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Abstract

We have developed the first-principles momentum-dependent local ansatz (MLA) wavefunc-

tion method on the basis of the tight-binding LDA+U Hamiltonian in order to describe quantita-

tively electron correlations in the real system. The MLA wavefunction expands the Hilbert space

for correlated electrons by applying the intra-orbital correlators, the inter-orbital charge-charge cor-

relators, and the inter-orbital spin-spin correlators with momentum-dependent variational parame-

ters to the Hartree-Fock uncorrelated state, so that it reduces to the correct Rayleigh-Schrödinger

perturbation theory in the weak correlation limit and can describe quantitatively the ground state

as well as related low-energy excitations in solids.

We first performed the lowest-order numerical calculations for paramagnetic bcc Fe in order

to clarify the basic behavior of the theory. We found that the MLA yields a reasonable correlation

energy gain, and the inter-orbital correlations as well as the intra-orbital correlations plays an

important role in the energy gain. The charge fluctuation is suppressed rapidly with increasing the

Coulomb interaction strength. Calculated charge fluctuation for Fe is found to be comparable to

the result of the local ansatz (LA) in the d-band model. The amplitude of local moment is smaller

than the d-band LA value. We also found the strong momentum dependence of the momentum

distribution function (MDF), and obtained the mass enhancements m∗/m = 1.4 for Fe from the

jump of the MDF at the Fermi level.

We next performed the self-consistent calculations using the new ansatz for the variational

parameters which interpolates between the weak and the atomic limit. We obtained the correlation

energy −0.076 Ry for bcc Fe, the charge fluctuations for d electrons 〈(δnd)
2〉= 1.51, and the

amplitude of local moment 〈S2〉 = 2.61. The latter is in good agreement with the experimental

value 2.58. We find that the inter-orbital charge-charge correlations between d electrons make a

significant contribution to the correlation energy and charge fluctuations, while the intra-orbital and

inter-orbital spin-spin correlations make a dominant contribution to the amplitude of local moment.

We also obtained the MDF along high-symmetry lines for Fe. We found that the MDF for d
electrons with eg symmetry show a large deviation from the Fermi-Dirac function. The analyses

of projected MDF indicate that the s and p electrons behave as independent electrons, while d
electrons behave as correlated electrons. The average mass enhancement factor m∗/m is found to

be governed by the intra-orbital and inter-orbital spin-spin correlations. Calculated m∗/m = 1.65

is shown to be consistent with the experimental data and agrees well with the recent results of

theoretical calculations.
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Chapter 1

Introduction

The density functional theory (DFT) has been well developed in the past half century towards

quantitative description of the properties of solids, and acts nowadays as a powerful tool for ex-

plaining the ground-state properties of materials and their electronic structure. The DFT is based

on the Hohenberg-Kohn theorem which states that the ground-state is given by the functional of

electron density [1] and the Kohn-Sham method in which the charge and spin densities are ob-

tained from an independent electron system [2]. All the many-body effects are included in the

exchange-correlation potential as a functional of charge and spin densities in the DFT. The local

density approximation (LDA) or generalized gradient approximation (GGA) to the DFT potential

allows us to implement the first-principles band calculations for various systems.

The LDA and GGA explain many aspects in solids such as the cohesive properties, the Fermi

surface in metals, and optical properties of metallic systems [3, 4]. The DFT also explains quan-

titatively the ground-state magnetism of 3d transition metals and alloys. The first-principles band

calculations with use of the LDA, for example, yield the magnetization per atom 2.15 µB for Fe

and 0.59 µB for Ni [5], which are in good agreement with the experimental values 2.22 µB and 0.62

µB [6, 7], respectively.

On the other hand, the DFT theory is not sufficient to describe properly the properties of more

correlated electron systems. The theory cannot describe the magnetic moment and the metal-

insulator phase transition above the Néel temperature in cuprates [8], and much overestimates

the ground-states magnetic moment in Fe-pnictides [9, 10], while it underestimates the moment

in cuprates [8]. Furthermore it is not applicable to the finite-temperature magnetism such as the

Curie temperature and the Curie-Weiss law in susceptibility of transition metals. The Stoner theory

based on the DFT band calculations yields the Curie temperatures (TC), 6000 K for Fe and 3000

K for Ni [11, 12], which are 6 or 5 times as large as the observed values, 1040 K for Fe and 630 K

for Ni [13, 14].

The DFT also fails in explaining the ǫ-Fe [15], cuprates [16], heavy-fermion system [16], the

reduction of the cohesive energy in 3d transition metals [17], the formation of a satellite peak in the

X-ray photoemission spectroscopy (XPS) data of Ni [18,19], and the angle resolved photoemission

spectroscopy (ARPES) data in Fe-pnictides [20].

The second point is that the DFT is based on the Hohenberg-Kohn theorem. Thus the physical

quantities expressed by the two-particle operators as well as excitation spectra cannot be calcu-

lated. The DFT is based on the Kohn-Sham scheme. Thus the momentum distribution function as

well as related mass enhancement factor cannot be described by the DFT when the electron corre-

lations become significant. Moreover, the LDA and GGA potentials in the DFT band theory do not

correctly describe the orbital correlations as well as the Hund-rule correlations in the paramagnetic
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state and thus the ground-state energy is overestimated in general in the paramagnetic state. These

properties cannot be understood without taking into account directly the many-body effects, i.e.,
electron correlation effects.

In order to describe the many-body phenomena which cannot be explained by the band the-

ory, various theories have been developed so far. These theories are based on the variational

method [16, 21, 22], the Green function techniques [23], as well as the numerical techniques such

as the exact diagonalization method and the quantum Monte-Carlo (QMC) technique [24]. The

dynamical mean field theory (DMFT) combined with the LDA+U Hamiltonian [25–27], is such

an approach based on the Green function technique and the effective medium method. The DMFT

is equivalent to the first-principles dynamical coherent potential approximation (DCPA) developed

by Kakehashi [30, 31]. In these approaches, we can replace the surrounding interactions with an

effective medium and solve the impurity problem using various methods. The theories have been

applied to many systems with strong electron correlations [31].

The variational approach is the simplest and oldest methods to treat electron correlations at the

ground state. The trial wavefunction is chosen to include the minimum basis set with variational

parameters. One can determine the variational parameters on the basis of variational principles.

The Gutzwiller wavefunction (GW) [32–34] is one of the popular ansatz, and has been applied

to a number of correlated electron systems. The method has been extended to the first-principles

version on the basis of the LDA+U Hamiltonian [35, 36]. The first-principles GW theory has been

applied to many systems such as Ni [37] and Fe pnictides [38,39], and clarified the physics of elec-

tron correlations in the magnetism, the heavyfermion behavior, and the metal-insulator transition.

The local ansatz (LA) wavefunction [16, 21, 22] is an approach from the weakly correlated

limit. It makes use of the Hilbert space expanded by the two-particle operators which appear in the

residual Coulomb interactions. The Baeriswyl wavefunction expands the Hilbert space applying

the hopping operators onto the atomic wavefunctions, aiming at an accurate description of electron

correlations in the strong interaction regime. There are various trial wavefunctions which describe

the nonlocal electron correlations [40–43]. These wavefunctions are usually treated by means of

numerical techniques such as the variational Monte Carlo method [44, 45].

The wavefunctions mentioned above, however, do not reduce to the second-order perturbation

theory in the weak Coulomb interaction limit. Therefore it does not describe quantitatively the

properties of correlated electron system. This is serious for quantitative description of effective

mass enhancement factor associated with the low energy excitations in the vicinity of the Fermi

surface, because it is obtained by a renormalization of the counterpart in the weak Coulomb inter-

action limit according to the Fermi liquid theory.

In order to overcome the difficulty, we recently proposed the momentum-dependent local ansatz

(MLA) wavefunction which goes beyond the GW [46–50]. The MLA is an extension of the LA

in which the residual Coulomb interaction operators are used to expand the Hilbert space for de-

scribing electron correlations [51–53]. In the MLA, we expand the Hilbert space by means of

the two-particle excited states with momentum-dependent variational parameters in the momen-

tum space, and project these states onto the local orbitals again. In this way, we can obtain more

flexible correlated electron states. The theory overcomes the Gutzwiller wavefunction method and

describes quantitatively the physical quantities.

In this thesis, we extend the MLA to the first-principles version on the basis of the tight-binding

(TB) LDA+U Hamiltonian towards the quantitative description of correlated electron system. It

should be noted that we have three kinds of Coulomb interactions in the TB LDA+U Hamilto-

nian: the intra-orbital interactions, the inter-orbital charge-charge interaction, and the inter-orbital
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spin-spin interactions. Accordingly, we introduce three kinds of correlators with the momentum-

dependent variational parameters: the intra-orbital correlators, the inter-orbital charge-charge cor-

relators, and the inter-orbital spin-spin correlators, respectively, and construct the first-principles

MLA wavefunction applying them to the Hartree-Fock wavefunction in order to expand the Hilbert

space for describing correlated electrons. We can derive the correlation energy within the single-

site approximation (SSA), and obtain the self-consistent equations for the momentum-dependent

variational parameters. After determination of the variational parameters, charge fluctuations, am-

plitude of magnetic moment, momentum distribution function (MDF), as well as the mass en-

hancement factor (MEF) are obtained immediately from the wavefunctions.

We emphasize that the first-principles MLA reduces to the Rayleigh-Schrödinger perturbation

theory exactly as it should be, and the theory quantitatively describes the ground-state properties of

correlated electron system, as will be demonstrated in the numerical calculations for the paramag-

netic Fe. In particular, the present theory accurately describes the momentum-dependent correlated

states associated with two-particle excitations. We will clarify that the first-principles MLA quan-

titatively describes the momentum-dependence of the MDF as well as the momentum-dependent

MEF.

Another new feature of the first-principles MLA is that there are three kinds of correlations in

the wavefunctions: the intra-orbital correlations, the inter-orbital charge-charge correlations, and

the inter-orbital spin-spin correlations (, i.e., the Hund-rule correlations). We will clarify in this

thesis the role of these correlations in various physical properties and the interplay of s, p, and d
electrons in the MDF and the MEF.

As we have mentioned, alternative approach to describe electron correlations quantitatively is

the first-principles LDA+DMFT (DCPA) theory [26–31]. The LDA+DMFT is a powerful method

to strongly correlated electrons. The accuracy of the DMFT however strongly depends on the

solver of the impurity problem for correlated electrons [54–56]. The Quantum Monte-Carlo

method (QMC) can describe accurately the finite-temperature properties of the system. But its

efficiency is strongly reduced at low temperatures, and the QMC even causes the negative sign

problem which prevents us from systematic investigations over wide range of interaction param-

eters. The exact diagonalization method (ED) is useful to study exactly the physical properties

at zero temperature. But it cannot describe the low energy properties associated with the Fermi

surface. The numerical renormalization group theory (NRG) describes accurately the low energy

excitations, but it does not accurately describe the excitations in high-energy region as well as the

energy integrated quantities. Furthermore it is not applicable to the realistic systems because of the

numerical difficulty.

The MLA on the other hand describes quantitatively the quasi-particle weight associated with

the low energy excitations as well as the energy-integrated quantities such as the total energy and

momentum distribution function without numerical difficulty. In particular, we will show that

the first-principles MLA quantitatively explains the mass enhancement factor of bcc Fe obtained

by the ARPES experiment [57] while the LDA+DMFT combined with the three-body theory at

zero temperature does not [57]. Furthermore the MLA allows us to calculate any static physical

quantity because the wavefunction is known. These facts indicate that the first-principles MLA is

competitive to the LDA+DMFT at zero temperature and thus it is a suitable approach to correlated

electrons.

In the following chapter we review the recent development of correlated wavefunction methods

such as the Gutzwiller wavefunction (GW), the local ansatz wavefunction (LA), the MLA, and

the hybrid MLA in the single-band Hubbard model. In particular, we present the formulation
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of the MLA, and discuss quantitative aspects of the MLA for the correlation energy, the double

occupation number and the MDF with their numerical results.

In Chapter 3 we present the first-principles MLA. We start from the TB LDA+U Hamiltonian,

and introduce the first-principles MLA wavefunction for correlated electron system. We obtain

the correlation energy in the SSA, and derive the self-consistent equations for the momentum-

dependent variational parameters using the variational principle. We derive the expressions of the

electron number, the charge fluctuations, the amplitude of local moment, and the MDF using the

Feynman-Hellmann theorem.

In Chapter 4 we obtain the variational parameters in the weak Coulomb interaction regime

solving the self-consistent equations. We express the physical quantities in the lowest-order inter-

action limit. We will apply the theory to bcc Fe as a numerical example. The bcc Fe is one of the

most extensively investigated materials in both theory and experiment. Nevertheless, quantitative

aspects of various physical quantities in bcc Fe and role of electron correlations in those quantities

have not yet been clarified. We first calculate the Hartree-Fock energy bands of bcc Fe for the TB

LDA+U Hamiltonian to perform the correlation calculations. Next we calculate various quantities

for correlated electrons using the Laplace transform of the Hartree-Fock local density of states.

We present the numerical results for the correlation energy, the charge fluctuations, the amplitude

of local moment, and the MDF. In the calculation of the MDF we assume the constant amplitudes

of eigen vectors for d electrons at each k point, and discuss the momentum-dependence of the

MDF. We also calculate the MEF from the jump of the MDF at the Fermi level. We find that the

calculated MEF is comparable to the experimental value.

In Chapter 5 we propose the new ansatz of variational parameters for more correlated electrons,

which interpolates between the weak and the atomic limit, and solve the self-consistent equations

for the variational parameters numerically. We present the numerical results for Fe, and clarify

the role of intra-orbital and inter-orbital correlations on the correlation energy gain, the charge

fluctuation, and the formation of magnetic moment. We also calculate the MDF for Fe along high-

symmetry lines of the first Brillouin zone, and demonstrate a large deviation of the MDF from the

Fermi-Dirac function due to d electrons with eg symmetry. We will show that calculated MEF are

consistent with the experimental data as well as recent result of theoretical calculations. Finally in

Chapter 6 we summarize our results, and discuss the future problems.
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Chapter 2

Wavefunction Methods

The DFT does not describe quantitatively the ground-state properties in the correlated electron

system. In this chapter, we review the wavefunction methods in order to clarify the new fea-

tures of the momentum-dependent local ansatz (MLA) wavefunctions. We discuss the Gutzwiller

wavefunction (GW), the local ansatz wavefunction (LA), the MLA, and the MLA with hybrid

wavefunction (MLA-HB) [48, 50]. In particular, we elucidate the quantitative aspects of the MLA

on the basis of the numerical results of calculations in infinite dimensions.

2.1 Wavefunction methods

The wavefunction method is based on the variational principles for the wavefunction. It states that

the expectation value E of the Hamiltonian H for any trial wavefunction |Ψ〉 is equal to or larger

than the ground states energy E0.

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 ≥ E0 . (2.1)

The variational principle allows us to find an approximate but best wavefunction for a given ansatz,

and its energy expectation value gives us the upper limit of the exact ground state energy. In the

actual application of Eq. (2.1), it is important that we adopt a size-consistent wavefunction close

to the exact one and calculate the energy expectation value as accurate as we can in order to avoid

uncertainty.

We consider in this chapter the tight-binding model Hamiltonian with intra-atomic Coulomb

interaction called the Hubbard model [60, 61], for simplicity.

H =
∑

iσ

ǫ0niσ +
∑

ijσ

tija
†
iσajσ + U

∑

i

ni↑ni↓ . (2.2)

Here ǫ0 is the atomic level, tij is the transfer integral between sites i and j. U is the intra-atomic

Coulomb energy parameter. a†iσ(aiσ) denotes the creation (annihilation) operator for an electron on

site i with spin σ, and niσ = a†iσaiσ denotes the electron density operator on site i for the spin σ.

The Hamiltonian can be separated into the Hartree-Fock mean field Hamiltonian H0 and the

residual interaction part as follows:

H = H0 + U
∑

i

Oi , (2.3)

5



H0 =
∑

iσ

(ǫ0 + U〈ni−σ〉0)n̂iσ +
∑

ijσ

tija
†
iσajσ − U

∑

i

〈ni↑〉0〈ni↓〉0 . (2.4)

Here 〈∼〉0 denotes the Hartree-Fock average at the ground state. The operator Oi in the residual

interaction is defined by Oi = δni↑δni↓ and δniσ = niσ − 〈niσ〉0.
The Hartree-Fock ground state wavefunction |Φ〉 is given by

|Φ〉 =
[

occ
∏

kσ

a†kσ

]

|0〉 . (2.5)

Here
∏occ

kσ means taking the products over the momentum k and spin σ of electrons below the Fermi

level. |0〉 denotes the vacuum state. a†kσ is the creation operator for an electron with momentum k

and spin σ; a†kσ =
∑

i a
†
iσ〈i|k〉. 〈i|k〉 (= exp (−i k · Ri)/

√
N ) is an overlap integral between the

localized orbital on site i and Bloch state k. Ri denotes atomics position of site i, and N is the

number of sites.

The energy difference between the ground state for the correlated electrons and the Hartree-

Fock one is given by

Ec = 〈H〉 − 〈H〉0 =
〈Ψ|H̃|Ψ〉
〈Ψ|Ψ〉 . (2.6)

Here H̃ = H − 〈H〉0. It is the energy gain due to correlated motion of electrons, and is called the

correlation energy.

2.2 Gutzwiller wavefunction

The wave function proposed by Gutzwiller [32–34] reduces the amplitudes of doubly occupied

states in the Hartree-Fock ground state. It is given by

|ΨG〉 =
[

∏

i

(1− (1− g)ni↑ni↓)
]

|φ〉 . (2.7)

The wavefunction describes on-site electron correlations by making use of a projection operator

ni↑ni↓ on to the Hartree-Fock state. The parameter 1−g denotes the amplitudes of doubly occupied

states. The variational parameter g = 1 corresponds to the Hartree-Fock state, while g = 0
corresponds to the atomic state with no doubly occupied state. Varying the variational parameters

g from 1 to 0, one can choose the best amplitude of doubly occupied states for correlated electrons

on the basis of the variational principle (2.1).

Gutzwiller obtained approximately the ground state energy by making use of a quasichemical

method [34]. In the nonmagnetic state at half-filling, we obtain a simple result for the ground state

energy per atom in infinite dimensions as [34]

ǫG = −1

8
UC

(

1− U

UC

)

. (2.8)

The ground state energy increases with increasing U and becomes zero at U = UC. For U > UC,

we have a solution ǫG with g = 0. Therefore the metal-insulator transition occurs at U = UC.

Similarly, the double occupation number per atom linearly decreases with increasing U at half-

filling as

dG =
1

4

(

1− U

UC

)

, (2.9)
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and dG = 0 beyond UC. We call the state dG = 0 the Brinkman-Rice atomic state. It is therefore

realized for U > UC, i.e., in the insulating state.

The momentum distribution for the Gutzwiller wavefunction is known to be flat below and

above the Fermi level [34], and shows a jump at the Fermi level. We obtain the quasiparticle

weight according to the Fermi liquid theory as

ZG =
(

1− U2

U2
C

)

. (2.10)

Beyond UC, the jumps disappears and the distribution becomes completely flat.

2.3 Local ansatz wavefunction

The Hartree-Fock Hamiltonian neglects the charge (or spin) fluctuation {Oi} = {δni↑δni↓}
which appear in the residual interactions. An alternative way to take into account electron correla-

tions is therefore to include the Hilbert space expanded by the fluctuation {Oi}. The wavefunction

can describe the weak Coulomb interaction regime. Such a wavefunction is called the local ansatz

(LA) [51–53]. It is given by

|ΨLA〉 =
[

∏

i

(1− ηLAOi)
]

|φ〉 . (2.11)

Here ηLA is a variational parameter.

In the single-site approximation, the correlation energy per atom is given as follows [58, 59]:

ǫc(LA) =
−2ηLA〈OiH̃〉0 + η2LA〈OiH̃Oi〉0

1 + η2LA〈O2
i 〉0

. (2.12)

Each element of 〈OiH̃〉0, 〈OiH̃Oi〉0, and 〈O2
i 〉0 are expressed by the electron number 〈niσ〉0 and

the Hartree-Fock local density of states ρiσ(ǫ). Minimizing the energy ǫc(LA) with respect to the

variational parameters ηLA, we obtain

ηLA =
−〈OiH̃Oi〉0 +

√

〈OiH̃Oi〉
2

0 + 4〈OiH̃〉
2

0〈O2
i 〉0

2〈OiH̃〉0〈O2
i 〉0

. (2.13)

In the nonmagnetic state at half-filling, the double occupation number in the LA has a simple

form,

〈ni↑ni↓〉LA =
1

4

(

1− ηLA/2

1 + η2LA/16

)

. (2.14)

The momentum distribution function in the LA is expressed as

〈nkσ〉LA =
1

2
(1 + Z)f(ǫkσ) +

1

2
(1− Z)(1− f(ǫkσ)). (2.15)

Here f(ǫkσ) is the Fermi distribution function and Z is the quasipartical weight. Here ǫk is the

Fourier transform of tij . The quasipartical weight as the jumps in the momentum distribution on

the Fermi surface is obtained analytically for half-filling as follows:

ZLA = 1− η2LA/4

1 + η2LA/16
. (2.16)

The LA is suitable for the description of correlated-electron systems with a weak or intermediate

Coulomb interaction strength, while the Gutzwiller wavefunction is more suitable in the strongly

correlated region.
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2.4 Other wavefunctions methods

There are many other wavefunctions which have been proposed. Both the Gutzwiller and the

LA wavefunctions do not explicitly include the inter-site correlation operators. The wavefunction

proposed by Jastrow [40] describes the inter-site density density correlations and has the form

|ΨJ〉 = exp(−
∑

(i,j)

fijninj)|φ〉 . (2.17)

Here ni = ni↑ + ni↓ is the density operator on site i. |φ〉 represents the ground-state of non-

interacting fermions. fij =
∫

d3xd3x′|ψi(r)|2|ψj(r
′)|2f(r− r

′) is variational parameters depend-

ing on sites i and j. ψi(r) denotes the atomic wavefunction on site i and the function f(r − r
′)

is the varitional function of the displacement r − r
′. The wavefunction |ΨJ〉 describes the inter-

site long-range density-density correlations. However, the applications are limited to the weakly

correlated systems and the low-dimensional systems. Note that the Gutzwiller wavefunction is

expressed as

|ΨG〉 = eηG
∑

i ni↑ni↓ |φ〉 ∝ e
1

2
ηG

∑
i nini |φ〉 . (2.18)

where the variational parameters ηG and g are related through ηG= ln g. Therefore the on-site

Jastrow wavefunction is equivalent to the Gutzwiller wavefunction.

A wavefunction being suitable in the strong correlation regime is the Baeriswyl wavefunction

[62, 63]. It is constructed by applying a hopping operator T̂ = −∑ijσ tija
†
iσajσ onto the atomic

wavefunction |Ψ∞〉 as

|ΨB〉 = e−ηBT̂ |Ψ∞〉 . (2.19)

The operator exp(−ηBT̂ ) creates the electron hopping states from the atomic one and the varia-

tional parameter ηB controls the hopping rate to minimize the energy. The Baeriswyl wavefunction

describes well the insulator state in the strong correlated regime. However, it is not easy to describe

the metallic state.

In order to describe the doublon (doubly occupied state-holon (empty state) bound state, which

appears in the super-exchange process in the strong Coulomb interaction regime, one can consider

the wavefunction [42] as

|Ψdh〉 = e−αQ̂|ΨG〉 . (2.20)

Here Q̂ =
∑

i[d̂i
∏

τ (1 − ĥi+τ ) + ĥi
∏

τ (1 − d̂i+τ )]. d̂i = ni↑ni↓ (ĥi = (1 − ni↑)(1 − ni↓)) is the

doublon (holon) operator, and is taken over the nearest-neighbor sites. The variational parameter

controls the amplitudes of the nearest-neighbor doublon holon bound states. The ground state of

the nonlocal wavefunctions are usually calculated by means of the numerical technique called the

variational Monte Carlo method (VMC) [44, 45].

2.5 Momentum dependent local ansatz wavefunction

Most of the wavefunctions mentioned in the last section aim to describe correlated electrons

in the intermediate and strong Coulomb interaction regimes. The behavior of these wavefunctions
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in the weak Coulomb interaction regime was not discussed seriously. Kakehashi et al. [46] have

recently pointed out that the wavefunctions mentioned above do not yield the exact results in

the weak Coulomb interaction limit according to the Rayleigh-Schrödinger perturbation theory

of the wavefunction. They proposed a new wavefunction called the momentum-dependent local

ansatz (MLA) which is consistent with the perturbation theory. The MLA is a new wavefunction

which reproduces well-known results in infinite dimensions [26]. In the following subsection, we

introduce the MLA that describes exactly the correlated electrons in the weak Coulomb interaction

limit, and elucidate the results obtained by the MLA wavefunction in infinite dimensions.

2.5.1 Momentum dependent local ansatz wavefunction method

The momentum dependent local ansatz (MLA) wavefunction is constructed from the local-

ansatz (LA) wavefunction (2.11 ) so as to reproduce the result of the Rayleigh-Schrödinger pertur-

bation theory. Let us expand the LA wavefunction (2.11) in the weak Coulomb interaction limit

as

|ΨLA〉 = |φ〉+ |φ1〉LA + · · · . (2.21)

Here

|φ1〉LA = −
∑

i

∑

k1k
′
1
k2k

′
2

〈k′1|i〉〈i|k1〉〈k′2|i〉〈i|k2〉ηLAδ(a†k′
2
↓ak2↓)δ(a

†
k′
1
↑ak1↑) |φ〉 . (2.22)

〈i|k〉 = exp (−ik ·Ri)/
√
N is an overlap integral between the localized orbital on site i and Bloch

state k, and δ(a†k′σ′akσ) = a†k′σ′akσ − 〈a†k′σ′akσ〉0.
The Rayleigh-Schrödinger perturbation theory for the exact ground-state wavefunction, on the

other hand, yields the following form

|Ψ〉 = |φ〉+ |φ1〉+ · · · , (2.23)

|φ1〉 = −
∑

i

∑

k1k
′
1
k2k

′
2

〈k′1|i〉〈i|k1〉〈k′2|i〉〈i|k2〉η
(0)

k′
2
k2k

′
1
k1
δ(a†

k′
2
↓ak2↓)δ(a

†
k′
1
↑ak1↑) |φ〉 . (2.24)

The amplitude is given by

η
(0)

k′
2
k2k

′
1
k1

= −U lim
z→0

f(ǫ̃k1↑)(1− f(ǫ̃k′
1
↑))f(ǫ̃k2↓)(1− f(ǫ̃k′

2
↓))

z − ǫk′
1
↑ + ǫk1↑ − ǫk′

2
↓ + ǫk2↑

. (2.25)

Here f(ǫ) is the Fermi distribution function at zero temperature, and ǫ̃kσ = ǫkσ − µ. µ is the Fermi

level. ǫkσ is the Hartree-Fock one-electron energy eigenvalue given by ǫkσ = ǫ0 + U〈ni−σ〉0 + ǫk,

ǫk being the Fourier transform of tij .
Comparing Eq. (2.24) with Eq. (2.22), we find that one has to take into account the momentum

dependence of the variational parameters in order to reproduce the perturbation theory in the weak

Coulomb interaction limit. In the MLA, we introduce a new local ansatz operator Õi such that

Õi =
∑

k1k
′
1
k2k

′
2

〈k′1|i〉〈i|k1〉〈k′2|i〉〈i|k2〉ηk′2k2k′1k1δ(a
†
k′
2
↓ak2↓)δ(a

†
k′
1
↑ak1↑) , (2.26)

and construct a new wavefunction with momentum-dependent variational parameters {ηk′
2
k2k

′
1
k1}

as follows [46]:

|Ψ〉 =
[

∏

i

(1− Õi)
]

|φ〉 . (2.27)
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The total energy is given as

〈H〉 = 〈H〉0 +Nǫc. (2.28)

Here 〈H〉0 denotes the Hartree-Fock energy, ǫc is the correlation energy per atom. In the single-site

approximation (SSA), the correlation energy ǫc is given as follows (see Sec 3.4 in details):

ǫc =
−〈Õ†i H̃〉0 − 〈H̃Õi〉0 + 〈Õ

†
i H̃Õi〉0

1 + 〈Õ†i Õi〉0
. (2.29)

Here H̃ = H − 〈H〉0
By making use of Wick’s theorem, 〈H̃Õi〉0(= 〈Õ

†
i H̃〉

∗

0), 〈Õ
†
i H̃Õi〉0, and 〈Õ†i Õi〉0 are given by

〈H̃Õi〉0 =
U

N4

∑

k1k
′
1
k2k

′
2

ηk′
2
k2k

′
1
k1 f̃k′2k2k′1k1 , (2.30)

〈Õ†i H̃Õi〉0 =
1

N4

∑

k1k
′
1
k2k

′
2

η∗k′
2
k2k

′
1
k1
f̃k′

2
k2k

′
1
k1

[

∆Ek′
2
k2k

′
1
k1ηk′2k2k′1k1

+
U

N2

{

∑

k3k4

f(ǫ̃k3↑)f(ǫ̃k4↓)ηk′2k4k′1k3 −
∑

k′
3
k4

(1− f(ǫ̃k′
3
↑))f(ǫ̃k4↓)ηk′2k4k′3k1

−
∑

k3k
′
4

f(ǫ̃k3↑)(1− f(ǫ̃k′
4
↓))ηk′

4
κ2k

′
1
k3 +

∑

k′
3
k′
4

(1− f(ǫ̃k′
3
↑))(1− f(ǫ̃k′

4
↓))ηk′

4
k2k

′
3
k1

}]

,

(2.31)

〈Õ†i Õi〉0 =
1

N4

∑

k1k
′
1
k2k

′
2

|ηk′
2
k2k

′
1
k1 |2f̃k′2k2k′1k1 . (2.32)

Here f̃k′
2
k2k

′
1
k1 is the Fermi factor; f̃k′

2
k2k

′
1
k1 = f(ǫ̃k1↑)(1−f(ǫ̃k′1↑))f(ǫ̃k2↓)(1−f(ǫ̃k′2↓). ǫ̃kσ = ǫkσ−µ,

ǫkσ being the one-electron energy eigenvalue forH0. ∆Ek′
2
k2k

′
1
k1 = ǫk′

2
↓−ǫk2↓+ǫk′1↑−ǫk1↑ denotes

the two-particle excitation energy from the ground state |φ〉.
Minimizing the correlation energy (2.29), we obtain the self-consistent equations for {ηk′

2
k2k

′
1
k1}

in the SSA as follows:

(∆Ek′
2
k2k

′
1
k1 − ǫc)ηk′

2
k2k

′
1
k1

+
U

N2

[

∑

k3k4

f(ǫ̃k3↑)f(ǫ̃k4↓)ηk′2k4k′1k3 −
∑

k3k
′
4

f(ǫ̃k3↑)(1− f(ǫ̃k′
4
↓))ηk′

4
k2k

′
1
k3

∑

k′
3
k4

(1− f(ǫ̃k′
3
↑))f(ǫ̃k4↓)ηk′2k4k′3k1 +

∑

k′
3
k′
4

(1− f(ǫ̃k′
3
↑))(1− f(ǫ̃k′

4
↓))ηk′

4
k2k

′
3
k1

]

= U. (2.33)

It is possible to solve approximately the above equation for ηk′
2
k2k

′
1
k1 for a given ǫc. We first

note that ηk′
2
k2k

′
1
k1 should vanish in the weak U limit. Thus, we can omit the second term at the

lhs (left-hand side) of Eq. (2.33) in the weak interaction limit. Then we obtain the solution as

ηk′
2
k2k

′
1
k1 = U/(∆Ek′

2
k2k

′
1
k1 − ǫc). In the atomic limit, on the other hand, we have ∆Ek′

2
k2k

′
1
k1 = 0,
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and find a k-independent solution η. Therefore we approximate {ηk′
2
k2k

′
1
k1} in the second term with

a k-independent solution η, so that we obtain an approximate solution which interpolates between

the weak and strong Coulomb interaction regimes.

ηk′
2
k2k

′
1
k1(η̃, ǫc) =

Uη̃

∆Ek′
2
k2k

′
1
k1 − ǫc

. (2.34)

Here η̃ is a renormalization factor to be variable.

When we adopt the approximate form (2.34), we have the following inequality.

E0 ≤ E({η∗k′
2
k2k

′
1
k1
}) ≤ E({ηk′

2
k2k

′
1
k1(η, ǫc)}), (2.35)

where η∗k′
2
k2k

′
1
k1

is the exact stationary value. Therefore η̃ is again determined from the stationary

condition of the correlation energy ǫc.

η̃ =
1

1 + UC
D

. (2.36)

Here

C =
1

N6

∑

k1k
′
1
k2k

′
2

f̃k2k′2k1k′1
(∆Ek′

2
k2k

′
1
k1 − ǫc)

×
[

∑

k3k4

f(ǫ̃k3↑)f(ǫ̃k4↓)

(∆Ek′
2
k4k

′
1
k3 − ǫc)

−
∑

k′
3
k4

(1− f(ǫ̃k′
3
↑))f(ǫ̃k4↓)

(∆Ek′
2
k4k

′
3
k1 − ǫc)

−
∑

k3k
′
4

f(ǫ̃k3↑)(1− f(ǫ̃k′
4
↓))

(∆Ek′
4
k2k

′
1
k3 − ǫc)

+
∑

k′
3
k′
4

(1− f(ǫ̃k′
3
↑))(1− f(ǫ̃k′

4
↓))

(∆Ek′
4
k2k

′
3
k1 − ǫc)

]

, (2.37)

D =
1

N4

∑

k1k
′
1
k2k

′
2

f̃k2k′2k1k′1
(∆Ek′

2
k2k

′
1
k1 − ǫc)

. (2.38)

Note that η̃ in Eq. (2.36) is given as a function of ǫc, and ǫc in Eq. (2.29) depends on η̃ and ǫc. Thus

both equations are solved self-consistently. This is the self-consistent MLA which starts from the

Hartree-Fock wavefunction. The self-consistency is significant when the average electron number

deviates from half-filling.

In the numerical calculations of C, D, 〈H̃Õi〉0, 〈Õ
†
i H̃Õi〉0, and 〈Õ†i Õi〉0, the six-fold k sums

appear. This means that one has to perform the six-fold integrals in the energy representation. One

can reduce the six-fold integrals into two-fold ones by using the Laplace transformation.

1

z − ǫ4 + ǫ3 − ǫ2 + ǫ1 + ǫc
= −i

∫ ∞

0

dt ei(z−ǫ4+ǫ3−ǫ2+ǫ1+ǫc)t. (2.39)

Here z = w + iδ, and δ is an infinitesimal positive number.

For example, 〈H̃Õi〉0 is expressed by Eq. (2.30). Substituting Eq. (2.34) into Eq. (2.30), we

have the following expression with four-fold energy integrals as follows.

〈H̃Õi〉0 = 〈Õ
†
i H̃〉

∗

0

= U2η̃

∫

[

4
∏

n=1

dǫn

][

4
∏

n=1

ρ(ǫn)
]

f(ǫ̃1↑)(1− f(ǫ̃2↑))f(ǫ̃3↓)(1− f(ǫ̃4↓)

ǫ4 − ǫ3 + ǫ2 − ǫ1 − ǫc
. (2.40)
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Here ǫ̃nσ = ǫn + ǫ̃σ and ǫ̃σ = ǫ0 + U〈ni−σ〉 − µ is the atomic level measured from the chemical

potential µ, and ρ(ǫ) is the density of states for the one-electron energy eigen values of the non-

interacting system tij . Making use of the Laplace transformation (2.39), we find the following

expression given by a single time integral:

〈H̃Õi〉0 = 〈Õ
†
i H̃〉

∗

0 = iU2η̃

∫ ∞

0

dteiǫcta↑(−t)a↓(−t)b↑(t)b↓(t). (2.41)

Here aσ(t) and bσ(t) are defined by

aσ(t) =

∫

dǫe−iǫtρ(ǫ)f(ǫ+ ǫ̃σ), (2.42)

bσ(t) =

∫

dǫe−iǫtρ(ǫ)[1− f(ǫ+ ǫ̃σ)]. (2.43)

We obtain the expressions of the other matrix elements 〈Õ†i H̃Õi〉0 and 〈Õ†i Õi〉0 as follows.

〈Õ†i H̃Õi〉0 = 〈Õ
†
i H̃0Õi〉0 + U〈Õ†iOiÕi〉0, (2.44)

〈Õ†i H̃0Õi〉0 = −U2η̃2
∫ ∞

0

dtdt′eiǫc(t+t′)
[

a↑(−t− t′)b↑(t+ t′)a↓(−t− t′)b1↓(t+ t′)

− a↑(−t− t′)b↑(t+ t′)a1↓(−t− t′)b↓(t+ t′)

+ a↑(−t− t′)b1↑(t+ t′)a↓(−t− t′)b↓(t+ t′)

− a1↑(−t− t′)b↑(t+ t′)a↓(−t− t′)b↓(t+ t′)
]

, (2.45)

〈Õ†iOiÕi〉0 = −U2η̃2
∫ ∞

0

dtdt′eiǫc(t+t′)
[

a↑(−t)b↑(t+ t′)a↓(−t)b↓(t+ t′)a↑(−t′)a↓(−t′)

− a↑(−t)b↑(t+ t′)a↓(−t− t′)b↓(t)a↑(−t′)b↓(t′)
− a↑(−t− t′)b↑(t)a↓(−t)b↓(t+ t′)b↑(t

′)a↓(−t′)
+ a↑(−t− t′)b↑(t)a↓(−t− t′)b↓(t)b↑(t

′)b↓(t
′)
]

, (2.46)

〈Õ†i Õi〉0 = −U2η̃2
∫ ∞

0

dtdt′eiǫc(t+t′)a↑(−t− t′)b↑(t+ t′)a↓(−t− t′)b↓(t+ t′). (2.47)

Here aσ(t) and bσ(t) are given Eqs. (2.42) and (2.43). a1σ(t) and b1σ(t) are defined by

a1σ(t) =

∫

dǫe−iǫtǫρ(ǫ)f(ǫ+ ǫ̃σ), (2.48)

b1σ(t) =

∫

dǫe−iǫtǫρ(ǫ)[1− f(ǫ+ ǫ̃σ)]. (2.49)

12



Electron number, momentum distribution, double occupation numbers are obtained as follows:

〈ni〉 = 〈ni〉0 +
∑

σ〈Õ
†
i ñiσÕi〉0

1 + 〈Õ†i Õi〉0
, (2.50)

〈nkσ〉 = 〈nkσ〉0 +
N〈Õ†i ñkσÕi〉0
1 + 〈Õ†i Õi〉0

, (2.51)

〈ni↑ni↓〉 = 〈ni↑〉0〈ni↓〉0 + 〈ni↑ni↓〉c . (2.52)

〈ni↑ni↓〉c =
−〈Õ†iOi〉0 − 〈OiÕi〉0 + 〈Õ†iOiÕi〉0 +

∑

σ〈ni−σ〉〈Õ†i ñiσÕi〉0
1 + 〈Õ†i Õi〉0

. (2.53)

Here the second terms at the rhs (right-hand side) of the above expressions (2.50)∼ (2.52) are cor-

relation corrections. They are calculated by using Wick’s theorem and the Laplace transformation.

2.5.2 Numerical results of MLA and LA

The MLA improves the LA irrespective of the Coulomb interaction strength and the electron num-

ber. In order to demonstrate the fact, we present in this section the numerical results for the

hypercubic lattice in infinite dimensions [64]. In this case, the density of states (DOS) for the

noninteracting system is given by ρ(ǫ) = (1/
√
π) exp(−ǫ2).
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Figure 2.1: The correlation energies ǫc per atom versus Coulomb interaction energy parameter U
in the MLA (solid curve) and the LA (dashed curve) for various electron number n (Ref. [47]).

Figure 2.1 shows the correlation energy per atom as a function of U for various electron num-

bers. We verify that the ground state energy in the MLA is lower than that of the LA over all

Coulomb interactions U and electron numbers n. In particular, the small U behavior of ǫc in the

MLA is exact. For a given U , the difference between the LA and the MLA increases with increas-

ing n and becomes maximum at half-filling because the number of doubly occupied sites in the

Hartree-Fock ground state increases with increasing electron number.
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Figure 2.2: The double occupation number 〈n↑n↓〉 versus Coulomb interaction energy U curves in

the MLA (solid curve) and the LA (dotted curve) (Ref. [47]).

The double occupation number decreases with increasing interaction U irrespective of electron

number n so as to suppress the loss of Coulomb interaction energy as seen in Fig. 2.2. We find

that the MLA wavefunction gives greater reduction in the double occupancy as compared with that

of the LA.

The momentum dependence of the variational parameters causes qualitative change in the mo-

mentum distribution as shown in Fig. 2.3. The momentum distribution in the LA and the GW are

constant below and above the Fermi level as mentioned in the last section, while the distribution in

the MLA monotonically decreases with increasing energy ǫkσ below and above the Fermi level, as

it should [65].

The quasiparticle weight obtained from the jump in the momentum distribution at the Fermi

level is also much improved by taking into account the momentum dependence of variational pa-

rameters. Figure 2.4 shows the quasiparticle weight Z as a function of the Coulomb interac-

tion strength U in various methods at half-filling. The quasiparticle weight in the LA changes as

ZLA = (1−3η2LA/16)/(1+η
2
LA/16) (see Eq. (2.16)) and vanishes at Uc2(LA) = 24/

√
3π (= 7.82).

