琉球大学学術リポジトリ

UNITARY HIGHEST WEIGHT MODULES OF A JACOBI GROUP

メタデータ	言語:
	出版者: Department of Mathematics, College of
	Science, University of the Ryukyus
	公開日: 2015-09-02
	キーワード (Ja):
	キーワード (En):
	作成者: Suga, Shuichi, 菅, 修一
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/31734

UNITARY HIGHEST WEIGHT MODULES OF A JACOBI GROUP

SHUICHI SUGA

1. Introduction

Let $H_n(\mathbf{R})$ be the 2n + 1 dimensional Heisenberg group over the real number field and G_o the natural semi-direct product of $SL_2(\mathbf{R})$ and $H_n(\mathbf{R})$. This type of group is called a Jacobi group ([1], [3]). Let g_o be the Lie algebra of G_o and gits complexification. In this note, we classify the irreducible unitarizable highest weight g-modules. We also give the submodule structure of the Verma modules of g.

To state our results more precisely, we introduce some notations. Let $K_{\rm o} = SO(2)$ be the maximal compact subgroup of $SL_2(\mathbf{R})$ and $k_{\rm o}$ the Lie algebra of $K_{\rm o}$. We can choose an element $c \in k_{\rm o}$ so that the eigenvalues of the adjoint action of c on g are $\pm \sqrt{-1}$, $\pm 2\sqrt{-1}$ and 0. For $l \in \mathbf{Z}$, let g(l) be the $l\sqrt{-1}$ eigenspace of ad(c). Then we have a direct sum decomposition:

$$g = g(-2) \oplus g(-1) \oplus g(0) \oplus g(1) \oplus g(2).$$

Put $n^- = g(-2) \oplus g(-1)$, h = g(0), $n^+ = g(1) \oplus g(2)$ and $b = h \oplus n^+$. Let z be a nonzero element of the 1-dimensional center of g_0 . Then $h = \mathbf{C}c \oplus \mathbf{C}z$.

For a complex Lie algebra a, we denote by U(a) its universal enveloping algebra. For an h-module V and $\eta \in \mathbf{C}$, we put $V^{\eta} = \{x \in V : c.x = \eta x\}$.

Definition 1.1. Let χ be a 1-dimensional representation of h. A U(g)-module V is called a highest wight module with highest weight χ if there exists a nonzero vector v such that $a.v = \chi(a)v$ for $a \in h$, $n^+.v = 0$ and V is generated by v as a U(g)-module. Moreover if V admits a go-invariant positive definite Hermitian inner product, we say V is unitarizable.

Definition 1.2. Let χ be a 1-dimensional representation of h and \mathbf{C}_{χ} its representation space. We extend χ to b trivially. We define a U(g)-module $M(\chi)$ by

$$M(\chi) = U(g) \otimes_{U(b)} \mathbf{C}_{\chi}$$

and call it a Verma module.

We denote the irreducible quotient of $M(\chi)$ by $L(\chi)$. We prove the following theorems:

Received November 30, 1995

Theorem 1.3. The Verma module $M(\chi)$ is reducible if and only if $\chi(z) = 0$ or $\chi(c) = (-n/2 + l)$ for some nonnegative integer l.

Theorem 1.4. Assume that $L(\chi)$ is unitarizable. Then $\chi(c) \in \sqrt{-1}\mathbf{R}$, $\chi(z) \in \sqrt{-1}\mathbf{R}$ and $\chi(z)/\sqrt{-1} \leq 0$. Moreover,

(1) if $\chi(z)/\sqrt{-1} < 0$, then $\chi(c)/\sqrt{-1} \le -n/2$,

(2) if $\chi(z) = 0$, then $\chi(c)/\sqrt{-1} \le 0$.

Conversely, if χ satisfies the above conditions, $L(\chi)$ is unitarizable.

Remark. In fact, Theorem 1.4 makes sense only after a particular choice of the element z has been made. See the beginning of section 3 for this.

For the proof of the above theorems, we introduce contravariant sesquilinear forms on U(g) (Definition 2.1) and on $M(\chi)$ (Definition 2.3). We investigate their fundamental properties in Section 2. The key theorem is Theorem 3.4, which gives a diagonalization of the contravariant sesquilinear form on certain subspaces of U(g). By this Theorem, in Section 4, we deduce the submodule structures of $M(\chi)$ and the unitarizability criterion of $L(\chi)$.

