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Abstract

We have developed the first-principles momentum-dependent local ansatz (MLA) wavefunc-
tion method on the basis of the tight-binding LDA+U Hamiltonian in order to describe quantita-
tively electron correlations in the real system. The MLA wavefunction expands the Hilbert space
for correlated electrons by applying the intra-orbital correlators, the inter-orbital charge-charge cor-
relators, and the inter-orbital spin-spin correlators with momentum-dependent variational parame-
ters to the Hartree-Fock uncorrelated state, so that it reduces to the correct Rayleigh-Schrodinger
perturbation theory in the weak correlation limit and can describe quantitatively the ground state
as well as related low-energy excitations in solids.

We first performed the lowest-order numerical calculations for paramagnetic bcc Fe in order
to clarify the basic behavior of the theory. We found that the MLA yields a reasonable correlation
energy gain, and the inter-orbital correlations as well as the intra-orbital correlations plays an
important role in the energy gain. The charge fluctuation is suppressed rapidly with increasing the
Coulomb interaction strength. Calculated charge fluctuation for Fe is found to be comparable to
the result of the local ansatz (LA) in the d-band model. The amplitude of local moment is smaller
than the d-band LA value. We also found the strong momentum dependence of the momentum
distribution function (MDF), and obtained the mass enhancements m*/m = 1.4 for Fe from the
jump of the MDF at the Fermi level.

We next performed the self-consistent calculations using the new ansatz for the variational
parameters which interpolates between the weak and the atomic limit. We obtained the correlation
energy —0.076 Ry for bee Fe, the charge fluctuations for d electrons ((dng)?)= 1.51, and the
amplitude of local moment (S?) = 2.61. The latter is in good agreement with the experimental
value 2.58. We find that the inter-orbital charge-charge correlations between d electrons make a
significant contribution to the correlation energy and charge fluctuations, while the intra-orbital and
inter-orbital spin-spin correlations make a dominant contribution to the amplitude of local moment.

We also obtained the MDF along high-symmetry lines for Fe. We found that the MDF for d
electrons with e, symmetry show a large deviation from the Fermi-Dirac function. The analyses
of projected MDF indicate that the s and p electrons behave as independent electrons, while d
electrons behave as correlated electrons. The average mass enhancement factor m*/m is found to
be governed by the intra-orbital and inter-orbital spin-spin correlations. Calculated m*/m = 1.65
is shown to be consistent with the experimental data and agrees well with the recent results of
theoretical calculations.
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Chapter 1

Introduction

The density functional theory (DFT) has been well developed in the past half century towards
quantitative description of the properties of solids, and acts nowadays as a powerful tool for ex-
plaining the ground-state properties of materials and their electronic structure. The DFT is based
on the Hohenberg-Kohn theorem which states that the ground-state is given by the functional of
electron density [1] and the Kohn-Sham method in which the charge and spin densities are ob-
tained from an independent electron system [2]. All the many-body effects are included in the
exchange-correlation potential as a functional of charge and spin densities in the DFT. The local
density approximation (LDA) or generalized gradient approximation (GGA) to the DFT potential
allows us to implement the first-principles band calculations for various systems.

The LDA and GGA explain many aspects in solids such as the cohesive properties, the Fermi
surface in metals, and optical properties of metallic systems [3,4]. The DFT also explains quan-
titatively the ground-state magnetism of 3d transition metals and alloys. The first-principles band
calculations with use of the LDA, for example, yield the magnetization per atom 2.15 pup for Fe
and 0.59 g for Ni [5], which are in good agreement with the experimental values 2.22 ug and 0.62
us [6,7], respectively.

On the other hand, the DFT theory is not sufficient to describe properly the properties of more
correlated electron systems. The theory cannot describe the magnetic moment and the metal-
insulator phase transition above the Néel temperature in cuprates [8], and much overestimates
the ground-states magnetic moment in Fe-pnictides [9, 10], while it underestimates the moment
in cuprates [8]. Furthermore it is not applicable to the finite-temperature magnetism such as the
Curie temperature and the Curie-Weiss law in susceptibility of transition metals. The Stoner theory
based on the DFT band calculations yields the Curie temperatures (7)), 6000 K for Fe and 3000
K for Ni [11, 12], which are 6 or 5 times as large as the observed values, 1040 K for Fe and 630 K
for Ni [13, 14].

The DFT also fails in explaining the e-Fe [15], cuprates [16], heavy-fermion system [16], the
reduction of the cohesive energy in 3d transition metals [17], the formation of a satellite peak in the
X-ray photoemission spectroscopy (XPS) data of Ni [18,19], and the angle resolved photoemission
spectroscopy (ARPES) data in Fe-pnictides [20].

The second point is that the DFT is based on the Hohenberg-Kohn theorem. Thus the physical
quantities expressed by the two-particle operators as well as excitation spectra cannot be calcu-
lated. The DFT is based on the Kohn-Sham scheme. Thus the momentum distribution function as
well as related mass enhancement factor cannot be described by the DFT when the electron corre-
lations become significant. Moreover, the LDA and GGA potentials in the DFT band theory do not
correctly describe the orbital correlations as well as the Hund-rule correlations in the paramagnetic



state and thus the ground-state energy is overestimated in general in the paramagnetic state. These
properties cannot be understood without taking into account directly the many-body effects, i.e.,
electron correlation effects.

In order to describe the many-body phenomena which cannot be explained by the band the-
ory, various theories have been developed so far. These theories are based on the variational
method [16,21,22], the Green function techniques [23], as well as the numerical techniques such
as the exact diagonalization method and the quantum Monte-Carlo (QMC) technique [24]. The
dynamical mean field theory (DMFT) combined with the LDA+U Hamiltonian [25-27], is such
an approach based on the Green function technique and the effective medium method. The DMFT
is equivalent to the first-principles dynamical coherent potential approximation (DCPA) developed
by Kakehashi [30,31]. In these approaches, we can replace the surrounding interactions with an
effective medium and solve the impurity problem using various methods. The theories have been
applied to many systems with strong electron correlations [31].

The variational approach is the simplest and oldest methods to treat electron correlations at the
ground state. The trial wavefunction is chosen to include the minimum basis set with variational
parameters. One can determine the variational parameters on the basis of variational principles.

The Gutzwiller wavefunction (GW) [32—34] is one of the popular ansatz, and has been applied
to a number of correlated electron systems. The method has been extended to the first-principles
version on the basis of the LDA+U Hamiltonian [35, 36]. The first-principles GW theory has been
applied to many systems such as Ni [37] and Fe pnictides [38,39], and clarified the physics of elec-
tron correlations in the magnetism, the heavyfermion behavior, and the metal-insulator transition.

The local ansatz (LA) wavefunction [16, 21, 22] is an approach from the weakly correlated
limit. It makes use of the Hilbert space expanded by the two-particle operators which appear in the
residual Coulomb interactions. The Baeriswyl wavefunction expands the Hilbert space applying
the hopping operators onto the atomic wavefunctions, aiming at an accurate description of electron
correlations in the strong interaction regime. There are various trial wavefunctions which describe
the nonlocal electron correlations [40-43]. These wavefunctions are usually treated by means of
numerical techniques such as the variational Monte Carlo method [44,45].

The wavefunctions mentioned above, however, do not reduce to the second-order perturbation
theory in the weak Coulomb interaction limit. Therefore it does not describe quantitatively the
properties of correlated electron system. This is serious for quantitative description of effective
mass enhancement factor associated with the low energy excitations in the vicinity of the Fermi
surface, because it is obtained by a renormalization of the counterpart in the weak Coulomb inter-
action limit according to the Fermi liquid theory.

In order to overcome the difficulty, we recently proposed the momentum-dependent local ansatz
(MLA) wavefunction which goes beyond the GW [46-50]. The MLA is an extension of the LA
in which the residual Coulomb interaction operators are used to expand the Hilbert space for de-
scribing electron correlations [S1-53]. In the MLA, we expand the Hilbert space by means of
the two-particle excited states with momentum-dependent variational parameters in the momen-
tum space, and project these states onto the local orbitals again. In this way, we can obtain more
flexible correlated electron states. The theory overcomes the Gutzwiller wavefunction method and
describes quantitatively the physical quantities.

In this thesis, we extend the MLA to the first-principles version on the basis of the tight-binding
(TB) LDA+U Hamiltonian towards the quantitative description of correlated electron system. It
should be noted that we have three kinds of Coulomb interactions in the TB LDA+U Hamilto-
nian: the intra-orbital interactions, the inter-orbital charge-charge interaction, and the inter-orbital



spin-spin interactions. Accordingly, we introduce three kinds of correlators with the momentum-
dependent variational parameters: the intra-orbital correlators, the inter-orbital charge-charge cor-
relators, and the inter-orbital spin-spin correlators, respectively, and construct the first-principles
MLA wavefunction applying them to the Hartree-Fock wavefunction in order to expand the Hilbert
space for describing correlated electrons. We can derive the correlation energy within the single-
site approximation (SSA), and obtain the self-consistent equations for the momentum-dependent
variational parameters. After determination of the variational parameters, charge fluctuations, am-
plitude of magnetic moment, momentum distribution function (MDF), as well as the mass en-
hancement factor (MEF) are obtained immediately from the wavefunctions.

We emphasize that the first-principles MLA reduces to the Rayleigh-Schrodinger perturbation
theory exactly as it should be, and the theory quantitatively describes the ground-state properties of
correlated electron system, as will be demonstrated in the numerical calculations for the paramag-
netic Fe. In particular, the present theory accurately describes the momentum-dependent correlated
states associated with two-particle excitations. We will clarify that the first-principles MLA quan-
titatively describes the momentum-dependence of the MDF as well as the momentum-dependent
MEFE.

Another new feature of the first-principles MLA is that there are three kinds of correlations in
the wavefunctions: the intra-orbital correlations, the inter-orbital charge-charge correlations, and
the inter-orbital spin-spin correlations (, i.e., the Hund-rule correlations). We will clarify in this
thesis the role of these correlations in various physical properties and the interplay of s, p, and d
electrons in the MDF and the MEF.

As we have mentioned, alternative approach to describe electron correlations quantitatively is
the first-principles LDA+DMFT (DCPA) theory [26-31]. The LDA+DMEFT is a powerful method
to strongly correlated electrons. The accuracy of the DMFT however strongly depends on the
solver of the impurity problem for correlated electrons [54-56]. The Quantum Monte-Carlo
method (QMC) can describe accurately the finite-temperature properties of the system. But its
efficiency is strongly reduced at low temperatures, and the QMC even causes the negative sign
problem which prevents us from systematic investigations over wide range of interaction param-
eters. The exact diagonalization method (ED) is useful to study exactly the physical properties
at zero temperature. But it cannot describe the low energy properties associated with the Fermi
surface. The numerical renormalization group theory (NRG) describes accurately the low energy
excitations, but it does not accurately describe the excitations in high-energy region as well as the
energy integrated quantities. Furthermore it is not applicable to the realistic systems because of the
numerical difficulty.

The MLA on the other hand describes quantitatively the quasi-particle weight associated with
the low energy excitations as well as the energy-integrated quantities such as the total energy and
momentum distribution function without numerical difficulty. In particular, we will show that
the first-principles MLA quantitatively explains the mass enhancement factor of bcc Fe obtained
by the ARPES experiment [57] while the LDA+DMFT combined with the three-body theory at
zero temperature does not [57]. Furthermore the MLA allows us to calculate any static physical
quantity because the wavefunction is known. These facts indicate that the first-principles MLA is
competitive to the LDA+DMFT at zero temperature and thus it is a suitable approach to correlated
electrons.

In the following chapter we review the recent development of correlated wavefunction methods
such as the Gutzwiller wavefunction (GW), the local ansatz wavefunction (LA), the MLA, and
the hybrid MLA in the single-band Hubbard model. In particular, we present the formulation



of the MLA, and discuss quantitative aspects of the MLA for the correlation energy, the double
occupation number and the MDF with their numerical results.

In Chapter 3 we present the first-principles MLA. We start from the TB LDA+U Hamiltonian,
and introduce the first-principles MLA wavefunction for correlated electron system. We obtain
the correlation energy in the SSA, and derive the self-consistent equations for the momentum-
dependent variational parameters using the variational principle. We derive the expressions of the
electron number, the charge fluctuations, the amplitude of local moment, and the MDF using the
Feynman-Hellmann theorem.

In Chapter 4 we obtain the variational parameters in the weak Coulomb interaction regime
solving the self-consistent equations. We express the physical quantities in the lowest-order inter-
action limit. We will apply the theory to bce Fe as a numerical example. The bee Fe is one of the
most extensively investigated materials in both theory and experiment. Nevertheless, quantitative
aspects of various physical quantities in bcc Fe and role of electron correlations in those quantities
have not yet been clarified. We first calculate the Hartree-Fock energy bands of bcc Fe for the TB
LDA+U Hamiltonian to perform the correlation calculations. Next we calculate various quantities
for correlated electrons using the Laplace transform of the Hartree-Fock local density of states.
We present the numerical results for the correlation energy, the charge fluctuations, the amplitude
of local moment, and the MDF. In the calculation of the MDF we assume the constant amplitudes
of eigen vectors for d electrons at each k point, and discuss the momentum-dependence of the
MDE. We also calculate the MEF from the jump of the MDF at the Fermi level. We find that the
calculated MEF is comparable to the experimental value.

In Chapter 5 we propose the new ansatz of variational parameters for more correlated electrons,
which interpolates between the weak and the atomic limit, and solve the self-consistent equations
for the variational parameters numerically. We present the numerical results for Fe, and clarify
the role of intra-orbital and inter-orbital correlations on the correlation energy gain, the charge
fluctuation, and the formation of magnetic moment. We also calculate the MDF for Fe along high-
symmetry lines of the first Brillouin zone, and demonstrate a large deviation of the MDF from the
Fermi-Dirac function due to d electrons with e, symmetry. We will show that calculated MEF are
consistent with the experimental data as well as recent result of theoretical calculations. Finally in
Chapter 6 we summarize our results, and discuss the future problems.



Chapter 2

Wavefunction Methods

The DFT does not describe quantitatively the ground-state properties in the correlated electron
system. In this chapter, we review the wavefunction methods in order to clarify the new fea-
tures of the momentum-dependent local ansatz (MLA) wavefunctions. We discuss the Gutzwiller
wavefunction (GW), the local ansatz wavefunction (LA), the MLA, and the MLA with hybrid
wavefunction (MLA-HB) [48,50]. In particular, we elucidate the quantitative aspects of the MLA
on the basis of the numerical results of calculations in infinite dimensions.

2.1 Wavefunction methods

The wavefunction method is based on the variational principles for the wavefunction. It states that
the expectation value F of the Hamiltonian H for any trial wavefunction |¥) is equal to or larger
than the ground states energy F.
(VIH|T)
E = W > FEy . 2.1

The variational principle allows us to find an approximate but best wavefunction for a given ansatz,
and its energy expectation value gives us the upper limit of the exact ground state energy. In the
actual application of Eq. (2.1), it is important that we adopt a size-consistent wavefunction close
to the exact one and calculate the energy expectation value as accurate as we can in order to avoid
uncertainty.

We consider in this chapter the tight-binding model Hamiltonian with intra-atomic Coulomb
interaction called the Hubbard model [60,61], for simplicity.

H = Z €N + Z tijazoaja -+ U Z ULz (22)

ijo i

Here ¢ is the atomic level, ¢;; is the transfer integral between sites ¢ and j. U is the intra-atomic

Coulomb energy parameter. @;r (a;») denotes the creation (annihilation) operator for an electron on

site ¢ with spin o, and n,;, = a,,a,, denotes the electron density operator on site ¢ for the spin o.
The Hamiltonian can be separated into the Hartree-Fock mean field Hamiltonian H, and the

residual interaction part as follows:

H=Hy+UY 0, (2.3)



Hy = Z(eo + U(ni—g)o)Nis + thawaﬂ, UZ nir)o(ni)o - (2.4)
o ijo
Here (~)( denotes the Hartree-Fock average at the ground state. The operator O; in the residual
interaction is defined by O; = dn;10n;; and 0n;, = Ny — (Nig)o-
The Hartree-Fock ground state wavefunction |®) is given by

occ

— [T ek 1. (2.5)

Here [ ;- means taking the products over the momentum & and spin o of electrons below the Fermi
level. |0) denotes the vacuum state. a,Tw is the creation operator for an electron with momentum £
and spin o al, = 3. al (i|k). (i|k) (= exp (=i k - R;)/v/N) is an overlap integral between the
localized orbital on site 7 and Bloch state k. R; denotes atomics position of site ¢, and N is the
number of sites.

The energy difference between the ground state for the correlated electrons and the Hartree-
Fock one is given by .
(V|H[W)

(W|w)

Here H = H — (H)o. It is the energy gain due to correlated motion of electrons, and is called the
correlation energy.

E, = (H) - (H)y = (2.6)

2.2 Gutzwiller wavefunction

The wave function proposed by Gutzwiller [32-34] reduces the amplitudes of doubly occupied
states in the Hartree-Fock ground state. It is given by

o) = | [T = (= gmima)] 1) @)
The wavefunction describes on-site electron correlations by making use of a projection operator
n;1n;, on to the Hartree-Fock state. The parameter 1 — g denotes the amplitudes of doubly occupied
states. The variational parameter ¢ = 1 corresponds to the Hartree-Fock state, while ¢ = 0
corresponds to the atomic state with no doubly occupied state. Varying the variational parameters
g from 1 to 0, one can choose the best amplitude of doubly occupied states for correlated electrons
on the basis of the variational principle (2.1).
Gutzwiller obtained approximately the ground state energy by making use of a quasichemical
method [34]. In the nonmagnetic state at half-filling, we obtain a simple result for the ground state
energy per atom in infinite dimensions as [34]

€ = ——Uc(l . U%) (2.8)

The ground state energy increases with increasing U and becomes zero at U = Ug. For U > Ug,
we have a solution e with g = 0. Therefore the metal-insulator transition occurs at U = Ug.
Similarly, the double occupation number per atom linearly decreases with increasing U at half-

filling as
1 U
1— — 2.
do = 4( UC> 2.9)

6



and dg = 0 beyond Uc. We call the state dz = 0 the Brinkman-Rice atomic state. It is therefore
realized for U > Ug, i.e., in the insulating state.

The momentum distribution for the Gutzwiller wavefunction is known to be flat below and
above the Fermi level [34], and shows a jump at the Fermi level. We obtain the quasiparticle
weight according to the Fermi liquid theory as

UQ
Zo=(1- 1) 2.10
Beyond U¢, the jumps disappears and the distribution becomes completely flat.

2.3 Local ansatz wavefunction

The Hartree-Fock Hamiltonian neglects the charge (or spin) fluctuation {O;} = {dn;on;; }
which appear in the residual interactions. An alternative way to take into account electron correla-
tions is therefore to include the Hilbert space expanded by the fluctuation {O; }. The wavefunction
can describe the weak Coulomb interaction regime. Such a wavefunction is called the local ansatz
(LA) [51-53]. It is given by

[Ura) = [H(l - TILAOz')} |¢) - (2.11)
Here 7,5 is a variational parameter.
In the single-site approximation, the correlation energy per atom is given as follows [58, 59]:

_277LA<Oi}~[>0 + U}%A<Oiﬁ0i>o
L+772,(07),
Each element of (O, H),, (O;HO;),, and (O?), are expressed by the electron number (n,, ), and

the Hartree-Fock local density of states p;,(€). Minimizing the energy €.(LA) with respect to the
variational parameters 7,5, we obtain

e.(LA) = (2.12)

—(O:HO), +\(O:HOY + 4O:H) (02),
2(0:H)y(0?),

In the nonmagnetic state at half-filling, the double occupation number in the LA has a simple
form,

(2.13)

nLA =

1 ULA/2
AN =—(1- —) . 2.14
(anttiy )1 4( 1+ 12,/16 (219
The momentum distribution function in the LA is expressed as
1 1
(Mko)ra = 5(1 +2) f(ero) + 5(1 = Z)(1 = flers))- (2.15)

Here f(€x,) is the Fermi distribution function and Z is the quasipartical weight. Here ¢, is the
Fourier transform of ¢;;. The quasipartical weight as the jumps in the momentum distribution on
the Fermi surface is obtained analytically for half-filling as follows:

2
4
Tia=1— % . (2.16)
1+ 77LA/16

The LA is suitable for the description of correlated-electron systems with a weak or intermediate
Coulomb interaction strength, while the Gutzwiller wavefunction is more suitable in the strongly
correlated region.



2.4 Other wavefunctions methods

There are many other wavefunctions which have been proposed. Both the Gutzwiller and the
LA wavefunctions do not explicitly include the inter-site correlation operators. The wavefunction
proposed by Jastrow [40] describes the inter-site density density correlations and has the form

U3) = exp(— Y fininy)|¢) - (2.17)
(4,9)

Here n; = n; + n; is the density operator on site 7. |¢) represents the ground-state of non-
interacting fermions. f;; = [ d*xd®2’|1);(r)[*|1;(r")|>f (r — ') is variational parameters depend-
ing on sites 7 and j. 1;(r) denotes the atomic wavefunction on site ¢ and the function f(r — r’)
is the varitional function of the displacement » — /. The wavefunction |V ;) describes the inter-
site long-range density-density correlations. However, the applications are limited to the weakly
correlated systems and the low-dimensional systems. Note that the Gutzwiller wavefunction is
expressed as

W) = emo Zimanic|p) oc €276 2| g) (2.18)

where the variational parameters 7¢ and g are related through ng= In g. Therefore the on-site
Jastrow wavefunction is equivalent to the Gutzwiller wavefunction.

A wavefunction being suitable in the strong correlation regime is the Baerlswyl wavefunction
[62,63]. It is constructed by applying a hopping operator T=— > twa +jo onto the atomic
wavefunction |V ) as

ijo

W) = e PT|0,,) . (2.19)

The operator exp(—nBT) creates the electron hopping states from the atomic one and the varia-
tional parameter 7 controls the hopping rate to minimize the energy. The Baeriswyl wavefunction
describes well the insulator state in the strong correlated regime. However, it is not easy to describe
the metallic state.

In order to describe the doublon (doubly occupied state-holon (empty state) bound state, which
appears in the super-exchange process in the strong Coulomb interaction regime, one can consider
the wavefunction [42] as

W) = e @) . (2.20)

Here Q = >°,[d; [T, (1 — higr) + 2 [1,(1 = diir)]. di = ngpmay (hi = (1 — nyp)(1 — nyy)) is the
doublon (holon) operator, and is taken over the nearest-neighbor sites. The variational parameter
controls the amplitudes of the nearest-neighbor doublon holon bound states. The ground state of
the nonlocal wavefunctions are usually calculated by means of the numerical technique called the
variational Monte Carlo method (VMC) [44,45].

2.5 Momentum dependent local ansatz wavefunction

Most of the wavefunctions mentioned in the last section aim to describe correlated electrons
in the intermediate and strong Coulomb interaction regimes. The behavior of these wavefunctions

8



in the weak Coulomb interaction regime was not discussed seriously. Kakehashi et al. [46] have
recently pointed out that the wavefunctions mentioned above do not yield the exact results in
the weak Coulomb interaction limit according to the Rayleigh-Schrédinger perturbation theory
of the wavefunction. They proposed a new wavefunction called the momentum-dependent local
ansatz (MLA) which is consistent with the perturbation theory. The MLA is a new wavefunction
which reproduces well-known results in infinite dimensions [26]. In the following subsection, we
introduce the MLA that describes exactly the correlated electrons in the weak Coulomb interaction
limit, and elucidate the results obtained by the MLLA wavefunction in infinite dimensions.

2.5.1 Momentum dependent local ansatz wavefunction method

The momentum dependent local ansatz (MLA) wavefunction is constructed from the local-
ansatz (LA) wavefunction (2.11 ) so as to reproduce the result of the Rayleigh-Schrédinger pertur-
bation theory. Let us expand the LA wavefunction (2.11) in the weak Coulomb interaction limit
as

[Wra) = [6) + |d)ra + - . (2.21)
Here

|P1)La = —Z Z (e [4) (alkey ) (K5 ><i|k‘z>77LA5(aléﬂkzi)Cs(a;:/ﬁam) ) - (2.22)

% k1 k/ ko k/

(ilk) = exp (—ik - R;)/v/N is an overlap integral between the localized orbital on site i and Bloch
state k, and 6(aL,U,akU) = az,g,a,w — <a£,a,aka)0.

The Rayleigh-Schrodinger perturbation theory for the exact ground-state wavefunction, on the
other hand, yields the following form

W) = [@) + |d1) +- -, (2.23)
[@1) = =D D (KL ilka) (ki) (il ka)mig s e, O(ak, ax )0 (ks i) ) - (2.24)

i klk/ kgk/

The amplitude is given by

€ 1 — €11 € 1 — /
77’5:/)k " — _Ulim f(ekﬁ)( f(Ek:lT))f(Gkﬂ)( f<6k’ i)) (2.25)
2k k1 z—>0 Z — €xrp t €kyp — €yt €yt

Here f(¢) is the Fermi distribution function at zero temperature, and €, = €, — . i is the Fermi
level. €, is the Hartree-Fock one-electron energy eigenvalue given by €, = €g + U(n;_,)o + €,
e, being the Fourier transform of ¢;;.

Comparing Eq. (2.24) with Eq. (2.22), we find that one has to take into account the momentum
dependence of the variational parameters in order to reproduce the perturbation theory in the weak
Coulomb interaction limit. In the MLA, we introduce a new local ansatz operator O; such that

0= > <k1Ii><ilk1><kéli><i|k2>nkgk2k3k15(aLé¢ak2¢)5(aLnam), (2.26)
oy K, oo ey

and construct a new wavefunction with momentum-dependent variational parameters {7],42 Kok, Ky
as follows [46]:

w) = [TT-09] I9). @27)
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The total energy is given as
(H) = (H)o + Ne.. (2.28)

Here ( H ), denotes the Hartree-Fock energy, ¢, is the correlation energy per atom. In the single-site
approximation (SSA), the correlation energy ¢, is given as follows (see Sec 3.4 in details):

(2.29)

Here I = H — (H),
By making use of Wick’s theorem, <I§TOZ)O( (Oo'g Yo

*

), (OIHO, )o> and (OIQ)O are given by

N U _
(HO;), = Nt Z Mkt ook, ey S b ok ey (2.30)

k1K, kaks,

i _ 1 , ;
<C)if{()i>0 = 7&1 Ukékaikljkékgkikl Zx}2k§k2k1k1nk§k2kik1

k1K koK,
{ D F @) FErat) gty — O (1= F (&) f (Bt iy haripn
kska klky
= F@an) (1 = F@r) i + D= F@i)) L= F(@)igrans | |
kskj kb k)
2.31)
e - 1 _
(010), = Nt D kgkari [ Frgrars (2.32)
ky k!, k)

Here fk’ kok! k1 is the Fermi factor; fk/ koki k1 = f(Ele) (1 f(Ek/ >>f<€k2¢) (1_f(gké¢) €k = €ko— MU,
€ho belng the one-electron energy elgenvalue for Hy. AEk/2 Kokl ki = €kj| — €ky| + €11 — €k 1t denotes
the two-particle excitation energy from the ground state |¢).