In the GW [66], the quasiparticle weight decreases as ZG = 1 − (U/Uc2)
2 (see Eq. (2.10)), and

vanishes at Uc2(GW) = 8/
√
π (= 4.51). These curves deviate strongly from the curve obtained by

the numerical renormalization group (NRG) method [65] which is considered to be the best. The

curve in the MLA on the other hand is close to the that of the NRG, and significantly improves

upon the LA, though calculated Uc2 (MLA) = 3.40 is somewhat smaller than the value Uc2 (NRG)

= 4.10.

The numerical results mentioned above indicate that the momentum dependence of the vari-

ational parameters much improves upon the LA as well as the GW in the metallic region. In

particular, this is significant in order to describe the properties associated with the low-energy

excitations.
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curves.
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Figure 2.4: Quasiparticle-weight versus Coulomb interaction curves in various theories (Ref. [47]).

The RPT-1 (Renormalized Perturbation Theory): dashed curve (Ref. [65]), the NRG: thin solid

curve (Ref. [67]), the LA: dotted curve, the MLA: solid curve, and the GW: dot-dashed curve.
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2.5.3 Alloy analogy wavefunction

The MLA describes the electron correlations in the weak Coulomb interaction limit exactly,

and much improves the LA wavefunction, as we have seen in the last section. It cannot, how-

ever, suppress sufficiently the loss of Coulomb interaction energy in the strongly correlated region.

Usual way to take into account more correlations is to expand the Hilbert space applying additional

correlators with variational parameters onto the Hartree-Fock wavefunction. In particular, the cor-

relator which suppresses the double occupancy is required in the strongly correlated regime. Such

an extension, however, would make it more difficult to treat the wavefunction analytically. An

alternative way to overcome the difficulty is to start from a wavefunction which is more suitable

for the strongly correlated electrons. In this section we consider the alloy analogy wavefunction

towards an improvement of the MLA from the latter point of view.

The Hartree-Fock approximation is exact in energy up to the first order with respect to the

Coulomb interaction energy, therefore the wavefunction is suitable as a starting state for describing

correlations in the weak and intermediate Coulomb interaction regime. However, the wavefunction

is not suitable in the strongly correlated region because it allows for the double occupation of

electrons at each site.

Hubbard proposed an alternative one-electron picture in the strong Coulomb interaction regime

[61]. Let us consider the atomic limit. There each electron number n̂iσ is a good quantum number

taking a value niσ = 0 or 1. We distinguish in this section the number operator n̂iσ with the

c-number niσ(= 0 or 1). When the electron hopping is switched on in the strongly correlated

region, an electron with spin σ should move slowly from site to site, and feel a different potential

Uni−σ = U or 0, instead of the Hartree-Fock average potential U〈n̂i−σ〉0, depending on whether the

opposite-spin electron is occupied or unoccupied on the same site. Hubbard regarded the system as

an alloy with different random potentials ǫ0+U and ǫ0 having the concentration 〈n̂i−σ〉 (occupied)

and 1 − 〈n̂i−σ〉 (unoccupied), respectively. This is the alloy-analogy (AA) picture for strongly

correlated electrons.

The AA Hamiltonian is given by

HAA =
∑

iσ

(ǫ0 + Uni−σ)n̂iσ +
∑

ijσ

tija
†
iσajσ − U

∑

i

(ni↑〈n̂i↓〉AA + ni↓〈n̂i↑〉AA)

+ U
∑

i

〈n̂i↑〉AA〈n̂i↓〉AA. (2.54)

Here 〈∼〉AA denotes the AA average 〈φAA|(∼)|φAA〉 with respect to the ground state wavefunction

|φAA〉 of the AA Hamiltonian HAA. niσ is a c-number taking a value 0 or 1. Each configuration

{niσ} is considered as a snapshort in time development.

The ground state energy E0 satisfies the following inequality for any configuration of {niσ}.

E0 ≤ 〈H〉AA = 〈HAA〉AA. (2.55)

Thus, when we take the configurational average on {niσ}, we have

E0 ≤ 〈H〉AA. (2.56)

Here the upper bar denotes the configurational average.

The configurational averages of various quantities can be obtained with use of the single-site

approximation (SSA) called the coherent potential approximation (CPA) [68–70]. Note that the
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averaged electron number is obtained from the local density of state (LDOS) for an electron with

spin σ, i.e., ρiσ(ǫ), as follows:

〈n̂iσ〉AA =

∫

f(ǫ)ρiσ(ǫ)dǫ, (2.57)

and the LDOS is obtained from the one-electron Green function as

ρiσ(ǫ) = −
1

π
ImGiiσ(z). (2.58)

The Green function Giiσ(z) is defined by

Giiσ(z) = [(z −Hσ)
−1]ii. (2.59)

Here (Hσ)ij is the one-electron Hamiltonian matrix for the AA Hamiltonian minus chemical po-

tential µ.

In the CPA, we replace the random potential at the surrounding sites with an energy-dependent

coherent potential Σσ(z) . The on-site impurity Green functionGiiσ(z) is then obtained as follows:

Giiσ(z) =
1

Fσ(z)−1 − ǫiσ + Σσ(z)
. (2.60)

Here ǫiσ = ǫ0 − µ + Uni−σ. Fσ(z) is the on-site Green function for the coherent system in which

all the random potentials have been replaced by the coherent potentials.

Fσ(z) =

∫

ρ(ǫ)dǫ

z − Σσ(z)− ǫ
. (2.61)

Note that ρ(ǫ) is the DOS per site per spin for the non-interacting system. The coherent potential

Σσ(z) is determined from the self-consistent condition:

G00σ(z) = Fσ(z). (2.62)

The configurational average of the impurity Green function is given as

G00σ(z) =
〈n̂i−σ〉AA

Fσ(z)−1 − ǫ0 + µ− U + Σσ(z)
+

1− 〈n̂i−σ〉AA

Fσ(z)−1 − ǫ0 + µ+ Σσ(z)
. (2.63)

The ground state wavefunction φAAfor the alloy-analogy Hamiltonian (2.54) provides us with a

good starting wave function for the strongly correlated electrons, though such a wavefunction

depends on electron configuration {niσ} via atomic potentials.

2.5.4 MLA with hybrid wavefunction

We can improve the MLA correlated wavefunction using the best starting wavefunction. The

Hartree-Fock (HF) wavefunction |φHF〉 (=|φ〉 ) works best in the weakly correlated region. In the

strongly correlated region the alloy-analogy (AA) wavefunction |φAA〉 works better. Therefore we

introduce a hybrid (HB) wavefunction |φHB〉 which is the ground state of a hybrid Hamiltonian

HHB. The Hamiltonian is defined by a linear combination of the HF and AA Hamiltonians [49]:

HHB =
∑

iσ

(Ū〈ni−σ〉HB + Ũni−σ)n̂iσ +
∑

ijσ

tija
†
iσajσ

− (Ū − Ũ)
∑

i

〈n̂i↑〉HB〈n̂i↓〉HB − Ũ
∑

i

(ni↑〈n̂i↓〉HB + ni↓〈n̂i↑〉HB). (2.64)
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Here 〈∼〉HB denotes the HB average 〈φHB|(∼)|φHB〉, Ū = (1−w)U , and Ũ = wU . w is the weight

in the linear combination; HHB = (1 − w)HHF + wHAA, where HHF denotes the Hartree-Fock

Hamiltonian. HHB reduces to the HF (AA) Hamiltonian when w = 0 (w = 1).
The new MLA with the HB wavefunction is given by

|Ψ〉 =
[

∏

i

(1− Õi)
]

|φHB〉. (2.65)

The local operators {Õi} have been modified as follows:

Õi =
∑

κ1κ
′
1
κ2κ

′
2

〈κ′1|i〉〈i|κ1〉〈κ′2|i〉〈i|κ2〉ηκ′
2
κ2κ

′
1
κ1
δ(a†

κ′
2↓

aκ2↓
)δ(a†

κ′
1↑

aκ1↑
) . (2.66)

Here ηκ′
2
κ2κ

′
1
κ1

is a variational parameter, a†κσ and aκσ are the creation and annihilation operators

which diagonalize the Hamiltonian HHB (2.64), and 〈κ|i〉 are overlap integrals defined by aκσ =
∑

i aiσ〈κ|i〉. Furthermore δ(a†κ′σaκσ) = a†κ′σaκσ − 〈a
†
κ′σaκσ〉HB.

The ground state energy E0 again satisfies the following inequality for any wavefunction |Ψ〉.

E0 ≤ 〈H〉HB +Nǫc. (2.67)

The correlation energy per atom ǫc in the single-site approximation (SSA) is obtained as follows.

ǫc =
−〈Õ†i H̃〉HB − 〈H̃Õi〉HB + 〈Õ†i H̃Õi〉HB

1 + 〈Õ†i Õi〉HB

. (2.68)

Here H̃ = H − 〈H〉HB

The energy elements 〈H̃Õi〉HB ,〈Õ†i H̃Õi〉HB, and 〈Õ†i Õi〉HB are given by

〈H̃Õi〉HB = U
∑

κ1κ
′
1
κ2κ

′
2

|〈κ′1|i〉|2|〈κ1|i〉|2|〈κ′2|i〉|2|〈κ2|i〉|2ηκ′
2
κ2κ

′
1
κ1
f̃κ′

2
κ2κ

′
1
κ1
, (2.69)

〈Õ†i H̃Õi〉HB =
∑

κ1κ
′
1
κ2κ

′
2

|〈κ′1|i〉|2|〈κ1|i〉|2|〈κ′2|i〉|2|〈κ2|i〉|2

× η∗κ′
2
κ2κ

′
1
κ1
f̃κ′

2
κ2κ

′
1
κ1

[

∆Eκ′
2
κ2κ

′
1
κ1
ηκ′

2
κ2κ

′
1
κ1

+ U
{

∑

κ3κ4

|〈κ3|i〉|2|〈κ4|i〉|2f(ǫ̃κ3↑)f(ǫ̃κ4↓)ηκ′
2
κ4κ

′
1
κ3

−
∑

κ′
3
κ4

|〈κ′3|i〉|2|〈κ4|i〉|2(1− f(ǫ̃κ′
3
↑))f(ǫ̃κ4↓)ηκ′

2
κ4κ

′
3
κ1

−
∑

κ3κ
′
4

|〈κ3|i〉|2|〈κ′4|i〉|2f(ǫ̃κ3↑)(1− f(ǫ̃κ′
4
↓))ηκ′

4
κ2κ

′
1
κ3

+
∑

κ′
3
κ′
4

|〈κ′3|i〉|2|〈κ′4|i〉|2(1− f(ǫ̃κ′
3
↑))(1− f(ǫ̃κ′

4
↓))ηκ′

4
κ2κ

′
3
κ1

}]

, (2.70)

〈Õ†i Õi〉HB =
∑

κ1κ
′
1
κ2κ

′
2

|〈κ′1|i〉|2|〈κ1|i〉|2|〈κ′2|i〉|2|〈κ2|i〉|2|ηκ′
2
κ2κ

′
1
κ1
|2f̃κ′

2
κ2κ

′
1
κ1
. (2.71)
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Here f̃κ′
2
κ2κ

′
1
κ1

is the Fermi factor; f̃κ′
2
κ2κ

′
1
κ1

= f(ǫ̃κ1↑)(1 − f(ǫ̃κ′
1
↑))f(ǫ̃κ2↓)(1 − f(ǫ̃κ′

2
↓). ǫ̃κσ =

ǫκσ−µ, ǫκσ being the one-electron energy eigenvalue forHHB. ∆Eκ′
2
κ2κ

′
1
κ1

= ǫκ′
2
↓−ǫκ2↓+ǫκ′

1
↑−ǫκ1↑

denotes the two-particle excitation energy from the ground state |φHB〉.
From the stationary condition δǫc = 0, we obtain the self-consistent equations for {ηκ′

2
κ2κ

′
1
κ1
},

and again obtain an approximate form variational parameters

ηκ′
2
κ2κ

′
1
κ1
(η̃, ǫc) =

Uη̃

∆Eκ′
2
κ2κ

′
1
κ1
− ǫc

. (2.72)

Substituting the above expression into 〈H̃Õi〉HB ,〈Õ†i H̃Õi〉HB, and 〈Õ†i Õi〉HB, we have the

forms such as 〈H̃Õi〉HB = 〈Õ∗i H̃〉HB = ÃU2η̃, 〈Õ†i H̃Õi〉HB = B̃U2η̃2, and 〈Õ†i Õi〉HB = C̃U2η̃2.

Minimizing the energy ǫc with respect to η̃, we obtain

η̃ =
−B̃ +

√

B̃2 + 4Ã2C̃U2

2ÃC̃U2
. (2.73)

The total energy should be obtained by taking the configurational average as

〈H〉 = 〈H〉HB +Nǫc. (2.74)

The HB ground state energy is given by

〈H〉HB = nµ+
∑

σ

∫ 0

−∞

ǫρiσ(ǫ)dǫ

− (Ū − Ũ)〈n̂i↑〉HB〈n̂i↓〉HB − Ũ(ni↑n̂i↓〉HB + ni↓n̂i↑〉HB). (2.75)

Here ρiσ(ǫ) is the local density of states (LDOS). It is obtained from the one-electron Green func-

tion

ρiσ(ǫ) = −
1

π
ImGiiσ(z), (2.76)

and the Green function Giiσ(z) is defined by Eq. (2.59), in which Hσ has been replaced by the

one-electron Hamiltonian matrix for the HB Hamiltonian (2.64); (Hσ)ij = (ǫ0−µ+ Ū〈n̂i−σ〉HB+
Ũni−σ)δij + tij(1− δij). The average electron number 〈n̂iσ〉HB is given by the LDOS as

〈n̂iσ〉HB =

∫

f(ǫ)ρiσ(ǫ)dǫ. (2.77)

Since the HB Hamiltonian contains a random potential and the energy 〈H〉HB is given by the

LDOS, we can calculate the ground state energy by means of the alloy-analogy approximation,

(i.e., the CPA) as explained in the last subsection. In the CPA, we replace the random potentials

at the surrounding sites with a coherent potential Σσ(z). The on-site impurity Green function is

obtained as follows:

Giiσ(z) =
1

Fσ(z)−1 − ǫ0 + µ− Ū〈n̂i−σ〉HB − Ũni−σ + Σσ(z)
. (2.78)

Here Fσ(z) is the coherent Green function given by Eq. (2.61).
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The self-consistent condition to determine the coherent potential Σσ(z) is given by Eq. (2.62).

However, Giiσ(z) for the HB potential fully depends on the 4 local configurations α = (ni↑, ni↓) via

the Hartree-Fock type potential Ū〈n̂i−σ〉HB in the denominator. Thus the configurational average

of G00σ is given by

G00σ =
∑

α

PαG
α
00σ(z). (2.79)

Here Pα is the probability when taking a configuration α. Note that instead of the configurations

α = 00, 10, 01, 11, one can make use of an alternative notation ν = 0 (empty on a site), 1 ↑
(occupied by an electron with spin↑), 1 ↓(occupied by an electron with spin ↓), and 2 (occupied

by 2 electrons). In this notation, we can express Pα as P0, P1↑, P1↓, and P2. The impurity Green

functions Gα
00σ(z) are given as follows:

G00
00σ(z) =

1

Fσ(z)−1 − ǫ0 + µ− Ū〈n̂−σ〉00 + Σσ(z)
, (2.80)

G10
00↑(z) =

1

Fσ(z)−1 − ǫ0 + µ− Ū〈n̂↓〉10 + Σσ(z)
, (2.81)

G10
00↓(z) =

1

Fσ(z)−1 − ǫ0 + µ− Ū〈n̂↑〉10 − Ũ + Σσ(z)
, (2.82)

G01
00↑(z) =

1

Fσ(z)−1 − ǫ0 + µ− Ū〈n̂↓〉01 − Ũ + Σσ(z)
, (2.83)

G01
00↓(z) =

1

Fσ(z)−1 − ǫ0 + µ− Ū〈n̂↑〉01 + Σσ(z)
, (2.84)

G11
00↑(z) =

1

Fσ(z)−1 − ǫ0 + µ− Ū〈n̂−σ〉11 − Ũ + Σσ(z)
. (2.85)

and the electron number for a given configuration in the denominators is given by

〈n̂σ〉α =

∫

f(ǫ)ρασ(ǫ)dǫ, (2.86)

ρασ(ǫ) = −
1

π
ImGα

00σ(z). (2.87)

The above expressions mean that the electron numbers 〈n̂σ〉α have to be solved self-consistently

for a given configuration with probabilities {Pα} and for an effective medium Σσ(z). The latter is

obtained from the CPA Eq. (2.62).

The third and last terms at the rhs of Eq. (2.75) are calculated in the SSA as follows:

〈n̂i↑〉HBn̂i↓〉HB =
∑

α

Pα〈n̂i↑〉α〈n̂i↓〉α, (2.88)

20



∑

σ

niσ〈n̂i−σ〉HB =
∑

σ

∑

α

Pαn
α
σ〈n̂−σ〉α. (2.89)

Here nα
↑ = 0, 1, 0,1 and nα

↓= 0, 0, 1,1 for α= 00, 10, 01, 11, respectively.

The on-site probability satisfies the sum rule P0 + P1↑ + P1↓ + P2= 1, and the probability of

finding an electron with spin ↑ ( ↓) on a site is given by P↑(↓) = P1↑(1↓) + P2. Therefore, P0, P1↑,

and P1↓are given by the probability P2 in the paramagnetic state.

An approximate form of P2 for the hybrid wavefunction is derived as follows. We have two

kinds of approximate expressions for the operator n̂↑n̂↓ according to the alloy-analogy (AA) and

Hartree-Fock (HF) approximation.

n̂↑n̂↓ ≈ n↑n̂↓ + n↓n̂↑ − n↑n↓ (AA), (2.90)

n̂↑n̂↓ ≈ n̂↑〈n̂↓〉HB + n̂↓〈n̂↑〉HB − 〈n̂↑〉HB〈n̂↓〉HB (HF). (2.91)

In the HB scheme, we superpose the above expressions with the weights w and 1−w, respectively.

Taking the quantum mechanical and configurational average, we obtain an approximate form of

P2(= 〈n̂↑n̂↓〉). Then, we have the term w〈n↑n↓〉+ (1−w)〈n̂↑〉HB〈n̂↓〉HB at the rhs, which may be

again regarded as the probability P2 in the HB scheme. Thus we obtain an approximate form of P2

as follows:

P2 =
1

2
w(n↑〈n̂↓〉HB + n↓〈n̂↑〉HB) + (1− w)〈n̂↑〉HB〈n̂↓〉HB. (2.92)

Since the rhs of Eq. (2.92) is given by Eqs. (2.88) and (2.89), we can self-consistently obtain the

probabilities {Pα}.
Finally, the correlation energy ǭc is obtain as

ǭc =
∑

α

Pαǫcα. (2.93)

Here ǫcα denotes the correlation energy for a given on-site configuration α.

ǫcα =
[−〈Õ†i H̃〉HB − 〈H̃Õi〉HB + 〈Õ†i H̃Õi〉HB

1 + 〈Õ†i Õi〉HB

]

α
. (2.94)

The quantities 〈H̃Õi〉HB, 〈Õ†i H̃Õi〉HB, and 〈Õ†i Õi〉HB are expressed by the LDOS for the HB

Hamiltonian, therefore the correlation energy ǫcα is obtained from the LDOS ρασ(ǫ) in the single-

site CPA.

The double occupation number is obtained from ∂〈H〉/∂U . Making use of the SSA, we obtain

〈n̂↑n̂↓〉 = 〈n̂↑〉HB〈n̂↓〉HB + 〈n̂↑n̂↓〉c. (2.95)

Here 〈n̂↑〉HB〈n̂↓〉HB has been obtained in Eq. (2.88), and the correlation correction 〈n̂↑n̂↓〉c is given

by

〈n̂↑n̂↓〉c =
∑

α

Pα〈n̂↑n̂↓〉cα. (2.96)
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Here 〈n̂↑n̂↓〉cα is the correlation correction for a given configuration α, and is given by Eq. (2.53)

in which the operator Õi has been replaced by Eq. (2.66) and the average 〈∼〉 has been replaced

by 〈∼〉HB.

The momentum distribution 〈nkσ〉 is obtained from ∂〈H〉/∂(ǫk − σh) as follows:

〈nkσ〉 = 〈nkσ〉HB + 〈nkσ〉c. (2.97)

Here 〈nkσ〉HB is the momentum distribution in the hybrid state.

〈nkσ〉HB =

∫

f(ǫ)ρkσ(ǫ)dǫ, (2.98)

ρkσ(ǫ) = −
1

π
ImFkσ. (2.99)

The Green function in the momentum representation is given in the CPA as follows:

Fkσ =
1

z − Σσ(z)− ǫk
. (2.100)

Here ǫk is the eigenvalue of tij with momentum k.

The correlation correction 〈nkσ〉c is given as follows:

〈nkσ〉c =
∑

α

Pα〈nkσ〉cα. (2.101)

Here 〈nkσ〉cα is the correlation correction for the configuration α, and is given by the second term

at the rhs of Eq. (2.50) in which Õi has been replaced by Eq. (2.66) and the average 〈∼〉 has been

replaced by 〈∼〉HB.

2.5.5 Numerical results of MLA with hybrid wavefunction

The MLA with HB wavefunction improves further for the description of electron correlations in

the strongly correlated region. One can verify the fact by means of some numerical calculations in

infinite dimensions. The ground state energy in the MLA-HB was obtained by varying w from 0

to 1 for each value of U . Figure 2.5 shows the ground state energy obtained by various methods on

the hypercubic lattice in infinite dimensions at half-filling. The energy in the LA monotonically in-

creases with increasing Coulomb interaction energy and becomes positive beyond U = 3.4 because

it does not suppress sufficiently the double occupancy in the strongly correlated region.

The ground state energy in the GW is lower than that of the LA, and approaches zero at Uc

(GW) = 4.51 with increasing Coulomb interaction. The Brinkman-Rice atomic state is realized

beyond Uc (GW). The ground state energy of the MLA-HB is the lowest among three wavefunc-

tions over all Coulomb interactions U . Note that there is a cusp in the energy versus U curve at Uc

(MLA) = 2.81. The Fermi-liquid ground state with w = 0 is obtained below Uc (MLA), while the

disordered local moment solution with infinitesimal w is stabilized beyond Uc (MLA) [49].

As shown in Fig. 2.6, the double occupation number 〈n↑n↓〉 in the GW linearly decreases with

increasing U according to Eq. (2.9). In the case of the LA, it monotonically decreases according

to Eq. (2.14). The double occupation number in the MLA-HB is lower than that in the LA and

GW in the weak Coulomb interaction regime and jumps from 0.106 to 0.045 at Uc (MLA) = 2.81,
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Figure 2.5: The energy versus Coulomb interaction energy U curves in the MLA-HB (solid curve),

the GW (thin solid curve), and the LA (dotted curve) at half-filling (n = 1.0) (Ref. [49]).
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Figure 2.6: The double occupation 〈n↑n↓〉 number versus Coulomb interaction energy U curves in

the MLA-HB (solid curve), the GW (dotted curve), and the LA (dot-dashed curve) at half-filling

(n = 1.0) (Ref. [49]).
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energy parametersU=1.0, 2.0, 2.81,4.0, and 5.0 at half-filling (n = 1.0) (Ref. [49]). The MLA: solid

curves, the LA: dashed curves.

indicating the metal-insulator transition. Beyond Uc (MLA), it again monotonically decreases with

increasing U . Note that the double occupancy in the MLA-HB remains finite in the strong U
regime as it should be, while the GW gives the Brinkman-Rice atom, because the MLA takes into

account the electron hopping from the atomic state.

The momentum distribution in the MLA-HB has the same behavior as the MLA-HF in the

metallic region; it decreases monotonically with increasing energy ǫkσ and shows a jump at the

Fermi level, while it disappears beyond Uc (MLA) as shown in Fig. 2.7. With further increase

of U , the curve becomes flatter. These results indicate that the MLA-HB improves upon the GW.

Note that the distributions in the GW are constant below and above the Fermi level irrespective of

U . The quasiparticle weight in the MLA-HB is the same as in the MLA-HF in the metallic region

(see Fig. 2.4). With the metal-insulator transition at Uc (MLA) = 2.81, it disappears. The existence

of the first-order transition at U = Uc is in agreement with the result of the NRG [67], though Uc

in the NRG has not yet been published.
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Chapter 3

First-Principles Momentum Dependent

Local Ansatz Wavefunction

In the last chapter we discussed recent development of wavefunction method. Most of the

wavefunction methods do not reduce to the exact Rayleigh-Schrödinger perturbation theory in the

weak interaction limit. In this chapter we introduce the tight-binding LDA+U Hamiltonian, and

construct the first-principles momentum dependent local ansatz wavefunction (MLA). Within the

single-site approximation (SSA), we derive the correlation energy, the self-consistent equations for

variational parameters, and other physical quantities.

3.1 Tight-binding LDA+U Hamiltonian

We consider the transition-metal system with an atom in the unit cell for simplicity, and adopt

the first-principles LDA+U Hamiltonian, which is based on the tight-binding linear muffin-tin

orbital method. [27, 31]

H = H1 +H2 . (3.1)

H1 and H2 denote the non-interacting and interacting parts of the Hamiltonian H . The former is

given by

H1 =
∑

iLσ

ǫ0L n̂iLσ +
∑

iLjL
′
σ

tiLjL′ a†iLσ ajL′
σ . (3.2)

Here ǫ0L is the atomic level of orbital L on site i. tiLjL′ is the transfer integral between iL and jL′.

L = (l,m) denotes the s (l = 0), p (l = 1), and d (l = 2) orbitals. a†iLσ(aiLσ) is the creation

(annihilation) operator for an electron on site i with orbital L and spin σ, and n̂iLσ = a†iLσaiLσ is

the number operator. The atomic level ǫ0L in H1 is calculated from the LDA atomic level ǫL by

subtracting the double counting potential as ǫ0L = ǫL − ∂EU
LDA/∂niLσ. Here niLσ is the charge

density at the ground-state, EU
LDA is a LDA functional for the intra-atomic Coulomb interactions.

In the LDA+U Hamiltonian we assume that the sp electrons are well described by the LDA

in the band theory, and take into account only on-site Coulomb interactions between d (l = 2)
electrons, so that the interaction part H2 in Eq. (3.1) is expressed as follows.

H2 =
∑

i

[

∑

m

Umm n̂ilm↑ n̂ilm↓ +
∑

(m,m′)

(

Umm′ − 1

2
Jmm′

)

n̂ilm n̂ilm′ − 2
∑

(m,m′)

Jmm′ ŝilm · ŝilm′

]

.

(3.3)
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Here Umm (Umm′) and Jmm′ denote the intra-orbital (inter-orbital) Coulomb and exchange in-

teractions between d electrons, respectively. n̂ilm (ŝilm) with l = 2 is the charge (spin) den-

sity operator for d electrons on site i and orbital m. The operator ŝiL is defined as ŝiL =
∑

γγ′ a
†
iLγ(σ)γγ′ aiLγ′/2. σ denotes the Pauli spin matrices.

We note that the charge and spin fluctuations are defined as follows.

δn̂ilm↑δn̂ilm↓ = n̂ilm↑n̂ilm↓ − 〈nilm↑〉0n̂ilm↓ − 〈nilm↓〉0n̂ilm↑ + 〈nilm↑〉0〈nilm↓〉0, (3.4)

δn̂ilmδn̂ilm′ = n̂ilmn̂ilm′ − 〈nilm〉0n̂ilm′ − 〈nilm′〉0n̂ilm + 〈nilm〉0〈nilm′〉0, (3.5)

δŝilm · δŝilm′ = ŝilm · ŝilm′ − 〈silm〉0 · ŝilm′ − 〈silm′〉0 · ŝilm + 〈silm〉0 · 〈silm′〉0. (3.6)

Here δA for an operator A is defined by δA = A − 〈A〉0, 〈∼〉0 being the average in the Hartree-

Fock approximation. Using the above relations, we can rewrite the Hamiltonian H as the sum of

the Hartree-Fock Hamiltonian H0 and the residual interactions HI.

H = H0 +HI. (3.7)

The Hartree-Fock Hamiltonian H0 is obtained as

H0 =
∑

iLσ

(

ǫ0iL +
[

Umm〈nilm−σ〉0 +
∑

m′ 6=m

(Umm′ − 1

2
Jmm′)〈nilm〉0

− 1

2

∑

m′ 6=m

Jmm′〈milm′〉0σ
]

δld

)

n̂iLσ +
∑

iLjL′σ

tiLjL′a†iLσ ajL′
σ

−
∑

im

Umm〈nidm↑〉0〈nidm↓〉0 −
∑

i

∑

(m,m′)

(Umm′ − 1

2
Jmm′)〈nidm〉0〈nidm〉0

+ 2
∑

i

∑

(m,m′)

Jmm′〈silm〉0 · 〈silm′〉0 . (3.8)

The last three parts are known as the double counting (d.c.) terms.

The residual interaction HI is given by

HI =
∑

i

[

∑

L

U
(0)
LL O

(0)
iLL +

∑

(L,L′)

U
(1)
LL′ O

(1)
iLL′ +

∑

(L,L′)

U
(2)
LL′ O

(2)
iLL′

]

. (3.9)

The first term denotes the intra-orbital interactions, the second term is the inter-orbital charge-

charge interactions, and the third term expresses the inter-orbital spin-spin interactions, respec-

tively. The Coulomb interaction energy parameters U
(α)
LL′ are defined by ULLδLL′ (α = 0), ULL′ −

JLL′/2 (α = 1), and −2JLL′ (α = 2), respectively. The two-particle operators O
(0)
iLL, O

(1)
iLL′ , and

O
(2)
iLL′ are defined by

O
(0)
iLL = δn̂ilm↑ δn̂ilm↓ , (3.10)

O
(1)
iLL′ = δn̂ilm δn̂ilm′ , (3.11)

O
(2)
iLL′ = δŝilm · δŝilm′ . (3.12)
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3.2 Wavefunction in the weak Coulomb interaction limit

We clarify here the exact form of the wavefunction in the weak Coulomb interaction limit on

the basis of the Rayleigh-Schrödinger perturbation theory.

The eigen-value equation for the ground-state is given by

H|Ψ〉 = E|Ψ〉. (3.13)

The Hamiltonian H is expressed as the sum of the Hartree-Fock Hamiltonian H0 and the residual

interaction HI.

H = H0 +HI. (3.14)

The zeroth-order Hartree-Fock eigenvalues and the eigenfunctions are obtained from the eigen-

value equation as follows.

H0|φn〉 = E(0)
n |φn〉. (3.15)

The energy eigen-value E
(0)
n is given by

E(0)
n =

∑

νkσ

ǫkνσn̂kνσ − d.c. (3.16)

Here ǫkνσ is the Hartree-Fock one electron energy eigenvalue with momentum k, band index ν, and

spin σ. The second term ′d.c.′ at the rhs of Eq. (3.16) denotes the Hartree-Fock double counting

term as found in Eq. (3.8). The wavefunction |φn〉 is given by

|φn〉 =
[

∏

kν

(a†kν↑)
nkν↑

][

∏

kν

(a†kν↓)
nkν↓

]

|0〉. (3.17)

Here we assume that |φ0〉 is the ground state of H0, and E
(0)
0 is the Hartree-Fock ground-state

energy.

According to the Rayleigh-Schrödinger perturbation theory for the nondegenerate ground-state,

the wavefunction is given as follows.

|Ψ〉 = |ψ0〉+ |ψ1〉+ · · ·

= |φ0〉 −
∑

n 6=0

|φn〉
〈φn|HI |φ0〉
E

(0)
n − E

(0)
0

+ · · · . (3.18)

The ground-state energy is obtained as

E =E(0) + E(1) + · · ·
= E

(0)
0 + 〈φ0|HI |φ0〉+ · · · . (3.19)

The zeroth-order energy is given by

E
(0)
0 =

occ
∑

kνσ

ǫνkσ −
∑

im

Umm〈nidm↑〉0〈nidm↓〉0

−
∑

i

∑

(m,m)

(Umm′ − 1

2
Jmm′)〈nidm〉0〈nidm′〉0 + 2

∑

i

∑

(m,m)

Jmm′〈silm〉0 · 〈silm′〉0. (3.20)
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The first-order correction vanishes as follows.

E(1) = 〈φ0|HI |φ0〉
=
∑

i

[

∑

L

U
(0)
LL 〈O

(0)
iLL〉0 +

∑

(L,L′)

U
(1)
LL′ 〈O(1)

iLL′〉0 + 2
∑

(L,L′)

U
(2)
LL′ 〈O(2)

iLL′〉0
]

= 0 , (3.21)

since 〈O(0)
iLL〉0 = 〈O

(1)
iLL′〉0 = 〈O(2)

iLL′〉0 = 0.

The first-order correction to the wavefunction is expressed as

|ψ1〉 = lim
z→0

∑

n 6=0

1

z − E
(0)
n + E

(0)
0

|φn〉〈φn|HI |φ0〉. (3.22)

Because 〈φ0|HI |φ0〉 = 0, Eq. (3.22) is expressed as follows.

|ψ1〉 = lim
z→0

1

z − H̃0

HI |φ0〉. (3.23)

Here H̃0 = H0 − 〈H〉0.
Now assume that {χiL(r)} is an orthogonal basis set consisting of the local orbitals with L on

site i and {ψknσ(r)} are the Hartree-Fock one-electron energy eigenfunction with momentum k,

band index n, and spin σ. The field operator ϕσ(r) is then expressed as follows

ϕσ(r) =
∑

iL

aiLσχiL(r) =
∑

kn

aknσψknσ(r). (3.24)

Here aknσ is the annihilation operator for the electron with momentum k, band index n, and spin

σ. They are defined as

aknσ =
∑

iL

aiLσ〈kn|iL〉σ, (3.25)

ψknσ(r) =
∑

iL

χiL(r)〈iL|kn〉σ, (3.26)

and

〈iL|kn〉σ = uLnσ(k)
1√
N
e−ik·Ri . (3.27)

Here uLnσ(k) is the eigen vector at a given k point. We also assumed one atom per unit cell for

simplicity.

Using the relations (3.25), the intra-orbital, inter-orbital charge-charge and inter-orbital spin-

spin operator are expressed in the momentum representation as follows.

O
(0)
iLL = δn̂idm↑δn̂idm↓

=
∑

{kn}

〈k′1n′1|iL〉↑〈iL|k1n1〉↑〈k′2n′2|iL〉↓〈iL|k2n2〉↓

× δ(a†
k′
2
n′
2
↓ak2n2↓)δ(a

†
k′
1
n′
1
↑ak1n1↑), (3.28)
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O
(1)
iLL′ = δn̂idmδn̂idm′

=
∑

{knσ}

〈k′1n′1|iL′〉σ〈iL′|k1n1〉σ〈k′2n′2|iL〉σ′〈iL|k2n2〉σ′

× δ(a†
k′
2
n′
2
σ′ak2n2σ′)δ(a†

k′
1
n′
1
σ
ak1n1σ), (3.29)

O
(2)
iLL′ = δŝidm · δŝidm′

=
∑

{knσ}

〈k′1n′1|iL′〉σ′〈iL′|k1n1〉σ〈k′2n′2|iL〉σ′′′〈iL|k2n2〉σ′′

× 1

4
(σ)σσ′(σ)σ′′′σ′′δ(a†

k′
2
n′
2
σ′′′ak2n2σ′′)δ(a†

k′
1
n′
1
σ′ak1n1σ). (3.30)

Note that the last part of the rhs of the above equation is written as

1

4
(σ)σσ′ · (σ)σ′′′σ′′δ(a†

k′
2
n′
2
σ′′′ak2n2σ′′)δ(a†

k′
1
n′
1
σ′ak1n1σ)

=
1

2
δσ′↑δσ↓δσ′′′↓δσ′′↑δ(a

†
k′
2
n′
2
↓ak2n2↑)δ(a

†
k′
1
n′
1
↓ak1n1↑)

+
1

2
δσ′↓δσ↑δσ′′′↑δσ′′↓δ(a

†
k′
2
n′
2
↑ak2n2↓)δ(a

†
k′
1
n′
1
↑ak1n1↓)

+
1

4
σσ′′δ(a†

k′
2
n′
2
σ′′ak2n2σ′′)δ(a†

k′
1
n′
1
σ
ak1n1σ). (3.31)

Substituting Eq. (3.31) into Eq. (3.30), we obtain

O
(2)
iLL′ =

∑

{knσ}

〈k′1n′1|iL′〉σ′〈iL′|k1n1〉σ〈k′2n′2|iL〉σ′′′〈iL|k2n2〉σ′′

× 1

2

[

δσ′↑δσ↓δσ′′′↓δσ′′↑δ(a
†
k′
2
n′
2
↓ak2n2↑)δ(a

†
k′
1
n′
1
↓ak1n1↑)

+ δσ′↓δσ↑δσ′′′↑δσ′′↓δ(a
†
k′
2
n′
2
↑ak2n2↓)δ(a

†
k′
1
n′
1
↑ak1n1↓)

+
1

2
σσ′′δ(a†

k′
2
n′
2
σ′′ak2n2σ′′)δ(a†

k′
1
n′
1
σ
ak1n1σ)

]

. (3.32)

Substituting Eq. (3.9) with Eqs. (3.28), (3.29), and (3.32) into Eq. (3.23), and using Eqs. (3.16)
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and (3.20), we obtain the first-order correction of the wavefunction as follows.

|ψ1〉 =
∑

i

[

∑

L

∑

{kn}

〈k′1n′1|iL〉↑〈iL|k1n1〉↑〈k′2n′2|iL〉↓〈iL|k2n2〉↓

× ηLk′
2
n′
2
k2n2k

′
1
n′
1
k1n1

δ(a†
k′
2
n′
2
↓ak2n2↓)δ(a

†
k′
1
n′
1
↑ak1n1↑)|φ0〉

+
∑

(L,L′)

∑

{kn}

∑

σσ′

〈k′1n′1|iL′〉σ〈iL′|k1n1〉σ〈k′2n′2|iL〉σ′〈iL|k2n2〉σ′

× ζ
(σ′σ)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

δ(a†
k′
2
n′
2
σ′ak2n2σ′)δ(a†

k′
1
n′
1
σ
ak1n1σ)|φ0〉

−
∑

(L,L′)

∑

{kn}

[

〈k′1n′1|iL′〉↑〈iL′|k1n1〉↓〈k′2n′2|iL〉↓〈iL|k2n2〉↑

× ξ
(+)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

δ(a†
k′
2
n′
2
↓ak2n2↑)δ(a

†
k′
1
n′
1
↑ak1n1↓)|φ0〉

+ 〈k′1n′1|iL′〉↓〈iL′|k1n1〉↑〈k′2n′2|iL〉↑〈iL|k2n2〉↓
× ξ

(−)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

δ(a†
k′
2
n′
2
↑ak2n2↓)δ(a

†
k′
1
n′
1
↓ak1n1↑)|φ0〉

+
1

2

∑

σσ′′

σσ′′〈k′1n′1|iL′〉σ〈iL′|k1n1〉σ〈k′2n′2|iL〉σ′′〈iL|k2n2〉σ′′

× ξ
(σ′′σ)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

δ(a†
k′
2
n′
2
σ′′ak2n2σ′′)δ(a†

k′
1
n′
1
σ
ak1n1σ)|φ0〉

]]

. (3.33)

Here the momentum-dependent parameters ηLk′
2
n′
2
k2n2k

′
1
n′
1
k1n1

, ζ
(σ′σ)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

, ξ
(+)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

,

ξ
(−)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

, and ξ
(σ′σ)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

are defined as follows

ηLk′
2
n′
2
k2n2k

′
1
n′
1
k1n1

=
ULL

z − ǫk′
2
n′
2
↓ + ǫk2n2↓ − ǫk′

1
n′
1
↑ + ǫk1n1↑

, (3.34)

ζ
(σ′σ)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

=
(ULL′ − JLL′/2)

z − ǫk′
2
n′
2
σ + ǫk2n2σ − ǫk′

1
n′
1
σ′ + ǫk1n1σ′

, (3.35)

ξ
(+)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

=
−JLL′

z − ǫk′
2
n′
2
↓ + ǫk2n2↑ − ǫk′

1
n′
1
↑ + ǫk1n1↓

, (3.36)

ξ
(−)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

=
−JLL′

z − ǫk′
2
n′
2
↑ + ǫk2n2↓ − ǫk′

1
n′
1
↓ + ǫk1n1↑

, (3.37)

ξ
(σ′σ)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

=
−JLL′

z − ǫk′
2
n′
2
σ′ + ǫk2n2σ′ − ǫk′

1
n′
1
σ + ǫk1n1σ

. (3.38)

We have dropped the Fermi factor f(ǫ̃k1n1σ1
)(1−f(ǫ̃k′

1
n′
1
σ′
1
))f(ǫ̃k2n2σ2

)(1−f(ǫ̃k′
2
n′
2
σ′
2
)) in the above

expressions because it is included in the states {δ(a†
k′
2
n′
2
σ′
2

ak2n2σ2
)δ(a†

k′
1
n′
1
σ′
1

ak1n1σ1
)|φ0〉}.

We can simplify the first-order correction of the wavefunction (3.33) as follows

|ψ1〉 = −
∑

i

(
∑

L

Õ
(0)
iLL +

∑

(L,L′)

Õ
(1)
iLL′ +

∑

(L,L′)

Õ
(2)
iLL′)|φ0〉. (3.39)
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Here the local operators Õ
(0)
iLL, Õ

(1)
iLL′ , and Õ

(2)
iLL′ are defined as follows.

