters, numbers, symbols, and meaningless words such
as conjunctions, prepositions and adverbs.

3. Application of Stemming process [Porter, 1980] for reducing inflected (or some-
times derived) words to their stem, base or root form. The general idea un-
derlying stemming is to identify words that are the same in meaning but
different in form by removing suffixes and endings; for instance, words such as
”expanded”, ”expanding”, ”expand”, and ”expands” are reduced to the root
word, ”expand ”. This step is optional but important if a strong dimensionality
reduction is needed.

4. Arrange the data set as a matrix of (files x words), where each element xi,j is
a number equal to the frequency of word j at file i. The expected results are,
mostly, a high-dimensional matrix.

The obtained high-dimensional matrix is modified by subtracting off the mean
for each variable (variables are synonym of words in case of text), and the covari-
ance matrix and its principal component are computed. The selection of the most
important components constitutes definitely the dimensionality reduction sought.
As an experiment we processed the mentioned news data set, it has the distinction
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Figure 2.1: Selection of the most important principal components by eigenvalues
values

of belonging to the many generated news during last tsunami/earthquake in Japan.
As result, a set of 9961 principal components, matrix P , and the corresponding 9961
eigenvalues, diagonal matrix Λ, were obtained. Figure 2.1 shows values of λ which
makes possible to define how many principal components of matrix P describe the
variability of X. It displays a “ranking of importance” for the principal components
based on their eigenvalues. According to the corresponding variances, we would
say that the first 362 principal components (out of 9961) describe almost all the
variability of the news data set. Let’s take, for instance, the l largest eigenvalues
λ1 > λ2 > ... > λl, (l < n); and truncate the associated matrix P at column
l = 362. It implies a strong dimensionality reduction, in the order of 96%. Figure
2.1 indicates that important dynamics exists along the few first components. This
new “change of basis” or reduced (n x l) matrix is called P̂ .

2.4 PCA semantics

Principal components with larger associated variances represent data patterns which
are mainly a group of variables moving together as one variable, the principal com-
ponent. Figure 2.2 shows how natural disaster news are distributed along the 1st and
2nd principal components as if they were dots with (x, y) coordinates. Clearly, news
related to nuclear emergency are located along one component and news related to
crisis in middle east along the other one. PCA semantics seeks for an interpretation
or meaning of those components; originally without dimensionality reduction words
encapsulates the meaning, however, after transformation that meaning is lost.
In order to detect principal components meaning, we extract the most representa-
tive variables from each of them, providing a pseudo-summary. We introduce below
algorithm as an “easy-to-implement” alternative:

1. for i = 1 to l

(a) Extract the i−column pi from P̂ (pi is a principal component)

(b) Calculate the absolute value of each element of pi
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Figure 2.2: Two most important principal components and news associated

(c) Search for the largest k elements within pi and take the corre-
sponding k indexes

(d) Look for the k words from dictionary by matching the k indexes
obtained in previous step

2. end

By this process, 362 different “meanings” are obtained, one for each data pattern,
said in other words, one meaning for each principal component. Figure 2.3 shows
the results of previous algorithm after one iteration, that is, for the 1st and most
important data pattern with k = 5. Large pi elements values represent high related
variables (words). The set of k words is considered a pseudo-meaning and summary
of the data pattern; 1st data pattern is summarized as {‘nuclear’, ‘reactor’, ‘plant’,
‘radiation’, ‘power’}. Any value of k can be selected, in this case 5 was chosen
arbitrarily. Experimental results of our proposed algorithm are described in table
2.1. It shows the main words for the first five principal components discovered from
news during the 1st week immediately after 2011 earthquake-tsunami in Japan. It
is quickly recognized that components 1, 3 and 4 refer to Japan nuclear emergency
and components 2 and 5 talks about the crisis in Libya and Bahrain. As a general
assumption the entire data set of news is summarized by the meanings of the most
important components.

2.5 PCA dynamic

Previously, we observed how news were dispersed on two main components; each
news should be more “attracted” to a certain data pattern than to any other, mean-
ing there is a winner component for each news. In order to detect that relation the
original data set X (m x n) is re-expressed as Y (m x l) using a new “change of
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Figure 2.3: Meaning Detection for First Principal Component

1st component 2nd component 3rd component 4th component 5th component

nuclear government Japan nuclear Bahrain
reactor force reactor people zone
plant Gadhafi nuclear power Gadhafi

radiation security fuel water goverment
power Bahrain power fall protest

Table 2.1: Top five principal components meaning

basis” matrix P̂ (n x l):
Y = XP̂ (2.8)

Equation 2.8, as a dot product, shows how matrix Y compresses X and contains the
distribution of the news along the most important l patterns. Figure 2.4 serves to
highlight that distribution, showing similarities and differences. The plot provides
information about how close news are regarding to the main three data components.

Some news are highly correlated to certain components than others; let’s call yi
to the row vectors of Y ; each yi represents a single news, and its elements yi(j) are
projections of its words on l principal components. Given a news yi, the largest
value of yi(j) indicates its most correlated data pattern. For instance, news such as
Helicopters dump water on nuclear plant and Japan vows to resume aerial, ground
efforts to avert nuclear crisis have largest values on 1st component (its largest value
is yi(1)), while news such as Unrest in the Middle East and North Africa, country by
country and Libya says it is adhering to cease-fire have largest value on 2nd compo-
nent (its largest value is yi(2)). Values of yi(j) can be used as a measurement of the
impact of individual news onto discovered pattern. With this in mind, we present
the news sequentially as a data stream, showing at each step an interpretation of
the most correlated principal component. An algorithm is proposed to extract the
mentioned component and display its meaning:

1. for i = 1 to m

(a) extract the i−row yi from Y (yi is a single news)
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Figure 2.4: News distribution on three main components

(b) calculate the absolute value of each element yi(j)

(c) search for the largest element within yi and take the corresponding k
index.

(d) look for the meaning of the k principal component by matching the k
index

(e) display news title, its largest value within yi and the meaning found at
previous step

2. end

Every time a news is read, our proposed algorithm fires the meaning of the com-
ponent with the highest value, displaying an evolution curve for each component.
Figure 2.5 shows an example for natural disaster data set. The algorithm draws a
tracking line and a dot every time one of the main three data patterns is activated by
the incoming news. The tracking lines, as curves, show the dynamic of the principal
components.

2.6 Conclusion

PCA is easily applied on text sources only if there was a previous data transformation
to numerical matrices, it is an obvious disadvantage of PCA. Then, the obtained
high-dimensional matrices can be compressed, transformed, and arranged to uncover
components dynamic. The discovered components meanings serve as summary for
each of them. Main patterns meanings summarize the whole text data set; highest
values of yi(j) serves as an indicator of relevant component on news. The proposed
algorithms in this chapter can be effortlessly applied in a larger set of data to provide
automatically a general view based on previously seen principal components. A new
input can be transformed in a numerical n−dimensional v vector, then transformed
by a dot product v (1 x n) P̂ (n x l), obtaining a reduced input v (1 x l) that
activates a certain principal component.
PCA can be useful when emergencies events occur. In those cases, on internet, an
overflow of news is generated describing most of them, many situations inter-related
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Figure 2.5: Activation of principal components over the time

as the events evolve through time. An analyst can observe the sequence of meanings
and understand how news and their topics evolve through time. Although this
method is simple to apply, the component and its meaning fired by only one index
of an input with many indexes produces sometimes errors for the inferred meaning.
For example, the method fired the meaning {’nuclear’, ’reactor’, ’plant’, ’radiation’,
’power’} for news “Christians in Egypt stage protest”. Clearly the algorithm output
is not 100% reliable, however PCA applied on text during emergencies is extremely
useful for getting a first impression on large sources, then later, more powerful
algorithms must dig deeper to improve the inferences.
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Chapter 3

Spatial, Temporal and Semantic
Text Properties Extraction by
Self-Organized Maps

3.1 Introduction

Exploration of text properties includes unsupervised classification tasks also known
as clustering. Clustering is the task of grouping a data set in such a way that inputs
in the same group (called a cluster) are more similar (in some sense or another) to
each other than to those in other groups (clusters). It is a main task of exploratory
data mining, and essential when large amount of texts demand to be evaluated as
could be the case of the search for patterns in texts generated from news and com-
ments in social networks during natural disasters.
One of the most used unsupervised techniques in neural networks is Self-Organizing
Maps (SOM); this method is used to produce a low-dimensional representation of
the input data space by mapping high dimensional vectors into a 2-dimensional grid.
SOM is composed by fewer units than input vectors, this property reduces the com-
plexity when input data set is high dimensional and large amounts become more
manageable; training stage produces not only a visual representation but also a set of
quantization points. The mentioned SOM properties fits perfectly with the charac-
teristics needed to process and analyze huge amount of text during natural disasters.
Sequential news could be quantized in a SOM, then later quantization points could
be clustered into groups and interpreted spatially, temporally and mainly semanti-
cally.
This chapter describes a novel approach to extract relations within text by applying
SOM learning to classify input vectors according to how they are related spatially
and temporally; in addition a clustering is applied on SOM map to organize quan-
tization points as groups. Groups are analyzed semantically and in order to get
descriptions and meanings which again divide the map semantically. Besides spatial
properties, temporal features are analyzed by tracking SOM units’ activation over
the time, discovering temporal associations among data items. Uncovered spatial-
temporal representations can be used for predictive modeling, search of sequential
patterns, and mainly for understanding.
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3.2 Self-Organizing Maps

A Self-Organizing Map is a type of artificial neural network that is trained using
unsupervised learning to produce a low-dimensional discretized representation of the
input space of the training samples, called map. SOM consists of components called
units. Associated with each unit there is a weight vector of the same dimension as the
input data and a position vector in the map space. In learning stage an input vector
is presented to the SOM at each step. These vectors constitute the environment
of the network. The procedure for placing a vector from data space onto the map
is to find the node with the closest weight vector to the vector taken from data
space and to assign the map coordinates of this node to our vector. The most
popular model of SOM is the model proposed by Teuvo Kohonen [Kohonen, 1988]
called Kohonen networks. Kohonen algorithm introduces a model that is composed
of two interacting subsystems. One of these subsystems is a competitive neural
network that implements the winner-take-all function. The other subsystem modifies
the local synaptic plasticity of the neurons in learning [Rojas, 1996]. Kohonen
learning uses a neighborhood function φ, whose value φ(i, k) represents the strength
of the coupling between unit i and unit k during the training process. The learning
algorithm for Kohonen networks is as follows [Rojas, 1996]:

1. Start: The n−dimensional weight vectors w1, w2, ..., wm of the m computing
units are selected at random. An initial radius of the neighborhood r, a learn-
ing constant η, and a neighborhood function φ are selected.

2. Step 1: Select an input vector y using the desired probability distribution over
the input space.

3. Step 2: The unit k with the maximum excitation is selected (that is, for which
the Euclidean distance between wi and y is minimal, i = 1, 2, ...,m).

4. Step 3: The weight vectors are updated using the neighborhood function φ
and the following rule:

wi = wi + ηφ(i, k)(y − wi) (3.1)

for

i = 1, 2, ...,m

5. Step 4: Stop if the maximum number of iterations has been reached; otherwise
modify η and φ as scheduled and continue with step 1.

By repeating this simple process several times, it is expected to arrive at a uniform
distribution of weight vectors for the input space.

3.3 SOM training

Self Organizing Maps applied on text helps to uncover spatial relations within a
data set, as first result, SOM provides an understandable map of the input space.
Huge text inputs could be organized by quantization points on a reduced SOM map.
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To demonstrate it, a SOM network of 2−dimensional 10x10 units is feed with a set
of news generated within a week after a natural disaster. News are represented as
high dimensional vectors where each element is the frequency of a certain word from
a predefined dictionary. Also, it is possible to transform each news using a PCA
transformation as described on chapter 2.
Generally, in SOM, variables are normalized by dividing each of them by its standard
deviation; after normalization a Kohonen’s network is fed with the training set yi,
for i = 1, 2, ...,m. The network is a square grid with 10 rows and 10 columns, its
size is defined base on the amount of input vectors and the expected amount of
quantization points. Considering our input training vectors set, we assume that a
grid of 100 units may produce a reasonable amount of quantization points and a
suitable visualization. After setting the weight vectors w1, w2, ..., w100 with random
values, we perform several iterations. At each iteration, the complete set of training
vectors is entered into the network once. The radius of the neighborhood r and the
learning constant η are reduced according to the following schedule:

1. start r = 20, η = 0.1

2. at 200 iterations r = 15, η = 0.01

3. at 1000 iterations r = 10, η = 0.01

4. at 2500 iterations r = 1, η = 0.001

The neighborhood function φ(i, k) is defined by:

φ(i, k) = exp−
(
|i− k|
r

)2

(3.2)

Where i is the position of the ith unit and k is the position of the unit with the
maximum excitation. The neighborhood function φ changes according to schedule,
producing larger corrections at the beginning of the training that at the end. Figure
3.1 shows the SOM map after training and the 95 quantization points generated.
Convergence of the network is evaluated empirically; we cannot ensure that neigh-
borhood function and the schedule are the best for our network, however, figure 3.1
shows a network in a stable state after 3000 iterations, at this stage the map does
not change and weight vectors experiment very small updates. Quantization points
are represented as dots with different sizes expressing the amount of input vectors
captured by weight vectors. For instance, w36 at coordinates (6, 4) capture more
inputs than w18 at (8, 2). As an example, table 3.1 displays 2 quantization points
and the news captured by them.