Minimizing the correlation energy (2.29), we obtain the self-consistent equations for {77,42 ko k! Ky }
in the SSA as follows:

(AEk' Kokl Ky — €)M kok! ky

[Zf Et) f (Ead)hgeakiin — D f Crgt) (1 = F (€ )) Miak ks

ksky k3k)
D (1= FEr)) f Era)Migaren + > (1= f(Ergp)) (1 = f(gku))nk;kzkgkl] =U. (233
K, ks kLK,

It is possible to solve approximately the above equation for 7 x,x.x, for a given e.. We first
note that 7k, , should vanish in the weak U limit. Thus, we can omit the second term at the
lhs (left-hand side) of Eq. (2.33) in the weak interaction limit. Then we obtain the solution as
Niskok by = U/ (AEkgponik, — €c)- In the atomic limit, on the other hand, we have AEy 111, = 0,
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and find a k-independent solution 7). Therefore we approximate {7 x,x, } in the second term with
a k-independent solution 7, so that we obtain an approximate solution which interpolates between
the weak and strong Coulomb interaction regimes.

Un
AEk’Zkgk’lkl — €

Mk by (77, €¢) = (2.34)

Here 7 is a renormalization factor to be variable.
When we adopt the approximate form (2.34), we have the following inequality.

Eo < E({Migroriis 1) < E{ gy (05 €0)}), (2.35)

where 7;,, .., 1s the exact stationary value. Therefore 7) is again determined from the stationary
.o, . 2 2 1 1 .
condition of the correlation energy e..

. 1
T —— (2.36)
1+ D
Here
1 Fraktionk
C =— 2R1ky
N6 kﬂ%k’g (AEkékzkikl — Ec)
" [Z SErat) [ (Eryy) 3 (1 — f(Eryr)) S (€at)
kaka (AEk’ kakiks — €) K (AEkékwgkl —€)
(€ €k’ 1 — f(€w 1— f(ew
_Z kst ( (k¢))+z( S (&) f(m))’ (2.37)
e AEk;’k Kiks — €c) oyl (AEy,kokyhy — €c)
1 Frokt ok
D=— = : (2.38)
N4 ]ﬂ%ké (AEkékaikl — EC)

Note that 77 in Eq. (2.36) is given as a function of €., and €. in Eq. (2.29) depends on 7) and €.. Thus
both equations are solved self-consistently. This is the self-consistent MLA which starts from the
Hartree-Fock wavefunction. The self-consistency is significant when the average electron number
deviates from half-filling.

In the numerical calculations of C, D, (HO;),, (O HO;),, and (O]0;)o, the six-fold k sums
appear. This means that one has to perform the six-fold integrals in the energy representation. One
can reduce the six-fold integrals into two-fold ones by using the Laplace transformation.

1

Z—€+€e3—€e3+ €+ €

= —i / Tt ditraraarate, (2.39)
0

Here z = w + 10, and 4 is an infinitesimal positive number.
For example, (HO;), is expressed by Eq. (2.30). Substituting Eq. (2.34) into Eq. (2.30), we
have the following expression with four-fold energy integrals as follows.

(HOy), = (O1H),
[f[ de,| [f[ plen)] 1@ (1 = F(En) FE) (1 f(ex)
= U%) / e . (2.40)

64—€3+62—61—€C
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Here €,, = €, + €, and €, = ¢y + U(n;_,) — p is the atomic level measured from the chemical
potential 4, and p(e) is the density of states for the one-electron energy eigen values of the non-
interacting system ?;;. Making use of the Laplace transformation (2.39), we find the following
expression given by a single time integral:

(HO:), = (O H), = iU%; / h dteetap(—t)ay(—t)by (t)by(1). (2.41)
0

Here a,(t) and b,(t) are defined by

oalt) = [ deep(e)fle+ ). (2.42)
by (1) = / dee= " p(e)[1 — fle+ &), (2.43)
We obtain the expressions of the other matrix elements (O] O;), and (010;), as follows.

(OTHO,), = (01 Hy0y), + U(010,0,),, (2.44)

(Ol Hy0,), = —U*i? / dtdt' e t+t) [aT(—t — Yor(t +)ay (=t — )by (t + 1)

0

—ap(=t = )br(t +t)ay (=t — )by (t + 1)

+ ar(—t — o1 (t + t)ay(—t — )b, (t + )
— app(—t — )bt + t)ay(—t — )by (t + t')] . (2.45)

)by (t + t)ar(—t)ay(=t")

(— )

tay(—t — )by (t)ar(—t")by (1)
(=0)by (t + )by (t)ay (—t)
(— )

(
E= OO (E)0,(1)], 246)

<OjOzOZ>U - _U2772/ dtdt,eiEC(H_ﬂ) CLT _t)bT t
0

(010, = U7’ / dtdt' e ap (—t — )by (t + t)ay (—t — )by (t + ). (2.47)
0
Here a,(t) and b, (t) are given Eqs. (2.42) and (2.43). ay,(t) and b, (t) are defined by

a1, (t) = /dee_“tep(e)f(e + &), (2.48)

bis(t) = /deeietep(e)[l — fle+ &) (2.49)
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Electron number, momentum distribution, double occupation numbers are obtained as follows:

>, (Ol:,04),

i) = \Th =T = ) 2.50
<n> <77,>0—|- 1+<OZTO¢>O ( )
N{O}74,0s),

o) — o +, 2.51
(ko) = (ko)o + 5 (0160, (2.51)
(niyniy) = (nar)o(nig)o + (napnig)e - (2.52)

—(OTON — 1O.0. O.0. . N> 0.
(nsrni)e = (01030 = (0:0:)o + (010:0i)o + 32, (i) (Ol i Or)o 053

1+ (0!0:)
Here the second terms at the rhs (right-hand side) of the above expressions (2.50) ~ (2.52) are cor-
relation corrections. They are calculated by using Wick’s theorem and the Laplace transformation.

2.5.2 Numerical results of MLA and LA

The MLA improves the LA irrespective of the Coulomb interaction strength and the electron num-
ber. In order to demonstrate the fact, we present in this section the numerical results for the
hypercubic lattice in infinite dimensions [64]. In this case, the density of states (DOS) for the
noninteracting system is given by p(e) = (1/1/7) exp(—¢?).

0
-0.2
-0.4
-0.6
-0.8

-1

1.2
1.4
1.6
1.8 : ' : :

Figure 2.1: The correlation energies ¢, per atom versus Coulomb interaction energy parameter U
in the MLA (solid curve) and the LA (dashed curve) for various electron number n (Ref. [47]).

Figure 2.1 shows the correlation energy per atom as a function of U for various electron num-
bers. We verify that the ground state energy in the MLA is lower than that of the LA over all
Coulomb interactions U and electron numbers n. In particular, the small U behavior of €. in the
MLA is exact. For a given U, the difference between the LA and the MLA increases with increas-
ing n and becomes maximum at half-filling because the number of doubly occupied sites in the
Hartree-Fock ground state increases with increasing electron number.

13



0 . 2 5 I I T T

0.15

(nyny)

0.1
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Figure 2.2: The double occupation number (n4n) versus Coulomb interaction energy U curves in
the MLA (solid curve) and the LA (dotted curve) (Ref. [47]).

The double occupation number decreases with increasing interaction U irrespective of electron
number n so as to suppress the loss of Coulomb interaction energy as seen in Fig. 2.2. We find
that the ML A wavefunction gives greater reduction in the double occupancy as compared with that
of the LA.

The momentum dependence of the variational parameters causes qualitative change in the mo-
mentum distribution as shown in Fig. 2.3. The momentum distribution in the LA and the GW are
constant below and above the Fermi level as mentioned in the last section, while the distribution in
the MLA monotonically decreases with increasing energy €, below and above the Fermi level, as
it should [65].

The quasiparticle weight obtained from the jump in the momentum distribution at the Fermi
level is also much improved by taking into account the momentum dependence of variational pa-
rameters. Figure 2.4 shows the quasiparticle weight Z as a function of the Coulomb interac-
tion strength U in various methods at half-filling. The quasiparticle weight in the LA changes as
Zia = (1-3n%,/16)/(1+n?,/16) (see Eq. (2.16)) and vanishes at U,(LA) = 24/v/37 (= 7.82).
In the GW [66], the quasiparticle weight decreases as Zq = 1 — (U/U.)? (see Eq. (2.10)), and
vanishes at U, (GW) = 8/4/7 (= 4.51). These curves deviate strongly from the curve obtained by
the numerical renormalization group (NRG) method [65] which is considered to be the best. The
curve in the MLA on the other hand is close to the that of the NRG, and significantly improves
upon the LA, though calculated U, (MLA) = 3.40 is somewhat smaller than the value U (NRG)
=4.10.

The numerical results mentioned above indicate that the momentum dependence of the vari-
ational parameters much improves upon the LA as well as the GW in the metallic region. In
particular, this is significant in order to describe the properties associated with the low-energy
excitations.
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Figure 2.3: The momentum distribution as a function of energy ¢, for various Coulomb interaction
energy parameters U at half-filling (n = 1.0) (Ref. [47]). The MLA: solid curves, the LA: dashed
curves.

1.2 T T T T T T T

Figure 2.4: Quasiparticle-weight versus Coulomb interaction curves in various theories (Ref. [47]).
The RPT-1 (Renormalized Perturbation Theory): dashed curve (Ref. [65]), the NRG: thin solid
curve (Ref. [67]), the LA: dotted curve, the MLA: solid curve, and the GW: dot-dashed curve.
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2.5.3 Alloy analogy wavefunction

The MLA describes the electron correlations in the weak Coulomb interaction limit exactly,
and much improves the LA wavefunction, as we have seen in the last section. It cannot, how-
ever, suppress sufficiently the loss of Coulomb interaction energy in the strongly correlated region.
Usual way to take into account more correlations is to expand the Hilbert space applying additional
correlators with variational parameters onto the Hartree-Fock wavefunction. In particular, the cor-
relator which suppresses the double occupancy is required in the strongly correlated regime. Such
an extension, however, would make it more difficult to treat the wavefunction analytically. An
alternative way to overcome the difficulty is to start from a wavefunction which is more suitable
for the strongly correlated electrons. In this section we consider the alloy analogy wavefunction
towards an improvement of the MLA from the latter point of view.

The Hartree-Fock approximation is exact in energy up to the first order with respect to the
Coulomb interaction energy, therefore the wavefunction is suitable as a starting state for describing
correlations in the weak and intermediate Coulomb interaction regime. However, the wavefunction
is not suitable in the strongly correlated region because it allows for the double occupation of
electrons at each site.

Hubbard proposed an alternative one-electron picture in the strong Coulomb interaction regime
[61]. Let us consider the atomic limit. There each electron number 7, is a good quantum number
taking a value n,, = 0 or 1. We distinguish in this section the number operator n,, with the
c-number n;,(= 0 or 1). When the electron hopping is switched on in the strongly correlated
region, an electron with spin o should move slowly from site to site, and feel a different potential
Un;_, = U or0, instead of the Hartree-Fock average potential U (7;_, )o, depending on whether the
opposite-spin electron is occupied or unoccupied on the same site. Hubbard regarded the system as
an alloy with different random potentials ¢y + U and ¢, having the concentration (7;_) (occupied)
and 1 — (n;_,) (unoccupied), respectively. This is the alloy-analogy (AA) picture for strongly
correlated electrons.

The AA Hamiltonian is given by

Han =Y (€04 Uni—o)iio + 3 _ tijalyaje — U (ni (i) an + niy (i) an)

10 ijo 7

+ U (i) an(fi)aa. (2.54)

Here (~)aa denotes the AA average (daa|(~)|daa) with respect to the ground state wavefunction
|paa) of the AA Hamiltonian Haa. n,, is a c-number taking a value 0 or 1. Each configuration
{nis} is considered as a snapshort in time development.

The ground state energy E satisfies the following inequality for any configuration of {n;, }.

Eo < (H)an = (Haa)an- (2.55)
Thus, when we take the configurational average on {n;,}, we have
Ey < (H) 4 (2.56)

Here the upper bar denotes the configurational average.
The configurational averages of various quantities can be obtained with use of the single-site
approximation (SSA) called the coherent potential approximation (CPA) [68—70]. Note that the
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averaged electron number is obtained from the local density of state (LDOS) for an electron with
spin o, i.e., pi,(€), as follows:

(Mig)Ar = / f(€)pio(€)de, (2.57)
and the LDOS is obtained from the one-electron Green function as
pic(€) = —%ImGiw(z). (2.58)
The Green function Gy;,(z2) is defined by
Giio(2) = [(z — H,) Yy (2.59)

Here (H,);; is the one-electron Hamiltonian matrix for the AA Hamiltonian minus chemical po-
tential p.

In the CPA, we replace the random potential at the surrounding sites with an energy-dependent
coherent potential 3, (z) . The on-site impurity Green function G;;,(z) is then obtained as follows:

1
Fo(2) ' =€ + 2o(2)

Here ¢;, = €9 — it + Un;_,. F,(2) is the on-site Green function for the coherent system in which
all the random potentials have been replaced by the coherent potentials.

B p(e)de
F(2) = /—Z S (2.61)

Note that p(e€) is the DOS per site per spin for the non-interacting system. The coherent potential
Y5 (2) is determined from the self-consistent condition:

Giio’(z) = (260)

GOOU(Z) = Fo(’Z)' (262)

The configurational average of the impurity Green function is given as

(i—o)an 1 —(Ni_o)an
Folz) ' —e+pu—U+%,(2) Fy2) ' —e+p+2.(2)
The ground state wavefunction ¢4 for the alloy-analogy Hamiltonian (2.54) provides us with a

good starting wave function for the strongly correlated electrons, though such a wavefunction
depends on electron configuration {n;,} via atomic potentials.

GOOU‘(Z) =

(2.63)

2.5.4 MLA with hybrid wavefunction

We can improve the MLA correlated wavefunction using the best starting wavefunction. The
Hartree-Fock (HF) wavefunction |¢ur) (=|¢) ) works best in the weakly correlated region. In the
strongly correlated region the alloy-analogy (AA) wavefunction | ) works better. Therefore we
introduce a hybrid (HB) wavefunction |¢pg) which is the ground state of a hybrid Hamiltonian
Hyg. The Hamiltonian is defined by a linear combination of the HF and AA Hamiltonians [49]:

Hyp = Z(U(nz;o)HB + 0ni—g)ﬁia + Z tija;rgajcr
i ijo
— (U =0) Y (iur)upliu)ue — U (n (fug)um + 1y (i) u)- (2.64)

[ 7
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Here (~)up denotes the HB average (¢ug|(~)|éus), U = (1—w)U, and U = wU. w is the weight
in the linear combination; Hyg = (1 — w)Hur + wHaa, where Hyp denotes the Hartree-Fock
Hamiltonian. Hyp reduces to the HF (AA) Hamiltonian when w = 0 (w = 1).

The new MLA with the HB wavefunction is given by

W) = [H(l - Oi)} |buB)- (2.65)
The local operators {O;} have been modified as follows:
Oi=" D (Wi (ilm)(R510) (ilk2) gy O (aly @y )0 (aly ayy) - (2.66)
k1K) K2k

Here 1), 4,1 5,18 @ variational parameter, al, and a,, are the creation and annihilation operators
which diagonalize the Hamlltoman Hygp (2 64), and (k|i) are overlap integrals defined by a,, =
S, aip (k|i). Furthermore §(a', a.0) = al, axo — (al,, dwe)us.

The ground state energy £ again satisfies the following inequality for any wavefunction | ).

Eo < (H)ug + Ne.. (2.67)

The correlation energy per atom e, in the single-site approximation (SSA) is obtained as follows.

1+ (0JO0:)
Here = H — (H)up o o o
The energy elements (HO,) . ,(O H O;)yp- and (O] O;)yp are given by
(HOiup =U D K& 1) PIkali) P15 1) Pkl 0) Phegant oo Fteant (2.69)
K151H2K2
(OIHO) = Y sy I{mald) PI(k5 ) [* (ol )
X n:éﬁgli'lm ffiéﬁzﬁﬁfil [AEH’ann’lm1nm’2f€2fi’1H1
+ U{ D sl Pl P f (Frat) £ (Bcas iyt
K3K4
= D WRSIDPI{RalD) P — f ) f ot etantyrs
531@1
= > sl PRI P F Frat) (L= F () My
K3k}
+ DG PP = FEgt) (= fCoemaryes |- 270)
R5K)
(Of0Nup =D KR PIsa | Pk 1) Pl i) 1agant oo [ Fgmas (2.71)
K1k Kak)
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Here fipont v, 18 the Fermi factor; foreonr ey = f(€aip)(1 — f(€xr1)) f(Eant)(1 — f(Expy). Evo =
€xo— 4, €xo Deing the one-electron energy eigenvalue for Hyp. AEH/2 rar, k1 = Erhl —Enpl TERIT—Erpt
denotes the two-particle excitation energy from the ground state |¢pyp).

From the stationary condition de. = 0, we obtain the self-consistent equations for {77,42,@,41 w1 b
and again obtain an approximate form variational parameters

un

AEngngﬁ’lm — €¢

Nty o,y (71, €c) (2.72)

Substituting the above expression into (HO;)yp (Ol H Oy) g and (O} O;)yp» We have the
forms such as (HO;) g = (O H)yy = AU?R, (OIHO:)yy = BU?7, and (0] 0;)yy = CUiP.
Minimizing the energy €. with respect to 7), we obtain

—B+ VB2 +4A2CU?

N = — 2.73
! 2ACU? &7
The total energy should be obtained by taking the configurational average as
(H) = (H)yg + Ne.. (2.74)
The HB ground state energy is given by
L 0
(H)yp = np + Z/ €pio(€)de
— (U = U) {7 (g yum — U (nag sy ) g + nay i) ). (2.75)

Here p;,(¢€) is the local density of states (LDOS). It is obtained from the one-electron Green func-
tion

Pio(€) = —%ImGiw(z), (2.76)

and the Green function G;,(2) is defined by Eq. (2.59), in which H, has been replaced by the
one-electron Hamiltonian matrix for the HB Hamiltonian (2.64); (H,);; = (eo — 1+ U({fi—o)un +
Un;_y)0i; + t;j(1 — 0;;). The average electron number (7;,)yp is given by the LDOS as

(i Vs = / F(€)pin (€)de. 2.77)

Since the HB Hamiltonian contains a random potential and the energy EHB is given by the
LDOS, we can calculate the ground state energy by means of the alloy-analogy approximation,
(i.e., the CPA) as explained in the last subsection. In the CPA, we replace the random potentials
at the surrounding sites with a coherent potential ¥, (z). The on-site impurity Green function is
obtained as follows:

1
Giia(z) =

Fo(2)™ — e+ p— Ulfi_o)u — Uni_y + Zg(z)'

(2.78)

Here F,(2) is the coherent Green function given by Eq. (2.61).
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The self-consistent condition to determine the coherent potential ¥, (z) is given by Eq. (2.62).
However, G;;,(z) for the HB potential fully depends on the 4 local configurations « = (n;y, n;) via
the Hartree-Fock type potential U (7;_,)yp in the denominator. Thus the configurational average
of G, is given by

Goooe = PaG,(2). (2.79)

Here P, is the probability when taking a configuration o.. Note that instead of the configurations
a =00, 10, 01, 11, one can make use of an alternative notation v = 0 (empty on a site), 1 T
(occupied by an electron with spint), 1 [(occupied by an electron with spin |), and 2 (occupied
by 2 electrons). In this notation, we can express P, as Iy, Py, P, and P,. The impurity Green
functions G, (z) are given as follows:

1

GR (2) = _ , 2.80
Goor(2) = L - : (2.81)
FU(Z)_I — €9 + om— U<TL¢>1() + 20(2)
Gooy(2) = L - : (2.82)
Fo(z) ™' —eo+p— U(fr)10 — U + 25 (2)
01 1
Goor(2) = — — = , (2.83)
FJ(Z) —60+M—U<n¢>01 —U+EU(Z)
Gio,(2) = — , (2.84)
Fo(2)7! — e+ = Ulig)or + o (2)
Gion(2) = ! . : (2.85)
0ot Fy(2) " —eo+ p— Ul g)s — U + So(2)
and the electron number for a given configuration in the denominators is given by
(o = [ £ 286
(03 1 (63
pa(e) = —;ImGOOJ(z). (2.87)

The above expressions mean that the electron numbers (7, ), have to be solved self-consistently
for a given configuration with probabilities { P, } and for an effective medium >3, (z). The latter is
obtained from the CPA Eq. (2.62).

The third and last terms at the rhs of Eq. (2.75) are calculated in the SSA as follows:

(iryusnins = Y Palfit)a(fiy)a; (2.88)

«
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D i (hi—ghus = Y > Pand(i_o)a. (2.89)

Here n? =0, 1,0,1 and nf= 0,0, 1,1 for a= 00, 10, 01, 11, respectively.

The on-site probability satisfies the sum rule /) + P4+ + Py + P»= 1, and the probability of
finding an electron with spin 1 ( |) on a site is given by Py) = Py + FP». Therefore, Py, Py,
and P, are given by the probability / in the paramagnetic state.

An approximate form of P, for the hybrid wavefunction is derived as follows. We have two
kinds of approximate expressions for the operator n47, according to the alloy-analogy (AA) and
Hartree-Fock (HF) approximation.

TAlTﬁi ~ TLTf% + nﬁu —nyny (AA), (290)

iy ~ gy us + 1y (Ay)us — (Mp)us(ny)us  (HF). (2.91)

In the HB scheme, we superpose the above expressions with the weights w and 1 — w, respectively.
Taking the quantum mechanical and configurational average, we obtain an approximate form of
P5(= (n4ny)). Then, we have the term w(nsn,) + (1 — w)(n+)up(n)up at the rhs, which may be
again regarded as the probability P, in the HB scheme. Thus we obtain an approximate form of P,
as follows:

1

Py = Sw(ng(i)us + ny (i) + (1= w) (i) (7). (2.92)

Since the rhs of Eq. (2.92) is given by Egs. (2.88) and (2.89), we can self-consistently obtain the
probabilities { P, }.
Finally, the correlation energy €, is obtain as

=) Patea. (2.93)

Here €., denotes the correlation energy for a given on-site configuration a.
—@ZEUHB — <]~{él>HB + <O~jﬁél>HB
1+ (0]O0;)yp @

(2.94)

GCQ

The quantities (]:I Oi>HB, <Oj H Oi>HB, and <O:r O~,~>HB are expressed by the LDOS for the HB
Hamiltonian, therefore the correlation energy €., is obtained from the LDOS p%(¢) in the single-
site CPA.

The double occupation number is obtained from 0(H ) /OU. Making use of the SSA, we obtain

(i) = (Ap)up (R as + (Ryfy) .. (2.95)

Here (724)up (7, )up has been obtained in Eq. (2.88), and the correlation correction (747, is given
by

(irny), = Palfgity)ea. (2.96)
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Here (747 )cq is the correlation correction for a given configuration «, and is given by Eq. (2.53)
in which the operator O; has been replaced by Eq. (2.66) and the average (~) has been replaced

by (~)us.
The momentum distribution (ny,) is obtained from 0(H)/J(e, — oh) as follows:

<nka> = <nko>HB + <nkcr>c- (297)

Here (14, )y is the momentum distribution in the hybrid state.

<nlm>HB = [ f(€)pro(€)de, (2.98)

1
pka(ﬁ) == ——Ikag. (299)
™

The Green function in the momentum representation is given in the CPA as follows:

1
Fro = . 2.100
ho = Yo(2) — € ( )
Here ¢, is the eigenvalue of ¢;; with momentum £.
The correlation correction (ny,), is given as follows:
<nk0>c = Z Pa<nk0>ca' (2101)

Here (nk,)cq is the correlation cogrection for the configuration o, and is given by the second term
at the rhs of Eq. (2.50) in which O; has been replaced by Eq. (2.66) and the average (~) has been
replaced by (~)pyg.

2.5.5 Numerical results of MLLA with hybrid wavefunction

The MLA with HB wavefunction improves further for the description of electron correlations in
the strongly correlated region. One can verify the fact by means of some numerical calculations in
infinite dimensions. The ground state energy in the MLA-HB was obtained by varying w from 0
to 1 for each value of U. Figure 2.5 shows the ground state energy obtained by various methods on
the hypercubic lattice in infinite dimensions at half-filling. The energy in the LA monotonically in-
creases with increasing Coulomb interaction energy and becomes positive beyond U = 3.4 because
it does not suppress sufficiently the double occupancy in the strongly correlated region.

The ground state energy in the GW is lower than that of the LA, and approaches zero at U,
(GW) = 4.51 with increasing Coulomb interaction. The Brinkman-Rice atomic state is realized
beyond U, (GW). The ground state energy of the MLA-HB is the lowest among three wavefunc-
tions over all Coulomb interactions U. Note that there is a cusp in the energy versus U curve at U,
(MLA) = 2.81. The Fermi-liquid ground state with w = 0 is obtained below U, (MLA), while the
disordered local moment solution with infinitesimal w is stabilized beyond U. (MLA) [49].

As shown in Fig. 2.6, the double occupation number (n4n,) in the GW linearly decreases with
increasing U according to Eq. (2.9). In the case of the LA, it monotonically decreases according
to Eq. (2.14). The double occupation number in the MLA-HB is lower than that in the LA and
GW in the weak Coulomb interaction regime and jumps from 0.106 to 0.045 at U. (MLA) = 2.81,
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Figure 2.5: The energy versus Coulomb interaction energy U curves in the MLA-HB (solid curve),
the GW (thin solid curve), and the LA (dotted curve) at half-filling (n = 1.0) (Ref. [49]).
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Figure 2.6: The double occupation (n+n;) number versus Coulomb interaction energy U curves in
the MLA-HB (solid curve), the GW (dotted curve), and the LA (dot-dashed curve) at half-filling
(n =1.0) (Ref. [49]).
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Figure 2.7: The momentum distribution as a function of energy ¢, for various Coulomb interaction
energy parameters U=1.0, 2.0, 2.81,4.0, and 5.0 at half-filling (n = 1.0) (Ref. [49]). The MLA: solid
curves, the LA: dashed curves.

indicating the metal-insulator transition. Beyond U, (MLA), it again monotonically decreases with
increasing U. Note that the double occupancy in the MLA-HB remains finite in the strong U
regime as it should be, while the GW gives the Brinkman-Rice atom, because the MLA takes into
account the electron hopping from the atomic state.

The momentum distribution in the MLA-HB has the same behavior as the MLA-HF in the
metallic region; it decreases monotonically with increasing energy €, and shows a jump at the
Fermi level, while it disappears beyond U. (MLA) as shown in Fig. 2.7. With further increase
of U, the curve becomes flatter. These results indicate that the MLA-HB improves upon the GW.
Note that the distributions in the GW are constant below and above the Fermi level irrespective of
U. The quasiparticle weight in the MLA-HB is the same as in the MLA-HF in the metallic region
(see Fig. 2.4). With the metal-insulator transition at U, (MLA) = 2.81, it disappears. The existence
of the first-order transition at U = U, is in agreement with the result of the NRG [67], though U.
in the NRG has not yet been published.
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Chapter 3

First-Principles Momentum Dependent
Local Ansatz Wavefunction

In the last chapter we discussed recent development of wavefunction method. Most of the
wavefunction methods do not reduce to the exact Rayleigh-Schrodinger perturbation theory in the
weak interaction limit. In this chapter we introduce the tight-binding LDA+U Hamiltonian, and
construct the first-principles momentum dependent local ansatz wavefunction (MLA). Within the
single-site approximation (SSA), we derive the correlation energy, the self-consistent equations for
variational parameters, and other physical quantities.