Õ
(0)
iLL =

∑

{kn}

〈k′1n′1|iL〉↑〈iL|k1n1〉↑〈k′2n′2|iL〉↓〈iL|k2n2〉↓

× ηLk′
2
n′
2
k2n2k

′
1
n′
1
k1n1

δ(a†
k′
2
n′
2
↓ak2n2↓)δ(a

†
k′
1
n′
1
↑ak1n1↑), (3.40)

Õ
(1)
iLL′ =

∑

{kn}

∑

σσ′

〈k′1n′1|iL′〉σ〈iL′|k1n1〉σ〈k′2n′2|iL〉σ′〈iL|k2n2〉σ′

× ζ
(σ′σ)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

δ(a†
k′
2
n′
2
σ′ak2n2σ′)δ(a†

k′
1
n′
1
σ
ak1n1σ), (3.41)

and

Õ
(2)
iLL′ =

[

∑

{kn}

〈k′1n′1|iL′〉↑〈iL′|k1n1〉↓〈k′2n′2|iL〉↓〈iL|k2n2〉↑

× ξ
(+)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

δ(a†
k′
2
n′
2
↓ak2n2↑)δ(a

†
k′
1
n′
1
↑ak1n1↓)

+ 〈k′1n′1|iL′〉↓〈iL′|k1n1〉↑〈k′2n′2|iL〉↑〈iL|k2n2〉↓
× ξ

(−)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

δ(a†
k′
2
n′
2
↑ak2n2↓)δ(a

†
k′
1
n′
1
↓ak1n1↑)

+
1

2

∑

σσ′

σσ′〈k′1n′1|iL′〉σ〈iL′|k1n1〉σ〈k′2n′2|iL〉σ′〈iL|k2n2〉σ′

× ξ
(σ′σ)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

δ(a†
k′
2
n′
2
σ′ak2n2σ′)δ(a†

k′
1
n′
1
σ
ak1n1σ)

]

. (3.42)

3.3 First-principles momentum dependent local ansatz wave-

function

The local operators Õ
(0)
iLL, Õ

(1)
iLL′ , and Õ

(2)
iLL′ produce the Hilbert space in the weak Coulomb

interaction limit. We generalize these correlators as

Õ
(α)
iLL′ =

∑

{knσ}

〈k′2n′2|iL〉σ′
2
〈iL|k2n2〉σ2

〈k′1n′1|iL′〉σ′
1
〈iL′|k1n1〉σ1

× λ
(α)
LL′{2′21′1} δ(a

†
k′
2
n′
2
σ′
2

ak2n2σ2
) δ(a†

k′
1
n′
1
σ′
1

ak1n1σ1
) . (3.43)

Here α denotes the three types of operators α = 0, 1, and 2. a†knσ(aknσ) is the creation (annihilation)

operator for an electron with momentum k, band index n, and spin σ.

The momentum dependent amplitudes λ
(α)
LL′{2′21′1} in Eq. (3.43) are given by

λ
(0)
LL′{2′21′1} = ηLk′

2
n′
2
k2n2k

′
1
n′
1
k1n1

δLL′ δσ′
2
↓ δσ2↓ δσ′

1
↑ δσ1↑ , (3.44)

λ
(1)
LL′{2′21′1} = ζ

(σ2σ1)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

δσ′
2
σ2
δσ′

1
σ1
, (3.45)

λ
(2)
LL′{2′21′1} =

∑

σ

ξ
(σ)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

δσ′
2
−σ δσ2σ δσ′

1
σ δσ1−σ

+
1

2
σ1σ2 ξ

(σ2σ1)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

δσ′
2
σ2
δσ′

1
σ1
. (3.46)
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Here {2′21′1} is defined by {2′21′1}=k′2n′2σ′2k2n2σ2k
′
1n
′
1σ
′
1k1n1σ1. Now, the amplitudes

ηLk′
2
n′
2
k2n2k

′
1
n′
1
k1n1

, ζ
(σ2σ1)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

, ξ
(σ)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

, and ξ
(σ2σ1)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

are regarded as

the momentum dependent variational parameters to be determined.

By making use of the local operators Õ
(0)
iLL, Õ

(1)
iLL′ and Õ

(2)
iLL′ , we can construct a local ansatz

wavefunction with momentum dependent variational parameters.

|ΨMLA〉 =
[

∏

i

(

1−
∑

L

Õ
(0)
iLL −

∑

(L,L′)

Õ
(1)
iLL′ −

∑

(L,L′)

Õ
(2)
iLL′

)]

|φ0〉 . (3.47)

The two-particle correlators Õ
(0)
iLL, Õ

(1)
iLL′ , and Õ

(2)
iLL′ describe the intra-orbital correlations, the inter-

orbital charge-charge correlations, and the inter-orbital spin-spin correlations (, i.e., the Hund-rule

correlations), respectively. Note that the momentum-dependent local ansatz (MLA) wavefunction

|ΨMLA〉 reduces to the LA |ΨLA〉 when the variational parameters {λ(α)
LL′{2′21′1}} are taken to be

momentum-independent.

3.4 Ground state energy in the single-site approximation

The energy expectation values for the MLA wavefunction can be obtained analytically within

the single-site approximation (SSA). The correlation energy for the MLA wavefunction is given

by.

〈H̃〉 = 〈ΨMLA|H̃|ΨMLA〉
〈ΨMLA|ΨMLA〉

=
AN

BN

. (3.48)

Here H̃ = H − 〈H〉0. AN and BN are defined as follows:

AN =

〈[

∏

i

(

1− Õ†i

)

]

H̃

[

∏

i

(

1− Õi

)

]〉

0

, (3.49)

BN =

〈[

∏

i

(

1− Õ†i

)

][

∏

i

(

1− Õi

)

]〉

0

. (3.50)

The operator Õi is defined by

Õi =
∑

L

Õ
(0)
iLL +

∑

(L,L′)

Õ
(1)
iLL′ +

∑

(L,L′)

Õ
(2)
iLL′ . (3.51)

Expanding BN with respect to site 1, we obtain

BN = B
(1)
N−1 −

〈

Õ†1

[

∏

i

(1) (

1− Õ†i

)

][

∏

i

(1) (

1− Õi

)

]〉

0

−
〈[

∏

i

(1) (

1− Õ†i

)

]

Õ1

[

∏

i

(1) (

1− Õi

)

]〉

0

+

〈

Õ†1

[

∏

i

(1) (

1− Õ†i

)

]

Õ1

[

∏

i

(1) (

1− Õi

)

]〉

0

, (3.52)

32



and

B
(1)
N−1 =

〈[

∏

i

(1) (

1− Õ†i

)

][

∏

i

(1) (

1− Õi

)

]〉

0

. (3.53)

Here the product
∏

i

(1)
means the product with respect to all sites except site 1.

When we apply Wick’s theorem (see Appendix A) for the calculations of BN , we neglect the

contractions between different sites. This is the single-site approximation, and then Eq. (3.52) is

expressed as

BN =
〈(

1− Õ†1

)(

1− Õ1

)〉

0
B

(1)
N−1 . (3.54)

We adopt the same approximation for AN . In this case, there are two-types of terms, the terms in

which the operator Õ1 is contracted to H̃ and the other terms in which H̃ is contracted to the other

operators Õi(i 6= 1). We have then in the single-site approximation

AN =
〈(

1− Õ†1

)

H̃
(

1− Õ1

)〉

0
B

(1)
N−1 +

〈(

1− Õ†1

)(

1− Õ1

)〉

0
A

(1)
N−1 , (3.55)

and

A
(1)
N−1 =

〈[

∏

i

(1) (

1− Õ†i

)

]

H̃

[

∏

i

(1) (

1− Õi

)

]〉

0

. (3.56)

Successive application of the recursive relation Eq. (3.54) and Eq. (3.55) leads to the following

expressions.

AN =
∑

i

〈(

1− Õ†i

)

H̃
(

1− Õi

)〉

0
B

(i)
N−1 . (3.57)

BN =
∏

i

〈(

1− Õ†i

)(

1− Õi

)〉

0
=
〈(

1− Õ†i

)(

1− Õi

)〉

0
B

(i)
N−1 . (3.58)

Taking the ratio AN/BN , we obtain the correlation energy in the SSA as follows.

Nǫc = 〈H̃〉 =
∑

i

〈(1− Õ†i )H̃(1− Õi)〉0
〈(1− Õ†i )(1− Õi)〉0

. (3.59)

Assuming a site per unit cell and using the relation 〈Õ†i 〉0 = 〈Õi〉0 = 0, we obtain the correla-

tion energy per site as follows.

ǫc =
−〈Õi

†
H̃〉0 − 〈H̃Õi〉0 + 〈Õi

†
H̃Õi〉0

1 + 〈Õi

†
Õi〉0

. (3.60)

The Hamiltonian H̃ is expressed by H̃ = H̃0 +HI . Since 〈Õi

†
H̃0〉 = 0, we obtain the correlation

energy ǫc as follows.

ǫc =
−〈Õi

†
HI〉0 − 〈HIÕi〉0 + 〈Õi

†
H̃Õi〉0

1 + 〈Õi

†
Õi〉0

. (3.61)
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This is the correlation energy per site in the SSA.

The elements in the correlation energy (3.61) are calculated with use of Wick’s theorem. They

are summarized as follows.

〈HIÕi〉0 =
∑

αα′

∑

〈LL′〉

∑

〈L′′L′′′〉

2′21′1
∑

{knσ}

U
(α)
LL′ λ

(α′)
L′′L′′′{2′21′1} P

(αα′)
LL′L′′L′′′({2′21′1}) , (3.62)

〈Õi

†
H̃Õi〉0 = 〈Õi

†
H̃0Õi〉0 + 〈Õi

†
HIÕi〉0 , (3.63)

〈Õi

†
H̃0Õi〉0 =

∑

αα′

∑

〈LL′〉

∑

〈L′′L′′′〉

2′21′1
∑

{knσ}

4′43′3
∑

{k′n′σ′}

λ
(α)∗
LL′{2′21′1} λ

(α′)
L′′L′′′{4′43′3}Q

(αα′)
LL′L′′L′′′({2′21′1}{4′43′3}) ,

(3.64)

〈Õi

†
HIÕi〉0 =

∑

αα′

∑

〈LL′〉

∑

〈L′′L′′′〉

2′21′1
∑

{knσ}

4′43′3
∑

{k′n′σ′}

λ
(α)∗
LL′{2′21′1} λ

(α′)
L′′L′′′{4′43′3}R

(αα′)
LL′L′′L′′′({2′21′1}{4′43′3}) ,

(3.65)

〈Õi

†
Õi〉0 =

∑

αα′

∑

〈LL′〉

∑

〈L′′L′′′〉

2′21′1
∑

{knσ}

4′43′3
∑

{k′n′σ′}

λ
(α)∗
LL′{2′21′1}λ

(α′)
L′′L′′′{4′43′3}S

(αα′)
LL′L′′L′′′({2′21′1}{4′43′3}) .

(3.66)

Here the sum
∑

〈LL′〉 is defined by
∑

L when L′=L, and by
∑

(L,L′) when L′ 6=L.

Q
(αα′)
LL′L′′L′′′({2′21′1}{4′43′3}), S(αα′)

LL′L′′L′′′({2′21′1}{4′43′3}), and P
(αα′)
LL′L′′L′′′({2′21′1}) are obtained

with use of Wick’s theorem as follows.

Q
(αα′)
LL′L′′L′′′({2′21′1}{4′43′3})
= 〈iL|k′2n′2〉σ′

2
〈k2n2|iL〉σ2

〈iL′|k′1n′1〉σ′
1
〈k1n1|iL′〉σ1

× 〈k′4n′4|iL′′〉σ′
4
〈iL′′|k4n4〉σ4

〈k′3n′3|iL′′′〉σ′
3
〈iL′′′|k3n3〉σ3

×∆E({k′2n′2σ′2k2n2σ2k
′
1n
′
1σ
′
1k1n1σ1})

× (δ14δ23δ1′4′δ2′3′ − δ14δ23δ1′3′δ2′4′ + δ13δ24δ1′3′δ2′4′ − δ13δ24δ1′4′δ2′3′)

× 〈nk1n1σ1
〉0(1− 〈nk′

1
n′
1
σ′
1
〉0)〈nk2n2σ2

〉0(1− 〈nk′
2
n′
2
σ′
2
〉0) , (3.67)

S
(αα′)
LL′L′′L′′′({2′21′1}{4′43′3})
=
(

〈k′1n′1|iL′′〉σ′
1
〈iL′′|k1n1〉σ1

〈k′2n′2|iL′′′〉σ′
2
〈iL′′′|k2n2〉σ2

δ14δ1′4′δ23δ2′3′

− 〈k′2n′2|iL′′〉σ′
2
〈iL′′|k1n1〉σ1

〈k′1n′1|iL′′′〉σ′
1
〈iL′′′|k2n2〉σ2

δ14δ1′3′δ23δ2′4′

− 〈k′1n′1|iL′′〉σ′
1
〈iL′′|k2n2〉σ2

〈k′2n′2|iL′′′〉σ′
2
〈iL′′′|k1n1〉σ1

δ13δ1′4′δ24δ2′3′

+ 〈k′2n′2|iL′′〉σ′
2
〈iL′′|k2n2〉σ2

〈k′1n′1|iL′′′〉σ′
1
〈iL′′′|k1n1〉σ1

δ13δ1′3′δ24δ2′4′
)

× 〈iL|k′2n′2〉σ′
2
〈k2n2|iL〉σ2

〈iL′|k′1n′1〉σ′
1
〈k1n1|iL′〉σ1

× 〈nk1n1σ1
〉0(1− 〈nk′

1
n′
1
σ′
1
〉0)〈nk2n2σ2

〉0(1− 〈nk′
2
n′
2
σ′
2
〉0) , (3.68)
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P
(αα′)
LL′L′′L′′′({2′21′1})

=
44′33′
∑

{knσ}

C
(α)

σ′
4
σ4σ

′
3
σ3
〈k′4n′4|iL〉σ′

4
〈iL|k4n4〉σ4

〈k′3n′3|iL′〉σ′
3
〈iL′|k3n3〉σ3

×
(

δ2′4δ24′δ1′3δ13′ − δ2′3δ24′δ1′4δ13′ − δ24′δ23′δ1′3δ14′ + δ2′3δ23′δ1′4δ14′
)

× 〈k′2n′2|iL′′〉σ′
2
〈iL′′|k2n2〉σ2

〈k′1n′1|iL′′′〉σ′
1
〈iL′′′|k1n1〉σ1

× 〈nk1n1σ1
〉0(1− 〈nk′

1
n′
1
σ′
1
〉0)〈nk2n2σ2

〉0(1− 〈nk′
2
n′
2
σ′
2
〉0) . (3.69)

The elements R
(αα′)
LL′L′′L′′′({2′21′1}{4′43′3}) in Eq. (3.65) are more complicated. They are ex-

pressed by

R
(αα′)
LL′L′′L′′′({2′21′1}{4′43′3}) =

∑

α′′

∑

〈LivLv〉

U
(α′′)

LivLvR
(αα′′α′)

LL′LivLvL′′L′′′({2′21′1}{4′43′3}). (3.70)

Here

R
(αα′′α′)

LL′LivLvL′′L′′′({2′21′1}{4′43′3})

=
66′55′
∑

{knσ}

〈k′2n′2|iL〉σ′
2
〈iL|k2n2〉σ2

〈k′1n′1|iL′〉σ′
1
〈iL′|k1n1〉σ1

× 〈k′4n′4|iL′′〉σ′
4
〈iL′′|k4n4〉σ4

〈k′3n′3|iL′′′〉σ′
3
〈iL′′′|k3n3〉σ3

×
〈

δ(a†
k′
2
n′
2
σ′
2

ak2n2σ2
)δ(a†

k′
1
n′
1
σ′
1

ak1n1σ1
) O

(α′′)

LivLv δ(a
†
k′
4
n′
4
σ′
4

ak4n4σ4
)δ(a†

k′
3
n′
3
σ′
3

ak3n3σ3
)
〉

0
. (3.71)

The average at the rhs of Eq. (3.71) is again calculated by means of Wick’s theorem.

3.5 Self-consistent equation of variational parameters

The variational parameters η’s, ζ’s, and ξ’s in the correlators {Õ(α)
iLL′} are obtained from the

variational principle for the ground-state energy E.

〈H〉 = 〈H〉0 +Nǫc ≥ E . (3.72)

Here 〈H〉0 is the ground-state energy in the Hartree-Fock approximation 〈H〉0 = 〈H0〉0 = E
(0)
0 ,

and is given in Eq. (3.20). The correlation energy per atom ǫc is defined by Nǫc ≡ 〈H̃〉 =
〈H〉 − 〈H〉0. N is the number of atoms, and 〈∼〉 denotes the full average with respect to |ΨMLA〉.

We obtain from Eq. (3.61) as

(

1 +
∑

αα′

〈Õi

†
Õi〉0

)2

δǫc =
[

−
∑

α

〈(δÕi

†
)H̃〉0 −

∑

α

〈H̃δÕi〉0

+
∑

αα′

〈(δÕi

†
)H̃Õi〉0 +

∑

αα′

〈Õi

†
H̃δÕi〉0

]

×
(

1 +
∑

αα′

〈Õi

†
Õi〉0

)

−
(

−〈Õi

†
H̃〉0 − 〈H̃Õi〉0 + 〈Õi

†
H̃Õi〉0

)

×
∑

αα′

(

〈(δÕi

†
)Õi〉0 + 〈Õi

†
δÕi〉0

)

.

(3.73)
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Thus, the stationary condition δǫc = 0 yields the following equation.

−〈(δÕ†i )HI〉0 + 〈(δÕ†i )H̃Õi〉0 − ǫc〈(δÕ†i )Õi〉0 + c.c. = 0 . (3.74)

Here c.c. denotes conjugate of complex of the first three terms. Using Eqs. (3.62) - (3.66), the

above equation is expressed as follows.

∑

α′

∑

〈L′′L′′′〉

4′43′3
∑

{knσ}

[

Q
(αα′)
LL′L′′L′′′({2′21′1}{4′43′3})

− ǫc S
(αα′)
LL′L′′L′′′({2′21′1}{4′43′3}) +

∑

α′′

∑

〈L̄L̄′〉

U
(α′′)

L̄L̄′ R
(αα′′α′)

LL′L̄L̄′L′′L′′′({2′21′1}{4′43′3})
]

λ
(α′)
L′′L′′′{4′43′3}

=
∑

α′

∑

〈L′′L′′′〉

U
(α′)
L′′L′′′ P

(α′α)∗
L′′L′′′LL′({2′21′1}) . (3.75)

The explicit expressions of P
(αα′)
LL′L′′L′′′({2′21′1}), Q(αα′)

LL′L′′L′′′({2′21′1}{4′43′3}), and

S
(αα′)
LL′L′′L′′′({2′21′1}{4′43′3}) have been given in Eqs. (3.67) ∼ (3.69).

3.6 Various quantities in the first-principles MLA

In this section, we obtain the physical quantities such as electron number, charge fluctuation,

amplitude of local moment, and momentum distribution functions in the first-principles MLA.

3.6.1 Electron number

The Fermi level ǫF is determined from the conduction electron number ne via the relation,

ne =
∑

L

〈niL〉 . (3.76)

The electron number of orbital L on site i, 〈niL〉 is expressed as follows.

〈niL〉 = 〈niL〉0 + 〈ñiL〉 . (3.77)

Here the first term 〈niL〉0 denotes the Hartree-Fock electron number. The second term 〈ñiL〉 at the

rhs is the correlation correction.

We can derive the formula for the average of an operator Ã in the SSA taking the same steps

as in the correlation energy (3.61) as follows.

〈Ã〉 =
∑

i

−〈Õi

†
Ã〉0 − 〈ÃÕi〉0 + 〈Õi

†
ÃÕi〉0

1 + 〈Õi

†
Õi〉0

. (3.78)

Using the formula, the correlation corrections is obtained in the SSA as follows

〈ñiL〉 =
−〈Õ†i ñiL〉0 − 〈ñiLÕi〉0 + 〈Õ†i ñiLÕi〉0

1 + 〈Õ†i Õi〉0
. (3.79)

Note that 〈ñiLÕi〉0 = 〈Õ†i ñiL〉∗0 = 0. Thus

〈ñiL〉 =
〈Õ†i ñiLÕi〉0
1 + 〈Õi

†
Õi〉0

. (3.80)

We can also derive the same expression using the Feynman-Hellmann theorem (See Appendix B).
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3.6.2 Charge fluctuations

The charge fluctuations is defined as

〈(δnid)
2〉 = 〈n2

id〉 − 〈nid〉2. (3.81)

Here nid =
∑d

L niL. 〈n2
id〉 at the rhs of Eq. (3.81) is given as

〈n2
id〉 = 〈nid〉+ 2

d
∑

L

〈niL↑ · niL↓〉+ 2
d
∑

(L,L′)

〈niL · niL′〉. (3.82)

The terms 〈niL↑ · niL↓〉 and 〈niL · niL′〉 are known as double occupation number and inter-orbital

charge-charge correlations, respectively.

Note that the operators O
(0)
iLL and O

(1)
iLL′ are given by Eqs. (3.10) and (3.11):

O
(0)
iLL = δniL↑δniL↓, (3.83)

O
(1)
iLL′ = δniLδniL′ . (3.84)

Here and hereafter we omit the hat of the operators for simplicity. Using the above expressions we

obtain the double occupation number as

〈niL↑niL↓〉 = 〈O(0)
iLL〉+ 〈ñiL↑〉〈niL↓〉0 + 〈niL↑〉0〈ñiL↓〉+ 〈niL↑〉0〈niL↓〉0. (3.85)

Similarly, we obtain the inter-orbital charge-charge correlations as follows.

〈niLniL′〉 = 〈O(1)
iLL′〉+ 〈ñiL〉〈niL′〉0 + 〈niL〉0〈ñiL′〉+ 〈niL〉0〈niL′〉0. (3.86)

Substituting Eqs. (3.85) and (3.86) into Eq. (3.82), we obtain the expression of 〈n2
id〉 as

〈n2
id〉 =〈nid〉+ 2

d
∑

L

〈O(0)
iLL〉+ 2

d
∑

Lσ

〈ñiLσ〉〈ñiL−σ〉0

+
d
∑

Lσ

〈δniLσ〉0〈δniL−σ〉0 + 2
d
∑

(L,L)

〈O(1)
iLL′〉

+ 2
d
∑

(L,L)

{〈ñiL〉〈ñiL′〉0 + 〈niL〉0〈ñiL′〉}+ 2
d
∑

(L,L)

〈niL〉0〈niL′〉0. (3.87)

On the other hand, we obtain the term 〈nid〉2 as follows

〈nid〉2 =〈ñid〉2 +
d
∑

L

〈niL〉20

+ 2
d
∑

(L,L′)

〈niL〉0〈niL′〉0 + 2
d
∑

L

〈ñiL〉〈niL〉0

+ 2
d
∑

(L,L′)

〈ñiL〉〈niL′〉0 + 2
d
∑

(L,L′)

〈ñiL′〉〈niL〉0. (3.88)
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Substituting Eqs. (3.87) and (3.88) into Eq. (3.81), we obtain the charge fluctuations 〈(δnid)
2〉 as

follows.

〈(δnid)
2〉 =

d
∑

Lσ

〈niLσ〉0(1− 〈niLσ〉0) +
d
∑

Lσ

〈ñiLσ〉(1− 2〈niLσ〉0)

− 〈ñid〉2 + 2
d
∑

L

〈O(0)
iLL〉+ 2

d
∑

(L,L′)

〈O(1)
iLL′〉 , (3.89)

We can also obtain the same expression using Feynman-Hellmann theorem. The derivation is given

in Appendix B.

According to the formula (3.78), we obtain the expression for 〈O(α)
iLL′〉 for (α = 0, 1) at the rhs

of Eq. (3.89) as follows

〈O(α)
iLL′〉 =

−〈Õi

†
O

(α)
iLL′〉0 − 〈O(α)

iLL′Õi〉0 + 〈Õi

†
O

(α)
iLL′Õi〉0

1 + 〈Õi

†
Õi〉0

. (3.90)

3.6.3 Amplitude of local moment

The amplitude of local magnetic moment for d electrons is given by

〈m2
id〉 = 3

d
∑

L

mz
iL

2 + 2
d
∑

(L,L′)

〈miL ·miL′〉. (3.91)

Here the local magnetic moments for d electrons are defined by mid =
∑d

L miL = 2
∑d

L SiL. mz
iL

is given by

mz
iL = niL↑ − niL↓. (3.92)

Thus we obtain

〈mz
iL

2〉 = 〈niL〉 − 2〈niL↑niL↓〉. (3.93)

Substituting Eq. (3.93) into Eq. (3.91), we obtain

〈m2
id〉 = 3

d
∑

L

〈niL〉 − 6
d
∑

L

〈niL↑niL↓〉+ 2
d
∑

(L,L′)

〈miL ·miL′〉. (3.94)

Since miL = 2siL, we can write Eq. (3.94) as

〈m2
id〉 = 3

d
∑

L

〈niL〉 − 6
d
∑

L

〈niL↑niL↓〉+ 8
d
∑

(L,L′)

〈siL · siL′〉. (3.95)

Using the operator O
(2)
iLL′ is given by Eq. (3.12):

O
(2)
iLL′ = δsiL · δsiL′ , (3.96)
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we obtain the inter-orbital spin-spin interaction as follows.

〈siL · siL′〉 = 〈O(2)
iLL′〉+

1

4
(〈δmiL〉〈miL′〉0 + 〈δmiL′〉〈miL〉0 + 〈miL〉0〈miL′〉0). (3.97)

Substituting Eqs. (3.85) and (3.97) into Eq. (3.95), we obtain the expression of 〈m2
id〉 as

〈m2
id〉 =3

d
∑

L

(〈δniL〉+ 〈niL〉0)

− 6
d
∑

L

{〈O(0)
iLL〉+

∑

σ

〈δniLσ〉〈niL−σ〉0 +
1

2

∑

σ

〈niLσ〉0〈niL−σ〉0}

+ 8
d
∑

(L,L′)

{〈O(2)
iLL′〉+

1

4
(〈δmiL〉〈miL′〉0 + 〈δmiL′〉〈miL〉0 + 〈miL〉0〈miL′〉0)}. (3.98)

Using the relations 〈miL〉 =
∑

σ σ〈niLσ〉 and 〈S2〉 = 〈m2
id〉/4, we obtain the expression of 〈S2〉

from Eq. (3.98) as follows.

〈S2〉 =3

4

d
∑

Lσ

〈niLσ〉0(1− 〈niLσ〉0) +
3

4

d
∑

Lσ

〈ñiLσ〉(1− 2〈niL−σ〉0)

− 3

2

d
∑

L

〈O(0)
iLL〉+ 2

d
∑

(L,L′)

〈O(2)
iLL′〉 . (3.99)

We can calculate the average 〈O(α)
iLL′〉 (α = 0, 2) at the rhs of Eq. (3.99) using the formula (3.90).

We can obtain the same expression of the amplitude 〈S2〉 using the Feynman-Hellmann theorem.

The derivation is given in Appendix B.

3.6.4 Momentum distribution function

The momentum distribution function (MDF) is expressed as follows.

〈nknσ〉 = 〈nknσ〉0 + 〈ñknσ〉. (3.100)

Here the first term 〈nknσ〉0 denotes the Hartree-Fock electron number. The second term 〈ñknσ〉 at

the rhs is the correlation correction of the MDF.

We can obtain the expression of 〈ñknσ〉 according to the formula (3.78) in the SSA.

〈ñknσ〉 =
−N〈Õ†i ñknσ〉0 −N〈ñknσÕi〉0 +N〈Õ†i ñknσÕi〉0

1 + 〈Õ†i Õi〉0
. (3.101)

Since 〈ñknσÕi〉 = 0, the above expression reduces as follows.

〈ñknσ〉 =
N〈Õ†i ñknσÕi〉0
1 + 〈Õ†i Õi〉0

. (3.102)

Finally we obtain the expression of the MDF from Eqs. (3.100) and (3.102) as follows.

〈nknσ〉 = 〈nknσ〉0 +
N〈Õ†i ñknσÕi〉0
1 + 〈Õ†i Õi〉0

. (3.103)

We can also derive the same expression of the MDF using the Feynman-Hellmann theorem. The

derivation is given in Appendix B.
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Chapter 4

First-Principles MLA in the Weak Coulomb

Interaction Regime

In last chapter we constructed the MLA wavefunction on the basis of TB-LDA+U Hamilto-

nian, and derived the self-consistent equations for momentum-dependent variational parameters.

In this chapter, we introduce the lowest-order variational treatments of the MLA solving the self-

consistent equations in the weak Coulomb interaction regime, and present the numerical results

of correlation energy, charge fluctuations, formation of atomic magnetic moment as well as the

momentum distribution function as a function of Coulomb interaction strength [71].

4.1 Variational parameters in the weak Coulomb interaction

regime

We obtained the self-consistent equation (3.75) from the stationary condition δǫc = 0 in Sec

3.5:

∑

α′

∑

〈L′′L′′′〉

4′43′3
∑

{knσ}

[

Q
(αα′)
LL′L′′L′′′({2′21′1}{4′43′3})

− ǫc S
(αα′)
LL′L′′L′′′({2′21′1}{4′43′3}) +

∑

α′′

∑

〈L̄L̄′〉

U
(α′′)

L̄L̄′ R
(αα′′α′)

LL′L̄L̄′L′′L′′′({2′21′1}{4′43′3})
]

λ
(α′)
L′′L′′′{4′43′3}

=
∑

α′

∑

〈L′′L′′′〉

U
(α′)
L′′L′′′ P

(α′α)∗
L′′L′′′LL′({2′21′1}) . (4.1)

In the weak Coulomb interaction limit, the third term at the lhs of the self-consistent equation

(4.1) can be neglected because it is higher order in {U (α)
LL′}. Equation (4.1) is then expressed as

follows.

∑

α′

∑

〈L′′L′′′〉

4′43′3
∑

{knσ}

[

Q
(αα′)
LL′L′′L′′′({2′21′1}{4′43′3})

− ǫc S
(αα′)
LL′L′′L′′′({2′21′1}{4′43′3})

]

λ
(α′)
L′′L′′′{4′43′3} =

∑

α′

∑

〈L′′L′′′〉

U
(α′)
L′′L′′′P

(α′α)∗
L′′L′′′LL′({2′21′1}) . (4.2)
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Substituting Eqs. (3.67) ∼ (3.69) into Eq. (4.2), we obtain

∑

α′

∑

〈L′′L′′′〉

(

∆E({k′2n′2σ′2k2n2σ2k
′
1n
′
1σ
′
1k1n1σ1})− ǫc

)

×
[

〈k′1n′1|iL′′〉σ′
1
〈iL′′|k1n1〉σ1

〈k′2n′2|iL′′′〉σ′
2
〈iL′′′|k2n2〉σ2

λ
(α′)
L′′L′′′{1′12′2}

− 〈k′2n′2|iL′′〉σ′
2
〈iL′′|k1n1〉σ1

〈k′1n′1|iL′′′〉σ′
1
〈iL′′′|k2n2〉σ2

λ
(α′)
L′′L′′′{2′11′2}

− 〈k′1n′1|iL′′〉σ′
1
〈iL′′|k2n2〉σ2

〈k′2n′2|iL′′′〉σ′
2
〈iL′′′|k1n1〉σ1

λ
(α′)
L′′L′′′{1′22′1}

+ 〈k′2n′2|iL′′〉σ′
2
〈iL′′|k2n2〉σ2

〈k′1n′1|iL′′′〉σ′
1
〈iL′′′|k1n1〉σ1

λ
(α′)
L′′L′′′{2′21′1}

]

=
∑

α′

∑

〈L′′L′′′〉

U
(α′)
L′′L′′′

[

C
(α′)

σ2σ
′
2
σ1σ

′
1

〈iL′′|k2n2〉σ2
〈k′2n′2|iL′′〉σ′

2
〈iL′′′|k1n1〉σ1

〈k′1n′1|iL′′′〉σ′
1

− C
(α′)

σ2σ
′
1
σ1σ

′
2

〈iL′′|k2n2〉σ2
〈k′1n′1|iL′′〉σ′

1
〈iL′′′|k1n1〉σ1

〈k′2n′2|iL′′′〉σ′
2

− C
(α′)

σ1σ
′
2
σ2σ

′
1

〈iL′′|k1n1〉σ1
〈k′2n′2|iL′′〉σ′

2
〈iL′′′|k2n2〉σ2

〈k′1n′1|iL′′′〉σ′
1

+ C
(α′)

σ1σ
′
1
σ2σ

′
2

〈iL′′|k1n1〉σ1
〈k′1n′1|iL′′〉σ′

1
〈iL′′′|k2n2〉σ2

〈k′2n′2|iL′′′〉σ′
2

]

. (4.3)

Here ∆Ek′
2
n′
2
σ′
2
k2n2σ2k

′
1
n′
1
σ′
1
k1n1σ1

is the two-particle excitation energy defined by

∆Ek′
2
n′
2
σ′
2
k2n2σ2k

′
1
n′
1
σ′
1
k1n1σ1

= ǫk′
2
n′
2
σ′
2
− ǫk2n2σ2

+ ǫk′
1
n′
1
σ′
1
− ǫk1n1σ1

. C
(α)

σ2σ
′

2
σ1σ

′

1

is defined by

C
(α)

σ2σ
′

2
σ1σ

′

1

=











δσ′
2
↓ δσ2↓ δσ′

1
↑ δσ1↑ (α = 0)

δσ′
2
σ2
δσ′

1
σ1

(α = 1)
1
4
(σ)σ1σ

′
1
· (σ)σ2σ

′
2

(α = 2) .

(4.4)

Using the expression of the overlap integral 〈iL|kn〉σ = uLnσ(k)e
−ik·Ri/

√
N and defining

aLL′{2′21′1} by

aLL′{2′21′1} = u∗Ln′
2
σ′
2
(k′

2) uLn2σ2
(k2) u

∗
L′n′

1
σ′
1
(k′

1) uL′n1σ1
(k1) , (4.5)

we can simplify the self-consistent equation (4.3) as follows.

∑

α

∑

〈LL′〉

(

aLL′{2′21′1}λ
(α)
LL′{2′21′1} − aLL′{1′22′1}λ

(α)
LL′{1′22′1}

− aLL′{2′11′2}λ
(α)
LL′{2′11′2} + aLL′{1′12′2}λ

(α)
LL′{1′12′2}

)

=
∑

α

∑

〈LL′〉

(

∆E({k′2n′2σ′2k2n2σ2k
′
1n
′
1σ
′
1k1n1σ1})− ǫc

)−1

× U
(α)
LL′

(

C
(α)

σ2σ
′
2
σ1σ

′
1

aLL′{2′21′1} − C
(α)

σ2σ
′
1
σ1σ

′
2

aLL′{1′22′1}

− C
(α)

σ1σ
′
2
σ2σ

′
1

aLL′{2′11′2} + C
(α)

σ1σ
′
1
σ2σ

′
2

aLL′{1′12′2}

)

. (4.6)

Then, we find the following solution by inspection.

λ
(α)
LL′{2′21′1} =

C
(α)

σ2σ
′

2
σ1σ

′

1

U
(α)
LL′

∆Ek′
2
n′
2
σ′
2
k2n2σ2k

′
1
n′
1
σ′
1
k1n1σ1

− ǫc
. (4.7)

41



Using Eqs. (3.44), (3.45), (3.46), (4.4), and (4.7), we obtain the variational parameters η’s, ζ’s,

and ξ’s in the weak Coulomb interaction limit as follows.

ηLk′
2
n′
2
k2n2k

′
1
n′
1
k1n1

=
ULL

ǫk′
2
n′
2
↓ − ǫk2n2↓ + ǫk′

1
n′
1
↑ − ǫk1n1↑ − ǫc

, (4.8)

ζ
(σσ′)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

=
(ULL′ − JLL′/2)

ǫk′
2
n′
2
σ′ − ǫk2n2σ + ǫk′

1
n′
1
σ′ − ǫk1n1σ − ǫc

, (4.9)

ξ
(σ)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

=
JLL′

ǫk′
2
n′
2
−σ − ǫk2n2σ + ǫk′

1
n′
1
σ − ǫk1n1−σ − ǫc

, (4.10)

ξ
(σσ′)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

=
JLL′

ǫk′
2
n′
2
σ′ − ǫk2n2σ + ǫk′

1
n′
1
σ′ − ǫk1n1σ − ǫc

. (4.11)

We make use of these variational parameters for the calculations of the physical quantities in the

weak Coulomb interaction regime.

4.2 Various quantities in the weak Coulomb interaction regime

In the lowest-order approximation, we can neglect the higher order terms in physical quantities.

Then we obtain the correlation energy from Eq. (3.61) as follows.

ǫc = −〈Õi

†
HI〉0 − 〈HIÕi〉0 + 〈Õi

†
H̃0Õi〉0 . (4.12)

We can obtain the matrix elements 〈HIÕi〉0 and 〈Õi

†
H̃0Õi〉0 from the Hartree-Fock local density

of states using the Laplace transformations. The explicit expression of these matrix elements are

summarized in Appendix C.

The electron number is obtained from Eq. (3.77) as follows.

〈niL〉 = 〈niL〉0 + 〈ñiL〉 . (4.13)

Here the first term denotes the Hartree-Fock electron number. The second terms is known as

correlation correction. We obtain the correlation corrections in the lowest-order approximation as

follows.

〈ñiL〉 = 〈Õ†i ñiLÕi〉0 . (4.14)

The expression with use of the Laplace transformation is given in Appendix C.

We obtain the charge fluctuations and the amplitude of local moment from Eqs. (3.89) and

(3.99) as follows:

〈(δnid)
2〉 =

d
∑

Lσ

〈niLσ〉0(1− 〈niLσ〉0) +
d
∑

Lσ

〈ñiLσ〉(1− 2〈niLσ〉0)

− 〈ñid〉2 + 2
d
∑

L

〈O(0)
iLL〉+ 2

d
∑

(L,L′)

〈O(1)
iLL′〉 , (4.15)
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〈S2〉 =3

4

d
∑

Lσ

〈niLσ〉0(1− 〈niLσ〉0) +
3

4

d
∑

Lσ

〈ñiLσ〉(1− 2〈niL−σ〉0)

− 3

2

d
∑

L

〈O(0)
iLL〉+ 2

d
∑

(L,L′)

〈O(2)
iLL′〉 . (4.16)

The averages
∑

〈LL′〉〈O
(α)
iLL′〉 in the lowest-order approximation are obtained from Eq. (3.90) as

follows.

∑

〈LL′〉

〈O(α)
iLL′〉 = −

∑

〈LL′〉

〈Õi

†
O

(α)
iLL′〉0 −

∑

〈LL′〉

〈O(α)
iLL′Õi〉0 +

∑

〈LL′〉

〈Õi

†
O

(α)
iLL′Õi〉0 . (4.17)

All the matrix elements at the rhs of the above equation are expressed with use of Laplace trans-

formation (2.39), and are summarized in Appendix C.

4.3 Numerical results of BCC Iron in the lowest order

Bcc iron shows a simple ferromagnetism. The band theory can explain the ground state mag-

netization. But the other physical properties such as the magnetic energy, the cohesive energy,

and low-temperature specific heat have not yet been quantitatively or even qualitatively explained

by the band theory. The band theory also cannot describe charge fluctuations, amplitude of local

moments, and the momentum distribution function.

In this section we examine the accuracy of the first-principles MLA in the lowest-order approx-

imation, comparing the numerical results for bcc Fe with those of the LA+d band theory as well as

the experimental data.

4.3.1 Hartree-Fock band structure and density of states Fe

We performed the Hartree-Fock band calculations for bcc Fe in the paramagnetic state as the

first step to investigate the correlation effects using the first-principles MLA. We adopted the

orbital-independent Coulomb and exchange integrals with ULL = U0 = 0.2749 Ry, ULL′ = U1 =

0.1426 Ry, and JLL′ = J= 0.0662 Ry obtained by Anisimov et al. [25, 27].

Figure 4.1: Crystal structure of bcc Fe.

The crystal structure of bcc Fe is shown in Fig. 4.1. The space group of bcc Fe is given

by Im3̄m (229). We used the experimental value of the lattice parameter a=5.406476 a.u. The
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Figure 4.2: First Brillouin zone of bcc crystal structure.
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Figure 4.3: Hartree-Fock one-electron energy bands of bcc Fe along the high-symmetry lines of

the first Brillouin zone.
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Figure 4.4: Hartree-Fock densities of states of bcc Fe. The s electrons: dotted curve, the p elec-

trons: dashed curve, the t2g electrons: dot-dashed curve, and the eg electrons: solid curve. The

energy is measured from the Fermi level ǫF.

first Brillouin zone (BZ) of bcc crystal structure is shown in Fig. 4.2. We adopted the BZ mesh

24 × 24 × 24 for numerical k-point integrations. Furthermore l = 3d, 4s, and 4p orbitals were

taken into account in the calculations. Solving the Hartree-Fock equations for the tight-binding

LDA+U Hamiltonian, we obtained the one-electron energy eigenvalues ǫknσ for paramagnetic Fe.