Each quantization point captures news related spatially, meaning their Euclidean
distance is minimal; therefore, a quantization point is by itself a group and represents
a reduced set of input vectors. SOM training concludes with the generation of
the mentioned quantization points. In addition, each of them is interpreted and
characterized by a set of main words within the group to provide an idea of their
content. As a preliminary step of our analysis, the most representative k words
from each quantization point are extracted; any value of k can be selected, in our
case we choose 7 arbitrarily. For qi (from q1 to qn), qi is a vector captured by a
certain quantization point and n is the number of qi captured by the mentioned

Chapter 3 Carlos Enrique Gutierrez 24



Main Features Extraction in Natural Disaster Text Sources

Figure 3.1: Trained SOM and Quantization points generated

Weight Vector
(quantization
point)

Coordinates
at the map

Some news captured

w41 (1, 5) *’Will Japan face a mental health crisis?’, *’Obama
pledges to help Japan rebuild; U.S. issues larger radi-
ation zone’, *’Don’t panic the people’, *’West Coast of-
ficials, Obama: Don’t worry about radiation risk n U.S.’,
*’A radioactive hazard zone? Chernobyl’s example’

w91 (1, 10) *’Tensions aside, China sends rescue team, money and
supplies to Japan’, *’Rescuers hurry to find Japan sur-
vivors as forecast worsens’, *’Doctors, aid workers get
to work in Japan’, *’California student from Japan finds
family alive on YouTube’, *’Amid disaster, Japan’s so-
cietal mores remain strong’, *’Welfare groups race to
rescue Japan’s abandoned animals’, *’Disaster is heavy
burden to bear for Japan’s elderly’, *’Magnitude of dis-
aster to test Japan’s mettle anew’

Table 3.1: Examples of quantization points after SOM training
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Weight Vector (quan-
tization point)

Representative words

w41 {’radiation’, ’health’, ’Japan’, ’people’, ’plant’, ’Cher-
nobyl’, ’nuclear’}

w91 {’Japan’, ’people’, ’tsunami’, ’rescue’, ’disaster’, ’team’,
’kosaka’}

Table 3.2: Examples of representative words for quantization points

quantization point; the words frequencies for qi are accumulated and the k largest
elements are extracted from dictionary. As result, table 3.2 shows an example for
quantization points w41 and w91.

3.4 SOM clustering

When the number of SOM units is large, to facilitate quantitative analysis of the
map, similar units are clustered. To produce summaries and quantitative descrip-
tions of data interesting groups of map units must be detected from the SOM. While
its properties are certainly interesting, even more useful summaries can be prepared
if the SOM is separated in groups and these are studied separately. It should be
emphasized that the goal here is not to find an optimal clustering for the data but
to get good insight into the cluster structure of the data for data mining purposes.
Clustering on SOM map is performed as a way to group together weight vectors
that are similar. Similar weight vectors suggest similar input vectors with a cer-
tain relationship among them. Clustering of the SOM can be seen as a 2nd level
grouping, quantization points are the 1st level. The reason of 2nd level grouping on
weight vectors is that SOM can be used for categorization of new input data; any
new input will fire a weight vector already associated to a certain 1st and 2nd level
group, allowing classification.
K-means is one of the most used clustering methods on data mining, it is a simple
iterative method to partition a given data set into a number of clusters [Wu et al.,
2008]. In our implementation the method is applied on a set of l−dimensional weight
vectors L = {wi|i = 1, 2, ...,m} where the amount of clusters k is calculated by the
general rule

√
m
2

. The algorithm begins by picking k vectors wi randomly as the
initial centroids and iterates between two steps until the convergence:

1. 1st step: each weight vector is assigned to its closest centroid, by calculating
the Euclidean distance.

2. 2nd step: the new k centroids are relocated by calculating the center (mean)
of all weight vectors into the cluster.

The algorithm minimizes the within-cluster sum of squares also known as objec-
tive function, which is used to verify its convergence:

arg min
k∑
i=1

∑
wj∈Si

|wj − µi|2 (3.3)
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Figure 3.2: Convergence by analyzing objective function

Where µi is the centroid of the cluster Si. Figure 3.2 shows the convergence of
the method by plotting the objective function. k clusters are generated and no new
assignments is performed from iteration 10.

Experimental results show 7 clusters generated on the set of weight vectors.
Figure 3.3 displays the clusters found that can be considered as news patterns.
The results are interpreted intuitively by reading news titles; table 3.3 presents
news within cluster 4. It is possible to obtain a set of words that characterizes
the cluster, in this case the words are {’Japan’, ’tsunami’, ’earthquake’, ’people’,
’quake’, ’water’, ’area’, ’rescue’}. These words are the 8 most frequent on cluster 4.

Figure 3.3 demonstrates that plain text can be represented as numerical vectors
and serve as input data for a SOM network. A trained SOM produced a representa-
tion of the news set into a 2 dimensional map. This representation is a finite number
of quantization points and clusters. The groups found are data patterns that contain
spatially related news.

3.5 SOM semantics

Beside relationships that can be found by a computation of a spatial distance be-
tween vectors; one of the most important problems in the theory of artificial neural
networks is to find an effective, simple and adaptive system able to find ”meanings”
from raw data. SOM is a unique artificial neural network that can be used to reflect,
at least in a basic form, meaning-cognitive representations and relations within raw
data. Previously, the self-organizing process ensured clusters mapped to a common
localized domain in the map. Now, the semantic factor is added by the placement
of the main words that qualifies the clusters.
Semantic relatedness between inputs cannot be detected by comparing or calculat-
ing any metric from their attributes. Our proposed solution is to present, after
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Cluster Input Vectors Captured (News)

4 *Weight vector 81: ’Widespread destruction from Japan
earthquake, tsunamis’, ’Tsunami warnings and advi-
sories remain across Pacific region’, ’U.S., Canada
threatened by tsunami’, ’Japan prepared well for
tsunami’, ’How a tsunami can strike within minutes’,
’Cruise ships at sea safe from tsunami’s destruction’,
’As U.S. damage measured, emergency declared in Cali-
fornia counties’, ’Obama declares bond with Japan ’un-
shakeable”, ’Quake moved Japan coast 8 feet, shifted
Earth’s axis’, ’Rescuers hurry to find Japan survivors as
forecast worsens’

*Weight vector 82: ’Fire on water: Japan, world watches
tsunami strike live’, ’Quake survivors pack roads, stores
outside hard-hit area’, ’Japan quake: It could have been
even worse’, ’Concern about food, fuel in wake of Japan
disasters’, ’Quakes not increasing, but human risk is’,
’Not business as usual as Japan strives for normality’

*Weight vector 91: ’Tensions aside, China sends rescue
team, money and supplies to Japan’, ’Rescuers hurry to
find Japan survivors as forecast worsens’, ’Doctors, aid
workers get to work in Japan’, ’California student from
Japan finds family alive on YouTube’, ’Amid disaster,
Japan’s societal mores remain strong’, ’Welfare groups
race to rescue Japan’s abandoned animals’, ’Disaster is
heavy burden to bear for Japan’s elderly’, ’Magnitude
of disaster to test Japan’s mettle anew’

*Weight vector 92: ’Even after rescue, survivors struggle
to come to grips with disaster’

*Weight vector 93: ’10 most beautiful waterfalls’

Table 3.3: News grouped by Cluster 4
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Figure 3.3: Clusters generated on SOM Map

training, not only input vectors but the context where they may be located, in
that way the map should reflect their logic or semantic similarities. Context is a
background, environment, framework, setting, or situation surrounding an event or
occurrence. In linguistic it is defined as words and sentences that occur before or
after a word or sentence and imbue it with a particular meaning. We assume that
the most frequent words have strong correlations with contexts that surround events
described in our set of news. Hence we choose to represent each most frequent kth

word by a n−dimensional vector, whose kth component has a fixed value equal to
kth word’s total frequency and whose remaining components are zero. The words
are presented to the network and the strongest responsive units are detected and
labeled with those words. The responses on the map show how the network captured
the relations among the news (figure 3.4). News related to earthquake-tsunami in
Japan are distributed on the left side, while those related to Middle East and Libya
on the right. Middle units captured a variety of topics. Earthquake-tsunami news
are differentiated in sub-categories, corresponding to more specialized items such as
radiation, health, energy. The labels uncover the semantic relation between items;
they show the contexts where the news items are located. Each news incorporates
frequent words in its representation as vector; with a sufficient amount of training
the inputs leave memory traces on the same units at which later the words indi-
vidually converge. Therefore, a meaningful topographic map is obtained by adding
100 most frequent words, showing logical similarities among inputs. It is possible
to add more words which will enrich the map and will add details to the semantic
relations, but for simplicity and good visualization, we chose only 100 words. Our
application emphasizes the spatial arrangement of the units and the separation of
the information into different areas. The semantic map gives a meaning to that seg-
regation, although in a high level of semantic, it does completely on unsupervised
way.
At this step SOM developed automatically and organized spatially the formation of
a memory in a way that its layout forms an image of the most important concepts
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and their relations. Although the role of the contexts as the most frequent words
still very simple, their inclusion enabled to form an interesting semantic structure
in which news items are grouped according to similarity. The concept used for the
context needs to be improved and extended, incorporating the time dimension due
that any perception of meaning, knowledge, logic, etc. usually occurs over the time.

3.6 SOM Temporal Analysis

Exploration of temporal properties of text sources related to natural disaster by
using SOM can be achieved by uncovering temporal dependencies of SOM units’,
and monitoring units activation over the time. Previously SOM stored informa-
tion throughout its grid in a way such that space structures of the input data set
were discovered, now we introduce a temporal learning stage to uncover temporal
relations. Spatial-Temporal relations are used in predictive modeling, search of se-
quential patterns, and mostly used for understanding. In natural disasters case,
discovered dependencies would describe causes and contexts of an issue, showing
how it evolved or moved over the time.
One of the most interesting problem is to find an effective and simple method able to
discover temporal relations; in case of SOM, a temporal component can be added to
the map by the analysis of temporal dependencies between units, with the introduc-
tion of a time-dependent matrix that stores unit-to-unit and neighborhood-to-unit
temporal relations. The main idea is to identify temporal sequences of spatial pat-
terns that are likely to occur one after another.
Previous spatially-trained SOM is fed once more with the input data set and tem-
poral sequences of activated units are monitored and stored in a time-dependent
matrix. The temporal aspect comes from movements or changes of the input data.
Every time a unit k fires, our model creates a vector d of dimension m, where m is
the total amount of SOM units. The element d(k) has a fixed value equal to 1 and
the remaining components are zero. Vectors d are the inputs of the time-dependent
matrix denoted as T . In order to analyze temporal proximity properties of units,
matrix T is created with m rows and m columns and its elements are initialized to
0. Rows correspond to units activated at time (t − 1) and columns to the units at
time (t). It is proposed a model that memorizes the previously activated unit, in a
way such that for an input d at time t, the matrix T is updated by increasing T (i, j)
an amount equal to a, where i is the unit fired on time (t−1), and j is the unit fired
on time (t). The value added to T (i, j) corresponds to a transition value a from the
past unit to the current unit. Neighbors of unit i are also considered, the reasoning
is that if unit j is frequently followed by unit i, the model considers that there is a
high probability that neighbors of i follow unit j as well. In that case, matrix T is
updated by a scale down increment (a ∗ β) in elements T (Ni, j), where Ni denotes
neighbors of i. Figure 3.5 displays the process by which a time-dependent matrix T
receives inputs and learns temporal relations among units over the time.

3.6.1 Temporal Clustering

After T is built, the process continues by clustering matrix T . The aim is to generate
coherent clusters, which means, we seek to detect clusters where the units have high
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Figure 3.4: Trained Semantic SOM and Quantization points
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Figure 3.5: After spatial training, units activated are represented as vectors. They
are the inputs of a time-dependent matrix T that learns over the time temporal
relations among units

probability to follow each other through the time; these clusters are called temporal
clusters and they contain groups of units that are likely to represent the evolution
on time of a certain topic or event. Vector C of dimension m, where m is the total
amount of SOM units, stores the number of news pooled for each unit of the SOM. C
and matrix T are used by the algorithm described below to detect temporal clusters.
In addition, figure 3.6 illustrates the clustering process.

1. Step 1: find from vector C the most frequent unit that is not yet part of a
cluster. The most frequent unit is the one with the highest corresponding
value in C.

2. Step 2: pick the unit that is most-connected to the most frequent unit. The
model finds the most-connected unit by finding the highest value in the column
of matrix T that corresponds to the current unit. Add the most connected
unit to the cluster only if it is not part of a cluster.

3. Step 3: repeat step 2 for the most connected unit. Then recursively computes
step 2 on its most connected unit, and so on, until no new unit is added.

