琉球大学学術リポジトリ

A REALIZATION OF IRREDUCIBLE HIGHEST WEIGHT MODULES OF A CERTAIN LIE ALGEBRA

メタデータ	言語:
	出版者: Department of Mathematics, College of
	Science, University of the Ryukyus
	公開日: 2015-09-02
	キーワード (Ja):
	キーワード (En):
	作成者: Suga, Shuichi, 菅, 修一
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/31735

A REALIZATION OF IRREDUCIBLE HIGHEST WEIGHT MODULES OF A CERTAIN LIE ALGEBRA

SHUICHI SUGA

1. Introduction

Let $h_n(C)$ be the 2n + 1 dimensional Heisenberg Lie algebra over the complex number field C and g the natural semidirect product Lie algebra of $sl_2(C)$ and $h_n(C)$. Explicitly, g is given by the following brackets. Let $\{E, H, F\}$ be the standard basis of $sl_2(C)$ and $\{P_i, Q_i, Z\}_{i=1,\dots,n}$ the canonical basis of $h_n(C)$, then

 $[Z, X] = 0 , \qquad \text{for any } X \in g ,$ $[P_i, Q_j] = \delta_{ij} Z , \qquad [E, P_i] = [F, Q_i] = 0 ,$ $[H, E] = 2E , \qquad [H, P_i] = P_i ,$ $[H, Q_i] = -Q_i , \qquad [H, F] = -2F ,$ $[E, Q_i] = P_i , \qquad [F, P_i] = Q_i ,$ [E, F] = H .

Let $n^- = C F \oplus (\oplus_{i=1,\dots,n} C Q_i)$, $h = C H \oplus C Z$, $n^+ = C E \oplus (\oplus_{i=1,\dots,n} C P_i)$ and $b = h \oplus n^+$. These subspaces are Lie subalgebras of g.

Received October 31, 1991.

Let χ be a 1-dimensional representation of h. We extend it to b trivially and denote by the same letter. A U(g)-module Vis called a *highest weight module* with *highest weight* χ if there exists a nonzero vector v such that $a \cdot v = \chi(a) v$ for $a \in b$ and V is generated by v as a U(g)-module. For any 1dimensional representation χ of h there exists a unique, up to isomorphism, *irreducible* highest weight module with highest weight χ .

In this note we give a realization of irreducible highest weight module of g [Theorem 2]. Our method is essentially the same in [S1]. The similar arguments is found in [B]. As an application, we get a reducibility criterion of Verma modules [Proposition 3].

2. Main Theorem

Let W = C < u, v_i , w, ∂_u , ∂_v_i , $\partial_w > i = 1, \dots, n$ be the Weyl algebra of 2n + 2 variables. The following Lemma is easily checked by direct calculations.

LEMMA 1. For $\lambda \in C$, let $\varphi_{\lambda}: g \to W$ be the C-linear map defined by the following correspondence. Then φ_{λ} defines an algebra homomorphism between U(g) and W, where U(g) is the universal enveloping algebra of g.

$$\varphi_{\lambda}(Z) = 2\partial_{u}, \qquad \qquad \varphi_{\lambda}(Q_{i}) = -\partial_{v_{i}},$$

$$\varphi_{\lambda}(F) = -\partial_{w}, \qquad \qquad \varphi_{\lambda}(P_{i}) = 2v_{i}\partial_{u} + w\partial_{v_{i}},$$

$$\varphi_{\lambda}(H) = 2w \partial_{w} + \sum_{i=1}^{n} v_{i} \partial_{v_{i}} - \lambda,$$

$$\varphi_{\lambda}(E) = \sum_{i=1}^{n} v_i^2 \partial_u + w \sum_{i=1}^{n} v_i \partial_v_i + w^2 \partial_w - \lambda w.$$

REMARK. If n = 1 then we can realize g as a subalgebra of $sp_4(C)$ in the following way. We define $sp_4(C)$ by

$$sp_4(C) = \{X \in M_4(C): {}^{t}XJ + JX = O\}$$
, $J = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$.

Then

$$u(aH+bE+cF+xP_1+yQ_1+zZ) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ x & a & 0 & b \\ -2z & y & 0 & -x \\ y & c & 0 & -a \end{pmatrix}$$

defines an injective homomorphism of Lie algebras. The φ_{λ} in the Lemma is given by the restriction of φ_{λ} in [S1] to the Lie subalgebra $\iota(g)$ of $sp_{\Delta}(C)$.

For $\lambda, \mu \in C$, we define a 1-dimensional representation $\chi = \chi(\lambda, \mu)$ of h by $\chi(H) = \lambda$ and $\chi(Z) = \mu$. Let $f_{\lambda}, \mu = f_{\lambda}, \mu(u, v_{i}, w) = w^{\lambda} exp \ \mu \ (u - \sum_{i=1}^{n} v_{i}^{2}/w)$. We consider the U(g) - module $L(\chi) = \varphi_{\lambda}(U(g)) f_{\lambda}, \mu$. Our main Theorem is:

THEOREM 2. $L(\chi)$ is an irreducible highest weight module with highest weight $\chi = \chi_{(\lambda,\mu)}$ and a highest weight vector $f_{\lambda,\mu}$.

Proof. It is easy to check that $\varphi_{\lambda}(P_i) f_{\lambda, \mu} = 0$, $i = 1, \dots, n$, $\varphi_{\lambda}(E) f_{\lambda, \mu} = 0$ and $\varphi_{\lambda}(a) f_{\lambda, \mu} = \chi(a) f_{\lambda, \mu}$ for $a \in h$. Hence $L(\chi)$ is a highest weight module with highest weight $\chi = \chi_{(\lambda, \mu)}$ and a highest weight vector $f_{\lambda, \mu}$. We shall prove the irreducibility.