Figure 4.3 shows the energy band curves along high-symmetry lines (Γ-N-P-Γ-H-N) in the first

Brillouin zone. The band structure for d electrons in the Hartree-Fock approximation is similar

to that obtained by the usual LDA band theory, though the former bands sink by 0.064 Ry as

compared with the latter. Note that the eg bands near the Fermi level along the (Γ-N-P-Γ) line are

much narrower than the t2g ones. The other sp bands are mostly far from the Fermi level ǫF, thus

the Fermi surface of Fe is mainly determined by the d-bands.

Calculated local densities of states (LDOS) are shown in Fig. 4.4. The sharp peak on the Fermi

level is created by the eg electrons, while the shoulder above the Fermi level and the second peak

around −0.2 Ry are created by the t2g electrons.

4.3.2 Lowest-order results for bcc Fe

We obtained the variational parameters (4.8) ∼ (4.11) in the lowest order (see Sec. 4.1 ). In

order to see a systematic change of the physical quantities of bcc Fe with increasing interaction

strength, we scaled U0, U1, and J as αU0, αU1, and αJ using a scaling factor α from 0 to 1, and

performed the lowest-order calculations. Figure 4.5 shows the calculated correlation energy as a

function of αU0. With increasing αU0 (as well as αU1 and αJ), we find that the correlation energy

ǫc monotonically decrease. We obtain ǫc = −0.0516 Ry for α = 1 (case of Fe) and U1 = J = 0,

i.e., the correlation energy due to intra-orbital correlations. When we take into account the inter-

orbitals correlations (U0, U1, J 6= 0), the correlation energy ǫc decreases further and we obtain
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ǫc = −0.1101 Ry when α = 1. The inter-orbitals correlation energy gain is comparable to the

intra-orbital correlations energy.
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Figure 4.5: The correlation energy ǫc as a function of Coulomb interaction strength αU0 for the

paramagnetic Fe. Dashed curve: the result without inter-orbital correlations (i.e., U1− J/2 = J =
0), solid curve: the result with both the intra- and inter-orbital correlations.

The correlation energy gain is accompanied by the suppression of charge fluctuations. We

calculated the charge fluctuations for d electrons 〈(δnid)
2〉 = 〈n2

id〉 − 〈nid〉2 as a function of αU0.

As shown in Fig. 4.6, the charge fluctuation in the Hartree-Fock approximation is 2.2. The intra-

orbital correlations suppress the charge fluctuations and yields 〈(δnid)
2〉=1.6 for αU0 = 0.27 Ry

for Fe. The inter-orbital correlations more rapidly decrease the charge fluctuation with increasing

αU0 as seen in Fig. 4.6. Calculated charge fluctuation is 〈(δnid)
2〉 ≈ 1.21 for αU0 = 0.27 Ry. The

result is comparable to the value of the LA with the d-band model, 〈(δnid)
2〉 ≈ 1.0 [21], but is

somewhat larger than that of the LA because the present theory takes into account the hybridization

between the d and sp electrons.

We calculated the amplitude of local moment 〈S2〉 as a function of αU0 as shown in Fig. 4.7.

We have 〈S2〉 = 1.65 for the Hartree-Fock uncorrelated electrons. The amplitudes of local moment

monotonically increase with increasing the Coulomb interaction strength αU0, and we find 〈S2〉 ≈
2.41 for αU0 = 0.27 Ry (Fe) in the lowest-order calculations. The result is comparable to the value

of the LA with the d-band model [21], 〈S2〉 ≈ 2.91, but is somewhat smaller than that of the LA

because the present theory takes into account the hybridization between the d and sp electrons.

The momentum distribution function (MDF) is obtained from the formula (3.103):

〈nknσ〉 = f(ǫ̃knσ) +
N〈Õ†i ñknσÕi〉0
1 + 〈Õi

†
Õi〉0

. (4.18)

Note that the first term at the rhs (right-hand-side) is the momentum distribution in the Hartree-

Fock approximation 〈nknσ〉0, which is given by the Fermi distribution function at zero temperature

f(ǫ̃knσ) = θ(−ǫ̃knσ). Here θ denotes the step function, and ǫ̃knσ is the Hartree-Fock one-electron
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Figure 4.6: The charge fluctuation 〈(δnid)
2〉 vs Coulomb interaction strength αU0 curve for the

paramagnetic Fe. Dashed curve: the result without inter-orbital correlations, solid curve: the result

with both the intra- and inter-orbital correlations.
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Figure 4.7: The amplitude of local moment 〈S2〉 vs Coulomb interaction strength αU0 curve for

the paramagnetic Fe. Dashed curve: the result without inter-orbital correlations, solid curve: the

result with both the intra- and inter-orbital correlations.
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Figure 4.8: The momentum distribution 〈nknσ〉 as a function of the energy ǫ̃knσ for various scaling

factors α of the Coulomb and exchange energies. Dash line denotes the distribution in the Hartree-

Fock approximation.

energy measured from the Fermi level. The second term at the rhs of Eq. (4.18) describes the

correlation correction. The numerator is expressed by

N〈Õ†i ñknσÕi〉0 = U
(α)2
LL′ q

(α)
τ

[

d
∑

〈LL′〉

(

BLL′(ǫknσ)|uLnσ(k)|2 +BL′L(ǫknσ)|uL′nσ(k)|2
)

f(−ǫ̃knσ)

−
d
∑

〈LL′〉

(

CLL′(ǫknσ)|uLnσ(k)|2 + CL′L(ǫknσ)|uL′nσ(k)|2
)

f(ǫ̃knσ)
]

. (4.19)

Here q
(α)
τ is a constant factor taking the value 1 for α=0, 2 for α=1, 1/8 for α=2, τ=l, and 1/4

for α=2, τ=t, respectively. {BLL′(ǫknσ)} and {CLL′(ǫknσ)} are expressed by the Laplace transfor-

mations of the Hartree-Fock local density of states (see Appendix C). The correlation correction

consists of the terms being proportional to |uLnσ(k)|2 f(ǫ̃knσ) and those being proportional to

|uLnσ(k)|2 f(−ǫ̃knσ). Here {uLnσ(k)} are the eigenvectors for a given k point. Note that L in the

amplitude |uLnσ(k)|2 is d orbitals. For the sp bands the overlap of the eigenvetor (, i.e., uLnσ(k))
is negligible, thus the second term at the rhs of Eq. (4.18) is small. Therefore the MDF of sp bands

are expected to be the Fermi-Dirac distribution function f(ǫ̃knσ), and the quasipartical weight as

well as the effective mass are close to 1 for sp bands. On the other hand, the overlap of the eigen-

vetor is expected to be close to 1 for the d-bands. When we replace |uLnσ(k)|2 with 1/5 in Eq.
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(4.19) as a rough approximation for the d-like branch n near the Fermi level, we obtain

N〈Õ†i ñknσÕi〉0 =
1

5
U

(α)2
LL′ q

(α)
τ

[

d
∑

〈LL′〉

(BLL′(ǫknσ) + BL′L(ǫknσ)) f(−ǫ̃knσ)

−
d
∑

〈LL′〉

(CLL′(ǫknσ) + CL′L(ǫknσ)) f(ǫ̃knσ)
]

. (4.20)

Then, N〈Õ†i ñknσÕi〉0 depends on the momentum only via the energy ǫ̃knσ as in the single-band

model. The quasipartical weight is less than 1 for the d-bands. Figure 4.8 shows the calculated

result of momentum distributions for d electrons in this approximation. We find clear momentum

dependence of 〈nknσ〉 via ǫ̃knσ. We also find that the momentum dependence is developed with

increasing the Coulomb and exchange interactions.

We calculated the mass enhancement from the jump of the MDF at the Fermi level. We obtain

the mass enhancementm∗/m = 1.4 for α = 1.0 (, i.e., for bcc Fe). This value should be compared

with the experimental renormalization values 1.38∼ 2.12 which are obtained from the comparison

of the LDA density of states at ǫF with those obtained from the T -linear specific heat coefficient at

low temperatures [72–74]. We have to calculate 〈nknσ〉 taking into account the k-dependence of

|uLnσ(k)|2 in more detailed calculations. This will be done in Sec 5.2.
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Chapter 5

First-Principles MLA with Self-Consistent

Variational Parameters

In the last chapter, we presented the ground state of paramagnetic bcc Fe in the lowest order

approximation. In order to describe more correlated electrons, we derive in this chapter the self-

consistent equations for new variational parameter ansatz, and obtain the expressions for various

physical quantities. We then solve the self-consistent equations numerically, and clarify the ground

state properties of bcc Fe [75, 76].

5.1 Self-consistent equations for new variational parameter ansatz

We derived the solution for variational parameters (4.8) - (4.11) in the weak Coulomb interac-

tion limit. In order to describe more correlated electrons, we have to solve the full self-consistent

equations (3.74). To obtain approximate solution for Eq. (3.74) in correlated electrons, we propose

the following variational parameter ansatz which interpolate between the weak Coulomb interac-

tion limit and the atomic limit as follows.

ηLk′
2
n′
2
k2n2k

′
1
n′
1
k1n1

=
ULLη̃LL

ǫk′
2
n′
2
↓ − ǫk2n2↓ + ǫk′

1
n′
1
↑ − ǫk1n1↑ − ǫc

, (5.1)

ζ
(σσ′)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

=
(ULL′ − JLL′/2)ζ̃

(σσ′)
LL′

ǫk′
2
n′
2
σ′ − ǫk2n2σ + ǫk′

1
n′
1
σ′ − ǫk1n1σ − ǫc

, (5.2)

ξ
(σ)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

=
JLL′ ξ̃

(σ)
LL′

ǫk′
2
n′
2
−σ − ǫk2n2σ + ǫk′

1
n′
1
σ − ǫk1n1−σ − ǫc

, (5.3)

ξ
(σσ′)

LL′k′
2
n′
2
k2n2k

′
1
n′
1
k1n1

=
JLL′ ξ̃

(σσ′)
LL′

ǫk′
2
n′
2
σ′ − ǫk2n2σ + ǫk′

1
n′
1
σ′ − ǫk1n1σ − ǫc

. (5.4)

Here the renormalization factors η̃LL, ζ̃
(σσ′)
LL′ , ξ̃

(σ)
tLL′ , and ξ̃

(σσ′)
lLL′ are new variational parameters to be

determined.

Substituting the above expressions into Eqs. (3.44)-(3.46), we obtain the following form of the

variational parameters λ
(α)
LL′{2′21′1}:

λ
(α)
LL′{2′21′1} =

U
(α)
LL′

∑

τ C
(α)

τσ
′

2
σ2σ

′

1
σ1

λ̃
(σσ′)
ατLL′

∆Ek′
2
n′
2
σ′
2
k2n2σ2k

′
1
n′
1
σ′
1
k1n1σ1

− ǫc
. (5.5)
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Here the spin-dependent coefficients C
(α)

τσ
′

2
σ2σ

′

1
σ1

are defined by

C
(α)

τσ
′

2
σ2σ

′

1
σ1

=



















δσ′
2
↓δσ2↓δσ′

1
↑δσ1↑ (α = 0)

δσ′
2
σ2
δσ′

1
σ1

(α = 1)

−1
4
σ1σ2δσ′

2
σ2
δσ′

1
σ1

(α = 2, τ = l)

−1
2

∑

σ δσ′
2
−σδσ2σδσ′

1
σδσ1−σ (α = 2, τ = t) .

(5.6)

Note that l (t) implies the longitudinal (transverse) component. The renormalization factors λ̃
(σσ′)
ατLL′

are defined as follows.

λ̃
(σσ′)
ατLL′ =























η̃LL′δLL′δσ′−σ (α = 0)

ζ̃
(σσ′)
LL′ (α = 1)

ξ̃
(σ′σ)
lLL′ (α = 2, τ = l)

ξ̃
(σ)
tLL′δσ′σ (α = 2, τ = t) .

(5.7)

Note that the correlation energy ǫc is given by Eq. (3.61) in the SSA.

ǫc =
−〈Õi

†
HI〉0 − 〈HIÕi〉0 + 〈Õi

†
H̃Õi〉0

1 + 〈Õi

†
Õi〉0

. (5.8)

Substituting Eq. (5.5) into the matrix elements in Eq. (5.8) (, i.e., (3.62) - (3.66)), we find the

following expressions of the elements.

〈H̃IÕi〉0 =
∑

αα′

∑

〈LL′〉

∑

〈L′′L′′′〉

U
(α)
LL′ U

(α′)
L′′L′′′

∑

τσσ′

λ̃
(σσ′)
α′τL′′L′′′ P

(αα′)
τLL′L′′L′′′σσ′ , (5.9)

〈Õi

†
H̃Õi〉0 = 〈Õi

†
H̃0Õi〉0 + 〈Õi

†
H̃IÕi〉0 . (5.10)

Here

〈Õi

†
H̃0Õi〉0 =

∑

αα′

∑

〈LL′〉

∑

〈L′′L′′′〉

U
(α)
LL′ U

(α′)
L′′L′′′

∑

τσσ′

∑

τ ′σ′′σ′′′

λ̃
(σσ′)∗
ατLL′ λ̃

(σ′′σ′′′)
α′τ ′L′′L′′′ Q

(αα′)
ττ ′LL′L′′L′′′σσ′σ′′σ′′′ ,

(5.11)

〈Õi

†
H̃IÕi〉0 =

∑

α

∑

〈LL′〉

U
(α)
LL′

∑

τσσ′

λ̃
(σσ′)∗
ατLL′ K

(α)
τLL′σσ′ . (5.12)

K
(α)
τLL′σσ′ at the rhs of Eq. (5.12) is defined by

K
(α)
τLL′σσ′ =

∑

α′

∑

〈L′′L′′′〉

∑

τ ′σ′′σ′′′

U
(α′)
L′′L′′′ R

(αα′)
ττ ′LL′L′′L′′′σσ′σ′′σ′′′ λ̃

(σ′′σ′′′)
α′τ ′L′′L′′′ , (5.13)

and

R
(αα′)
ττ ′LL′L′′L′′′σσ′σ′′σ′′′ =

2′211′
∑

{knσ}

4′433′
∑

{knσ}

C
(α)

τσ′
2
σ2σ

′
1
σ1
C

(α′)

τ ′σ′
4
σ4σ

′
3
σ3
R

(αα′)
LL′L′′L′′′({2′21′1}{4′43′3})

(∆Ek′
2
n′
2
σ′
2
k2n2σ2k

′
1
n′
1
σ′
1
k1n1σ1

− ǫc)(∆Ek′
4
n′
4
σ′
4
k4n4σ4k

′
3
n′
3
σ′
3
k3n3σ3

− ǫc)
.

(5.14)
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Furthermore,

〈Õi

†
Õi〉0 =

∑

αα′

∑

〈LL′〉

∑

〈L′′L′′′〉

U
(α)
LL′ U

(α′)
L′′L′′′

∑

τσσ′

∑

τ ′σ′′σ′′′

λ̃
(σσ′)∗
ατLL′ λ̃

(σ′′σ′′′)
α′τ ′L′′L′′′ S

(αα′)
ττ ′LL′L′′L′′′σσ′σ′′σ′′′ . (5.15)

The coefficients P
(αα′)
τLL′L′′L′′′σσ′ , Q

(αα′)
ττ ′LL′L′′L′′′σσ′σ′′σ′′′ , S

(αα′)
ττ ′LL′L′′L′′′σσ′σ′′σ′′′ , andK

(α)
τLL′σσ′ are obtained

by making use of the Laplace transformations. Their explicit expressions are given in Appendix

D.

The self-consistent equations for new variational parameters are obtained from the stationary

condition δǫc = 0 for Eq. (5.8):

−〈(δÕ†i )HI〉0 + 〈(δÕ†i )H̃Õi〉0 − ǫc〈(δÕ†i )Õi〉0 + c.c. = 0 . (5.16)

Substituting the expressions (5.9) ∼ (5.15) into the above equation, we find the self-consistent

equations for the variational parameters λ̃
(σσ′)
ατ ′LL′ as follows.

∑

α′

∑

〈L′′L′′′〉

∑

τ ′σ′′σ′′′

U
(α′)
L′′L′′′

(

Q
(αα′)
ττ ′LL′L′′L′′′σσ′σ′′σ′′′ − ǫc S

(αα′)
ττ ′LL′L′′L′′′σσ′σ′′σ′′′

)

λ̃
(σ′′σ′′′)
α′τ ′L′′L′′′

=
∑

α′

∑

〈L′′L′′′〉

U
(α′)
L′′L′′′ P

(α′α)
τL′′L′′′LL′σσ′ −K

(α)
τLL′σσ′ . (5.17)

We can verify Q
(αα′)
ττ ′LL′L′′L′′′σσ′σ′′σ′′′ ∝ δττ ′δ〈LL′〉〈L′′L′′′〉, S

(αα′)
ττ ′LL′L′′L′′′σσ′σ′′σ′′′ ∝ δττ ′δ〈LL′〉〈L′′L′′′〉, and

P
(αα′)
τLL′L′′L′′′σσ′ ∝ δ〈LL′〉〈L′′L′′′〉. Thus the self-consistent equation (5.17) is simplified as follows.

∑

α′

∑

σ′′σ′′′

U
(α′)
LL′

(

Q
(αα′)
ττLL′LL′σσ′σ′′σ′′′ − ǫcS

(αα′)
ττLL′LL′σσ′σ′′σ′′′

)

λ̃
(σ′′σ′′′)
α′τLL′

=
∑

α′

U
(α′)
L′′L′′′P

(α′α)
τLL′LL′σσ′ −K

(α)
τLL′σσ′ . (5.18)

Defining Q̃
(αα′)
ττLL′LL′σσ′σ′′σ′′′ by

Q̃
(αα′)
ττ ′LL′LL′σσ′σ′′σ′′′ = Q

(αα′)
ττ ′LL′LL′σσ′σ′′σ′′′ − ǫcS

(αα′)
ττ ′LL′LL′σσ′σ′′σ′′′ , (5.19)

we can express the self-consistent equation (5.18) as follows.

∑

α′

∑

σ′′σ′′′

U
(α′)
LL′ Q̃

(αα′)
ττLL′LL′σσ′σ′′σ′′′λ̃

(σ′′σ′′′)
α′τLL′ =

∑

α′

U
(α′)
L′′L′′′P

(α′α)
τLL′LL′σσ′ −K

(α)
τLL′σσ′ . (5.20)

Furthermore, we can verify that Q̃
(αα′)
ττ ′LL′LL′σσ′σ′′σ′′′ ∝ δσ′′σδσ′′′σ′ . Thus we reach the following

self-consistent equations for the variational parameters {λ̃(σσ′)
α′τLL′}:

∑

α′

U
(α′)
LL′ Q̃

(αα′)
τLL′σσ′λ̃

(σσ′)
α′τLL′ =

∑

α′

U
(α′)
LL′ P

(α′α)
τLL′σσ′ −K

(α)
τLL′σσ′ . (5.21)

Here we defined Q̃
(αα′)
τLL′σσ′ and P

(α′α)
τLL′σσ′ as follows.

Q̃
(αα′)
τLL′σσ′ = Q̃

(αα′)
ττLL′LL′σσ′σσ′ , (5.22)
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P
(α′α)
τLL′σσ′ = P

(α′α)
τLL′LL′σσ′ . (5.23)

For α = 0, we have Q̃
(0α′)
τLL′σσ′ ∝ δα′0 and P

(0α′)
τLL′σσ′ ∝ δα′0. Thus we obtain from Eq. (5.21)

U
(0)
LL′Q̃

(00)
τLL′σσ′λ̃

(σσ′)
0τLL′ = U

(0)
LL′P

(00)
τLL′σσ′ −K

(0)
τLL′σσ′ . (5.24)

Furthermore note that U
(0)
LL′ ∝ δLL′ , Q̃

(00)
τLL′σσ′ ∝ δσ↓δσ′↑ , and P

(00)
τLL′σσ′ ∝ δσ↓δσ′↑. Thus we obtain

the self-consistent equation for the variational parameters λ̃
(↓↑)
0LL as follows.

λ̃
(↓↑)
0LL = Q̃

(00)−1
LL↓↑ (P

(00)
LL↓↑ − U

(0)
LL

−1
K

(00)
LL↓↑). (5.25)

Next, we obtain the self-consistent equations for λ̃
(σσ′)
1LL′ and λ̃

(σσ′)
2lLL′ from Eq. (5.21) for α = 1

and α = 2 (τ = l) as follows.

U
(1)
LL′Q̃

(11)
LL′σσ′λ̃

(σσ′)
1LL′ + U

(2)
LL′Q̃

(12)
lLL′σσ′λ̃

(σσ′)
2lLL′ = U

(1)
LL′P

(11)
LL′σσ′ + U

(2)
LL′P

(21)
LL′σσ′ −K

(1)
LL′σσ′ , (5.26)

U
(1)
LL′Q̃

(21)
lLL′σσ′λ̃

(σσ′)
1LL′ + U

(2)
LL′Q̃

(22)
lLL′σσ′λ̃

(σσ′)
2lLL′ = U

(1)
LL′P

(21)
LL′σσ′ + U

(2)
LL′P

(22)
LL′σσ′ −K

(2)
lLL′σσ′ . (5.27)

Since λ̃
(σσ′)
1LL′ and λ̃

(σσ′)
2lLL′ should contain 4 independent variables, we express here the spin- dependent

λ̃
(σσ′)
1LL′ and λ̃

(σσ′)
2lLL′ as follows (see Appendix E).

λ̃
(σσ′)
1LL′ = λ̃1LL′ + λ

(s)
1LL′σδσ′−σ, (5.28)

λ̃
(σσ′)
2lLL′ = λ̃2lLL′ + λ

(s)
2lLL′σδσ′σ. (5.29)

Substituting Eqs. (5.28) and (5.29) into Eqs. (5.26) and (5.27), and taking sum with respect to

σ and σ′, we find the following self-consistent equations.

U
(1)
LL′Q̄

(11)
LL′ λ̃1LL′ + U

(1)
LL′Q̄

(11)
4LL′λ

(s)
1LL′ + U

(2)
LL′Q̄

(12)
lLL′λ2lLL′ + U

(2)
LL′Q̄

(12)
2lLL′λ

(s)
2lLL′

= U
(1)
LL′P̄

(11)
LL′ + U

(2)
LL′P̄

(21)
LL′ − K̄

(1)
LL′ , (5.30)

U
(1)
LL′Q̄

(21)
LL′ λ̃1LL′ + U

(1)
LL′Q̄

(21)
4LL′λ

(s)
1LL′ + U

(2)
LL′Q̄

(22)
lLL′λ2lLL′ + U

(2)
LL′Q̄

(22)
2lLL′λ

(s)
2lLL′

= U
(1)
LL′P̄

(12)
LL′ + U

(2)
LL′P̄

(22)
LL′ − K̄

(2)
LL′ . (5.31)

Here we defined Q̄
(αα′)
ττ ′LL′ , Q̄

(αα′)
nττ ′LL′ (n = 2, 4), P̄

(αα′)
τ ′LL′ , and K̄

(α)
τLL′ as follows.

Q̄
(αα′)
ττ ′LL′ =

∑

σσ′

Q̃
(αα′)
ττ ′LL′σσ′ , (5.32)

Q̄
(αα′)
2ττ ′LL′ =

∑

σ

σQ̃
(αα′)
ττ ′LL′σσ′ , (5.33)

Q̄
(αα′)
4ττ ′LL′ =

∑

σ

σQ̃
(αα′)
ττ ′LL′σ−σ, (5.34)
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P̄
(αα′)
τ ′LL′ =

∑

σσ′

P
(αα′)
τ ′LL′σσ′ , (5.35)

and

K̄
(α)
τLL′ =

∑

σσ′

K
(α)
τLL′σσ′ . (5.36)

Next from Eq. (5.26) with condition σ = σ′, we obtain

U
(1)
LL′Q̃

(11)
LL′σσλ̃

(σσ)
1LL′ + U

(2)
LL′Q̃

(12)
lLL′σσλ̃

(σσ)
2lLL′ + U

(2)
LL′Q̃

(12)
lLL′σσλ̃

(s)
2lLL′σ

= U
(1)
LL′P

(11)
LL′σσ + U

(2)
LL′P

(21)
LL′σσ −K

(1)
LL′σσ. (5.37)

Multiplying both sides of Eq. (5.37) by σ and taking sum over σ, we obtain

U
(1)
LL′Q̄

(11)
2LL′λ̃1LL′ + U

(2)
LL′Q̄

(12)
lLL′λ̃2lLL′ + U

(2)
LL′Q̄

(12)
1lLL′λ

(s)
2lLL′ = U

(1)
LL′P

(11)
2LL′ + U

(2)
LL′P

(21)
2LL′ −K

(1)
2LL′ .

(5.38)

Here

Q̄
(αα′)
1ττ ′LL′ =

∑

σ

Q̃
(αα′)
ττ ′LL′σσ, (5.39)

Q̄
(αα′)
2τLL′ =

∑

σ

σQ̃
(αα′)
ττ ′LL′σσ, (5.40)

P
(αα′)
2τ ′LL′ =

∑

σ

σP
(αα′)
τ ′LL′σσ, (5.41)

K
(α)
τLL′ =

∑

σ

σK
(α)
τLL′σσ. (5.42)

Solving Eq. (5.38) with respect to λ
(s)
2lLL′ , we find

λ
(s)
2lLL′ =

−1
U

(2)
LL′Q̃

(12)
1lLL′

[

U
(1)
LL′

(

Q̃
(11)
2LL′λ̃1LL′ − P

(11)
2LL′

)

+ U
(2)
LL′

(

Q̃
(12)
2lLL′λ̃2lLL′ − P

(21)
2LL′

)

−K
(1)
2LL′

]

.

(5.43)

In the same way, we find an alternative expression for λ
(s)
2lLL′ from Eq. (5.27) as follows.

λ
(s)
2lLL′ =

−1
U

(2)
LL′Q̃

(22)
1lLL′

[

U
(1)
LL′

(

Q̃
(21)
2LL′λ̃1LL′ − P

(12)
2lLL′

)

+ U
(2)
LL′

(

Q̃
(22)
2llLL′λ̃2lLL′ − P

(22)
2lLL′

)

−K
(2)
2lLL′

]

.

(5.44)

Next, we obtain from Eq. (5.26) with condition σ′ = −σ

U
(1)
LL′Q̃

(11)
LL′σ−σλ̃1LL′ + U

(2)
LL′Q̃

(12)
lLL′σ−σλ̃2lLL′ + U

(1)
LL′Q̃

(11)
lLL′σ−σλ

(s)
1LL′σ

= U
(1)
LL′P

(11)
LL′σσ + U

(2)
LL′P

(21)
LL′σσ −K

(1)
LL′σσ. (5.45)
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Multiplying both sides of Eq. (5.45) by σ and taking sum over σ, we obtain

U
(1)
LL′Q̄

(11)
4LL′λ̃1LL′ + U

(1)
LL′Q̄

(11)
3LL′λ

(s)
1LL′ + U

(2)
LL′Q̄

(12)
4lLL′λ2lLL′ = U

(1)
LL′P̄

(11)
4LL′ + U

(2)
LL′P̄

(21)
4LL′ −K

(1)
4LL′ .

(5.46)

Here

Q̄
(αα′)
3ττ ′LL′ =

∑

σ

Q̃
(αα′)
ττ ′LL′σ−σ, (5.47)

Q̄
(αα′)
4ττ ′LL′ =

∑

σ

σQ̃
(αα′)
ττ ′LL′σ−σ, (5.48)

P̄
(αα′)
4τ ′LL′ =

∑

σ

σP
(αα′)
τ ′LL′σ−σ, (5.49)

K̄
(α)
4τLL′ =

∑

σ

σK
(α)
τLL′σ−σ. (5.50)

Solving Eq. (5.46) with respect to λ
(s)
1LL′ , we find

λ
(s)
1LL′ =

−1
U

(1)
LL′Q̄

(11)
3LL′

[

U
(1)
LL′

(

Q̄
(11)
4LL′λ̃1LL′ − P̄

(11)
4LL′

)

+ U
(2)
LL′

(

Q̄
(12)
4lLL′λ̃2lLL′ − P̄

(21)
4LL′

)

− K̄
(1)
4LL′

]

.

(5.51)

In the same way, we find an alternative expression for λ
(s)
2lLL′ from Eq. (5.27) as follows.

λ
(s)
1LL′ =

−1
U

(1)
LL′Q̄

(21)
3lLL′

[

U
(1)
LL′

(

Q̄
(21)
4lLL′λ̃1LL′ − P̄

(12)
4LL′

)

+ U
(2)
LL′

(

Q̄
(12)
4lLL′λ̃2lLL′ − P̄

(21)
4lLL′

)

− K̄
(2)
4lLL′

]

.

(5.52)

Substituting Eqs. (5.43) and (5.51) ((5.44) and (5.52)) into Eq. (5.30) ((5.31)), we obtain the

following equations for λ
(s)
1LL′ and λ

(s)
2lLL′ .

U
(1)
LL′Q̂

(11)
LL′ λ̃1LL′ + U

(2)
LL′Q̂

(12)
lLL′λ̃2lLL′ = U

(1)
LL′P̂

(11)
LL′ + U

(2)
LL′P̂

(21)
LL′ − K̂

(1)
LL′ , (5.53)

U
(1)
LL′Q̂

(21)
LL′ λ̃1LL′ + U

(2)
LL′Q̂

(22)
llLL′λ̃2lLL′ = U

(1)
LL′P̂

(12)
lLL′ + U

(2)
LL′P̂

(22)
lLL′ − K̂

(2)
LL′ . (5.54)

Here

Q̂
(1α)
τLL′ = Q̄

(1α)
τLL′ −

Q̄
(12)
2lLL′

Q̄
(12)
1lLL′

Q̄
(1α)
2τLL′ −

Q̄
(11)
4LL′

Q̄
(11)
3LL′

Q̄
(1α)
4τLL′ , (5.55)

Q̂
(2α)
τLL′ = Q̄

(2α)
τLL′ −

Q̄
(22)
2lLL′

Q̄
(22)
1lLL′

Q̄
(1α)
2τLL′ −

Q̄
(21)
4lLL′

Q̄
(21)
3lLL′

Q̄
(2α)
4τLL′ , (5.56)
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P̂
(α1)
LL′ = P̄

(α1)
LL′ −

Q̄
(12)
2lLL′

Q̄
(12)
1lLL′

P̄
(α1)
2LL′ −

Q̄
(11)
4LL′

Q̄
(11)
3LL′

P̄
(α1)
4LL′ , (5.57)

P̂
(α2)
lLL′ = P̄

(α2)
lLL′ −

Q̄
(22)
2llLL′

Q̄
(22)
1llLL′

P̄
(α2)
2lLL′ −

Q̄
(21)
4lLL′

Q̄
(21)
3lLL′

P̄
(α2)
4lLL′ , (5.58)

K̂
(α)
τLL′ = K̄

(α)
τLL′ −

Q̄
(α2)
2τlLL′

Q̄
(12)
1τlLL′

K̄
(α)
2τLL′ −

Q̄
(α1)
4τLL′

Q̄
(α1)
3τLL′

K̄
(α)
4τLL′ . (5.59)

Solving Eqs. (5.53) and (5.54), we obtain the variational parameters λ1LL′ and λ2lLL′ as fol-

lows.

λ̃1LL′ = U
(1)−1
LL′

(

detQ̂LL′

)−1 [

U
(1)
LL′

(

Q̂
(22)
llLL′P̂

(11)
LL′ − Q̂

(12)
lLL′P̂

(12)
LL′

)

+ U
(2)
LL′

(

Q̂
(22)
llLL′P̂

(21)
LL′ − Q̂

(12)
lLL′P̂

(22)
LL′

)

−
(

Q̂
(22)
llLL′K̂

(1)
LL′ − Q̂

(12)
lLL′K̂

(2)
lLL′

) ]

, (5.60)

λ̃2lLL′ = U
(2)−1
LL′

(

detQ̂LL′

)−1 [

U
(1)
LL′

(

Q̂
(22)
LL′ P̂

(12)
LL′ − Q̂

(21)
lLL′P̂

(11)
LL′

)

+ U
(2)
LL′

(

Q̂
(11)
LL′ P̂

(21)
lLL′ − Q̂

(11)
LL′ P̂

(22)
LL′

)

−
(

Q̂
(22)
llLL′K̂

(2)
lLL′ − Q̂

(21)
lLL′K̂

(1)
LL′

) ]

. (5.61)

Next, we consider the case α = 2 and τ = t in Eq. (5.21). Note that the elements Q̃
(20)
tLL′ , Q̃

(21)
tLL′ ,

P
(02)
tLL′σσ′ , P

(12)
tLL′σσ′ vanish. Furthermore, Q̃

(22)
tLL′σσ′ , P

(22)
tLL′σσ′ ∝ δσσ′ . Thus we obtain form Eq. (5.21)

U
(2)
LL′Q̃

(22)
ttLL′σ−σλ̃

(σ−σ)
2tLL′ = U

(2)
LL′P

(22)
tLL′σ−σ −K

(2)
tLL′σ−σ, (5.62)

or

λ̃
(σ−σ)
2tLL′ = Q̃

(22)−1
ttLL′σ−σ(P

(22)
tLL′σ−σ − U

(2)−1
LL′ K

(2)
tLL′σ−σ). (5.63)

Equations (5.25), (5.60), (5.61), and (5.63) are self-consistent equations for variational param-

eters {λ̃(σσ′)
ατLL′}:

λ̃
(↓↑)
0LL = Q̃

(00)−1
LL↓↑ (P

(00)
LL↓↑ − U

(0)
LL

−1
K

(00)
LL↓↑), (5.64)

λ̃1LL′ = U
(1)−1
LL′

(

detQ̂LL′

)−1 [

U
(1)
LL′

(

Q̂
(22)
llLL′P̂

(11)
LL′ − Q̂

(12)
lLL′P̂

(12)
LL′

)

+ U
(2)
LL′

(

Q̂
(22)
llLL′P̂

(21)
LL′ − Q̂

(12)
lLL′P̂

(22)
LL′

)

−
(

Q̂
(22)
llLL′K̂

(1)
LL′ − Q̂

(12)
lLL′K̂

(2)
lLL′

) ]

, (5.65)

λ̃2lLL′ = U
(2)−1
LL′

(

detQ̂LL′

)−1 [

U
(1)
LL′

(

Q̂
(22)
LL′ P̂

(12)
LL′ − Q̂

(21)
lLL′P̂

(11)
LL′

)

+ U
(2)
LL′

(

Q̂
(11)
LL′ P̂

(21)
lLL′ − Q̂

(11)
LL′ P̂

(22)
LL′

)

−
(

Q̂
(22)
llLL′K̂

(2)
lLL′ − Q̂

(21)
lLL′K̂

(1)
LL′

) ]

, (5.66)
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λ̃
(σ−σ)
2tLL′ = Q̃

(22)−1
ttLL′σ−σ(P

(22)
tLL′σ−σ − U

(2)−1
LL′ K

(2)
tLL′σ−σ). (5.67)

We can determine the variational parameters λ̃
(↓↑)
0LL, λ̃1LL′ , λ

(s)
1LL′ , λ̃2lLL′ , λ

(s)
2lLL′ , λ̃

(σ−σ)
2tLL′ solving these

equations self-consistently.

In the non-magnetic state, we have

P
(00)
LL↓↑ = PLL, P

(11)
LL′σσ′ = PLL′ , (5.68)

P
(12)
LL′σσ′ = σσ′PLL′ , P

(12)
lLL′σσ′ = −

1

4
σσ′PLL′ , (5.69)

P
(22)
lLL′σσ′ = −

1

16
PLL′ , P

(22)
tLL′σ−σ =

1

4
PLL′ , (5.70)

Q
(00)
LL↓↑ = QLL, Q

(11)
LL′σσ′ = QLL′ , (5.71)

Q
(12)
LL′σσ′ = Q

(21)
LL′σσ′ = −

1

4
σσ′QLL′ , (5.72)

Q
(22)
lLL′σσ′ =

1

16
QLL′ , Q

(22)
tLL′σσ′ =

1

4
QLL′ , (5.73)

S
(00)
LL↓↑ = SLL, S

(11)
LL′σσ′ = SLL′ , (5.74)

S
(12)
LL′σσ′ = S

(21)
LL′σσ′ = −

1

4
σσ′SLL′ , (5.75)

S
(22)
lLL′σσ′ =

1

16
SLL′ , S

(22)
tLL′σσ′ =

1

4
SLL′ . (5.76)

Here PLL′ , QLL′ , and SLL′ are given by

PLL′ = i

∫ ∞

0

dteiǫctaL(−t)aL′(−t)bL(t)bL′(t), (5.77)

QLL′ = −
∫ ∞

0

dtdt′eiǫc(t+t′)
[

aL′(−t− t′)bL′(t+ t′)aL(−t− t′)bL1(t+ t′)

− aL′(−t− t′)bL′(t+ t′)aL1(−t− t′)bL(t+ t′)

+ aL′(−t− t′)bL′1(t+ t′)aL(−t− t′)bL(t+ t′)

− aL′1(−t− t′)bL′(t+ t′)aL(−t− t′)bL(t+ t′)
]

, (5.78)
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and

SLL′ = −
∫ ∞

0

dtdt′eiǫc(t+t′)aL′(−t− t′)bL′(t+ t′)aL(−t− t′)bL(t+ t′). (5.79)

The functions of aL(t), bL(t), aL1(t), and bL1(t) are given as follows.

aL(t) =

∫ ∞

0

dte−iǫtρL(ǫ)f(ǫ̃), (5.80)

bL(t) =

∫ ∞

0

dte−iǫtρL(ǫ)[1− f(ǫ̃)], (5.81)

aL1(t) =

∫ ∞

0

dte−iǫtǫρL(ǫ)f(ǫ̃), (5.82)

bL1(t) =

∫ ∞

0

dte−iǫtǫρL(ǫ)[1− f(ǫ̃)]. (5.83)

Here ρL(ǫ) is the Hartree-Fock local density of states. It is defined as follows.

ρL(ǫ) =
∑

kn

|〈iL|kn〉|2 δ(ǫ− ǫkn) . (5.84)

Thus, Q̃
(αα′)
τLL′σσ defined by Eq. (5.22) are expressed as follows.

Q̃
(00)
LL↓↑ = Q̃LL, Q̃

(11)
LL′σσ′ = Q̃LL′ , (5.85)

Q̃
(12)
LL′σσ′ = Q̃

(21)
LL′σσ′ = −

1

4
σσ′Q̃LL′ , (5.86)

Q̃
(22)
lLL′σσ′ =

1

16
Q̃LL′ , Q̃

(22)
tLL′σσ′ =

1

4
Q̃LL′ . (5.87)

Here Q̃LL′ are defined by

Q̃LL′ = QLL′ − ǫcSLL′ . (5.88)

According to Eqs. (5.32), (5.39), (5.40), (5.47), and (5.48), we obtain the matrix elements Q̄ in

the paramagnetic state as follows.

Q̄
(11)
LL′ = 4Q̃LL′ , (5.89)

Q̄
(21)
lLL′ = Q̄

(12)
lLL′ = 0, (5.90)

Q̄
(11)
1LL′ = Q̄

(11)
3LL′ = 2Q̃LL′ , (5.91)
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Q̄
(21)
1lLL′ = Q̄

(12)
1lLL′ = −

1

2
Q̃LL′ , (5.92)

Q̄
(22)
llLL′ =

1

4
Q̃LL′ , (5.93)

Q̄
(22)
1llLL′ = Q̄

(22)
3llLL′ =

1

8
Q̃LL′ , (5.94)

and

Q̄
(αα′)
2ττ ′LL′ = Q̄

(αα′)
4ττ ′LL′ = 0. (5.95)

We also obtain the matrix elements of P̄ in the paramagnetic state using Eqs. (5.35), (5.41) and

(5.49) as follows.

P̄
(11)
LL′ = 4PLL′ , (5.96)

P̄
(21)
LL′ = P̄

(12)
lLL′ = 0, (5.97)

P̄
(22)
LL′ = −1

4
PLL′ , (5.98)

P̄
(αα′)
2τ ′LL′ = P̄

(αα′)
4τ ′LL′ = 0. (5.99)

Thus we obtain from Eqs. (5.55) ∼ (5.57)

Q̂
(αα′)
τ ′LL′ = Q̄

(αα′)
τ ′LL′ , (5.100)

P̂
(αα′)
τ ′LL′ = P̄

(αα′)
τ ′LL′ , (5.101)

and

K̂
(α)
τLL′ = K̄

(α)
τLL′ . (5.102)

Finally in the paramagnetic state the self-consistent equations (5.64), (5.65), (5.66), and (5.67)

reduce to the following equations.

λ̃0LL = Q̃−1LL

(

PLL − U
(0)−1
LL K

(0)
LL

)

, (5.103)

λ̃1LL′ = Q̃−1LL′

(

PLL′ − 1

4
U

(1)−1
LL′ K̄

(1)
LL′

)

, (5.104)

λ̃2lLL′ = −Q̃−1LL′

(

PLL′ + 4 U
(2)−1
LL′ K̄

(2)
lLL′

)

, (5.105)

λ̃
(σ−σ)
2tLL′ = −Q̃−1LL′

(

PLL′ + 4 U
(2)−1
LL′ K

(2)
tLL′σ−σ

)

. (5.106)
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Here Q̃LL′ = QLL′ − ǫcSLL′ , K
(0)
LL′ = K

(0)
LL′↓↑, K̄

(1)
LL′ =

∑

σσ′ K
(1)
LL′σσ′ , K̄

(2)
lLL′ =

∑

σσ′ K
(2)
lLL′σσ′ .