The author would like to express his sincere thanks to Professor A. Gyoja and Professor N. Kawanaka for their kind advice and suggestions.

2. Contravariant sesquilinear form

In this section, we introduce sesquilinear forms on U(g) and $M(\chi)$, and describe their fundamental properties. Such a form was first introduced by Shapovalov [5] in the cases of complex semisimple Lie algebras. See also Enright, Howe and Wallach [2]. Let σ be the sesquilinear anti-involution on g defined by $\sigma(X) = -\overline{X}$, where the bar is the complex conjugation with respect to g_0 . We extend σ to U(g)and denote it by the same letter. By the decomposition $g = n^- \oplus h \oplus n^+$ and the Poincaré - Birkhoff - Witt Theorem, we have :

(2.1)
$$U(g) = U(h) \oplus (n^- U(g) + U(g)n^+).$$

Let $\pi: U(g) \to U(h)$ be the projection to the first component.

Definition 2.1. We define a U(h)-valued form B on $U(g) \times U(g)$ by

(2.2)
$$B(X,Y) = \pi(\sigma(X)Y) \qquad X,Y \in U(g).$$

Proposition 2.2. (1) $B(Y, X) = \sigma(B(X, Y)).$

(2) B is sesquilinear :

$$B(aX + bX', Y) = \overline{a}B(X, Y) + \overline{b}B(X, Y'),$$

$$B(X, aY + bY') = aB(X, Y) + bB(X, Y')$$

for $a, b \in \mathbb{C}$ and $X, X', Y, Y' \in U(g).$

(3) B is contravariant :

$$B(AX, Y) = B(X, \sigma(A)Y)$$
 for $A, X, Y \in U(g)$

In particular, B is g_0 -invariant :

 $B(A'X,Y) + B(X,A'Y) = 0 \quad for \quad A' \in g_o \quad and \quad X,Y \in U(g).$ (4) For $\eta \in \mathbb{Z}$, let $U(g)^{\eta} = \{x \in U(g) : [c,x] = \eta x\}$. Then $B(U(g)^{\eta}, U(g)^{\xi}) = 0, \quad if \quad \eta \neq \xi.$

Proof. (1) Note that $\sigma(n^+) = n^-, \sigma(n^-) = n^+$ and $\sigma(h) = h$. Hence $\pi \sigma = \sigma|_{U(h)}\pi$ by (2.1). Thus

$$B(Y,X) = \pi(\sigma(Y)X) = \pi(\sigma(\sigma(X)Y)) = \sigma\pi(\sigma(X)Y) = \sigma(B(X,Y)).$$

(2) This is an immediate consequence of Definition 2.1.

(3) For $A, X, Y \in U(g)$,

$$B(AX,Y) = \pi(\sigma(AX)Y) = \pi(\sigma(X)\sigma(A)Y) = B(X,\sigma(A)Y).$$

(4) Since $\sigma(c) = -c$, we have, for $X \in U(g)^{\eta}$ and $Y \in U(g)^{\xi}$,

$$[c,\sigma(X)Y] = \sigma([c,X])Y + \sigma(X)[c,Y] = (\overline{\eta} + \xi)\sigma(X)Y.$$

This means $\sigma(X)Y \in U(g)^{\overline{\eta}+\xi}$. Since $U(g) \supset U(h)$ and $\overline{\eta} = -\eta$, we have

$$B(X,Y) = \pi(\sigma(X)Y) = 0, \quad if \quad \eta \neq \xi.$$

According to the above Proposition 2.2 (2) and (3), we call B a contravariant sesquilinear form on U(g).

Since h is commutative, we can identify U(h) with the symmetric algebra S(h), which is the ring of polynomial functions on the dual space h^{*} of h. Let $\chi \in h^*$. We want to define $B_{\chi} : M(\chi) \times M(\chi) \to \mathbb{C}$ by

(2.3)
$$B_{\chi}(X.v, Y.v) = B(X, Y)(\chi) \text{ for } X, Y \in U(g),$$

where $v \in M(\chi)$ is a fixed highest weight vector. But, in general, B_{χ} is not well defined.

