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WHICH INSCRIBED SPHERE OF 
PYRAMIDS IS MAXIMAL? 

YASUHIKO KAMIYAMA 

Abstract 

Consider the following question: In a circular cone, with bus line having length 
1, the inscribed sphere is to be maximal. How much is the radius of the base circle? 
It is easy to see that the answer is f\- 1 , which is interesting because this is the 
reciprocal of the golden section. In this paper, we generalize the question to the 
case that the base circle is generalized to regular polygons. 

1 Introduction 

In [3, p.124, Question 76], the following question is posed: In an isosceles triangle, 
with sloping sides of a given length, the inradius is to be maximal. How big is this? 

Specifying the length of the sloping sides to be 1, we restate the question as 
follows: 

Question 1. Let b.(x) be the triangle in JR2 , with vertices A,B and C, such that 
the side lengths are given by IABI = IACI = 1 and IBCI = 2x. Let r(x) be the 
radius of the inscribed circle of b.(x). (See Fig.l.) We set R := max r(x), where 

O<x<l 
the condition 0 :5 x :5 1 is the consequence of the triangle inequalitY. Now let L 
be the number x which attains R. What is L? 

.t c 
.....___X 

Figure 1: b.(x ). 
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It is easy to see that L = 1-1
. In [4, p.177], a solution using differential is 

given. Since the answer is the reciprocal of the golden section, it is natural to 
search for a solution without using differential. But it is stated in [4, p .1 77] that 
the translator does not know such a method. 

The purpose of this paper is to study one-dimensional higher analogue of Ques­
tion 1. 

Question 2. Let r n ( x) be a regular n-gon in IR2 , with vertices v1 , .. . , Vn _ 1 and 
Vn, such that the radius of the circumscribed circle is x . Let Pn(x) be the pyramid 
of r n(x) with apex p such that lpv;l = 1 for 1 ~ i ~ n. Let rn(x) be the radius of 
the inscribed sphere of Pn(x). (See Fig.2.) We set Rn := max rn(x) and let Ln 

O$x9 
be the number x which attains Rn· What is Ln? 

p 

v, 

Figure 2: P4(x). 

This paper is organized as follows. In §2 we state our main results and in §3 
we prove them. 

2 Statement of the main results 

The answer to Question 2 is given as follows: 

Theorem A. We set 

an = 
1
; - 6 cos c:) -¥ cos ( ~) + 2 cos ( 

6
:) 

+ 3 sin 
2 c:) 33 - 48 cos ( ~). 

Then we have 

1 
Ln = -=---:--:-

2v'3sin (~) (
271') 

3
r;;- 4 (cos(~)+ cos(~)) 

8- 4cos - - 2yan-
3
;;:;- • 

n ?an 

-2-



Here the terms J33 - 48 cos ( 2;) in an and ~ in Ln denote the principal values. 
More precisely, for a given ( E C, we write ( = rexp(i9), where 0 ~ r E lR and 
-1r < 9 ~ 1r. Then for pEN, we set . 

where f!F denotes the real p-th root of r. 

Corollary B . We set L00 := lim Ln. Then we have 
n-oo 

v'5 -1 
Loo = --2-. 

Remark 3. We claim that Corollary B is an immediate consequence of Question 
1. In fact, if we cut P00 (x) by a plane which contains the apex and is perpendicular 
to the base circle. Then the section is .6.(x) in Fig.l. Since L = ~-l, so is L 00 • 

Example 4 (Some graphs). (i) In §3, we determinern(x) explicitly. (See Lemma 
7.) Using this, we draw the graph of r 8(x) in the left of Fig.3. 

(ii) We draw the graph of Ln in the right of Fig.3. Note that Ln is a decreasing 

sequence. On the other hand, we can check that 2nLn sin ( ~), the circum­

ference of Pn(Ln), is an increasing sequence. 

rs(x) 

Figure 3: The left: rs(x). The right: Ln. 

Next, we state numerical results when n is small or large. 

Example 5 (The result for small n). (i) Although Ln is complicated for gen­
eral n, we have the following simple results: 

(ii) The approximate values of Ln for 3 ~ n ~ 10 are given by the following 
table: 
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n Ln 
3 0.7284 
4 0.6755 
5 0.6536 
6 0.6423 
7 0.6357 
8 0.6315 
9 0.6286 
10 0.6266 

00 v'\:-1 = 0.6180 

Table 1: Ln for 3 ~ n ~ 10 

In order to describe the behavior of Ln for large n, we write Ln by the Laurent 
series: 

More precisely, in Ln, we replace ~ by t and define a function K(t). Note that 
K(t) is defined fortE (o, i]· Then we set 

1 diK 
ai = -:-1 lim -d . . 

t. t->+0 tl 

Example 6 (The result for large n). (i) We have ai = 0 for odd i and 

(ii) We set 

v'5- 1 (3v'5- 5) 11"2 (249v'5- 550) 11"4 
Ln =-2- + 20n2 + 600n4 

(55383v'5- 123775) 1!"6 (2589297v'5- 5789695) 1!"8 

+ 36000n6 + 403200n8 
(13078846761v'5- 29245148500) 1!"10 

+ 453600000n10 + · · · · 

10 

·-""" Oi Mn·-L...., .. 
i=O n• 

Then the following inequalities hold: 

Ln > Mn > Loo. 