Furthermore, we can verify that K
(2)
tLL′ = K

(2)
tLL′σ−σ are independent of σ in the non-magnetic

state. This means that λ̃
(+−)
2tLL′ = λ̃

(−+)
2tLL′ = λ̃2tLL′ . Thus Eq. (5.106) reduces as follows

λ̃2tLL′ = −Q̃−1LL′

(

PLL′ + 4 U
(2)−1
LL′ K

(2)
tLL′

)

. (5.107)

Note that in the weak Coulomb interaction limit, we can neglect the higher order terms, i.e.,

U
(0)−1
LL K

(0)
LL → 0, and Q̃−1LL → PLL′ in Eq. (5.103), so that we obtain from Eq. (5.103)

λ̃0LL = η̃LL → 1. (5.108)

In the same way, one can verify from Eqs. (5.104), (5.105), and (5.107) in the weak Coulomb

interaction limit.

λ̃1LL′ = ζ̃LL′ → 1, (5.109)

λ̃2lLL′ = ξ̃lLL′ → −1, (5.110)

λ̃2tLL′ = ξ̃tLL′ → −1. (5.111)

These variational parameters (5.108)∼ (5.111) have been used in the lowest-order calculations in

Chapter 4.

The self-consistent equations (5.103) ∼ (5.105) and (5.107) contain the higher-order terms

{K, K̄}. We can obtain these terms from Eq. (5.13). Note that {K̄} are defined by sum with

respect to σ of {K}. The higher-order correlation terms {K} are summarized as follows:

K
(0)
LL = U

(0)2
LL ΩLLλ̃0LL + 4

∑

L′ 6=L

U
(1)2
LL′ MLL′λ̃1LL +

1

4

∑

L′ 6=L

U
(2)2
LL′ MLL′

(

λ̃2lLL′ + 2λ̃2tLL′

)

.

(5.112)

K̄
(1)
LL′ = 4U

(1)
LL′

(

U
(0)
LL′MLL′λ̃0LL + U

(0)
L′L′ML′Lλ̃0L′L′

)

+ 4U
(1)
LL′

(

U
(0)
LLΞL′LL + U

(0)
L′L′ΞLL′L + U

(1)
LL′ΩLL′

)

λ̃1LL′

+ 8
∑

L′′(6=L,L′)

U
(1)
LL′′U

(1)
L′L′′

(

ΞLL′L′′λ̃1LL′′ + ΞL′LL′′λ̃1L′L′′

)

−
1

4
U

(2)2
LL′ ΩLL′λ̃2lLL′ −

1

2
U

(2)2
LL′ ΩLL′λ̃2tLL′ . (5.113)

K̄
(2)
lLL′ =

1

4
U

(2)
LL′

(

U
(0)
LLMLL′λ̃0LL′ + U

(0)
L′L′ML′Lλ̃0L′L′

)

−
1

4
U

(1)
LL′U

(2)
LL′ΩLL′λ̃1LL′

−
1

4
U

(2)
LL′

(

U
(0)
LLΞL′LL + U

(0)
L′L′ΞLL′L′ − U

(1)
LL′ΩLL′

)

λ̃2lL′L′

−
1

8

∑

L′′(6=L,L′)

U
(2)
LL′′U

(2)
L′L′′

(

ΞLL′L′′λ̃2lLL′′ + ΞL′LL′′λ̃2lL′L′′

)

−
1

8
U

(2)2
LL′ WLL′λ̃2tLL′ . (5.114)
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K
(2)
tLL′ =
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4
U

(2)
LL′

(

U
(0)
LLMLL′λ̃0LL + U

(0)
L′L′ML′Lλ̃0L′L′ − U

(1)
LL′ΩLL′λ̃1LL′

)

−
1

16
U

(2)2
LL′ λ̃2lLL′ +

1

4
U

(2)
LL′

(

U
(1)
LL′ +

1

4
U

(2)
LL′

)

ΩLL′λ̃2tLL′

+
1

8

∑

L(6=L,L′)

U
(2)
LL′′U

(2)
L′L′′ΞLL′L′′λ̃2tLL′′ +

1

8

∑

L( 6=L,L′)

U
(2)
LL′′U

(2)
L′L′′ΞL′LL′′λ̃2tLL′ . (5.115)

The final expressions of all the matrix elements of correlation energy ǫc and the self-consistent

equations for variational parameters are given in Appendix F (see Eqs. (F.22) ∼ (F.25), and Eqs.

(F.33) ∼ (F.39)). The explicit expressions of MLL′ , WLL′ , ΩLL′ , and ΞLL′L′′ are also given in

Appendix C (see Eqs. (C.19) ∼ (C.23)).

It should be noted that the rhs of Eqs. (5.103) ∼ (5.105) and (5.107) contain the correlation

energy ǫc, the Fermi level ǫF , as well as the variational parameters {λ̃ταLL′}. Thus Eqs. (5.8),

(5.103) ∼ (5.105), (5.107), and (3.77) have to be solved self-consistently. Then we can calculate

the physical quantities such as charge fluctuations and amplitude of local moments.

5.2 Various physical quantities for new variational parameters

The correlation energy has been given in Eq. (5.8):

ǫc =
−〈Õi

†
HI〉0 − 〈HIÕi〉0 + 〈Õi

†
H̃Õi〉0

1 + 〈Õi

†
Õi〉0

. (5.116)

The expressions of the matrix elements of ǫc with use of the variational ansatz (5.5) have been

obtained in Eqs. (5.9) ∼ (5.15). The explicit expressions in the paramagnetic state are given in

Appendix F.

The Fermi level ǫF is determined from the conduction electron number ne via the relation,

ne =
∑

L

〈niL〉 . (5.117)

Here the electron number for orbital L on site i has been obtained in Eq. (3.80):

〈niL〉 = 〈niL〉0 +
〈Õ†i ñiLÕi〉0

1 + 〈Õi

†
Õi〉0

. (5.118)

The explicit expression of the correlation correction 〈ñiL〉 is obtained with use of the ansatz (5.5).

The expression is given in Appendix G.

The charge fluctuations and amplitude of local moment are obtained in Eqs. (3.89) and (3.99):

〈(δnid)
2〉 =

d
∑

Lσ

〈niLσ〉0(1− 〈niLσ〉0) +
d
∑

Lσ

〈ñiLσ〉(1− 2〈niLσ〉0)

− 〈ñid〉
2 + 2

d
∑

L

〈O
(0)
iLL〉+ 2

d
∑

(L,L′)

〈O
(1)
iLL′〉 , (5.119)
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4

d
∑

Lσ

〈niLσ〉0(1− 〈niLσ〉0) +
3

4

d
∑

Lσ

〈ñiLσ〉(1− 2〈niL−σ〉0)

−
3

2

d
∑

L

〈O
(0)
iLL〉+ 2

d
∑

(L,L′)

〈O
(2)
iLL′〉 . (5.120)

Here

∑

〈LL′〉

〈O
(α)
iLL′〉 =

−
∑

〈LL′〉

〈Õi

†
O

(α)
iLL′〉0 −

∑

〈LL′〉

〈O
(α)
iLL′Õi〉0 +

∑

〈LL′〉

〈Õi

†
O

(α)
iLL′Õi〉0

1 + 〈Õi

†
Õi〉0

. (5.121)

Explicit expressions of 〈ñiL〉 and {〈O
(α)
iLL′〉} with use of the varitional parameters {λ̃

(σσ′)
ατLL′} are

given in Appendices G and H, respectively.

The momentum distribution function (MDF) has been given in Eq. (3.103).

〈nknσ〉 = f(ǫ̃knσ) +
N〈Õ†i ñknσÕi〉0

1 + 〈Õi

†
Õi〉0

. (5.122)

The first term at the rhs is the MDF for the Hartree-Fock independent electrons, which is given

by the Fermi distribution function at zero temperature f(ǫ̃knσ). ǫ̃knσ is the Hartree-Fock one-

electron energy measured from the Fermi level ǫF. The second term at the rhs of Eq. (5.122) is

the correlation corrections, where ñknσ is defined by ñknσ = nknσ − 〈nknσ〉0. The numerator is

expressed as follows (see Appendix I).

N〈Õ†i ñknσÕi〉0 =
∑

ατ 〈LL′〉

q(α)τ U
(α)2
LL′ λ̃

2
ατLL′

(

B̂LL′nσ(k) f(−ǫ̃knσ)− ĈLL′nσ(k) f(ǫ̃knσ)
)

.

(5.123)

Here q
(α)
τ is a constant factor taking the value 1 for α=0, 2 for α=1, 1/8 for α=2, τ=l, and 1/4 for

α=2, τ=t, respectively. B̂LL′nσ(k) is a momentum-dependent particle contribution above ǫF and is

expressed as follows.

B̂LL′nσ(k) = |uLnσ(k)|
2BL′Lσ(ǫknσ) + |uL′nσ(k)|

2BLL′σ(ǫknσ) , (5.124)

where {uLnσ(k)} are the eigenvectors for a given k point. The hole contribution ĈLL′nσ(k) is

defined by Eq. (5.124) in which the energy dependent terms BLL′σ(ǫknσ) have been replaced by

CLL′σ(ǫknσ). These are given by the Laplace transformation of the local density of states in the

Hartree-Fock approximation. Their explicit expressions in the paramagnetic state are given in

Appendix I (see Eqs. (I.4), and (I.5)).

The quasiparticle weight ZkFn characterizes the low energy excitations in metals. It is obtained

by taking the difference between 〈nknσ〉 below and above the Fermi level ǫF. Taking average over

the Fermi surface, we obtain the average quasiparticle weight Z.

Z = 1 +
δ(N〈Õ†i ñknσÕi〉0)kF

1 + 〈Õi

†
Õi〉0

. (5.125)

Here the first term at the rhs denotes the Hartree-Fock contribution part. The second term at the rhs

is the correlation corrections. The upper bar in the numerator denotes the average over the Fermi
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surface, and δ(N〈Õ†i ñknσÕi〉0)kF means the amount of jump at the wavevector kF on the Fermi

surface. The explicit expression of δ(N〈Õ†i ñknσÕi〉0)kF is given in Appendix I (see Eq. (I.9)).

In order to clarify the role of s, p, and d electrons, we consider here the projected MDF for

orbital L defined by 〈nkLσ〉 =
∑

n〈nknσ〉|uLnσ(k)|
2. Furthermore, we replace the energy ǫknσ in

the expression with ǫkLσ =
∑

n ǫknσ|uLnσ(k)|
2, i.e., a common energy band projected onto the

orbital L. We have then

〈nkLσ〉 = f(ǫ̃kLσ) +
N〈Õ†i ñkLσÕi〉0

1 + 〈Õi

†
Õi〉0

. (5.126)

We can also define the partial MDF 〈nklσ〉 for l(= s, p, d) electrons by

〈nklσ〉 =
1

2l + 1

∑

m

〈nkLσ〉. (5.127)

We can define the quasiparticle weight ZL for the electrons with orbital symmetry L by the jump

of 〈nkLσ〉 on the Fermi surface ǫF.

ZL = 1 +
δ(N〈Õ†i ñkLσÕi〉0)kF

1 + 〈Õi

†
Õi〉0

. (5.128)

It should be noted that the projected MDF depend on the momentum k only via ǫ̃kLσ. The

explicit expressions of the correlation corrections at the rhs of Eqs. (5.126) and (5.128) are given

in Appendix I (see Eqs. (I.15), and (I.17)). Moreover we can verify the sum rule,

Z =
1

D

∑

L

ZL =
1

D

∑

l

(2l + 1)Zl . (5.129)

Here Zl(=
∑

m ZL/(2l + 1)) is the quasipartical weight for l(= s, p, d) electrons, and D is the

number of orbitals (D = 9 in the present case). The relation allows us to interpret ZL as a partial

quasiparticle weight for electrons with orbital L.

5.3 Self-consistent numerical results of BCC iron

The bcc Fe has extensively been investigated theoretically with use of the realistic Hamiltonians

with s, p, and d orbitals at the ground states and at finite temperatures [77–81]. But quantitative

aspects on the physical properties of Fe have not yet been fully clarified even at the ground state.

We performed self-consistent numerical calculations for the paramagnetic bcc Fe in order to clarify

the quantitative aspects of the first-principles MLA and the effects of electron correlations in the

properties of Fe. In this section, we present the self-consistent results for paramagnetic Fe.

The transfer integrals and the atomic level have been calculated with use of the Stuttgart

tight-binding LMTO (linear muffin-tin orbital) package and the LDA+U scheme. We adopted

the Coulomb and exchange integrals ULL = U0 = 0.2749 Ry, ULL′ = U1 = 0.1426 Ry, and JLL′ =
J = 0.0662 Ry. These values are obtained from the relations U0 = U + 8J/5, U1 = U − 2J/5
using the average values U = 0.1691 Ry and J = 0.0662 Ry by Anisimov et al. [25]. Note that

we adopted here the relation U0 = U1 + 2J for the cubic system.
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Figure 5.1: The correlation energy ǫc as a function of Coulomb interaction strength αU0. Dashed

curve: the result with only the intra-orbital correlations, thin solid curve: the result with both

the intra-orbital and inter-orbital charge-charge correlations, solid curve: the result with full

correlations. The thin dashed curve indicates the result of the second-order calculations with

η̃LL = ζ̃LL′ = 1, and ξ̃tLL′ = ξ̃lLL′ = −1. The paramagnetic bcc Fe corresponds to αU0=0.27

Ry.

We solved the self-consistent equations for variational parameters, Eqs. (5.8), (5.103) ∼
(5.106), and (5.117), and obtained various quantities according to their expressions presented in the

last section. In order to understand the systematic change due to the Coulomb interaction strength,

we scaled U0, U1, and J as αU0, αU1, and αJ using a scaling factor α from 0 to 1. We present

the correlation energy ǫc in Fig. 5.1 as a function of αU0. With increasing αU0 (as well as αU1 and

αJ), the self-consistent correlation energy ǫc monotonically decreases. The second-order result of

ǫc with η̃LL = ζ̃LL′ = 1, and ξ̃tLL′ = ξ̃lLL′ = −1 starts to deviate from the self-consistent ǫc at

αU0 . 0.05 Ry, and overestimates the energy gain beyond the value.

In the first-principles MLA, we can describe the intra-orbital, the inter-orbital charge-charge,

and the inter-orbital spin-spin correlations by means of the correlators, Õ
(0)
iLL, Õ

(1)
iLL′ , and Õ

(2)
iLL′ .

When we take into account only the intra-orbital correlations (, i.e., ζ̃LL′ = ξ̃tLL′ = ξ̃lLL′ = 0),

we find the correlation energy ǫc = −0.041 Ry for αU0 = 0.27 Ry (, i.e., for Fe). When we

take into account both the intra-orbital and inter-orbital charge-charge correlations (, i.e., ξ̃tLL′ =
ξ̃lLL′ = 0 ), the correlation energy decreases and ǫc = −0.050 Ry for Fe. When we add further

the inter-orbital spin-spin correlations, the correlation energy decreases further and we obtain ǫc =
−0.076 Ry for Fe. We find that the inter-orbital correlations make a significant contribution to

the correlation energy. The lowest-order correlation energy gain overestimate compared to the

self-consistent correlation energy.

The correlation energy gain is accompanied by the suppression of charge fluctuations. We cal-

culated the charge fluctuations for d electrons 〈(δnd)
2〉 = 〈n2

d〉 − 〈nd〉2 as a function of αU0 as

shown in Fig. 5.2. The charge fluctuation in the Hartree-Fock approximation is 2.20. It is sup-

pressed rapidly with increasing the Coulomb interaction strength αU0. We obtain the charge fluc-
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Figure 5.2: The charge fluctuation 〈(δnd)
2〉 vs Coulomb interaction strength αU0 curves. Dashed

curve: the result with only the intra-orbital correlations, thin solid curve: the result with both the

intra-orbital and inter-orbital charge-charge correlations, solid curve: the result with full correla-

tions. The thin dashed curve indicates the second-order result. The paramagnetic bcc Fe corre-

sponds to αU0 = 0.27 Ry.

tuations 〈(δnd)
2〉=1.51 for αU0 = 0.27 Ry (Fe). The lowest-order result of calculations deviates

downward from the self-consistent result even for a small αU0 with increasing αU0; it overesti-

mates the suppression of charge fluctuations. We examined the contributions of the three kinds of

correlations to 〈(δnd)
2〉. The intra-orbital correlations suppress the charge fluctuations, and lead

to 〈(δnd)
2〉 = 1.73 for αU0 = 0.27 Ry (Fe). When we add the inter-orbital charge-charge cor-

relations, the charge fluctuation decreases further, and we have 〈(δnd)
2〉=1.36 for Fe. The result

is comparable to the value of the LA with the d-band model [21], i.e., 〈(δnd)
2〉 ≈ 1.0, though

it is somewhat larger than that of the LA because the present theory takes into account the hy-

bridization between the d and sp electrons and the latter delocalizes the d electrons. We also notice

that the inter-orbital spin-spin correlations also delocalize the d electrons, so that we finally ob-

tain 〈(δnd)
2〉=1.51, which is considerably larger than that was obtained by the LA and the d band

model.

Formation of atomic magnetic moments also originates in the d electron correlations, and de-

termines the magnetic properties of Fe at finite temperatures. We calculated the amplitude of local

moment 〈S2〉 as a function of αU0 as shown in Fig. 5.3. We have 〈S2〉 = 1.65 for the Hartree-Fock

uncorrelated electrons. The amplitudes of local moment monotonically increase with increasing

the Coulomb interaction strength αU0, and we find 〈S2〉 ≈ 2.61 for Fe in the full self-consistent

calculations. The lowest-order calculations underestimate the amplitude, and result in 〈S2〉 ≈ 2.41
for αU0 = 0.27 Ry (Fe) as mentioned in Sec. 4.3.2. The self-consistent result is comparable to the

value of the LA with the d-band model [21], 〈S2〉 ≈ 2.91, but is somewhat smaller than that of the

LA because the present theory takes into account the hybridization between the d and sp electrons.

It should be noted that the enhancement of the amplitude is caused by both the intra-orbital and

inter-orbital spin-spin correlations, and the effects of the inter-orbital charge-charge correlations
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Figure 5.3: The amplitude of local moment as a function of the Coulomb interaction strength αU0.

Dashed curve: the result with only the intra-orbital correlations, thin solid curve: the result with

both the intra-orbital and inter-orbital charge-charge correlations, solid curve: the result with full

correlations, thin dashed curve: the second-order result. The paramagnetic bcc Fe corresponds to

αU0 = 0.27 Ry.

are negligible as seen in Fig. 4.8. Although there are no direct measurements of the amplitude of

local moment 〈S2〉 for the bcc Fe, one can estimate the experimental value from the observed effec-

tive Bohr magneton number peff (= 3.20) [82], because the Rhodes-Wolhfarth ratio of the bcc Fe

is equal to 1.0 within 5% error. In this case, we have the experimental value 〈S2〉 = p2eff/4 = 2.56,

which is in good agreement with the present result 〈S2〉 = 2.61.

We have calculated the MDF in paramagnetic Fe using Eq. (5.122). Figure 5.4 shows the result

along high-symmetry lines. (Note that the wavevector k is measured in the unit of 2π/a, a being

the lattice constant.) We find strong momentum dependence of along 〈nknσ〉 the lines, which is not

described by the Hartree-Fock wavefunction.

At point Γ, we have a free-electron-like MDF 〈nknσ〉 = 1.00 for s electrons with the Hartree-

Fock one-electron energy ǫknσ = −0.69 Ry (< ǫF) ( see in Fig. 4.3), while we have the MDF

〈nknσ〉 = 0.97 for d electrons with t2g symmetry, which are associated with the Hartree-Fock one-

electron energy ǫknσ = −0.27 Ry (< ǫF), and the MDF 〈nknσ〉 = 0.82 for d electrons with eg
symmetry with the energy ǫknσ = −0.14 Ry (> ǫF) in Fig. 4.3. For the p electrons associated

with the energy ǫknσ = 2.03 Ry (> ǫF), we again have a free-electron-like 〈nknσ〉 = 0.00.

When the momentum k moves toward point N along the Γ-N line, the MDF for t2g electrons

splits into three branches. The first branch is almost constant and has a value 〈nknσ〉 = 0.98
at point N. The second branch jumps down at kF = (0.39, 0.39, 0.00) on the Fermi surface and

approaches 〈nknσ〉 = 0.00 at point N. The third branch decreases with the change in k toward

point N, jumps down at kF = (0.28, 0.28, 0.00), and approaches 〈nknσ〉 = 0.088 at point N. The

MDF for eg electrons splits into two branches. The branch with 3z2 − r2 symmetry increases and

approaches to 〈nknσ〉 = 0.86 at point N. The second branch with x2−y2 symmetry decreases along

the Γ-N lines, jumps down at kF = (0.23, 0.23, 0.00), and approaches 〈nknσ〉 = 0.25 at point N.

66



The s electron branch of the MDF hardly changes and approaches to the value 〈nknσ〉 = 0.99 at

point N. The p electron branch also shows flat behavior with 〈nknσ〉 = 0.00 because there is no

hybridization with d electrons and their one-electron energies are far above the Fermi level (see

Fig. 4.3)

Table 5.1: Mass enhancement factors for eg electrons at various wavevectors k on the Fermi sur-

face.

k (0.23, 0.23, 0.00) (0.50, 0.50, 0.28) (0.32, 0.32, 0.32) (0.00, 0.17, 0.00)

m∗
kn/m 1.84 1.71 1.78 1.82

Table 5.2: Mass enhancement factors for t2g electrons at various wavevectors k on the Fermi

surface.

k (0.28, 0.28, 0.00) (0.39, 0.39, 0.00) (0.50, 0.50, 0.09) (0.20, 0.20, 0.20)

m∗
kn/m 1.28 1.14 1.16 1.25

k (0.00, 0.58, 0.00) (0.00, 0.73, 0.00) (0.15, 0.85, 0.00) (0.18, 0.82, 0.00)

m∗
kn/m 1.29 1.27 1.27 1.29

The basic behavior of the MDF for s, p, and d electrons mentioned above is also seen on the

other high-symmetry N-P, P-Γ, Γ-H, and H-N lines. We find that the MDF branches associated

with eg electrons show large deviations from 0 and 1, indicating strong electron correlations. The

MDF associated with t2g electrons also shows significant deviations from 0 and 1. On the other

hand, the s- and p-like MDFs have values close to 1 or 0, indicating that the independent electron

band picture is applicable to their electrons.

The jump of the MDF on the Fermi surface gives the quasi-particle weight Zkn or the inverse

mass enhancement factor (m∗
kn/m = 1) according to the Fermi liquid theory. Since the hybridiza-

tion between the sp and d electrons excludes the sp-like bands near the Fermi level, most of the

Fermi surface of the bcc Fe is formed by the d bands. The mass enhancement factors for eg and t2g
electrons calculated along high-symmetry lines are presented in Tables I and II, respectively. We

find that the mass enhancements for eg electrons are momentum-dependent and show considerably

large values of mkn/m =1.71 ∼ 1.84, because these electrons form narrow bands near the Fermi

level. The t2g electrons yield smaller enhancements of mkn/m = 1.14 ∼ 1.29.

We have calculated the averaged mass enhancement factor over the Fermi surface and obtained

m∗/m = 1.648. In order to examine the dependence of m∗/m on the Coulomb integrals, we

performed the same calculations using the alternative set ULL = 0.3233 Ry, ULL′ = 0.1932 Ry, and

JLL′ = 0.0650 Ry, which was adopted in our LDA+DCPA calculations. We obtained m∗
nk/m =

1.551, a deviation of only 6% from the value of 1.648. We also suggest that the ferromagnetic spin

polarization may reduce the mass enhancement by about 5% because of the change in the weight

between eg and t2g electrons on the Fermi surface.
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As we have mentioned in the introduction, the MLA can describe the momentum dependence

of the momentum distribution function (MDF). We calculated the partial MDF projected onto each

orbital l in order to examine the role of s, p, and d electrons. They are defined by Eq. (5.127). Fig-

ure 5.5 shows the calculated MDF. In the case of s and p bands the partial MDF are approximately

flat below and above the Fermi level ǫF, and jump at ǫF. Therefore the s and p electrons behave

as an independent electron. The deviation from 1 or 0 are caused by the hybridization with d elec-

trons. On the other hand, the partial MDF for d electrons shows a strong momentum dependence

due to electron correlations.
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Figure 5.6: The orbital-dependent mass enhancement m∗
l /m as a function of the Coulomb inter-

action strength αU0. Dotted curve: m∗
s/m (l=0), dashed curve: m∗

p/m (l=1), solid curve: m∗
d/m

(l=2).

According to the Fermi liquid theory, the mass enhancement factor (i.e., the inverse quasipar-

ticle weight) is obtained from the jump at the Fermi level in the MDF. We calculated the orbital-

dependent mass enhancementm∗
l /m0 for s, p and d electrons as a function of αU0 as shown in Fig.

5.6. The d electron mass enhancement rapidly increases with increasing the Coulomb interaction

strength αU0, while the mass enhancements for the sp electrons almost remain constant and behave

as independent electrons irrespective of αU0. Calculated mass enhancements are m∗
s/m=m∗

p/m =

1.01, and m∗
d/m = 3.33 for Fe, respectively. Note that the mass enhancement of the d electrons is

significantly larger than the Hartree-Fock value 1.0.

We calculated the average mass enhancement m∗/m (= 1/Z) as a function of αU0. Calculated

m∗/m vs Coulomb interaction curve is presented in Fig. 5.7. The curves with the intra-orbital

correlations as well as the curve with both the intra-orbital and inter-orbital charge-charge correla-

tions are also presented there. By comparing these three curves, we find that the mass enhancement

m∗/m for Fe (αU0 = 0.27 Ry) is dominated by both the intra-orbital and inter-orbital spin-spin cor-

relations, though the inter-orbital charge-charge correlations also make a significant contribution

in the weak interaction regime (αU0 . 0.05 Ry).

The mass enhancement for the bcc Fe has recently been investigated on the basis of the first-

principles theories. Katanin et al. [83] obtained m∗
t2g
/m = 1.163 for t2g electrons at 1000K with
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Figure 5.7: The mass enhancement factor m∗/m as a function of the Coulomb interaction strength

αU0. Dashed curve: mass enhancement due to the intra-orbital correlations, thin solid curve: mass

enhancement due to both the intra-orbital and inter-orbital charge-charge correlations, solid curve:

the result with the full correlations.

use of the LDA+DMFT combined with the QMC technique, but they could not obtain the mass

enhancement for eg electrons because of the non-Fermi liquid behavior due to strong fluctuations

in the narrow eg band at finite temperatures. More recently, Pourovski et al. [15] performed the

LDA+DMFT calculations for bcc Fe with use of the continuous-time QMC technique. They ob-

tained m∗/m=1.577 for bcc Fe being in agreement with our present result m∗/m = 1.65. The

first-principles Gutzwiller calculations by Deng et al. [77] led to a reasonable value m∗/m = 1.56.

But they used too large a Coulomb interaction parameter U = 7.0 eV. Recent results based on the

LDA+Gutzwiller theory with use of a reasonable value U = 2.5 eV and J=1.2 eV show thatm∗
eg
/m

= 1.08 for eg electrons and m∗
t2g
/m = 1.05 for t2g electrons, [84] which are too small as compared

with the other results of calculations mentioned above. The present result m∗/m = 1.65 is compa-

rable to the experimental value m∗/m = 1.38 ∼ 2.12 obtained from the low temperature specific

heat data [72–74], and the recent result m∗/m = 1.7 obtained by the angle resolved photoemission

spectroscopy (ARPES) [57].
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Chapter 6

Summary and Discussion

We have developed the first-principles momentum dependent local ansatz (MLA) wavefunc-

tion method using the tight-binding (TB) LDA+U Hamiltonian towards the quantitative descrip-

tion of correlated electrons in the real system. The wavefunction is constructed by applying the

momentum-dependent intra-orbital correlators, the inter-orbital charge-charge correlators, and the

spin-spin correlators to the Hartree-Fock uncorrelated wavefunction. The MLA reduces to the

Rayleigh-Schrödinger perturbation theory in the weak correlation limit as it should be, and de-

scribes quantitatively the ground state and related low-energy excitations in solids.

We have verified in the single-band model that the MLA improves the local ansatz approach

(LA) irrespective of the electron number and the Coulomb interaction energy, and more strongly

suppresses the double occupation number as compared with the LA. In particular, the momentum

distribution functions (MDF) show a clear momentum dependence, while those in the LA and

the Gutzwiller wavefunction (GW) show a flat behavior below and above the Fermi level. One can

improve the MLA by changing the starting wavefunction from the Hartree-Fock (HF) wavefunction

to the hybrid (HB) one. The HB-MLA is applicable to both the weak and the strong Coulomb

interaction systems.

We first investigated the first-principles MLA in the weakly correlated regime. We solved the

self-consistent equations for the momentum-dependent variational parameters in the weak interac-

tion limit, and obtained the correlation energy in the single-site approximation (SSA) as well as

the other physical quantities such as the electron number, the charge fluctuations, the amplitude of

local moment, and the MDF.

We performed numerical calculations for the paramagnetic bcc Fe in order to clarify the ba-

sic behavior of the first-principles MLA in the weak Coulomb interaction regime. We obtained

the correlation energy ǫc=−0.0516 Ry due to intra-orbital correlations of Fe. When we take into

account the inter-orbital correlations, the correlation energy ǫc decreases further and we obtain ǫc
= −0.1101 Ry for Fe. The inter-orbital correlation energy is comparable to the intra-orbital cor-

relations energy in the lowest order. Calculated charge fluctuation is suppressed by correlations

and we obtained 〈(δnd)
2〉 ≈ 1.2 for Fe. The result is comparable to the value of the LA with the

d-band model, 〈(δnd)
2〉 ≈ 1.0, but is somewhat larger than that of the LA because the present

theory takes into account the hybridization between the d and sp electrons. We find that the am-

plitude of local moment 〈S2〉 ≈ 2.41 for Fe in the lowest-order calculations. The result is larger

than the Hartree-Fock value 〈S2〉 = 1.65 because of the Hund-rule correlations, but is somewhat

smaller than that of the d-band model+LA value 〈S2〉 = 2.91 because the present theory takes into

account the hybridization between the sp and d electrons. We also calculated the MDF as well
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as the effective mass enhancement factor assuming the constant eigen vectors for d electrons. We

found a clear momentum dependence of the MDF via energy eigen value ǫ̃knσ. We obtained the

mass enhancement m∗/m= 1.4 for Fe from a jump at the Fermi level, which is comparable to the

experimental values 1.38 ∼ 2.12 obtained from the T -linear specific heat at low temperatures.

In order to clarify the first-principles MLA and related correlation effects in more correlated

regime, we derived the self-consistent equations for the variational parameters on the basis of the

variational parameters ansatz which interpolates between the weak and atomic limits, and obtained

the expressions of the other physical quantities. We investigated the correlated electron state of the

paramagnetic bcc Fe solving the self-consistent equations for momentum-dependent variational

parameters. We obtained the correlation energy ǫc = −0.076 Ry for the paramagnetic Fe, and

found that the inter-orbital correlation contribution is comparable to the intra-orbital one in the case

of Fe. The charge fluctuations 〈(δnd)
2〉 are suppressed with increasing the Coulomb interaction

strength. We obtained 〈(δnd)
2〉 = 1.51 for Fe, which is larger than the value 〈(δnd)

2〉 ≈ 1.0
calculated by the LA+d band model. The discrepancy is partly caused by the hybridization between

sp and d electrons and partly caused by the Hund-rule correlations. The amplitude of local moment

〈S2〉 increases with increasing the Coulomb interaction strength. We obtained 〈S2〉 = 2.61 for

Fe. The result shows a good agreement with the experimental value 2.56 estimated from the

effective Bohr magneton number of the Curie-Weiss susceptibility. The lowest-order calculations

underestimate the amplitude of local moment.

We investigated the MDF for bcc Fe. The MDF depends on the momentum k via both the

energy ǫknσ and the eigenvector uLnσ(k). We obtained the first-principles MDF bands for Fe

along high-symmetry lines, and clarified the band structure of the MDF for s, p, and d electrons

for the first time. We found a large deviation from the Fermi-Dirac distribution function for the

branches associated with eg and t2g electrons, while the sp electron branches follow the usual band

theory. We obtained the momentum-dependent mass enhancement factors m∗
kn/m along the high-

symmetry line. We found the mass enhancementsmeg/m = 1.8 for eg electrons andmt2g/m = 1.2
for t2g electrons.

We examined the MDF projected onto each orbital. We found that the d electrons cause a

significant momentum dependence, though the sp electrons behave as independent electrons. We

obtained the mass enhancement factors m∗
s/m = m∗

p/m = 1.01, and m∗
d/m = 3.33 for s, p, and

d electrons, respectively, indicating that the d electrons behave as correlated electrons. The av-

erage mass enhancement m∗/m increases with increasing interaction strength. We found that the

intra-orbital and inter-orbital spin-spin correlations , i.e., spin fluctuations cause the mass enhance-

ment of Fe. We obtained the average mass enhancement m∗/m = 1.65 for Fe. The value 1.65

is consistent with the experimental values obtained from the low-temperature specific heat data

m∗/m = 1.38 ∼ 2.12, and the ARPES data 1.7, as well as the recent theoretical result 1.577 based

on the finite-temperature LDA+DMFT calculations. The first-principles Gutzwiller theory under-

estimates the mass enhancement factor of bcc Fe, indicating the significance of the momentum

dependence of the variational parameters in the MLA.

Although we established in this thesis the quantitative aspects of the first-principles MLA, there

are many works left for future. First, present calculations for Fe are limited to the paramagnetic

state. We have to perform the ferromagnetic calculations to clarify the ground state of Fe, Co, and

Ni on the basis of the first-principles MLA. Furthermore we have to examine the quantitative as-

pects of the theory for more correlated electron systems such as Fe pnictides and the heavyfermion

compounds. These problems are left for future work.

Second, in order to describe the strongly correlated electron systems showing the metal-insulator
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transition, we have to apply the MLA with HB wavefunction. We have to extend the HB-MLA to

the first-principles version for the quantitative description of the metal-insulator transitions.

We also point out that the MLA wavefunction method is limited to the single-site approxima-

tion. Inclusion of nonlocal correlations is desired to describe the magnetism, the metal-insulator

transition, and the frustrated electrons in low-dimensional systems. There one needs to introduce

explicitly the nonlocal correlators with momentum dependent variational parameters. Extension of

the first-principles MLA to the nonlocal case will open a new door to a wide range of applications

of the theory to correlated electron systems.
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Appendix A

Appendix: Wick’s Theorem

We used Wick’s theorem in Chapters 3, 4, and 5 to calculate the average of operator products

in many-body problems. In this Appendix, we derive Wick’s theorem and its extension.

We can prove the Wick’s theorem as follows.

〈A1A2A3A4...A2n−1A2n〉0 =
∑

{contractions}

(−)δ(P )〈Ai1Ai2〉0〈Ai3Ai4〉0.........〈Ai2n−1
Ai2n〉0. (A.1)

Let us consider the average of the operator products with respect to the non-interacting Hamiltonian

H0 as follows.

〈A1A2.....A2n〉0. (A.2)

Here {Ai} are creation or annihilation operators that satisfy the relations

AiAj + AjAi = (ij). (A.3)

For example, ak and a†k satisfy the above relations:

akak′ + ak′ak = a†ka
†
k′ + a†k′a

†
k = 0, (A.4)

a†kak′ + ak′a
†
k = δkk′ . (A.5)

The non-interacting Hamiltonian is assumed as

H0 =
∑

k

ǫknk. (A.6)

Then, we obtain

〈a†ka
†
k′〉0 = 〈akak′〉0 = 0, (A.7)

〈a†kak′〉0 = 〈aka
†
k′〉0 = 0 (k 6= k′). (A.8)

and

〈a†kak〉0 = 〈nk〉0 =
1

1 + eβǫk
, (A.9)

〈aka†k〉0 = 1− 〈nk〉0 =
1

1 + e−βǫk
. (A.10)

Thus

AiAj =
(ij)

1 + e±βǫk
. (A.11)
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Here + for Ai = a†k and − for Ai = ak in the denominator. 〈AiAj〉 is called the contraction of a

pair (ij).
Using the anti-commutation relation (A.3), one can exchange A1 with A2 in the average

〈A1A2.....A2n〉0 = (12)〈A3...., A2n〉0 − 〈A3A2A1.....A2n〉0. (A.12)

Repeating the same procedures, one can move A1 to the end of the products as follows.

〈A1A2.....A2n〉0 = (12)〈A3...A2n〉0 − (13)〈A2A4....A2n〉0
+ .......................................................

+ (1, 2n)〈A2A4....A2n−1〉0 − 〈A2A3....A2nA1〉0. (A.13)

Note that we have the relation

ak(β) = eβH0ake
−βH0 . (A.14)

Differentiating the above equation with respect to β, we obtain

∂ak(β)

∂β
= eβH0(H0ak − akH0)e

−βH0 . (A.15)

By making use of H0 =
∑

k′ ǫk′a
†
k′ak′ , nk′ = a†k′ak′ and the anti-commutation relation aka

†
k =

δkk′ − a†kak into H0ak − akH0, we obtain

H0ak − akH0 =
∑

k′

ǫk′(a
†
k′ak′ak − aka

†
k′ak′)

=
∑

k′

ǫk′(a
†
k′ak′ak + a†k′akak′ − ak′δkk′)

= −ǫkak. (A.16)

Thus Eq. (A.15) is expressed by
∂ak(β)

∂β
= −ǫkak. (A.17)

If we consider the relation ak(0) = ak. We obtain from Eq. (A.17).

ak(β) = ake
−βǫk . (A.18)

Similarly,

a†k(β) = a†ke
−βǫk . (A.19)

From these relations, we have

ake
−βH0 = e−βH0ake

−βǫk , (A.20)

a†ke
−βH0 = e−βH0a†ke

βǫk . (A.21)

Let us consider the thermal average in Eq. (A.13).

〈A2......A2nA1〉0 =
tr(A2......A2nA1e

−βH0)

tr(e−βH0)
. (A.22)
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Using Eqs. (A.20) and (A.21), we have the following relation.

Aie
−βH0 = e±βǫke−βH0Ai. (A.23)

Here + for Ai = a†k and − for Ai = ak. Substituting Eq. (A.23) into (A.22), we obtain

〈A2......A2nA1〉0 =
e±ǫ1tr(A2......A2nA1e

−βH0)

tr(e−βH0)
. (A.24)

Hence

〈A2......A2nA1〉0 = e±ǫ1〈A1A2......A2n〉0. (A.25)

Here we used the relation tr(AB) = tr(BA).
Substituting Eq. (A.25) into Eq. (A.13), we obtain

(1 + e±βǫ1)〈A1A2.....A2n〉0 = (12)〈A3...A2n〉0 − (13)〈A2A4....A2n〉0
+ ........+ (1, 2n)〈A2A3....A2n−1〉0. (A.26)

Thus we obtain

〈A1A2.....A2n〉0 = 〈A1A2〉0〈A3.....A2n〉0 − 〈A1A3〉0〈A2A4.....A2n〉0
+ ....+ 〈A1A2n〉0〈A2A3.....A2n−1〉0. (A.27)

Repeating the same procedure for the remaining multiple products, we reach Wick’s theorem.

〈A1A2A3A4...A2n−1A2n〉0 =
∑

{contractions}

(−)δ(P )〈Ai1Ai2〉0〈Ai3Ai4〉0.........〈Ai2n−1
Ai2n〉0. (A.28)

Here the sum at rhs is taken over all possible pairs of contractions. (−1)δ(P ) takes + or− depending

on whether (i1, i2, i3, ....i2n) is even or odd in permutation and

∑

{contractions}

=
∑

i1<i2,i3<i4,....,i2n−1<i2n

i1 < i3 < i5 < ...... < i2n−1

For the calculations of operator products 〈δ(A1A2)δ(A3A4)........δ(A2n−1A2n)〉0, we can prove

the extended Wick’s theorem as follows:

〈δ(A1A2)δ(A3A4)........δ(A2n−1A2n)〉0 =
∑′

{contractions}

(−)δ(P )〈Ai1Ai2〉0〈Ai3Ai4〉0.........〈Ai2n−1
Ai2n〉0.

(A.29)

Here

δ(AiAj) = AiAj − 〈AiAj〉0. (A.30)

The sum is taken over all possible pairs of contractions without self-pairs such as 〈Ai2n−1
Ai2n〉.

(−)δ(p) takes +(−) when (i1, i2, ......i2n) is even (odd) in the permutations.

One can check that the theorem holds true for n = 1, 2. In fact

〈δ(A1A2)〉0 = 〈A1A2〉0 = 〈A1A2〉0 = 0. (A.31)
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and

〈δ(A1A2)δ(A3A4)〉0 = 〈A1A2A3A4〉0 − 〈A1A2〉0〈A3A4〉0
− 〈A3A4〉0〈A1A2〉0 + (−)2〈A1A2〉0〈A3A4〉0
= 〈A1A2A3A4〉0 − 〈A1A2〉0〈δ(A3A4)〉0
− 〈A3A4〉0〈δ(A1A2)〉0 − 〈A1A2〉0〈A3A4〉0. (A.32)

In the same way, one can prove that

〈δ(A1A2)δ(A3A4).....δ(A2n−1A2n)〉0
= 〈A1A2A3A4.........A2n−1A2n〉0
−
∑

i

〈A2i−1A2i〉0〈δ(A1A2)..2i....δ(A2n−1A2n)〉0

−
∑

i

∑

j(>i)

〈A2i−1A2i〉0〈A2j−1A2j〉0〈δ(A1A2)..2i....2j....δ(A2n−1A2n)〉0

−
∑

i

∑

j(>i)

∑

k(>j)

〈A2i−1A2i〉0〈A2j−1A2j〉0〈A2k−1A2k〉0〈δ(A1A2)..2i....2j....2k....δ(A2n−1A2n)〉0

− ...........................................