Lemma 2.3. B_{χ} is well defined if and only if $\chi(c) \in \sqrt{-1}\mathbf{R}$ and $\chi(z) \in \sqrt{-1}\mathbf{R}$. *Proof.* Let $I(\chi)$ be the left ideal of U(g) generated by the elements:

$$\{a-\chi(a):a\in h\}\cup n^+.$$

Then $M(\chi)$ is isomorphic to $U(\mathfrak{g})/I(\chi)$ as a left $U(\mathfrak{g})$ -module. By Proposition 2.2 (1), the well-definedness of B_{χ} is equivalent to the condition $\chi(B(I(\chi), U(\mathfrak{g}))) = 0$. By (2.1) and (2.2), we have $\chi(B(\mathfrak{n}^+, U(\mathfrak{g}))) = 0$. Hence it is enough to consider the condition:

(2.4)
$$\chi(\sigma(a-\chi(a))) = 0$$
 for any $a \in h$.

We write $a = x + \sqrt{-1}y$, $x, y \in g_o$. Then

$$\chi(\sigma(a - \chi(a))) = \chi(-x + \sqrt{-1}y) - \overline{\chi}(x + \sqrt{-1}y)$$
$$= -(\chi(x) + \overline{\chi}(x)) - \sqrt{-1}(\chi(y) + \overline{\chi}(y)).$$

Hence (2.4) is equivalent to $\chi(c) \in \sqrt{-1}\mathbf{R}$ and $\chi(z) \in \sqrt{-1}\mathbf{R}$.

Definition 2.4. If $\chi \in h^*$ satisfies $\chi(c) \in \sqrt{-1}\mathbf{R}$ and $\chi(z) \in \sqrt{-1}\mathbf{R}$, we call B_{χ} the contravariant sesquilinear form on $M(\chi)$.

The following Proposition is a direct consequence of Proposition 2.2:

Proposition 2.5. Suppose $\chi \in h^*$ satisfies $\chi(c) \in \sqrt{-1}\mathbf{R}$ and $\chi(c) \in \sqrt{-1}\mathbf{R}$. Then (1) B is Harmitian:

(1) B_{χ} is Hermitian :

$$B_{\chi}(u,w) = \overline{B_{\chi}(w,u)} \quad for \quad u,w \in M(\chi).$$

(2) B_{χ} is g_o-invariant :

 $B_{\chi}(A.u, w) + B_{\chi}(u, A.w) = 0$ for $A \in g_{o}$ and $u, w \in M(\chi)$.

Since we shall discuss the unitarizability of irreducible highest weight modules, we give some properties of g_0 -invariant sesquilinear forms on $M(\chi)$ for general $\chi \in h^*$.

Lemma 2.6. Let B' be a g_o -invariant sesquilinear form on $M(\chi)$. (1) $B'(M(\chi)^{\eta}, M(\chi)^{\xi}) = 0$ for $\eta \neq \xi$. (2) If $M(\chi)$ admits a well defined nonzero g_o -invariant sesquilinear form

(2) If $M(\chi)$ admits a well defined nonzero g_0 -invariant sesquilinear form B', then $\chi(c) \in \sqrt{-1}\mathbf{R}$ and $\chi(z) \in \sqrt{-1}\mathbf{R}$. In this case, B' is a scalar multiple of B_{χ} .

Proof. (1) Since $M(\chi)$ is a highest weight module, there exits nonnegative integers i and j such that $\eta(c) = \chi(c) - \sqrt{-1}i$ and $\xi(c) = \chi(c) - \sqrt{-1}j$. Hence if $\eta \neq \xi$, $\overline{\eta}(c) + \xi(c) \neq 0$. On the other hand, for $x \in M(\chi)^{\eta}$ and $y \in M(\chi)^{\xi}$,

$$0 = B'(c.x, y) + B'(x, c.y)) = (\overline{\eta}(c) + \xi(c))B'(x, y).$$

This proves (1). (2) If B' is g_0 -invariant, we have

(2.5)
$$B'(A.u, w) = B'(u, \sigma(A).w)$$
 for $u, w \in M(\chi)$ and $A \in U(g)$.

Hence by (1), for any $X, Y \in U(g)$,

$$B'(X.v, Y.v) = B'(v, \sigma(X)Y.v) = \chi(\pi(\sigma(X))Y)B'(v, v).$$

Hence, by the proof of Lemma 2.3, if B' is well defined and nonzero, then $\chi(c) \in \sqrt{-1}\mathbf{R}$ and $\chi(z) \in \sqrt{-1}\mathbf{R}$. Moreover, in this case,

$$B'(X.v, Y.v) = B'(v, v)B_{\chi}(X.v, Y.v).$$

For a highest weight module V with highest weight vector v, let $pr: V \to \mathbb{C}v$ be the projection map.

