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UNITARY HIGHEST WEIGHT
MODULES OF A JACOBI GROUP

SnuicHr SUGA

1. Introduction

Let H,(R) be the 2n + 1 dimensional Heisenberg group over the real number
field and G, the natural semi-direct product of SL,(R) and H,(R). This type of
group is called a Jacobi group ([1], [3]). Let g, be the Lie algebra of G, and g
its complexification. In this note, we classify the irreducible unitarizable highest
weight gmodules. We also give the submodule structure of the Verma modules of
g.

To state our results more precisely, we introduce some notations. Let K, =
SO(2) be the maximal compact subgroup of SL2(R) and k, the Lie algebra of K.
We can choose an element ¢ € k, so that the eigenvalues of the adjoint action of
con gare £/—1, #2y/—1 and 0. For | € Z, let g(I) be the [/—1 eigenspace of
ad(c). Then we have a direct sum decomposition:

g=g(-2)® g(—1) ® g(0) ® o(1) ® o(2).

Put n= = g(—2) ®g(—1), h=g(0), n* = g(1) ® g(2) and b=h&n'. Let 2z be a
nonzero element of the 1-dimensional center of g, . Then h= Ce & Cz.

For a complex Lie algebra a, we denote by U(a) its universal enveloping algebra.
For an h-module V and n € C, we put V' ={z € V : c.x = nz}.

Definition 1.1. Let x be a 1-dimensional representation of h. A U(g)-module V
is called a highest wight module with highest weight y if there exists a nonzero
vector v such that a.v = x(a)v for a € h, nt.v = 0 and V is generated by v as
a (/(g)-module. Moreover if V admits a g,-invariant positive definite Hermitian
inner product, we say V' is unitarizable.

Definition 1.2. Let x be a l-dimensional representation of h and C, its rep-
resentation space. We extend x to b trivially,. We define a U(g)-module M (y)

by
M(x) = U(g) ®um) Cx

and call it a Verma module.

We denote the irreducible quotient of M (x) by L(x). We prove the following
theorems:
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Theorem 1.3. The Verma module M(x) is reducible if and only if x(z) = 0 or
x(c) = (=n/2 +1) for some nonnegative integer |.

Theorem 1.4. Assume that L(x) is unitarizable. Then x(c) € vV—1R, x(z) €
vV—1R and x(z)/v/—1 < 0. Moreover,

(1) if x(2)/V—=1 <0, then x(c)/vV~1 < —n/2,

(2) i x(2) = 0, then x(c)/vV-1<0.

Conversely, if x satisfies the above conditions, L(x) is unitarizable.

Remark. In fact, Theorem 1.4 makes sense only after a particular choice of the
element z has been made. See the beginning of section 3 for this.

For the proof of the above theorems, we introduce contravariant sesquilinear
forms on U(g) (Definition 2.1) and on M(x) (Definition 2.3). We investigate their
fundamental properties in Section 2. The key theorem is Theorem 3.4, which
gives a diagonalization of the contravariant sesquilinear form on certain subspaces
of U(g). By this Theorem, in Section 4, we deduce the submodule structures of
M (x) and the unitarizability criterion of L(x).

The author would like to express his sincere thanks to Professor A. Gyoja and
Professor N. Kawanaka for their kind advice and suggestions.

2. Contravariant sesquilinear form

In this section, we introduce sesquilinear forms on U (g) and M (), and describe
their fundamental properties. Such a form was first introduced by Shapovalov [5]
in the cases of complex semisimple Lie algebras. See also Enright, Howe and
Wallach [2]. Let o be the sesquilinear anti-involution on g defined by o(X) = — X,
where the bar is the complex conjugation with respect to g,. We extend o to U(g)
and denote it by the same letter. By the decomposition g=n~ & h@® n* and the
Poincaré - Birkhoff - Witt Theorem, we have :

(2.1) U(g) =U(n) @ (n"U(g) + U(gn™).

Let m: U(g) — U(h) be the projection to the first component.
Definition 2.1. We define a U (h)-valued form B on U(g) x U(g) by

(2.2) B(X,Y)=n(c(X)Y) X,Y €U(q).

Proposition 2.2. (1) B(Y, X) = o(B(X,Y)).
(2) B is sesquilinear :

B(aX +bX'Y)=aB(X,Y)+bB(X,Y"),
B(X,aY +bY') =aB(X,Y) +bB(X,Y’)
for a,beC and X,X'Y,Y' €U(qg).