4. Step 4: all these units are added to a new temporal cluster.

5. Step 5: go to step 1 and find the most frequent unit that is not yet part of a
cluster.

Once temporal clusters are formed, they are interpreted as frequent news topics and
events evolving over the time. Each unit captures a subset of news; therefore, the
five most frequent words are taken from each unit as a description of the unit’s topic,
results are shown in table 3.4.
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Figure 3.6: Temporal clustering example. 1st cluster start with column i (most
frequent unit), taking most-connected unit j after 1st loop. During 2nd loop unit j
takes unit 3. This last unit takes unit i at 3rd loop, but it is already in the cluster,
therefore cluster 1 is closed

Temporal clusters represent a high-level perception of meaning, knowledge, logic,
etc, over the time. They can be interpreted as an image or memory of frequent
sequences of topics. Main topics, those that remain in the time, come to light, while
volatile topics are not displayed. For instance, temporal cluster of units (1,6), (1,3)
shows that topic {′radiat′,′ japan′,′ airlin′,′ nuclear′,′ flight′} follows frequently to
topic {′nuclear′,′ plant′,′ power′,′ energi′,′ reactor′}. A natural inference is that, dur-
ing the disaster, there was a transition from issue nuclear-radiation-flights to issue
energy-power-reactor, and that transition was frequently mentioned. The proposed
SOM developed automatically the formation of a temporal memory uncovering the
most important relations.

3.7 Conclusion

A SOM has been trained producing a spatial representation of the news set into a 2
dimensional map. This representation is a finite number of quantization points that
group similar input vectors. Similar quantization points were grouped in clusters
by applying k-means on weight vectors. Frequent words on map enabled to form
a semantic structure. Time dimension was considered on SOM temporal learning,
where groups of units were discovered having a high time-dependency. Temporal
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clusters detection was possible by the utilization of a time-dependent matrix that
stores the transitions from a SOM unit to another; this matrix is the model’s per-
ception of frequent events over the time. Our model was able to discover temporal
dependencies, and results could be improved by what model is exposed to. Enough
input must change and flow continuously through time for a suitable learning. The
model can be scaled with diverse input data without complexity due its finite set
of quantization points. The time-dependent matrix also can be modified assigning
a memory to it, in a way that it does not remember only the last fired unit at time
(t− 1), but the last k units fired at times (t− 1), (t− 2), (t− 3), . . . , (t− k), expand-
ing its ability to detect unknown temporal relations. An improvement to consider
is that neighbors of unit i fired at time (t − 1) that follow unit j fired at time (t)
are considered, but we do not evaluate the potential temporal relation among neigh-
bors of i with neighbors of j. In addition, matrix T was updated by a scale down
increment (a.β) in elements T (Ni, j), where Ni denotes neighbors of i; we assigned
empirical amounts to transition value a and parameter β. If a memory is provided
to matrix T , a and β should vary on time. Temporal clustering algorithm also can
be improved considering, for example, not only the most-connected unit, but the
2nd most-connected, the 3rd most-connected. Temporal clusters can be used to
make predictions. The model computes for a new input y a spatial distribution on
its m units, and a temporal distribution on its c temporal clusters. Our application
emphasizes the spatial-temporal arrangement of the units and the segregation of
the information into separate areas. Temporal clusters give an idea of how frequent
events evolve over the time on an entirely unsupervised way.
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Temporal Cluster
(Units frequently
activated in temporal
order)

5 most frequent words for each unit in temporal order

(5, 7) ’lodg’, ’sweat’, ’trial’, ’particip’, ’ray’
(6, 2) ’court’,’charg’, ’attorney’, ’case’, ’judg’
(6, 1) ’polic’, ’investig’, ’depart’, ’alleg’, ’suspect’
(2, 9) ’tokyo’, ’earthquak’, ’power’, ’japan’, ’quak’
(1, 9) ’tsunami’, ’japan’, ’earthquak’, ’warn’, ’area’
(6, 7) ’moon’, ’year’, ’last’, ’look’, ’zune’
(6, 8) ’seavey’, ’bike’, ’week’, ’appl’, ’kate’
(5, 10) ’your’, ’like’, ’want’, ’peopl’, ’just’
(5, 1) ’investig’, ’crash’, ’driver’, ’polic’, ’william’
(10, 10) ’aristid’, ’haiti’, ’spend’, ’return’, ’elect’
(9, 1) ’bahrain’, ’forc’, ’govern’, ’secur’, ’saudi’
(1, 1) ’reactor’, ’plant’, ’radiat’, ’fuel’, ’nuclear’
(6, 3) ’yale’, ’school’, ’clark’, ’polic’, ’sentenc’
(6, 4) ’polic’, ’accord’, ’offic’, ’baghdad’, ’video’
(10, 2) ’zone’, ’gadhafi’, ’council’, ’unit’, ’resolut’
(2, 4) ’nuclear’,’plant’, ’power’, ’japan’, ’disast’
(3, 8) ’earthquak’, ’japan’, ’school’, ’might’, ’peopl’
(10, 4) ’gadhafi’, ’govern’, ’libyan’, ’presid’, ’libya’
(9, 7) ’state’, ’unit’, ’hispan’, ’medic’, ’marijuana’
(10, 3) ’gadhafi’, ’zone’, ’forc’, ’libyan’, ’libya’
(7, 1) ’palestinian’, ’isra’, ’author’, ’hama’, ’gaza’
(4, 1) ’reactor’, ’meltdown’, ’nuclear’, ’possibl’, ’radiat’
(3, 1) ’reactor’, ’plant’, ’nuclear’, ’explos’, ’tuesday’
(10, 6) ’afghanistan’, ’diplomat’, ’petraeus’, ’pakistan’, ’court’
(1, 6) ’radiat’, ’japan’, ’airlin’, ’nuclear’, ’flight’
(1, 3) ’nuclear’, ’plant’, ’power’, ’energi’, ’reactor’
(3, 2) ’plant’, ’reactor’, ’nuclear’, ’japan’, ’agenc’
(8, 1) ’protest’, ’forc’, ’govern’, ’demonstr’, ’secur’
(9, 3) ’forc’, ’bahrain’, ’govern’, ’gadhafi’, ’intern’
(2, 2) ’power’, ’nuclear’, ’reactor’, ’plant’, ’daiichi’
(1, 7) ’japan’, ’food’, ’govern’, ’japanes’, ’spaniard’
(2, 1) ’reactor’, ’plant’, ’japanes’, ’report’, ’nuclear’
(7, 4) ’offici’, ’defens’, ’peopl’, ’rain’, ’civil’
(8, 6) ’releas’, ’record’, ’anonym’, ’execut’, ’donat’
(7, 6) ’right’, ’inmat’, ’maryland’, ’bill’, ’california’
(8, 9) ’head’, ’earli’, ’educ’, ’start’, a’childhood’
(8, 7) ’obama’, ’conyer’, ’presid’, ’kenni’, ’critic’
(7, 3) ’lucia’, ’attack’, ’accord’, ’anti’, ’baker’
(4, 10) ’citi’,’just’,’parad’, ’your’, ’peopl’

Table 3.4: Main temporal clusters detected by proposed model
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Chapter 4

Features Detection by Linear
Predictor Model

4.1 Introduction

The amount of data in our world has been exploding; data sets grow in exponential
sizes in part because they are increasingly being gathered by ubiquitous information-
sensing devices and social media. Large data sets become complex and difficult to
process using on-hand database management tools or traditional data processing
applications. Analyzing such data sets is one of the keys of leading companies and
one of the most active research fields. Several issues need to be addressed to capture
the full potential of big data; one of them is to find correlations from a vast amount
of variables. The exploration of effective methods capable to detect the most impor-
tant variables (features) from a large set of variables is focused in this chapter on a
linear model; which aims to retain a subset of the most important variables based on
their correlation with the desired output values. The main idea is to obtain a linear
predictor that transforms the original data set showing its most important features.
From a set with a large number of features, a smaller subset of variables is desired,
considering the balance between the prediction error and the emerged subset.
Primary goal is not to create a prediction model, but to reduce the dimensionality
of the input data, reduction that can be used for further purposes. Previously in
chapter 2, experiments using PCA principal component analysis has been explained
to compress a set of documents; the obtained orthogonal transformation generated
a new set of values of linearly uncorrelated variables. In that case, each principal
component is a linear combination of the original variables; the real meaning of the
features disappeared, eliminating the chances to use the transformation results in
applications that require the semantic of the data. On the other hand, a linear pre-
diction model is a powerful alternative for compression with no loss of the essence
and context of the data, essential characteristics for further analysis.
As an application on real data, we present an adaptation of a linear prediction
model to discover trend topics on a news stream. Natural disasters text sources
are used and main features are extracted to analyze and find out patterns to make
better decisions during difficult times. Our algorithm shows the potential applica-
tion of linear models on torrents of data to help governments and organizations to
understand what information truly count. A linear model includes the capability of
shrinkage on input vectors; showing after some iterations variables with strongest
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characteristics, while those with negligible characteristics are discarded. Due to the
dynamic and uninterrupted characteristics of the input, the output targets to expose
the evolution of the most significant variables over the time.

4.2 Linear Predictor/Regression Models

Since many years ago, linear predictor models (or regression models) are still being
effective and actively used in a diverse area of applications, such as data forecasting,
speech recognition, model-based spectral analysis, signal restoration, and others. In
machine learning field, a linear predictor is a linear function of a set of coefficients
and independent variables, whose value is used to predict the outcome of a depen-
dent variable. Functions of this type are common in linear regression, where the
coefficients are known as regression coefficients. They also appear in various types
of linear classifiers, such as perceptrons, support vector machines, and linear dis-
criminant analysis.
A linear predictor model assumes its function as linear in the inputs X1, X2, ..., Xn.
In a general case, it is desired to predict an output Y = f(X), so the model is
defined as follows:

f(X) = θ0 +
d∑
j=1

Xjθj (4.1)

Where θ0, θ1, ..., θd are the unknown coefficients, and d is the dimension of input vec-
tors X. Typically there is a set of training data (X1, y1), ..., (Xn, yn) from where pa-
rameters θ are estimated. The most popular estimation method is the least squares,
in which the coefficients θ are defined in order to minimize the quadratic cost be-
tween the output training data and the model predictions.

J(θ) =
n∑
i=1

(yi − f(xi))
2 (4.2)

J(θ) =
n∑
i=1

(
yi − θ0 −

d∑
j=1

xijθj

)2

(4.3)

Each xi = (xi1, xi2, ..., xid)
T is a vector of feature measurements for the ith case.

Let’s denote by X the n x (d + 1) matrix, where each row is an input vector, the
first column is filled with ones, and similarly let’s denote as y to the n−vector of
outputs in the training set. The quadratic cost can be written in a matrix notation,
such as:

J(θ) = (y −Xθ)T (y −Xθ) (4.4)

Optimization of 4.4 by differentiating with respect to θ results:

∂J(θ)

∂θ
= −2XTy + 2XTXθ

0 = −2XTy + 2XTXθ

θ̂ =
(
XTX

)−1
XTy (4.5)

Model’s predictions are calculated as follows:

ŷ = Xθ̂ = X
(
XTX

)−1
XTy (4.6)
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One of the most famous results in statistics asserts that the least squares esti-
mates of the parameters have the smallest variance among all linear unbiased es-
timates [Hastie et al., 2005]. In case of text data during emergencies, we have
high-dimensional inputs coming continuously, therefore, it is needed to estimate a
high-dimensional vector of coefficients θ which is almost impractical for a stream-
ing data processing system; an automatic and unsupervised selection of the most
influential variables using shrinkage methods is useful in that case.

4.2.1 Shrinkage methods

Ridge regression shrinks the θ′s by imposing a penalty on their size. The ridge
coefficients minimize a penalized quadratic cost between the output training data
and the model predictions. Its solution is given by:

θ̂ridge = arg min
θ

 n∑
i=1

(
yi − θ0 −

d∑
j=1

xijθj

)2

+ δ2
d∑
j=1

θ2j

 (4.7)

Where δ2 >= 0 is a complexity parameter that controls the amount of shrinkage,
for larger values of δ the amount of shrinkage increases. Ridge method compresses
θ’s toward zero and each other. Writing equation 4.7 in matrix form, we have:

J(θ) = (y −Xθ)T (y −Xθ) + δ2θT θ (4.8)

And the solution of the above regularized quadratic cost function is:

θ̂ =
(
XTX + δ2Id

)−1
XTy (4.9)

Where Id is the d x d identity matrix. The ridge coefficients minimize a penalized
quadratic cost between the output training data and the model predictions. Equa-
tion 4.9 shows how ridge adds the penalty down the diagonal, introducing bias but
reducing the variance of the estimate. This penalty was incorporated due issues
with results for equation 4.5, if matrix X is not full rank XTX is not invertible and
there is no unique solution; this problem does not occur with ridge regression, this
was the main motivation for ridge method when it was introduced.
Another biased regression technique is Least Absolute Selection and Shrinkage Op-
erator, also known as lasso, it is like ridge method but with big differences in the
penalty term. The estimation by lasso is as follows:

θ̂lasso = arg min
θ

 n∑
i=1

(
yi − θ0 −

d∑
j=1

xijθj

)2

+ δ2
d∑
j=1

|θj|

 (4.10)

In this case, the ridge penalty in equation 4.7 is replaced by the lasso penalty
δ2
∑

j=1 d|θj| also known as L1 norm. Due to the new penalty form, the solutions
for estimation of θ’s are nonlinear in y. Lasso in matrix form is as follows:

J(θ) = (y −Xθ)T (y −Xθ) + δ2
d∑
j=1

|θj| (4.11)
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A ridge solution can be hard to interpret because it is not sparse, which means no
θ’s are set exactly to 0. Lasso penalty introduces a very important change; some
of the coefficients may be shrunk exactly to zero [Tibshirani, 1996]. If complexity
parameter δ is sufficiently large, some θ’s are driven to zero, leading to a sparse
model.
This is the core of the proposed algorithm explained in next section; lasso applied
consecutively on a text data set, takes care of the variables selection for us removing
irrelevant features. Computing lasso solution is a quadratic programming problem;
it is needed to optimize equation 4.11 where several variables are subjected to linear
constraints. For example, the derivative containing an absolute value. Next section
describes our proposed solution for this problem.