If $\mu = 0$, then $\varphi_{\lambda}(h_n(C))$ acts trivially on $L(\chi)$. Hence the Theorem is reduced to the representation theory of $sl_2(C)$. Then the Theorem is well known.

Suppose $\mu \neq 0$. By the Poincaré - Birkhoff - Witt theorem, $U(g) = U(n^{-}) \otimes U(h) \otimes U(n^{+})$, where U(h) and $U(n^{+})$ are the universal enveloping algebras of h and n^{+} , respectively. Hence

$$\begin{split} L(\chi) &= \varphi_{\lambda}(U(g))f_{\lambda,\mu} = \varphi_{\lambda}(U(n^{-}))f_{\lambda,\mu} \\ &= \sum_{\alpha_{i} \geq 0, \beta \geq 0} C \,\partial_{v_{i}}^{\alpha_{i}} \partial_{w}^{\beta} f_{\lambda,\mu} \end{split}$$

For $x \in L(\chi)$, we consider the condition $\varphi_{\lambda}(E) = \varphi_{\lambda}(P_i) = 0$, $i = 1, \dots, n$. Since

$$\partial_{w} f_{\lambda,\mu} = (\lambda / w) f_{\lambda,\mu} + (\mu / w^{2}) \sum_{i=1}^{n} v_{i}^{2} f_{\lambda,\mu}$$
$$\partial_{v_{i}} f_{\lambda,\mu} = -2 (\mu v_{i} / w) f_{\lambda,\mu},$$

we can assume $x = p(v_i, w) f_{\lambda, \mu}$ for some $p(v_i, w) \in \mathbb{C}[v_i, w^{-1}]$. By simple calculations,

$$\begin{split} \varphi_{\lambda}(P_{i}) & x = (w \partial_{v_{i}} p(v_{i}, w)) f_{\lambda, \mu} , \\ \varphi_{\lambda}(E) & x = \{ (w \sum_{i=1}^{n} v_{i} \partial_{v_{i}} + w^{2} \partial_{w}) p(v_{i}, w) \} f_{\lambda, \mu} . \end{split}$$

Hence it is easy to see that if $x=p(v_i,w)f_{\lambda,\mu} \in L(\chi)$ is annihilated by $\varphi_{\lambda}(E)$ and $\varphi_{\lambda}(P_i)$, $i=1,\dots,n$, then it is a scalar multiple of the highest weight vector $f_{\lambda,\mu}$. Since $L(\chi)$ is a highest weigh module, this implies its irreducibility.

3. A Reducibility criterion of Verma modules

For a one dimensional representation χ of h, we denote its representation space by C_{χ} . Let U(b) be the universal enveloping algebra of b. We define Verma modules analogous to semisimple Lie algebras.

DEFINITION. We call the g-module $M(\chi)=U(g)\otimes_{U(b)}C_{\chi}$ Verma module.

 $M(\chi)$ is the *universal* highest weight module with highest weight χ . As a vector space, $M(\chi)$ is isomorphic to $U(n^{-})$.

PROPOSITION 3. If $\chi(Z) = 0$ or $\chi(H) = -n/2 + k$ for some non-negative integer k, then $M(\chi)$ is reducible.

Proof. Let $v = 1 \otimes 1$ be the highest weight vector of $M(\chi)$. If $\chi(Z) = 0$, then $U(g)Q_i v$ is a nonzero proper submodule of $M(\chi)$ and the Lemma is obvious.

We consider the case $\chi(Z) = \mu \neq 0$. The highest weight vector $f_{\lambda,\mu}$ of $L(\chi)$ satisfies the following differential equation:

$$(\mu \partial_{w} - \frac{1}{4} \sum_{i=1}^{n} \partial_{v_{i}}^{2}) f_{\lambda}, \mu = \frac{1}{2} \mu (2\lambda + n) f_{\lambda} - 1, \mu^{\bullet}$$

Iterating this, we have

$$(\mu \partial_w - \frac{1}{4} \sum_{i=1}^n \partial_{v_i}^2)^m f_{\lambda, \mu}$$

=
$$\frac{1}{2^m} \mu (2\lambda + n) (2\lambda + n - 2) \cdots (2\lambda + n - 2m + 2) f_{\lambda - m, \mu} .$$

Assume $M(\chi)$ is irreducible. Then by Theorem 2 and the uniqueness of irreducible highest weight modules, $M(\chi)$ and $L(\chi)$ are isomorphic. Then, as a vector space, $L(\chi)$ is isomorphic to $U(n^{-})$. Then $\partial_{v_i}^{\alpha_i}\partial_w^{\beta_i}f_{\lambda}$, μ 's must be linearly independent. But if $\chi(H) = -n/2 + k$ for some non-negative integer k, the right hand side of the above differential equation is equal to zero for large m. This yields a contradiction.

REMARK. In the forthcoming paper [S2], using the contravariant form we shall prove the converse of the above Proposition 3. That is, if $M(\chi)$ is reducible then $\chi(Z) = 0$ or $\chi(H) = -n/2 + k$ for some non-negative integer k.

References

- [B] R.Berndt : Die Jacobigruppe und die Wärmeleitungsgleichng, Math. Zeit. 191, (1986), 351-361.
- [S1] S. Suga: Highest weight modules associated with classical irreducible regular prehomogeneous vector spaces of commutative parabolic type, Osaka J. of Math. 28 (1991), 323-346.
- [S2] S. Suga: Unitary highest weight representations of a Jacobi group, in preparation.

Division of Junior College University of Ryukyus Nishihara-cho, Okinawa 903 - 01 JAPAN