Proposition 2.7. (1) If for any $w \in V$, there exits a $X \in U(g)$ such that $pr(X.w) \neq 0$, then V is irreducible.

(2) Suppose
$$\chi \in h^*$$
 satisfies $\chi(c) \in \sqrt{-1}\mathbf{R}$ and $\chi(z) \in \sqrt{-1}\mathbf{R}$, then for $\eta \in \mathbf{C}$,
rank $B_{\chi}|_{M(\chi)^{\eta}} = \dim L(\chi)^{\eta}$.

Proof. (1) Since V is a highest weight module, every U(g)-submodule of V is a direct sum of its weight spaces. Hence, in particular, $pr(X,w) \in U(g).w$. Therefore, if $pr(X.w) \neq 0$, then U(g).w = V. This proves (1). (2) By Lemma 2. 6 (1), it is enough to show

$$\operatorname{Rad} B_{\chi} = \{x \in M(\chi) : B_{\chi}(x, y) = 0 \text{ for any } y \in M(\chi)\}$$

is a proper maximal submodule of $M(\chi)$. Since $B_{\chi}(v,v) = 1$, $\operatorname{Rad} B_{\chi}$ is proper. By (2.5) $\operatorname{Rad} B_{\chi}$ is a U(g)-submodule. If $w = X \cdot v \in \operatorname{Rad} B_{\chi}$, $X \in U(g)$, then there exits a $u = Y.v, Y \in U(g)$ such that $B_{\chi}(u, w) = \chi(\pi(\sigma(Y)X)) \neq 0$. Since $B_{\chi}(u, w)v = pr(\sigma(Y)w), U(g).w = M(\chi)$ by (1). Hence Rad B_{χ} is maximal.

3. Diagonalization of the contravariant sesquilinear form

In this section, we diagonalize the contravariant sesquilinear form B on certain subspaces of U(g). For this purpose, we fix a basis of g. Let $h_n(\mathbf{R})$ be the Lie algebra of $H_n(\mathbf{R})$ and $\{p_i, q_i, z\}_{i=1,\dots,n}$ its canonical basis. That is:

(3.1)
$$[p_i, q_j] = \delta_{i,j} z, \quad [p_i, z] = [q_i, z] = 0.$$

This is the choice of the element z in Theorem 1.4. The action of $sl_2(\mathbf{R})$ on $h_n(\mathbf{R})$ is given by

(3.2)
$$[A, x] = \sum_{i=1}^{n} \{ (\alpha s_i + \beta t_i) p_i + (\gamma s_i + \delta t_i) q_i \}, \qquad [A, z] = 0$$

for $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in sl_2(\mathbf{R})$ and $x = \sum_{i=1}^{n} (s_i p_i + t_i q_i) \in h_n(\mathbf{R}).$

We choose $c \in k_0$ as $c = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Set $E = \frac{1}{2} \begin{pmatrix} 1 & \sqrt{-1} \\ \sqrt{-1} & -1 \end{pmatrix}$, $H = -\sqrt{-1}c$, $F = \overline{E}, X_i = \frac{1}{\sqrt{2}}(p_i + \sqrt{-1}q_i), Y_i = \frac{1}{\sqrt{2}}(p_i - \sqrt{-1}q_i)$ and $Z = -\sqrt{-1}c$. Then the set $\{E, H, F, X_i, Y_i, Z\}_{i=1,\dots,n}$ forms a basis of g.

Lemma 3.1. (1) In the above notations,

$$\sigma(E) = -F, \quad \sigma(F) = -E, \quad \sigma(X_i) = -Y_i,$$

$$\sigma(Y_i) = -X_i, \quad \sigma(Z) = Z, \quad \sigma(H) = H.$$

(2) The above basis satisfies the following bracket relations :

[Z, A] = 0, for any $A \in g$, $[H, E] = 2E, \quad [H, F] = -2F, \quad [E, F] = H, \quad [X_i, Y_j] = \delta_{i,j}Z,$ $[H, X_i] = X_i, \quad [H, Y_i] = -Y_i, \quad [E, Y_i] = X_i, \quad [F, X_i] = Y_i,$ $[E, X_i] = [F, Y_i] = 0.$

In particular, $\mathbf{n}^- = \mathbf{C}F \oplus (\oplus_{i=1}^n \mathbf{C}Y_i)$, $\mathbf{h} = \mathbf{C}H \oplus \mathbf{C}Z$ and $\mathbf{n}^+ = \mathbf{C}E \oplus (\oplus_{i=1}^n \mathbf{C}X_i)$.