4.3 Computing Lasso Optimization

The Lasso has been studied and used in many applications over the last years. Least
angle regression algorithm [Efron et al., 2004] and the solution path of the gener-
alized lasso [Tibshirani, 2011] are two relevant algorithms to solve lasso quadratic
programming problems. Our proposed algorithm is a close form of lasso solution,
designed to provide scalability from batch data mode to streaming data. Expression
4.11 can be expressed as:

J(θ) =
n∑
i=1

(
yi − θ0 −

d∑
j=1

xijθj

)2

+ δ2
d∑
j=1

|θj| (4.12)

Replacing
∑d

j=1 xijθj by its equivalent in matrix notation XT
i θ it is obtained:

J(θ) =
n∑
i=1

(
yi − θ0 −XT

i θ
)2

+ δ2
d∑
j=1

|θj| (4.13)

Differentiating the 1st term of the above sum with respect to one generic feature
coefficient θj we have:

∂J(θ)1
stterm

∂θj
=

n∑
i=1

2
(
yi − θ0 −XT

i−j
θ−j −Xijθj

)
(−Xij) (4.14)

Where XT
i−j
θ−j is same as XT

i θ but excluding the feature j and its coefficient, and
Xijθj are the variable and coefficient for feature j.

∂J(θ)1
stterm

∂θj
=

n∑
i=1

2X2
ij
θj −

n∑
i=1

2
(
yi − θ0 −XT

i−j
θ−j

)
(−Xij) (4.15)

Denoting
∑n

i=1 2X2
ij

= z1 and
∑n

i=1 2
(
yi − θ0 −XT

i−j
θ−j

)
(−Xij) = z2, equation

4.15 is expressed as:
∂J(θ)1

stterm

∂θj
= z1θj − z2 (4.16)
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The 2nd term δ2
∑d

j=1 |θj| is differentiated in the following way:

∂J(θ)2
ndterm

∂θj
= δ2

∂|θj|
∂θj

=


−δ2, if θj < 0

(−δ2, δ2), if θj = 0

δ2, if θj > 0

(4.17)

Written together equations 4.16 and 4.17 and equating to zero, we have:

0 = z1θj − z2 + δ2
∂|θj|
∂θj

(4.18)

Therefore estimation for the feature coefficient θ̂j will be:

θ̂j =
z2 − δ2 ∂|θj |∂θj

z1
=


z2+δ2

z1
, if θj < 0(

z2+δ2

z1
, z2−δ

2

z1

)
, if θj = 0

z2−δ2
z1

, if θj > 0

(4.19)

Based on equation 4.15 it is known that z1 is always positive, therefore θj < 0 is
same as z2 < −δ2, and equivalently θj > 0 same as z2 > δ2.
A proposed algorithm that implements expression 4.19 iteratively until convergence
is described below:

1. Initialize coefficients by ridge method (equation 4.9)

θ̂ =
(
XTX + δ2Id

)−1
XTy

2. Calculate z1 (equation 4.15)

3. Initialize a value for δ (amount of shrinkage)

4. Repeat until coefficients θ̂’s get stable:

(a) for each feature j perform:

i. Calculate z2 (equation 4.15)

ii. In case z2 < −δ2 update θ̂j = z2+δ2

z1

iii. In case z2 > δ2 update θ̂j = z2−δ2
z1

iv. Otherwise, update θ̂j = 0

(b) end

5. Change value of δ and iterate from step 4

6. end

Above algorithm allows for identification of the relevant variables for a set of inputs;
some modifications are implemented in next section to adapt its operation to a real
problem like streaming data. Algorithm described has been run several times for
different values of the complexity parameter that controls the amount of shrinkage
. Simulation results are shown in table 4.1, compression ratio is defined as the
ratio between the amount of original variables (9962 in our experiment) and the
final subset of strongest variables. For example, for δ = 0.2, the error prediction
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Shrinkage parameter δ Prediction Squared Error
(equation 4.4)

Compression ration (initial
variables / final variables)

0.2 0.0068 6.17
0.5 0.1741 13.77
1 1.7651 25.61
4 24.3671 262.16
10 38.6543 1660.33

Table 4.1: Shrinkage simulation results

Figure 4.1: Strongest variables for shrinkage parameter δ = 10

is very slight, but the compression is low. Although a compression ratio of 6.17
implies a 6 times reduction, from 9962 to 1613 features, for some systems and
applications to manage 1600 variables could still be complex and costly in resources
and time. In the opposite case, for δ = 10, the error prediction is high and the
compression results are considerable. For this scenario, figure 4.1 shows the final
subset of features that evidence strong compression results. The issue in this case is
the prediction error, some systems and applications cannot afford higher degradation
levels of the accuracy. The final decision involves balancing the error against the
compression considering future applications of the data. Adding new testing data
and re-computing values presented in table 4.1, help to verify the generalization of
the final subset, and to support a closing decision.

At this stage, it was obtained a manageable algorithm to select automatically the
most important features from a high dimensional data set. The algorithm is straight-
forward, and it is a derivation of the shared application between a linear prediction
model besides ridge and lasso shrink methods. Different compression ratios can be
obtained by the modification of a shrink parameter, high linear prediction accuracy
is correlated with low compression ratios, and on the contrary, strong compression
harmonizes with a degradation of the prediction accuracy. Our proposed solution
can be used as an alternative for systems that are struggling with issues related to
high dimensional input data. It produces an input model that is interpretable and
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Figure 4.2: Strongest variables for shrinkage parameter δ = 4

has possibly lower prediction error than the full model. An application is shown in
next section on a stream news data set.

4.4 Lasso for Uncovering Trending Topics on Stream-

ing Data

In the past few years the tracking of breaking topics has become an active research
area in computer science. Twitter introduced Twitter Trends in 2008, defined them
as the topics that are being talked about more right now than they were previously.
The trends show the most breaking news of a set of breaking news generated from
millions of tweets around the world. Algorithms to process such data stream must
operate continuously, processing each new input in real time; using computational
resources’ memory and storage space up to a reasonable threshold. That is one of
the main characteristic that differentiates data stream algorithms from batch al-
gorithms. Many algorithms are based on stream elements’ frequency; showing as
output the most frequent elements. A big issue related to counting is that it is
needed a ranking of frequent elements extracted from a maintained full list of ele-
ments and their counters. Sampling techniques also are not enough efficient, they
represent an approximate solution of what is a trending topic; the issue is related to
whether samples include or not real trending tropics. Twitter’s algorithm for deter-
mining trends is a private algorithm, but some information provided by the company
indicates that topics break into trends when the volume associated to that topic at
a given moment dramatically increases. In this case information’s velocity increases
quickly enough, compared to a baseline level and historical appearances/velocities
associated. We propose an algorithm to find the most important topics on a news
stream, discovering trends and showing their evolution over the time. Our algo-
rithm is based on a linear prediction model with shrinkage operators that retain
the most important variables, to our knowledge this is the first time that linear
prediction models are used for uncovering trending topics. With a large number of
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fixed features, around 10,000 in our experiments, we obtain automatically smaller
subsets of the strongest variables over the time. In this paper we will refer to vari-
ables/features as potential trends. Important to clarify that our main goal is not to
create a prediction model, but to uncover the strongest topics of a news stream. The
algorithm pretends to be a powerful alternative for processing data stream, where
answers can be derived from a sequence of main features detected over the time,
that approximate the output for the stream as a whole.
Our algorithm works based on two important assumptions:

1. Lasso regression is used for regression-prediction in linear models, therefore it
is needed a training set with a defined output Y = f(X). Every time an input
comes we “classify” it “on the fly” assigning a dummy category at random;
the category is selected from the set {−1, 1}. We assume a continue stream of
data as a fictitious training data.

2. We assume a subset of sequential inputs vectors as a segment; its size is an
important parameter in our trend topics detection system, due to it has close
relation with the computing power and memory availability. During simula-
tions explained later we use segments of size = 50; every time an input vector
comes the system computes its results; when the vector number 50 comes the
system restarts its parameters.

The algorithm described below detects main variables from a set of fixed variables
that can be thought as a model’s constrain, but if we guide the system’s application,
for example, to discover trends topics during emergencies, it is viable to get satis-
fying insides from our proposed solution. The fixed variables set used throughout
simulations was a predefined dictionary of 10,000 words related to natural disasters.
We want to emphasize, lasso is incorporated as part of the system not only to un-
cover main variables, but to comprise the high-dimensional problem of processing
text. Reasonable to suppose that most of the coefficients of the words are exactly
equal to 0. Aside from segment’s size, the shrinkage can be controlled; more or less
variables can be shown depending on the problem, by varying complexity parameter
δ. Proposed algorithm is shown below:

1. Initialize parameters: select value of δ and segment’s size.

2. Repeat until needed

(a) Receive input vector from data stream

(b) Assign, at random, a dummy category from set {−1, 1} to input vector.

(c) If size of segment is reached, initialize z1 and z2 to zero (ready for next
segment).

(d) Calculate z1 (equation 4.15) (this calculation is accumulative over itera-
tions, up to segment’s size)

(e) for each feature j perform:

i. Calculate z2 (equation 4.15) (This calculation is performed for cur-
rent segment; it is accumulative over iterations, up to segment’s size)

ii. In case z2 < −δ2 update θ̂j = z2+δ2

z1
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iii. In case z2 > δ2 update θ̂j = z2−δ2
z1

iv. Otherwise, update θ̂j = 0

(f) end

3. Iterate from step 2 until needed.

4. end

Above algorithm does not include considerations about velocity of the trend topics,
but it shows how coefficients θ for each important feature evolve over the time.
Experiments were performed in a conventional laptop, with 4 GB of RAM and CPU
@ 2.60 GHz. Segment’s size was set to 50 inputs and amount of shrinkage δ = 7.
We reproduce a news stream environment using a huge collection of news linked to
March 2011 earthquake / tsunami in Japan, sorted by date and time. News are
entered into the system sequentially; for every new input, the system matches it
to a set of 10,000 fixed features predefined. Thus, every news is transformed in a
high-dimensional vector where each element is a number equal to the frequency of
each term in the dictionary. Figure 4.3 shows simulation results up to 25 iterations;
main features are immediately detected. Firstly, we can observe main topics such as
“earthquake”, “Japan”, among others are exposed as significant in figure 4.3 major
subplot. Horizontal axis enumerates the established 10,000 features, while verti-
cal axis displays value of features coefficient θ’s. Lasso regression penalizes θ’s for
worthless topics, shrinking them gradually to zero, and at the same time rewards
to trend topics coefficients stabilizing them. In our system, coefficients θ’s can be
understood as a weighting value for each feature; in that sense, previous figure ex-
poses “earthquake” as the most important topic, followed by “tsunami”, “Japan”
and others. Individual subplots show values of θ’s for trend topics over the time; we
believe that θ’s model behavior of real trends topics, at the beginning when main
issues are discovered they experiment a peak whose value gets stable after some
time, that value may reach zero if the topic is not relevant anymore. For example,
“tsunami” makes a peak at time 4; its weight θtsunami is strong because it just was
discovered, through some interactions it becomes stable; although with a very small
value it still pertinent.
Along our simulations, trend topics displayed peaks following a sequence compa-
rable with how real facts occurred. At figure 4.3 our system detected the peaks’
sequence: “tsunami”, “earthquake”, “plant”, “Japan”, “Tokyo”, “area”, “quake”,
“warn”. Sequences analysis can be useful for future prevention plans and readiness.
Figure 4.4 shows algorithm results up to iteration 420; in this case previously trends
were replaced by weighty current issues, such as “nuclear”, “plant”, “people”, “gov-
ernment”. As mentioned previously, some issues might require a deeper analysis, in
that case the amount of shrinkage can be modified to lower values of δ to display
more detailed trending topics. Mainly, trending topics are found by counting inputs
with repeated hashtags (#) tagged by users, as mentioned previously, Twitter’s
trend status is defined by a combination of velocity and volume of tweets containing
the hashtag. Our proposal does not use hashtags; neither performs a systematic
counting of terms. Experiments exposed at figures 4.3 and 4.4 are applied to a
large set of sequential news including a major amount of terms; this characteristic
demonstrates the scalability of our algorithm to different sizes of inputs vectors.
Figure 4.5 shows histograms of words after 25 and 420 iterations. This plot can be
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Figure 4.3: Proposed algorithm results after 25 iterations
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Figure 4.4: Proposed algorithm results after 420 iterations
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Figure 4.5: Histograms of words

compared with figures 4.3 and 4.4 respectively; counting of terms produces similar
results, for example after 25 iterations our system delivers trending topics ”area”,
”earthquake”, ”Japan”, ”plant”, ”quake”, ”Tokyo”, ”tsunami”, ”warn” which are
comparable with most frequent words for 1st histogram ”area”, ”earthquake”, ”Fri-
day”, ”Japan”, ”nation”, ”people”, ”plant”, ”quake”, ”Tokyo”, ”tsunami”, ”warn”;
equivalent conclusions can be obtained observing the results after 420 iterations.
However, our solution incorporates a novel component, the weighting values θ’s for
each topic. This is an important issue of Twitter; its topics list constantly changes
and does not apply a weight or relevancy to a particular topic. Our algorithm not
only shows a significance value for discovered trends, but also how they behave over
the time.