(3) B is contravariant :

B(AX,Y) = B(X,0(A)Y) for A XY €U(q)



In particular, B is g,-invariant :
B(AX,Y)+B(X,AY)=0 for A €g, and X,Y €U(qg).
(4) Forne Z, let U(g)" = {x € U(g) : [¢,z] =nz}. Then
B(U(9)",U(9)*) =0, if n#&
Proof. (1) Note that o(n*) =n~,0(n”) = n" and o(h) = h. Hence 70 = o|ym7
by (2.1). Thus
B(Y,X)=n(o(Y)X) =n(o(c(X)Y)) =0on(c(X)Y) =0(B(X,Y)).

(2) This is an immediate consequence of Definition 2.1.
(3) For A, X,Y € U(g),

B(AX,Y) =7(c(AX)Y) =7n(c(X)o(A)Y) = B(X,0(A)Y).
(4) Since o(c) = —c, we have, for X € U(g)"” and Y € U(g)¢ ,
[e,o(X)Y]=0([e, X])Y +o(X)[c, Y] = (T + §)o(X)Y.
This means o(X)Y € U(g)"¢. Since U(g) D U(h) and j = —7, we have
BX,Y)=n(o(X)Y)=0, if n#E

According to the above Proposition 2.2 (2) and (3), we call B a contravariant
sesquilinear form on U(g).

Since h is commutative, we can identify U (h) with the symmetric algebra S(h),

which is the ring of polynomial functions on the dual space h* of . Let x € h*.
We want to define B, : M(x) x M(x) — C by

(2.3) B,(X,Yv) = B(X,Y)(x) for X,Y eU(qg),

where v € M(x) is a fixed highest weight vector. But, in general, B, is not well
defined.

Lemma 2.3. B, is well defined if and only if x(c) € V—1R and x(z) € V—-1R.
Proof. Let I(x) be the left ideal of U(g) generated by the elements:
{a —x(a) :a € h}unt.

Then M () is isomorphic to U(g)/I(x) as a left U(g)-module. By Proposition 2.2
(1), the well-definedness of B, is equivalent to the condition x(B(I(x),U(g))) = 0.
By (2.1) and (2.2), we have x(B(n",U(g))) = 0. Hence it is enough to consider
the condition:

(2.4) x(o(a—x(a))) =0 forany a€h
We write a = 2 + v/~1y, z,y € g,. Then
x(o(a — x(a)) = x(—z + V—=1y) — X(z + vV—1y)
= —(x{) + X()) - v=I(x(1) + X))
Hence (2.4) is equivalent to x(c) € v—1R and x(z) € vV—1R.



Definition 2.4. If x € h* satisfies x(¢) € vV—1R and x(z) € vV—1R , we call B,
the contravariant sesquilinear form on M (x).

The following Proposition is a direct consequence of Proposition 2.2:

Proposition 2.5. Suppose x € h* satisfies x(¢) € v—1R and x(c) € vV—1R.
Then
(1) B, is Hermitian :

B, (w,w) = B, (w,u) for wu,we M(x).
(2) By is go-invariant :
By (Au,w)+ By (u,Aw) =0 for Aeg, and u,we M(x).
Since we shall discuss the unitarizability of irreducible highest weight modules,

we give some properties of g,-invariant sesquilinear forms on M (x) for general
X € h'.

Lemma 2.6. Let B’ be a g,-invariant sesquilinear form on M (x).

(1) B'(M(x)", M(x)*) = 0 for n # &.

(2) If M(x) admits a well defined nonzero g,-invariant sesquilinear form B’, then
x(¢) € V=1IR and x(z) € vV—1IR. In this case, B' is a scalar multiple of B,.

Proof. (1) Since M (x) is a highest weight module, there exits nonnegative integers
i and j such that n(c) = x(c) — vV—1i and £(¢) = x(¢) — v—1j. Hence if n # &,
7(c) + &(c) # 0. On the other hand, for x € M(x)" and y € M(x)S,

0= B'(cz,y) + B'(z,cy)) = (7(c) +£(c) B (z,y).

This proves (1).
(2) If B’ is g,-invariant, we have

(2.5) B'(Awu,w) = B'(u,0(A)w) for uw,we M(x) and A€ U(g).
Hence by (1), for any X,Y € U(g),
B'(X.w,Yv) = B'(v,0(X)Yw) = x(n(o(X))Y)B'(v,v).

Hence, by the proof of Lemma 2.3, if B’ is well defined and nonzero, then x(c) €
v—1R and x(z) € v—1R. Moreover, in this case,

B'(X.w,Yv) = B'(v,0)By (X.v,Yv).