3.1 Tight-binding LDA+U Hamiltonian

We consider the transition-metal system with an atom in the unit cell for simplicity, and adopt
the first-principles LDA+U Hamiltonian, which is based on the tight-binding linear muffin-tin
orbital method. [27,31]

H=H +H,. (3.1)

H, and H, denote the non-interacting and interacting parts of the Hamiltonian /. The former is
given by
Hy =) € fire+ Y b alp, a5, (3.2)
iLo iLjL o

Here e% is the atomic level of orbital L on site 4. ¢;7,,; is the transfer integral between L and jL'.
L = (I,m) denotes the s (I = 0), p(I = 1), and d (I = 2) orbitals. a!,_(a;.,) is the creation
(annihilation) operator for an electron on site ¢ with orbital L and spin o, and n;r, = ajLaai Lo 1S
the number operator. The atomic level eOL in H; is calculated from the LDA atomic level ¢, by
subtracting the double counting potential as e% = € — QEED A/Onirs. Here n;r, is the charge
density at the ground-state, £, is a LDA functional for the intra-atomic Coulomb interactions.

In the LDA+U Hamiltonian we assume that the sp electrons are well described by the LDA
in the band theory, and take into account only on-site Coulomb interactions between d (I = 2)
electrons, so that the interaction part H, in Eq. (3.1) is expressed as follows.

A 1 A . .
Hy = Z [Z Umm Nilmt Nilm] + <Umm’ B EJmm/> Mitm Mitm? — 2 Z S Sitm * Sitm | -
7 m (m,m’) (m,m’)

(3.3)
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Here U, (U ) and Jy,,, denote the intra-orbital (inter-orbital) Coulomb and exchange in-
teractions between d electrons, respectively. 7, (8i,) With [ = 2 is the charge (spin) den-
sity operator for d electrons on site ¢ and orbital m. The operator §;; is defined as §;;, =
PO ajm(a)w/ a;r~ /2. o denotes the Pauli spin matrices.

We note that the charge and spin fluctuations are defined as follows.

ONitmtONitm), = MitmtNitmy — (Mitmt)0Mitmy — (Mitm)0Mitmt + (Nitmt) 0 (Mitmy )0, (3.4)
OMNitm Oty = Titm Mt — (Mt )0Mitm: — (Mt )0itm + (Mitm) 0 (Mitm? 0, (3.5)
08itm * 08itm: = Sitm - Sitmy — (Sitm)0 * Sitmy — (Sitm’)0 * Sitm + (Sitm)0 * (Sitm?)o- (3.6)

Here § A for an operator A is defined by 04 = A — (A)q, (~)o being the average in the Hartree-
Fock approximation. Using the above relations, we can rewrite the Hamiltonian / as the sum of
the Hartree-Fock Hamiltonian H, and the residual interactions Hj.

H = H,+ Hj. 3.7

The Hartree-Fock Hamiltonian H is obtained as

HO = Z <€?L + |:Umm<nilmfa>0 + Z (Umm’ - %Jmm’)<nilm>0

iLo m'#m
1 .
5 Z S <milm’>00] 5ld> NiLe + Z tiLjL’a;[Lg a1/ o
m/#m iLjL'c
- Z Umm nzme nzdmi 0 — Z Z - )<nidm>0<nidm>0

+QZ Z Jmm szlm : <3ilm’>0 . (38)

The last three parts are known as the double counting (d.c.) terms.
The residual interaction H is given by

Hy = Z [ZULL ZLL + Z ULL’ zLL’ + Z ULL’ Ogy} : (3.9)

i (L,L') (L,L')

The first term denotes the intra-orbital interactions, the second term is the inter-orbital charge-

charge interactions, and the third term expresses the inter-orbital spin-spin interactions, respec-
tively. The Coulomb interaction energy parameters U 62, are defined by U161 (o = 0), Upp —
Jrr /2 (a = 1), and —2Jp1 (o = 2), respectively. The two-particle operators OZ 17 O&)L,, and

OE?L’ are defined by

O = SRt ity (3.10)
0, = Shitm ity (3.11)
Oz'(L)L’ = 08itm * 08ty - (3.12)
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3.2 Wavefunction in the weak Coulomb interaction limit

We clarify here the exact form of the wavefunction in the weak Coulomb interaction limit on
the basis of the Rayleigh-Schrodinger perturbation theory.
The eigen-value equation for the ground-state is given by

H|U) = E|U). (3.13)

The Hamiltonian H is expressed as the sum of the Hartree-Fock Hamiltonian H and the residual
interaction Hj.

H = Hy+ Hi. (3.14)

The zeroth-order Hartree-Fock eigenvalues and the eigenfunctions are obtained from the eigen-
value equation as follows.

Hol¢n) = EL ). (3.15)
The energy eigen-value BV is given by

EQ =" eroinne — de. (3.16)

vko

Here ¢y, is the Hartree-Fock one electron energy eigenvalue with momentum £, band index v, and
spin o. The second term ‘d.c.” at the rhs of Eq. (3.16) denotes the Hartree-Fock double counting
term as found in Eq. (3.8). The wavefunction |¢,,) is given by

90) = | TTtal, 0] | TTtal, ) 10). (3.17)

kv kv

Here we assume that |¢) is the ground state of Hj, and E(()O) is the Hartree-Fock ground-state
energy.

According to the Rayleigh-Schrodinger perturbation theory for the nondegenerate ground-state,
the wavefunction is given as follows.

(W) = [o) + [¢1) +
<¢n|HI|¢O>

= o) = Y |on) (3.18)
n#0 qu )~ Eé )
The ground-state energy is obtained as
E=EQ+E® 4
= By + (G0l Hildo) + -+ (3.19)
The zeroth-order energy is given by
Z €vko — Z Umm nzme nzdm¢>
kvo
- Z Z mm/ mm )<nzdm nzdm 0 + 2 Z Z Jmm zlm : <S7le’>0- (320)
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The first-order correction vanishes as follows.

E® = (¢o|H|¢o)
_ Z [ZUS’L Do+ ST UL 0PN +2 3 U (0%,0] =0, 321

(L,L") (L,L")

. 0 1 2
since (O[71)o = (Oipy/o = (Ofz1)o = 0.
The first-order correction to the wavefunction is expressed as

1
) = lim > _ - 50 0] GelHildo). (3.22)
- O

n;éO

Because (¢o|H|¢o) = 0, Eq. (3.22) is expressed as follows.

) 1
1) = i = Hiloo) (3.23)
Here I:IO = H() — <H>0

Now assume that {x;z ()} is an orthogonal basis set consisting of the local orbitals with L on
site 7 and {¢no ()} are the Hartree-Fock one-electron energy eigenfunction with momentum £,
band index n, and spin o. The field operator ¢, () is then expressed as follows

SDU(T) - Z aiLoXiL(r) - Z akno¢kna(r)~ (324)
L kn

Here ay,,, is the annihilation operator for the electron with momentum £k, band index n, and spin
o. They are defined as

Uno = Y _ iro(knliL),, (3.25)
oL
Vkno (7 Z X (P) (iL|kn),, (3.26)
and
1 )
(iL|kn)y = Upne (k) ——=e *Hi, (3.27)

VN

Here uy,. (k) is the eigen vector at a given k point. We also assumed one atom per unit cell for
simplicity.

Using the relations (3.25), the intra-orbital, inter-orbital charge-charge and inter-orbital spin-
spin operator are expressed in the momentum representation as follows.

Oz(LL 5nzme5nzdmi
= > (Kt i)y (iL |k ) (Ron|iL) (i L|kans),
{kn}
X §<a2’2n’2¢ak2n2¢)5(a]];’1n’11~akmﬁ)7 (328)
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O\ = SftiamOiam
= > (Kt [il")o (il [kina ) o (kynb|i L) or (i L kyna)or
{kno}

X 5(a,t,2n,20,ak2n20/)5(@2,171,10%1”10), (3.29)

(2 _ sa 4
OiLL’ - 5Sidm : 53idm’

= > (Kini il ) (i |kym o (K i L) g (i L | kang) o
{kno}
1

X Z(a)w,(a)o,,,g,,(5(a;2n/20,,,ak2nw,,)5(a;1n,1 i) (3.30)

Note that the last part of the rhs of the above equation is written as

(U)aa/ : (0-)0'”/0'”5<a1];:/2n/20.///ak2n20'”)5<a1];;/1n/10-/ aklnlo')

1
_ T T
= 550/T(50¢50//,¢50/,T5(akénéiakwﬁ)5(ak,1n,1¢ak1m¢)

1
4

1
+ 550’¢50T50/”T50”J,5(alt;’zn’ﬁakznﬂ)5 (G%makmli)

1
+ ZLO-O’”(S(QL,Q”IQU”&]QTLZUN )5(a2;/1n/10-ak‘1n10') . (33 1)

Substituting Eq. (3.31) into Eq. (3.30), we obtain
Off = D (KL Yor (L) o (kgriy i L) (L | yma) o

{kno}
1

T T
X 5 [50/T50¢60”’¢60”T6<akén’2¢ak2"2T)5(ak’ln’liakml?)
T T
+ 50.%50—1\50///1\50/%5(ak,Zn,QTakzan/)(S(ak,ln,lTaklnN()

1
+ 5O'O-”(S(azénéouak;gnzo"’)5(012/1”/10-0%17110) . (332)

Substituting Eq. (3.9) with Egs. (3.28), (3.29), and (3.32) into Eq. (3.23), and using Egs. (3.16)
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and (3.20), we obtain the first-order correction of the wavefunction as follows.
) = [Z D (KA [iL) s (GL kvna ) (Kynsli L) (L | kans),
i L {kn}
X Mikgngkanakn ki Ol o | Whana )6(@hs s @ringt) o)

+ Y DO (B L) o (L ki) o (Kynh|i LYor (iL|kana) o

(L,L") {kn} oo’
T i
X CLL’k’ L nlkanak!n! klm5(ak’nég’akﬂmU')5(ak'1n’10ak1n10)|¢0>

-y ¥ [ (K |iL Y (L |y ) (Kl i L)y (L Koma)s
(L,L') {kn}
+
X g(LL)’k’Qn’ngan’ln’lklm6(alién’2¢ak2nﬁ)5(alt;’ln’17*ak1n1¢)|¢0>
+ (kynq[iL") (iL ki) (konali L)1 (iL] kana),
X fLL/k/ angnzk’ln’lklnl5(azgn’2Tak2n2¢)5(a2/1n'1¢ak1mT) o)

+ 3 Z oo (Kin[iL"), (iL'|kiny) o (Konb i L) g (i L|kong ) or

o.o.//

(o"0) i i
X é'LL/’C/ kQ’an/l’l’L/lklnl 6(akl2’n/20'” aanQU”)(s(akinllgaklnlg) ‘ ¢0>] i| : (3'33)

(o'o)

(+)
Here the momentum_dependent parameters 77Lk/ pkanakinikini CLL’k’ skanokiniking’ £LL’k/2n/2k2n2 kiniking?

o'o)
gLL’ankanzk’ln’lklm and £LL/1~:' { kanakln ki, Ar€ defined as follows
UL
nLk’zn’kangk’ln’lklnl = (334)

2 = €yt + €kanal — kit t Epngt

(o'0) B (Upp — Jor/2) (3.35)
LL/kI ! k k/ /k i 3 .
oMoK2N2K N K1N1 z — EkénIQU + €kongo — Ekllnllgl + €kinqio’
3 —Ji (3.36)
LL/kIQn/QanQk/lnaklnl o z — Ek’n’i —|— EkQTLQT Ek/ /T —|— 6k1n1¢ .
¢ i (3.37)
LL'Kynykonokin kiny — 5 _ _ ) .
ZremEEh Z = €kynht T €kanal — ERnfL T €kingt
) _ —Jrr
éLL’l~c’anQngl<: infiking . (338)

Z — Gkénéa’ + €kongo! — ek’ln’la + €kinio

We have dropped the Fermi factor f(€x,ny0,)(1— f(€xtnt o1 ) f (€kznzon ) (1 — f(€xynyoy)) in the above
expressions because it is included in the states {J (azgn;agakm@)‘s (aL,1 ot ki )| o) }-
We can simplify the first-order correction of the wavefunction (3.33) as follows

1) = Z ZOM + 3 O+ Y OF))e0). (3.39)

(L,L') (L,L")

30



Here the local operators oY N OZ% 7> and O(i 1, are defined as follows.
Oz(g)/: = Z<kin/1|iL>T<iL|k1n1>T<kén/2|iL>¢<iL|k2n2>¢
{kn}
X nLk’Qn’gszk’ln’lkml5(az'2n/2¢ak2n2¢)5(a2'1n'1¢ak1nﬂ)> (3.40)

zLL’ ZZ (ki |iL) o (PL' |kyna) o (Kynn|i L) or (i Ll kang) o
{kn} oo’
T T
X CLL’k’Zn’ngngkin’lklnl5(ak’2n’20’a’k2n20,)5(a’k’ln’10ak1n10)7 (3'41)
and
Oy = | S (Kini i ) L ) (Kb i L) i L )y
{kn}
T T
X SLL’k2n2k2n2k’ n1k1n15(ak’2n’2¢ak2n2T)6(ak’1n’1'rak1n1¢)
+ (Kiny [iL") (0L kina )4 (kgnoliL)4 (1Ll kana)
- T T
X gLL’k’Qn’Qangk’ln'lklnl5(ak’2n/2Tak2n2i)5(ak/ln/1¢ak1n1T)

1
+3 Z oo’ (Kin{[iL"), (iL'|kinq) o (kKynh i L) or (i Lkonsg) o
é-LUL’OI—C)/ kgngkllnllklnl5(a11;’2n/20-’ak2n20'/)6<a23n/10ak1n10> . (342)

3.3 First-principles momentum dependent local ansatz wave-
function

The local operators OEE)L Of?L, and Oz(?y produce the Hilbert space in the weak Coulomb
interaction limit. We generalize these correlators as

Oy = > (KynbliL) oy (iL|kana) oy (R0 L Yo (iL |17 ),
{kno}

() t 1
X ALpqora1n} 5(%/271/25; i) 5(%/1"/101 ynyon) - (3.43)
Here o denotes the three types of operators o =0, 1, and 2. aLna(aan) is the creation (annihilation)

operator for an electron with momentum k, band index n, and spin o.
The momentum dependent amplitudes )\(LO{L), in Eq. (3.43) are given by

{2211}

A(O) — 10 ! ol (5 6/6 (5/5 (344)
LL'{2/21'1} —nLk2n2k2n2k1n1k1n1 LL' Ygl] Yool Vo1t Vo171 .
(1) _ (o201)

/\LL’{2’21’1} = SLL/KynGkonokn/ kina Oy Oy 5 (3.45)

LL’{2’21/1} § :5LL'k’2n;k2n2k' ) kiny Oy~ 0020 ot Vg1 —0

+ Loi0y £02) P (3.46)
99192 SLLkyny kanok ny kimy o502 Ooton - :
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Here {2211} is defined by {2'21'1}=kin}0lkonqoak) nlalkmlal Now the amplitudes
, C 0'201) 5( ) andé— C72671
nLk2n2k2n2k nikini» LL'kynbkonokin | kiny> SLL'kinhkonakin) kiny’ LL'kynbkonakin] kiny
the momentum dependent variational parameters to be determlned
By making use of the local operators Ol 1 O(L 1, and Ol 71> We can construct a local ansatz

wavefunction with momentum dependent variational parameters.

[Wnira) = [H (1- ZOM > 00 = >0 05L)] 1o (3.47)

(L,L') (L,I')

are regarded as

The two-particle correlators Oig (n Og)y’ and Oi 11 describe the intra-orbital correlations, the inter-
orbital charge-charge correlations, and the inter-orbital spin-spin correlations (, ¢.e., the Hund-rule
correlations), respectively. Note that the momentum-dependent local ansatz (MLA) wavefunction
|Wnppa) reduces to the LA |Wp ) when the variational parameters {)\ L 2/21,1}} are taken to be
momentum-independent.

3.4 Ground state energy in the single-site approximation

The energy expectation values for the MLA wavefunction can be obtained analytically within
the single-site approximation (SSA). The correlation energy for the MLA wavefunction is given
by.

(Unia | Yaea) By

Here H = H — (H)o. Ay and By are defined as follows:

o {[mme-en] e

> : (3.49)

i A 0

<[ 1 - oT > . (3.50)
0

ZQLL + ) O\ + > O, (3.51)
L

(L,L") (L,L")

(3.48)

The operator O; is defined by

Expanding By with respect to site 1, we obtain
1 ~
1 (1-0)
1 ~ 1 ~

H(l) (1 _ Oj)

i

By = B, <0T
+ <OI

O

)

H(l) (1 _ Oi)

i

O1

> : (3.52)
0
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and

o[-0

By, = < [H(l) (1-0})

> . (3.53)
0

Here the product Hi(l) means the product with respect to all sites except site 1.

When we apply Wick’s theorem (see Appendix A) for the calculations of By, we neglect the
contractions between different sites. This is the single-site approximation, and then Eq. (3.52) is
expressed as

By = <(1 - O{) (1 - Ol) >0 BY . (3.54)

We adopt the same approximation for Ay. In this case, there are two-types of terms, the terms in
which the operator O, is contracted to H and the other terms in which H is contracted to the other
operators 0, (¢ # 1). We have then in the single-site approximation

Ay = <(1 - O{) i (1 - 01> >0 BY, + <<1 - O}) (1 - (31)>0 AD (3.55)

> . (3.56)
0

Successive application of the recursive relation Eq. (3.54) and Eq. (3.55) leads to the following
expressions.

and

= (|7 -

)

i [H(l) (1 - Oi>

)

Av=Y" <<1 - Oj) il (1 - O]) >0 BY . (3.57)

i

By = H<(1 -of) 1 —Oi)>0 = ((1-0}) (1 —O¢>>OB§QI. (3.58)

7

Taking the ratio Ay /By, we obtain the correlation energy in the SSA as follows.

_ O\ — <(1 - OT) ] (1 Oz)>
Ne. = (H) =) =00 G (3.59)

%

Assuming a site per unit cell and using the relation (O!) = (O;)o = 0, we obtain the correla-
tion energy per site as follows.

(3.60)

The Hamiltonian H is expressed by H = Hy + Hj. Since (O~
energy €. as follows.

(3.61)



This is the correlation energy per site in the SSA.
The elements in the correlation energy (3.61) are calculated with use of Wick’s theorem. They
are summarized as follows.

2/21'1

=3 N ST U Ay P ({2211)), (3.62)

ao! (LL'y (L"L"") {kno}

<O~iT}~IO~i>O = <O~iTﬁoOi>o + <O~iTHIO~i>O> (3.63)
< - 221’1 4’43’3
(Oi HoOi)o Z Z Z Z Z )‘LL’{2’21’1} L”L’”{4’43’3} QLL’L”L’”({2/21/1}{4/43/3}>7

(LLY (L1 {kno} {k'n/c’}

(3.64)

2/21'1 4'43'3

i Jo = Z Z Z Z Z >‘LL’ {27211} L”L”’{4’43'3} Ry L’L”L’”({Q 21'11{4'433}) ,

(LL) (L" L") {kno} {k'n’o’}

(3.65)

2/21'1 4'43'3

0:7000=3"3" 3 3 3 A A sy S e ({2201} {4'43'3})

ao’ (LL')y (L L") {kno} {k'n'c’}
(3.66)
Here the sum }_ ; ;, is defined by >, when L'=L, and by }_; ;,y when L'#L.
Q) L ({221'1}{4/43'3}), S%9), ., ({2'21'1}{4/43'3}), and P35, ., ({2'21'1}) are obtained
with use of Wick’s theorem as follows.
£ b ((22111{443'3))
— (LR} (kaali LYo (L K50 ) s L)
X (kynygliL")or (iL" | kana) o, (kans|iL" ) o1 (0L | k3niz) o
X AE({kynyobkansookinyoikinioi})
X (0140930174023 — 0140930173024 + 0130940173/ 02747 — 0130246174 0r31)
X <nk1n1a'1>0(1 - <nk’1n’10’1>0)<nk2n202>0(1 - <nk’2n’205>0>7 (367)

Sy Do ({2211}{4'43'3})
= (KL oy L ), (Rl L") L ), 014046301
— (kony|iL")or (I [k1na) g, (Y0 [iL" ) o1 (P L | kgN2) 0y 0140173 O2302740
kynilil") s 1<iL,/’k2n2>oz<k nylil"” oh (11" |k1n1) 0y 0130174024013
Ky JiL" Yoy (i |y ry (R i L (i L”’|k1n1>0161351/3/52452/4/>
i L kyny) o1 (kana|i L) gy (1 L' k110 ) 1 (K11 [iL) 6,
Mynyos )o(1 = (Mng ot )0) (Mkanson )0 (1 = (Migngos o) 5 (3.68)

{ )
— )

+ )or
(i i
{

X
X
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Pé‘z?z%yw{z'm'l})
44’33’
=Y o J (Kyniy i LYy (i L kytia) o (R4n5 i Yoy (i L |3ni3)
{kno}
x (2402001301 — adawdyadia — SaudayOuadiur + DaadySrradi )
X (RGn5EL" )y (L1 kama)os (K [EL") o4 (UL [Rrmr) o,
X <nk‘1n101>0(1 - <nk,1n,10'1>0><nk2n202>0<1 - <nk’2n’20é>0) . (369)

The elements R Lach L),, 2 ({2/21'1}3{4'43'3}) in Eq. (3.65) are more complicated. They are ex-
pressed by

o (LiVLY)
Here

R ({2'21'1}{4'43'3})

LL/LlVLVL//L///
66’55’
= Z (kgnip|iL) gy (i Llkang)e, (kin[iL')or (i [k1n1)o,
{kno}
X (Kyny|iL") g1 (IL"[kana) o, (kgns|iL" ) o1 (11" | kaniz) o

T T (a”) T T
X <6<ak/2n/20_éak:2n20'2)5(ak/1n/10,iak:1n10'1) OLivLV 5(61%”210&ak4n4g4)5(akénégéak3n303) 0. (3,71)

The average at the rhs of Eq. (3.71) is again calculated by means of Wick’s theorem.
3.5 Self-consistent equation of variational parameters

The variational parameters 7’s, (’s, and &’s in the correlators {Ofg)L,} are obtained from the
variational principle for the ground-state energy £.

(H) = (H)o + Ne, > E. (3.72)

Here (H ), is the ground-state energy in the Hartree-Fock approximation (H)y = (Hp)o = E((]O),

and is given in Eq. (3.20). The correlation energy per atom ¢, is defined by Ne. = <I:I ) =

(H) — (H)o. N is the number of atoms, and (~) denotes the full average with respect to |Wyra ).
We obtain from Eq. (3.61) as

(1 + Z<O~ZTO~’L>O) o€, = [— Z<(5O~iT)ﬁ[>0 - Z<H5O~i>0
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Thus, the stationary condition de. = 0 yields the following equation.
—((6ONHy)o + ((601)HO,)o — €.((601)0i)o + c.c. = 0. (3.74)

Here c.c. denotes conjugate of complex of the first three terms. Using Egs. (3.62) - (3.66), the
above equation is expressed as follows.

4'43'3

Z Z Z [QLaLofL)NL/" ({221'1}{4'43'3})

O[/ L//L/H {kna}

St ({22013 {4433)) + 3 ST U R ({2211 {443 3})] o s

o (LI

= Z Z U[(/(’I’L”’ L%;lILLI({Q 21 1}) (375)
a/ L//L///
The explicit expressions of P35, L,//({Q’ 21'1}), Q1% L)u 1 ({2/21'1}{4'43'3}), and
SéL,L,,L,,,({Q 21'1}{4’43'3}) have been given in Egs. (3.67) ~ (3.69).

3.6 Various quantities in the first-principles MLA

In this section, we obtain the physical quantities such as electron number, charge fluctuation,
amplitude of local moment, and momentum distribution functions in the first-principles MLA.

3.6.1 Electron number

The Fermi level ep is determined from the conduction electron number 7, via the relation,
Ne = Z<TL,L> . (376)
L

The electron number of orbital L on site 7, (n;7,) is expressed as follows.
(nir) = (nir)o + (M) - (3.77)

Here the first term (n;;,)o denotes the Hartree-Fock electron number. The second term (72;;,) at the
rhs is the correlation correction.

We can derive the formula for the average of an operator A in the SSA taking the same steps
as in the correlation energy (3.61) as follows.

5 —(0;' A)g — (A0:)e + (0;' 40,y

(4) = 0 (3.78)
Using the formula, the correlation corrections is obtained in the SSA as follows
N —(O1 ;)0 — (.0:)0 + (Ol O;
(Rir) = (Oiftiz)o — { L~T>~° (OifiOido (3.79)
1+ (0;0;)o
Note that (7;,0;)o = (Of;1)% = 0. Thus
1.0,
(ir) = 07 Oido. (3.80)

1+ <O~ZTO~Z>0

We can also derive the same expression using the Feynman-Hellmann theorem (See Appendix B).

36



3.6.2 Charge fluctuations

The charge fluctuations is defined as
((0nia)?) = (nig) — (mia)”. (3.81)

Here n;y = ZdL nir. (n2,;) at the rhs of Eq. (3.81) is given as

d d
(n7)) = (nia) + 2Z<niLT “Niry) + 2 Z (i, - ). (3.82)
3 (L,L")

The terms (n;z+ - n;z;) and (n;g, - n;z/) are known as double occupation number and inter-orbital
charge-charge correlations, respectively.
Note that the operators O§2)L and OE?L, are given by Egs. (3.10) and (3.11):

Oz(g)L = (5niLT(5niL¢, (383)

O, = dnipénL. (3.84)

Here and hereafter we omit the hat of the operators for simplicity. Using the above expressions we
obtain the double occupation number as

(nimiry) = (OSL) + (Ra) (i )o + (nizr)o(iiny) + (nizr)olnizyo. (3.85)
Similarly, we obtain the inter-orbital charge-charge correlations as follows.
(niznin) = (O + (i) (nizo + (nis)o (i) + (niz)o(nizso. (3.86)
Substituting Egs. (3.85) and (3.86) into Eq. (3.82), we obtain the expression of (nfd> as

d d

(n2)) =(nia) +2> (O) +2 (firo) (fir—o)o

L Lo

d d
+ Z<5niLg>o<5niL—a>0 +2 Z <Oz(é)[/>
d d

+2 Z {(fin) (i )o + (nap)o(firs) b + 2 Z (nir)o{niz)o- (3.87)

(L,L) (L,L)

On the other hand, we obtain the term (n;4)? as follows
d
(nia)® =(fua)® + D (nis)s
L

+ 2 Z (nir)o(nir)o + 2 Z<ﬁiL><niL>0
(L,L) L

L.L
d d
+2 ) (i) (nin)o +2 Y (i) (nis)o. (3.88)
(L,L") (L,L")
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Substituting Eqs. (3.87) and (3.88) into Eq. (3.81), we obtain the charge fluctuations {(dn.4)?) as
follows.

d d

((0nia)*) = > _(niro)o(1 = (nizo)o) + > (iro) (1 — 2(nizs)o)

d
— (i) +2 Y _(0)+2 > (0, (3.89)

L (L,L")

We can also obtain the same expression using Feynman-Hellmann theorem. The derivation is given
in Appendix B.

