琉球大学学術リポジトリ

異なるタイプの褐虫藻の温度および光ストレスに対 する生理学的応答

メタデータ	言語:
	出版者: 琉球大学
	公開日: 2015-12-02
	キーワード (Ja):
	キーワード (En):
	作成者: Widiastuti, ウィディアストゥティ
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/32726

Abstract

Title Physiological response of Symbiodinium phylotypes to temperature and light stress

The widespread coral bleaching, which is defined as loss of *Symbiodinium* cells or its pigmentation (Fitt et al., 2001; Lesser, 2011) in response to global climate change, threatened coral reef ecosystems. *Symbiodinium* tends to lose its photosynthetic activity under conditions where the amount of absorbed light energy exceeds the capacity for utilization by photosynthesis. The reduction of photosynthetic activity due to strong light, which is referred as photoinhibition, is observed prior to coral bleaching. Therefore, the survivorship of corals may be determined by the susceptibility and adaptive capacity of its symbionts under environmental stress conditions. The main objective of this thesis was to investigate the physiological response of *Symbiodinium* strains to elevated temperatures and strong light. In addition, the relationship between photochemical efficiency and physiological indicators such as growth rate and O₂ production rate was examined under severe environmental conditions.

The present results demonstrated that, based on the relationship between the growth rate and photochemical efficiency of PSII at elevated temperatures, the six strains of *Symbiodinium* were categorized into three groups; (1) thermally sensitive strains, in which both photochemical efficiency and growth rate decreased in parallel at high temperature, (2) a thermally tolerant strain, in which both parameters remained relatively stable at high temperature, and (3) strains that showed decreased growth rate but maintained relatively high photochemical efficiency at high temperature (uncoupling between the growth rates and photochemical efficiency of PSII). The strains in category (3) may reallocate energy from growth to the repair of damaged photosynthetic machineries or protection pathways.

The second part of this study revealed that photosynthetic O_2 production rate decreased only in severe photoinhibition. The uncoupling between photochemical efficiency and photosynthetic O_2 production rate at high temperature and strong light intensity might indicate that there are extra PSII in each cells that are not instantly become dysfunctional from the damage. In addition, it is likely that damage in PSII may be induced by thermal stress in complete darkness.

This study advances our understanding of diverse physiological characteristics among Symbiodinium phylotypes. Two strains showing uncoupling between photochemical efficiency and growth rate will become useful models for future research into different stress susceptibilities among diverse phylotypes of Symbiodinium. The present study also suggests that measurement of the F_{ν}/F_{m} decline is useful to study the photoinhibition sensitivity of Symbiodinium but it does not always correspond with the decline of photosynthetic activity.

Name Widiastuti