Moreover, consider the case for n = 10i, where 1 ~ j E .N. Then we have 
the following results: 

Lw; - Loo ~ 8.4 X w-<2H 1) and Lw - Mw; ~ 2.4 X w-12i+1• 
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3 Proofs of the main results 

First we prove Theorem A. 

Lemma 7. In the notation of Question 2, we have 

xv1- x2 cos (2t) 
rn(x) = n . 

.j1- x2sin2 (~) + xcos (~) 
Proof The following formula is well-known. (See, for example, [1, Theorem 1].) 
Let V(Pn(x)) and S(Pn(x}} be the volume and the surface sea of Pn(x}, respec­
tively. Then we have 

3V(Pn(x)) 
rn(x) = S(Pn(x)) · 

Let F be one of then sides of Pn(x}. Since 

S(F)=xsin(~JJ1-x2 sin2 (~J and S(rn(x}}= n;2 
sinC:), 

we have 

(1} 

On the other hand, since height h of Pn(x) is given by h = v1- x 2 , we have 

nx2 ~. (211') V(Pn(x))= 6 v1-x2sm -;;:- . (3} 

Now substituting (2} and (3} in (1}, Lemma 7 follows. 0 

Simple computations show that 

drn cos(~) (x4 sin2 (~) - x3 cos(~) )1- x 2 sin2 (~) - 2x2 + 1) 
d = 2 • (4) 

x .J1- x2Jl- x2 sin2 (~) ( )1- x2 sin2 (~) + xcos (~)) 

We study the graph of~ in the range 0 ~ x ~ 1. Since the graphs are similar, 
we give the case for n = 8 in Fig.4. 

dr, 

dx 

Figure 4: The graph of ~. 
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Note that the graph has an unique root, which is Ln. Moreover, the first 
derivative test shows that the graph of rn(x) is as given in the left of Fig.3. 

In order to complete the proof of Theorem A, we need to determine the root 
in 0 ~ x ~ 1 of the equation "the numerator of (4) = 0". 

Lemma 8. We set 

fn(x) = x4 sin2 (~) - x3 cos(~) J1- x2sin2 (~) - 2x2 + 1. 

Regard that the variable x moves in JR. Then the following results hold: 

(i) The number of the real roots of the equation fn(x) = 0 is two or four accord­
ing as 3 ~ n ~ 7 or n ~ 8. 

{ii) For all n ~ 3, one of the real roots is -1. Moreover, the positive real root of 
the equation fn(x) = 0 is unique. By definition, the root is Ln. {See Fig.5.) 

/s(x) 

-1.0 

-1.5 

Figure 5: The left: h(x). The right: fs(x). 

Proof. We set 

ttn(x) = x4 sin2 (~)- 2x2 + 1 and vn(x) = fn(x)- ttn(x). 

We set 

Then we have 
ttn{x)2 - Vn(x)2 = (x2 - 1)gn{x2). 

Since deggn(s) = 3, we can solve the equation gn(s) = 0 by Cardano's formula. 
(See, for example, [5].) The graph of gn(s) is given by Fig.6. 
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-1 -1 

Figure 6: The left: 97(s). The right: gs(s). 

From the direct computations, we can check the following results: 
(a) The case for 3 $ n $ 7. The real root the equation Un(s) = 0 is unique. If 

we denote this by tt, then we have 0 < t1. Moreover, x = ../fi and x = -1 are the 
solutions of the equation fn(x) = 0. (See Fig.5. Note that if x =a (where a::/: -1) 
satisfies that fn(a) = 0, then we also have Un(a2 ) = 0. But not vice versa.) 

(b) The case for n ~ 8. The number of the real roots the equation Yn ( s) = 0 is 
three. We denote them by tt, t2 and tg, where we take t1 < t2 < tg. Then we have 
0 < tt. Moreover, x = ..;ti,x = -.;£2, x = -..;t3 and x = -1 are the solutions of 
the equation fn(x) = 0. This completes of proof of Lemma 8. D 

Proof of Corollary B. We give a proof without using an answer to Question 1. 
(See Remark 3 for the proof which uses the answer.) It is possible to compute L 00 

from Theorem A. But it is more simple to compute lim ~~ from (4). It is easy 
n~oo u,a; 

to see that 
x2 +x-1 

(x + 1)v'1- x2· 

Since the positive root of the equation x2 + x - 1 = 0 is "'\-1 , Corollary B 
follows. D 

Proofs of Examples 9, 4 and 5. With the aid of Mathematica, we can deduce these 
examples from Theorem A. D 
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