4.5 Conclusion

A system to uncover trend topics from a data stream was proposed; as far as we
know it is the 1st time a linear regression / prediction model with shrinkage opera-
tors is used for detecting main topics on data stream. Our algorithm makes intense
use of lasso model and adapts it to process streaming data; in a way that a trend
is understood and modeled as a coefficient θ that serve as topic’s weight. Coeffi-
cients theta’s and their evolution over time represents the “lifetime” of main topics
detected. Although the amount of features to detect is bounded to a dictionary of
10,000 variables, our algorithm does not need special characters, like “#”, to rec-
ognize a trend topic. The algorithm is not based on probability neither counting of
variables occurrences. It is a pure application of a linear prediction model.
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Chapter 5

Features Detection by Random
Forest

5.1 Introduction

The adoption of random forest model to detect and extract from a large set of
text sources main features and related rules of a sudden critical event is a novel
application analyzed and proposed in this chapter. After a number of several appli-
cations, mainly for computer vision [Nowozin et al., 2011] [Bosch et al., 2007], its
performance has been proved to achieve excellent results. Random forest’s general-
ization accuracy on unseen data is verified at [Ho, 1995]; and its full randomization
is demonstrated to be computationally efficient at [Geurts et al., 2006]. A unified
random decision forest model has been presented at [Criminisi et al., 2012] for classi-
fication, regression, density estimation, manifold learning, semi-supervised learning,
and active learning. An unsupervised random forest model, like a density estima-
tion model, can be used to detect main features and split the data set automatically.
A set of predominant features in text sources are words patterns; in case of natu-
ral disasters text sources those features could represent an approach to behavioral
patterns and concerns of the affected user’s community, town, city, country. The
problem of main features extraction from a large set of text sources is a large data
mining problem, where a vast amount of text require to be processed immediately.
Random forest has the advantage to take a huge amount of data, split it in small
sub-sets and assign them to individual decision trees. Trees process the information
in parallel, and after a relatively short time of learning, outputs are combined to
provide a final and unified result.

5.2 Decision Trees and Random Forest

Decision trees have been studied for long time, many algorithms have been created to
get a trained optimal decision tree, mainly for regression and classification [Breiman
et al., 1984]. A decision tree is a classifier expressed as a recursive partition of the
input space. The decision tree consists of a node called “root”, “internal” or “test”
nodes, and “leaves” or “terminal” nodes. Each test node split the input space into
two or more sub-spaces according to a test function of the input attributes values.
On the contrary, random forests are an active research field in the present years, used
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for classification, regression, pattern recognition and density estimation. One of its
famous successful implementations is the Microsoft kinect for XBox 360. A random
decision forest is an ensemble of randomly trained decision trees, where all tree
outputs are combined by averaging their class posteriors. This combination is the
argumentation of random forest’s popularity; on classification tasks they produce
much higher accuracy on previously unobserved data, improving substantially its
generalization. Let’s denote a generic data point by a vector v = (x1, x2, x3, ..., xd) ∈
Rd, where each xi is a measurement of the ith feature and d is the dimensionality.
In most of the problems, the dimensionality of input vectors is high; however, in
random forest it is not necessary to compute all d dimensions of v, they are randomly
sampled from the set of all possible features by a function φ(v) : Rd → Rd′ with
d′ << d.
Random forest training consists of optimizing the parameters of the test functions
for each internal node, in order to maximize an acquired energy function. Test
functions split the data in different sets where each set has and associated Shanon
entropy defined by:

H(S) = −
∑
c∈C

p(c) log(p(c)) (5.1)

Where S is the training data set, and c is a category from the set of all defined
categories C in case of labeled data. Having the entropy, the information gain is
solved mathematically as:

I = H(S)−
∑

i∈{Left,Right}

|Si|
|S|

H(Si) (5.2)

S is better class separated when the information gain is higher; the information gain
is the energy function used to optimize the test function that produces the highest
confidence. Each internal node j is associated with a binary test function denoted
as:

h(v, θj) ∈ {0, 1} (5.3)

Where 0 and 1 indicate respectively “false” and “true”, input data is evaluated and
sent to left or right according to the output of function above. In a general model
θj = (φ, β, τ), where φ is a function that selects some features out of the entire set
of features, β defines a geometric primitive used to separate the data, and τ are the
thresholds used for the inequalities in test functions. For most of the cases, equation
5.3 is reduced to pick the best variable or split point among the d′ features, which
maximizes the information gain. Training a tree is achieved by optimizing each
internal node test function parameters by:

θ∗j = arg max Ij (5.4)

Randomness is essential in this method (figure 5.1), individual component trees
provides a de-correlated prediction; this characteristic helps to improve robustness
with respect to noisy. Randomness is included during training by:

1. bagging: random selection of the training data.

2. randomized node optimization: from the entire set of all possible features we
chose randomly a subset of θ.
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Figure 5.1: General diagram of our implementation on tweets. Randomness is added
into bagging and node optimization stages

During training, information that is useful for prediction is learned for all nodes. In
classification, each leaf stores the empirical distribution over the classes associated
to the subset of training data that has reached that leaf. In a forest with T trees
where t ∈ {1, 2, ..., T}, trees combine their outputs into a single forest prediction by
an averaging operation as follows:

p(c|v) =
1

T

T∑
t=1

pt(c|v) (5.5)

Random forest most common usage is “supervised classification” tasks, next sec-
tion explains our implementation on tweets using unlabeled data with unsupervised
learning, also known as clustering forest or density forest.

5.3 Mining on Tweets

The real world critical events are reflected on Twitter by an exponential growth of
posts or comments by the users with a direct relation to that particular event. We
recorded tweets during a minor earthquake in California on 8th May 2014; people
felt the earthquake and immediately reported brief text updates on Twitter. This
situation is well recognized by analyzing figure 5.2; it shows how at 06:41 UTC
time the number of tweets per minute increases rapidly, returning after 25 minutes
approximately to an average number. Our paper focuses on that 25 minutes time
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interval to extract information, where a huge amount of tweets were created as an
instantaneous reaction to a potential emergency.
Tweets are free text micro blogging posts of no more than 140 characters, used by
millions of people around the world; with one important characteristic, its real-time
nature. Although their length per post is limited, the variety of words that can
be used is high. Groups of variables often move together; our previous work at
[Gutierrez et al.], [Gutierrez et al., 2012] and [Gutierrez et al., 2013] exposed that,
on text, more than one variable is measuring the same driving principle governing
the system’s behavior.

5.3.1 Numerical Representation of Tweets

A dictionary of words is created from the IPCC special report on Managing the
Risks of Extreme Events and Disasters to Advance Climate Change Adaptation
[Field, 2012] and the Terminology on Disaster Risk Reduction of the United Na-
tions [ISDR, 2009]. The dictionary is a compound of the most influential terms
required to evaluate an emergency situation sorted by the frequency found at the
mentioned documents, which gives us a relative weight for each term. In addition,
we created a second dictionary composed by most frequent words found on tweets
that contain terms such as tsunami, earthquake, quake, flood, cyclone, avalanche,
blizzard, landslide, typhoon, etc.
Having a dictionary, each tweet is processed online as follows:

1. Special characters, numbers, symbols, and meaningless words such as conjunc-
tions, prepositions and adverbs were removed.

2. Porter stemming process [Porter, 1980] is applied to reduce inflected or derived
words to their stem, base or root form. Both dictionaries are composed by
roots terms.

3. Random forest selects from the dictionaries words at random and transforms
a tweet in a reduced dimension vector where each element is a number equal
to the frequency found for each term. We chose to have 2 representations of
each tweet to compare results using different dictionaries.

The result is an unlabeled collection of numerical vectors used to train individual
decision trees independently and in parallel.

5.3.2 Random Forest Training

A random forest with T = 100 trees and deep D = 4 is trained by using algorithm
below:

1. Repeat until complete T trees:

(a) Query on Twitter using keywords natural disaster, tsunami,
earthquake, quake, flood, etc.

(b) Assign query’s results to set S with size N and create i : 1 to
20 trees by the following steps:
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Figure 5.2: Users’ reaction on Twitter for a M3.3 Earthquake at Greater Los Angeles
Area, California, May 8th 2014

i. Perform bagging, by drawing uniformly at random a sample
Si of size M < N from S.

ii. Grow a decision tree ti by recursively repeating steps below
for each internal node:

A. Perform randomized node optimization by selecting d′

variables at random from d.

B. Transform sampled tweets into numerical d′-dimensional
vectors.

C. Pick the best variable among the d′ variables. The best
split feature maximizes the information gain for the node
under training.

D. Split the node into two child nodes.

E. If the maximum deep is reached (parameter D), close
tree ti and create next tree.

2. Group split variables learned at each node for each tree and build
a histogram of main variables.

Although the proposed algorithm is shown as “sequential”, it is a completely
distributed algorithm. It is possible to assign a query’s result to some trees in a
machine, another subset of data to trees in another machine, an so on. In today’s
world, when data sets are too large, it is unwise to load all data into memory. Even
more, any emergency situation produces a flood of data to be processed. Our pro-
posed algorithm takes several queries and split their results in small subsets. This
model can be applied to process streams in real-time; an online random forest for
classification has been proposed at [Saffari et al., 2009] that takes ideas from [Geurts
et al., 2006] and implements an on-line decision tree growing procedure. Proposed
algorithm doesn’t implement an on-line growing strategy, it manages the streaming
data by querying Twitter at different intervals of time.
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Breiman’s approach [Breiman, 2001] is used to introduce a way of injecting random-
ness in the forest by randomly sampling the training data. As well, the technique
is known as bagging. Trees takes at random a subset containing approximately a
10% of query’s result. Nodes were trained by using a subset of features of interests
randomly selected based on their weights at the dictionary.
Each tree is trained by searching intensely the best split variable for each generated
subset, resulting in maximizing the information gain. Unlike classification, where
it is possible to use equation 5.1 to obtain the entropy, an unsupervised form of
entropy is used, where each subset that reaches a node is explained by a multivari-
ate Gaussian distribution, then the differential entropy of a d-variate Gaussian is
defined as:

H(S) =
1

2
log ((2πe)d|Λ(S)|) (5.6)

Where Λ(S) is a d x d covariance matrix and |Λ(S)| is its determinant. Being
d high; covariance matrix calculation returns values close to zero or zero, causing
error and small negative values for the determinant. This problem is solved in our
implementation by the application of two strategies:

1. Reducing d by randomized node optimization.

2. Adding a small bias λ to the diagonal of the covariance matrix before comput-
ing its determinant. We perform Λ(S) + λI, where I is the identity matrix.

The information gain based on the unsupervised entropy is expressed as:

Ij = log (|Λ(Sj)|)−
∑

i∈{Left,Right}

|Sij|
|Sj|

log (|Λ(Sij)|) (5.7)

Where |.| indicates the determinant or the cardinality of the subsets. By optimizing
previous equation, the process results in a tree that splits a subset into several
clusters which are assumed to have a Gaussian distributions.
Application’s goal is not to analyze the generated clusters, neither to study any
way to perform prediction. Instead, it searches to identify what is the information
most useful to characterize the entire emergency data set. Split features play an
important role; they contain the information needed to split training data set into a
number of compact clusters. Therefore, for our application, the set of split features
constitutes the set of main characteristics detected.

Two random forests were trained with T = 50 trees and deep D = 4, with
different dictionaries as mentioned previously. The selection of D is tied to amount
of main variables desired to obtain, higher values ofD implies higher processing time.
In each case, a bunch of features is presented and the model selects some of them
as nodes in the trees. Selected features essentially “decide” on the data set; they
are the best choices to provide information about an unsupervised clustering that
minimizes the entropy about the emergency event. Main features help to assess the
emergency by answering, for example, what is the best to ask? what is the best to
evaluate?. After training, each tree generate a matrix Fti of d x (2D+1−1) (features
x nodes), where element Fti(k, j) is equal to 1 if feature k is the split variable of
node j, otherwise 0. Main variables are calculated as follows:

Histogram(k) =

(2D+1−1)∑
j=1

T∑
i=1

Fti(k, j) (5.8)
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(a) Results using a dictionary of
risk assessment standard words

(b) Results using a dictionary of
common terms used in Twitter

Figure 5.3: Random Trees main features detection
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Equation 5.8 basically tells us the importance of each word when decisions are made
on an emergency event; originally we have many features at each dictionary, now
we have discovered naturally the most important characteristics in a reasonable
amount of time. Figure 5.3 shows different features discovered, 1st case gives a
formal evaluation on standards {like, earthquake, again, earth, time, people, strong,
serious, ...}, while the 2nd set of words shows people’s reactions by common terms
{earthquake, feel, lol, omg, scare, damn, ...}. This comparison gives us an idea
of how important is the data dictionary. For similar situations in the future, it is
essential to have as many resources as possible available. Any assessment system
should include for critical regions, for example countries located on edges of tectonic
plates, dictionary of locations, list of first and last names, stations names, landmarks
names, list of rivers, schools, hospitals, public offices, geopolitical entities, etc. Our
system was unable to identify locations from tweets due the lack of features at used
dictionaries. Complete dictionaries are essential for a larger scale event in future
situations. However, in a more abstract level, random forest model has the potential
to make an important contribution in a disaster response situation.
At a real emergency, after processing and averaging some few trees, we might have
an approximation to assess the situation. Over the time, new trained trees are
incorporated to improve the results.
Learned main features might be organized as rules; to detect rules, component trees
of a random forest with T = 100 and deep D = 4 are combined into one single tree
that shows relations among variables. Figure 5.4 displays for each node the most
predominant five split features derived from:

Node(j) = arg max
1<k<d

(
T∑
i=1

Fti(k, j)

)
(5.9)

Branches to the right are positive evaluation results of split features, while branches
to the left are negative results. For example rules discovered for 1st case using a
dictionary of terms from risk assessment standards can be the sequence of nodes 1, 3,
6: YES(earth, like, earthquake, live, over) → NO(another, same, near) → (people,
cool, made), and the sequence of nodes 4, 9: YES(again, earthquake, second, time,
people) → (dure, earthquake, make).
While for the 2nd case, using a dictionary of terms commonly used in Twitter,
uncovered rules such as sequence 2, 5, 11: YES(lol, quake, time, earthquake, like)
→ YES(feel, use, scare, big, always) → (come) and sequence 4, 9: YES(feel, like,
it, tweet, quake) → (felt, think, really, mom, anyone) provide information oriented
to people’s reactions.
Due that data set in the experiments reported in this chapter corresponds to a small
earthquake with no damage reported, the trees tend to organize the data to their
left “negative” side. We believe that for real emergencies information will be spread
mainly to the right side of the trees.