Lemma 3.2. (1) $[X_i, \sum_{j=1}^n Y_j^2 + 2ZF] = [Y_i, \sum_{j=1}^n X_j^2 - 2ZE] = 0.$ (2) $X_i^p Y_i^q = (D_{Y_i} R_Z + R_{X_i})^p Y_i^q = \sum_{j=0}^p {p \choose j} \left(\frac{d^j}{dY_i^j} Y_i^q\right) Z^j X_i^{p-j}.$ Here $R_u, u \in g$, denote the right multiplication by u:

$$R_u x = xu \quad for \quad x \in U(g)$$

and D_{Y_i} is the differentiation by Y_i .

Proof. (1) By Lemma 3. 1 (2), we have

$$[X_i, \sum_{j=1}^n Y_j^2 + 2ZF] = \sum_{j=1}^n ([X_i, Y_j]Y_j + Y_j[X_i, Y_j]) + 2Z[X_i, F] = 0.$$

Similarly, we get $[Y_i, \sum_{j=1}^n X_j^2 - 2ZE] = 0.$ (2) If p = 1, then

$$X_i Y_i^q = \sum_{j=1}^q Y_i^{j-1} [X_i, Y_i] Y_i^{q-j} + Y_i^q X_i = q Y_i^{q-1} Z + Y_i^q X = (D_{Y_i} R_Z + R_{X_i}) Y_i^q.$$

Since the operators D_{Y_i} , R_Z and R_{X_i} are mutually commutative, we get the proof of (2).

Lemma 3.3. $\pi(E^p(\sum_{j=1}^n Y_j^2 + 2ZF)^p) = p!Z^p \prod_{j=1}^p (2H + n - 2j + 2).$

Proof. First , we prove the following formula by induction on p:

(3.3)
$$[E, \sum_{j=1}^{n} (Y_j^2 + 2ZF)^p]$$
$$= p(\sum_{j=1}^{n} Y_j^2 + 2ZF)^{p-1} Z(2H + n - 2p + 2) + 2p(\sum_{j=1}^{n} Y_j^2 + 2ZF)^{p-1} Y_j X_j.$$

In fact , if p = 1,

$$[E, \sum_{j=1}^{n} (Y_j^2 + 2ZF)] = \sum_{j=1}^{n} ([E, Y_j]Y_j + Y_j[E, Y_j]) + 2Z[E, F]$$

= $\sum_{j=1}^{n} (X_jY_j + Y_jX_j) + 2ZH = \sum_{j=1}^{n} (Z + 2Y_jX_j) + 2ZH$
= $\sum_{j=1}^{n} Z(2H + n) + 2Y_jX_j.$

Assume (3.3) holds if p is replaced by p-1. Then

$$\begin{split} &[E,\sum_{j=1}^{n}(Y_{j}^{2}+2ZF)^{p}] \\ &= [E,\sum_{j=1}^{n}(Y_{j}^{2}+2ZF)^{p-1}](\sum_{j=1}^{n}Y_{j}^{2}+2ZF) \\ &+ \sum_{j=1}^{n}(Y_{j}^{2}+2ZF)^{p-1}[E,\sum_{j=1}^{n}(Y_{j}^{2}+2ZF)] \\ &= (p-1)(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p}-2Z(2H+n-2p+4)(\sum_{j=1}^{n}Y_{j}^{2}+2ZF) \\ &+ 2(p-1)(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p-2}(\sum_{j=1}^{n}Y_{j}X_{j})(\sum_{j=1}^{n}Y_{j}^{2}+2ZF) \\ &+ (\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p-1}(Z(2H+n)+2\sum_{j=1}^{n}Y_{j}X_{j}) \\ &= (p-1)(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p-1}Z(2H+n-2p) \\ &+ (\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p-1}Z(2H+n)+2p(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p-1}Y_{j}X_{j} \\ &= p(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p-1}Z(2H+n-2p+2)+2p(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p-1}Y_{j}X_{j}. \end{split}$$