For a highest weight module V' with highest weight vector v, let pr : V. — Cuv
be the projection map.



Proposition 2.7. (1) If for any w € V, there exits a X € U(g) such that
pr(X.w) # 0, then V is irreducible.
(2) Suppose x € h* satisfies x(c) € v—1R and x(z) € vV—1R, then forn € C,

rank B, |7y )n = dim L(x)".

Proof. (1) Since V' is a highest weight module, every U(g)-submodule of V" is a di-
rect sum of its weight spaces. Hence, in particular, pr(X.w) € U(g).w. Therefore,
if pr(X.w) # 0, then U(g).w = V. This proves (1).
(2) By Lemma 2. 6 (1), it is enough to show

RadB, = {xr € M(x) : By(z,y) =0 forany ye M(x)}

is a proper maximal submodule of M(x). Since B, (v,v) = 1, RadB, is proper.
By (2.5) RadB, is a U(g)-submodule. If w = X.v € RadB, , X € U(qg), then
there exits a u = Y.0,Y € U(g) such that B, (u,w) = x(7(o(Y)X)) # 0. Since
B, (u,w)v = pr(o(Y)w), U(g).w = M(x) by (1). Hence Rad B, is maximal.

3. Diagonalization of the contravariant sesquilinear form

In this section, we diagonalize the contravariant sesquilinear form B on certain
subspaces of U(g). For this purpose, we fix a basis of g. Let h,(R) be the Lie
algebra of H,,(R) and {p;, qi, 2}i=1,... n its canonical basis. That is:

(3.1) [7’1'7(]]'] =i ;% [pi, 2] = [gi, 2] = 0.
This is the choice of the element 2 in Theorem 1.4. The action of sl2(R) on h,(R)
is given by

(3.2) [A,.r]:Z{(as,-+mi)pi+(7si+6ti)qi}, [A,2] =0

n

for A= (: g) €sla(R) and z= Z(sipi +t:q:) € hn(R).

=1

0
F=F, X, = (pZ +vV-1¢), Y; = ( —/—1¢;) and Z = —/—1c. Then the
set {E, H, F, X“ Yi, Z}i=1,... n forms a ba51s of g.
Lemma 3.1. (1) In the above notations,
o(E)=—-F, o(F)=-E, oX;)=-Y,
oY) =—-Xi, o(Z)=2, o(H)=H.
(2) The above basis satisfies the following bracket relations :
(Z,A]=0, for any AE€gq,
[H,E|=2E, [H,F|l==2F, [E,F|=H, [X;Y;]=06;Z,
(H, Xi|=X;, [ILY]=-Y, [EYi]=X; [FX]=Y,
(B, Xi] = [F,Yi] = 0.
In particular, n~ = CF & (&7-,CY;), h=CH® CZ andn* = CE® (&7-,CX,).

X ; s R 0 1 D — L 1 V-1 — e
We(,,hoosec.ek(,%C—(_1 ).SetE_ (\/:—1 _q >,H_ v—le¢,



Lemma 3.2. (1) [X;, Y7, Y7 +22F] = [Y;, Y.}, X? — 2ZE] = 0.

() XTY? = (Dx R + Rx Y = oo () (5 Y0) 22X7°

Here R,,u € g, denote the right multiplication by u:
R,z =xzu for x€U(g)

and Dy, is the differentiation by Y;.
Proof. (1) By Lemma 3. 1 (2), we have

[Xi, ) Y7 +22ZF] =) (IX:, V;]Y; + Y;[X;,Y;]) +2Z[X;, F] = 0.

j=1 7j=1

Similarly, we get [Y;, Z;;l ij —2ZE]=0.
(2) If p =1, then

q
XY =3 VT X VY 4 YEX = gV Z + YIX = (Dy, Rz + Rx,)Y{.
=1

Since the operators Dy,, Rz and Ry, are mutually commutative, we get the proof
of (2).

Lemma 3.3. Tr(E”(Z;’:1 Yf +2ZF)P) =plZP H§:1(2H +n—2j+2).
Proof. First , we prove the following formula by induction on p:

(3.3) [E, f:(yj? +2ZF)P)

j=1

=p(Y_ Y2 +2ZF)P ' Z(2H +n—2p+2) + 2p()_ Y2 + 2ZF)P 7Y, X,

=1 g=1

In fact | if p =1,

B,Y (Y} +2ZF)| = ([E,Y;]Y; + Y;[E.Y;]) + 2Z[E, F)
He=, g=1
=Y (X;Y; +Y;X;) +2ZH =) (Z+2Y;X;) +2ZH
Jj=1 j=1

n
=" Z(2H +n) + 2Y; X;.