− 〈A1A2〉0〈A3A4〉0..........〈A2n−1A2n〉0. (A.33)

Therefore, we obtain the term 〈δ(A1A2)δ(A3A4).....δ(A2n−1A2n)〉0 as follows.

= (sum over all possible combinations of products of contractions)

− (single self-pair terms)

− (double self-pair terms)

− (triple self-pair terms)

− ........................

− (n self-pair terms)

= sum over all possible combinations of products of contractions without any self-pairs.

Thus the extended Wick’s theorem (A.29) holds true.
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Appendix B

Appendix: Calculation of Physical

Quantities using Feynman-Hellmann

Theorem

In this Appendix we prove the Feynman-Hellmann theorem and derive physical quantities using

the theorem.

1. Feynman-Hellmann theorem

Consider a system with Hamiltonian H(λ) that depends on some parameter λ. Let Ψ(λ) be

a eigen function of H(λ) with eigen value E(λ)

H(λ)|Ψ(λ)〉 = E(λ)|Ψ(λ)〉. (B.1)

We assume that Ψ(λ) is normalized so that

〈Ψ(λ)|Ψ(λ)〉 = 1. (B.2)

The Feynman-Hellmann theorem states that the derivative of the total energy with respect to a

parameter is equal to the expectation value of the derivative of the Hamiltonian with respect to the

same parameter.

∂E(λ)

∂λ
=

〈

Ψ(λ)

∣

∣

∣

∣

∂H(λ)

∂λ

∣

∣

∣

∣

Ψ(λ)

〉

. (B.3)

In order to prove the above relation, we start from the ground-state energy obtain from Eq. (B.1).

E(λ) = 〈Ψ(λ)|H(λ)|Ψ(λ)〉. (B.4)

Differentiating both sides, we have

∂E(λ)

∂λ
=

〈

∂Ψ(λ)

∂λ
|H(λ)|Ψ(λ)

〉

+

〈

Ψ(λ)

∣

∣

∣

∣

∂H(λ)

∂λ

∣

∣

∣

∣

Ψ(λ)

〉

+

〈

H(λ) |Ψ(λ)| ∂Ψ(λ)

∂λ

〉

. (B.5)

Using the relation (B.1), Eq. (B.5) is expressed as follows.

∂E(λ)

∂λ
=

〈

∂Ψ(λ)

∂λ
|H(λ)|Ψ(λ)

〉

+ E(λ)

[〈

Ψ(λ)|∂Ψ(λ)

∂λ

〉

+

〈

Ψ(λ)

∂λ
|Ψ(λ)

〉]

. (B.6)
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Since |Ψ(λ)〉 is normalized, we have from Eq. (B.2)

〈

Ψ(λ)

∂λ

∣

∣

∣
Ψ(λ)

〉

+

〈

Ψ(λ)
∣

∣

∣

∂Ψ(λ)

∂λ

〉

= 0. (B.7)

From Eqs. (B.6) and (B.7), we obtain

∂E(λ)

∂λ
=

〈

Ψ(λ)

∣

∣

∣

∣

∂H(λ)

∂λ

∣

∣

∣

∣

Ψ(λ)

〉

. (B.8)

which is the Feynman-Hellmann theorem.

Let us consider the Feynman-Hellmann theorem with use of the correlation energy. The corre-

lation energy is defined by

Ec = 〈H〉 − 〈H〉0. (B.9)

Here the 〈H〉0 is the ground-state energy in the Hartree-Fock approximation 〈H〉0 = 〈H0〉0, H0

being the Hartree-Fock Hamiltonian defined in Chapter 3. Thus,

〈H〉 = 〈H〉0 + Ec. (B.10)

Therefore,

∂〈H〉
∂λ

=
∂〈H〉0
∂λ

+
∂Ec

∂λ
. (B.11)

Since |φ0〉 is the ground state of H0, we obtain

∂〈H〉0
∂λ

=

〈

∂H0

∂λ

〉

0

, (B.12)

according to the Feynman-Hellmann theorem. Thus we obtain

∂〈H〉
∂λ

=

〈

∂H0

∂λ

〉

0

+
∂Ec

∂λ
. (B.13)

Let us consider the first term at the rhs of Eq. (B.13). We consider the change of the Hartree-

Fock Hamiltonian H0 via λ as

δH0 = (δH)nm + (δH0)λ. (B.14)

Here (∼)nm means the change when the electron number n and the magnetic moment m in the

Hartree-Fock potential are fixed.

〈δH0〉0 = 〈(δH)nm〉0 + 〈(δH0)λ〉0. (B.15)

We can prove that the change of Hartree-Fock Hamiltonian via the λ is 〈(δH0)λ〉0 = 0 because of

the stationary properties in the Hartree-Fock approximation. Therefore we obtain from Eq. (B.15)

as

〈δH0〉0 = 〈(δH0)nm〉0. (B.16)
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Thus,

〈

∂H0

∂λ

〉

0

=

〈

φ0

∣

∣

∣

∣

(

∂H0

∂λ

)

nm

∣

∣

∣

∣

φ0

〉

. (B.17)

In the same way, we can write the correlation energy as

∂Ec

∂λ
=

〈

∂H̃

∂λ

〉

=

〈

∂H

∂λ
−
〈(

∂H0

∂λ

)

nm

〉

0

〉

=

(

∂Ec

∂λ

)

dir

. (B.18)

Here
〈

∂H/∂λ− 〈(∂H0/∂λ)nm〉0
〉

means that one takes the derivative of H̃ with respect to λwhich

appear explicitly in H̃ = H − 〈H〉0.
Finally, we obtain the following formula from Eqs. (B.13), (B.17), and (B.18).

∂〈H〉
∂λ

=

〈(

∂H0

∂λ

)

nm

〉

0

+

(

∂Ec

∂λ

)

dir

(B.19)

and

(

∂Ec

∂λ

)

dir

=

〈(

∂H̃

∂λ

)

nm

〉

. (B.20)

Here (∂Ec/∂λ)dir means taking the derivative of Ec with respect to λ which appear explicitly in

H̃ .

2. Electron number 〈niL〉
The TB-LDA+U Hamiltonian is written in Eq. (3.1):

H =
∑

iLσ

ǫ0iLσniLσ +
∑

iLjL′σ

tiLjL′a†iLσajLσ

+
∑

i

[

∑

m

Umm nilm↑ nilm↓ +
∑

(m,m′)

(

Umm′ − 1

2
Jmm′

)

nilm nilm′ − 2
∑

(m,m′)

Jmm′ silm · silm′

]

.

(B.21)

Using the formula (B.19) for ∂〈H〉/∂λ, we have

∂〈H〉
∂ǫ0iL

=

〈(

∂H0

∂ǫ0iL

)

nm

〉

0

+
∂Ec

∂ǫ0iL
. (B.22)

Here (∼)nm denotes the derivatives with respect to any parameters with constant charge and mo-

ment, and Ec is the total correlation energy. Making use of the Feynman-Hellmann theorem,

∂〈H〉
∂ǫ0iL

= 〈niL〉. (B.23)

80



Since (∂H0/∂ǫ
0
iL)nm = 〈niL〉, we obtain

〈niL〉 = 〈niL〉0 +
∂Ec

∂ǫ0iL
. (B.24)

Here

∂Ec

∂ǫ0iL
=

〈(

∂H̃

∂ǫ0iL

)

nm

〉

0

+
∑

j

−
〈

Õ†j
∂H̃

∂ǫ0iL

〉

0

−
〈

∂H̃

∂ǫ0iL
Õj

〉

0

+

〈

Õ†j
∂H̃

∂ǫ0iL
Õj

〉

0

1 + 〈Õ†jÕj〉0
. (B.25)

The Hamiltonian is expressed by H̃ = H̃0 +HI . Thus

(

∂H̃

∂ǫ0iL

)

= ñiL. (B.26)

Therefore,

∂Ec

∂ǫ0iL
=
∑

j

−〈Õ†j ñiL〉0 − 〈ñiLÕj〉0 + 〈Õ†j ñiLÕj〉0
1 + 〈Õ†jÕj〉0

. (B.27)

In the SSA, we can omit the off-diagonal elements (j 6= i ). Thus, we obtain the following formula

〈niL〉 = 〈niL〉0 +
−〈Õ†i ñiL〉0 − 〈ñiLÕi〉0 + 〈Õ†i ñiLÕi〉0

1 + 〈Õ†i Õi〉0
. (B.28)

Note that 〈ñiLÕi〉0 = 〈Õ†i ñiL〉∗0 = 0. Thus

〈niL〉 = 〈niL〉0 +
〈Õ†i ñiLÕi〉0
1 + 〈Õ†i Õi〉0

. (B.29)

Here 〈niL〉0 denotes the Hartree-Fock electron number. The second term at the rhs (right-hand-

side) is the correlation correction of electron number.

〈ñiLσ〉 =
〈Õ†i ñiLσÕi〉0
1 + 〈Õi

†
Õi〉0

. (B.30)

Equation (B.29) is identical with Eq. (3.80) in Sec 3.6.1.

3. Local charge fluctuations 〈(δnid)2〉
The local charge fluctuations of d electrons on site i is defined as

〈(δnid)
2〉 = 〈n2

id〉 − 〈nid〉2. (B.31)
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Here 〈n2
id〉 is given by

〈n2
id〉 = 〈nid〉+ 2

d
∑

L

〈niL↑ · niL↓〉+ 2
d
∑

(L,L′)

〈niL · niL′〉. (B.32)

The double occupation number 〈niL↑ · niL↓〉 and inter-orbital charge-charge correlations 〈niL ·
niL′〉 are obtain from the Hamiltonian Eq. (B.21) using the Feynman-Hellmann theorem (B.19) as

follows.

〈niL↑niL↓〉 =
∂〈H〉
∂Uimm

, (B.33)

〈niLniL′〉 = ∂〈H〉
∂Uimm′

. (B.34)

Now, the total correlation energy is defined as

〈H〉 = 〈H〉0 + Ec. (B.35)

Taking the derivative of 〈H〉 with respect to Uimm and using the relation 〈H〉0 = 〈H0〉 we obtain

∂〈H〉
∂Uimm

=
∂〈H0〉0
∂Uimm

+
∂Ec

∂Uimm

. (B.36)

According to the formula of the derivatives ∂〈H〉/∂λ,

∂〈H〉
∂λ

=

〈(

∂H0

∂λ

)

nm

〉

0

+

(

∂Ec

∂λ

)

dir

, (B.37)

and
(

∂Ec

∂λ

)

dir

=

〈(

∂H

∂λ

)

nm

〉

. (B.38)

We obtain

∂〈H〉
∂Uimm

=

〈(

∂H0

∂Uimm

)

nm

〉

0

+
∑

j

−
〈

Õ†j
∂H̃

∂Uimm

〉

0

−
〈

∂H̃

∂Uimm

Õj

〉

0

+

〈

Õ†j
∂H̃

∂Uimm

Õj

〉

0

1 + 〈Õ†jÕj〉0
. (B.39)

Note that
〈(

∂H0

∂Uimm

)〉

0

= 〈niL↑〉0〈niL↓〉0, (B.40)

(

∂H̃

∂Uimm

)

nm

=
∑

σ

〈nidm−σ〉0ñidmσ +O
(0)
imm. (B.41)
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Substituting Eqs. (B.40) and (B.41) into Eq. (B.39) and making the SSA, we find

〈niL↑niL↓〉 = 〈niL↑〉0〈niL↓〉0

+
−∑σ〈niL−σ〉0〈Õ†i ñiLσ〉0 −

∑

σ〈niL−σ〉0〈ñiLσÕi〉0 +
∑

σ〈niL−σ〉0〈Õ†i ñiLσÕi〉0
1 + 〈Õ†i Õi〉0

+
−〈Õ†iO

(0)
iL 〉0 − 〈O

(0)
iL Õi〉0 + 〈Õ†iO

(0)
iL Õi〉0

1 + 〈Õ†i Õi〉0
. (B.42)

Note that 〈Õ†i ñiLσ〉0 = 〈ñiLσÕi〉0 = 0. Moreover using (B.30) we find

〈niL↑niL↓〉 = 〈niL↑〉0〈niL↓〉0 +
∑

σ

〈niL−σ〉0〈ñiLσ〉

+
−〈Õ†iO

(0)
iL 〉0 − 〈O

(0)
iL Õi〉0 + 〈Õ†iO

(0)
iL Õi〉0

1 + 〈Õ†i Õi〉0
. (B.43)

Next we calculate the inter-orbital charge- charge correlations via the relation as (B.34):

〈nilmnilm′〉 = ∂〈H〉
∂Uimm′

. (B.44)

Here using the relation 〈H〉 = 〈H〉0 + Ec, we obtain the inter-orbital charge- charge correlations

as follows.

〈nilmnilm′〉 = ∂〈H0〉0
∂Uimm′

+
∂Ec

∂Uimm′

. (B.45)

Using the formula of ∂〈H〉/∂λ, i.e., (B.37) we have

∂〈H〉
∂Uimm′

=

〈(

∂H0

∂Uimm′

)

nm

〉

+
∂Ec

∂Uimm′

. (B.46)

Here

∂Ec

∂Uimm′

=
∑

j

−
〈

Õ†j
∂H̃

∂Uimm′

〉

0
−
〈

∂H̃
∂Uimm′

Õj

〉

0
+
〈

Õ†j
∂H̃

∂Uimm′
Õj

〉

0

1 + 〈Õ†jÕj〉0
, (B.47)

〈(

∂H0

∂Uimm′

)

nm

〉

0

= 〈nidm〉0〈nidm′〉0, (B.48)

〈

Õ†j
∂H̃

∂Uimm′

〉

0

= 〈nidm′〉0〈Õ†j ñidm〉0 + 〈nidm〉0〈ñidm′Õj〉0 + 〈Õ†jO
(1)
iLL′〉0, (B.49)

〈

∂H̃

∂Uimm′

Õj

〉

0

= 〈nidm′〉0〈ñidmÕj〉0 + 〈nidm〉0〈ñidm′Õj〉0 + 〈O(1)
iLL′Õj〉0, (B.50)
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〈

Õ†j
∂H̃

∂Uimm′

Õj

〉

0

= 〈nidm′Õj〉0〈Õ†j ñidmÕj〉0 + 〈nidm〉0〈Õ†j ñidm′Õj〉0 + 〈Õ†jO
(1)
iLL′Õj〉0. (B.51)

Finally we obtain the correlation energy in the SSA as follows.

∂Ec

∂UiLL′

= 〈niL′〉0〈ñiL〉+ 〈niL〉0〈ñiL′〉

+
−〈Õ†iO

(1)
iLL′〉0 − 〈O(1)

iLL′Õi〉0 + 〈Õ†iO
(1)
iLL′Õi〉0

1 + 〈Õ†i Õi〉0
. (B.52)

Here we used the relation 〈Õ†j ñidm〉0 = 〈ñidm′Õj〉0 = 0, and Eq. (B.30).

Substituting Eqs. (B.48) and (B.52) into Eq. (B.46), we obtain the charge-charge correlations

in the SSA as follows.

〈niLniL′〉 = 〈niL〉0〈niL′〉0 + 〈niL′〉0〈ñiL〉+ 〈niL〉0〈ñiL′〉

+
−〈Õ†iO

(1)
iLL′〉0 − 〈O(1)

iLL′Õi〉0 + 〈Õ†iO
(1)
iLL′Õi〉0

1 + 〈Õ†i Õi〉0
. (B.53)

The operators of O
(0)
iLL and O

(1)
iLL′ are defined by Eqs. (3.28) and (3.29):

O
(0)
iLL = δniL↑δniL↓, (B.54)

O
(1)
iLL′ = δniLδniL′ . (B.55)

According to the formula (3.78), we obtain the average of O
(α)
iLL, for α = 0, 1 as follows

〈O(α)
iLL′〉 =

−〈Õi

†
O

(α)
iLL′〉0 − 〈O(α)

iLL′Õi〉0 + 〈Õi

†
O

(α)
iLL′Õi〉0

1 + 〈Õi

†
Õi〉0

. (B.56)

Using the above relation we obtain the alternative expression of the double occupation number

as

〈niL↑niL↓〉 = 〈O(0)
iLL〉+ 〈ñiL↑〉〈niL↓〉0 + 〈niL↑〉0〈ñiL↓〉+ 〈niL↑〉0〈niL↓〉0. (B.57)

Similarly, we obtain the inter-orbital charge-charge correlations term as follows.

〈niLniL′〉 = 〈O(1)
iLL′〉+ 〈ñiL〉〈niL′〉0 + 〈niL〉0〈ñiL′〉+ 〈niL〉0〈niL′〉0. (B.58)

Substituting Eqs. (B.57) and (B.58) into Eq. (B.32), we obtain the expression of 〈n2
id〉 as

〈n2
id〉 =〈nid〉+ 2

d
∑

L

〈O(0)
iLL〉+ 2

d
∑

Lσ

〈ñiLσ〉〈ñiL−σ〉0

+
d
∑

Lσ

〈ñiLσ〉0〈ñiL−σ〉0 + 2
d
∑

(L,L)

〈O(1)
iLL′〉

+ 2
d
∑

(L,L)

{〈ñiL〉〈ñiL′〉0 + 〈niL〉0〈ñiL′〉}+ 2
d
∑

(L,L)

〈niL〉0〈niL′〉0. (B.59)
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On the other hand, we obtain the term 〈nid〉2 as follows

〈nid〉2 =〈ñid〉2 +
d
∑

L

〈niL〉20

+ 2
d
∑

(L,L′)

〈niL〉0〈niL′〉0 + 2
d
∑

L

〈ñiL〉〈niL〉0

+ 2
d
∑

(L,L′)

〈ñiL〉〈niL′〉0 + 2
d
∑

(L,L)

〈ñiL′〉〈niL〉0. (B.60)

Substituting Eqs. (B.59) and (B.60) into Eq. (B.31), we obtain the expression of 〈(δnid)
2〉 as

〈(δnid)
2〉 =

d
∑

Lσ

〈niLσ〉0(1− 〈niLσ〉0) +
d
∑

Lσ

〈ñiLσ〉(1− 2〈niLσ〉0)

− 〈ñid〉2 + 2
d
∑

L

〈O(0)
iLL〉+ 2

d
∑

(L,L′)

〈O(1)
iLL′〉 . (B.61)

Here the first term at the rhs of Eq. (B.61) denotes the Hartree-Fock contributions. 〈ñiLσ〉 in

the second term is given by Eq. (B.30) in which ñiL has been replaced by ñiLσ, and is equal to

〈ñiL〉/2 in the paramagnetic state. 〈ñid〉 in the third term is defined by
∑d

L〈ñiL〉. The remaining

correlation corrections at the rhs of Eqs. (B.61) is obtained from the residual interaction elements

〈O(α)
iLL′〉 using the formula (3.78) as follows.

∑

〈LL′〉

〈O(α)
iLL′〉 =

−
∑

〈LL′〉

〈Õi

†
O

(α)
iLL′〉0 −

∑

〈LL′〉

〈O(α)
iLL′Õi〉0 +

∑

〈LL′〉

〈Õi

†
O

(α)
iLL′Õi〉0

1 + 〈Õi

†
Õi〉0

. (B.62)

Equation (B.61) is identical with Eq. (3.89) in Sec. 3.6.2.

4. Amplitude of local magnetic moment 〈S2〉
The magnetic moment of d-orbital is defined as

〈m2
id〉 = 3

d
∑

L

mz
iL

2 + 2
d
∑

(L,L′)

〈miL ·miL′〉. (B.63)

Here mz
iL is defined by

mz
iL = niL↑ − niL↓. (B.64)

Thus we obtain

〈mz
iL

2〉 = 〈niL〉 − 2〈niL↑niL↓〉. (B.65)
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Substituting Eq. (B.65) into Eq. (B.63), we obtain

〈m2
id〉 = 3

d
∑

L

〈niL〉 − 6
d
∑

L

〈niL↑niL↓〉+ 2
d
∑

(L,L′)

〈miL ·miL′〉. (B.66)

Since, miL = 2siL, we can write Eq. (B.66) as

〈m2
id〉 = 3

d
∑

L

〈niL〉 − 6
d
∑

L

〈niL↑niL↓〉+ 8
d
∑

(L,L′)

〈siL · siL′〉. (B.67)

The inter-orbital spin-spin correlators 〈silm · silm′〉 is obtained from the relation (B.21).

〈siL · siL′〉 = −1

2

∂〈H〉
∂Jimm′

. (B.68)

Using the relation 〈H〉 = 〈H〉0 + Ec and the formula (B.19) of ∂〈H〉/∂λ, we have

∂〈H〉
∂Jimm′

=

〈(

∂H0

∂Jimm′

)

nm

〉

+
∂Ec

∂Jimm′

. (B.69)

Here

∂Ec

∂Jimm′

=
∑

j

−
〈

Õ†j
∂H̃

∂Jimm′

〉

0

−
〈

∂H̃

∂Uimm′

Õj

〉

0

+

〈

Õ†j
∂H̃

∂Jimm′

Õj

〉

0

1 + 〈Õ†jÕj〉0
, (B.70)

〈(

∂H0

∂Jimm′

)

nm

〉

0

= −1

2
〈midm〉0〈midm′〉0, (B.71)

〈

Õ†j
∂H̃

∂Jimm′

〉

0

= −1

2
〈midm′〉0〈Õ†jm̃idm〉0 −

1

2
〈midm〉0〈m̃idm′Õj〉0 − 2〈Õ†jO

(2)
iLL′〉0, (B.72)

〈

∂H̃

∂Jimm′

Õj

〉

0

= −1

2
〈midm′〉0〈Õ†jm̃idm〉0 −

1

2
〈midm〉0〈m̃idm′Õj〉0 − 2〈O(2)

iLL′Õj〉0, (B.73)

〈

Õ†j
∂H̃

∂Jimm′

Õj

〉

0

= −1

2
〈midm′Õj〉0〈Õ†jm̃idmÕj〉0 −

1

2
〈midm〉0〈Õ†jm̃idm′Õj〉0 − 2〈Õ†jO

(2)
iLL′Õj〉0.

(B.74)

Since 〈Õ†jm̃idm〉0 = 〈m̃idm′Õj〉0 = 0, we obtain the correlation energy in the SSA as follows

−1

2

∂Ec

∂JiLL′

=
1

4
(〈miL′〉0〈m̃iL〉+ 〈miL〉0〈m̃iL′〉)

+
−〈Õ†iO

(2)
iLL′〉0 − 〈O(2)

iLL′Õi〉0 + 〈Õ†iO
(2)
iLL′Õi〉0

1 + 〈Õ†i Õi〉0
. (B.75)
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From Eqs. (B.67), (B.69), and (B.75), we obtained the spin-spin correlations as

〈siL · siL′〉 = 1

4
〈miL〉0〈miL′〉0 +

1

4
(〈miL′〉0〈m̃iL〉+ 〈miL〉0〈m̃iL′〉)

+
−〈Õ†iO

(2)
iLL′〉0 − 〈O(2)

iLL′Õi〉0 + 〈Õ†iO
(2)
iLL′Õi〉0

1 + 〈Õ†i Õi〉0
. (B.76)

Since

〈O(2)
iLL′〉 =

−〈Õ†iO
(2)
iLL′〉0 − 〈O(2)

iLL′Õi〉0 + 〈Õ†iO
(2)
iLL′Õi〉0

1 + 〈Õ†i Õi〉0
. (B.77)

We obtain the alternative expression of inter-orbital spin-spin interaction as follows.

〈siL · siL′〉 = 〈O(2)
iLL′〉+

1

4
(〈δmiL〉〈miL′〉0 + 〈δmiL′〉〈miL〉0 + 〈miL〉0〈miL′〉0). (B.78)

Substituting Eqs. (B.57) and (B.78) into Eq. (B.67), we obtain the expression of 〈m2
id〉 as

〈m2
id〉 =3

d
∑

L

(〈ñiL〉+ 〈niL〉0)

− 6
d
∑

L

{〈O(0)
iLL〉+

∑

σ

〈ñiLσ〉〈niL−σ〉0 +
1

2

∑

σ

〈niLσ〉0〈niL−σ〉0}

+ 8
d
∑

(L,L)

{〈O(2)
iLL′〉+

1

4
(〈m̃iL〉〈miL′〉0 + 〈m̃iL′〉〈miL〉0 + 〈miL〉0〈miL′〉0)}. (B.79)

Since 〈miL〉 =
∑

σ σ〈niLσ〉, we obtain the alternative form of 〈m2
id〉 as

〈S2〉 =3

4

d
∑

Lσ

〈niLσ〉0(1− 〈niLσ〉0) +
3

4

d
∑

Lσ

〈ñiLσ〉(1− 2〈niL−σ〉0)

− 3

2

d
∑

L

〈O(0)
iLL〉+ 2

d
∑

(L,L′)

〈O(2)
iLL′〉 . (B.80)

Here the first term at the rhs of Eq. (B.80) denotes the Hartree-Fock contributions. 〈ñiLσ〉 in

the second term is given by Eq. (B.30) in which ñiL has been replaced by ñiLσ, and is equal to

〈ñiL〉/2 in the paramagnetic state. The remaining correlation corrections at the rhs of Eq. (B.80)

are obtained from the residual interaction elements 〈O(α)
iLL′〉 using the formula (B.62). Equation

(B.80) is identical with Eq. (3.99) in Sec. 3.6.3.

5. Momentum distribution function 〈nknσ〉
In the momentum representation the Hamiltonian is expressed as

H = H0 +HI . (B.81)

87



The Hartree-Fock Hamiltonian is given in Eq. (3.9):

H0 =
∑

knσ

ǫknσnknσ −
∑

im

Uimm〈nidm↑〉0〈nidm↓〉0

−
∑

i

∑

(m,m′)

(Uimm′ − 1

2
Jimm′)〈nidm〉0〈nidm′〉0 + 2

∑

i

∑

(m,m′)

Jimm′〈sidm〉0 · 〈sidm′〉0. (B.82)

Thus

H̃ = H̃0 +HI , (B.83)

H̃0 =
∑

knσ

ǫknσñknσ. (B.84)

〈nknσ〉 is obtained with use of the Feynman-Hellmann theorem as follows.

〈nknσ〉 =
〈

∂H

∂ǫknσ

〉

=
∂〈H〉
∂ǫknσ

. (B.85)

The rhs is obtained by means of the formula (B.19).

∂〈H〉
∂ǫknσ

=

〈(

∂H0

∂ǫknσ

)

nm

〉

0

+
∂Ec

∂ǫknσ
. (B.86)

Here

∂Ec

∂ǫknσ
=
∑

j

−
〈

Õ†j
∂H̃

∂ǫknσ

〉

0

−
〈

∂H̃

∂ǫknσ
Õj

〉

0

+

〈

Õ†j
∂H̃

∂ǫknσ
Õj

〉

0

1 + 〈Õ†jÕj〉0
. (B.87)

and
(

∂H̃

ǫknσ

)

nm

= ñknσ. (B.88)

Assuming an atom per unit cell, we have from Eqs. (B.85), (B.86), and (B.88)

〈nknσ〉 = 〈nknσ〉0 +
−N〈Õ†i ñknσ〉0 −N〈ñknσÕi〉0 +N〈Õ†i ñknσÕi〉0

1 + 〈Õ†i Õi〉0
. (B.89)

Since 〈ñknσÕi〉 = 0, we reach

〈nknσ〉 = 〈nknσ〉0 +
N〈Õ†i ñknσÕi〉0
1 + 〈Õ†i Õi〉0

. (B.90)

Equation (B.90) is identical with Eq. (3.103) in Sec. 3.6.4. We present these relations Eqs. (B.29),

(B.61), (B.80), and (B.90) in Chapter 3. We also used these relations for the calculations of physical

quantities in Chapters 4 and 5.
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Appendix C

Appendix: Matrix Elements in the

Lowest-Order Approximation

We present in this Appendix the matrix elements and related quantities in the lowest-order

approximations in Sec. 4.2. These expressions are needed in the numerical calculations in Sec.

4.3.

Assume that orbital L belongs to an irreducible representation Γ. We also assume that the

Coulomb interaction U
(α)
LL′ only depend on the types of the irreducible representation Γ and Γ′ to

which orbitals L and L′ belong; U
(α)
LL′ = U

(α)
ΓΓ′ . We obtain the expressions of the matrix elements

and related quantities as follows by using the Laplace transformation (2.39). The matrix elements

of the correlation energy ǫc in Eq. (4.12) are given as follows.

〈HIÕi〉0 =
∑

Γ

dΓU
(0)2
ΓΓ PΓΓ

+ 2
∑

Γ

dΓ(dΓ − 1)U
(1)2
ΓΓ PΓΓ + 4

∑

(Γ,Γ′)

dΓdΓ′U
(1)2
ΓΓ′ PΓΓ′

+
1

8

∑

Γ

dΓ(dΓ − 1)U
(2)2
ΓΓ PΓΓ +

1

4

∑

(Γ,Γ′)

dΓdΓ′U
(2)2
ΓΓ′ PΓΓ′

+
1

4

∑

Γ

dΓ(dΓ − 1)U
(2)2
ΓΓ PΓΓ +

1

4

∑

(Γ,Γ′)

dΓdΓ′U
(2)2
ΓΓ′ PΓΓ′ , (C.1)

〈Õi

†
H̃0Õi〉0 =

∑

Γ

dΓU
(0)2
ΓΓ QΓΓ

+ 2
∑

Γ

dΓ(dΓ − 1)U
(1)2
ΓΓ QΓΓ + 4

∑

(Γ,Γ′)

dΓdΓ′U
(1)2
ΓΓ′ PΓΓ′

+
1

8

∑

Γ

dΓ(dΓ − 1)U
(2)2
ΓΓ QΓΓ +

1

4

∑

(Γ,Γ′)

dΓdΓ′U
(2)2
ΓΓ′ QΓΓ′

+
1

4

∑

Γ

dΓ(dΓ − 1)U
(2)2
ΓΓ QΓΓ +

1

2

∑

(Γ,Γ′)

dΓdΓ′U
(2)2
ΓΓ′ QΓΓ′ . (C.2)
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Here dΓ is the dimensions for the representation Γ, and

PΓΓ′ = i

∫ ∞

0

dteiǫct aΓ(−t) aΓ′(−t) bΓ(t) bΓ′(t) , (C.3)

QΓΓ′ = −
∫ ∞

0

dt dt′eiǫc(t+t′)
[

aΓ′(−t− t′) bΓ′(t+ t′) aΓ(−t− t′) bΓ1(t+ t′)

− aΓ′(−t− t′) bΓ′(t+ t′) aΓ1(−t− t′) bΓ(t+ t′)

+ aΓ′(−t− t′) bΓ′1(t+ t′) aΓ(−t− t′) bΓ(t+ t′)

− aΓ′1(−t− t′) bΓ′(t+ t′) aΓ(−t− t′) bΓ(t+ t′)
]

. (C.4)

The correlation part of electron number in Eq. (4.14) is obtained as follows.

〈Õ†i ñiLÕi〉0 = 2 AΓΓ

[

U
(0)2

ΓΓ + (dΓ − 1) AΓΓ

(

2 U
(1)2

ΓΓ +
3

8
U

(2)2

ΓΓ

)]

+ 2
d
∑

Γ′ 6=Γ

dΓ′ AΓ′Γ

[

2 U
(1)2

ΓΓ′ +
3

8
U

(2)2

ΓΓ′

]

. (C.5)

Here

AΓΓ′ = −
∫ ∞

0

dt dt′eiǫc(t+t′)
[

aΓ′(−t− t′) bΓ′(t+ t′) aΓ(−t− t′) bΓ(t) bΓ(t
′)

− aΓ′(−t− t′) bΓ′(t+ t′) bΓ(t+ t′) aΓ(−t) aΓ(−t′)
]

. (C.6)

The residual interaction elements
∑

〈LL′〉〈O
(α)
iLL′〉 ( α= 0, 1, and 2) in charge fluctuations (4.15)

and amplitude of local moment (4.16) are obtained as follows.
∑

〈LL′〉

〈O(α)
iLL′〉 = −

∑

〈LL′〉

〈Õi

†
O

(α)
iLL′〉0 −

∑

〈LL′〉

〈O(α)
iLL′Õi〉0 +

∑

〈LL′〉

〈Õi

†
O

(α)
iLL′Õi〉0 . (C.7)

Here
∑

L

〈O(0)
iLLÕi〉0 =

∑

Γ

dΓ U
(0)
ΓΓ PΓΓ , (C.8)

∑

(L,L′)

〈O(1)
iLL′Õi〉0 = 2

∑

Γ

dΓ (dΓ − 1) U
(1)
ΓΓ PΓΓ + 4

∑

(Γ,Γ′)

dΓ dΓ′U
(1)
ΓΓ′ PΓΓ′ , (C.9)

∑

(L,L′)

〈O(2)
iLL′Õi〉0 =

3

8

∑

Γ

dΓ (dΓ − 1) U
(2)
ΓΓ PΓΓ

+
3

4

∑

(Γ,Γ′)

dΓ dΓ′U
(2)
ΓΓ′ PΓΓ′ . (C.10)

The matrix element
∑

〈LL′〉〈Õi

†
O

(α)
iLL′Õi〉0 are obtained as follows.

∑

L

〈Õ†iO
(0)
iLLÕi〉0 =

∑

Γ

dΓ U
(0)2

ΓΓ ΩΓΓ

+
∑

Γ

dΓ(dΓ − 1)
(

4 U
(1)2

ΓΓ − 1

4
U

(2)2

ΓΓ

)

ΞΓΓΓ

+
∑

(Γ,Γ′)

dΓ dΓ′

(

4 U
(1)2

ΓΓ′ −
1

4
U

(2)2

ΓΓ′

) (

ΞΓ′ΓΓ + ΞΓΓ′Γ′

)

, (C.11)
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∑

(L,L′)

〈Õ†iO
(1)
iLL′Õi〉0 = 8

∑

Γ

dΓ(dΓ − 1)U
(1)
ΓΓU

(0)
ΓΓMΓΓ

+ 8
∑

(Γ,Γ′)

dΓdΓ′U
(1)
ΓΓ′

(

U
(0)
ΓΓMΓΓ′ + U

(0)
Γ′Γ′MΓ′Γ

)

+ 2
∑

Γ

dΓ (dΓ − 1) U
(1)
ΓΓ

(

U
(1)
ΓΓΩΓΓ + T

(11)
ΓΓ

)

+ 4
∑

(Γ,Γ′)

dΓ dΓ′ U
(1)
ΓΓ′

(

U
(1)
ΓΓ′ΩΓΓ′ + T

(11)
ΓΓ′

)

+
3

8

∑

Γ

dΓ (dΓ − 1)ΩΓΓ

+
3

4

∑

(Γ,Γ′)

dΓ dΓ′ U
(2)2

ΓΓ′ ΩΓΓ′ , (C.12)

Here

T
(11)
ΓΓ′ = −2

(

U
(1)
ΓΓ ΞΓΓ′Γ + U

(1)
Γ′Γ ΞΓ′ΓΓ

)

− 2
(

U
(1)
ΓΓ′ ΞΓΓ′Γ′ + U

(1)
Γ′Γ′ ΞΓ′ΓΓ′

)

+ 2
∑

Γ′′

dΓ′′

(

U
(1)
ΓΓ′′ ΞΓΓ′Γ′′ + U

(1)
Γ′Γ′′ ΞΓ′ΓΓ′′

)

. (C.13)

Finally we have

∑

(L,L′)

〈Õ†iO
(2)
iLL′Õi〉0 =

∑

Γ

dΓ U
(0)
ΓΓ K̂

(0)
ΓΓ

+
1

2

∑

Γ

dΓ (dΓ − 1)
[

4 U
(1)
ΓΓ K̂

(1)
ΓΓ1 +

1

4
U

(2)
ΓΓ K̂

(1)
ΓΓ2

]

+
∑

(Γ,Γ′)

dΓ dΓ′

[

4 U
(1)
ΓΓ′K̂

(1)
ΓΓ′1 +

1

4
U

(2)
ΓΓ′K̂

(1)
ΓΓ′2

]

−
∑

Γ

dΓ (dΓ − 1) U
(2)
ΓΓ K̂

(2)
tΓΓ −

∑

(Γ,Γ′)

dΓ dΓ′ U
(2)
ΓΓ′K̂

(2)
tΓΓ′ . (C.14)

Here

K̂
(0)
ΓΓ = −3

4
(dΓ − 1) U

(2)
ΓΓMΓΓ −

3

4

∑

Γ′(6=Γ)

dΓ′ U
(2)
ΓΓ′MΓΓ′ , (C.15)

K̂
(1)
ΓΓ′1 =

3

16
U

(2)
ΓΓ′ΩΓΓ′ , (C.16)
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K̂
(1)
ΓΓ′2 = −U

(0)
ΓΓ MΓΓ′ − U

(0)
Γ′Γ′ MΓ′Γ + U

(1)
ΓΓ′ ΩΓΓ′ − 1

2
U

(2)
ΓΓ′ WΓΓ′

− 1

2

(

U
(2)
ΓΓ ΞΓΓ′Γ + U

(2)
Γ′Γ ΞΓ′ΓΓ

)

− 1

2

(

U
(2)
ΓΓ′ ΞΓΓ′Γ′ + U

(2)
Γ′Γ′ ΞΓ′ΓΓ′

)

+
1

2

∑

Γ′′

dΓ′′

(

U
(2)
ΓΓ′′ ΞΓΓ′Γ′′ + U

(2)
Γ′Γ′′ ΞΓ′ΓΓ′′

)

, (C.17)

K̂
(2)
tΓΓ′ =

1

4

(

U
(0)
ΓΓMΓΓ′ + U

(0)
Γ′Γ′ MΓ′Γ

)

− 1

4

(

4U
(1)
ΓΓ′ΩΓΓ′ − U

(2)
ΓΓ′WΓΓ′ +

1

4
U

(2)
ΓΓ′ΩΓΓ′

)

+
1

8

(

U
(2)
ΓΓΞΓΓ′Γ + U

(2)
Γ′ΓΞΓ′ΓΓ

)

+
1

8

(

U
(2)
ΓΓ′ΞΓΓ′Γ′ + U

(2)
Γ′Γ′ΞΓ′ΓΓ′

)

− 1

8

∑

Γ′′

dΓ′′

(

U
(2)
ΓΓ′′ ΞΓΓ′Γ′′ + U

(2)
Γ′Γ′′ ΞΓ′ΓΓ′′

)

. (C.18)

The quantities MΓΓ′ , ΞΓΓ′Γ′′ , ΩΓΓ′ , WΓΓ′ , Z1ΓΓ′ , Z2ΓΓ′ , Z3ΓΓ′ , and Z1ΓΓ′ in the above expressions

are given as follows.

MΓΓ′ = ΞΓΓΓ′ = −
∫ ∞

0

dt dt′eiǫc(t+t′) aΓ(−t) bΓ(t) aΓ(−t− t′) bΓ(t+ t′) aΓ′(−t′) bΓ′(t′) ,

(C.19)

ΞΓ′ΓΓ = −
∫ ∞

0

dt dt′eiǫc(t+t′) aΓ(−t) bΓ(t) aΓ′(−t− t′) bΓ′(t+ t′) aΓ(−t′) bΓ(t′) , (C.20)

ΞΓΓ′Γ′′ = −
∫ ∞

0

dt dt′eiǫc(t+t′) aΓ′(−t) bΓ′(t) aΓ(−t− t′) bΓ(t+ t′) aΓ′′(−t′) bΓ′′(t′) , (C.21)

ΩΓΓ′ = − (Z1ΓΓ′ + Z2ΓΓ′ − Z3ΓΓ′ − Z4ΓΓ′) , (C.22)

WΓΓ′ = (Z1ΓΓ′ + Z2ΓΓ′ + Z3ΓΓ′ + Z4ΓΓ′) , (C.23)

Z1ΓΓ′ = −
∫ ∞

0

dt dt′eiǫc(t+t′) aΓ′(−t) bΓ′(t+ t′) aΓ(−t− t′) bΓ(t) aΓ′(−t′) bΓ(t′) , (C.24)

Z2ΓΓ′ = −
∫ ∞

0

dt dt′eiǫc(t+t′) aΓ′(−t− t′) bΓ′(t) aΓ(−t) bΓ(t+ t′) bΓ′(t′) aΓ(−t′) , (C.25)
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Z3ΓΓ′ = −
∫ ∞

0

dt dt′eiǫc(t+t′) aΓ′(−t) bΓ′(t+ t′) aΓ(−t) bΓ(t+ t′) aΓ′(−t′) aΓ(−t′) , (C.26)

Z4ΓΓ′ = −
∫ ∞

0

dt dt′eiǫc(t+t′) aΓ′(−t− t′) bΓ′(t) aΓ(−t− t′) bΓ(t) bΓ′(t′) bΓ(t
′) . (C.27)

Here aΓ(t), bΓ(t), a1Γ(t), and b1Γ(t) are the Laplace transforms with respect to the local density of

states ρΓ(ǫ).

aΓ(t) =

∫ ∞

−∞

dǫ e−iǫtf(ǫ̃) ρΓ(ǫ) , (C.28)

bΓ(t) =

∫ ∞

−∞

dǫ e−iǫtf(−ǫ̃) ρΓ(ǫ) , (C.29)

aΓ1(t) =

∫ ∞

−∞

dǫ e−iǫtǫ f(ǫ̃) ρΓ(ǫ) , (C.30)

bΓ1(t) =

∫ ∞

−∞

dǫ e−iǫtǫ f(−ǫ̃) ρΓ(ǫ) . (C.31)

ρΓ(ǫ) at the rhs is the Hartree-Fock local density of states for orbital L belonging to the represen-

tation Γ.