Hence (3.3) holds for any p. Now we prove the lemma by induction on p. Assume the lemma holds if p is replaced by p - 1. Then

$$\begin{aligned} \pi(E^{p}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p}) &= \pi(E^{p-1}E(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p}) \\ &= \pi(pE^{p-1}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p-1}Z(2H+n-2p+2)) \\ &+ \pi(2pE^{p-1}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p-1}Y_{j}X_{j}) + \pi(E^{p-1}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p}E) \\ &= \pi(pE^{p-1}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p-1}Z(2H+n-2p+2)) \\ &= p!Z^{p}\prod_{j=1}^{p}(2H+n-2j+2). \end{aligned}$$

Let $\mathbf{Z}_{\geq 0}$ be the set of nonnegative integers. For a multi-index $\alpha = (\alpha_1, \cdots, \alpha_n) \in \mathbf{Z}_{\geq 0}^n$, we set $|\alpha| = \alpha_1 + \ldots + \alpha_n$ and $\alpha! = \alpha_1! \cdots \alpha_n!$. We also set $X^{\alpha} = X_1^{\alpha_1} \cdots X_n^{\alpha_n}$ and $Y^{\alpha} = Y_1^{\alpha_1} \cdots Y_n^{\alpha_n}$. For $m \in \mathbf{Z}_{\geq 0}$, consider the following subspace U^m of $U(\mathbf{n}^-) \otimes U(\mathbf{h})$:

$$U^m = \mathbf{C} - \text{linear span of } \{Y^{\alpha} (\sum_{j=1}^n Y_j^2 + 2ZF)^p : |\alpha| + 2p = m\}.$$

Theorem 3.4. The restriction $B|_{U^m \times U^m}$ of B to the subspace U^m is given by a diagonal matrix whose diagonal elements are

$$2^{p}p!\alpha!(-Z)^{m}\prod_{j=1}^{p}(-2H-n+2j-2), |\alpha|+2p=m$$

Proof. Suppose $\alpha_i < \beta_i$ for some *i*. Set $\alpha' = (\alpha_1, \cdots, \alpha_{i-1}, 0, \alpha_{i+1}, \cdots, \alpha_n)$ and $\beta' = (\beta_1, \cdots, \beta_{i-1}, 0, \beta_{i+1}, \cdots, \beta_n)$. Then by Lemma 3.2,

$$\begin{split} \{\sigma(Y^{\alpha}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p})\}\{Y^{\beta}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{q}\}\\ &=(-1)^{|a|}X_{i}^{\alpha_{i}}Y_{i}^{\beta_{i}}(\sum_{j=1}^{n}X_{j}^{2}-2ZE)^{p}X^{\alpha'}Y^{\beta'}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{q}\\ &=(-1)^{|a|}\sum_{r=0}^{\alpha_{i}}\binom{\alpha_{i}}{r}\left(\frac{d^{r}}{dY_{i}^{r}}Y_{i}^{\beta_{i}}\right)Z^{r}X_{i}^{\alpha_{i}-r}(\sum_{j=1}^{n}X_{j}^{2}-2ZE)^{p}X^{\alpha'}Y^{\beta'}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{q}\\ &\in\mathsf{n}^{-}U(\mathsf{g}). \end{split}$$

Similarly, if $\alpha_i > \beta_i$ for some *i*, we can prove :

$$\{\sigma(Y^{\alpha}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p})\}\{Y^{\beta}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{q}\}\in U(g)n^{+}$$

Hence if $\alpha \neq \beta$,

$$B(Y^{\alpha}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p}), Y^{\beta}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{q})=0.$$

By Lemma 3. 2(1) and Lemma 3. 3,

$$\begin{split} &B(Y^{\alpha}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p},Y^{\alpha}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p})\\ &=\pi((-1)^{|a|}((\sum_{j=1}^{n}X_{j}^{2}-2ZE)^{p}X^{\alpha}Y^{\alpha}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p})\\ &=\alpha!(-Z)^{|a|}\pi((\sum_{j=1}^{n}X_{j}^{2}-2ZE)^{p}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p})\\ &=\alpha!(-Z)^{|a|}\pi(\sum_{r=0}^{p}\binom{p}{r}(-2ZE)^{r}\sum_{j=1}n(X_{j}^{2})^{p-r}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p})\\ &=\alpha!(-Z)^{|a|}\pi((-2ZE)^{p}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p})\\ &=2^{p}\alpha!(-Z)^{|a|+p}\pi(E^{p}(\sum_{j=1}^{n}Y_{j}^{2}+2ZF)^{p})\\ &=2^{p}p!\alpha!(-Z)^{m}\prod_{j=1}^{p}(-2H-n+2j-2). \end{split}$$