According to the formula (3.78), we obtain the expression for <0§§)L/> for (= 0, 1) at the rhs
of Eq. (3.89) as follows

<O(a)>_—<6ﬁ0§?y>o—< < Oy + (0,030 (3.90)

«LL'/
Oi)o

3.6.3 Amplitude of local moment

The amplitude of local magnetic moment for d electrons is given by
= BZm +2 Z mip - M), (3.91)
(L,L')

Here the local magnetic moments for d electrons are defined by m;; = Z LMy = 2 Z . Sin- mip
is given by

M, = Ny — MLy (3.92)
Thus we obtain
(mi ) = (i) — 2(niraniry). (3.93)

Substituting Eq. (3.93) into Eq. (3.91), we obtain
d d d
m d> = 3Z<TL1L> — GZ(nimniLQ +2 Z <miL : miL/>. (394)
L L (L,L")
Since my;;, = 2s;1,, we can write Eq. (3.94) as
d d
= 3Z<77,ZL> — 6Z(nimniu + 8 Z S;L SzL/ (395)
L L (L,L')

Using the operator Og)L, is given by Eq. (3.12):

02, = bdsip - 681, (3.96)
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we obtain the inter-orbital spin-spin interaction as follows.
1
(siz - si) = (O7) + 7 (@mie) (misr)o + (FmawYmac)o + (mi)o(micdo).  (B.97)

Substituting Eqs. (3.85) and (3.97) into Eq. (3.95), we obtain the expression of (m?,) as

32 (5n1L nlL )
-6 Z{<0§2>L> # S i) iz + 5 D {molos-o}

+8 Z {07 <5mzL><mzL’>o + (0mir)(mir)o + (mar)o(mir)o) . (3.98)

(L,L")

Using the relations (m;) = > o(n;1,) and (S?) = (m3,)/4, we obtain the expression of (S?)
from Eq. (3.98) as follows.

d

(8%) =2 3" (nrodoll — {masa)o) + }:nmg 2(nito)o)

Lo
—~ —Z D) +2 Z 02 ). (3.99)
(L,L")

We can calculate the average <OZ. 7 L,) (o =0, 2) at the rhs of Eq. (3.99) using the formula (3.90).
We can obtain the same expression of the amplitude (S?) using the Feynman-Hellmann theorem.
The derivation is given in Appendix B.

3.6.4 Momentum distribution function

The momentum distribution function (MDF) is expressed as follows.

(Neno) = (Mkno)o + (Meno)- (3.100)

Here the first term (ny,, ) denotes the Hartree-Fock electron number. The second term (74, ) at
the rhs is the correlation correction of the MDF.
We can obtain the expression of (7, ) according to the formula (3.78) in the SSA.

_N<Ojﬁkna>0 - N<ﬁkn0'0 >0 + N<O nkn0'01>0

Nkno) = (3.101)
i) 1+ (010;)0
Since <ﬁkm(§i) = 0, the above expression reduces as follows.
N (Ot O
(o) = < s Do Jo (3.102)
Finally we obtain the expression of the MDF from Eqgs. (3.100) and (3.102) as follows.
N OT~ no’éi
(Nkno) = (Mkno)o + Oit >°. (3.103)

1+ (010y)
We can also derive the same expression of the MDF using the Feynman-Hellmann theorem. The
derivation is given in Appendix B.
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Chapter 4

First-Principles MLA in the Weak Coulomb
Interaction Regime

In last chapter we constructed the MLA wavefunction on the basis of TB-LDA+U Hamilto-
nian, and derived the self-consistent equations for momentum-dependent variational parameters.
In this chapter, we introduce the lowest-order variational treatments of the MLA solving the self-
consistent equations in the weak Coulomb interaction regime, and present the numerical results
of correlation energy, charge fluctuations, formation of atomic magnetic moment as well as the
momentum distribution function as a function of Coulomb interaction strength [71].

4.1 Variational parameters in the weak Coulomb interaction
regime

We obtained the self-consistent equation (3.75) from the stationary condition de. = 0 in Sec
3.5:

4'43'3

SO > @l (2 {aass))

o (L"L"Y {kno}

e SEE D ({22011 44331) + > Y UL RS L ({2/2111{4/43 3})] @ (a3}

// <LL/>

=" N Ul PE ({2211}, 4.1)

Oél L//L///

In the weak Coulomb interaction limit, the third term at the lhs of the self-consistent equation

(4.1) can be neglected because it is higher order in {U éoi)/}. Equation (4.1) is then expressed as
follows.

4'43'3

>3 Y [l q2eraassy)

a/ L//L/H {kno}

— €0 Sy {22V LHAA ) | NS iy = D O Uik Phpory({221'1}) . (4.2)

CM’ L//L///
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Substituting Egs. (3.67) ~ (3.69) into Eq. (4.2), we obtain
Z Z <AE({kénéaék2n202k'1n’103k1n101}) - ec>
o (LI
X R ) oy L o (R li L") L 22 A 12
— (RGBliL") oy (L k), (R EL" Yo L | N 1)
— (KA ALY oy (1L |kamin) oy (K55 i L")y (LL" K121 )y NS L1y

A (Ryn i L") oy (i L |kana) oy (Km0 [i L") ot (GL"|kyny) o A

LML {2/21/1}
=3 N UL GL e (bl L (L Ry, [ L
of (LML
— Ol 1oy (UL k), (R [EL" oy L Ky ), (K i L")
- 0(5?2502[,, (L [frnn) o, (R5nbliL" o i ko) oy (R [L"
+nglga<L”|k1n1> (K [iL") or (L | kgng) o (Kynin|iL" ) or | . (4.3)

Here AEkénIQ ohkanaoakn, o\ kim0 18 the two-particle excitation energy defined by

_ ()
A By w08 kansoaki ol kinior = Eknbol, — €kangon + Ekinlot — €kinyoy- Cag%alo; is defined by

0044 0054 0011 00yt (= 0)
SRR S (a=1) (4.4)

02050107 .

Z(U)olai ) (0')0205 (a = 2) .

Using the expression of the overlap integral (iL|kn), = wurn.(k)e *¥Fi/\/N and defining
arr{2211) by

arp211} = Ungor (K2) ULnao, (K2) ULy or (R1) Um0y (K1) | (4.5)

we can simplify the self-consistent equation (4.3) as follows.

(@) (@)
Z Z (aLL’{2/21’1})\LL/{2/21/1} - aLL’{1/22’1})\LL’{1’22’1}
a (LL)

(a) (a)
- aLL’{2’11’2})‘LL'{2/11'2} + aLL’{l’12’2})‘LL'{1/12'2}>

-1
— Z Z (AE ({kynyoskonaoakini ol kinior}) — 66)

a (LL')
% U(a O(Oé) a N C(a) a
LL 0-20-50-10—1 LL/{2/21/1} 0.20_/10_10_/2 LL/{1/22/1}
-, (ALp{2112} + ol /aLL’{1’12’2}) . (4.6)

0105020 010 020

Then, we find the following solution by inspection.

o, Uy

020201 (71

Y e— , 4.7)
kinholkonoookinlolkinior €c
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Using Egs. (3.44), (3.45), (3.46), (4.4), and (4.7), we obtain the variational parameters 7’s, (’s,
and £’s in the weak Coulomb interaction limit as follows.

Z-/LL
nhkonok! niking — ) .
NLE ! konok! n' k = 4.8)
279 1™
Ekén’zi €konal Ekin’lT €kinit €c

LL'k.nlkonok!nt king — ’ .
i N Ek"zn’Qo’ — €kongo + Ek’ln’lo’ — €kynio — €c

JLL’
é'gTL)’k’Qn’Qangk’ln'lklnl = ) (410)
Ek’znéfa — €kongo + ek’ln’la — €kini—o — €c
gloe) = Jiy 4.11)
LL’k’Qn/Qk:Qanlln’lklnl - ° M

€k/2n’20’ — €kongo + Ek/ln/la’ — €kinio — €c

We make use of these variational parameters for the calculations of the physical quantities in the
weak Coulomb interaction regime.

4.2 Various quantities in the weak Coulomb interaction regime

In the lowest-order approximation, we can neglect the higher order terms in physical quantities.
Then we obtain the correlation energy from Eq. (3.61) as follows.

~ T ~ ~ —'— ~ ~
€. = —<Ol HI>0 — <H[Oz>0 + <OZ H00i>0 . (412)
We can obtain the matrix elements (H;0;), and (ONiT}NIOOZ)o from the Hartree-Fock local density
of states using the Laplace transformations. The explicit expression of these matrix elements are
summarized in Appendix C.
The electron number is obtained from Eq. (3.77) as follows.

(nir) = (ni)o + (ML) - (4.13)

Here the first term denotes the Hartree-Fock electron number. The second terms is known as
correlation correction. We obtain the correlation corrections in the lowest-order approximation as
follows.

(i) = (O O3) - (4.14)

The expression with use of the Laplace transformation is given in Appendix C.
We obtain the charge fluctuations and the amplitude of local moment from Eqgs. (3.89) and
(3.99) as follows:

d

((0nia)) = Y _(nirodo(l = (Riro)o) + ) _(firo) (1 = 2(nizs)o)

d
— (a)® +2)_(Of) +2 D (Oifh) (4.15)

L (L,L")
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d 3 d

(S?) =2 Z<niLa>0(1 — (Niro)o) + 1 Z(fliLa>(1 —2(NiL—0)0)
Lo ; ; ; Lo
-3 ;<O§2)L> +2 (§)<O§?p> - (4.16)

The averages » (LL) (Ol(g)L,> in the lowest-order approximation are obtained from Eq. (3.90) as
follows.

a N Jf [0} a N N Jf fe% N
S TO5) ==Y (0,050 = > (05,000 + 3 (6,05, 0. (4.17)

(LL") (LL") (LL") (LL")

All the matrix elements at the rhs of the above equation are expressed with use of Laplace trans-
formation (2.39), and are summarized in Appendix C.

4.3 Numerical results of BCC Iron in the lowest order

Bcc iron shows a simple ferromagnetism. The band theory can explain the ground state mag-
netization. But the other physical properties such as the magnetic energy, the cohesive energy,
and low-temperature specific heat have not yet been quantitatively or even qualitatively explained
by the band theory. The band theory also cannot describe charge fluctuations, amplitude of local
moments, and the momentum distribution function.

In this section we examine the accuracy of the first-principles MLA in the lowest-order approx-
imation, comparing the numerical results for bcc Fe with those of the LA+d band theory as well as
the experimental data.

4.3.1 Hartree-Fock band structure and density of states Fe

We performed the Hartree-Fock band calculations for bce Fe in the paramagnetic state as the
first step to investigate the correlation effects using the first-principles MLA. We adopted the
orbital-independent Coulomb and exchange integrals with Uy, = Uy = 0.2749 Ry, Upp = Uy =
0.1426 Ry, and J;» = J=0.0662 Ry obtained by Anisimov et al. [25,27].

Figure 4.1: Crystal structure of bcc Fe.

The crystal structure of bcc Fe is shown in Fig. 4.1. The space group of bcc Fe is given
by I'm3m (229). We used the experimental value of the lattice parameter a=5.406476 a.u. The
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Figure 4.2: First Brillouin zone of bcc crystal structure.

Fe Hartree-Fock Bands
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-0.5 / >Q<§ ]
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Figure 4.3: Hartree-Fock one-electron energy bands of bcc Fe along the high-symmetry lines of
the first Brillouin zone.
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Figure 4.4: Hartree-Fock densities of states of bcc Fe. The s electrons: dotted curve, the p elec-
trons: dashed curve, the ¢, electrons: dot-dashed curve, and the e, electrons: solid curve. The
energy is measured from the Fermi level ep.

first Brillouin zone (BZ) of bcc crystal structure is shown in Fig. 4.2. We adopted the BZ mesh
24 x 24 x 24 for numerical k-point integrations. Furthermore [ = 3d, 4s, and 4p orbitals were
taken into account in the calculations. Solving the Hartree-Fock equations for the tight-binding
LDA+U Hamiltonian, we obtained the one-electron energy eigenvalues ¢y,,, for paramagnetic Fe.
Figure 4.3 shows the energy band curves along high-symmetry lines (I'-N-P-I'-H-N) in the first
Brillouin zone. The band structure for d electrons in the Hartree-Fock approximation is similar
to that obtained by the usual LDA band theory, though the former bands sink by 0.064 Ry as
compared with the latter. Note that the e, bands near the Fermi level along the (I'-N-P-I") line are
much narrower than the ?5, ones. The other sp bands are mostly far from the Fermi level ep, thus
the Fermi surface of Fe is mainly determined by the d-bands.

Calculated local densities of states (LDOS) are shown in Fig. 4.4. The sharp peak on the Fermi
level is created by the e, electrons, while the shoulder above the Fermi level and the second peak
around —0.2 Ry are created by the ¢, electrons.

4.3.2 Lowest-order results for bcc Fe

We obtained the variational parameters (4.8) ~ (4.11) in the lowest order (see Sec. 4.1 ). In
order to see a systematic change of the physical quantities of bcc Fe with increasing interaction
strength, we scaled Uy, Uy, and J as aUy, aU;, and «J using a scaling factor o from O to 1, and
performed the lowest-order calculations. Figure 4.5 shows the calculated correlation energy as a
function of al/y. With increasing al; (as well as al/; and aJ), we find that the correlation energy
€. monotonically decrease. We obtain ¢, = —0.0516 Ry for a = 1 (case of Fe) and U; = J = 0,
1.e., the correlation energy due to intra-orbital correlations. When we take into account the inter-
orbitals correlations (Uy, Uy, J # 0), the correlation energy €. decreases further and we obtain
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€. = —0.1101 Ry when o = 1. The inter-orbitals correlation energy gain is comparable to the
intra-orbital correlations energy.