ρΓ(ǫ) =
1

dΓ

dΓ
∑

L

ρL(ǫ) , (C.32)

ρL(ǫ) =
∑

kn

|〈iL|kn〉|2 δ(ǫ− ǫkn) . (C.33)

Next we obtain the expressions of the numerator in the second part of the momentum distribu-

tion function Eq. (4.18) in Sec. 4.3.2 are given as follows.

N〈Õ†i ñknσÕi〉0 = U
(α)2
LL′ q

(α)
τ

[

d
∑

〈LL′〉

(

BLL′(ǫknσ)|uLnσ(k)|2 +BL′L(ǫknσ)|uL′nσ(k)|2
)

f(−ǫ̃knσ)

−
d

∑

〈LL′〉

(

CLL′(ǫknσ)|uLnσ(k)|2 + CL′L(ǫknσ)|uL′nσ(k)|2
)

f(ǫ̃knσ)
]

.

(C.34)

Assuming that orbital L belongs to an irreducible representation Γ, BLL′(ǫkn) and CLL′(ǫkn) are

expressed as follows.

BΓΓ′(ǫkn) = −
∫ ∞

0

dt dt′ei(ǫc−ǫkn)(t+t′) aΓ(−t− t′) bΓ(t+ t′) aΓ′(−t− t′) , (C.35)
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CΓΓ′(ǫkn) = −
∫ ∞

0

dt dt′ei(ǫc+ǫkn)(t+t′) aΓ(−t− t′) bΓ(t+ t′) bΓ′(t+ t′) . (C.36)

The denominator of the momentum distribution function (4.18) is expressed by

〈Õi

†
Õi〉0 =

∑

Γ

dΓU
(0)2
ΓΓ SΓΓ

+ 2
∑

Γ

dΓ(dΓ − 1)U
(1)2
ΓΓ SΓΓ + 4

∑

(Γ,Γ′)

dΓdΓ′U
(1)2
ΓΓ′ SΓΓ′

+
1

8

∑

Γ

dΓ(dΓ − 1)U
(2)2
ΓΓ SΓΓ +

1

4

∑

(Γ,Γ′)

dΓdΓ′U
(2)2
ΓΓ′ SΓΓ′

+
1

4

∑

Γ

dΓ(dΓ − 1)U
(2)2
ΓΓ SΓΓ +

1

2

∑

(Γ,Γ′)

dΓdΓ′U
(2)2
ΓΓ′ SΓΓ′ . (C.37)

Here

SΓΓ′ = −
∫ ∞

0

dt dt′eiǫc(t+t′) aΓ(−t− t′) aΓ′(−t− t′) bΓ(t+ t′) bΓ′(t+ t′) . (C.38)
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Appendix D

Appendix: Matrix Elements of Correlation

Energy: (5.9) ∼ (5.12) and (5.15)

In this Appendix, we present the explicit expressions of the matrix elements of the correlation

energy ǫc in Eq. (5.8); Eqs. (5.9) ∼ (5.12), and (5.15) by using Wick’s theorem and the Laplace

transformation (2.39).

The elements for 〈H̃IÕi〉0 in Eq. (5.9), i.e., P
(αα′)
τLL′L′′L′′′σσ′ are obtained as follows.

P
(00)
LL′L′′L′′′↓↑ = i

∫ ∞

0

dteiǫctaL↓(−t)aL↑(−t)bL↓(t)bL↑(t)δLL′δLL′′δL′′L′′′ , (D.1)

P
(11)
LL′L′′L′′′σσ′ = i

∫ ∞

0

dteiǫct
[

aLσ(−t)aL′σ′(−t)bLσ(t)bL′σ′(t)δLL′′δL′L′′′

+ aLσ′(−t)aL′σ(−t)bLσ′(t)bL′σ(t)δL′L′′δLL′′′

]

, (D.2)

P
(21)
LL′L′′L′′′σσ′ = i

∫ ∞

0

dteiǫctσσ′[aLσ(−t)aL′σ′(−t)bLσ(t)bL′σ′(t)δLL′′δL′L′′′

+ aLσ′(−t)aL′σ(−t)bLσ′(t)bL′σ(t)δL′L′′δLL′′′ ], (D.3)

P
(12)
lLL′L′′L′′′σσ′ = −

1

4
iσσ′

∫ ∞

0

dteiǫct
[

aLσ′(−t)aL′σ(−t)bLσ′(t)bL′σ(t)δLL′′δL′L′′′

+ aLσ(−t)aL′σ′(−t)bLσ(t)bL′σ′(t)δL′L′′δLL′′′

]

, (D.4)

P
(22)
tLL′L′′L′′′σ =

1

8
i

∫ ∞

0

dteiǫct
[

aLσ(−t)aL′−σ(−t)bLσ(t)bL′−σ(t)δLL′′δL′L′′′

+ aL−σ(−t)aL′σ(−t)bLσ(t)bL′−σ(t)δL′L′′δLL′′′

]

, (D.5)

P
(12)
lLL′L′′L′′′σσ′ = −

1

16
i

∫ ∞

0

dteiǫct
[

aLσ(−t)aL′σ′(−t)bLσ(t)bL′σ′(t)δLL′′δL′L′′′

+ aLσ′(−t)aL′σ(−t)bLσ′(t)bL′σ(t)δL′L′′δLL′′′

]

. (D.6)
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Here aLσ(t) and bLσ(t) are given by

aLσ(t) =

∫ ∞

0

dte−iǫtρiLσ(ǫ)f(ǫ̃), (D.7)

bLσ(t) =

∫ ∞

0

dte−iǫtρiLσ(ǫ)[1− f(ǫ̃)], (D.8)

Similarly, the elements of 〈Õi

†
H̃0Õi〉0 in Eq. (5.11), i.e., Q

(αα′)
τLL′L′′L′′′σσ′ are obtained as follows.

Q
(00)
LL′L′′L′′′σσ′σ′′σ′′′ = −

(

δLL′δLL′′δL′′L′′′δσ↓δσ′↑δσ′′↓δσ′′′↑

)

×
∫ ∞

0

dtdt′eiǫc(t+t′)
[

aL↑(−t− t′)bL↑(t+ t′)aL↓(−t− t′)bL1↓(t+ t′)

− aL↑(−t− t′)bL↑(t+ t′)aL1↓(−t− t′)bL↓(t+ t′)

+ aL↑(−t− t′)bL1↑(t+ t′)aL↓(−t− t′)bL↓(t+ t′)

− aL1↑(−t− t′)bL↑(t+ t′)aL↓(−t− t′)bL↓(t+ t′)
]

, (D.9)

Q
(01)
LL′L′′L′′′σσ′σ′′σ′′′ = Q

(10)
LL′L′′L′′′σσ′σ′′σ′′′ = 0, (D.10)

Q
(02)
LL′L′′L′′′σσ′σ′′σ′′′ = Q

(20)
LL′L′′L′′′σσ′σ′′σ′′′ = 0, (D.11)

Q
(11)
LL′L′′L′′′σσ′σ′′σ′′′ = −

(

δL′L′′δLL′′′δσσ′′′δσ′σ′′ + δLL′′δL′L′′′δσ′′σδσ′′′σ′

)

×
∫ ∞

0

dtdt′eiǫc(t+t′)
[

aL′σ′(−t− t′)bL′σ′(t+ t′)aLσ(−t− t′)bL1σ(t+ t′)

− aL′σ′(−t− t′)bL′σ′(t+ t′)aL1σ(−t− t′)bLσ(t+ t′)

+ aL′σ′(−t− t′)bL′1σ′(t+ t′)aLσ(−t− t′)bLσ(t+ t′)

− aL′1σ′(−t− t′)bL′σ′(t+ t′)aLσ(−t− t′)bLσ(t+ t′)
]

,

(D.12)

Q
(12)
tLL′L′′L′′′σσ′σ′′σ′′′ = Q

(21)
tLL′L′′L′′′σσ′σ′′σ′′′ = 0, (D.13)

Q
(12)
lLL′L′′L′′′σσ′σ′′σ′′′ = Q

(21)
lLL′L′′L′′′σσ′σ′′σ′′′

= −1

4
σσ′

(

δL′L′′δLL′′′δσσ′′′δσ′σ′′ + δLL′′δL′L′′′δσ′′σδσ′′′σ′

)

×
∫ ∞

0

dtdt′eiǫc(t+t′)
[

aL′σ′(−t− t′)bL′σ′(t+ t′)aLσ(−t− t′)bL1σ(t+ t′)

− aL′σ′(−t− t′)bL′σ′(t+ t′)aL1σ(−t− t′)bLσ(t+ t′)

+ aL′σ′(−t− t′)bL′1σ′(t+ t′)aLσ(−t− t′)bLσ(t+ t′)

− aL′1σ′(−t− t′)bL′σ′(t+ t′)aLσ(−t− t′)bLσ(t+ t′)
]

,

(D.14)
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Q
(22)
ttLL′L′′L′′′σσ′σ′′σ′′′ = −

1

4

(

δL′L′′δLL′′′δσ′′−σ + δLL′′δL′L′′′δσ′′σ

)

δσ′−σδσ′′′−σ′′

×
∫ ∞

0

dtdt′eiǫc(t+t′)
[

aL′σ′(−t− t′)bL′σ′(t+ t′)aLσ(−t− t′)bL1σ(t+ t′)

− aL′σ′(−t− t′)bL′σ′(t+ t′)aL1σ(−t− t′)bLσ(t+ t′)

+ aL′σ′(−t− t′)bL′1σ′(t+ t′)aLσ(−t− t′)bLσ(t+ t′)

− aL′1σ′(−t− t′)bL′σ′(t+ t′)aLσ(−t− t′)bLσ(t+ t′)
]

,

(D.15)

Q
(22)
llLL′L′′L′′′σσ′σ′′σ′′′ = −

1

16

(

δL′L′′δLL′′′δσσ′′′δσ′σ′′ + δLL′′δL′L′′′δσσ′′δσ′σ′′′

)

×
∫ ∞

0

dtdt′eiǫc(t+t′)
[

aL′σ′(−t− t′)bL′σ′(t+ t′)aLσ(−t− t′)bL1σ(t+ t′)

− aL′σ′(−t− t′)bL′σ′(t+ t′)aL1σ(−t− t′)bLσ(t+ t′)

+ aL′σ′(−t− t′)bL′1σ′(t+ t′)aLσ(−t− t′)bLσ(t+ t′)

− aL′1σ′(−t− t′)bL′σ′(t+ t′)aLσ(−t− t′)bLσ(t+ t′)
]

.

(D.16)

Here aL1σ(t) and bL1σ(t) are given by

aL1σ(t) =

∫ ∞

0

dte−iǫtǫρiLσ(ǫ)f(ǫ̃), (D.17)

bL1σ(t) =

∫ ∞

0

dte−iǫtǫρiLσ(ǫ)[1− f(ǫ̃)]. (D.18)

The elements of 〈Õi

†
Õi〉0 in Eq. (5.15), i.e., S

(αα′)
τLL′L′′L′′′σσ′ are obtained as follows.

S
(00)
LL′L′′L′′′σσ′σ′′σ′′′ = −

(

δLL′δLL′′δL′′L′′′δσ↓δσ′↑δσ′′↓δσ′′′↑

)

×
∫ ∞

0

dtdt′eiǫc(t+t′)aL↑(−t− t′)bL↑(t+ t′)aL↓(−t− t′)bL↓(t+ t′), (D.19)

S
(01)
LL′L′′L′′′σσ′σ′′σ′′′ = S

(10)
LL′L′′L′′′σσ′σ′′σ′′′ = 0, (D.20)

S
(02)
LL′L′′L′′′σσ′σ′′σ′′′ = S

(20)
LL′L′′L′′′σσ′σ′′σ′′′ = 0, (D.21)

S
(12)
LL′L′′L′′′σσ′σ′′σ′′′ = −

1

4
σσ′

(

δL′L′′δLL′′′δσσ′′′δσ′σ′′ + δLL′′δL′L′′′δσ′′σδσ′′′σ′

)

×
∫ ∞

0

dtdt′eiǫc(t+t′)aL′σ′(−t− t′)bL′σ′(t+ t′)aLσ(−t− t′)bLσ(t+ t′), (D.22)
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S
(22)
tlLL′L′′L′′′σσ′σ′′σ′′′ = S

(22)
ltLL′L′′L′′′σσ′σ′′σ′′′ = 0, (D.23)

S
(22)
ttLL′L′′L′′′σσ′σ′′σ′′′ = −

1

4

(

δL′L′′δLL′′′δσ′′−σ + δLL′′δL′L′′′δσ′′σ

)

δσ′−σδσ′′′−σ′′

×
∫ ∞

0

dtdt′eiǫc(t+t′)aL′−σ(−t− t′)bL′σ(t+ t′)aLσ(−t− t′)bL−σ(t+ t′),

(D.24)

and

S
(22)
llLL′L′′L′′′σσ′σ′′σ′′′ = −

1

16

(

δL′L′′δLL′′′δσ′′σ′δσ′′′σ + δLL′′δL′L′′′δσ′′σδσ′′′σ′

)

×
∫ ∞

0

dtdt′eiǫc(t+t′)aL′σ′(−t− t′)bL′σ′(t+ t′)aLσ(−t− t′)bLσ(t+ t′). (D.25)

The elements of 〈Õi

†
H̃IÕi〉0 in Eq. (5.12), i.e., K

(α)
τLL′σσ′ are obtained as follows.

K
(0)
LL↑↓ = K

(00)
LL↑↓ +K

(01)
LL↑↓ +K

(02l)
LL↑↓ +K

(02t)
LL↑↓. (D.26)

Here

K
(00)
LL↑↓ = −U

(0)2
LL

∫ ∞

0

dtdt′eiǫc(t+t′)

×
[

aL↑(−t)bL↑(t+ t′)aL↓(−t)bL↓(t+ t′)aL↑(−t′)aL↓(−t′)
− aL↑(−t)bL↑(t+ t′)aL↓(−t− t′)bL↓(t)aL↑(−t′)bL↓(t′)
− aL↑(−t− t′)bL↑(t)aL↓(−t)bL↓(t+ t′)bL↑(t

′)aL↓(−t′)
+ aL↑(−t− t′)bL↑(t)aL↓(−t− t′)bL↓(t)bL↑(t

′)bL↓(t
′)
]

λ̃
(↑↓)
0LL, (D.27)

K
(01)
LL↑↓ = −

∑

L′ 6=L

∑

σσ′

U
(1)2
LL′

∫ ∞

0

dtdt′eiǫc(t+t′)

× aL−σ(−t)bL−σ(t)aLσ(−t− t′)bLσ(t+ t′)aL′σ′(−t′)bL′σ′(t′)λ̃
(σσ′)
1LL′ , (D.28)

K
(02l)
LL↑↓ =

1

4

∑

L′ 6=L

∑

σσ′

σσ′U
(1)
LL′U

(2)
LL′

∫ ∞

0

dtdt′eiǫc(t+t′)

× aL−σ(−t)bL−σ(t)aLσ(−t− t′)bLσ(t+ t′)aL′σ′(−t′)bL′σ′(t′)λ̃
(σσ′)
2lLL′ , (D.29)

K
(02t)
LL↑↓ = −

1

4

∑

L′ 6=L

∑

σ

U
(2)2
LL′

∫ ∞

0

dtdt′eiǫc(t+t′)

× aL−σ(−t)bL−σ(t+ t′)aLσ(−t− t′)bLσ(t)aL′−σ(−t′)bL′σ(t
′)λ̃

(σ−σ)
2tLL′ , (D.30)

K
(1)
LL′σσ′ = K

(10)
LL′σσ′ +K

(11)
LL′σσ′ +K

(12l)
LL′σσ′ +K

(12t)
LL′σσ′ . (D.31)
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Here

K
(10)
LL′σσ′ = −U (0)

L′L′U
(1)
LL′

∫ ∞

0

dtdt′eiǫc(t+t′)

× aL−σ(−t)bL−σ(t)aLσ(−t− t′)bLσ(t+ t′)aL′σ′(−t′)bL′σ′(t′)λ̃
(↑↓)
0LL

+
1

4
σσ′U

(0)
LLU

(2)
LL′

∫ ∞

0

dtdt′eiǫc(t+t′)aL↑(−t)bL↑(t)aL↓(−t− t′)bL↓(t+ t′)

×
(

aL′σ′(−t′)bL′σ′(t′) + aLσ(−t′)bLσ(t′)
)

λ̃
(↑↓)
0L′L′ , (D.32)

K
(11)
LL′σσ′ = −2

∑

L′′(6=L)

∑

σ′′

U
(1)
LL′′(U

(1)
L′L′′ +

1

4
σ′σ′′U

(2)
L′L′′)

∫ ∞

0

dtdt′eiǫc(t+t′)

× aL′σ′(−t)bL′σ′(t)aLσ(−t− t′)bLσ(t+ t′)aL′′σ′′(−t′)bL′′σ′′(t′)λ̃
(σσ′′)
1LL′′

− 2
∑

L′′(6=L′)

∑

σ′′

U
(1)
L′L′′(U

(1)
LL′′ +

1

4
σσ′′U

(2)
LL′′)

∫ ∞

0

dtdt′eiǫc(t+t′)

× aL′σ′(−t− t′)bL′σ′(t+ t′)aLσ(−t)bLσ(t′)aL′′σ′′(−t′)bL′′σ′′(t)λ̃
(σ′σ′′)
1L′L′′

+ U
(1)
LL′(U

(1)
LL′ +

1

4
σσ′U

(2)
LL′)

∫ ∞

0

dtdt′eiǫc(t+t′)

×
[

aL′σ′(−t)bL′σ′(t+ t′)aLσ(−t− t′)bLσ(t)aL′σ′(−t′)bLσ(t′)
+ aL′σ′(−t− t′)bL′σ′(t)aLσ(−t)bLσ(t+ t′)bL′σ′(t′)aLσ(−t′)
− aL′σ′(−t)bL′σ′(t+ t′)aLσ(−t)bLσ(t+ t′)aL′σ′(−t′)aLσ(−t′)
− aL′σ′(−t− t′)bL′σ′(t)aLσ(−t− t′)bLσ(t)bL′σ′(t′)bLσ(t

′)
]

λ̃
(σσ′)
1LL′ , (D.33)
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K
(12l)
LL′σσ′ = −

1

4
σσ′U

(2)
LL′U

(0)
LL

∫ ∞

0

dtdt′eiǫc(t+t′)

× aLσ′(−t− t′)bLσ′(t+ t′)aLσ(−t)bLσ(t)aL−σ(−t′)bL−σ(t′)λ̃(σσ
′)

2lLL′

− 1

4
σσ′U

(2)
LL′U

(0)
L′L′

∫ ∞

0

dtdt′eiǫc(t+t′)

× aLσ′(−t)bLσ′(t)aLσ(−t− t′)bLσ(t+ t′)aL−σ′(−t′)bL−σ(t′)λ̃(σ−σ
′)

2lLL′

+
1

2
σ

∑

L′′(6=L)

∑

σ′′

U
(2)
LL′′(σ

′′U
(1)
L′L′′ +

1

4
σ′U

(2)
L′L′′)

∫ ∞

0

dtdt′eiǫc(t+t′)

× aL′σ′(−t)bL′σ′(t)aLσ(−t− t′)bLσ(t+ t′)aL′′σ′′(−t′)bL′′σ′′(t′)λ̃
(σσ′′)
2lLL′′

+
1

2
σ

∑

L′′(6=L)

∑

σ′′

U
(2)
L′L′′(σ

′′U
(1)
LL′′ +

1

4
σU

(2)
LL′′)

∫ ∞

0

dtdt′eiǫc(t+t′)

× aL′σ′(−t− t′)bL′σ′(t+ t′)aLσ(−t)bLσ(t)aL′′σ′′(−t′)bL′′σ′′(t′)λ̃
(σ′σ′′)
2lLL′′

− 1

4
U

(2)
LL′(σσ

′U
(1)
LL′ +

1

4
U

(2)
LL′)

∫ ∞

0

dtdt′eiǫc(t+t′)

×
[

aL′σ′(−t)bL′σ′(t+ t′)aLσ(−t− t′)bLσ(t)aL′σ′(−t′)bLσ(t′)
+ aL′σ′(−t− t′)bL′σ′(t)aLσ(−t)bLσ(t+ t′)bL′σ′(t′)aLσ(−t′)
− aL′σ′(−t)bL′σ′(t+ t′)aLσ(−t)bLσ(t+ t′)aL′σ′(−t′)aLσ(−t′)
− aL′σ′(−t− t′)bL′σ′(t)aLσ(−t− t′)bLσ(t)bL′σ′(t′)bLσ(t

′)
]

λ̃
(σσ′)
2lLL′ , (D.34)

K
(12t)
LL′σσ′ =

1

4
U

(2)
LL′U

(2)
LL′

∫ ∞

0

dtdt′eiǫc(t+t′)

×
[

− aL′σ(−t)bL′σ(t+ t′)aLσ(−t− t′)bLσ(t)aL′−σ(−t′)bL−σ(t′)δσσ′λ̃
(σ−σ)
2tLL′

− aL′σ(−t− t′)bL′σ(t)aLσ(−t)bLσ(t+ t′)bL′−σ(t
′)aL−σ(−t′)δσσ′λ̃

(−σσ)
2tLL′

+ aL′−σ(−t)bL−σ′(t+ t′)aLσ(−t)bLσ(t+ t′)aL′σ(−t′)aL−σ(−t′)δσ−σ′λ̃
(−σσ)
2tLL′

+ aL′−σ(−t− t′)bL′−σ(t)aLσ(−t− t′)bLσ(t)bL′σ(t
′)bL−σ(t

′)δσ−σ′λ̃
(σ−σ)
2tLL′

]

, (D.35)

K
(2)
lLL′σσ′ = −

1

4
σσ′K

(1)
LL′σσ′ . (D.36)

K
(2)
tLL′σσ′ = K

(20)
tLL′σσ′ +K

(21)
tLL′σσ′ +K

(22l)
tLL′σσ′ +K

(22t)
tLL′σσ′ . (D.37)

K
(20)
LL′σσ′ = −

1

4
δσ−σ′U

(0)
LLU

(2)
LL′

∫ ∞

0

dtdt′eiǫc(t+t′)

× aL−σ(−t)bL−σ(t+ t′)aLσ(−t− t′)bLσ(t)aL′−σ(−t′)bL′σ(t
′)λ̃

(↓↑)
0LL

− 1

4
δσ−σ′U

(0)
L′L′U

(2)
LL′

∫ ∞

0

dtdt′eiǫc(t+t′)

× aLσ(−t)bLσ(t+ t′)aL−σ(−t− t′)bL−σ(t)aL′σ(−t′)bL′−σ(t
′)λ̃

(↓↑)
0L′L′ , (D.38)
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K
(21)
tLL′σσ′ =

1

4
δσ−σ′U

(1)
LL′U

(2)
LL′

∫ ∞

0

dtdt′eiǫc(t+t′)

×
[

− aL′σ(−t)bL′σ(t+ t′)aLσ(−t− t′)bLσ(t)aL′−σ(−t′)bL−σ(t′)λ̃(σσ)1LL′

− aL′−σ(−t− t′)bL′−σ(t)aL−σ(−t)bL−σ(t+ t′)bL′σ(t
′)aLσ(−t′)λ̃(−σ−σ)1LL′

+ aL′σ(−t)bL′σ(t+ t′)aL−σ(−t)bL−σ(t+ t′)aL′−σ(−t′)aLσ(−t′)λ̃(−σσ)1LL′

+ aL′−σ(−t− t′)bL′−σ(t)aLσ(−t− t′)bLσ(t)bL′σ(t
′)bL−σ(t

′)λ̃
(σ−σ)
1LL′

]

, (D.39)

K
(22l)
tLL′σσ′ =

1

16
δσ−σ′U

(2)
LL′U

(2)
LL′

∫ ∞

0

dtdt′eiǫc(t+t′)

×
[

aL′σ(−t)bL′σ(t+ t′)aLσ(−t− t′)bLσ(t)aL′−σ(−t′)bL−σ(t′)λ̃(σσ)2lLL′

+ aL′−σ(−t− t′)bL′−σ(t)aL−σ(−t)bL−σ(t+ t′)bL′σ(t
′)aLσ(−t′)λ̃(−σ−σ)2lLL′

+ aL′σ(−t)bL′σ(t+ t′)aL−σ(−t)bL−σ(t+ t′)aL′−σ(−t′)aLσ(−t′)λ̃(−σσ)2lLL′

+ aL′−σ(−t− t′)bL′−σ(t)aLσ(−t− t′)bLσ(t)bL′σ(t
′)bL−σ(t

′)λ̃
(σ−σ)
2lLL′

]

, (D.40)

K
(22t)
tLL′σσ′ =

1

4
δσ−σ′U

(2)
LL′U

(1)
LL′

∫ ∞

0

dtdt′eiǫc(t+t′)

×
[

aL′σ(−t)bL′σ(t+ t′)aLσ(−t− t′)bL−σ(t)aL′−σ(−t′)bL−σ(t′)
+ aL′−σ(−t− t′)bL′σ(t)aLσ(−t)bL−σ(t+ t′)bL′σ(t

′)aLσ(−t′)
− aL′−σ(−t)bL′σ(t+ t′)aLσ(−t)bL−σ(t+ t′)aL′−σ(−t′)aLσ(−t′)
− aL′−σ(−t− t′)bL′σ(t)aLσ(−t− t′)bL−σ(t)bL−σ(t

′)bL′σ(t
′)
]

λ̃
(σ−σ)
2tLL′

− 1

2

∑

L′′(6=L)

U
(2)
LL′′U

(2)
L′L′′δσ−σ′

∫ ∞

0

dtdt′eiǫc(t+t′)

× aL′−σ(−t)bL′σ(t)aLσ(−t− t′)bL−σ(t+ t′)aL′′−σ(−t′)bL′′σ(t
′)λ̃

(σ−σ)
2tLL′′

− 1

2

∑

L′′(6=L)

U
(2)
LL′′U

(2)
L′L′′δσ−σ′

∫ ∞

0

dtdt′eiǫc(t+t′)

× aL′−σ(−t− t′)bL′σ(t+ t′)aLσ(−t)bL−σ(t)aL′′σ(−t′)bL′′−σ(t
′)λ̃

(−σσ)
2tL′L′′

+
1

16
δσ−σ′U

(2)
LL′U

(2)
LL′

∫ ∞

0

dtdt′eiǫc(t+t′)

×
[

aL′σ(−t)bL′σ(t+ t′)aLσ(−t− t′)bL−σ(t)aL′−σ(−t′)bL−σ(t′)λ̃(σ−σ)2tLL′

+ aL′−σ(−t− t′)bL′σ(t)aLσ(−t)bL−σ(t+ t′)aLσ(−t′)bL′σ(t
′)λ̃

(σ−σ)
2tLL′

− 2aL′−σ(−t)bL′σ(t+ t′)aL−σ(−t)bL−σ(t+ t′)

×
(

aL′σ(−t′)aL−σ(−t′)λ̃(−σσ)2tLL′ −
1

2
aL′−σ(−t′)aLσ(−t′)λ̃(σ−σ)2tLL′

)

− 2aL′−σ(−t− t′)bL′σ(t)aLσ(−t− t′)bL−σ(t)

×
(

bL′−σ(t
′)bLσ(t

′)λ̃
(−σσ)
2lLL′ −

1

2
bL′σ(t

′)bL−σ(t
′)λ̃

(σ−σ)
2tLL′

)]

. (D.41)
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Appendix E

Appendix: Overcompleteness of the

Variational Parameters

In this Appendix, we discuss the overcompleteness of the vatiational parameters λ̃
(σσ′)
1LL′ and

λ̃
(σσ′)
2lLL′ and derive their expressions (5.28) and (5.29) in Sec. 5.1. The self-consistent equations for

the parameters are given in Eq. (5.21) as follows.

∑

α′

U
(α′)
LL′ Q̃

(αα′)
τLL′σσ′λ̃

(σσ′)
α′τLL′ =

∑

α′

U
(α′)
LL′ P

(α′α)
τLL′σσ′ −K

(α)
τLL′σσ′ . (E.1)

The self-consistent equations for λ̃
(σσ′)
1LL′ and λ̃

(σσ′)
2lLL′ in the weak Coulomb interaction limit have been

obtained as follows.

U
(1)
LL′P

(11)
LL′σσ′λ̃

(σσ′)
1LL′ + U

(2)
LL′P

(12)
lLL′σσ′λ̃

(σσ′)
2lLL′ = U

(1)
LL′P

(11)
LL′σσ′ + U

(2)
LL′P

(21)
LL′σσ′ . (E.2)

−U (1)
LL′P

(21)
LL′σσ′λ̃

(σσ′)
1LL′ − U

(2)
LL′P

(12)
lLL′σσ′λ̃

(σσ′)
2lLL′ = U

(1)
LL′P

(12)
lLL′σσ′ + U

(2)
LL′P

(22)
lLL′σσ′ . (E.3)

On the other hand, we have

P
(11)
LL′σσ′ = PLL′σσ′ , (E.4)

P
(21)
LL′σσ′ = −P (12)

LL′σσ′ , (E.5)

P
(12)
lLL′σσ′ = −

1

4
σσ′PLL′σσ′ , (E.6)

P
(22)
lLL′σσ′ = −

1

16
PLL′σσ′ , (E.7)

Using the relations (E.4) ∼ (E.7), the self-consistent equations (E.2) and (E.3) are expressed as

follows.

U
(1)
LL′λ̃

(σσ′)
1LL′ −

1

4
σσ′U

(2)
LL′λ̃

(σσ′)
2lLL′ = U

(1)
LL′ +

1

4
σσ′U

(2)
LL′ , (E.8)
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U
(1)
LL′λ̃

(σσ′)
1LL′ −

1

4
σσ′U

(2)
LL′λ̃

(σσ′)
2lLL′ = U

(1)
LL′ +

1

4
σσ′U

(2)
LL′ . (E.9)

Equations (E.8) and (E.9) are the same equation, so that one can not obtain λ̃
(σσ′)
1LL′ and λ̃

(σσ′)
2lLL′

uniquely.

Note that we made use of the Hilbert space for λ̃
(σσ′)
1LL′ and λ̃

(σσ′)
2lLL′ as follows.

U
(1)
LL′λ̃

(σσ′)
1LL′ − 1

4
σσ′U

(2)
LL′λ̃

(σσ′)
2lLL′

∆Ek′
2
n′
2
σk2n2σk

′
1
n′
1
σ′k1n1σ′ − ǫc

×δ(a†
k′
2
n′
2
σ
ak2n2σ)δ(a

†
k′
1
n′
1
σ′ak1n1σ′)|φ〉

There are 8 independent variables {λ̃(σσ′)
1LL′ , λ̃

(σσ′)
2lLL′} with respect to spins σ′, σ = ±, while there

are only 4 independent states with respect to spins in the Hilbert space. Thus, {λ̃(σσ′)
1LL′ , λ̃

(σσ′)
2lLL′} are

overcomplete.

We have to reduce the number of independent variational parameters less than or equal to 4 to

find a unique state using variational parameters. Let us find 2 × 2 independent variables:

νσσ′ = U
(1)
LL′λ̃

(σσ′)
1LL′ −

1

4
σσ′U

(2)
LL′λ̃

(σσ′)
2lLL′ . (E.10)

Now we can write

(1)σσ′ = δσσ′ , (E.11)

(σx)σσ′ = δσ′−σ, (E.12)

(σy)σσ′ = −iσδσ′−σ, (E.13)

(σz)σσ′ = σδσσ′ . (E.14)

Thus, 2 × 2 matrix νσσ′ is expressed as follows.

νσσ′ = (a1 + bσx + cσy + dσz)σσ′

= (a+ dσ)δσσ′ + (b− icσ)δσ′−σ. (E.15)

For example, we can assume the following form with 4 independent parameters λ̃1LL′ , λ
(s)
1LL′ ,

λ̃2lLL′ , and λ
(s)
2lLL′ such that

λ̃
(σσ′)
1LL′ = λ̃1LL′ + λ

(s)
1LL′σδσ′−σ, (E.16)

λ̃
(σσ′)
2lLL′ = λ̃2lLL′ + λ

(s)
2lLL′σδσ′σ. (E.17)

Then we obtain

νσσ′ =
[

U
(1)
LL′λ̃1LL′ − 1

4
U

(2)
LL′

(

λ̃2lLL′ + λ
(s)
2lLL′

) ]

δσσ′

+
[

U
(1)
LL′

(

λ̃1LL′ + λ
(s)
1LL′σ

)

+
1

4
U

(2)
LL′λ̃2lLL′

]

δσ′−σ. (E.18)
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When λ
(s)
1LL′ = λ

(s)
2lLL′ = 0, we put the weights for diagonal and off-diagonal elements, U

(1)
LL′λ̃1LL′−

U
(2)
LL′λ̃2lLL′/4 and U

(1)
LL′λ̃1LL′+U

(2)
LL′λ̃2lLL′/4, respectively. When λ

(s)
1LL′ 6= λ

(s)
2lLL′ 6= 0, we put asym-

metric weights for diagonal and off-diagonal elements, U
(1)
LL′λ̃1LL′ − U

(2)
LL′λ̃2lLL′/4 − U

(1)
LL′λ

(s)
2lLL′σ

and U
(1)
LL′λ̃1LL′ + U

(1)
LL′λ

(s)
1LL′σ + U

(2)
LL′λ̃2lLL′/4.

The equations (E.16) and (E.17) are identical with Eqs. (5.28) and (5.29). We used these

equations in Chapter 5 to overcome the problem of overcompleteness of the variational parameters

λ̃
(σσ′)
1LL′ and λ̃

(σσ′)
2lLL′ .
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Appendix F

Appendix: Matrix Elements of Correlation

Energy and Self-Consistent Equations

In this Appendix we present the expressions of all the matrix elements in the correlation energy

Eq. (5.8) and the self-consistent Eqs. (5.103)∼ (5.106). We obtained the matrix elements 〈HIÕi〉0,

〈Õi

†
H̃Õi〉0, and 〈Õi

†
Õi〉0 for the variational parameter ansatz (5.5) (,i.e., Eqs. (5.9), (5.10), and

(5.16)) with use of the Laplace transformation (2.39) as follows.

〈HIÕi〉0 =
∑

L

U
(0)2
LL P

(00)
LL↓↑λ̃

(↓↑)
0LL

+
∑

〈LL′〉

∑

σσ′

U
(1)
LL′(U

(1)
LL′P

(11)
LL′σσ′ + U

(2)
LL′P

(21)
LL′σσ′)λ̃

(σσ′)
1LL′

+
∑

〈LL′〉

∑

σσ′

U
(2)
LL′(U

(1)
LL′P

(12)
lLL′σσ′ + U

(2)
LL′P

(22)
lLL′σσ′)λ̃

(σσ′)
2lLL′

+
∑

〈LL′〉

∑

σ

U
(2)2
LL′ P

(22)
tLL′σ−σλ̃

(σ−σ)
2tLL′ , (F.1)

〈Õi

†
H̃Õi〉0 = 〈Õi

†
H̃0Õi〉0 + 〈Õi

†
HIÕi〉0 , (F.2)

〈Õi

†
H̃0Õi〉0 =

∑

L

U
(0)2
LL Q

(00)
LL↓↑λ̃

(↓↑)
0LL +

∑

〈LL′〉

∑

σσ′

U
(1)2
LL′ Q

(11)
LL′σσ′λ̃

(σσ′)2
1LL′

+ 2
∑

〈LL′〉

∑

σσ′

U
(1)
LL′U

(2)
LL′Q

(12)
lLL′σσ′λ̃

(σσ′)
1LL′ λ̃

(σσ′)
2lLL′ +

∑

〈LL′〉

∑

σσ′

U
(2)2
LL′ Q

(22)
lLL′σσ′λ̃

(σσ′)
2lLL′

+
∑

〈LL′〉

∑

σ

U
(2)2
LL′ λ̃

(σ−σ)
2tLL′ Q

(22)
tLL′σ−σλ̃

(σ−σ)
2tLL′ , (F.3)

〈Õi

†
HIÕi〉0 =

∑

L

U
(0)
LL λ̃

(↓↑)
0LLK

(0)
LL↓↑

+
∑

〈LL′〉

∑

σσ′

(

U
(1)
LL′λ̃

(σσ′)∗
1LL′ −

1

4
σσ′U

(2)
LL′λ̃

(σσ′)∗
2lLL′

)

K
(1)
LL′σσ′

+
∑

〈LL′〉

U
(2)
LL′λ̃

(σ,−σ)∗
2tLL′ K

(2)
tLL′σ−σ , (F.4)
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and

〈Õi

†
Õi〉0 =

∑

L

U
(0)2
LL S

(00)
LL↓↑λ̃

(↓↑)
0LL +

∑

〈LL′〉

∑

σσ′

U
(1)2
LL′ S

(11)
LL′σσ′λ̃

(σσ′)2
1LL′

+ 2
∑

〈LL′〉

∑

σσ′

U
(1)
LL′U

(2)
LL′S

(12)
lLL′σσ′λ̃

(σσ′)
1LL′ λ̃

(σσ′)
2lLL′ +

∑

〈LL′〉

∑

σσ′

U
(2)2
LL′ S

(22)
lLL′σσ′λ̃

(σσ′)
2lLL′

+
∑

〈LL′〉

∑

σ

U
(2)2
LL′ λ̃

(σ−σ)
2tLL′ S

(22)
tLL′σ−σλ̃

(σ−σ)
2tLL′ . (F.5)

Here {P}, {Q}, and {S} are obtained by using the Laplace transformation (2.39). We obtain the

relations between the components of {P}, {Q}, and {S} as follows.

P
(00)
LL↓↑ = PLL↓↑, (F.6)

P
(11)
LL′σσ′ = PLL′σσ′ , (F.7)

P
(12)
LL′σσ′ = σσ′PLL′σσ′ , (F.8)

P
(21)
LL′σσ′ = −

1

4
σσ′PLL′σσ′ , (F.9)

P
(22)
lLL′σσ′ = −

1

16
PLL′σσ′ , (F.10)

and

P
(22)
tLL′σ−σ =

1

4
PLL′σ−σ. (F.11)

For the {Q} components,

Q
(00)
LL↓↑ = QLL↓↑, (F.12)

Q
(11)
LL′σσ′ = QLL′σσ′ , (F.13)

Q
(12)
LL′σσ′ = −

1

4
σσ′QLL′σσ′ , (F.14)

Q
(22)
lLL′σσ′ = −

1

16
QLL′σσ′ , (F.15)

and

Q
(22)
tLL′σ−σ =

1

4
QLL′σ−σ. (F.16)
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The {S} components in Eq. (F.5) are expressed by {Q} in which Q has been replaced by S.

The elements {K} are the higher order corrections. We summarize these terms as follows.

K
(0)
LL = K

(0)
LL↓↑, (F.17)

K̄
(1)
LL′ =

∑

σσ′

K
(1)
LL′σσ′ , (F.18)

K̄
(2)
lLL′ =

∑

σσ′

K
(2)
lLL′σσ′ , (F.19)

K
(2)
lLL′σσ′ = −

1

4
σσ′K

(1)
LL′σσ′ , (F.20)

and

K
(2)
tLL′ = K

(2)
tLL′σ−σ . (F.21)

We assume that the orbital L belongs to an irreducible representation Γ of the point symmetry

with dimensions dΓ. Moreover we assume for simplicity that the Coulomb interactions U
(α)
LL′ only

depend on the types of the irreducible representations Γ and Γ′ to which the orbitals L and L′

belong; U
(α)
LL′ = U

(α)
ΓΓ′ . Then the final expressions of the elements for the correlation energy (5.8) in

the paramagnetic state are given as follows.