4. Structure of Verma modules and unitarizability of irreducible highest weight modules

In this section, we describe the structure of the Verma modules $M(\chi)$ and unitarizability condition for $L(\chi)$. First we consider the case $\chi(Z) \neq 0$. For $\alpha \in \mathbb{Z}_{\geq 0}^n$ and $p \in \mathbb{Z}_{\geq 0}$, we set

$$v_{a,p} = Y^{\alpha} (\sum_{j=1}^{n} Y_j^2 + 2ZF)^p . v \in M(\chi).$$

If $\chi(Z) \neq 0$, then the set of the elements

$$\{v_{a,p}: \alpha \in \mathbf{Z}_{\geq 0}^n, p \in \mathbf{Z}_{\geq 0}\}\$$

forms a basis of $M(\chi)$.

Thorem 4.1. Let $\chi \in h^*$ and assume $\chi(Z) \neq 0$. (1) If $\chi(H) + (n/2) \notin \mathbb{Z}_{\geq 0}$, then the Verma module $M(\chi)$ is irreducible. (2) If $\chi(H) = -(n/2) + l, l \in \mathbb{Z}_{\geq 0}$, then the proper maximal submodule N of $M(\chi)$ is isomorphic to $M(\chi - 2\sqrt{-1}(l+1))$ and given by

$$N = U(g) (\sum_{j=1}^{n} Y_j^2 + 2ZF)^{l+1} .v.$$

Here $\chi - 2\sqrt{-1}(l+1)$ is an element of h^* defined by $(\chi - 2\sqrt{-1}(l+1))(H) = \chi(H) - 2(l+1)$ and $(\chi - 2\sqrt{-1}(l+1))(Z) = \chi(Z)$. Moreover N is irreducible. Hence the composition series of $M(\chi)$ is given by $M(\chi) \supset N \supset \{0\}$.

Proof. (1) Let $w = \sum_{i=1}^{q} c_{\alpha_i, p_i} v_{\alpha_i, p_i} \in M(\chi)$. Assume, for example, $c_{\alpha_1, p_1} \neq 0$. Then by the proof of Theorem 3.4,

$$pr(\sigma(Y^{\alpha_1}(\sum_{j=1}^n Y_j^2 + 2ZF)^{p_1}).w)$$

= $2^{p_1}p_1!\alpha_1!c_{\alpha_i,p_i}\chi(-Z)^{|a_1|+p_1}\prod_{j=1}^{p_1}(-2\chi(H) - n + 2j - 2).v \neq 0$

Hence by Lemma 2.7 (1), $M(\chi)$ is irreducible. (2) By Lemma 3.2 (1),

$$X_i (\sum_{j=1}^n Y_j^2 + 2ZF)^{l+1} \cdot v = (\sum_{j=1}^n Y_j^2 + 2ZF)^{l+1} X_i \cdot v = 0.$$

Also by (3.3) in the proof of Lemma 3.3,

$$E\left(\sum_{j=1}^{n} Y_{j}^{2} + 2ZF\right)^{l+1} \cdot v = \left[E, \left(\sum_{j=1}^{n} Y_{j}^{2} + 2ZF\right)^{l+1}\right] \cdot v$$
$$= (l+1) \left(\left(\sum_{j=1}^{n} Y_{j}^{2} + 2ZF\right)^{l} \chi(Z)(2\chi(H) + n - 2l) + 2\left(\sum_{j=1}^{n} Y_{j}^{2} + 2ZF\right)^{l} \sum_{j=1}^{n} Y_{j}X_{j}\right) \cdot v$$
$$= 0.$$

Hence $N = U(g)(\sum_{j=1}^{n} Y_j^2 + 2ZF)^{l+1} v$ is a proper U(g)-submodule of $M(\chi)$. It is easy to check that N is isomorphic to $M(\chi - 2(l+1)\sqrt{-1})$. The irreducibility of N is easily follows form (1). Let $\rho : M(\chi) \to M(\chi)/N$ be the natural projection. Then the elements

$$\{\rho(v_{\alpha,p}): \alpha \in \mathbf{Z}_{>0}^n, 0 \le p \le l\}$$

forms a basis of $M(\chi)/N$. By the same argument as in the proof of (1), the assumption in Lemma 2. 7 (1) holds for $M(\chi)/N$. Hence $M(\chi)/N$ is irreducible. This implies the maximality of N.