=1



Assume (3.3) holds if p is replaced by p — 1. Then

(B> (Y} +22F)7]
Jj=1
= [BY (Y} +2Z2F)P (> Y +22F)
F=1 g=1

+ Y (YE+22ZF)P7E, Y (Y] +2ZF)]

=(p-1_Y?+2ZF)P —2Z(2H +n—2p+4)(D_Y} +22F)

=t =1

+2(0 - DY +2ZF)P 2O VX)) Y} +22F)
Jj=1 Jj=1 j=1

+O_ Y2 +22ZF)P N (Z(2H +n) +2) VX))
Jj=1 g=1
=(p-1)_Y}+2ZF)""'Z(2H + n — 2p)
j=i

+ (Y Y2 +22F) T Z(2H +n) + 2p() Y7 + 2ZF)P7YX;

j=1 j=1

=p() Y} +2ZF)PT Z(2H +n —2p+2) +2p(D>_ Y} +2ZF)""'Y; X;.

j=1 j=1

Hence (3.3) holds for any p. Now we prove the lemma by induction on p. Assume
the lemma holds if p is replaced by p — 1. Then

n(BP (Y Y} +2ZF)P) =n(EPT'E()_ Y] +22F)P)
J=1 j=1
=m(pEP' (DY} +2ZF)P7' Z(2H +n — 2p +2))
7=1

n n
+m(2pEr™' (DY} +22F)P7 Y, X;) + m(EPTN() Y} +2ZF)PE)

=1 =1

=n(pEP~ (Y Y} +2ZF)"' Z(2H +n — 2p + 2))
J=1

P
=p'z? [[(2H +n—2j +2).
j=1



Let Z>¢ be the set of nonnegative integers. For a multi-index o = (v, -, )
€ Z%,, we set || = a1 + ... +a, and o = a!- o, We also set X =
X Xomand YO = Y™ - Y,@ . Form € Zs, consider the following subspace
Umof Un™)®U(h) :

U™ = C — linear span of {Y“(Z Y]-2 +2ZF) :of +2p=m}.
g=1

Theorem 3.4. The restriction B|ymxun of B to the subspace U™ is given by a
diagonal matriz whose diagonal elements are

P

2Pplal(—2)™ H(——2H —n+2j—2),|al+2p=m.
=1
Proof. Suppose «; < f; for some i. Set o' = (ay, - ,;-1,0, 41, - , ) and

3 =61, ,Bi=1,0,8i+1, -, Bn). Then by Lemma 3.2,

oYY Y2+ 22 )HYP (Y Y2 +22F)7}
J=1 J=1
= (-D)lIX2 YO X2 - 2ZEP X YF (DY} +2ZF)
j=1 j—]

M! @; Bi s 2 _ o'y B 2
Z( )(derz )ZX Zx 2ZEP XYY Zv +2ZF)

7j=1

en U(g).

Similarly, if a; > (; for some i, we can prove :

a(Y‘*(i Y7+ QZF)”)}{Y”(i Y7 +2ZF)%} € U(gn*

=1 Jj=1

Hence if a # 3,

ZY2+2ZF ), YA( ZY2+QZF) )= 0.

=1 =1



By Lemma 3. 2 (1) and Lemma 3. 3,
n n
B(Y*()_ Y} +2ZF)P,Y*(D Y} +2ZF)P)
Jj=1 Jj=1

- ”((‘1)"”((2": X7 - 2ZE)”X"Y“(§: Y7+ 2ZF)P)
Jj=1 j=1

= a!(—Z)"”w((Xn: XZ - QZE)”(i Y} +2ZF)P)

j=1 j=1
=al(-2)"x(} (f) (—2ZE)" ) n(x]?)"-’"(zn: Y} +2ZF)P)
r=0 j=1 j=1

= a!(~Z)|“'7r((—2ZE)”(i Y2+ 2ZF)P)

j=1

= 2Pal(-2)l P (EP (D Y7 + 2ZF)P)
j=1

14
=2Pplal(—=2)™ [J(—2H —n+2j — 2).
7=1

4. Structure of Verma modules and unitarizability of irreducible highest
weight modules

In this section, we describe the structure of the Verma modules M(yx) and
unitarizability condition for L(x). First we consider the case x(Z) # 0. For
a € 2%, and p € Z>q, we set

By = Y“(Z Y? +2ZF)"v € M(x).
j=1

If x(Z) # 0, then the set of the elements
{'Ua,p OAS Zgo,p € ZZO}

forms a basis of M (x).