〈HIÕi〉0 =
∑

Γ

dΓU
(0)2
ΓΓ PΓΓλ̃0ΓΓ

+ 2
∑

Γ

dΓ(dΓ − 1)U
(1)2
ΓΓ PΓΓλ̃1ΓΓ + 4

∑

(Γ,Γ′)

dΓdΓ′U
(1)2
ΓΓ′ PΓΓ′λ̃1ΓΓ′

− 1

8

∑

Γ

dΓ(dΓ − 1)U
(2)2
ΓΓ PΓΓλ̃2lΓΓ −

1

4

∑

(Γ,Γ′)

dΓdΓ′U
(2)2
ΓΓ′ PΓΓ′λ̃2lΓΓ′

− 1

4

∑

Γ

dΓ(dΓ − 1)U
(2)2
ΓΓ PΓΓλ̃2tΓΓ −

1

2

∑

(Γ,Γ′)

dΓdΓ′U
(2)2
ΓΓ′ PΓΓ′λ̃2tΓΓ′ , (F.22)

〈Õi

†
H̃0Õi〉0 =

∑

Γ

dΓU
(0)2
ΓΓ QΓΓλ̃

2
0ΓΓ

+ 2
∑

Γ

dΓ(dΓ − 1)U
(1)2
ΓΓ QΓΓλ̃

2
1ΓΓ + 4

∑

(Γ,Γ′)

dΓdΓ′U
(1)2
ΓΓ′ PΓΓ′λ̃21ΓΓ′

+
1

8

∑

Γ

dΓ(dΓ − 1)U
(2)2
ΓΓ QΓΓλ̃

2
2lΓΓ +

1

4

∑

(Γ,Γ′)

dΓdΓ′U
(2)2
ΓΓ′ QΓΓ′λ̃22lΓΓ′

+
1

4

∑

Γ

dΓ(dΓ − 1)U
(2)2
ΓΓ QΓΓλ̃

2
2tΓΓ +

1

2

∑

(Γ,Γ′)

dΓdΓ′U
(2)2
ΓΓ′ QΓΓ′λ̃22tΓΓ′ , (F.23)
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〈Õi

†
HIÕi〉0 =

∑

Γ

dΓU
(0)
ΓΓK

(0)
ΓΓ λ̃0ΓΓ

+ 2
∑

Γ

dΓ(dΓ − 1)U
(1)
ΓΓK

(1)
ΓΓ1λ̃1ΓΓ + 4

∑

(Γ,Γ′)

dΓdΓ′U
(1)
ΓΓ′K

(1)
ΓΓ′1λ̃1ΓΓ′

− 1

8

∑

Γ

dΓ(dΓ − 1)U
(2)
ΓΓK

(1)
ΓΓ2λ̃2lΓΓ −

1

4

∑

(Γ,Γ′)

dΓdΓ′U
(2)
ΓΓ′K

(1)
ΓΓ′2λ̃2lΓΓ′

+
∑

Γ

dΓ(dΓ − 1)U
(2)
ΓΓK

(2)
tΓΓλ̃2tΓΓ + 2

∑

(Γ,Γ′)

dΓdΓ′U
(2)
ΓΓ′K

(2)
tΓΓ′λ̃2tΓΓ′ , (F.24)

〈Õi

†
Õi〉0 =

∑

Γ

dΓU
(0)2
ΓΓ SΓΓλ̃

2
0ΓΓ

+ 2
∑

Γ

dΓ(dΓ − 1)U
(1)2
ΓΓ SΓΓλ̃

2
1ΓΓ + 4

∑

(Γ,Γ′)

dΓdΓ′U
(1)2
ΓΓ′ SΓΓ′λ̃21ΓΓ′

+
1

8

∑

Γ

dΓ(dΓ − 1)U
(2)2
ΓΓ SΓΓλ̃

2
2lΓΓ +

1

4

∑

(Γ,Γ′)

dΓdΓ′U
(2)2
ΓΓ′ SΓΓ′λ̃22lΓΓ′

+
1

4

∑

Γ

dΓ(dΓ − 1)U
(2)2
ΓΓ SΓΓλ̃

2
2tΓΓ +

1

2

∑

(Γ,Γ′)

dΓdΓ′U
(2)2
ΓΓ′ SΓΓ′λ̃22tΓΓ′ . (F.25)

The elements PΓΓ′ , QΓΓ′ , and SΓΓ′ have been given in Appendix C by means of the Laplace trans-

form of the local density of states ρΓ(ǫ) in the Hartree-Fock approximation. K
(α)
τΓΓ′ are given by.

K
(0)
ΓΓ = U

(0)2

ΓΓ ΩΓΓ λ̃0ΓΓ + 4 (dΓ − 1) U
(1)2

ΓΓ MΓΓ λ̃1ΓΓ

+ 4
∑

Γ′(6=Γ)

dΓ′ U
(1)2

ΓΓ′ MΓΓ′ λ̃1ΓΓ′ +
1

4
(dΓ − 1) U

(2)2

ΓΓ MΓΓ

(

λ̃2lΓΓ + 2 λ̃2tΓΓ

)

+
1

4

∑

Γ′(6=Γ)

dΓ′ U
(2)2

ΓΓ′ MΓΓ′

(

λ̃2lΓΓ′ + 2 λ̃2tΓΓ′

)

. (F.26)

K
(1)
ΓΓ1 = 2U

(1)
ΓΓU

(0)
ΓΓMΓΓλ̃0ΓΓ

U
(1)
ΓΓ

[

2U
(0)
ΓΓMΓΓ + U

(1)
ΓΓΩΓΓ4(dΓ − 2)U

(1)
ΓΓMΓΓ

]

λ̃1ΓΓ

+
∑

Γ′′( 6=Γ)

dΓ′′U
(1)
ΓΓ′′MΓΓ′′λ̃1ΓΓ′′ − 1

16
U

(2)2
ΓΓ ΩΓΓ

(

λ̃2lΓΓ + λ̃2tΓΓ′

)

. (F.27)
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K
(1)
ΓΓ′1 = U

(1)
ΓΓ′

(

U
(0)
ΓΓMΓΓ′λ̃0ΓΓ + U

(0)
Γ′Γ′MΓ′Γλ̃0Γ′Γ′

)

+ U
(1)
ΓΓ′

(

U
(0)
ΓΓΞΓ′ΓΓ + U

(0)
Γ′Γ′ΞΓΓ′Γ + U

(1)
Γ′Γ′ΩΓΓ′

)

λ̃1ΓΓ′

+ 2(dΓ − 1)U
(1)
ΓΓU

(1)
ΓΓ′

(

ΞΓΓ′Γλ̃1ΓΓ + ΞΓ′ΓΓλ̃1Γ′Γ

)

+ 2(dΓ′ − 1)U
(1)
ΓΓ′U

(1)
Γ′Γ′

(

ΞΓΓ′Γ′λ̃1ΓΓ′ + ΞΓ′ΓΓ′λ̃1Γ′Γ′

)

+ 2
∑

Γ′′(6=Γ,Γ′)

dΓ′′U
(1)
ΓΓ′′U

(1)
Γ′Γ′′

(

ΞΓΓ′Γ′′λ̃1ΓΓ′′ + ΞΓ′ΓΓ′′λ̃1Γ′Γ′′

)

− 1

16
U

(2)2
ΓΓ′ ΩΓΓ′

(

λ̃2lΓΓ + λ̃2tΓΓ′

)

. (F.28)

K
(1)
ΓΓ2 = −2U

(2)
ΓΓU

(0)
ΓΓMΓΓλ̃0ΓΓ + U

(1)
ΓΓU

(2)
ΓΓΩΓΓλ̃1ΓΓ

+ U
(2)
ΓΓ

[

2U
(0)
ΓΓMΓΓ − U

(1)
ΓΓΩΓΓ − (dΓ − 2)U

(2)
ΓΓMΓΓ

]

λ̃2lΓΓ

−
∑

Γ′′ 6=Γ

dΓ′′U
(2)2
ΓΓ′′MΓΓ′′λ̃2lΓΓ′′ +

1

2
U

(2)2
ΓΓ WΓΓλ̃2tΓΓ. (F.29)

K
(1)
ΓΓ′2 = U

(2)
ΓΓ′

(

U
(0)
ΓΓMΓΓ′λ̃0ΓΓ + U

(0)
Γ′Γ′MΓ′Γλ̃0Γ′Γ′

)

+ U
(1)
ΓΓ′U

(2)
ΓΓ′ΩΓΓ′λ̃1ΓΓ′ +

1

2
U

(2)2
ΓΓ′ WΓΓ′λ̃2tΓΓ′

+ U
(2)
ΓΓ′

(

U
(0)
ΓΓΞΓ′ΓΓ + U

(0)
Γ′Γ′ΞΓΓ′Γ − U

(1)
Γ′Γ′ΩΓΓ′

)

λ̃2lΓΓ′

− 1

2
(dΓ − 1)U

(2)
ΓΓU

(2)
ΓΓ′

(

ΞΓΓ′Γλ̃2lΓΓ + ΞΓ′ΓΓλ̃2lΓ′Γ

)

− 1

2
(dΓ′ − 1)U

(2)
ΓΓ′U

(2)
Γ′Γ′

(

ΞΓΓ′Γ′λ̃2lΓΓ′ + ΞΓ′ΓΓ′λ̃2lΓ′Γ′

)

− 1

2

∑

Γ′′( 6=Γ,Γ′)

dΓ′′U
(2)
ΓΓ′′U

(2)
Γ′Γ′′

(

ΞΓΓ′Γ′′λ̃2lΓΓ′′ + ΞΓ′ΓΓ′′λ̃2lΓ′Γ′′

)

. (F.30)

K
(2)
tΓΓ =

1

2
U

(2)
ΓΓU

(0)
ΓΓMΓΓλ̃0ΓΓ −

1

4
U

(1)
ΓΓU

(2)
ΓΓΩΓΓλ̃1ΓΓ −

1

16
U

(2)2
ΓΓ WΓΓλ̃2lΓΓ

+
1

4
U

(2)
ΓΓ

(

U
(1)
ΓΓ +

1

4
U

(2)
ΓΓ

)

ΩΓΓλ̃2tΓΓ +
1

4
(dΓ − 2)U

(2)2
ΓΓ MΓΓλ̃2tΓΓ

+
1

4

∑

Γ′′(6=Γ)

dΓ′′U
(2)2
ΓΓ′′MΓΓ′′λ̃2tΓΓ′′ . (F.31)
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K
(2)
tΓΓ′ =

1

4
U

(2)
ΓΓ′

(

U
(0)
ΓΓMΓΓ′λ̃0ΓΓ + U

(0)
Γ′Γ′MΓ′Γλ̃0Γ′Γ′

)

− 1

4
U

(1)
ΓΓ′U

(2)
ΓΓ′ΩΓΓ′λ̃1ΓΓ′ − 1

16
U

(2)2
ΓΓ′ WΓΓ′λ̃2lΓΓ′

+
1

4
U

(2)
ΓΓ′

(

U
(1)
ΓΓ′ +

1

4
U

(2)
ΓΓ′

)

ΩΓΓ′λ̃2tΓΓ′

+
1

8
(dΓ − 1)U

(2)
ΓΓU

(2)
Γ′Γ

(

ΞΓΓ′Γλ̃2tΓΓ + ΞΓ′ΓΓλ̃2tΓ′Γ

)

+
1

8
(dΓ′ − 1)U

(2)
Γ′Γ′U

(2)
ΓΓ′

(

ΞΓΓ′Γ′λ̃2tΓΓ′ + ΞΓ′ΓΓλ̃2tΓ′Γ′

)

+
1

8

∑

Γ′′( 6=Γ,Γ′)

dΓ′′U
(2)
ΓΓ′′U

(2)
Γ′Γ′′

(

ΞΓΓ′Γ′′λ̃2tΓΓ′′ + ΞΓ′ΓΓ′′λ̃2tΓ′Γ′′

)

. (F.32)

Here MΓΓ′ , ΞΓΓ′Γ′′ , ΩΓΓ′ , and WΓΓ′ are given in Appendix C by means of the Laplace transform of

the local density of states ρΓ(ǫ) in the Hartree-Fock approximation.

The final expressions of the elements for the self-consistent equations (5.103) ∼ (5.106) in the

paramagnetic state are expressed with use of the irreducible representation Γ and Γ′ to which the

orbitals L and L′ belong.

λ̃0ΓΓ = Q̃−1ΓΓ

(

PΓΓ − U
(0)−1
ΓΓ K

(0)
ΓΓ

)

, (F.33)

λ̃1ΓΓ = Q̃−1LL′

(

PΓΓ −
1

4
U

(1)−1
ΓΓ K̄

(1)
ΓΓ

)

, (F.34)

λ̃1ΓΓ′ = Q̃−1LL′

(

PΓΓ′ − 1

4
U

(1)−1
ΓΓ′ K̄

(1)
ΓΓ′

)

, (F.35)

λ̃2lΓΓ = −Q̃−1ΓΓ

(

PΓΓ + 4 U
(2)−1
ΓΓ K̄

(2)
lΓΓ

)

, (F.36)

λ̃2lΓΓ′ = −Q̃−1ΓΓ′

(

PΓΓ′ + 4 U
(2)−1
ΓΓ′ K̄

(2)
lΓΓ′

)

, (F.37)

λ̃2tΓΓ = −Q̃−1ΓΓ

(

PΓΓ + 4 U
(2)−1
ΓΓ K

(2)
tΓΓ

)

, (F.38)

λ̃2tΓΓ′ = −Q̃−1ΓΓ′

(

PΓΓ′ + 4 U
(2)−1
ΓΓ′ K

(2)
tΓΓ′

)

. (F.39)

Each element at the rhs of the above expressions (F.33) ∼ (F.39) is expressed as follows.

K
(0)
ΓΓ = U

(0)2

ΓΓ ΩΓΓ λ̃0ΓΓ + 4 (dΓ − 1) U
(1)2

ΓΓ MΓΓ λ̃1ΓΓ

+ 4
∑

Γ′(6=Γ)

dΓ′ U
(1)2

ΓΓ′ MΓΓ′ λ̃1ΓΓ′ +
1

4
(dΓ − 1) U

(2)2

ΓΓ MΓΓ

(

λ̃2lΓΓ + 2 λ̃2tΓΓ

)

+
1

4

∑

Γ′(6=Γ)

dΓ′ U
(2)2

ΓΓ′ MΓΓ′

(

λ̃2lΓΓ′ + 2 λ̃2tΓΓ′

)

, (F.40)

K̄
(1)
ΓΓ = 8U

(1)
ΓΓ U

(0)
ΓΓ MΓΓ λ̃0ΓΓ

+ 4 U
(1)
ΓΓ

[

2U
(0)
ΓΓ ΞΓΓΓ + U

(1)
ΓΓ ΩΓΓ + 4 (dΓ − 2) U

(1)
ΓΓ ΞΓΓΓ

]

λ̃1ΓΓ

+ 16 U
(1)
ΓΓ

∑

Γ′′( 6=Γ)

dΓ′′ U
(1)
ΓΓ′′ ΞΓΓΓ′′ λ̃1ΓΓ′′ − 1

4
U

(2)2

ΓΓ ΩΓΓ

(

λ̃2lΓΓ + 2 λ̃2tΓΓ

)

, (F.41)
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K̄
(1)
ΓΓ′ = 4 U

(1)
ΓΓ′

(

U
(0)
ΓΓ MΓΓ′ λ̃0ΓΓ + U

(0)
Γ′Γ′ MΓ′Γ λ̃0Γ′Γ′

)

+ 4 U
(1)
ΓΓ′

(

U
(0)
ΓΓ ΞΓ′ΓΓ + U

(0)
Γ′Γ′ ΞΓΓ′Γ′ + U

(1)
ΓΓ′ ΩΓΓ′

)

λ̃1ΓΓ′

+ 8 (dΓ − 1) U
(1)
ΓΓ U

(1)
ΓΓ′

(

ΞΓΓ′Γ λ̃1ΓΓ + ΞΓ′ΓΓ λ̃1Γ′Γ

)

+ 8 (dΓ′ − 1) U
(1)
ΓΓ′ U

(1)
Γ′Γ′

(

ΞΓΓ′Γ′ λ̃1ΓΓ′ + ΞΓ′ΓΓ′ λ̃1Γ′Γ′

)

+ 8
∑

Γ′′(6=Γ,Γ′)

dΓ′′ U
(1)
ΓΓ′′ U

(1)
Γ′Γ′′

(

ΞΓΓ′Γ′′ λ̃1ΓΓ′′ + ΞΓ′ΓΓ′′ λ̃1Γ′Γ′′

)

− 1

4
U

(2)2

ΓΓ′ ΩΓΓ′

(

λ̃2lΓΓ′ + 2 λ̃2tΓΓ′

)

, (F.42)

K̄
(2)
lΓΓ =

1

2
U

(2)
ΓΓ U

(0)
ΓΓ MΓΓ λ̃0ΓΓ −

1

4
U

(1)
ΓΓ U

(2)
ΓΓ ΩΓΓ λ̃1ΓΓ

− 1

4
U

(2)
ΓΓ

[

2 U
(0)
ΓΓ ΞΓΓΓ − U

(1)
ΓΓ ΩΓΓ − (dΓ − 2) U

(2)
ΓΓ ΞΓΓΓ

]

λ̃2lΓΓ

+
1

4

∑

Γ′′(6=Γ)

dΓ′′ U
(2)2

ΓΓ ΞΓΓΓ′′ λ̃2lΓΓ′′ − 1

8
U

(2)2

ΓΓ WΓΓ λ̃2tΓΓ′′ , (F.43)

K̄
(2)
lΓΓ′ =

1

4
U

(2)
ΓΓ′

(

U
(0)
ΓΓ MΓΓ′ λ̃0ΓΓ + U

(0)
Γ′Γ′ MΓ′Γ λ̃0Γ′Γ′

)

+
1

4
U

(2)
ΓΓ′

(

U
(0)
ΓΓ ΞΓ′ΓΓ + U

(0)
Γ′Γ′ ΞΓΓ′Γ′ − U

(1)
ΓΓ′ ΩΓΓ′

)

λ̃2lΓΓ′

+
1

8
(dΓ − 1) U

(2)
ΓΓ U

(2)
ΓΓ′

(

ΞΓΓ′Γ λ̃2lΓΓ + ΞΓ′ΓΓ λ̃2lΓ′Γ

)

+
1

8
(dΓ′ − 1) U

(2)
ΓΓ′ U

(2)
Γ′Γ′

(

ΞΓΓ′Γ′ λ̃2lΓΓ′ + ΞΓ′ΓΓ′ λ̃2lΓ′Γ′

)

− 1

8

∑

Γ′′(6=Γ,Γ′)

dΓ′′ U
(2)
Γ′Γ′′ U

(2)
ΓΓ′′

(

ΞΓΓ′Γ′′ λ̃2lΓΓ′′ + ΞΓ′ΓΓ′′ λ̃2lΓ′Γ′′

)

− 1

4
U

(1)
ΓΓ′ U

(2)
ΓΓ′ ΩΓΓ′ λ̃1ΓΓ′ − 1

8
U

(2)2

ΓΓ′ WΓΓ′ λ̃2tΓΓ′ , (F.44)

K
(2)
tΓΓ =

1

2
U

(2)
ΓΓ U

(0)
ΓΓ MΓΓ λ̃0ΓΓ −

1

4
U

(2)
ΓΓ U

(1)
ΓΓ ΩΓΓ λ̃1ΓΓ

− 1

16
U

(2)2

ΓΓ WΓΓ λ̃2lΓΓ +
1

4
U

(2)
ΓΓ

(

U
(1)
ΓΓ +

1

4
U

(2)
ΓΓ

)

ΩΓΓ λ̃2tΓΓ

+
1

4
(dΓ − 2) U

(2)2

ΓΓ ΞΓΓΓ λ̃2tΓΓ +
1

4

∑

Γ′′(6=Γ)

dΓ′′ U
(2)2

ΓΓ′′ ΞΓΓΓ′′ λ̃2tΓΓ′′ , (F.45)
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K
(2)
tΓΓ′ =

1

4
U

(2)
ΓΓ′

(

U
(0)
ΓΓ MΓΓ′ λ̃0ΓΓ + U

(0)
Γ′Γ′ MΓ′Γ λ̃0Γ′Γ′

)

− 1

4
U

(1)
ΓΓ′ U

(2)
ΓΓ′ ΩΓΓ′ λ̃1ΓΓ′ − 1

16
U

(2)2

ΓΓ′ WΓΓ′ λ̃2lΓΓ′

+
1

4
U

(2)
ΓΓ′

(

U
(1)
ΓΓ′ +

1

4
U

(2)
ΓΓ′

)

ΩΓΓ′ λ̃2tΓΓ′

+
1

8
(dΓ − 1) U

(2)
ΓΓ U

(2)
Γ′Γ

(

ΞΓΓ′Γ λ̃2tΓΓ + ΞΓ′ΓΓ λ̃2tΓ′Γ

)

+
1

8
(dΓ′ − 1) U

(2)
ΓΓ′ U

(2)
Γ′Γ′

(

ΞΓΓ′Γ′ λ̃2tΓΓ′ + ΞΓ′ΓΓ′ λ̃2tΓ′Γ′

)

+
1

8

∑

Γ′′( 6=Γ,Γ′)

dΓ′′ U
(2)
ΓΓ′′ U

(2)
Γ′Γ′′

(

ΞΓΓ′Γ′′ λ̃2tΓΓ′′ + ΞΓ′ΓΓ′′ λ̃2tΓ′Γ′′

)

. (F.46)
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Appendix G

Appendix: Correlation Correction to

Electron Number

In this Appendix, we present the explicit expression of the correlation correction to the electron

number of orbital L in Eq. (5.118) in Sec. 5.2.

〈ñiL〉 =
〈Õ†i ñiLÕi〉0
1 + 〈Õi

†
Õi〉0

. (G.1)

The denominator is the renormalization factor of the wavefunction. Expression of 〈Õi

†
Õi〉0 has

been given by Eqs. (F.5) and (F.25). The numerator is expressed as follows.

〈Õi

†
ñiLÕi〉0 =

∑

L

U
(0)2
LL A

(00)
LLLν↓↑λ̃

(↓↑)
0LL +

∑

〈LL′〉

∑

σσ′

U
(1)2
LL′ A

(11)
LL′Lνσσ′σν λ̃

(σσ′)2
1LL′

+ 2
∑

〈LL′〉

∑

σσ′

U
(1)
LL′U

(2)
LL′A

(12)
lLL′Lνσσ′σν λ̃

(σσ′)
1LL′ λ̃

(σσ′)
2lLL′

+
∑

〈LL′〉

∑

σσ′

U
(2)2
LL′ A

(22)
lLL′Lνσσ′σν λ̃

(σσ′)
2lLL′

+
∑

〈LL′〉

∑

σ

U
(2)2
LL′ λ̃

(σ−σ)
2tLL′ A

(22)
tLL′Lνσ−σσν λ̃

(σ−σ)
2tLL′ . (G.2)

Here the elements {A} are expressed by the Laplace transformation. We obtain the relation be-

tween the {A} components as follows

A
(00)
LL↓↑ = ALL↓↑, (G.3)

A
(11)
LL′σσ′ = ALL′σσ′ , (G.4)

A
(12)
LL′σσ′ = −

1

4
σσ′ALL′σσ′ , (G.5)

A
(22)
lLL′σσ′ =

1

16
ALL′σσ′ , (G.6)
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and

A
(22)
tLL′σ−σ =

1

4
ALL′σ. (G.7)

In the paramagnetic state, the correlation correction (G.2) is expressed as follows with use of the

irreducible representation Γ with dimensions dΓ to which the orbital L belongs.

〈Õ†i ñiLÕi〉0 = 2 AΓΓ

[

U
(0)2

ΓΓ λ̃20ΓΓ

+ (dΓ − 1) AΓΓ

(

2 U
(1)2

ΓΓ λ̃21ΓΓ +
1

8
U

(2)2

ΓΓ (λ̃22lΓΓ + 2 λ̃22tΓΓ)
)]

+ 2
d
∑

Γ′ 6=Γ

dΓ′ AΓ′Γ

[

2 U
(1)2

ΓΓ′ λ̃
2
1ΓΓ′ +

1

8
U

(2)2

ΓΓ′

(

λ̃22lΓΓ′ + 2 λ̃22tΓΓ′

)]

. (G.8)

Here

AΓΓ′ = −
∫ ∞

0

dt dt′eiǫc(t+t′)
[

aΓ′(−t− t′) bΓ′(t+ t′) aΓ(−t− t′) bΓ(t) bΓ(t
′)

− aΓ′(−t− t′) bΓ′(t+ t′) bΓ(t+ t′) aΓ(−t) aΓ(−t′)
]

. (G.9)

The functions aΓ(t) and bΓ(t) have been given in Eqs. (C.28) and (C.29) in Appendix C.
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Appendix H

Appendix: Expressions of the Average

Residual Interaction Elements

In this Appendix, we present the explicit expressions of the residual interactions. The expres-

sions are given in Sec. 5.2, which were obtained by using Wick’s theorem.

The residual interaction elements
∑

〈LL′〉〈O
(α)
iLL′〉 for α = 0, 1, and 2 are given by Eq. (5.121):

∑

〈LL′〉

〈O(α)
iLL′〉 =

−
∑

〈LL′〉

〈Õi

†
O

(α)
iLL′〉0 −

∑

〈LL′〉

〈O(α)
iLL′Õi〉0 +

∑

〈LL′〉

〈Õi

†
O

(α)
iLL′Õi〉0

1 + 〈Õi

†
Õi〉0

. (H.1)

Here
∑

L

〈O(0)
iLLÕi〉0 =

∑

Γ

dΓ U
(0)
ΓΓ PΓΓ λ̃0ΓΓ , (H.2)

∑

(L,L′)

〈O(1)
iLL′Õi〉0 = 2

∑

Γ

dΓ (dΓ − 1) U
(1)
ΓΓ PΓΓ λ̃1ΓΓ + 4

∑

(Γ,Γ′)

dΓ dΓ′U
(1)
ΓΓ′ PΓΓ′ λ̃1ΓΓ′ , (H.3)

∑

(L,L′)

〈O(2)
iLL′Õi〉0 = −

1

8

∑

Γ

dΓ (dΓ − 1) U
(2)
ΓΓ PΓΓ

(

λ̃2lΓΓ + 2 λ̃2tΓΓ

)

− 1

4

∑

(Γ,Γ′)

dΓ dΓ′U
(2)
ΓΓ′ PΓΓ′

(

λ̃2lΓΓ′ + 2 λ̃2tΓΓ′

)

, (H.4)

∑

L

〈Õ†iO
(0)
iLLÕi〉0 =

∑

Γ

dΓ U
(0)2

ΓΓ λ̃20ΓΓ ΩΓΓ

+
∑

Γ

dΓ (dΓ − 1)
(

4 U
(1)2

ΓΓ λ̃21ΓΓ −
1

4
U

(2)2

ΓΓ λ̃22lΓΓ

)

ΞΓΓΓ

+
∑

(Γ,Γ′)

dΓ dΓ′

(

4 U
(1)2

ΓΓ′ λ̃
2
1ΓΓ′ − 1

4
U

(2)2

ΓΓ′ λ̃
2
2lΓΓ′

) (

ΞΓ′ΓΓ + ΞΓΓ′Γ′

)

, (H.5)
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∑

(L,L′)

〈Õ†iO
(1)
iLL′Õi〉0 = 8

∑

Γ

dΓ (dΓ − 1) U
(1)
ΓΓ λ̃1ΓΓ U

(0)
ΓΓ λ̃0ΓΓ MΓΓ

+ 8
∑

(Γ,Γ′)

dΓ dΓ′ U
(1)
ΓΓ′ λ̃1ΓΓ′

(

U
(0)
ΓΓ λ̃0ΓΓ MΓΓ′ + U

(0)
Γ′Γ′ λ̃0Γ′Γ′ MΓ′Γ

)

+ 2
∑

Γ

dΓ (dΓ − 1) U
(1)
ΓΓ λ̃1ΓΓ

(

U
(1)
ΓΓ λ̃1ΓΓ ΩΓΓ + T

(11)
ΓΓ

)

+ 4
∑

(Γ,Γ′)

dΓ dΓ′ U
(1)
ΓΓ′ λ̃1ΓΓ′

(

U
(1)
ΓΓ′ λ̃1ΓΓ′ ΩΓΓ′ + T

(11)
ΓΓ′

)

+
1

8

∑

Γ

dΓ (dΓ − 1) U
(2)2

ΓΓ

(

λ̃22lΓΓ + 2 λ̃22tΓΓ

)

ΩΓΓ

+
1

4

∑

(Γ,Γ′)

dΓ dΓ′ U
(2)2

ΓΓ′

(

λ̃22lΓΓ′ + 2 λ̃22tΓΓ′

)

ΩΓΓ′ . (H.6)

Here

T
(11)
ΓΓ′ = −2

(

U
(1)
ΓΓ ΞΓΓ′Γ λ̃1ΓΓ + U

(1)
Γ′Γ ΞΓ′ΓΓ λ̃1Γ′Γ

)

− 2
(

U
(1)
ΓΓ′ ΞΓΓ′Γ′ λ̃1ΓΓ′ + U

(1)
Γ′Γ′ ΞΓ′ΓΓ′ λ̃1Γ′Γ′

)

+ 2
∑

Γ′′

dΓ′′

(

U
(1)
ΓΓ′′ ΞΓΓ′Γ′′ λ̃1ΓΓ′′ + U

(1)
Γ′Γ′′ ΞΓ′ΓΓ′′ λ̃1Γ′Γ′′

)

. (H.7)

Finally we have

∑

(L,L′)

〈Õ†iO
(2)
iLL′Õi〉0 =

∑

Γ

dΓ U
(0)
ΓΓ λ̃0ΓΓ K̂

(0)
ΓΓ

+
1

2

∑

Γ

dΓ (dΓ − 1)
[

4 U
(1)
ΓΓ λ̃1ΓΓ K̂

(1)
ΓΓ1 −

1

4
U

(2)
ΓΓ λ̃2lΓΓ K̂

(1)
ΓΓ2

]

+
∑

(Γ,Γ′)

dΓ dΓ′

[

4 U
(1)
ΓΓ′ λ̃1ΓΓ′ K̂

(1)
ΓΓ′1 −

1

4
U

(2)
ΓΓ′ λ̃2lΓΓ′ K̂

(1)
ΓΓ′2

]

+
∑

Γ

dΓ (dΓ − 1) U
(2)
ΓΓ λ̃2tΓΓ K̂

(2)
tΓΓ +

∑

(Γ,Γ′)

dΓ dΓ′ U
(2)
ΓΓ′ λ̃2tΓΓ′ K̂

(2)
tΓΓ′ . (H.8)

Here

K̂
(0)
ΓΓ =

1

4
(dΓ − 1) U

(2)
ΓΓ

(

λ̃2lΓΓ + 2 λ̃2tΓΓ

)

MΓΓ

+
1

4

∑

Γ′(6=Γ)

dΓ′ U
(2)
ΓΓ′

(

λ̃2lΓΓ′ + 2 λ̃2tΓΓ′

)

MΓΓ′ , (H.9)

K̂
(1)
ΓΓ′1 = −

1

16
U

(2)
ΓΓ′

(

λ̃2lΓΓ′ + 2 λ̃2tΓΓ′

)

ΩΓΓ′ . (H.10)
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K̂
(1)
ΓΓ′2 = −U

(0)
ΓΓ MΓΓ′ λ̃0ΓΓ − U

(0)
Γ′Γ′ MΓ′Γ λ̃0Γ′Γ′

+ U
(1)
ΓΓ′ ΩΓΓ′ λ̃1ΓΓ′ +

1

2
U

(2)
ΓΓ′ WΓΓ′ λ̃2tΓΓ′

+
1

2

(

U
(2)
ΓΓ ΞΓΓ′Γ λ̃2lΓΓ + U

(2)
Γ′Γ ΞΓ′ΓΓ λ̃2lΓ′Γ

)

+
1

2

(

U
(2)
ΓΓ′ ΞΓΓ′Γ′ λ̃2lΓΓ′ + U

(2)
Γ′Γ′ ΞΓ′ΓΓ′ λ̃2lΓ′Γ′

)

− 1

2

∑

Γ′′

dΓ′′

(

U
(2)
ΓΓ′′ ΞΓΓ′Γ′′ λ̃2lΓΓ′′ + U

(2)
Γ′Γ′′ ΞΓ′ΓΓ′′ λ̃2lΓ′Γ′′

)

. (H.11)

K̂
(2)
tΓΓ′ =

1

4

(

U
(0)
ΓΓ MΓΓ′ λ̃0ΓΓ + U

(0)
Γ′Γ′ MΓ′Γ λ̃0Γ′Γ′

)

− 1

4

(

4 U
(1)
ΓΓ′ ΩΓΓ′ λ̃1ΓΓ′ + U

(2)
ΓΓ′ WΓΓ′ λ̃2lΓΓ′ − 1

4
U

(2)
ΓΓ′ ΩΓΓ′ λ̃2tΓΓ′

)

− 1

8

(

U
(2)
ΓΓ ΞΓΓ′Γ λ̃2tΓΓ + U

(2)
Γ′Γ ΞΓ′ΓΓ λ̃2tΓ′Γ

)

− 1

8

(

U
(2)
ΓΓ′ ΞΓΓ′Γ′ λ̃2tΓΓ′ + U

(2)
Γ′Γ′ ΞΓ′ΓΓ′ λ̃2tΓ′Γ′

)

+
1

8

∑

Γ′′

dΓ′′

(

U
(2)
ΓΓ′′ ΞΓΓ′Γ′′ λ̃2tΓΓ′′ + U

(2)
Γ′Γ′′ ΞΓ′ΓΓ′′ λ̃2tΓ′Γ′′

)

. (H.12)

The expressions of PΓΓ′ , MΓΓ′ , ΞΓΓ′Γ′′ , ΩΓΓ′ , and WΓΓ′ at the rhs of the above expressions have

been given in Appendix C (see Eqs. (C.19) ∼ (C.23)).
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Appendix I

Appendix: Momentum Distribution

Function

In this Appendix, we present the explicit expressions of the momentum distribution function

(5.122) in the paramagnetic state, and derive the average quasiparticle weights (5.125) and (5.128).

The numerator of the correlation correction to the momentum distribution 〈nknσ〉 is given in

Eq. (5.123):

N〈Õ†i ñknσÕi〉0 =
∑

ατ 〈LL′〉

q(α)τ U
(α)2
LL′ λ̃

2
ατLL′

(

B̂LL′n(k) f(−ǫ̃kn)− ĈLL′n(k) f(ǫ̃kn)
)

. (I.1)

The particle and hole contributions, B̂LL′n(k) and ĈLL′n(k) are expressed by Eq. (5.124):

B̂LL′n(k) = |uLn(k)|2BL′L(ǫkn) + |uL′n(k)|2BLL′(ǫkn) , (I.2)

ĈLL′n(k) = |uLn(k)|2CL′L(ǫkn) + |uL′n(k)|2CLL′(ǫkn) . (I.3)

Assuming that orbital L belongs to an irreducible representation Γ, we obtain the expressions of

the BLL′(ǫkn) and CLL′(ǫkn) as follows.

BΓΓ′(ǫkn) = −
∫ ∞

0

dt dt′ei(ǫc−ǫkn)(t+t′) aΓ(−t− t′) bΓ(t+ t′) aΓ′(−t− t′) , (I.4)

CΓΓ′(ǫkn) = −
∫ ∞

0

dt dt′ei(ǫc+ǫkn)(t+t′) aΓ(−t− t′) bΓ(t+ t′) bΓ′(t+ t′) . (I.5)

The quasiparticle weight is obtained from the jump at the Fermi level: ZkFn = 〈nknσ〉kF−
−

〈nknσ〉kF+
. Here kF− (kF+) means the wavevector just below (above) the Fermi surface. According

to Eq. (5.123), it is given by

ZkFn = 1 +
δ(N〈Õ†i ñknσÕi〉0)kF

1 + 〈Õi

†
Õi〉0

. (I.6)
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Here the numerator of the correlation corrections is given by

δ(N〈Õ†i ñknσÕi〉0)kF = −
∑

Γ

[

dΓ U
(0)2

ΓΓ λ̃20ΓΓ + 2 dΓ (dΓ − 1) U
(1)2

ΓΓ λ̃21ΓΓ

+
1

8
dΓ (dΓ − 1) U

(2)2

ΓΓ

(

λ̃22lΓΓ + 2 λ̃22tΓΓ

)]

×
(

B̂ΓΓn(kF) + ĈΓΓn(kF)
)

−
∑

(Γ,Γ′)

dΓ dΓ′

[

2 U
(1)2

ΓΓ′ λ̃
2
1ΓΓ′ +

1

8
U

(2)2

ΓΓ′

(

λ̃22lΓΓ′ + 2 λ̃22tΓΓ′

)]

×
(

B̂ΓΓ′n(kF) + ĈΓΓ′n(kF)
)

.

(I.7)

B̂ΓΓ′n(kF) and ĈΓΓ′n(kF) are defined by Eqs. (I.2) and (I.3) in which L and L′ have been replaced

by their irreducible representations Γ and Γ′.
Taking average over the Fermi surface, we obtain the average quasiparticle weight Z, Eq.

(5.125) as follows.

Z = 1 +
δ(N〈Õ†i ñknσÕi〉0)kF

1 + 〈Õi

†
Õi〉0

, (I.8)

δ(N〈Õ†i ñknσÕi〉0)kF = −
∑

Γ

[

dΓU
(0)2

ΓΓ λ̃20ΓΓ + 2 dΓ (dΓ − 1) U
(1)2

ΓΓ λ̃21ΓΓ

+
1

8
dΓ (dΓ − 1) U

(2)2

ΓΓ

(

λ̃22lΓΓ + 2 λ̃22tΓΓ

)]

×
(

B̄ΓΓn(kF) + C̄ΓΓn(kF)
)

−
∑

(Γ,Γ′)

dΓ dΓ′

[

2 U
(1)2

ΓΓ′ λ̃
2
1ΓΓ′ +

1

8
U

(2)2

ΓΓ′

(

λ̃22lΓΓ′ + 2 λ̃22tΓΓ′

)]

×
(

B̄ΓΓ′n(kF) + C̄ΓΓ′n(kF)
)

.

(I.9)

Here B̄ΓΓ′n(kF) and C̄ΓΓ′n(kF) are defined by

B̄Γ′Γn(kF) = |uΓn(kF)|2 BΓ′Γ(ǫF) + |uΓ′n(kF)|2 BΓΓ′(ǫF) , (I.10)

C̄ΓΓ′n(kF) = |uΓn(kF)|2 CΓ′Γ(ǫF) + |uΓ′n(kF)|2 CΓΓ′(ǫF) . (I.11)

The average amplitude of eigenvector |uΓn(kF)|2 is obtained as follows.

|uΓn(kF)|2 =
∑ǫF〈ǫkn〈ǫF+∆

kn |uΓn(k)|2
∑ǫF〈ǫkn〈ǫF+∆

kn

=
ρΓ(ǫF)

ρ(ǫF)
. (I.12)

Here ρΓ(ǫF) ( ρ(ǫF)) is the partial (total) density of states at the Fermi level ǫF.

The projected momentum distribution function (MDF) is defined by

〈nkLσ〉 =
∑

n

〈nknσ〉|uLnσ(k)|2 . (I.13)

Using the formula (B.29), we obtain the expression of the projected MDF, Eq.(5.126):

〈nkLσ〉 = f(ǫ̃kLσ) +
N〈Õ†i ñkLσÕi〉0
1 + 〈Õi

†
Õi〉0

. (I.14)
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The correlation correction of the projected MDF at the rhs is expressed as follows after taking the

average over k with constant energy ǫkL as in Eq. (I.12).

N〈Õ†i ñkLσÕi〉0 =
D ρΓ(ǫkL)

ρ(ǫkL)

∑

Γ′

[

dΓ′ U
(0)2

Γ′Γ′ λ̃
2
0Γ′Γ′ + 2 dΓ′ (dΓ′ − 1) U

(1)2

Γ′Γ′ λ̃
2
1Γ′Γ′

+
1

8
dΓ′ (dΓ′ − 1) U

(2)2

Γ′Γ′

(

λ̃22lΓ′Γ′ + 2 λ̃22tΓ′Γ′

)]

× ρΓ′(ǫkL)

ρ(ǫkL)

(

BΓ′Γ′(ǫkL) f(−ǫ̃kL)− CΓ′Γ′(ǫkL) f(ǫ̃kL)
)

+
D ρΓ(ǫkL)

ρ(ǫkL)

∑

(Γ′,Γ′′)

dΓ′ dΓ′′

[

2 U
(1)2

Γ′Γ′′ λ̃
2
1Γ′Γ′′ +

1

8
U

(2)2

Γ′Γ′′

(

λ̃22lΓ′Γ′′ + 2 λ̃22tΓ′Γ′′

)]

×
[ρΓ′ (ǫkL)

ρ(ǫkL)

(

BΓ′′Γ′(ǫkL) f(−ǫ̃kL)− CΓ′′Γ′(ǫkL) f(ǫ̃kL)
)

+
ρΓ′′(ǫkL)

ρ(ǫkL)

(

BΓ′Γ′′(ǫkL) f(−ǫ̃kL)− CΓ′Γ′′(ǫkL) f(ǫ̃kL)
)]

. (I.15)

This is the explicit expression of the numerator of the second term of Eq. (5.126).

With use of Eqs. (I.14) and (I.15), the partial quasiparticle weight ZL is given by Eq. (5.128):

ZL = 1 +
δ(N〈Õ†i ñkLσÕi〉0)kF

1 + 〈Õi

†
Õi〉0

, (I.16)

and the explicit expression of the numerator of the correlation correction is given as follows.

δ(N〈Õ†i ñkLσÕi〉0)kF = −
∑

Γ

[

dΓ U
(0)2

ΓΓ λ̃20ΓΓ + 2 dΓ (dΓ − 1) U
(1)2

ΓΓ λ̃21ΓΓ

+
1

8
dΓ (dΓ − 1) U

(2)2

ΓΓ

(

λ̃22lΓΓ + 2 λ̃22tΓΓ

)]

× ρΓ(ǫF)

ρ(ǫF)

(

BΓΓ(ǫF) + CΓΓ(ǫF)
)

−
∑

(Γ,Γ′)

dΓ dΓ′

[

2 U
(1)2

ΓΓ′ λ̃
2
1ΓΓ′ +

1

8
U

(2)2

ΓΓ′

(

λ̃22lΓΓ′ + 2 λ̃22tΓΓ′

)]

×
[ρΓ(ǫF)

ρ(ǫF)

(

BΓ′Γ(ǫF) + CΓ′Γ(ǫF)
)

+
ρΓ′(ǫF)

ρ(ǫF)

(

BΓΓ′(ǫF) + CΓΓ′(ǫF)
)]

. (I.17)
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