We next discuss the unitarizability of $L(\chi)$. By Lemma 2.6 (2), if $L(\chi)$ is unitarizable, then $\chi(Z) \in \mathbf{R}$ and $\chi(H) \in \mathbf{R}$.

Theorem 4.2. If $\chi \in h^*$ satisfies $\chi(Z) \neq 0$, then $L(\chi)$ is unitarizable if and only if $\chi(Z) \in \mathbf{R}$, $\chi(H) \in \mathbf{R}$, $\chi(Z) < 0$ and $\chi(H) \leq -n/2$.

Proof. For $m \in \mathbb{Z}_{\geq 0}$, we denote the restriction of B_{χ} to the weight space $M(\chi)^{\chi-m}$ by B_{χ}^{m} . Since $B_{\chi}(v, v) = 1$, $L(\chi)$ is unitarizable if and only if the Hermitian form B_{χ}^{m} is positive semi-definite for any $m \in \mathbb{Z}_{\geq 0}$. By Theorem 3.4, if we choose

 $\{v_{\alpha,p} : \alpha \in \mathbb{Z}_{\geq 0}^m, p \in \mathbb{Z}_{\geq 0}, |\alpha| + p = m\}$ as the basis of $M(\chi)^{\chi-m}$, B_{χ}^m is given by a diagonal matrix whose diagonal elements are

$$2^{p}p!\alpha!\chi(-Z)^{m}(-2\chi(H) - n + 2j - 2), \quad |\alpha| + 2p = m.$$

Hence B_{χ}^{m} is positive semi- definite if and only if $\chi(Z) < 0$ and $-2\chi(H) - n + 2j - 2 \ge 0$ for any positive integer j. This prove the theorem.

If $\chi(Z) = 0$, then $W = \sum_{i=1}^{n} U(g)Y_i v$ is a nonzero proper U(g)-submodule of $M(\chi)$. Hence the Verma module $M(\chi)$ is reducible in this case.

Lemma 4.3. In the above notations, $h_n(\mathbf{C})$ acts trivially on the quotient module $M(\chi)/W$. Here $h_n(\mathbf{C})$ is the complexification of the Heisenberg Lie algebra $h_n(\mathbf{R})$.

Proof. As a vector space, $M(\chi)$ is a direct sum $\bigoplus_{\alpha,q} \mathbf{C} Y^{\alpha} F^{q}.v$. Hence it is enough to show $h_{n}(\mathbf{C})F^{j}.v \in W$ for $j \in \mathbf{Z}_{\geq 0}$. Obviously, $ZF^{j}.v = X_{i}.v = 0$ and $Y_{i}F^{j}.v \in W$, for $i = 1, \dots, n$. Also we have, for $j \geq 1$,

$$X_i F^j . v = \sum_{p=0}^{j-1} F^p [X_i, F] F^{j-p-1} . v = j F^{j-1} Y_i . v \in W.$$

By Lemma 4.3, if $\chi(Z) = 0$, the unitarizability of $L(\chi)$ reduces to the $sl_2(\mathbf{R})$ -theory. (See, for example, [2].)

Theorem 4.4. If $\chi \in h^*$ satisfies $\chi(Z) = 0$, then

(1) The Verma module $M(\chi)$ is reducible.

(2) $L(\chi)$ is unitarizable if and only if $\chi(H) \in \mathbf{R}$ and $\chi(H) \leq 0$.

References

- R. Berndt, Die Jacobigruppe und die Wärmeleitungsgleichung, Math. Z. 191 (1986), 351– 361.
- T. J. Enright, R. Howe and N. R. Wallach, A classification of unitary highest weight modules, P. C. Trombi ed., Representation Theory of Reductive Groups, Progress in Math. 40 (1983), Birkhäuser, Boston, Basel, Stuttgart, 97–143.
- M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Math. 55 Birkhäuser, Boston, Basel, Stuttgart, 1985.
- J. C. Jantzen, Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren, Math. Ann. 226 (1977), 53–65.
- 5. N. N. Shapovalov, On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, Functional Anal. Appl. 6 (1972), 307–312.
- S. Suga, A realization of irreducible highest weight modules of a certain Lie algebra, Ryukyu Math. J. 4 (1991), 71–76.

Department of Mathematics College of Science University of Ryukyus Nishihara Okinawa 903-01 JAPAN