
琉球大学学術リポジトリ

AN EXTREMAL VALUE PROBLEM
CONCERNING THE INSCRIBED SPHERE OF
PYRAMIDS

言語: 

出版者: 琉球大学理学部数理科学教室

公開日: 2015-05-14

キーワード (Ja): 

キーワード (En): 

作成者: Kamiyama, Yasuhiko, 神山, 靖彦

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/20.500.12000/30834URL



Ryukyu Math. J., 27(2014) , 9-17 

AN EXTREMAL VALUE PROBLEM 
CONCERNING THE INSCRIBED 

SPHERE OF PYRAMIDS 

YASUHIKO KAMIYAMA 

Abstract 

Consider the following question: In a circular cone, with the sum of the radius 
of the base circle and the length of the bus line being 1, the inscribed sphere is to 
be maximal. How much is the radius of the base circle? It is easy to see that the 
answer is i, which is geometrically interpreted as follows: Consider the section 
of a cone by a plane which contains the apex and is perpendicular to the base 
circle. Then the answer corresponds to the case that the section is an equilateral 
triangle. In this paper, we generalize the question to the case that the base circle 
is generalized to regular polygons. 

1 Introduction 

We consider the following question: 

Question 1. Let r n ( x) be a regular n-gon in IR2 , with vertices VI. ... , Vn-l and 
Vn, such that the radius of the circumscribed circle is x. Let Pn(x, y) be the 
pyramid of r n{x) with apex p such that lpvil = y for 1 ~ i ~ n. Let rn(x, y) be 
the radius of the inscribed sphere of Pn(x, y). (See Fig.l.) 

Assume that a subset J C IR>o x IR>o is given. We set Rn J := max rn(x,y) 
- - ' (o:,y)EJ 

and let Ln,J be the element {x,y) E J which attains Rn,J· What is Ln,J? More
over, if we set L00 J := lim Ln J, then what is L00 J? 

' n--tooo ' ' 
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v, 

Figure 1: P4(x,y). 

Typical examples for J are given as follows: 

(i) J1 := {(1,y) 11 :::; y < oo}. 

(ii) lz:= {(x,1) 1 o:::;x:-:::;1} . 

(iii) J3:={(x,1- x) 1 o::;x::;!}. 

v, 

About ]z, the condition 0 :::; x :::; 1 guarantees that Pn(x, 1) "I 0. The condi
tions for 11 and h are explained similarly. 

The answer to (i) is easy: rn(1,y) is an increasing function on y E [1 ,oo) 

such that rn(l, 1) = 0 and lim rn(1, y) = cos (?.I:). Here lim rn(l, y) is com-
y-+oo n y-+oo 

puted from the radius of the inscribed circle of r n(1). In particular, although 

sup rn( 1,y) = cos (?.I:), Ln.J, does not exist. 
(l,y)EJ1 n 

The case (ii) is studied in [3]: The sequence Ln,J, was described explicitly. In 

particular, we have L<XJ,J2 = 1-l. The result is interesting because this is the 
reciprocal of the golden section. 

The purpose of this paper is to study the case (iii). We determine the sequence 
Ln,J, explicitly. In particular, we have L<XJ ,h = t· The result can also be proved 
by the isoperimetric theorem of triangles. (See Remark 2.) 

This paper is organized as follows. In §2 we state our main results and in §3 
we prove them. 

2 Statement of the main results 

Hereafter we always consider h for J in Question 1 and write Pn(x, 1- x) and 
rn(x, 1- x) as Pn(x) and rn(x), respectively. We also abbreviate Ln,J, as Ln. 

Theorem A . We define a sequence An as foll ows: 

An = {
1

' 
-1 , 

n:::; 18, 

n 2 19. 
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We also define sequences an, bn and Cn as follows: 

an= 16sec4 (~) -16sec2 (~)- 3 · 22/3 tan~ (~)sec~ (~) + 1, 

4 (64sec6 (~)- 96sec4 (~) + 30sec2 (~) + 1) 
bn 

and 

en=- 96sec2 (~) + (cos c:) + 9) 2 
sec4 (~) + 6. 22/3 tan~ (~)sec~ (~) 

+ Anbn. 

Then we have 

Ln = :2 (2+8sec2 (~)-~ +2>.nan). 

Remark 2. For the reason why the sequence An appears in Ln, see Remark 9 in 
§3. 