--------------- (Ug-di2)=d=0  —rmemeees
~~~~~~~~~~ o ——
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Figure 4.5: The correlation energy €. as a function of Coulomb interaction strength aUj, for the
paramagnetic Fe. Dashed curve: the result without inter-orbital correlations (i.e., Uy — J/2 = J =
0), solid curve: the result with both the intra- and inter-orbital correlations.

The correlation energy gain is accompanied by the suppression of charge fluctuations. We
calculated the charge fluctuations for d electrons ((dn;q)%) = (n3;) — (n;qa)? as a function of aU.
As shown in Fig. 4.6, the charge fluctuation in the Hartree-Fock approximation is 2.2. The intra-
orbital correlations suppress the charge fluctuations and yields ((dn;q)?)=1.6 for all; = 0.27 Ry
for Fe. The inter-orbital correlations more rapidly decrease the charge fluctuation with increasing
aly as seen in Fig. 4.6. Calculated charge fluctuation is ((dn;4)?) & 1.21 for alU = 0.27 Ry. The
result is comparable to the value of the LA with the d-band model, {(dn;q)?) =~ 1.0 [21], but is
somewhat larger than that of the LA because the present theory takes into account the hybridization
between the d and sp electrons.

We calculated the amplitude of local moment (S?) as a function of alj as shown in Fig. 4.7.
We have (S?) = 1.65 for the Hartree-Fock uncorrelated electrons. The amplitudes of local moment
monotonically increase with increasing the Coulomb interaction strength oy, and we find (S?) ~
2.41 for alUy = 0.27 Ry (Fe) in the lowest-order calculations. The result is comparable to the value
of the LA with the d-band model [21], (S?) ~ 2.91, but is somewhat smaller than that of the LA
because the present theory takes into account the hybridization between the d and sp electrons.

The momentum distribution function (MDF) is obtained from the formula (3.103):

N<O~;‘fﬁknoéi>0

<nkno> = f(écncr) + (418)

Note that the first term at the rhs (right-hand-side) is the momentum distribution in the Hartree-
Fock approximation (1, )0, which is given by the Fermi distribution function at zero temperature
f(€kno) = 0(—€rno). Here 6 denotes the step function, and €, is the Hartree-Fock one-electron

46



| | ' (U di2)=d=0 | e

2.2 o(Uy-d12), ol -

2 i -

< 18r |
og.'g

Z 16 |

14 | |

1.2 | |

0 0.05 0.1 0.15 0.2 0.25 0.3

oy (Ry)

Figure 4.6: The charge fluctuation ((dn;4)?) vs Coulomb interaction strength alUj curve for the
paramagnetic Fe. Dashed curve: the result without inter-orbital correlations, solid curve: the result
with both the intra- and inter-orbital correlations.
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Figure 4.7: The amplitude of local moment (S?) vs Coulomb interaction strength ol curve for
the paramagnetic Fe. Dashed curve: the result without inter-orbital correlations, solid curve: the
result with both the intra- and inter-orbital correlations.
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Figure 4.8: The momentum distribution (ny,.) as a function of the energy €, for various scaling
factors « of the Coulomb and exchange energies. Dash line denotes the distribution in the Hartree-
Fock approximation.

energy measured from the Fermi level. The second term at the rhs of Eq. (4.18) describes the
correlation correction. The numerator is expressed by

d
N<Ojﬁkn00~z>0 = U[(,i)’qua) |: Z (BLL'(Eknd)‘uLnO'(k)P + BL’L(Ean)‘uL/na(k)P) f(_gkng)
(LL")
d
- Z (CLL/(EkTLO')|uLnU(k)|2 + CL’L(EknJ)luL’na<k)|2) f(gkna):| . (419)
(LL")

Here q&a) is a constant factor taking the value 1 for a=0, 2 for a=1, 1/8 for a=2, 7=[, and 1/4

for a=2, 7=t, respectively. { By (€xno)} and {Crr/(€xns)} are expressed by the Laplace transfor-
mations of the Hartree-Fock local density of states (see Appendix C). The correlation correction
consists of the terms being proportional to |z, (k)|*> f(ére) and those being proportional to
[uLno (K)|? f(—€rno). Here {ur,,(k)} are the eigenvectors for a given k point. Note that L in the
amplitude |ur,,(k)|* is d orbitals. For the sp bands the overlap of the eigenvetor (,i.e., Uz, (k))
is negligible, thus the second term at the rhs of Eq. (4.18) is small. Therefore the MDF of sp bands
are expected to be the Fermi-Dirac distribution function f(€,,), and the quasipartical weight as
well as the effective mass are close to 1 for sp bands. On the other hand, the overlap of the eigen-
vetor is expected to be close to 1 for the d-bands. When we replace |ur,,,(k)|* with 1/5 in Eq.
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(4.19) as a rough approximation for the d-like branch n near the Fermi level, we obtain

d
— ~ 1. ()2 (a0 ~
N<O;rnknaoi>0 = 5U£L)/QCI£ ) [ Z (Brr (€kno) + Brri(€kno)) f(—Ekno)

(L)

d
o Z (CLLI(Ean) + CL'L(Ean)) f(gkna) . (4.20)

(LL')

Then, N <O~ZT ﬁkméi>0 depends on the momentum only via the energy €,, as in the single-band
model. The quasipartical weight is less than 1 for the d-bands. Figure 4.8 shows the calculated
result of momentum distributions for d electrons in this approximation. We find clear momentum
dependence of (ny,,) via éx,,. We also find that the momentum dependence is developed with
increasing the Coulomb and exchange interactions.

We calculated the mass enhancement from the jump of the MDF at the Fermi level. We obtain
the mass enhancement m*/m = 1.4 for &« = 1.0 (, i.e., for bec Fe). This value should be compared
with the experimental renormalization values 1.38 ~ 2.12 which are obtained from the comparison
of the LDA density of states at ep with those obtained from the 7-linear specific heat coefficient at
low temperatures [72-74]. We have to calculate (ng,,) taking into account the k-dependence of
|trno (k)|* in more detailed calculations. This will be done in Sec 5.2.
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Chapter 5

First-Principles MLA with Self-Consistent
Variational Parameters

In the last chapter, we presented the ground state of paramagnetic bcc Fe in the lowest order
approximation. In order to describe more correlated electrons, we derive in this chapter the self-
consistent equations for new variational parameter ansatz, and obtain the expressions for various
physical quantities. We then solve the self-consistent equations numerically, and clarify the ground
state properties of bcc Fe [75,76].

5.1 Self-consistent equations for new variational parameter ansatz

We derived the solution for variational parameters (4.8) - (4.11) in the weak Coulomb interac-
tion limit. In order to describe more correlated electrons, we have to solve the full self-consistent
equations (3.74). To obtain approximate solution for Eq. (3.74) in correlated electrons, we propose
the following variational parameter ansatz which interpolate between the weak Coulomb interac-
tion limit and the atomic limit as follows.

ULLirr

LK ! kanok! n) kini — R (51)
e Ekynll — Ekanal T €Kit — Ekynyt — Ec

(Upr — JLL’/2>C~£CE/)

ng[?;f)’ nlkonok! n' k1ni = ) (52)
272 i Ekénéa’ — €konao + Gk/ln/la’ — €kinio — €c
(o)
5(0’) . JLL’gLL/ (5 3)
LL'K,nlk k'n'k - ) .
a2lanzi i Ekén’Q—a — €konao + Ek’ln/la — €kini—o — €e
F(oa’)
f(ao’) . JLL’&LL’ (5 4)
LL'Eynbkonakin kiny — .

ek’Qn’Qa’ — €kongo + Ek’ln’la’ — €kinio — €c

Here the renormalization factors 7.z, ¢ gf;/), é,fg’L,, and & I(ZZ? are new variational parameters to be
determined.

Substituting the above expressions into Eqgs. (3.44)-(3.46), we obtain the following form of the
variational parameters )\(LaL), (2211}

vl s e, 3,
)\(a) . T “Toy020,01 AT
LL22} T AR

2

(5.5)

nhobkangoakin)olkinior — €c
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Here the spin-dependent coefficients C’ ., are defined by

2020101

0041005400100, 1 (a=0)
c@) = 0 (a=1) (5.6)
TO,020,01 —}101025050250301 (Oz =2, 7= l)
_% Zg’ 50’2—050205 50-1 — (Od =2,7= t) .

Note that [ (¢) implies the longitudinal (transverse) component. The renormalization factors :\STUL,)L,
are defined as follows.

N 0L 0o —o

)
) (5.7)

arLL' — c(o'o)
LLL!

F(oa') (

A K9 (

(

rbee

Note that the correlation energy e, is given by Eq. (3.61) in the SSA.

. —<éz‘TH1>o — <Hléi>0 + <O~iT}~IO~i>O
€. = = . (5.8)

Substituting Eq. (5.5) into the matrix elements in Eq. (5.8) (,i.e., (3.62) - (3.66)), we find the
following expressions of the elements.

= S U U S A s P 69

aa/ (LL') (L L") roo’
(0, HO.)o = (0,'Hy0y)0 + (O, H,0,)q . (5.10)
Here
~tr A (o) Y (oa)x (") (aa)
<OZ H007j>0 - Z Z Z ULL/ L//L/// Z Z )\aTLL’ Aa L L QTT/LL’L”L/”UJ’U”O/” 9

ao’ (LL') (L"L'") Too! '’ o'
(5.11)
ON ﬁ ON 0 - Z Z Ul(i’ Z )\ai'GL}/*’ TLL’UJ : (512)

a (LL') Too!

K ji)L,m,, at the rhs of Eq. (5.12) is defined by

1 11

z § § ax o g
TLL/UO' UL//L/// RS.T/LL/L//L//IO.U/U//U/// A(a 7./I///)[//// 9 (5-13)

al <L//L/// TO' o.//l

and
’ ’ o o
(aa) 2221:1 4243:3 Cia) 02010'1 07(—’0?1040'503 R%L’L”L’”<{2 2]‘ 1}{4143 3})
RTT/LL/L//L//IO-O-/O-NO-/// -
{knco} {kzna} kén?aZk?n?@ki”l”ikl”lal o EC) (AEkﬁlnﬁlaﬁlk4n404k§n§aék3n303 - Ec)
(5.14)
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Furthermore,

ST A @ oo (" aa’
0 - ! uawi / awiawii / Iasiamii S ol . .
O O LL) L L )\(CMTLL O{T L )L S( LL L'"L"oo'o" o (5 15)

ao/ (LL') (L"L'") Too’ T'o’ o’

(676 [67e% .
The coefficients PT I L,)L,, Lol ng, LI L L gt ot gty Daet [ LI LN LM ggt gt gt AN K oL L,M, are obtained

by making use of the Laplace transformations. Their explicit expressions are given in Appendix
D.

The self-consistent equations for new variational parameters are obtained from the stationary
condition d¢, = 0 for Eq. (5.8):

Substituting the expressions (5.9) ~ (5. 15) into the above equation, we find the self-consistent
equations for the variational parameters /\ - L 1+ as follows.

2 : 2 : 2 : ( aa) e S(aa ) )\(cr"a”’)
L//L/// TT/LL/L//L///O-O-/O-IIO-/// C /LL/L//L///O-O-/O-/IO-/// « T/L//L///

O[/ L//L/H TO— o—///

_ E : § : ()
UL”L’” TL”L’”LL’O’O’ - KTLL’O’O" . (517)
o L”L”/
. (aa) (aa/
we can Verlfy QTT’LL’L”L’”O’U oot & 67'7'/5 LL/ L”L”/> STT’LL’L"L”’UU 'a! ! X 57'7'/5 LL/ L”L/” and

PT(gCLY/,)L,, e X Onyrrrmy. Thus the self-consistent equation (5.17) is simplified as follows.

Oéa,) S(aa/) x(o_//o.///)
LL’ TTLL’LL’UU’U”O'”’ — € TrLL'LL' oo’ o' o/ TLL'

i

a' oo
_ E ple'a) (@)
UL”L”’ TLL'LL'co’ KTLL’UJ’ : (518)
o )
Defining Q. //1 1/ooromgm DY
() _ (aa’)
QTT’LL’LL’UJ’U "ottt — QTT’LL’LL’UU’U”U’” ECS T'LL'LL'oco’c" c'"" (519)

we can express the self-consistent equation (5.18) as follows.

aa) // //I (a)
§ : § :ULL/ TTLL'LL'oo’c" o' a‘rLL’ - E :UL”L’” TLL/LL/O'O' _KTLL/O'O'/' (520)

a O' O.//l

(aa’)

Furthermore, we can verify that QTT, L1 LLooranom X Ogna0smqer. Thus we reach the following

oo'o!o

self-consistent equations for the variational parameters {\ UfL) L,}:

(a)
Z ULL’ TLL/O'O' a TLL’ Z ULL/ TLL’O'U - KTLL’O'U" (521)

Here we defined Q(CEQL/)M, and PT(z Lof) , as follows.

QS’LL’O’(T’ = QTTLL’LL’UO’ ‘oo’ (522)
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P’r(zﬁzro‘ = Pﬂggl?j)LL’aa" (523)
For a = 0, we have Q(T()I?‘Bw, X 0qr0 and P(LL,M, X dqr0. Thus we obtain from Eq. (5.21)
0) (00 oo 0) 15(00 0
UéL)’QS—LI)/UU >\(()’TL[)/ - U[(/[?'PTL[)/O'O' o K7('L)L’UU" (524)

Furthermore note that U OL, X L1/, Q(TOLO%/UU/ X 051001 , and PTOLOL),UU, X 05,0,4. Thus we obtain

the self-consistent equation for the variational parameters )\0 7 z as follows.
It 00) 00 0)~1 7-(00
)\((JLL Q(LL¢T (P £L¢)¢ -U [(/2 KéLiT)' (5.25)

Next, we obtain the self-consistent equations for A\77) and A7), from Eq. (5.21) for o = 1
and o = 2 (7 = () as follows.

(1) y(oo’) (2) A(12) (o0’ (1) p(11) (21) (1)
LL’QLL’UJ Moy UL QuiveoAuny = Ui PLiee + ULL/PLL’UU — AL (5.26)

oo’

1) AL (oo (2) A@2) (o) _ 77(1) p(21) P22 (2)
ULL/QILL/O'O'/)\lLL/ + ULL’ ZLL/O'O'/)\QZLL/ - ULL’PLL’JU’ + ULL’ LL'go’ ILL'oo’" (527)

§incle S\&UL/Z ansl 5\%’52, should contain 4 independent variables, we express here the spin- dependent
A7) and A7) as follows (see Appendix E).

AN = A + N 00s s, (5.28)
)‘glfgL’ = )‘QlLL’ + AQ[LL/U(SO'/G' (5.29)

Substituting Egs. (5.28) and (5.29) into Egs. (5.26) and (5.27), and taking sum with respect to
o and o', we find the following self-consistent equations.

1) AQDY (1) A1) (s) ~(12) (2) A(12) y(s)
ULL’QL AL +ULL’ 4LL’)‘1LL’+ULL’ lLL’)‘QlLL’ ULL’QZZLL’)‘QlLL’

v pi) +ul pel _ g (5.30)
(21) 1) ~(21) 22) 2) ~(22 s
LL’QLL’AlLL + UéL’Q4LL’)‘§LL’ + ULL’ z(LL'>‘2lLL’ UéL)’leL)L’ él)LL’
v P Ly pa _ g2 (5.31)

Here we defined Q%% Q°%) , (n=2,4), P%*), and K9, as follows.

C?’(rc7y'/OéL)L’ Z QTT’LL’JU/’ (532)
Qgii’)LL’ Z QTT’LL’JJ” (533)
4i(:’%L/ Z O-QT?'('IL)LIO' o) (534)
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p’f’aLaLz = Z P’r(’aLaLgaa” (535)

oo’

and

TLL/ Z KTLL’O'O' (536)

Next from Eq. (5.26) with condition o = ¢/, we obtain

1) A(11) (oo ~(12) 12)  R(s)
ULL’QLL’JU)‘lLL’ + ULL’ lLL/aaAZZLL/ + ULL’ lLL’ao)\QlLL’U

- ULL/P[(/L/O'O' Ul(/zL’PL2Ll’270 - Kgl)/aa‘ (537)
Multiplying both sides of Eq. (5.37) by ¢ and taking sum over o, we obtain

(11) (12) 12) s 1) p(11 2 21 1
LL'Q2LL/)\1LL + ULL’QILL’)‘QlLL + ULL’leLL’ 2l)LL’ = UéL’P2LI?’ + UJgL)'PQ(L )' - KQ(L)L"

(5.38)
Here
g?'?f’LL’ Z QTO‘IC'(’XL)L/G'O'7 (539)
QZTLL’ Z UQTT’L[/O’O” (540)
Pl — Z P (5.41)
K, =Y oK (5.42)
TLL' TLL oo .
Solving Eq. (5.38) with respect to AL, ;. we find
s —1 1 11) 11 3 21 1
)\;l}/L' == W |:Ul(4£/ ( gLL’/\lLL/ - PQ(LL)/> + ULL/ <Q2[LL/AQZLL’ - PQ(LL)/> - KQ(L)L/] .
LL’QllLL’

(5.43)

In the same way, we find an alternative expression for /\S)L 1 from Eq. (5.27) as follows.

(3) -1 MW (H 5 (12) @ (p@ 5 (22) 2)
)‘2§LL’ - W [ULL/ ( 2L ML PQZLU) + Ui ( SULLA2ALL PQZLL/> - KZZLL/] :

Lo uLr
(5.44)
Next, we obtain from Eq. (5.26) with condition ¢/ = —¢
1) ~(11 3 2 2) 3 (11 s
UéL)'Q(LL')o—a)‘lLL’ UéL)’Ql}/L’a o/\2lLL’ + ULL’ lLL)’o a)‘gL)L’U
- ULL’PLlLl’Lo‘ U[(/22’PL2Ll’)acr - Kéll)/cro' (545)
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Multiplying both sides of Eq. (5.45) by o and taking sum over o, we obtain

(11 1) 5(11) 12) 1 21 1
LL’Q4L2’)‘1LU + UéL)’Q3LL’)‘§LL’ + ULL’ A(ULL’)‘QILL' - UéL)’P aLL T ULL’P 4(LL)’ - KziL)L'-

(5.46)
Here
_g:'g’zL’ Z QTT’LL’U g? (547)
Qé(ii?’},ﬂ Z QTT’LL’U o) (548)
ples) = Z(;P(,LL,U ) (5.49)
4TLL/ Z oK TLL/O' o (5.50)
Solving Eq. (5.46) with respect to A?L) > we find
E —1 1) (A1) 3 5(11 (12 5(21 (1
>‘§L)L/ — ) A1) [UéL)' (QiLz/)‘lLL’ - P4(LL)’> + ULL’ <Q4ZL)L’)‘21LL’ - P4(LL)’> - K4(L)L/] :
UL @Qsrrs

(5.51)

In the same way, we find an alternative expression for /\S)L 1 from Eq. (5.27) as follows.
(s) —1 W (520 5 5(12) @ (5012 5 52 ) _ (@)
MLy = (1) A(21) [ULL/ ( AL ALL P4LL/> + UL ( ALLAALL P4ZLL/> - K4ZLL/] :
UppQsipr
(5.52)

Substituting Egs. (5. 43) and (5. 51) ((5.44) and (5.52)) into Eq. (5.30) ((5.31)), we obtain the
following equations for )\1 . and )‘21 LI

ULQUDN L+ URQWD N = UL P 4 @ ph _ ) (5.53)
UL QF ) M + U Qi A = UL P + UL BE — K. (5.54)
Here
(12) ~(11)
A(la ~(la Q / Q 1 A(la
QS—L[)/ = QS’L[)/ —?lLL QQTLL/ - _?11111)1 EITL)L” (555)
uLr’ 3LL'

o) A Quin Aaw QUi s 56
QTLL’ - QTLL’ - —(22) o2rLL —(21 Q4TLL’7 ( . )
uLr’ 3ILL
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plan) _ plan _ @ity sy _ Qi ey 557
L = o T Doy feLr T ) f4LL (3.57)
Qurw Q3p1
5(22)
(a2 5(a2) Q 1 5(a2) Q ' (a2
PI(LL’) - Pl(LL’ - —?élgL)L P 2(lLL’ —?é%L P 4(le'7 (5.58)
LL 3ILL
H(al)
@ _ e Oniyr@ Qi g
Koy = Kopp — ?é)LL K2TLL’ —?alL)L Kyrpp- (5.59)
Qv 3rLL/

Solving Egs. (5.53) and (5.54), we obtain the variational parameters A,y and Ay as fol-
lows.

-1
N (-1 ( (22) (11) (12) £(12)
MLy = ULL’ (detQ L’) [ULL’ (QuLL' LL — lLL’P LL’>

2) [ A(22) 5(21)  A(12) 5(22) A(22) £-(1) A(12) £-(2)
+ UéL/ ( llLL’PL(L’ — QP > - ( ur K — QZLL/KILL/) }, (5.60)

~ -1 A
Nauwr = UR ™ (detQuer ) (U5 (QE2P) - Q1 PLY)

(2) (11) p(21) A(11) £5(22) (22) 7-(2) A (21) 7-(1)
+ ULL/ ( oDy — Qrp Prp ) (QllLL’KlLL' - lLL/KLL’) } (5.61)
Next, we consider the case & = 2 and 7 = ¢ in Eq. (5.21). Note that the elements Qt I ﬁlg,,
Pt(fi),w,, Pt(Ll?, , vanish. Furthermore, Q%L,M,, Pt(ﬁ),w, X 04,. Thus we obtain form Eq. (5.21)
2) ~(22 e 2) (22
UéL)’ EtL)L/O'—O')\gtLL,) = UI(/I?,Pt(LL)/O' o Kt(L)L’J o) (562)
or

N ~(22)—1 22 1,2

)\gtLL’) = QgtL)L/U—O'(Pt(LL)IO' o ULL’ Kt(L)L’J—U)' (563)

Equations (5.25), (5.60), (5.61), and (5.63) are self-consistent equations for variational param-

eters {\°7) }:

m 00) 00 0)~1 . (00
Ml = QU (P — UL K, (5.64)
- -1 .
AL = ULL’ (detQLL’> [Uéy (QllQLzL’ LL’ QZ?L)’P L1L2’)>

2) (AH22) p1) _ A>O2) p(22) A(22) 7-(1) 5(12) 7-(2)
+Urw ( uLn Pros — lLL’PLL’> - ( ue Ko — Qo lLL’) }v (5.65)

~ -1 A
Nauwr = U (detQuer ) (U5 (QE2PL) — Q5L PLY)

(2) (11) (1)  A(11) H(22) (2) A(21) £-(1)
+ ULL/ ( LL PZLL/ WL PLL/ ) ( lLL’KlLL’ - ZLL/KLL/) }a (5.66)
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S(o—0) _ A(22)-1 (22) 17.-(2)
Mot = QuitiooPitlio—o — ULL’ Ko o) (5.67)

g—0

We can determine the variational parameters :\éﬂ, 5\1 LL'» /\gsL) s :\21 LL'» A(z‘;)L I )\éiL f? solving these

equations self-consistently.
In the non-magnetic state, we have

P(LfT = Prr, Pl(,lLl’)UU’ =Prp, (5.68)
1
PFL%)M, =00 Prp, Pl(le?(m, = _ZUU,PL s (5.69)
1 1
‘Pl(ii)’cro’ = __PLL’ Pt(LQL)/O-_O- = _PLL’7 (570)
16 4
Qg}?},ﬁ =QrLr, Llle)W =Qrr, 5.71)
1
Q(LlLQ’)ao’ = S:2L1f)ggf = _ZUU/QLLH (5.72)
1 1
Z(EQL)’O'O" = _QLL/’ QE%QL)/O—U/ = _QLL’7 (573)
16 4
Siih =S Si =5 5.74
Lm LL; LLoo’ LL' (5.74)
1
ngff)aa' = Sle,)o_U, = —10 o'Srr, (5.75)
(22 1 22) 1
Sittroo = 1_65LL/’ Sy oo = ZSLL’- (5.76)

Here P/, Qr1, and Sy are given by

P = Z/oo dteiectaL<—t)aL/(—t)bL(t)bL/(t), (5.77)
0

QL = _/ dtdt' e?eet+t) [aL/(—t—t’)bL/(t+t’)aL(—t—t')bm(t—i—t’)
0

—ap/(—t —tbp(t +tar (—t — )by (t + ')
+ap (=t — )b (t+t)ap(—t —t" )b (t + ')

—apn (=t —tYbp (t+tar(—t —t)br(t + 1), (5.78)
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and
S = — / dtdt’ eieet+t’ )aL/(—t — t’)bL/(t + t/)aL(—t — t’)bL(t + t’). (5.79)
0

The functions of ay(t), br(t), ari(t), and by (t) are given as follows.

olt) = [ die ()10, (5.80)
bult) = [ die 01 - @) (5.81)
ari(t) = /0 ) dte™""epy(€) f(€), (5.82)
bra(t) = /O ) dte™epr(e)[1 — f(€)]. (5.83)

Here py (¢€) is the Hartree-Fock local density of states. It is defined as follows.

= > |GLIkn) [ 8 — exn) (5.84)
kn

Thus, QTCEO‘L, defined by Eq. (5.22) are expressed as follows.

Q(LORT = QLL; Llle)M = QLL' (5.85)
1 ~
(LII%/UU (LQLI/UO' = _ZO-OJQLLU (5.86)
~(22) L~ ~(22) 1~
ILLoo’ — 1_6QLLH QilLoor = ZQLL’- (5.87)
Here )1/ are defined by
QLL’ =Qrr — €St (5.88)

According to Egs. (5.32), (5.39), (5.40), (5.47), and (5.48), we obtain the matrix elements Q in
the paramagnetic state as follows.

M) = 4@, (5.89)

el = Qi =0, (5.90)

( 11 o 1
QlLL/ QgLL/ 2CQLL’ (59 )
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_ _ 1 -
Qi = Qi = —5Qrr, (5.92)

Qir = Q1. (5.93)
~(22) ~(22) 1~
Quuiry = Qaury = gQLL/, (5.94)
and
D = Qe =0. (5.95)

We also obtain the matrix elements of P in the paramagnetic state using Eqgs. (5.35), (5.41) and
(5.49) as follows.

P —ap (5.96)
Py =P =0, (5.97)
pe— lp 5.98

LL *_Z LL (5.98)

plaet) _ plaa’) - (5.99)
27'LL’ Ar'LL’ . .

Thus we obtain from Eqgs. (5.55) ~ (5.57)

Q) =k, (5.100)
plee) — ploe) (5.101)
and
K, = K9 5.102
rLL rLL" (5.102)

Finally in the paramagnetic state the self-consistent equations (5.64), (5.65), (5.66), and (5.67)
reduce to the following equations.

Moz = Qrt (PLL —u9 KSQ) , (5.103)

- - 1 L
MLy = Qﬁ/ <PLL’ 1 USL)/ ! Ké%) , (5.104)
My = —Qr} (PLL/ +aU! K}E)L,) : (5.105)
oD = =ik (P +4 U K Le,) (5.106)
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Here Q1 = Qi — €Srus Kg]l)/ = KS)L)IW KLL’ = o KLlL)’aU” [_(lLL’ Yoo KZL)L’JU
Furthermore, we can verify that Kt(?L, = Kt(L)L,U , are independent of ¢ in the non-magnetic
state. This means that S\SFL_L), = S\ét L = )\2tL 1. Thus Eq. (5.106) reduces as follows

Ny = =Qrty (P + AU KL) (5.107)

Note that in the weak Coulomb interaction limit, we can neglect the higher order terms, i.e.,
U9 K% 5 0,and Q;} — Pry in Eq. (5.103), so that we obtain from Eq. (5.103)

Norr = 7 — 1. (5.108)

In the same way, one can verify from Eqs. (5.104), (5.105), and (5.107) in the weak Coulomb
interaction limit.

My = Cop — 1, (5.109)

Norr = G — —1, (5.110)

Noerry = & — —1. (5.111)

These variational parameters (5.108)~ (5.111) have been used in the lowest-order calculations in

Chapter 4.

The self-consistent equations (5.103) ~ (5.105) and (5.107) contain the higher-order terms
{K, K}. We can obtain these terms from Eq. (5.13). Note that { '} are defined by sum with
respect to o of { K'}. The higher-order correlation terms { /' } are summarized as follows:

- - 1 . -
K = UL Qriiors +4 Z Up My + 1 Z U My (>\2lLL’ + 2)\2tLL/) :

L'#L L'£L
(5.112)
Y —4y® (U Mz ors + U9, My A )
LL Lo \Yrp ML AoLL ML AorL 1
+ 4ULL/ <U(02:L/LL + UL(/]L/ELL’L + ULIL/QLL/) S\ILL/
—|—8 Z ULII?”U[(}L” (ELL’L”S\ILL” _’_EL/LL//XIL/Ll/)
LI(AL,L')
I (22 ~ 1 (22 ~
— é_lULL' Qrr A — §ULL/ Qrp Ao (5.113)
1@ (o L@ 3
lLL’ 1 Ul (ULLMLL’)\OLL’ + UL’L’ML’L/\OL'L'> - ZULL’ULL’QLL’)‘lLL/
1 -
Z éL) ( LL“L’LL +UY e — U SL)/QLL/> Aoir 1
1 _ - _ .
3 U 1§2L)” U S};u (:LL/LNAQZLLN + :L/LL//)\zlL/L”>
L'"(#L,L")
1 ~
- gU LZL)/Q Wrp Ao (5.114)
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1 < 1
- U S+ 108 (08 +

K?, = -y, (USE Mz ors + U My opn — USL),QLL&LL/)

1

4 Ug)/) QLp ALy

1 . 1 L
+3 > Ug,,zfg%;,,m,y,AM,,+g ST U U B Ay, (5.115)
L(#L,L) L(#L,L")

The final expressions of all the matrix elements of correlation energy ¢. and the self-consistent
equations for variational parameters are given in Appendix F (see Egs. (F.22) ~ (F.25), and Eqgs.
(F.33) ~ (F.39)). The explicit expressions of My, Wy, s, and Zppp» are also given in
Appendix C (see Egs. (C.19) ~ (C.23)).

It should be noted that the rhs of Eqgs. (5.103) ~ (5.105) and (5.107) contain the correlation
energy €., the Fermi level er, as well as the variational parameters {5\m L t- Thus Egs. (5.8),
(5.103) ~ (5.105), (5.107), and (3.77) have to be solved self-consistently. Then we can calculate
the physical quantities such as charge fluctuations and amplitude of local moments.

5.2 Various physical quantities for new variational parameters
The correlation energy has been given in Eq. (5.8):

<éiTHl>O - <H[OZ>(] -+ <OZTE[O~Z>0

T~ (5.116)

€. =

The expressions of the matrix elements of €. with use of the variational ansatz (5.5) have been
obtained in Eqgs. (5.9) ~ (5.15). The explicit expressions in the paramagnetic state are given in
Appendix F.

The Fermi level e is determined from the conduction electron number 7, via the relation,

ne =Y (ni). (5.117)

L

Here the electron number for orbital L on site ¢ has been obtained in Eq. (3.80):

<OjﬁiLOi>0

Lo (5.118)

(nir) = (nir)o +

The explicit expression of the correlation correction (7,;,) is obtained with use of the ansatz (5.5).
The expression is given in Appendix G.
The charge fluctuations and amplitude of local moment are obtained in Egs. (3.89) and (3.99):

d

((0n:a)) = Y _(nirodo(l = (Riro)o) + ) _(firo) (1 = 2(nizs)o)

d
— () + 2> (O +2 > (04) (5.119)

L (L,L")
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<SQ> :Z Z<nz’LU>0(1 — <niLo'>O) + Z Z<ﬁiLa>(1 — 2<niL,U>O)
2 Z zLL +2 Z zLL’ . (5.120)

L (L,L")
Here
— Z O Olg%/ () - Z zLL’ 0 + Z Oz(g}/

o (LL'") Lr LL")
> (05 = e ( . (5.121)
<LL/> 1 + <Oz OZ>0

Explicit expressions of (72;7) and {< iL L,)} with use of the varitional parameters {/\ L L,} are
given in Appendices G and H, respectively.
The momentum distribution function (MDF) has been given in Eq. (3.103).
_ N(Ofitkns O
(Nkno) = f(Erno) + < N’“T - Jo : (5.122)

The first term at the rhs is the MDF for the Hartree-Fock independent electrons, which is given