5.4 Conclusion

Random forest applied to uncover main features during an abnormal event pro-
duced a potential new evaluation tool. Random forest automatically and with no
previous information organized predominant terms in a ranking list that indicates
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(a) Results using a dictionary of risk assessment standard words

(b) Results using a dictionary of common terms used in Twitter

Figure 5.4: Hierarchy of main features for rules detection
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their importance within the discovered set. Variables are the result of maximizing
systematically the information gain, and their frequency shows and approximation
of how information propagated during the emergency event. An averaged tree has
been proposed showing the main test features for each node, from where rules can
be inferred.
Results and the effect of using different dictionaries demonstrated how the emer-
gency event can be described from different perspectives, being necessary the usage
of multiple dictionaries of locations, names, an other entities for real situations.
The empirical findings reported in this chapter present a relevant model that can be
used to provide information to decision takers during difficult times, and will play
an important role as large-scale data processing model for discovering patterns.
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Chapter 6

Tracking News Topics by Particle
Filtering

6.1 Introduction

As mentioned, society continuously communicate on social networks, blogs and news;
the permanent generation of text data makes an attractive challenge to discover what
people are talking about and track a non-linear status of a certain topic over the
time. Particle filtering (PF) is a powerful methodology that might help on text
non-linear tracking; it is mainly used for sequential signal processing with a wide
scope of applications. Several non-linear problems such as localization and tracking
of targets, recognition of objects in video or image, among others, include PF as
part of their solution. The usage of PF for tracking a set of related words in a news
stream is a novel application, the main idea is to track a predefined topic and its
“relevance” (probability), estimating it over the time. PF uses a state-space model
to perform estimations, on text the state-space model could be a probability model,
like the Unigram model. This chapter present a straightforward model of a topic
named as nuclear issue from a set of news generated during March 2011 earthquake
in Japan. PF sampling importance re-sampling (SIR) algorithm is used to process
data as it arrives, for rapid adaptation to changing signal characteristics. Every time
a news is read, the algorithm computes the posterior probability density function
(pdf) of the system’s state based on available information, tracking and estimating
the predefined topic “nuclear issue”.
In addition, the conventional SIR algorithm is modified by adding a correction term
every time SIR random samples also known as particles and their associated weights
are generated, improving SIR’s estimation over the time. It computes the posterior
pdf of the system’s state based on available information, adding an observation based
correction term to the generated particles.

6.2 Particle Filtering

Particle filter is a sequential Monte Carlo method based on point mass or parti-
cle representations of probability densities, which can be applied to any statespace
model. The basic idea is the recursive computation of relevant probability distribu-
tions using the concept of importance sampling and approximation of probability
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distributions with discrete random measures [Djuric et al., 2003]. Sequential Monte
Carlo methods mainly have high computational complexity and need important
computing resources; these are the reasons why PF became a very active area of re-
search since last decade. Many real problems require the estimation of the system’s
state that changes over the time using a set of measurements; some systems can be
represented as a statespace model of the form:{

xt = ft(xt−1, ut)

yt = gt(xt, vt)
(6.1)

Where t = 1, 2, 3, ..., n is a time index, xt is the state (or signal) that needs to be
estimated, yt is a vector of observations, ut is a state noise vector, vt is an obser-
vation noise vector, and ft and gt are nonlinear functions which might vary with
time. The first equation in 6.1 is known as a state equation, and the second one,
as measurement equation. The standard assumptions are that functions ft and gt,
and the distribution of noises ut and vt are known. The basic idea of PF is to re-
cursively estimate xt from measurements yt, in particular we seek filtered estimates
of xt based on the set of all available measurements yt up to time t [Arulampalam
et al., 2002].
In case of text sources, the state-space approach could be used to model the dynamic
of a topic in a news stream over the time. The state vector is designed to contain
the information that describes the system, as well as in tracking system the state
vector may contain position, velocity and/or acceleration of a target or object; in
our proposed idea the model contains a measurement of a topic relevance estimated
from the frequency of a set of related words. Imagine a certain topic as a “nano-
robot” moving in a sea of text data generated from news and social networks, our
goal is to estimate its position, considering it as topic’s relevance, a metric of how
much people are talking about it over the time. We believe that, in the same way as
an object is tracked in a video, an object composed by text (a set of words in this
case) can be automatically “localized” in a huge amount of information continuously
generated over the time. We introduce a simple model to demonstrate it by using
particle filtering.
PF implements a recursive Bayesian filter to estimate a state variable of a sys-
tem by Monte Carlo simulations. PF represents the required posterior distribution
function (pdf) by a set of random samples with associated weights and compute
estimates based on these samples and weights [Arulampalam et al., 2002]. Let

X(t) =
{
xm(t), w

m
(t)

}M
m=1

denote a random measure that characterizes the posterior

pdf p(x(t)|y(1 : t)), where xm(t) is the mth particle of the state vector at time instant
t, wm(t) is the weight of that particle, and M is the number of particles. This random

measure X(t) is obtained from X(t − 1) by using the observations y(t). Then, the
posterior pdf at time t can be approximated as:

p(x(t)|y(1 : t)) ≈
M∑
i=1

wi(t)δ(x(t) − xi(t)) (6.2)
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Where δ(.) is the Dirac delta function. With this approximation, computations of
expectations are simplified to summation, for example:

E(g(X)) ≈
M∑
i=1

wi(t)g(xi(t)) (6.3)

Due that it is difficult to draw samples from p(x(t)), the particles and weights
are generated using the principle of importance sampling, that relies on a proposal
distribution π(x(t)) known as importance density function (IDF) from where samples

x
(m)
(t) are easily generated. Then, weights are defined as:

wm(t) ∝
p(xm(t)|y(1 : t))

π(xm(t)|y(1 : t))
(6.4)

From 6.4 it is derived the following recursive equation:

wm(t) ≈ wm(t−1)
p(y(t)|xm(t))p(xm(t)|xm(t−1))
π(xm(t)|xm(t−1), y(t))

(6.5)

Thus, PF consists in a recursive estimation of state x(t) by a propagation of the
weights and particles as each measurement is received sequentially.

6.3 Tracking a Topic

Information exchange by internet opened a door to research and applications focused
on NLP (natural language processing); NLP models are required for text processing;
in case of topic’s tracking the main idea is to adapt a NLP model to a state-space
model as seen in equation 6.1. We assume the system’s state as a certain topic’s
relevance denoted as R, and its estimated value as R̂. By using a set of news related
to natural disasters, it is desired to calculate the topic’s relevance R every time a
news is read, R is based on the frequencies of related words. In our experiments, the
topic is fixed by words: {energy, nuclear, radiation, people}, therefore the tracking
by PF to be described estimates and follows a “nuclear issue” topic.
The state-space approach is applied in the following way:

1. The state vector R is a vector with a single element whose value is equal to the
join probability of words {energy, nuclear, radiation, people}, that means, the
model assigns a probability to the topic “nuclear issue” for each news (6.8).

2. The measurement vector Y represents noisy observations that are related to
the state vector; in this case we add a randomly generated Gaussian noise to
R. Therefore, to analyze and make inferences about the system, we use vector
R that describes the evolution of the state, and vector Y that represents noisy
measurements of R.

R is calculated by using unigram model where the probability of appearance of
a word wdi in a news is calculated without considering any influence from other
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related words within the topic. We define R as the probability of observing words
wd1, ..., wd4 in a news, and it is approximated as:

R = P (wd1, ..., wd4) =
4∏
i=1

P (wdi|wd1, ..., wdi−1) (6.6)

Where P (wdi|wd1, ..., wdi−1) is the maximum likelihood estimation (MLE) which is
approximated by unigram model as P (wdi), therefore the state is calculated as:

R = P (wd1, ..., wd4) =
4∏
i=1

P (wdi) =
4∏
i=1

c(wdi)∑
w̃d c(w̃d)

(6.7)

Where c(wdi) is the count (frequency) for wdi within a news, and
∑

w̃d c(w̃d) is the
total amount of words for that news. Equation 6.7 has a constrain, the value of R
becomes zero if any wdi doesn’t exist, for that case MLE does not work. To solve
that limitation it is assigned a small probability λ to the “unknown” words equation
6.7 is arranged as:

R = P (wd1, ..., wd4) =
4∏
i=1

(
(1− λ)P (wdi) +

λ

N

)
(6.8)

Where λ is a least value, for instance λ = 0.05, N is the total amount of words of the
set of news, and P (wdi) = c(wdi)∑

w̃d c(w̃d)
. Computation of equation 6.8 gives very small

numbers that may produce underflow during simulation. Underflow is a condition
in a computer program where the result of a calculation is a smaller number than
the program can actually manage in memory. In practice, to avoid underflow, it is
often more convenient to work with the logarithm of the likelihood function, called
log-likelihood, thus equation 6.8 is arranged as:

R = P (wd1, ..., wd4) =
4∏
i=1

ln

(
(1− λ)P (wdi) +

λ

N

)
(6.9)

This last expression returns negative values; therefore, as final step, equation 6.9
is shifted by adding a positive amount β to R in order to manipulate during PF
positive values of R (see figure 6.1). Even though the dimension of the state vector
R is a single one, it represents and compresses information of 4 different variables
(words). We assume that when a person talks about something, a person mentions
words related to it. In that sense, R represents how much a person talks about a
“nuclear issue” in a news, representing a measurement of that topic’s weight over
the whole unknown topics in that news, over the time. With this model, we are
trying to demonstrate whether it is possible to track and estimate, automatically,
the status of a certain topic over the time or not.

6.4 Sampling Importance Re-sampling

Sampling-importance-re sampling (SIR) was proposed in [Gordon et al., 1993] and
it is known as bootstrap filter. Considering the state-space model given by vectors
R and Y (Figure 6.1), we denote x(t) and y(t) as the values of R and Y at time t

Chapter 6 Carlos Enrique Gutierrez 61



Main Features Extraction in Natural Disaster Text Sources

Figure 6.1: State variable R and observations Y news set

respectively. The particles xm(t) are generated from an importance density function

π(x(t)), for our case the prior density function p(x(t)|xm(t−1)) is used for drawing

the particles, that means; the importance density function π(x(t))is equal to the
transition density function p(x(t)), therefore:

π(x(t)|xm(t−1), y(1 : t)) = p(x(t)|xm(t−1)) (6.10)

And the weights, upon the reception of the measurement y(t), are calculated by:

w̃m(t) = wm(t−1)
p(y(t)|xm(t))p(xm(t)|xm(t−1))
π(xm(t)|xm(t−1), y(t))

(6.11)

Where w̃m(t) is a non-normalized weight that can be expressed by using 6.10 as:

w̃m(t) = wm(t−1)p(y(t)|xm(t)) (6.12)

Equation 6.12 indicates that weights are proportional to likelihood of the observation
given the drawn particles p(y(t)|xm(t)). Figure 6.2 shows the steps of SIR algorithm;
in addition, the steps of its implementation are explained below:

1. Initialization, drawn M particles xm(0) from a normal distribution N (x(0), 1)

and set all weights as wm(0) = 1
M

, in this case, all particles have the same
weights; the variance of the weights is zero. That means, the starting point is
characterized by having all particles with the same probability (weights).

2. Draw particles from the importance density function. Particles are generated
by a Gaussian distribution 6.13, where particles created in time (t − 1), the
parents, are used as means.
xm(t) ∼ π(x(t)|xm(t−1)),m = 1, 2, ...,M , for our case it is used a normal Gaussian
distribution with mean xm(t−1) and standard deviation σ. Thus,

π(x(t)|xm(t−1)) =
1

σ
√

2π
e
−(x(t)−xm(t−1))

2

2σ2 (6.13)
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Figure 6.2: SIR algorithm, also known as bootstrap filter

Particles generated will be the parents of next time particles, and so on. Such
sequence is called a particle stream, and it represents one possible evolution
of the system’s state over the time.

3. Compute the non-normalized weights of previously obtained particles by equa-
tion 6.12, since π(x(t)) = p(x(t)), the weights are calculated by:

w̃m(t) = w̃m(t−1)
1

σ
√

2π
e
−(y(t)−xm(t))

2

2σ2 (6.14)

The weights are introduced to correct for the bias that arises due to sampling
from a different function (step 2) than the one that is being approximated.
Equation 6.14 shows that the weight of the mth stream is obtained by updating
its value at time (t− 1).