Thorem 4.1. Let x € h* and assume x(Z) # 0.

(1) If x(H) + (n/2) € Z>¢, then the Verma module M(x) is irreducible.

(2) If x(H) = —(n/2)+1,l € Z>¢ , then the proper mazimal submodule N of M (x)
is isomorphic to M (x — 2v/—1(1 + 1)) and given by

N =U(9)(> Y} +2ZF)* v,
Jj=1



Here x — 2v/—1(1 + 1) is an element of h* defined by (x — 2v—1(1 + 1))(H) =
X(H)=2(l+1) and (x — 2v/=1(L + 1))(Z) = x(Z). Moreover N is irreducible.
Hence the composition series of M(x) is given by M(x) D N D {0}.

Proof. (1) Let w = Y1 | Cay p,Vas,pe € M(X). Assume, for example, ¢, ,, # 0.
Then by the proof of Theorem 3.4,

pric(Y* (3 Y7 +2ZF)")w)
j=1
P1
= 2P p;lay Iq, p, X (—Z) 191 1FP1 H(—Q}((H) —-n+2j—-2)v#0

f=i

Hence by Lemma 2.7 (1), M () is irreducible. (2) By Lemma 3.2 (1) ,

X0 v +2zF M v =D Y +2ZF)* Xw =0

j=1 Jj=1

Also by (3.3) in the proof of Lemma 3.3,

n n
EQ Y} +22F) =B (D Y2 +2ZF)" v

7=1 =1

=(+1) | QY +2ZF) x(Z)(2x(H) + n—2) + 20D Y +2ZF)' Y VX, | v
=1 j=1 g=1
=0.

Hence N = U(9)(2])_, sz + 2ZF)*1v is a proper U(g)-submodule of M(x). It
is easy to check that N is isomorphic to M(x —2(l4+1)y/—1). The irreducibility of
N is easily follows form (1). Let p: M(x) — M(x)/N be the natural projection.
Then the elements

{p(va,p) : a € Z%,,0 <p <1}

forms a basis of M(x)/N. By the same argument as in the proof of (1), the
assumption in Lemma 2. 7 (1) holds for M (x)/N. Hence M(x)/N is irreducible.
This implies the maximality of N.

We next discuss the unitarizability of L(x). By Lemma 2.6 (2), if L(x) is
unitarizable, then x(Z) € R and x(H) € R.

Theorem 4.2. If x € h* satisfies x(Z) # 0, then L(x) is unitarizable if and only
ifx(Z)eR , x(H)e R, x(Z) <0 and x(IH) < —n/2.

Proof. For m € Zxo, we denote the restriction of B, to the weight space M (x)*~™
by B". Since By (v,v) =1, L(x) is unitarizable if and only if the Hermitian form
BY" is positive semi-definite for any m € Z>o. By Theorem 3.4, if we choose



{Va,p 1 v € Z%4,p € Zo, [a| + p = m} as the basis of M(x)*~™, BY' is given by
a diagonal matrix whose diagonal elements are

2Pplalx(=2)" (=2x(H) —n+2j —2), |a|+2p=m.
Hence B}" is positive semi- definite if and only if x(Z) < 0 and —2x(H) —n +
2j — 2 > 0 for any positive integer j. This prove the theorem.

If x(Z) =0, then W = 3" U(qg)Yi.v is a nonzero proper U(g)-submodule of
M (x). Hence the Verma module M (x) is reducible in this case.

Lemma 4.3. In the above notations, h,(C) acts trivially on the quotient module
M (x)/W. Here h,,(C) is the complezification of the Heisenberg Lie algebra h,(R.).

Proof. As a vector space, M(x) is a direct sum @©4,,CY *F?.v. Hence it is enough
to show h,(C)F7.v € W for j € Z>o. Obviously, ZF'.v = X;.v =0 and Y;F/.v €

W fori=1,---,n. Also we have, for j > 1,
j—1
X Fiy=> FP[X; FIF P y= F~YveW.
p=0

By Lemma 4.3, if x(Z) = 0, the unitarizability of L(x) reduces to the slo(R)-
theory. (See, for example, [2].)

Theorem 4.4. If x € h* satisfies x(Z) = 0, then
(1) The Verma module M(x) is reducible.
(2) L(x) is unitarizable if and only if x(H) € R and x(H) < 0.
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