by the Fermi distribution function at zero temperature f(€,.). €rno 1S the Hartree-Fock one-
electron energy measured from the Fermi level ep. The second term at the rhs of Eq. (5.122) is
the correlation corrections, where 7, is defined by 7igne = Nkne — (Nkno)o- The numerator is
expressed as follows (see Appendix I).

N(OliunsOdo = 3 6 U5 Nopss (Brarno (k) F(=&ins) = Crma () (nn) ).
ar (LL")
(5.123)
Here qga) is a constant factor taking the value 1 for a=0, 2 for a=1, 1/8 for a=2, T=l, and 1/4 for
a=2, T=t, respectively. B LL'no (k) is @ momentum-dependent particle contribution above e and is
expressed as follows.

BLL/nJ(k> = |uLn0(k)|zBL/LJ(€k:na) + |uL/nU(k)|QBLL’U(Ean) ) (5124)

where {u,,(k)} are the eigenvectors for a given k point. The hole contribution C' 1/, (k) is
defined by Eq. (5.124) in which the energy dependent terms By, (€xn,) have been replaced by
CrLro(€kno). These are given by the Laplace transformation of the local density of states in the
Hartree-Fock approximation. Their explicit expressions in the paramagnetic state are given in
Appendix I (see Egs. (I.4), and (1.5)).

The quasiparticle weight Zj,,, characterizes the low energy excitations in metals. It is obtained
by taking the difference between (ny,,) below and above the Fermi level ep. Taking average over
the Fermi surface, we obtain the average quasiparticle weight Z.

S(N (O} e Oi)0)

Z:1+ ~.|.,.,

(5.125)

Here the first term at the rhs denotes the Hartree-Fock contribution part. The second term at the rhs
is the correlation corrections. The upper bar in the numerator denotes the average over the Fermi
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surface, and §(N (OZT ﬁkméi)o) ke means the amount of jump at the wavevector kr on the Fermi

surface. The explicit expression of 6(N (O] 74neO:)o)k, is given in Appendix I (see Eq. (1.9)).

In order to clarify the role of s, p, and d electrons, we consider here the projected MDF for
orbital L defined by (njrs) = >, (Nkno)|tULno (K)|?. Furthermore, we replace the energy €y, in
the expression with €y, = ., €kno|ULno(K)|?, i.c., a common energy band projected onto the
orbital L. We have then

y N{(O!y.1,0;
(nkLo) = f(€rro) + < s o (5.126)
We can also define the partial MDF (ny,,,) for [(= s, p, d) electrons by
1
(Npio) = A1 ;<nkLa>- (5.127)

We can define the quasiparticle weight Z;, for the electrons with orbital symmetry L by the jump
of (ngr.) on the Fermi surface .

S(N{(OfkrsOi)o0)y,.

ZL:].‘l— ~ T ~
1+<OzOz>0

(5.128)

It should be noted that the projected MDF depend on the momentum k only via €;r,. The
explicit expressions of the correlation corrections at the rhs of Egs. (5.126) and (5.128) are given
in Appendix I (see Egs. (I.15), and (I.17)). Moreover we can verify the sum rule,

1 1
7 = EZL:ZL = EEZ:(QZH)ZZ. (5.129)

Here Z)(= ), Z1/(21 + 1)) is the quasipartical weight for [(= s, p,d) electrons, and D is the
number of orbitals (DD = 9 in the present case). The relation allows us to interpret Z;, as a partial
quasiparticle weight for electrons with orbital L.

5.3 Self-consistent numerical results of BCC iron

The bee Fe has extensively been investigated theoretically with use of the realistic Hamiltonians
with s, p, and d orbitals at the ground states and at finite temperatures [77-81]. But quantitative
aspects on the physical properties of Fe have not yet been fully clarified even at the ground state.
We performed self-consistent numerical calculations for the paramagnetic bce Fe in order to clarify
the quantitative aspects of the first-principles MLA and the effects of electron correlations in the
properties of Fe. In this section, we present the self-consistent results for paramagnetic Fe.

The transfer integrals and the atomic level have been calculated with use of the Stuttgart
tight-binding LMTO (linear muffin-tin orbital) package and the LDA+U scheme. We adopted
the Coulomb and exchange integrals Uy, = Uy = 0.2749 Ry, Uy, = U; = 0.1426 Ry, and J;» =
J = 0.0662 Ry. These values are obtained from the relations Uy = U + 8J/5,U; = U — 2J/5
using the average values U = 0.1691 Ry and J = 0.0662 Ry by Anisimov et al. [25]. Note that
we adopted here the relation Uy = U; + 2.J for the cubic system.
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Figure 5.1: The correlation energy e, as a function of Coulomb interaction strength al/y. Dashed
curve: the result with only the intra-orbital correlations, thin solid curve: the result with both
the intra-orbital and inter-orbital charge-charge correlations, solid curve: the result with full
correlations. The thin dashed curve indicates the result of the second-order calculations with
Ny = ELL/ =1, and étLL/ = élLL/ = —1. The paramagnetic bcc Fe corresponds to alUy=0.27
Ry.

We solved the self-consistent equations for variational parameters, Egs. (5.8), (5.103) ~
(5.106), and (5.117), and obtained various quantities according to their expressions presented in the
last section. In order to understand the systematic change due to the Coulomb interaction strength,
we scaled Uy, Uy, and J as aly, al;, and aJ using a scaling factor o from 0 to 1. We present
the correlation energy €. in Fig. 5.1 as a function of alU,. With increasing aU, (as well as aU; and
), the self-consistent correlation energy €. monotonically decreases. The second-order result of
€. with ;= C L = 1, and & L = fl v = —1 starts to deviate from the self-consistent €. at
aly < 0.05 Ry, and overestimates the energy gain beyond the value.

In the first-principles MLA, we can describe the intra-orbital, the inter—orbital charge-charge,
and the inter-orbital spin-spin correlations by means of the correlators, Ol LL> OEPL,, and OE?L,.
When we take into account only the intra-orbital correlations (, i.e. C LI = & LI = él Ly = 0),
we find the correlation energy €. = —0.041 Ry for alUy; = 0.27 Ry (,i.e., for Fe). When we
take into account both the intra-orbital and inter-orbital charge-charge correlations (,.e., b =
glLL’ = 0 ), the correlation energy decreases and €. = —0.050 Ry for Fe. When we add further
the inter-orbital spin-spin correlations, the correlation energy decreases further and we obtain €, =
—0.076 Ry for Fe. We find that the inter-orbital correlations make a significant contribution to
the correlation energy. The lowest-order correlation energy gain overestimate compared to the
self-consistent correlation energy.

The correlation energy gain is accompanied by the suppression of charge fluctuations. We cal-
culated the charge fluctuations for d electrons ((dng)?) = (n2) — (ng)? as a function of al as
shown in Fig.5.2. The charge fluctuation in the Hartree-Fock approximation is 2.20. It is sup-
pressed rapidly with increasing the Coulomb interaction strength aUy. We obtain the charge fluc-
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Figure 5.2: The charge fluctuation {(dn4)?) vs Coulomb interaction strength aU, curves. Dashed
curve: the result with only the intra-orbital correlations, thin solid curve: the result with both the
intra-orbital and inter-orbital charge-charge correlations, solid curve: the result with full correla-
tions. The thin dashed curve indicates the second-order result. The paramagnetic bcc Fe corre-
sponds to al/y = 0.27 Ry.

tuations ((dny)?)=1.51 for aly = 0.27 Ry (Fe). The lowest-order result of calculations deviates
downward from the self-consistent result even for a small Uy with increasing alUj; it overesti-
mates the suppression of charge fluctuations. We examined the contributions of the three kinds of
correlations to ((dng)?). The intra-orbital correlations suppress the charge fluctuations, and lead
to ((dng)?) = 1.73 for ally = 0.27 Ry (Fe). When we add the inter-orbital charge-charge cor-
relations, the charge fluctuation decreases further, and we have ((dn,)?)=1.36 for Fe. The result
is comparable to the value of the LA with the d-band model [21], i.e., ((0ng4)?) ~ 1.0, though
it is somewhat larger than that of the LA because the present theory takes into account the hy-
bridization between the d and sp electrons and the latter delocalizes the d electrons. We also notice
that the inter-orbital spin-spin correlations also delocalize the d electrons, so that we finally ob-
tain ((dng)?)=1.51, which is considerably larger than that was obtained by the LA and the d band
model.

Formation of atomic magnetic moments also originates in the d electron correlations, and de-
termines the magnetic properties of Fe at finite temperatures. We calculated the amplitude of local
moment (S?) as a function of o, as shown in Fig. 5.3. We have (S?) = 1.65 for the Hartree-Fock
uncorrelated electrons. The amplitudes of local moment monotonically increase with increasing
the Coulomb interaction strength aUy, and we find (52) ~ 2.61 for Fe in the full self-consistent
calculations. The lowest-order calculations underestimate the amplitude, and result in (S?) &~ 2.41
for alUy = 0.27 Ry (Fe) as mentioned in Sec. 4.3.2. The self-consistent result is comparable to the
value of the LA with the d-band model [21], (52> ~ 2.91, but is somewhat smaller than that of the
LA because the present theory takes into account the hybridization between the d and sp electrons.
It should be noted that the enhancement of the amplitude is caused by both the intra-orbital and
inter-orbital spin-spin correlations, and the effects of the inter-orbital charge-charge correlations
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Figure 5.3: The amplitude of local moment as a function of the Coulomb interaction strength aUj.
Dashed curve: the result with only the intra-orbital correlations, thin solid curve: the result with
both the intra-orbital and inter-orbital charge-charge correlations, solid curve: the result with full
correlations, thin dashed curve: the second-order result. The paramagnetic bcc Fe corresponds to
aly =0.27 Ry.

are negligible as seen in Fig. 4.8. Although there are no direct measurements of the amplitude of
local moment (S?) for the bee Fe, one can estimate the experimental value from the observed effec-
tive Bohr magneton number pos (= 3.20) [82], because the Rhodes-Wolhfarth ratio of the bee Fe
is equal to 1.0 within 5% error. In this case, we have the experimental value (S?) = p%; /4 = 2.56,
which is in good agreement with the present result (S?) = 2.61.

We have calculated the MDF in paramagnetic Fe using Eq. (5.122). Figure 5.4 shows the result
along high-symmetry lines. (Note that the wavevector k is measured in the unit of 27 /a, a being
the lattice constant.) We find strong momentum dependence of along (ny,,,) the lines, which is not
described by the Hartree-Fock wavefunction.

At point I', we have a free-electron-like MDF (n;,,,) = 1.00 for s electrons with the Hartree-
Fock one-electron energy €r,, = —0.69 Ry (< €r) ( see in Fig. 4.3), while we have the MDF
(Ngno) = 0.97 for d electrons with ¢5, symmetry, which are associated with the Hartree-Fock one-
electron energy €x,, = —0.27 Ry (< €p), and the MDF (ny,,) = 0.82 for d electrons with e,
symmetry with the energy €x,, = —0.14 Ry (> €p) in Fig. 4.3. For the p electrons associated
with the energy €x,,, = 2.03 Ry (> €r), we again have a free-electron-like (n,,) = 0.00.

When the momentum k moves toward point N along the I'-N line, the MDF for 5, electrons
splits into three branches. The first branch is almost constant and has a value (ny,,) = 0.98
at point N. The second branch jumps down at kr = (0.39, 0.39, 0.00) on the Fermi surface and
approaches (ny,,) = 0.00 at point N. The third branch decreases with the change in k toward
point N, jumps down at kr = (0.28, 0.28, 0.00), and approaches (n,,) = 0.088 at point N. The
MDF for e, electrons splits into two branches. The branch with 3z* — r? symmetry increases and
approaches to (n,,) = 0.86 at point N. The second branch with 2 —y? symmetry decreases along
the I'-N lines, jumps down at kr = (0.23,0.23,0.00), and approaches (ny,,) = 0.25 at point N.
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The s electron branch of the MDF hardly changes and approaches to the value (ny,,) = 0.99 at
point N. The p electron branch also shows flat behavior with (n,,) = 0.00 because there is no
hybridization with d electrons and their one-electron energies are far above the Fermi level (see
Fig. 4.3)

Table 5.1: Mass enhancement factors for e, electrons at various wavevectors k on the Fermi sur-
face.

k (0.23,0.23,0.00) (0.50, 0.50,0.28) (0.32,0.32,0.32) (0.00, 0.17, 0.00)
my,,/m 1.84 1.71 1.78 1.82

Table 5.2: Mass enhancement factors for ¢, electrons at various wavevectors k on the Fermi
surface.

k (0.28, 0.28, 0.00) (0.39,0.39,0.00) (0.50, 0.50, 0.09) (0.20, 0.20, 0.20)
my,,/m 1.28 1.14 1.16 1.25

k  (0.00,0.58,0.00) (0.00,0.73,0.00) (0.15,0.85,0.00) (0.18,0.82,0.00)
my, /m 1.29 1.27 1.27 1.29

The basic behavior of the MDF for s, p, and d electrons mentioned above is also seen on the
other high-symmetry N-P, P-I', I'-H, and H-N lines. We find that the MDF branches associated
with e, electrons show large deviations from 0 and 1, indicating strong electron correlations. The
MDF associated with t5, electrons also shows significant deviations from 0 and 1. On the other
hand, the s- and p-like MDFs have values close to 1 or 0, indicating that the independent electron
band picture is applicable to their electrons.

The jump of the MDF on the Fermi surface gives the quasi-particle weight Z;,, or the inverse
mass enhancement factor (mj, /m = 1) according to the Fermi liquid theory. Since the hybridiza-
tion between the sp and d electrons excludes the sp-like bands near the Fermi level, most of the
Fermi surface of the bce Fe is formed by the d bands. The mass enhancement factors for e, and ¢y,
electrons calculated along high-symmetry lines are presented in Tables I and II, respectively. We
find that the mass enhancements for e, electrons are momentum-dependent and show considerably
large values of my,, /m =1.71 ~ 1.84, because these electrons form narrow bands near the Fermi
level. The ¢,, electrons yield smaller enhancements of my,/m = 1.14 ~ 1.29.

We have calculated the averaged mass enhancement factor over the Fermi surface and obtained
m*/m = 1.648. In order to examine the dependence of m*/m on the Coulomb integrals, we
performed the same calculations using the alternative set Uy, = 0.3233 Ry, U = 0.1932 Ry, and
Jrry = 0.0650 Ry, which was adopted in our LDA+DCPA calculations. We obtained m}, /m =
1.551, a deviation of only 6% from the value of 1.648. We also suggest that the ferromagnetic spin
polarization may reduce the mass enhancement by about 5% because of the change in the weight
between e, and t, electrons on the Fermi surface.
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Figure 5.4: Momentum distribution functions ({€x,.)) along high-symmetry lines for bcc Fe. Or-
bital symmetry functions and their hybridized states for the branches at high-symmetry points are
written in the figure.
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Figure 5.5: The partial momentum distribution functions (ny;,) as a function of the energy e,( =
€xo- €r). Dotted curve: the momentum distribution function for s electrons, dashed curve: the
momentum distribution function for p electrons, solid curve: the momentum distribution function
for d electrons.
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As we have mentioned in the introduction, the MLA can describe the momentum dependence
of the momentum distribution function (MDF). We calculated the partial MDF projected onto each
orbital [ in order to examine the role of s, p, and d electrons. They are defined by Eq. (5.127). Fig-
ure 5.5 shows the calculated MDF. In the case of s and p bands the partial MDF are approximately
flat below and above the Fermi level ep, and jump at ep. Therefore the s and p electrons behave
as an independent electron. The deviation from 1 or 0 are caused by the hybridization with d elec-
trons. On the other hand, the partial MDF for d electrons shows a strong momentum dependence
due to electron correlations.

4 , : . . i
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Figure 5.6: The orbital-dependent mass enhancement 1, /m as a function of the Coulomb inter-
action strength alUy. Dotted curve: m};/m (1=0), dashed curve: m}/m (I=1), solid curve: m}/m
(1=2).

According to the Fermi liquid theory, the mass enhancement factor (¢.e., the inverse quasipar-
ticle weight) is obtained from the jump at the Fermi level in the MDF. We calculated the orbital-
dependent mass enhancement m; /my for s, p and d electrons as a function of al; as shown in Fig.
5.6. The d electron mass enhancement rapidly increases with increasing the Coulomb interaction
strength aU,, while the mass enhancements for the sp electrons almost remain constant and behave
as independent electrons irrespective of aly. Calculated mass enhancements are m}/m=m;/m =
1.01, and m;/m = 3.33 for Fe, respectively. Note that the mass enhancement of the d electrons is
significantly larger than the Hartree-Fock value 1.0.

We calculated the average mass enhancement m*/m (= 1/7) as a function of alU,. Calculated
m*/m vs Coulomb interaction curve is presented in Fig.5.7. The curves with the intra-orbital
correlations as well as the curve with both the intra-orbital and inter-orbital charge-charge correla-
tions are also presented there. By comparing these three curves, we find that the mass enhancement
m*/m for Fe (alUy = 0.27 Ry) is dominated by both the intra-orbital and inter-orbital spin-spin cor-
relations, though the inter-orbital charge-charge correlations also make a significant contribution
in the weak interaction regime (aU, < 0.05 Ry).

The mass enhancement for the bcc Fe has recently been investigated on the basis of the first-
principles theories. Katanin et al. [83] obtained mgg /m = 1.163 for t,, electrons at 1000K with
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Figure 5.7: The mass enhancement factor m* /m as a function of the Coulomb interaction strength
alUy. Dashed curve: mass enhancement due to the intra-orbital correlations, thin solid curve: mass
enhancement due to both the intra-orbital and inter-orbital charge-charge correlations, solid curve:
the result with the full correlations.

use of the LDA+DMFT combined with the QMC technique, but they could not obtain the mass
enhancement for e, electrons because of the non-Fermi liquid behavior due to strong fluctuations
in the narrow e, band at finite temperatures. More recently, Pourovski et al. [15] performed the
LDA+DMFT calculations for bcc Fe with use of the continuous-time QMC technique. They ob-
tained m*/m=1.577 for bcc Fe being in agreement with our present result m*/m = 1.65. The
first-principles Gutzwiller calculations by Deng et al. [77] led to a reasonable value m*/m = 1.56.
But they used too large a Coulomb interaction parameter U = 7.0 eV. Recent results based on the
LDA+Gutzwiller theory with use of a reasonable value U =2.5 eV and J=1.2 eV show that mg_ /m
= 1.08 for e, electrons and m;;g /m = 1.05 for t9q4 electrons, [84] which are too small as compared
with the other results of calculations mentioned above. The present result m*/m = 1.65 is compa-
rable to the experimental value m*/m = 1.38 ~ 2.12 obtained from the low temperature specific
heat data [72—74], and the recent result m*/m = 1.7 obtained by the angle resolved photoemission
spectroscopy (ARPES) [57].
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Chapter 6

Summary and Discussion

We have developed the first-principles momentum dependent local ansatz (MLA) wavefunc-
tion method using the tight-binding (TB) LDA+U Hamiltonian towards the quantitative descrip-
tion of correlated electrons in the real system. The wavefunction is constructed by applying the
momentum-dependent intra-orbital correlators, the inter-orbital charge-charge correlators, and the
spin-spin correlators to the Hartree-Fock uncorrelated wavefunction. The MLA reduces to the
Rayleigh-Schrodinger perturbation theory in the weak correlation limit as it should be, and de-
scribes quantitatively the ground state and related low-energy excitations in solids.

We have verified in the single-band model that the MLA improves the local ansatz approach
(LA) irrespective of the electron number and the Coulomb interaction energy, and more strongly
suppresses the double occupation number as compared with the LA. In particular, the momentum
distribution functions (MDF) show a clear momentum dependence, while those in the LA and
the Gutzwiller wavefunction (GW) show a flat behavior below and above the Fermi level. One can
improve the MLA by changing the starting wavefunction from the Hartree-Fock (HF) wavefunction
to the hybrid (HB) one. The HB-MLA is applicable to both the weak and the strong Coulomb
interaction systems.

We first investigated the first-principles MLA in the weakly correlated regime. We solved the
self-consistent equations for the momentum-dependent variational parameters in the weak interac-
tion limit, and obtained the correlation energy in the single-site approximation (SSA) as well as
the other physical quantities such as the electron number, the charge fluctuations, the amplitude of
local moment, and the MDF.

We performed numerical calculations for the paramagnetic bce Fe in order to clarify the ba-
sic behavior of the first-principles MLA in the weak Coulomb interaction regime. We obtained
the correlation energy €.=—0.0516 Ry due to intra-orbital correlations of Fe. When we take into
account the inter-orbital correlations, the correlation energy €. decreases further and we obtain e,
= —(0.1101 Ry for Fe. The inter-orbital correlation energy is comparable to the intra-orbital cor-
relations energy in the lowest order. Calculated charge fluctuation is suppressed by correlations
and we obtained ((dn4)?) ~ 1.2 for Fe. The result is comparable to the value of the LA with the
d-band model, ((dng)?) = 1.0, but is somewhat larger than that of the LA because the present
theory takes into account the hybridization between the d and sp electrons. We find that the am-
plitude of local moment (S?) ~ 2.41 for Fe in the lowest-order calculations. The result is larger
than the Hartree-Fock value (S?) = 1.65 because of the Hund-rule correlations, but is somewhat
smaller than that of the d-band model+LA value (S?) = 2.91 because the present theory takes into
account the hybridization between the sp and d electrons. We also calculated the MDF as well
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as the effective mass enhancement factor assuming the constant eigen vectors for d electrons. We
found a clear momentum dependence of the MDF via energy eigen value €;,,. We obtained the
mass enhancement m* /m= 1.4 for Fe from a jump at the Fermi level, which is comparable to the
experimental values 1.38 ~ 2.12 obtained from the 7-linear specific heat at low temperatures.

In order to clarify the first-principles MLA and related correlation effects in more correlated
regime, we derived the self-consistent equations for the variational parameters on the basis of the
variational parameters ansatz which interpolates between the weak and atomic limits, and obtained
the expressions of the other physical quantities. We investigated the correlated electron state of the
paramagnetic bcc Fe solving the self-consistent equations for momentum-dependent variational