4. Normalize the weights so that they sum up to one, that is:

wm(t) =
w̃m(t)∑M
j=1 w̃

j
(t)

(6.15)

Due that weights represent probabilities that the particles are accurate repre-
sentations of the system based on observations, they are arranged by equation
6.15.

5. Having the random measure X(t) =
{
xm(t), w

m
(t)

}M
m=1

we are able to calculate

an estimation R̂ of the state variable as follows:

R̂(t) =
M∑
i=1

wi(t)x
i
(t) (6.16)

Chapter 6 Carlos Enrique Gutierrez 63



Main Features Extraction in Natural Disaster Text Sources

In this step we are using the set of particles and weights to approximate the
probability of the selected topic “nuclear issue” (state variable).

6. At each step the particles are propagated and assigned weights, as time evolves,
almost all particles except for very few have negligible weights. The variance of
the weights increases with time, which is an unwanted effect. This degradation
leads to a deteriorated functioning of particle filtering. A measurement of this
degeneracy is given by equation below known as effective particle size. In this
step we evaluate this metric:

M̂eff =
1∑M

i=1 (wi(t))
2

(6.17)

7. If the effective particle size is below a predefined threshold (in our case thresh-
old is equal to 50), re-sampling is carried out. Re-sampling will eliminate
particles with small weights and replicate those with large weights. According
to the multinomial probability given by the weights wm(t) we draw indices km
for m = 1, 2, ...,M , where p(km = i) = wi(t), once indices are available, we set

the new particles as xm(t) = xkm(t) , and the new weights as wm(t) = 1
M

.
Any potential degradation of the process measured in step 6 is corrected by
assigning the same probability (weights) to all particles (as in step 1), and
then, the set of particles with same weights are propagated in the next time
step.

8. We iterate from step 2 until the last available observation y(t). By applying
above process, we ensure that Monte Carlo sampling is easily performed by
a relatively simple importance density function and the weights are evaluated
without difficulty at each step.

6.5 Model Evaluation

When defining the measurement vector Y it is assumed as noisy observations of
the state. R always takes a positive value or zero, therefore all negative values
of Y are changed to a very small value, close to zero; in that way we imagine
our “nano-robot” having a sensor that measures always positive values of Y . This
modification improved the estimation of R. It was implemented an evaluation at
stage 2 of algorithm described above; before drawing particles, the state variable
given by model is evaluated, if its value is close to zero, the particles are generated
with fixed values close to zero. This modification avoided to create negative particles
that lead to a negative value of the estimation. Figure 6.3 shows our results for the
first 100 news arranged sequentially, we used M = 400 at each iteration with σ = 11
for π(x(t)). Simulation shows that the estimated value follows the state variable
giving suitable results in terms of tracking topic’s relevance over the time. Different
strategies can be evaluated by analyzing the mean squared error (MSE) (Figure
6.4); similar outputs can be obtained with fewer particles (M = 100,M = 200)
by increasing σ of π(x(t)). The strategy to select will depend on the availability of
computing resources that will indicates how many particles can be used, and the
value of the standard deviation of π(x(t)) that should produce particles with large
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Figure 6.3: Topic’s relevance and its estimations by SIR particle filtering

enough variance in order to avoid narrow regions for the estimation, but not too
large to avoid too dispersed particles [Arasaratnam et al., 2007].

6.6 A Correction Term Based SIR algorithm

A modified particle filter sampling importance re-sampling algorithm might improve
SIR results by adding a correction term every time SIR particles and their associ-
ated weights are generated. It computes the posterior probability density function
of the system’s state based on available information, adding an observation based
correction term to the generated particles. As explained previously, distributions
that are easy to sample from and whose shape is supposed to be close to the true
posterior distribution are chosen. The wanted effect is to generate particles from
regions of the support of state value Xt, in figure 6.5 are displayed an importance
density function (a Gaussian function) as well as the particles and weights that form
a random measure to approximate the posterior distribution of xt. It is important to
remember that, based on equation 6.12, the particle weights are proportional to the
likelihood of the observation given the drawn particles, therefore the most important
particles, those with higher weights, will be located in the region of the observation
value (figure 6.5). At the same time, the generation of particles by equation 6.13
ignores the current observation yt, which makes the algorithm inefficient in some
estimated values. A better solution could be obtained by pushing the most impor-
tant particles to the high likelihood region, located in the area where the true state
value is. We incorporate an intermediate step in SIR algorithm immediately after
generating the particles. In order to move some particles to the significant region of
state space, we will add to them a correction term c(t) defined below:

c(t) =

{
+|y(t) − xm(t)|+ st, if xm(t) <= y(t)

−|y(t) − xm(t)|+ st, if xm(t) > y(t)
(6.18)
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Figure 6.4: Evaluation by amount of particles and standard deviation value

Figure 6.5: SIR algorithm single iteration showing particles generated by a Gaussian
function with their weights, and state and observation values
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Figure 6.6: Particles values modified by a correction term

Where s(t) is a correction noise value. The criteria is to identify those particles far
from the region of the observation , and subsequently add (or subtract) c(t) from
them. The particles affected are defined by following rule:

ADD c(t) IF |y(t) − xm(t)| > σ (6.19)

Rule 6.19 exposes that if the distance between a particle and the observation value
is more than the standard deviation of the importance density function, the particle
will be “corrected” by c(t). Figure 6.6 shows a result of this additional step applied
after particles are generated. To demonstrate the performance of the proposed filter
we ran SIR conventional filter and our proposal. Figure 6.7 displays results for a
window of time from 1 to 100, with M = 400 particles and σ = 11 for π(x(t)).
Simulation demonstrates that the estimated state value by using correction term
is more accurate, in most of the cases, than conventional SIR algorithm. A second
measurement to evaluate proposed algorithm is by analyzing the mean squared error
(MSE) (Figure 6.8). Although it improves the results of SIR, similar outputs are
obtained with fewer particles, for example (M = 100,M = 200). The results improve
a negligible value by adding more particles. The strategy to select will depend on
the availability of computing resources that will indicates how many particles can be
used, and the value of the standard deviation of π(x(t)) that should produce particles
with large variance but not too dispersed [Gordon et al., 1993].

6.7 Conclusion

It has been demonstrated that a topic can be modeled, tracked and estimated in a
text stream by particle filtering over the time. The main advantage of choosing the
importance density function equal to the prior pdf is the ease in the computation
of weights. Importance density function has been assumed to be a normal Gaussian
distribution which leads to an easy generation of particles.
In our first experience we did not use the current observation y(t) to improve sam-
pling. Once the particles are generated the only thing we do to steer the particles
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Figure 6.7: Comparison of estimated values between SIR and SIR with correction
term

Figure 6.8: Comparison SIR and SIR with correction term by mean squared error

Chapter 6 Carlos Enrique Gutierrez 68



Main Features Extraction in Natural Disaster Text Sources

towards the region of the state space with large probability density is by re-sampling.
SIR algorithm has been implemented and modified to avoid generation of negative
estimations for an always positive state variable. NLP unigram model has been
matched to a state-space approach needed for PF, and emulated the observations
by adding noise to the state variable, although a more advance topic’s model should
be developed.
Secondly, a better filter is proposed to improve estimations by modifying some par-
ticles with the addition of a correction term. Once the particles are generated our
proposal improves the values of particles located far from observation value, obtain-
ing an effect similar to re-sampling. It implies a good improvement as seen in figure
6.8, a big gap exists by comparing both mean squared errors.
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Chapter 7

Natural Disasters Topics
Detection Over Twitter Data
Stream

7.1 Introduction

Twitter has become a worldwide used social network, capable to receive hundreds of
comments per minute about several topics of interest. Even more, amounts of data
increase when emergencies happen, such as natural disasters. During those critical
moments people’s natural reactions include fear, worries, the action of escape from
danger, make telephone calls to family or friends, and lately, it has become very
common to share experiences immediately after the event by using social networks.
We recorded posts from Twitter during a minor earthquake in California on May
8th 2014; people felt the earthquake and immediately reported brief text updates,
at 06:41 UTC time zone (Coordinated Universal Time) the number of tweets per
minute increases rapidly, returning after 25 minutes approximately to an average
number. A huge amount of tweets were created as an instantaneous reaction to an
emergency, in real-time. Tweets per minute can be monitored by a detection system
that recognizes peaks exceeding a predefined threshold; those tweets can be entered
in a Bayesian machine learning model that infers topics and subjects previously
learned from a huge amount of tweets training data. It could show immediately
the content and context of a potential emergency, without the delay that would
imply to read all of them in sequence. A model towards the mentioned detection
system, that incorporates Latent Dirichlet Allocation (LDA) model, also known as
topics model, is explored in this chapter. The key idea behind the LDA model
for text is to assume that words in each document were generated by a mixture of
topics, where a topic is represented as a multinomial probability distribution over
words. The mixing coefficients for each document and the word topic distributions
are hidden and learned from data using unsupervised learning methods.
Next, we explore the adaptation of Bayesian topic model LDA to discover topics on
Twitter stream text data related to natural disasters. By uncovering topics over the
time, the inferences would expose the concept and context of the most significant
issues during a potential emergency.
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7.2 Latent Dirichlet Allocation

LDA model was introduced at [Blei et al., 2003] based on a general Bayesian frame-
work, the method has been broadly applied in machine learning and data mining,
particularly in text analysis and computer vision, with the Gibbs sampling algorithm
as most used for approximation of the posterior distribution. In general, there is a
general motivation to migrate the application of topics model from batch to on-line
mode to implement real time systems. It implies to speed-up the learning of topic
models, as well as improves the speed and accuracy of the inference for the posterior
distribution.
In statistical natural language processing, a document has multiple topics and its
words reflect the particular set of topics it addresses [Griffiths and Steyvers, 2004].
LDA treat each topic as a probability distribution over words, and a document as
a probability mixture of these topics. If we have k topics, the probability of the ith

word in a given document is:

p(wi) =
k∑
j=1

p(wi|zi = j)p(zi = j) (7.1)

Where zi is a latent variable indicating the topic from which the ith word was drawn
and p(wi|zi = j) is the probability of the word wi under the jth topic. p(zi = j) is
the probability of choosing a word from topic j. Intuitively p(wi|zi = j) indicates
which words are important to a topic, whereas p(zi = j) is the predominance of
those topics within a document. Given D documents containing k topics expressed
over W unique words, it is possible to represent p(w|z) with a set of k multinomial

distributions φ over the W words such as p(w|z = j) = φ
(j)
w , and p(z) with a set of

D multinomial distributions θ over the k topics, such that for a word in a document
d:

p(z = j) = θ
(d)
j (7.2)

Latent Dirichlet Allocation [Blei et al., 2003] is a model that combines equation 7.1
with a prior probability distribution on θ to provide a complete generative model
for documents. Figure 7.1 shows the graphical model representation of LDA where
each piece is a random variable. For each word in document d LDA performs:

1. Sample a topic zi,d from a multinomial distribution with parameter θd having
Dirichlet prior.

2. Sample a word wi,d from a multinomial distribution with parameter θzi,d having
Dirichlet prior.

Given observed words w = {wi,d}, LDA computes the posterior distribution over
the latent topics z = {zi,d}, the mixing proportions θd and topics φ4. Mainly, LDA
uses Gibbs sampling [Griffiths and Steyvers, 2004] as inference method, where θ and
φ are marginalized out, and only the latent variables z are sampled. After several
iterations of Gibbs sampler, the estimations of θ and φ are calculated. Given the
current state of all but one variable zi,d the conditional probability is:

p(zi,d = j|z−i,d, w, α, β) =
1

C
aj,dbw,j (7.3)
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Figure 7.1: LDA graphical model
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With aj,d = N−i,dj,d +α, where Nj,d is the number of times a word in document d has
been assigned to topic j.