Corollary B . We have 
1 

Loo = 3· 
Remark 3. We claim that Corollary B also follows from the isoperimetric theorem 
of triangles: If we cut P00 (x, 1 - x) by a plane which contains the apex and is 
perpendicular to the base circle, then the section is a triangle whose edge lengths 
are 1- x, 1- x and 2x. Note that the inradius r00 (x, 1- x) coincides with the 
area of the triangle. 

The isoperimetric theorem states that among all triangles of given perimeter, 
the equilateral one has largest area. (See, for example, [2].) Hence r00 (x, 1- x) 
is maximal when x satisfies that 1 - x = 2x, that is, x = i· This shows that 
L _1 
00- 3· 

Example 4 (Some graphs). (i) In§3,wedeterminern(x)explicitly. (SeeLemma 
7.) Using this, we draw the graph of rs(x) in the left of Fig.3. 

(ii) We draw the graph of Ln in the right ofFig.3. Note that Ln is a decreasing 

sequence. On the other hand, we can check that 2nLn sin ( ~) , the circum

ference of Pn(Ln), is an increasing sequence. 

rs(.r) 

0.335 
0.3::.:34~--:::;:--~=.;:::::;;::::::; 

ro ~ ~ ~ ~ ~n 

Figure 2: The left: rs(x). The right: Ln. 
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Next, we state numerical results when n is small or large. 

Example 5 (The result for small n). (i) Although Ln is complicated for gen
eral n, only L4 is slightly simple: 

(ii) The approximate values of Ln for 3 :::; n :::; 10 are given by the following 
table: 

n Ln 
3 0.3853 
4 0.3609 
5 0.3505 
6 0.3451 
7 0.3419 
8 0.3399 
9 0.3385 
10 0.3375 

00 ~ = 0.3333 

Table 1: Ln for 3 $ n $ 10 

In order to describe the behavior of Ln for large n, we write Ln by the Laurent 
series: 

00 
~ai 

Ln = L...J -:-. 
i=O n• 

More precisely, in Ln, we replace ~ by t and define a function K(t). Note that 
K(t) is defined forte (0, lJ· Then we set 

1 diK 
ai = -:-1 lim -d . . 

~- t--++0 t• 

Example 6 (The result for large n). (i) We have ai = 0 for odd i and 

(ii) We set 

1 71"2 . 571"4 167 71"6 78171"8 

Ln =3 + 24n2 + 1152n4 + 276480n6 + 6193152n8 

18638371"10 

+ 5573836800n10 + · · · · 

10 
·-~ai Mn .- L...J .. 

i=O n• 
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Then the following inequalities hold: 

Moreover, consider the case for n = 1oJ, where 1 :::; j EN. Then we have 
the following results: 

Lw; - L 00 ~ 4.1 x 10-(2J+l) and Lw - M 10; ~ 9.1 x 10-12i. 

3 Proofs of the main results 

First we prove Theorem A. 

Lemma 7. We have 

rn(x) = 2xVf=2Xcos (*) . 
V2Jx2 cos e.n + (x- 4)x + 2 + 2xcos (*) 

Proof. The following formula is well-known. (See, for example, [1, Theorem 1].) 
Let V(Pn(x)) and S(Pn(x)) be the volume and the surface sea of Pn(x), respec
tively. Then we have 

3V(Pn(x)) 
rn(x) = S(Pn(x)) · 

Let F be one of then sides of Pn(x). Since 

and 

we have 

nxsin (*) Jx2cos (2;) + (x- 4)x + 2 
S(F) -/2 

S(r n(x)) 
nx2 sin (~) 

2 

(1) 

On the other hand, since height h of Pn(x) is given by h = v'1- 2x, we have 

( ( )) _ nx2v'1- 2xsin ( 2;) 
V Pn X - 6 . (3) 

Now substituting (2) and (3) in (1), Lemma 7 follows. D 
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Simple computations show that 

drn -2v'2cos (~) (x3 (1 +cos(~))- 8x2 + Bx- 2 + v'2x2 cos (~) ~) 

dx - v'1- 2xyf¢n(x) ( yf2¢n(x) + 2xcos (~) f 
(4) 

where we set 

<Pn(x) :=x2 (1+cos C:)) -4x+2. 

We study the graph of dJ: in the range 0 $ x $ ! . Since the graphs are 
similar, we give the case for n = 10 in Fig.3. 

Figure 3: The graph of ~. 