parameters. We obtained the correlation energy €. = —0.076 Ry for the paramagnetic Fe, and
found that the inter-orbital correlation contribution is comparable to the intra-orbital one in the case
of Fe. The charge fluctuations ((dn4)?) are suppressed with increasing the Coulomb interaction
strength. We obtained ((dny)?) = 1.51 for Fe, which is larger than the value ((dng)?) ~ 1.0
calculated by the LA+d band model. The discrepancy is partly caused by the hybridization between
sp and d electrons and partly caused by the Hund-rule correlations. The amplitude of local moment
(S?) increases with increasing the Coulomb interaction strength. We obtained (S?) = 2.61 for
Fe. The result shows a good agreement with the experimental value 2.56 estimated from the
effective Bohr magneton number of the Curie-Weiss susceptibility. The lowest-order calculations
underestimate the amplitude of local moment.

We investigated the MDF for bcc Fe. The MDF depends on the momentum k via both the
energy €., and the eigenvector wuy,,(k). We obtained the first-principles MDF bands for Fe
along high-symmetry lines, and clarified the band structure of the MDF for s, p, and d electrons
for the first time. We found a large deviation from the Fermi-Dirac distribution function for the
branches associated with e, and t,4 electrons, while the sp electron branches follow the usual band
theory. We obtained the momentum-dependent mass enhancement factors mj,, /m along the high-
symmetry line. We found the mass enhancements 1., /m = 1.8 for e, electrons and my,, /m = 1.2
for ¢y, electrons.

We examined the MDF projected onto each orbital. We found that the d electrons cause a
significant momentum dependence, though the sp electrons behave as independent electrons. We
obtained the mass enhancement factors mj/m = m;/m = 1.01, and mj/m = 3.33 for s, p, and
d electrons, respectively, indicating that the d electrons behave as correlated electrons. The av-
erage mass enhancement m*/m increases with increasing interaction strength. We found that the
intra-orbital and inter-orbital spin-spin correlations , 7.e., spin fluctuations cause the mass enhance-
ment of Fe. We obtained the average mass enhancement m*/m = 1.65 for Fe. The value 1.65
is consistent with the experimental values obtained from the low-temperature specific heat data
m*/m = 1.38 ~ 2.12, and the ARPES data 1.7, as well as the recent theoretical result 1.577 based
on the finite-temperature LDA+DMFT calculations. The first-principles Gutzwiller theory under-
estimates the mass enhancement factor of bcc Fe, indicating the significance of the momentum
dependence of the variational parameters in the MLA.

Although we established in this thesis the quantitative aspects of the first-principles MLA, there
are many works left for future. First, present calculations for Fe are limited to the paramagnetic
state. We have to perform the ferromagnetic calculations to clarify the ground state of Fe, Co, and
Ni on the basis of the first-principles MLA. Furthermore we have to examine the quantitative as-
pects of the theory for more correlated electron systems such as Fe pnictides and the heavyfermion
compounds. These problems are left for future work.

Second, in order to describe the strongly correlated electron systems showing the metal-insulator
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transition, we have to apply the MLA with HB wavefunction. We have to extend the HB-MLA to
the first-principles version for the quantitative description of the metal-insulator transitions.

We also point out that the MLA wavefunction method is limited to the single-site approxima-
tion. Inclusion of nonlocal correlations is desired to describe the magnetism, the metal-insulator
transition, and the frustrated electrons in low-dimensional systems. There one needs to introduce
explicitly the nonlocal correlators with momentum dependent variational parameters. Extension of
the first-principles MLA to the nonlocal case will open a new door to a wide range of applications
of the theory to correlated electron systems.

73



Appendix A
Appendix: Wick’s Theorem

We used Wick’s theorem in Chapters 3, 4, and 5 to calculate the average of operator products
in many-body problems. In this Appendix, we derive Wick’s theorem and its extension.
We can prove the Wick’s theorem as follows.

(A1 Ay AsAy. A 1 Azno = Y (=) PNAL Ay)ofAi Ao (A A ). (ALD)

{contractions}

Let us consider the average of the operator products with respect to the non-interacting Hamiltonian
Hj as follows.
(A1Ag..... Aon)o- (A.2)

Here { A;} are creation or annihilation operators that satisfy the relations

For example, a;, and aL satisfy the above relations:

arap + Qg a = aLaL, + aL,aL =0, (A4)
CLLCL].;/ + ak/a,z = Oppr- (A.5)

The non-interacting Hamiltonian is assumed as

HO = Z €N (A6)
k
Then, we obtain
<GLCLL>0 = (arap )o = 0, (A7)
(alap)o = (aral,)o =0 (k # k). (A.8)
and ]
<CL£(I[€>O = <nk>0 = 1 n 65%’ (A9)
1
<(lk(l£>0 =1- <nk>0 = m (AlO)
Thus (i)
_ 2
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Here + for A; = a,t and — for A; = aj, in the denominator. (A4;A;) is called the contraction of a
pair (ij).
Using the anti-commutation relation (A.3), one can exchange A; with A, in the average

<A1A2 ..... A2n>0 = (12)<A3, A2n>0 — <A3A2A1 ..... A2n>0. (A12)

—+ (1, 271) <A2A4....A2n,1>0 — <A2A3....A2nA1>0. (A13)
Note that we have the relation
ar(B) = ePoge=PHo, (A.14)

Differentiating the above equation with respect to (3, we obtain

da
M = eﬁHO(Hoak — apHy)e o, (A.15)
ap
By making use of Hy = Zk, Ek/GLGk/, ny = az/ak/ and the anti-commutation relation akaL =

Ok — aZak into Hya, — ai,Hy, we obtain
Hoak — akHo = E Ek/(CZL/CLk/CLk — CLkCZLCLk/)
k/

= E ek/(az,ak/ak -+ aL,akak/ — akxékk/)
k/

= —€rQ. (A16)
Thus Eq. (A.15) is expressed by
0
agéﬁ L (A.17)
If we consider the relation ax(0) = a;. We obtain from Eq. (A.17).
ap(B) = ape™ P, (A.18)
Similarly,
al(B) = ale™ P, (A.19)
From these relations, we have
ape PHo = o=PHo g o=Per (A.20)
aze_ﬁHo = e_BHoaLeﬂEk. (A.21)

Let us consider the thermal average in Eq. (A.13).

(A.22)
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Using Egs. (A.20) and (A.21), we have the following relation.
AjeBHo — tBero—=BHo 4. (A.23)

Here + for A; = aL and — for A; = ay. Substituting Eq. (A.23) into (A.22), we obtain

(Ag...... AgnAv)o tr(e~PHo) (A.24)
Hence
<A2 ...... AgnA1>0 = €i61 <A1A2 ...... A2n>0. (AZS)
Here we used the relation tr(AB) = tr(BA).
Substituting Eq. (A.25) into Eq. (A.13), we obtain
(1 + 6i651)<A1A2 ..... A2n>0 = (12)<A3A2n>0 - (13) <A2A4....A2n>0
+ o + (1,271) <A2A3....A2n_1>0. (A26)
Thus we obtain
<A1A2 ..... AQTL)O = <A1A2>0<A3 ..... A2n>0 — <A1A3>0<A2A4 ..... A2n>0
T <A1A2n>0<A2A3 ..... A2n71>0- (A27)

Repeating the same procedure for the remaining multiple products, we reach Wick’s theorem.

(A1 A AsAy. Agu Ao = > (=) PN(AL As)o(Ai Ao (Aiy,  Aiy Do (A28)

{contractions}

Here the sum at rhs is taken over all possible pairs of contractions. (—1)°("") takes + or — depending
on whether (i1, iz, i3, ....i2,) is even or odd in permutation and

{contractions} 11 <12,13<04,....s 12n—1<i2n

1<tz <iz<..... < Top_1

For the calculations of operator products (§(A; A2)d(AzAy)........ 0(Agn_1A2,))0, We can prove
the extended Wick’s theorem as follows:

(0(A1A2)0(A3Ay)........ 0(Aon—1A9,))0 = Z (=) PN A A oAy Ai e (Aiy, 1 Ais o
{contractions}

(A.29)
Here

The sum is taken over all possible pairs of contractions without self-pairs such as (A;, | A;, ).
(—)2®) takes +(—) when (i1, i, ......i9,) is even (odd) in the permutations.
One can check that the theorem holds true for n = 1, 2. In fact

(0(A1A2))0 = (A1Ag)g = (A1A2)o = 0. (A.31)
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and

A A2A3A4>O - <A1A2>0<A3A4>0

AsAg)o(A1Az)o + (—)*(A1A2)0(AsAg)o

A1AsA3AL) 0 — (A142)0(6(A344))0

A3A4)0(0(A1A42))0 — (A1A2)0(A3A4)0. (A.32)

—~

(5(A1A2)5(A3A4)>0 =

S~ o~

In the same way, one can prove that

(0(A1A3)0(A3Ay).....0(Agn—1A42,))0
- <A1 A2A3A4 ......... Agn_1A2n>0

—Z (Azi-1A2i)o(0(A1A2). 2i....0(Azn—1420))o

—Z Z (Agi_1Agi)o(Agj 1 49;)0(5(A1Ag)..20....25....6 (An_142,) )0

i j(>i)

—ZZ Z Agi 1 Agi)o{Agj 1 As;)o{Ask—1 Agk)o(0(A1 Ag)..2i .25 ... 2K....6 (Agn_1A2n))o
i j(>1)

— (A1 Ag)o(A3AL) g (Agn_142.)0. (A.33)

Therefore, we obtain the term (§(A; A3)6(A3Ay).....0(Agn—142,))0 as follows.

= (sum over all possible combinations of products of contractions)
— (single self-pair terms)
— (double self-pair terms)

— (triple self-pair terms)

— (n self-pair terms)
= sum over all possible combinations of products of contractions without any self-pairs.

Thus the extended Wick’s theorem (A.29) holds true.
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Appendix B

Appendix: Calculation of Physical
Quantities using Feynman-Hellmann
Theorem

In this Appendix we prove the Feynman-Hellmann theorem and derive physical quantities using
the theorem.

1. Feynman-Hellmann theorem

Consider a system with Hamiltonian H (\) that depends on some parameter \. Let ¥(\) be
a eigen function of H()\) with eigen value E(\)

HA)W)) = EM[T(A)). (B.1)
We assume that W()\) is normalized so that
(TN)wA) =1. (B.2)

The Feynman-Hellmann theorem states that the derivative of the total energy with respect to a
parameter is equal to the expectation value of the derivative of the Hamiltonian with respect to the
same parameter.

OE(N) OH(\)
N <\IJ()\) ‘ B\ TN ). (B.3)
In order to prove the above relation, we start from the ground-state energy obtain from Eq. (B.1).
EQ) = (W)HN)[TA))- (B.4)

Differentiating both sides, we have
aggk) <a\1(;gA) [H(N)| \If()\)> + <\If()\) ‘ag_;A)‘ \II(A)> + <H(/\) U\ aq{;—y)> . (B.5)

Using the relation (B.1), Eq. (B.5) is expressed as follows.

B _ <8‘1{;§A> |H()\)|\If()\)> +E() quwa\g_(?» T <M|\P(A)>} - B
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Since |¥(A)) is normalized, we have from Eq. (B.2)

<%‘\m)> + <\1:(A)“9‘g—9)> —0. (B.7)
From Egs. (B.6) and (B.7), we obtain
20 - (o 5 ).

which is the Feynman-Hellmann theorem.
Let us consider the Feynman-Hellmann theorem with use of the correlation energy. The corre-
lation energy is defined by

E.= (H) = (H)o. (B.9)

Here the (H ), is the ground-state energy in the Hartree-Fock approximation (H)y = (Ho)o, Ho
being the Hartree-Fock Hamiltonian defined in Chapter 3. Thus,

(H) = (H)o + E.. (B.10)

Therefore,

O(H) _ 9(H)o  OF.
= ot (B.11)

Since |¢g) is the ground state of Hj, we obtain

O(H)o _ /OH,

according to the Feynman-Hellmann theorem. Thus we obtain

oH) <8H0>0 . 9E.

O\ O\ o\ (B.13)

Let us consider the first term at the rhs of Eq. (B.13). We consider the change of the Hartree-
Fock Hamiltonian H, via \ as

SHy = (6H)pm + (5Hp). (B.14)

Here (~),,, means the change when the electron number n and the magnetic moment m in the
Hartree-Fock potential are fixed.

(6Ho)o = ((6H )nm)o + ((6Ho)x)o- (B.15)

We can prove that the change of Hartree-Fock Hamiltonian via the A is ((0 H)x)o = 0 because of
the stationary properties in the Hartree-Fock approximation. Therefore we obtain from Eq. (B.15)
as

(6Ho)o = ((6Ho)nm)o- (B.16)
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Thus,

OH,\ 0H,
<W>O - <¢0 (W)nm

In the same way, we can write the correlation energy as

OE. [0H 0H OH, OFE.

_ o\ _ JOoH /[0Ho _ . B.1
o <6A> (% <<6A)m>> (%), ©19
Here (OH /OX — ((0Ho/ON),),,),) means that one takes the derivative of H with respect to A which

appear explicitly in H = H — (H),.
Finally, we obtain the following formula from Eqs. (B.13), (B.17), and (B.18).

O(H) | (0H, OE,

OE.\  /(oH
(). -((%).)

Here (OE./O\) 4 means taking the derivative of E,. with respect to A which appear explicitly in
H.

¢o> . (B.17)

and

2. Electron number (n;y,)

The TB-LDA+U Hamiltonian is written in Eq. (3.1):

_ 0 T
H —E €iLoNiLo + E tiLjL Gy 0 Lo

iLo iLjL'o

+ Z [Z Umm Niimt Nilm]| + Z (Umm’ - %Jmm’> Niim Milm? — 2 Z Jmm’ Silm Silm’] .
i m (m,m’) (m,m’)

(B.21)

Using the formula (B.19) for O(H)/O\, we have

O(H) 0H, oF,
_ vio ) B.22
86?L <(86?L>nm>0 - ae?L ( )

Here (~),, denotes the derivatives with respect to any parameters with constant charge and mo-
ment, and F. is the total correlation energy. Making use of the Feynman-Hellmann theorem,

oH) _
e, = {naz)-

(B.23)
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Since (0Hy /€% )m = (ni), we obtain
(nir) = (ni)o + 55~ (B.24)

Here

- OH 0H - - OH ~
(0l ) —(5505) +{0550;
7 deyl, 0 L 0 ! Oeql, 0
+ : (B.25)
2 i
The Hamiltonian is expressed by H = Hy+ H;. Thus

OH
— | =Ny (B.26)
(52) =

OB, _ Z —(Oir)o — (RirO;)o + <é;ﬁiLO~j>0
aE?L 1+ <O;O~]>0 '

Therefore,

(B.27)

J

In the SSA, we can omit the off-diagonal elements (j # ¢ ). Thus, we obtain the following formula

_<Ojﬁz‘L>0 - <7~lz’LO~i>O + <O~jﬁzLOz>0

n; = (N, -+ ~T = B.28
(nir) = (ni)o T 000, (B.28)
Note that (7,,0;)o = (O7;1)% = 0. Thus
Ol 0;
(nar) = (nir)o + {OinirOi)o (B.29)

1+ (010

Here (n;z)o denotes the Hartree-Fock electron number. The second term at the rhs (right-hand-
side) is the correlation correction of electron number.

(Oli1,0;)0
1 + <O~ZTO~Z>0
Equation (B.29) is identical with Eq. (3.80) in Sec 3.6.1.

(o) = (B.30)

3. Local charge fluctuations {(dn;4)?)

The local charge fluctuations of d electrons on site ¢ is defined as

((0n5a)%) = (niy) — (nia)®. (B.31)
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Here (n2,) is given by

d d
(i) = (nia) +2 ) (nicy - niry) +2 D (niz - nary)- (B.32)
L (L,L")

The double occupation number (n;z+ - n;z;) and inter-orbital charge-charge correlations (n;z, -
n;z/) are obtain from the Hamiltonian Eq. (B.21) using the Feynman-Hellmann theorem (B.19) as
follows.

O(H)
iIAGLy) = , B.33
(n n L¢> o, ( )
o(H
<nian‘L’> = a(}lmi/ . (B34)
Now, the total correlation energy is defined as
(H) = (H)o + B (B.35)

Taking the derivative of (H) with respect to U;;,,,, and using the relation (H), = (H,) we obtain

O(H)  O(Hp)o 0F,
W~ Ui U (B.36)

According to the formula of the derivatives O(H) /O,

O(H) | (0H, OB,

and
oE.\  /(0H
(5. (5.0 ®3
We obtain
oH) OH,
8Uimm B aUzmm nm/! 0
-+ OH OH - . 0H -
—(0] - . f. |
<OJ anmm>0 <8Uimmoj>0 + <0] anmm0]>0
T —— . B.39
zj: 1+ (010;) (B.39)
Note that
0H,
<<8U- - )> = (nirt)o{niry)o, (B.40)
mm 0
o0H 3
<8U ) = Z(nidm—o>0nidmo + Oz(gzm (B41)
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Substituting Eqgs. (B.40) and (B.41) into Eq. (B.39) and making the SSA, we find

(niraniry) = (nirt)o{nizs)o
Lz Zg<niL—a>0<O~ZﬁiLa>0 — Zg<niL—a>0<ﬁiLaOi>O +>, (nir—o)0(Oizs 0o
1+ (00i)q

—(010))o = (0 0i)o + (0]00y)

4 i (B.42)
1+ (00;)
Note that (Ojﬁmg% = (ﬁiLoOi>0 = 0. Moreover using (B.30) we find
<niLTniL¢> = (nim>o<nz‘L¢>o + Z<niL—a>0<ﬁiLa>
(Ot 100 A A0 A.
" (0;0ir )0 — (01, Oi)o + (O, 0,1 Oi)o (B.43)
1+ (0]0;)0 ' '
Next we calculate the inter-orbital charge- charge correlations via the relation as (B.34):
O(H)
imTilm’ ) = . B.44
<nz L > v, ( )

Here using the relation (H) = (H)( + E., we obtain the inter-orbital charge- charge correlations
as follows.

O(Ho)o n OE,

(Ramnim) = 50—+ Z5—. (B.45)
Using the formula of O(H)/0\, i.e., (B.37) we have
o(H) 0H, OFE,
Here
<t o
8Ec . Z - <O.7 BUaiZm/ >0 - <8U8ifm/ O]>0 + <O;8£Zm/ O]>0 (B 47)
OUimmt L+ (0100 ’
OH,
(0] ) = traamdotnianto (B.43)
imm’ J nm/ o
51_OH 5 o 5100
Oj ou. = <nidm’>0<0jnidm>0 + (Midm) o (Pidm Oj)o + <OjOiLL’>07 (B.49)
0
of o L
U le = (Niam' )0 (PidmOj)0 + (Midm)o{Tiam' Oj)o + (O; 11, Oj)o, (B.50)
mm 0
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. O0H - e = - -
<O;f—/03> = (nidm/Oj)()(O}nidmOj)o + <7Lidm>0<0;-nidm/0j>0 + <O;fOz(i)L’O]>0 (B51)
0
Finally we obtain the correlation energy in the SSA as follows.

OF.
OUirr

= (nir)o (L) + (nir)o(Mir)

| (0l )0 — (Ol Oi)o + (0[O0, Or)o
1+ (0[0)o

(B.52)

Here we used the relation (O;ﬁidm)o = (fzidmféj)o = 0, and Eq. (B.30).
Substituting Egs. (B.48) and (B.52) into Eq. (B.46), we obtain the charge-charge correlations
in the SSA as follows.

(nirnir) = (nac)o(nir Yo + (nir)o(Rar) + (nar)o(ir)

n —(0105),)0 — (04, 0:)0 + <OJO§I{)L’OZ'>0'

ikl (B.53)
1+ (0f01)g
The operators of O@L and O&)L, are defined by Egs. (3.28) and (3.29):
Oz(g)L = 5n¢LT§niL¢, (B54)
According to the formula (3.78), we obtain the average of OES)L for a = 0, 1 as follows
35T @ @ A 3. 50@ 5
a - Oz 0, /0 — 0} /Oi Ol O; /Oi
<O§L)L’> _ ( ir )0 — (Oipp Oido + iz Oi)o ‘ (B.56)

1+ <O~ZTO~,>0

Using the above relation we obtain the alternative expression of the double occupation number
as

(nigniny) = (O\y) + () (niry o + izt do(iry) + (nazt)o(niz,)o- (B.57)
Similarly, we obtain the inter-orbital charge-charge correlations term as follows.
(nizniz) = (O + (i) (nizo + (nis)o (i) + (naz)o(nisso. (B.58)
Substituting Egs. (B.57) and (B.58) into Eq. (B.32), we obtain the expression of <”22d> as

(n2)) =(nia) +2> (O) +2 (firo) (ftir-o)o

d d
+ Z(ﬁiwb(ﬁmwh + 2 Z (O4))
Lo (L.L)
d d

+2 Z {{fin) (i )o + (nap)o(firs) b + 2 Z (nir)o{niz)o- (B.59)

(L,L) (L,L)
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On the other hand, we obtain the term (n;;)? as follows

(nia)” =(fia)” + Z%’L%

+2 Z fin) (NirsYo + 2 Z fir) (nir)o (B.60)

(L,L")

Substituting Egs. (B.59) and (B.60) into Eq. (B.31), we obtain the expression of {(dn;)?) as

d

((0n3a)?) = Y (nizo)o(1 = (nizs)o) + Z MiLe) (1 = 2(niLe)o)

Lo

— (fia)? + Z 09y 12 Z (0. (B.61)

(L,L")

Here the first term at the rhs of Eq. (B.61) denotes the Hartree-Fock contributions. (7;r,) in
the second term is given by Eq. (B.30) in which n,;, has been replaced by 7., and is equal to
(fi;1)/2 in the paramagnetic state. (f;4) in the third term is defined by 2% (7,,). The remaining
correlation corrections at the rhs of Egs. (B.61) is obtained from the residual interaction elements
<sz‘)L,) using the formula (3.78) as follows.

- Z (e OzLL’ 0~ Z(Oz(g)y )0 + Z (0 OzLL,O)

o (LL') (LL') (LL')
> (0l = — . (B.62)
<LL/> 1 + <OZ OZ>0

Equation (B.61) is identical with Eq. (3.89) in Sec. 3.6.2.

4. Amplitude of local magnetic moment (S?)

The magnetic moment of d-orbital is defined as

= 3Zm +2 Z mip M) (B.63)
(L,L')
Here m}; is defined by
Mg, = Nist = NiLy- (B.64)
Thus we obtain
(mi?) = (i) — 2(nizaniry). (B.65)
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Substituting Eq. (B.65) into Eq. (B.63), we obtain

d d d
(m2) =3 (nir) — 6 (nipaniry) +2 Y (ma, - map). (B.66)
L L (L,L')
Since, m;;, = 2s;;,, we can write Eq. (B.66) as
d d d
(mfd> = 3Z<77%L> — 6Z(nimniu> +8 Z <3z‘L . SiL’>~ (B67)
L L (L,L")
The inter-orbital spin-spin correlators (S, - Sim/) is obtained from the relation (B.21).
1 0(H)
i Sip) = ————1 B.68
(sie - siv) = =55, (B.68)
Using the relation (H) = (H)( + E. and the formula (B.19) of 0(H)/0\, we have
O(H) 0H, 0F,
= ) B.6
Here
~ OH OH - -+ OH -
—_{ Ot —{ =0, Of O,
OF < ! aJlmml > <8U’me’ ]> * < / anmm’ ]>
5 I 0 == 0 0 (B.70)
Simm F 1+ <Oj0j>0
0H, 1
< (8sz?n’ ) nm>0 B _§<midm>0<midm’>07 (B71)

-, OH 1 o 1 o 5
<O; > = __<midm/>0<0;r'midm>0 - _<midm>0<midm’0j>0 - 2(0;053,}0, (B.72)

OH -~ 1 e 1 - .
< Oj> = _§<midm’>0<0}midm>0 - §<midm>0<midm’0j>0 ~2(017,0;)0,  (B.T3)
0

1 0FE, 1 5 i
C20Jip ~ ((mir)o(mur) + (mir)o(mir))
—(0]01)0 = (071,000 + (0107, 0i)e

1+ (010;)0

+ (B.75)
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From Egs. (B.67), (B.69), and (B.75), we obtained the spin-spin correlations as

(Sir, - 8i1r) = i<miL>0<miL’>0 + —((mur)o (ML) + (mur)o(mir))

4
<OTOZ(§)L’>O - <OzLL’O Jo + <OT01LL’O > (B.76)
1+ (010;)
Since
@\ _ —(010F) )0 — (05),0i)o + (01O, 0i)a
(Oir) = e . (B.77)
We obtain the alternative expression of inter-orbital spin-spin interaction as follows.
1
(siz - sizr) = (Of7p) + (Omaz)(miso + Gmiz) (mis)o + (mis)o(mic)o).  (B.78)

Substituting Eqgs. (B.57) and (B.78) into Eq. (B.67), we obtain the expression of <mfd) as

d

(m2) =33 ({fis) + (nis)o)
=630} + 3 () ol + 5 S tnisodolnizoho)

+8 Z{ o) (mzL><mz’L'>o + Mz ) (mir)o + (Mair)o(mir o)} (B.79)

Since (m;,) = >, 0(n;1), we obtain the alternative form of (m?,) as

g 5l
(S?) =1 Z<niLo>0(1 — (Nizo)o) + 1 Z<niLa>(1 — 2(ni—)o)
Lo ; ; Lo
52 ZLL +2 Z zLL’ : (B.80)
L (L,L)

Here the first term at the rhs of Eq. (B.80) denotes the Hartree-Fock contributions. (7;,) in
the second term is given by Eq. (B.30) in which 7,7, has been replaced by 7,1, and is equal to

(n;r)/2 in the paramagnetic state. The remaining correlation corrections at the rhs of Eq. (B.80)

are obtained from the residual interaction elements <Ofg)L,) using the formula (B.62). Equation

(B.80) is identical with Eq. (3.99) in Sec. 3.6.3.

5. Momentum distribution function (ny,,,)

In the momentum representation the Hamiltonian is expressed as

H = Hy+ Hj. (B.81)
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The Hartree-Fock Hamiltonian is given in Eq. (3.9):

HO = Z €knoNknoe — Z Uimm <nime>0<nidm¢>0

kno im

i i (m.m)

Thus

H:HO+H17

HU = E Eknoﬁkna-

kno
(Ngno) is obtained with use of the Feynman-Hellmann theorem as follows.

) — < OH >_ O(H)

aekna aekna

The rhs is obtained by means of the formula (B.19).

O(H)  /( 0H, , OF.
aEkncr B aekna nm/ 0 8619710'

Here
oF, aGan aEkTLU aekna
e Z 0 __ o 0
O€kne j 1+ <O;OJ>0

and

( oH ) )
= Nkno-
€kno

Assuming an atom per unit cell, we have from Egs. (B.85), (B.86), and (B.88)

_N<Ojﬁkna>0 — N (PanoOi)o + N(QTTN%MODO
1+ (0]0y)0 '

(Nkno) = (Mkno)o +

Since (N, O;) = 0, we reach

N(QTﬁknaOi)o
1+ (010;)

{(Nkno) = (Mrno)o +

- Z Z (Uimm: — %Jimm’)<nidm>0<nidm’>0 + QZ Z Jimm! (Siam)o - (Sidm’)0-
(o)

(B.82)

(B.83)

(B.84)

(B.85)

(B.86)

(B.87)

(B.88)

(B.89)

(B.90)

Equation (B.90) is identical with Eq. (3.103) in Sec. 3.6.4. We present these relations Egs. (B.29),
(B.61), (B.80), and (B.90) in Chapter 3. We also used these relations for the calculations of physical

quantities in Chapters 4 and 5.
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Appendix C

Appendix: Matrix Elements in the
Lowest-Order Approximation

We present in this Appendix the matrix elements and related quantities in the lowest-order
approximations in Sec. 4.2. These expressions are needed in the numerical calculations in Sec.
4.3.

Assume that orbital L belongs to an irreducible representation I'. We also assume that the
Coulomb interaction U gz), only depend on the types of the irreducible representation I' and I to
which orbitals L and L’ belong; U é L), = UFF, We obtain the expressions of the matrix elements
and related quantities as follows by using the Laplace transformation (2.39). The matrix elements
of the correlation energy €. in Eq. (4.12) are given as follows.

(H10; o—ZdF 2 Prr

+2 Z dr(dp — VYU Por +4 ) drdp Uy Pre

(F )
+ = Zdr r— 1)U Q)QPFF + - Z dFdF’UFF/ Prr
Lo
1
+ Z dr(dp — DU Prp + 1 drdr U} Py (C.1)
T (r,r)

<O H 0 == ZdFUFF QFF

+ QZdF (dr — DUS?Qrr +4 ) drdp URL Prr

(r )
+ = Zdr r— 1) rr QFF + - Z dI‘dF/UFF/ Qrr
(F )
+ - Zdr (dr — 1) pp QFF + = Z dFdF’UFF/ Qrr - (C2)
(F r’)
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Here dr is the dimensions for the representation I', and

PFF’ = Z/ dt@iect ap(—t> ap(—t) bp (t) bF’ (t) J
0

Qrp = — / "t dtlei ) [ap(—t — ) bpo(t+ ) ap(—t — 1) bry (t + 1)
0 —ap/(—=t =) br(t +t") ar (=t — ') br(t + )
+ap (=t — ") b (t + ') ap(—t —t') bp(t + 1)
—apn(—t — ') beo(t + ) ap(—t — ') br(t + t/)} .
The correlation part of electron number in Eq. (4.14) is obtained as follows.

~r o~ 2 3 2
(OlnirO:)o = 2 Arr [U + (dr — 1) Apr <2 Uy + 3 Uy H
12 3 )2
+2 Z drv Avre 205 + S U]
[V#£T
Here

Appr = — / dt dt'eieet+) [&F/(—t—t/) bro(t +1') ar(—t — ') br(t) br(t')
0

—ap (—t = ) bt + ¢) br(t + ¢) ar(—t) ar(~)]

(C.3)

(C4)

(C.5)

(C.6)