And bw,j =
N−i,dw,j +β

N−i,dj +Wβ
, where Nw,j is the number of times a word w is assigned to

topic j, Nj is the number of times a word has been assigned to topic j, and W is
the amount of unique words.
The corresponding −i, d indicates that the corresponding zi,d has been excluded
from the counters N . The normalization constant of equation 7.3 is defined as:

C =
∑
j

aj,dbw,j (7.4)

7.3 LDA training

We collected a set of tweets with keywords related to natural disasters, such as
{natural disaster, tsunami, earthquake, quake, flood, cyclone, avalanche, blizzard,
landslide, typhoon, etc.}. The collection was intermittent, however, each time we
gathered continuous tweets over the time. That approach allowed to register several
peaks, a peak is an amount of tweets per minute that exceeds a threshold value set as
200. If there are more that 200 tweets at any time (minute) a potential emergency
would be happening. Several peaks were recorded as a training set to detect topics,
each peak is considered as a document, and every tweet within a peak is a sentence
of that document. The training start with one random initialization of zi,d topic
assigned to word i at document d, and adding counts N , algorithm below shows the
initialization needed previous to learning.
Algorithm 1: Initialization algorithm:

1. For each peak

(a) For each tweet

i. Split tweet into words

ii. For each word

A. Assign zi,d = rand[0, k]

B. Add counts Nj,d, Nw,j, Nj

iii. End

(b) End

2. End

The collapsed Gibbs sampling algorithm involves repeatedly sampling a topic as-
signment for each word in the corpus; each sampled topic assignment is generated
from a conditional multinomial distribution over the k topics, which in turn requires
the computation of k conditional probabilities given by equation 7.3. Gibbs sampler
implementation is shown at algorithm 2 below. The training is a problem with time
equal to k × w × d × n iterations where k is the number of topics, w is amount of
words, d is amount of documents and n the iterations needed for convergence. k is
defined by user, in our case we used k = 30, Dirichlet hyper-parameters α and β are
set to 0.1.
Algorithm 2: Collapsed Gibbs Sampling
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Figure 7.2: Training evaluation by log-likelihood

1. For many iterations (until convergence)

(a) For each word wi,d with an assigned topic zi,d

i. Subtract 1 from counts related to zi,d: Nj,d, Nw,j, Nj

ii. For m = 0 to k (number of topics)
p[m] = 1

C
aj,dbw,j for wi,d and zi,d

iii. End

iv. Add 1 to counts related to zi,d: Nj,d, Nw,j, Nj

v. Sample 1 from p[m] (higher values have more chances of being se-
lected)

vi. zi,d = index(sample)

(b) End

2. End

Training is an unsupervised learning where topics are assigned randomly at the be-
ginning, and gradually updated by sampled topics with an improved probability.
The log likelihood function is calculated at each iteration of the sampler, it is gener-
ally used to find the maximum likelihood estimate as it is often easier to find using
the log likelihood function than it is using the likelihood function. In our case we
use it to evaluate the training. Figure 7.2 shows the log likelihood value, after iter-
ation # 15, minor changes occur and training can be stopped at any time. Tweets
normally contain undefined words and characters; they are not a clean source of
data such as scientific papers, in addition there have been detected many tweets
generated by malicious and non-malicious bots operating on the web. For example
alerts systems that generate hundreds of tweets with the same text, or marketing
systems operating in the same way and publishing a product link repeatedly. The
good news is those cases are frequent; therefore a same topic is assigned to them,
recognizing those peaks easily. In addition, tweets in several languages were recorded
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Topic: 0 Topic: 1 Topic: 2 Topic: 3 Topic: 4 Topic: 5 Topic: 6

earthquake volcano landslide tsunami flood tsunami alat
feel after victory japan flash jadiel untuk
felt eruption music make warning unete membunuh
omg under chinese difference out muerte itu
did watch wins lessons shit imagenes drone
first careful no1 fire scared fuertes tim
ako concerns program volunteer hurricane @teampgv pemenangan
there alaskan exom flood alert man juru
nag raises landslide” tornado phone inventor prabowohatta
bed miles ”it’s @operation

safe
about bolivian bicara

Table 7.1: Main topics learned

adding more complexity. Among all those cases, real emergencies events exist in the
training data. Topics discovered and their main words associated show the result
of learning process in table 7.1. The model is robust, raw data with hundreds of
unusual characters is entered and coherent topics are discovered. Table 7.1 shows for
example natural disasters topics 0, 1, 2, 3, 4 related to earthquake, volcano eruption,
landslide, tsunami, and flood respectively. Topics 5 and 6 are non-English topics
discovered.

7.4 Inference

After training, the model counts tweets per minute on real time, as shown in figure
7.3. The tweets being counted are not every tweet, but those with keywords related
to natural disasters, same as training data set. When a peak of tweets is detected
in a certain minute, all the component tweets are recorded and entered in Gibbs
sampler in order to perform one iteration. In that iteration, the system selects
the best topic for each word based on the learned topics. The distribution of the
detected peak over the learned topics is calculated by:

θ̂j,d =
Nj,d + α

Nj + kα
(7.5)

In the reduced example at figure 7.3, the system was set to learn only 5 topics, a
peak having 475 tweets is detected at 10 : 24 UTC and immediately entered into
Gibbs sampler in real –time. As result, the strongest topic (topic 0) and its main
words are shown. Topics and words have a probability associated, which helps to
analyze the data. After inference, our system continues monitoring new potential
peaks.
To verify inference results of our model, a query was performed after the detection
using keyword “earthquake”, showing the recent occurrence of a M4.6 earthquake
in Indonesia (figure 7.4).
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Figure 7.3: Natural disaster topics monitoring system
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Figure 7.4: Query on Twitter for keyword “earthquake”
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Figure 7.5: Web monitoring system of emergency topics

7.5 Conclusion

It was explored the application of Latent Dirichlet Allocation model in a dynamic
environment like Twitter stream. Training is performed as a batch process, but later
its results are the core for a real time inference. The model does not consume much
memory; it has a unique counter which is initialized every minute. In a certain time,
the counter with a value greater than a predefined threshold triggers the inference
process. The inference is quick, the time complexity is k × w, k topics times w
words within the peak. After showing the inference results, the monitoring system
continues tracking new tweets per minute. It is needed to improve the training data
set and generate much more topics, in order to cover a wider spectrum of situations
that could happen during an emergency. If the system previously has seen an issue,
it is highly probable it recognizes the same situation for future events. Also, the
inference process should be improved, with a more efficient sampler or by using
particle filtering explained in previous chapter. This model can be a starting point
for a future web implementation of a monitoring system (figure 7.5).
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Chapter 8

Conclusions

In this thesis we have presented unsupervised classification methods for main fea-
tures extraction and characteristics from natural disaster text sources. Figure 8.1
displays the favorable and unfavorable characteristics we found after their applica-
tion. We have used PCA to build an application that compresses, transforms and
arranges news to uncover data patterns. We have discovered components meanings
which serve as summary for the data set. For each news, the application detects
the most related component showing its meaning and value through the time. This
last characteristic shows how a pattern evolves every time a news is entered into the
application, displaying as a result a general view based on main components change.
A Self Organizing Map model has been proposed to discover spatial and temporal
features from a news data set. SOM has been trained obtaining quantization points
and frequent words have been mapped to create a semantic structure. Time di-
mension has been considered, groups of SOM’s units were discovered having a high
time dependency. Temporal clusters detection has been possible by the utilization
of a time-dependent matrix that stores the transitions from a SOM unit to another;
this matrix is the model’s perception of frequent events over the time. Although
our data set was relatively small, the proposed model was able to discover temporal
dependencies. Used matrix also can be modified assigning a memory to it, in a way
that it does not remember only the last fired unit, but the last k units fired, expand-
ing its ability. Our application emphasizes the spatial-temporal arrangement of the
units and the segregation of the information into separate areas. We believe that
results are improved and determined largely by what model is exposed to. Enough
input must change and flow continuously through time for a suitable learning.
Also, we have obtained a manageable algorithm to select automatically the most
important features from a high dimensional data set. The algorithm is straight-
forward, and is a derivation of the shared application between a linear prediction
model besides ridge and lasso shrink methods. It has been demonstrated that differ-
ent compression ratios can be obtained by the modification of a shrink parameter,
high linear prediction accuracy is correlated with low compression ratios, and on the
contrary, strong compression harmonizes with a degradation of the prediction accu-
racy. The same algorithm has been modified to uncover trend topics from a data
stream; as far as we know it is the first time a linear regression prediction model
is used for detecting main topics on data stream. Coefficients and their evolution
over time represents the “lifetime” of main topics detected. Although the amount
of features to detect is bounded to a dictionary of 10,000 variables, our algorithm
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Figure 8.1: Unsupervised methods summary of advantages and disadvantages

does not need special characters, like #, to recognize a trend topic. The algorithm
is not based on probability neither counting of variables occurrences. It is a pure
application of a linear prediction model.
Besides that, we have studied random forest and applied it to uncover main features
during an anomalous event. Random forest automatically and with no previous
information has organized predominant terms in a ranking list. Variables are the
result of maximizing systematically the information gain, and their frequency shows
and approximation of how information propagated during the emergency event. An
averaged tree has been proposed showing the main test features for each node, from
where rules have been detected. We have compared results and the effect of using
different dictionaries; the analysis of the words have shown how the emergency event
can be described from different perspectives, being necessary the usage of multiple
dictionaries of locations, names, an other entities for real situations.
Furthermore, a topic has been modeled, tracked and estimated in a text stream by
particle filtering over the time, by matching uni-gram model to a state-space ap-
proach. It has been used an importance density function (IDF) equals to the prior
probability density function, to make easy in the computation of weights. This
IDF has been assumed to be a normal Gaussian distribution which leads to an easy
generation of particles. A modified sampling-importance-re-sampling algorithm has
been proposed by the addition of a correction term. Better filter estimated values
has been obtained by improving the values of particles located far from observation
value, obtaining an effect similar to re-sampling.
Finally, we have modeled a real time natural disaster topics detector using Latent
Dirichlet Allocation model on Twitter. Training is unsupervised and performed as a
batch process, and later topics discovered are the core of a real time inference. The
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system does not consume much memory; it has a unique tweets counter which is
initialized every minute. In a certain time, the counter with a value greater than a
predefined threshold triggers the inference process. The inference is quick, the time
complexity is short. After showing the inference results, the monitoring system con-
tinues tracking new tweets per minute.
We believe that the findings reported in this paper present relevant models that can
be used to provide information to decision takers during difficult times, and can play
an important role as large-scale data processing model for discovering patterns in
emergencies.
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Appendix

Unsupervised Learning

In machine learning, the problem of unsupervised learning involves trying to find
hidden structure in unlabeled data. Since the input data given to the learner are
unlabeled, there is no error or reward signal to evaluate a potential solution. This dis-
tinguishes unsupervised learning from supervised learning and reinforcement learn-
ing. Unsupervised learning is closely related to the problem of density estimation
in statistics, however, unsupervised learning also encompasses many other tech-
niques that seek to summarize and explain key features of the data. Many methods
employed in unsupervised learning are based on data mining methods used to pre-
process data.

Approaches to unsupervised learning

Clustering

It is the task of grouping a set of objects in such a way that objects in the same group
are more similar to each other than to those in other clusters. It is a main task of
exploratory data mining, and a common technique for statistical data analysis, used
in many fields, including machine learning, pattern recognition, image analysis, in-
formation retrieval, and bioinformatics. Popular notions of clusters include groups
with small distances among the cluster members, dense areas of the data space,
intervals or particular statistical distributions. Clustering can therefore be formu-
lated as a multi-objective optimization problem. Besides the term clustering, there
are a number of terms with similar meanings, including automatic classification,
numerical taxonomy, and typological analysis.

Hidden Markov Model

A hidden Markov model (HMM) is a statistical model in which the system being
modeled is assumed to be a Markov process with unobserved (hidden) states. An
HMM can be presented as the simplest dynamic Bayesian network. In a simple
model, the state is directly visible to the observer, and therefore the state transition
probabilities are the only parameters. In a hidden Markov model, the state is not
directly visible, but output, dependent on the state, is visible. Each state has a
probability distribution over the possible output tokens. Therefore the sequence of
tokens generated by an HMM gives some information about the sequence of states.
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Blind Signal Separation using principal component analysis
(PCA) or other similar method

PCA is a statistical procedure that uses an orthogonal transformation to convert
a set of observations of possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components. The number of principal compo-
nents is less than or equal to the number of original variables. This transformation
is defined in such a way that the first principal component has the largest possible
variance, and each succeeding component in turn has the highest variance possible
under the constraint that it is orthogonal tothe preceding components. The princi-
pal components are orthogonal because they are the eigenvectors of the covariance
matrix, which is symmetric. PCA is sensitive to the relative scaling of the original
variables.

Neural Networks, SOM

SOM is a type of artificial neural network (ANN) that is trained using unsupervised
learning to produce a low-dimensional, discretized representation of the input space
of the training samples, called a map. SOM is useful for visualizing low-dimensional
views of high-dimensional data, and it operates in two modes: training and mapping.
Training builds the map using input examples (a competitive process, also called
vector quantization), while mapping automatically classifies a new input vector. The
procedure for placing a vector from data space onto the map is to find the node with
the closest (smallest distance metric) weight vector to the data space vector.

Supervised learning turned to unsupervised in our

work

Linear Regression

In statistics, linear regression is an approach for modeling the relationship between
a scalar dependent variable and one or more explanatory independent variables. In
linear regression, data are modeled using linear predictor functions, and unknown
model parameters are estimated from the data. Linear regression was the first type
of regression analysis to be studied rigorously, and to be used extensively in practical
applications. Linear models are often fitted using the least squares approach, but
they may also be fitted in other ways, such as by minimizing a penalized version of
the least squares loss function as in ridge regression.

Random Forest

Random forests are an ensemble learning method for classification (and regression)
that operate by constructing a multitude of decision trees at training time and
outputting the class that is the mode of the classes output by individual trees. The
method combines ”bagging” idea and the random selection of features, in order to
construct a collection of decision trees with controlled variance.
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Graphical methods (i.e LDA)

A graphical model is a probabilistic model for which a graph denotes the condi-
tional dependence structure between random variables. They are commonly used
in probability theory, Bayesian statistics and machine learning. Generally, prob-
abilistic graphical models use a graph-based representation as the foundation for
encoding a complete distribution over a multi-dimensional space and a graph that
is a compact or factorized representation of a set of independences that hold in the
specific distribution. Two branches of graphical representations of distributions are
commonly used, namely, Bayesian networks and Markov networks. Both families
encompass the properties of factorization and independences, but they differ in the
set of independences they can encode and the factorization of the distribution that
they induce. An example of a graphical model is LDA (Latent Dirichlet allocation),
in natural language processing, LDA is a generative model that allows sets of obser-
vations to be explained by unobserved groups that explain why some parts of the
data are similar. For example, if observations are words collected into documents,
it posits that each document is a mixture of a small number of topics and that each
word’s creation is attributable to one of the document’s topics.