Note that the graph has an unique root, which is Ln. Moreover, the first 
derivative test shows that the graph of rn(x) is as given in the left of Fig.2. 

In order to complete the proof of Theorem A, we need to determine the root 
in 0 $ x $ ~ of the equation "the numerator of (4) = 0". 

Lemma 8. We set 

fn(x) = x3 ( 1 +cos(~)) - 8x2 + 8x- 2 + x2 cos(;) yf2¢n(x). 

Regard that the variable x moves in R. Then the following results hold: 

(i) For all n;::: 3, the number of the real roots of the equation fn(x) = 0 is two. 
We write them by t1 and t2, where we take t1 < t2. 

(ii) We have 0 < t1 < 1 < t2. It follows that t1 = £1. (See Fig.4.) 
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!Jo(x) 

Figure 4: The graph of ho(x). 

Proof. We set 

Un(x) = x2 cos(~) }2</Jn(x) and Vn(x) = fn(x) - Un(x). 

We set 

9n(x) = 3x4 (1 +cos ( 2:))- 2x3 (9+ cos ( 2:)) + 24x2 -12x + 2. 

Then we have 
Un(x)2 - vn(x)2 = 2{2x- 1)gn(x). 

Since deggn{4) = 4, we can solve the equation 9n(s) = 0 by Ferrari's method. 
(See, for example, (4).) We define an and bn as in Theorem A. Let {1-£, 11) be any 
element of { -1, 1} x { -1, 1}. We define sequences Cn {1-£, 11) and Ln {1-£, 11) as follows: 

Cn(/L) =- 96sec2 (~)+(cos C:) + 9) 
2 

sec4 (~) 
+ 6 · 2213 tani (~) seci (~) + !Lhn 

and 

Ln(l-£1 11) = 1
1
2 ( 2 + 8sec2 (~) + 11V2Cn{/L) + 21J.an). 

Then Ln{IJ., 11) are the solutions of the equation 9n(x) = 0. From the direct 
computations, we can check the following results: 

(a) The case for 3 :5 n :5 18. Only Ln{1, 1) and Ln{1, -1) are real numbers 
such that 

0 < Ln{1, -1) < 1 < Ln{1, 1). 

Moreover, Ln{1, 1) and Ln{1, -1) are the roots of the equation fn(x) = 0, but 
Ln( -1, 1) and Ln( -1, -1) are not. 
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(b) The case for n ~ 19. Only Ln(-1,1) and Ln(-1,-1) are real numbers 
such that 

0 < Ln( -1, -1) < 1 < Ln( -1, 1). 

Moreover, Ln( -1, 1) and Ln( -1, -1) are the roots of the equation fn(x) = 0, but 
Ln(1, 1) and Ln(1, -1) are not. (The fact that the equation Un(x) = 0 has exactly 
two real roots can be seen from Fig.5.) 

Figure 5: The graph of 910(x). 

Now Lemma 8 follows from (a) and (b). 

Proof of Theorem A. From (a) and (b) in the proof of Lemma 8, we see that 

Ln = {Ln(1, -1), 
Ln(-1,-1), 

3 ::; n ::; 18, 
n ~ 19. 

By definition, these Ln(p., v) coincide with Ln in Theorem A. 

0 

0 

Remark 9. We explain why Ln in Theorem A has a different form according as 
3 ::; n::; 18 or n ~ 19. The essential reason is the term ..j2cn(P.)· The following 
figure shows that the signature of en(1) changes from plus to minus when n changes 
from 18 to 19. Moreover, a similar result holds for en(-1). 

c.(-1) 

IS 

10 

s 

Figure 6: The left: en(1). The right: en(-1). 

Here the vertical line in the graph corresponds to such n E lR for which an = 0, 
hence bn is not defined. The precise value is 

11" 
n = ( ) ~ 18.2199. 

cos-1 2V3J2- 4 
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But if we allow a more complicated form, then we can also write Ln by a 
formula without case statement. 

Proof of Corollary B. We give a proof without using an answer to Question 1. 
(See Remark 3 for the proof which uses the answer.) It is possible to compute L00 

from Theorem A. But it is more simple to compute lim ddrn from (4). It is easy 
n-..oo X 

to see that 
lim drn = 1 - 3x . 

n-oo dx y'1 - 2x 

Hence Corollary B follows. D 

Proofs of Examples 4, 5 and 6. With the aid of Mathematica, we can deduce these 
examples from Theorem A. D 
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