The residual interaction elements Z< I L,>( iL L,> (a=0, 1, and 2) in charge fluctuations (4.15)

and amplitude of local moment (4.16) are obtained as follows.

@ =t [e% « N ~F o N
> (0f)) = — pR(e 010 — > (057, 0)0 + > (0 0477,0:0

(LL) (LL) (LL") (LL")
Here )
Z<O§2)Loz'>o = Zdr UL Prr,
L
Z <OzLL’O 0 — QZdI‘ dF - 1) UI(T‘) PIT + 4 Z dp dF/UFF’ PIT/
(L,L) (r,I7)
2) A 3 2
Z <O§L)L’Oi>0 = g Zdr (dr - 1) Uér) Prr
(L,L) r

3 2
+5 D drde U, Pop .
()

The matrix element Z LLY) <O~'TO§E)L/O~»>O are obtained as follows.

Z<OT zLL Zdl“ 12(1)“) Qpp

L

2 1 2\ _
—+ Zdr(dr — 1) (4 UI(“? — Z_l Ulg‘%‘) ):ppp
r

2 1 2\ [/ -
+ Z dr dp (4 USF), 1 Ué?, > (:F'FF + :FF’F’> 5

(I.I)
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Z <OTOZLL/ 0 - SZCZF rlr)UFF Mrr

(L,L")

+8 Z dpdpU, FF’ <U1£(1)“ Mrr + UF’F’MF’F>

(r,r7)

+22dr dr — 1) U, (UFFQ +TF(;1)>
14 Z dr des UL (U e + T3
(r,r)
3
+ = dr (dr — 1)Q2
g XF: r (dr — 1)Qrr
+ 3 Z dr dp U(2)2QFF’
1 T/ g
(r.r)
Here
Tf(‘%‘l’) = -2 <UI£I) =rrr + UF’F *—*F’FF)
~2 (U Zroe + UGN Zrer)

+ 2 E dF” ( NN ‘—‘FF’F” + UF’F" \—41"’1"1"”) .

l_‘//
Finally we have
2t A(2) A 0) -0
> (010F,0:)0 = dr UP K
(L,L") r

1 (1
+3 zrjdp (dr = 1) [1 UKL, + 5 UFF Pty

1) #-(1 1 2) £-(1
T Z dr dr [4 UISF)’KI(“F)’I + 4 U1£1)/K1(“1“)f2}
(T,1)
2 2 2) (2
B Z dF UISF Kt(l—‘%‘ Z dF dF’ UI(*I“)/ Kt(r%v .
(r,r’)
Here
(0 3 2 3 2
Klgl_? = _Z (dF - 1) UI(‘I‘)MFF - Z Z dI‘/ Ulg‘F)’MFF’a
IV (#T)
S S )
KFFll = E UFF/QFF/ y
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) 1
K, = =0 Mrp — US), My + US), Qppe — 5 U Wrp

1 — —
5 (Ué? =rrr + Uﬁ% :F/rr)

1 — =
— 5 <U1£?, =rrr + Ulgx?l)—v :F'rr'>

+ = Z dl"// < T \—41"1"’1"” + UF/F// \—'1'"1"1"”) (C17)

1“//

K = (Ué?MFF’ + UL MF’F)

<4U1(‘}‘)/QIT’ — Ulg‘?‘)/WFF’ + 4UF QFF’)

Ulgr‘)'—‘FF/F + UFIFHF’FF)

VRS

+  +
OO|HOO|’—‘OO|P—‘H>|HA>I}—‘

]

- 2) —
UI(T)/:FF'F/ + Ué/%@r/rr)

/N

dpr (U Zrrrr + USY Errrr) (C.18)

The quantities Mrr/, Zrrirr, Qrr, Wrrr, Zirre, Zorr, Zsrr, and Zipp in the above expressions
are given as follows.

MFF’ = EFFF/ = — / dt dtleiec(t+t,) GF(—t) br(t) GF(—t — t/> br‘(lf + t,) &F/(—t/) bp/ (t,) y
0
(C.19)
Sprr = — / dt dt' ') ap(—t) bp(t) ap/(—t — ') bpe(t + ') ap(—t") bp(t'),  (C.20)
0

Erpmr = — / dt dt' e ap, (—t) bps(t) ap(—t — ') bp(t + ') aps(—t') bpw (t'),  (C.21)
0

QFF’ = - (ZH‘F’ + ZQFF’ - ZBFF’ - Z4FF’) ) (C22)

Wrr = (Zirr + Zorr + Zsrre + Zarr) (C.23)

le"l"l = —/ dt dtleiec(tH/) CLp(—t) bp/ (t + t/) ar‘(—t — t/> bp(t) a[‘/(—t/) bp(t/) s (C24)
0

ngp/ = —/ dt dtlei%(t—i-t’) aF’(_t — t/) bp/ (t) CLF<—t) bp(t + t/) br/ (t/) (IF(—t/) y (C25)
0
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Zarp = — / dt dt'e? ) ar (—t) b (t +t') ar(—t) bp(t +t') ap(—t') ap(=t'),  (C.26)
0

Zirr = — / dt dt' e ap(—t — ) byo(t) ap(—t — t') bp(t) b () be(¥) . (C.27)
0

Here ar(t), br(t), air(t), and by (t) are the Laplace transforms with respect to the local density of
states pr(e).

ar(t) = /OO de e " f(&) pr(e), (C.28)
belt) = [ dee =) ), (€29)
on) = [ dee e 10 o), (€30)

bea(t) = [ dee e £(-8) pr(e). (€31

pr(e€) at the rhs is the Hartree-Fock local density of states for orbital L belonging to the represen-
tation I'.

1 &
pr(e) = 7D _ru(e), (C.32)
L
pr(e) = |(iLlkn)|* 6(c — €xn) . (C.33)
kn

Next we obtain the expressions of the numerator in the second part of the momentum distribu-
tion function Eq. (4.18) in Sec. 4.3.2 are given as follows.

d
N{Ofns Oi)o = U3 g [ > (Bru(€no) trne(k)]” + Brrr(€no) | trme (K)[?) f(—kne)
(LL")
d
- Z (CLL'(Ekm)|ULm(k)|2 + CL’L(Ean)‘UL/m7<k)|2) f(gkna>i| .
(LL")

(C.34)

Assuming that orbital L belongs to an irreducible representation I', B/ (ex,) and Cpp/(eg,) are
expressed as follows.

Brr(egn) = — / dt dt' ek g (—t — ') bp(t + ) ap (=t — 1), (C.35)
0
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Crr(€xn) = — / dt dt' et )T g (—t — ) bp(t + ') by (t + 1) .
0

The denominator of the momentum distribution function (4.18) is expressed by

(0:'0,)0 = deU(?QSFF

+2 Z dp(dr — DU Ser +4 ) drdp U S

(r )
+ = Zdr (dr — WU Spp + = Z S
(F r)
+- Zdr (dr — DU Spr + = Z drdr USY Ser .
2 &)
Here
Srr = —/ dt dt'e™ ) ap(—t —t') ap (=t — ') bp(t +t') b (t + ') .
0
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Appendix D

Appendix: Matrix Elements of Correlation

Energy: (5.9) ~ (5.12) and (5.15)

In this Appendix, we present the explicit expressions of the matrix elements of the correlation
energy €. in Eq. (5.8); Egs. (5.9) ~ (5.12), and (5.15) by using Wick’s theorem and the Laplace

transformation (2.39). o )
The elements for (H;0;)q in Eq. (5.9), i.e., PT(%%,)L,, 1mge are obtained as follows.

P[(z(}f)’)I/”L”/¢T = Z/O‘ dteiGCtaLJ,(_t)aLT(_t>bL\L(t>bLT(t>6LL’(5LL”(SL”L”/,

Pl(,lLl’)L”L’”a’o" =79 A dteiect [aLg (_t)aL’o" (_t>bLa' (t)bL/J/ (t)(SLL” 5[/[/”

+ are (—t)apo(—t)bro (t)brro(t)0r LrdpLm |,

o0

PI(/QLl’)L”L’”Uo’ = Z/O dte““taa'[aLU(—t)aLzo./(—t)bL(,(t)bL/(,/(t)éLLuéL/Lm

-+ aLU/(—t)CLL/a.<—t)bLO./ (t)bL’O'(t)éL’L”(sLL’”]y
P S —t )b (£)brro (t)S 000
ILL'L" L' oo’ 420‘0’ (& aLU/( )CLL/U( ) Lo”( ) L’o’( ) LL"OL [
0

+ (ILC;(—t)CLL/U/ (_t)chr(t)bL’a-’ (t)(;L’L”(sLL”’i| s

1 . > 1€
Pt(l%i)’L”L”’o' = éZ/ dte et |:aLo-(—t)a/L/,a-(—t)bLo-(tﬂ)L/fU(t)éLL//éL/L///
0

+ aL—o’(_t)aLlo.<—t)bLo- (t)bL/_o—<t)5L/L/16LLIII:| ,

1 : > i€
B(;izL//L///UU/ = _]._62/0' dte ot |:aLO'(_t)aL,O'/(_t)bLO'(t)bL/a'/<t>5LL”6L/L/II

+ apo(—t)apo(—t)bry (t)bL'o(t)5L'L~5LLW] .
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Here a1, (t) and by, (t) are given by

aLa(t) :/ dte’“tpm(e)f(é), (D.7)
0
bro(t) :/ dte‘“t,o,-Lg(e)[l — f()], (D.8)
0
imilarly, the elements of (O, HyO;)o in Eq. (5.11), i.e., ac’) | are obtained as follows.
Similarly, the el £(0;' Hy01)o in Bq. (5.11), i.e., Q%) .., are obtained as foll
(00) _
Q) = — (5 OOy B oy O ¢5a~'¢>
X / didt’ e+ [am(—t — )byt +t)ar (=t —)br (¢ + 1)
0
—ap(=t —t)bps(t + )ap (—t — Yo (t + 1)
+apr(—t —t)bpip(t +t)ap (—t — )b (t+ 1)
—apip(—t — Vo (t +tap (=t — o (t+ )|, (D.9)
01) (10
2LIL//L///O.0./0.//0.HI — QLL/)L//LHIO.O.IO.IIO./// — 07 (D-lo)
02 20
2LI)L//L/”O'UIO'NO'”/ - Q%L/)L//L///a-o-la-//o-/l/ - 07 (D.ll)
(1) = — (8011 Gagmd 11O Oy
LL'L'L" oo o' L'L"OL LM Oggttt Og! gt =+ LL"OL [ 0gt g 0gt1 5t
X / dtdt' @ ap o (—t — Yoo (t 4+t are (—t — t)bpio(t + 1)
0
—apg (=t —tbpo(t +apie(—t — )bpe(t + 1)
+apgr(—t — t)bpg (t +t)aps(—t —t)bpy(t + 1)
— aLflg/(—t — t/>b[/gl(t + t/)CLLU(—t - t/)bLo'(t + t/) y
(D.12)
(12) _ @D _
QtLL/L//LI//O.UIO./lU/// - QtLLILIIL///O.O./O.IIO./// — O, (D.13)
(12) o (21)
lLLIL//L///a.o./O.IIO./// — lLL/L//LI//O.O.IG.//o.///

1
= _ZO—U, <5L’L"6LL”’60’0””50"0'” -+ 5LL”5L’L”’60'”0'50"“0’)

X / dtdt'etect+t) [aw(—t — oo (t + 1 )ape (=t — )i (t + 1)
0
— aL/gl<—t — t/)bL/gl (t -+ t')aLlo(—t — t,)bLU(t + t,)
+ apro(—t — )opne (t +t)ape(—t — )b, (t + 1)
- aL’lcr’(_t - Zf/)bL/cr’ (t + tl)aLa(_t - t/)bLU(t + t/)] )

(D.14)
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22 1
QEtL)[/L“L/”O'O'/O'“U”' = — Z <5L’L”6LL”’ 50.//_0. + 6LL” 6[/[/” 50”0’) 50”—0'60'”’—0"’

X / dtdt'e?eet+t) [aL,g,(—t — o (t+t)are (=t —t)bpi, (t +1')
0
—apgr(—t — t)bpg (t +)apie(—t — )b, (t + 1)
+ apo(—t — opg (t + t)ape(—t — )b, (t + 1)
—apio(—t — t)bpo (t +t)ape (—t — " )or, (t + t’)] ,

(D.15)

22 1
Ql(lL}/L”L/UO'O'/a'”o'/” == — E <5LILII 5LLII/ 50.0."/ 50/0./1 + 6LLII 6L/Lll/ 50.0./1 5o.lo./ll>

X / dtdt'etet+t) [aw(—t — )bprgr (t +1)are (=t — )by (t +1')
0
— aL/gl(—t — t/)bngl (t + t')ang(—t — t/)bLo(t —+ t/)
+apo (=t — Voo (t +1)ape(—t — )b (t + 1)
— apng (=t — )ope (t+ t)are(—t — )b (t +1')].
(D.16)
Here a1, (t) and by, (t) are given by
ar1o(t) = / dte=epiro () (@), (D7)
0
bris(t) = / dte”"“epir, (€)[1 — f(€)]. (D.18)
0

The elements of (O~iT(§i>0 in Eq. (5.15), i.e., Sﬁi‘f)m mge are obtained as follows.

00
SO rsaranam = —\ L1 0L1n O 10O i Bgn ¢5a'~¢>

X /O dtdt' e (=t — t)opp(t + t)ap, (—t — )b, (t+ 1), (D.19)

01 10

SEIL/)L//LIHO.U/O.//UW - SE]L,)LNL/"O'O'IO'NU”, - O, (D20)
02 20

SéL’)L”L"/O'U’O'”U”’ = SE/L’)L”L’"O'O"O'”U’” - 0, (D21)

12 1 /
SéL’)L”L’”a'o"a'”o”’ = — ZO‘O‘ <5L’L”5LL/”50’0””50"0'" —|— 5LL”5L’L/”50'”0'50'”’0")

X / dtdt' et ap o (—t — )b (t + ) are(—t — )b (t +1'), (D.22)
0
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8(22)

22
HLL' L" L go' g g — Sl(tLL’L”L’”UO"U”U’" - O, (D23)

22 1
St(tL}/L”L”/UO'/O'NO'/” — _Z <5L/LII5LLIII50-//_O- _|_ 5LLI/5LIL///50-//U> 5UI_U(SO-IN_O.

X / dtdt' e ap, (=t — t)Vopo(t + )ape(—t — )b _o(t +1'),

0
(D.24)
and
1
Sl(ZQE[)/’L”L’”UJ’o'”o"” = 16 <6L’L”6LL’”(S 7" /(50.///0. + (5LL”(5L’L”/50'”0'50'/”0’)
X / dtdt' e ap o (—t — )b (t + ) are(—t — )by (t +1'). (D.25)
0
The elements of (O~1»TP~[ 10:)0 in Eq. (5.12), i.e., K9, are obtained as follows.
021 02t)
iy = Kiph, + Kip, + Koy + K. (D.26)
Here
K, = U [ e
X |anr(=t)bur(t + ¥)any(~1)buy(t + ¢)ass (<t )ary(—F)
— apg(=)bry(t +)ary (—t — )bry (t)ars(—t)bry (t)
—arp(—t — t)bry(t)ar (—t)bry (t +)bra(t)ary (=)
o ars(—t = )bup(Hary(~t — )y (Dbrs (#)br, ()| A1, (D.27)
Kg)LlN = Z ZUSL)? / dtdt’ ettt
L'#L oo’
X ap—o(—)br—o()ape(—t — )bro(t + ) ap e (—t )by ()N, (D.28)
éofﬁ = Z >0 UL UL / dtdt'e?ect+t)
L’;éL oo’ 0
X ap—o(—1)bp—o(ape(—t — Yoo (t + t)ape (—tbpe (YA, (D.29)
L(]Lzﬁ - Z Z Uy / dtdt eieet+t)
L’;EL o
X ap—o(—1)bp—o(t + t')are(—t — t)bre (D)ar—o(—)bro (E)AS 7). (D.30)
Kélg’oa’ = Kéll?’)ao" + Kélll}’)oa’ + Kéll?’l;o’ + Kélg’tgo"‘ (D31)
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Here

K}/l[(/)/)oal - [(9) /U[(}[}// dtdtleiec(t—i_t/)
X ap—o(—)bp—o()are(—t — t)bpo(t + g (—t)bpe (ALY
+ O'O' Ul(,(BULL’ dtdt,ezec (t+1) aLT( )bm(t)au(—t — tl>bL¢<t -+ t/)

0
X (aya'(—t orror(t') + are(—t)bro(t )>)‘(()TL¢’L’>

1 O o et
Kt = =2 3 Y Upin(Uppn + 50'0"Upy) / dtdi' i<+t
L// #L o—// O

X apgr(—t)bpg (t)ars(—t — 1 )bLa(t 1) apgn (1) bpngn ()N

@\ [ ettt
—2 Z ZUL’L" LL’/+_ HULL//)/ dtdt' ecct+t)

Ll/ #Ll o—// 0

! 1

X aL’U’(_t —t )bL’ (t +t )CLLU(— )bLJ(t/)CLLuUu(—t,)bL//UII (t))\(ilaLu)
+ ULL/(ULL)/ —i— - /ULL/)/ dtdt'eect+t)
0

X CLL/U/(—t)bL/UI (t + /)CLLU<—t — t/)bLg(t)angl(—t/)bLg<t/)

t

+ aL/U/(—t — t/>b[/ ( )CLLO(— )bLg(t -+ t/)bLl /(t/)aLg(—t/)

—aL/U/(—t)bL/ /(t+t)aLU( )bLg(t+t)ang ( )CLLJ( t/)
(t)

— apor(—t = )by (D) ase(—t — )bro (t)brar (Lo ()| A7),
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1 oo A ,
K}y = =700 VUL /0 dtdteiec(t+)

X g (=t = )bpor(t + ) ara (—1)bro(t)ar—o (— )by o (1)AS7)

1 o° , /
— ZO’U/U fL)/ U S’)L, /0 dtdt’ eieet+t)

x aLa (=1)bror(t)aro(—t — t’)bLa(t+t’)aL o (=)or—o ()N

+ U Z ZU L// // L/L//‘i_z /UL’L”)/ dtdt/e’iec(t+t/)

LI/ #L o—//
X apg(—t)bpg (t)ars(—t —t )bL(,(t 1) aggn (1 )b (VAT

+ 0 Z Z UL/L// //U LL" + - U(ZL//)/O dtdt/eiec(t+t/)

L// #L 0—//
X Ao (—t = )by (t + ) ape (—t)bro(t)agrgn (— )opren (t)Xsy 77
1 1 & , /
~ U oo UL, + JUR)) [ e
1 1 ;
X CLL/U/(—t)bL/U/ (t + /)(ILU<—t — t/)bLg<t)aLlol(—t/)bLg<t/)

t

+ apg (=t = )bror(t)are(—1)bry(t +)bro () ars(—t)

—aL/U/(—t)bL/ /(t+t)aLU( )bLg(t+t)CLL/g ( )aL,,( t/)
(t)

— aprr (=t = Vb ()ary (—t — 1)bre(E)brror ()ory () | ASr s

1 o , /
K{ = UV | e
x| = s (=Obuolt + V)arg(—t = )b (Do (—8)by (110, A7)

— apr(—t = )buro()ars (=6)bro(t + )i o (t)ar—o(=t)500 A5

tap o (—)bp oo (t+ )are (—0)brg (t + ) s (—t)ar_o(—)0s_ o Ayl

+ ap (=t = )bp—o(t)are(—t — t")bre(t)brre(t')br—o(t')ds— U’AQ(;LZ')] ;

2 1
KZ(L)L’O'U’ = _ZUOJKE/[)/O'U"

(2) o (20) (21) (221) (22t)
KtLL’UU KtLL’UU’ + K tLL oo’ + K tLL oo’ + K tLL'oo’*

1 oo ‘ /
KE?[(/)/)O—OJ = _16070/ UI(J(BUE?[)/ /0 dtdt/ezeg(t+t )

X ap—o(—)bp_o(t + ) are(—t — )opg(H)ar —o(—t)bre ()AL
1 *© ) )
~ 100U UL, / dtdt e+
0
X are(—)bro(t +t)ap—o(—t — t)br_s(t)ape(—t)br—o(t )AégL’7
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(21)
KtLL’Uo’

220

tLL' oo’

1 oo ' /
Kitito = Zéafo'Ué?/UfL)/ / dtdt’ e+t

1
= 00Uy UL / dtdt' e+
0

X | = aL’J(_t>bL’a (t + t/)aLO'(_t - t,)bLU(t)aL’—U(_t/>bL—U< ))‘(1?2)’

— ap (=t = )bpo(D)ar—o(=t)br ot + )bro (¥ )ar, (—t)AT, 7,
+ aL’o(_t)bL’a(t + t/)aLfo(_t)bL*U@ + t,)aL'*U(_t/)aLU(_t/)S\gzg’y)

Fap—o(—t — )bp o ()are (—t — )i ()b (t)br—o ()N,

1
= 0, UDUY), / dtdt' =+t
16 0

X | apig(—t)bpg(t 4+ ) are(—t — t)bro(t)ap—o(—t)br_o (t)ATT),
+ap—o(—t = )bp_o()ap—o(—)br_o(t + 1 )bre(t are (—t )Ny "
t g (—bro(t + )ar o (—)br o (t +¥)ar o (—t)ars (—¥)A5T)
Fapo(—t — )by o(tape(—t — )b (brro (t)or o ()],

( t)bL/ (t+t)aLg(—t—t/)bL,a(t)a ( )bL g( )
+ap_o(—t — Voo (t)are(—t)br_o(t +t)bpo(tars(—t)

o ()bt +t)ape(—t)bp—o(t + t)ap —o(—t)ars(—t")

(=t = Yoo (B)ara(—t = )b o (s o )brro(t) | N7

_ 5 Z U[(JQI?//U[(/%}//(;O—_O-// dtdtleiec(t+t/)
LIL) 0

ar's
t
—ayr— t

—ay/_

X aL/_g(—t)bL/U(t)aLg<—t — t/)bL J(t + t,)aLu_U(—t/)bL//J(t/)S\(JEE,),

1
_ 5 Z Ué?//Ué%)L//(SU,U/ / dtdt/ tec(t+t)
L”(?éL) 0

X apr—o(—t = )bpro(t + )ase(—1)bp o (apm (—)bpr s () A5 170

1 %0 o
+1_650_U,Ug22,Ug23, / dtdt' ')
0

X [aL/U(—t)bL,U(t ) apo(—t — t)bp—o(t)ap—o(—t )b ()N 7)

tap—o(—t = )bpro(t)are(—t)br—o (t + ) are(—t )b (YA 7
— 2aL/_g(—t)bL/g(t + t’)aL_g(—t)bL_a(t + t,)

\(—o0o 1 g—0a
X (aL’a(_t/)aL—a(_t/))\gtLL’) - §aL’—a(_t/)aLa( ))‘étLL’)
— QCLL/_U(—t — t/)bL/ (t)CLLU(—t - t/)bL U(t)
’ (—o0) 1 / /
% (b (oo (NG = Sbra oo (N1 )|
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Appendix E

Appendix: Overcompleteness of the
Variational Parameters

In this Appendix, we discuss the overcompleteness of the vatiational parameters A\7%, and

5\(2722, and derive their expressions (5.28) and (5.29) in Sec. 5.1. The self-consistent equations for
the parameters are given in Eq. (5.21) as follows.

(o @
Z ULL’ TLL’O'U a TLL’ Z ULL’ PTLL’BTO’ - Kﬂ('L)L’UO"' (El)

The self-consistent equations for /\1 LI ) and )‘ZZLUL’ in the weak Coulomb interaction limit have been
obtained as follows.

1) (11 12 1 p(11 2) (21
U ng)'P éL’LU )‘gLL’ + U LL'Pz(LLaaa /\2lLL’ = UéL)’P LL’)acr’ + UéL’P LL/)cm (E.2)

2 2) (12 oo 1D (12 2) (2
—U P e NI = UL P Nt = UL P s + UL Pl (B3)

On the other hand, we have
P}j:l/)(m, = Prieo, (E4)
21 12
PéL/L.U/ = — £L12).017 (ES)
1
PI(LI?UJ' = _ZJOJ‘PLL’O'U'7 (E6)
1

P how = =g Pitran (E7)

Using the relations (E.4) ~ (E.7), the self-consistent equations (E.2) and (E.3) are expressed as
follows.

oo 1 1 2
ULL’)‘ELL’ -7 /ULL’)‘QlLL)’ = UéL)’ + Z /Ung)/a (E.8)
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oo 1 2 1 1
ULL/)\(lLL/) - Z ,U[(/£’A2ILL’ UI(/I}’ + 40-0- U[(/L/ (E.9)

Equations (E.8) and (E.9) are the same equation, so that one can not obtain Xﬁ‘;‘;’? and ng’g'L),
uniquely.

Note that we made use of the Hilbert space for S\EJL/,) and 5\5752, as follows.

1) 5 / Y (o0’)
ULL’)‘lLL’ - “7‘7 ULL’)‘QILL’

T T
AEy vt okonsok! n o'k —€ X5(ak’2n’goak2n20)5(ak’1n’10'ak1nw’)|¢>
Lnbokanaokinio’kinio’ c

There are 8 independent variables {)\1 LI )\é‘l’gL,} with respect to spins o', 0 = j: while there
are only 4 independent states with respect to spins in the Hilbert space. Thus, {)\1 I L, , 21 I L,} are
overcomplete.

We have to reduce the number of independent variational parameters less than or equal to 4 to
find a unique state using variational parameters. Let us find 2 X 2 independent variables:

1 o0
o/ — USL)’)WLL/ -7 IULL’)‘QZLL)’ (E.10)
Now we can write
(Door = 650, (E.11)
(Jx>00’ = Og/ g, (E.12)
(0y)oor = =005, (E.13)
(02)00r = 0050 (E.14)

Thus, 2 X 2 matrix v, is expressed as follows.

Voo = (a1l + boy + coy + do,) oo
= (CL -+ dO')(Sga/ + (b — iCU)éa/,a. (EIS)

For example, we can assume the following form with 4 independent parameters 5\1 LI /\gsL) I
Aaiz> and A |, such that

AECZTL’ - )‘lLL’ + >\1LL’U5U —0 (E.16)
A7 0 = Ao + A5y 11000, (E.17)

Then we obtain
]- N S
Vgl = [ULL/)\lLL/ - ZUéQL)' ()\ZZLL/ + Aé&y) ]500'

1 ~
n [ULL, (Alw 280 ) n ZUSL),AQZLL,] Sor s (E.18)
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When )\f’L o= )\2§L = =0, we put the weights for diagonal and off- diagonal elements, U SL)’S‘l L —
ULL,)\QZLL//KL and ULL,)\lLL/ + ULL,)\QZLL//AL respectively. When /\lLL’ 7é )\QZLL, #+ 0, we put asym—
metric welghts for diagonal and off-diagonal elements, Ul 7 L/)‘l LI — U 7 L,/\gl L4 — U 7 L'/\zz L0
and U N+ USDAS) Lo+ U Ay /4.

The equations (E.16) and (E.17) are identical with Egs. (5.28) and (5.29). We used these

equations in Chapter 5 to overcome the problem of overcompleteness of the variational parameters

A7) and A7),
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Appendix F

Appendix: Matrix Elements of Correlation
Energy and Self-Consistent Equations

In this Appendix we present the expressions of all the matrix elements in the correlation energy
Eq. (5.8) and the self-consistent Egs. (5.103) ~ (5.106). We obtained the matrix elements (H;0;)o,

<OiTﬁOi)0, and <O~Z-TO~Z»>O for the variational parameter ansatz (5.5) (,i.e., Egs. (5.9), (5.10), and
(5.16)) with use of the Laplace transformation (2.39) as follows.

(00) y(I1)
ZULL LL¢T>‘0LL

(1 21 oo’
+ Z Z ULL)’ LL’ LL’cro’ + ULL'PIEL')UU )/\gLL’)

LL/ /
(2) pU2) (2) p(22) 3 (o0’)
+ Z Z Upp (U LL’ Prireor Y U Pirrroe ) Aair s
(LL"y oo’
(2)2 p(22) (o—0)
+ Z Z Urty Piitro—oMotrr (E.1)
(LL) o
S Sta A <t A
(O; HOi)o = (O; HoO;)o +(O; HiO;) , (F.2)
ST A (0)2 (OO) (1)2 4(11)  [(o0’)2
(O H Oi)o Z U QLLH OLL + Z Z Uriy Qriroo ML
(LL') oo’
(2) H(12) Y (oo’) (oa”) (2)2 ~(22) (o‘o‘)
+ 2 Z Z ULL/ Ul Qirveo My Aari + Z Z Urtr Qoo Aur iy
(LL"y oo’ (LL'y oo’
(0 o) ~(22) {(oc—0)
+ Z Z ULL’ strr) QiLl/o—o oLl (F.3)

(LL") o
O HI O_ZULL OLL LLJ,T

) 1 oo')* 1
+ Z Z ( Lr 1LL’ 7 IULL’)‘QZLL)’ ) Kjggfaa/

(LL")
o,—0 2
+ Z ULL’)\étLL’ t(L)L’U g (F4)
(LL')
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and

~ 1~ 0)2 ~(00) ¥ )2
<Oz‘ Oi)O ZU( ) LLu OLL + Z ZULL’ LL’JJ 1LL’)

LL/ /
(1) 12) (0'0 (oo (22) (o0”)
+ 2 Z Z ULL’ULL’ 1L Lo M A 2lLL’ + Z Z ULL’ Sl ea oL
(LL') oo’ (LL')
y(0—0)
+ Z ZULL’ 2tLL’ tLL’a o AULL - (F.5)

(LL")y o

Here { P}, {Q}, and {S} are obtained by using the Laplace transformation (2.39). We obtain the
relations between the components of { P}, {Q}, and {S} as follows.

PP = Puogs, (F.6)
PI(/ILI’)UU/ = Prroo, (E.7)
PIEILQ/)UJ’ = JOJPLL,O’O”? (E.8)
pey 1
LL'oo’ — _ZO-O- PLL’O’O") (F.9)
2 _ 1
]DZLL’O'U’ - __PLL’O'O' ) (FIO)
16
and
(22) 1
Piivio—s = 7PLro—o (F.11)
For the {)} components,
QLLH QLL¢T7 (F 12)
(11 - _
Livoor = QLLoos (F.13)
(12) _ 1 /
LL'oo’ — _ZO-O- QLL’aa’a (F.14)
= Quiee, (E15)
LL'oo 16
and
(22) 1
tLlo—o = [@LLo—o- (F.16)
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The {S} components in Eq. (F.5) are expressed by {@} in which @) has been replaced by S.
The elements { K } are the higher order corrections. We summarize these terms as follows.

K =K, (F.17)
K, = Z K, (F.18)
K Z(EL’ Z KlLL’Ucr (F.19)
K@ r ., o
ILL'oo’ — _ZUU LL'co’’ (F20)
and
K =Ky - (F21)

We assume that the orbital L belongs to an irreducible representation I' of the point symmetry
with dimensions dr. Moreover we assume for simplicity that the Coulomb interactions U gz), only

depend on the types of the irreducible representations I and I to which the orbitals L and L’

belong; U (o L), = Uéi’ig Then the final expressions of the elements for the correlation energy (5.8) in

the paramagnetic state are given as follows.
(H10; ZdFUF%QPmAOFF

+2 Z dr(dy — DU Perdare + 4 dedpUSL oo A

(F )
- = Zdr (dr — DURR Prrdairr — - Z drdp UR2’ Prr Aoirr
(F )
- = Z dr(dr — 1)UF%2PFF)\21EFF - = Z drdr UF2FI2PFF/)\2tFF' (F.22)
20

~ —i— -~ -~
(O; HyOy)o = ZdFUFF Qrr\grr
+2 Z dr(dr — 1)U Qrr Ny +4 ) drdp UL P M
r (F I')

1
* 8 ; dr(dp — 1)U§2)2QFF)\ e T (;) dpdy UFZFIQQFF’)\QJFF'

1
+ ; dr(dp — DULPQreA2p + = (;) drdp U Qrre Ny (F.23)
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<O HI o—ZdF I‘FKFF)‘OFF

+2 Z dr(dp — DU K Mrre +4 Y dedp UL KLY A
(1)
- 1 -
— = Z dr(dr = DU Kt Aarr = 7 D drdoUiD K Mo
()
+ Z dr(d UKt darr +2 Y dedp Ui K Aoerr (F.24)
(1)

(0,0 = Zdr 2 Ser Ay

+2 Z dr(dr — DU SerNpp + 4 dedp U Seev X

<r )
4= Z dr(dp — DU S0 Ay + - Z S
(r )
+7 Z dr(dr — DU SerAir + 5 Z drdpr U2 Srr Nyrr - (F25)
r (r )

The elements Prr, Qrrv, and Sprv have been given in Appendix C by means of the Laplace trans-

form of the local density of states pr(€) in the Hartree-Fock approximation. K (F)F, are given by.

2 ~ 2 ~
Klgp = Ulg‘(l)") QFF >\OFF +4 (dI‘ - 1) US—\) M[T )\II‘I‘

2 ~ 1 2 ~ ~
+4 7 de U Mre Aarrs + 5 (b = 1) U Mrr (Rairr + 2 Raurr )
I'(#T)

1 2 ~ ~
7 > de U M (Bairrs + 2 daurr ). (F26)
I(£T)
Kith = 201U Mrr Aorr
Ul [QUS;)MFF + UNQprd(dr — 2)U§1F)Mpp} Arr

~ 1 ~ .
+ Z dF”Ulg\}—\)uMFF”AlFF” - EUI(‘?QQFF <)\21rr + >\2tFF’> . (F.27)
I (2T)
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Kélp)q = Uélp)/ (UI(*?*)MFF/S\OFF + Ulg?%/MF’FS\OF’F/>
+ U (U8 Z e + UL Erer + UL ) A
+ 2(dr — 1)U1£1F)U1£?: (EFF’FS\IFF + EF’FFS\IF’F>
+ 2(dpr — 1)U§1p)r Ué}%, <EI‘F’F’5\1FF’ + EF'FFIS\mF')
+2 Z dpn UL, Ué}%n (EFF’F”S\H‘F” + Er/rrﬂj\mr”)
I(ZL,1)

1

1 6UI(‘?‘)/2QFF’ <5\21rr + :\21&1“1“’) . (F.28)

Klg‘lf‘)Z = _2UI(‘%‘) UI(‘(;‘)MFFS\OFF + Ué?Ué?QFFXlFF
+ U [208) Mrr = UR 0y = (dr = 2)U My | X

. 1 .
= > dv U Mredairer + SUSWer o, (F.29)
F//#l—‘
Kélr)/g = ng)/ (UI(“[%)MFF/S\OFF + Ué?%/MF/FS\or/F)
. 1 .
+ Ulg‘}‘)’ UIE‘QF)’QFF’ )\1FF’ —+ EUIE?")?WFF’)\%FF’
+ UIS?, <U§(1)~)Er'rr + U1£91)~/EFF/F — Ulgl)“/QFF’>5\2lFF’

1 _ - _ -
— —(dr — 1)Ué2r) Ué%), (:rr/r/\2lrr + :rfrr/\m“'r)

2
1 _ - _ -
- E(dr/ - 1)U§?/U§?%/ (Srrfr/)\mrrf + 5F/FF/>\21P/F/>
1 _ ~ _ -
- 5 Z dr Uls?//Uls?%// (\:FF’F”)\QlFF” + :F’FF”AQZF’F”)- (F.30)
(#£01Y)

1

- 1 . 1
K = §U§?U§?MFF)\0FF — ZUI(‘}‘)UI(‘?QFT)‘HT - —

16
1 1 8 1 \
+ Z_lUé? <U§1r) + ZUIS?>QFF>\2HT + Z(dr - Q)Uézr)QMFF)‘QtFF

U ﬁ?QWFF Aoirr

1 @25 5
1 > drnUip Mrro Agyrre. (F31)
I (£T)
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1
4
1 . 1 .

— ZUSF)/ UIE?/QI‘I‘/)\IFF’ - 1—6U§?,2Wrr'>\2lrrf

KIE(I%%’ = Ulg‘%)’ <UI(‘(%‘) My /N\OFF + UI(“(’)I)“’ Mppj\or/p)

(dl“ - 1)U1£?Up/p <'—FF’F)\2t1"1" + \—'F’FI‘)\QtI"F>

(dF’ - 1)U1£?1)“/ Ulg?/ <EFF’F’/~\2tI‘F’ + EF’FFS\%F’F/)

+
Ooll—toolr—tool

Z dr UI(‘%)// Up/pn <~FFT~/\2tFr" + —'F’FF”A%F’F”) (F.32)

I/ (#L,T)

Here Mrr/, Zppirr, Qrrr, and Wrp are given in Appendix C by means of the Laplace transform of
the local density of states pr(e€) in the Hartree-Fock approximation.

The final expressions of the elements for the self-consistent equations (5.103) ~ (5.106) in the
paramagnetic state are expressed with use of the irreducible representation I and [ to which the
orbitals L and L’ belong.

Xorr = prl (PFF — Uﬁ?‘l Kﬁ?) , (F.33)
Mrr = Q71 (Ppp - 411 Uiyt Kﬁ})) , (F.34)
Mirr = QL1 (Prr/ - }l Uélp)fl Kﬁ%) , (F.35)
Aorr = —Qrp (Ppp +4Ud! f‘(}ﬁ’r) : (E.36)

Aairrr = —Qpps (Prr/ +4UD ! K}I?)F,) , (E.37)
Norrr = —Ox <PFF 4! Kfﬁ}) , (F.38)
Ayrry = —Qﬁl/ (PI‘I‘/ +4 UFF, Kg%,) . (E.39)

Each element at the rhs of the above expressions (F.33) ~ (F.39) is expressed as follows.
Klg(Jr) = Ué[p Qrr Agrr + 4 (dr — 1) Uélp) Mrr Mirr

2 ~ 1 2 ~ ~
+4° Y do U Mer Aare + 7 (dr—1) U2’ Myr (Am 19 AMF)
I (1)

1 2 - -
+ 1 Z dr UIE?, My <)\2lFF’ +2 )\thF'> ; (F.40)
V()
K 1‘ = SUFF UFF Mrr )\Opp
+4 Urlr) [ UQ =rrr + Upp Qrr +4 (dr —2) Uép) HFFF} A1rr

+16 UL Z dpr Ut Zrrer Mrrr — ~ Upp Qrr <>\21FF +2 Az:srr) (F.41)
PiI(T)
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Rip =4 U (UI(“?‘) Mrrs Agrr + Uy, Miprr 5\orfr/)
+4 Uplp/ (U((p Zrrr + Ué?%/ =rrr + Uﬁl er/) Airr
+8(dr — 1) U USY (EFF’F Airr + Errr 5\1r/r)
+8 (dp — 1) Uty Ul (EFF’F’ Airr + Eprp Sxmr/)

=+ 8 Z dF” UIE}—‘)” UIE}%” <EFF/F” 5\1FF// —+ EF/FF// 5\1F/F”>
P (AT

1 2 - N

1 ng)/ Qrp ()\QZFF’ +2 )\2151“1“’) ,

_ 1 .
K = 5 U UL Mrr Agrr — 1 Ut U Qer Airr

- Z Ulg‘%“) |:2 UI(‘OF) EFFF - U QFF - (dF - 2) U(I‘) ~—*FFFi| )\QlFF

1 2 _ ~ 2 ~
+ - Z drn Ulﬁ? =rrre Agrre — < Ué? Wrr Aarre
i 8

_ 1 ~ -
Kz(lg%/ =1 UIE?, (Ué(p Mrr Aorr + Ulg?%, Mryr Aor/r/)

1 _ _ -
+t1 Ué?, (Uﬁ‘}) =rrr + UF((/)%/ Zrrr — Ur(?/ Qrw) Agirrs
1 @ 1@ (= 3 - 3
+ g (dr - 1) Upp Upp/ (:FF'F Aairr + Epr Azmr)

1 _ ~ _ ~
+ 3 (dpr — 1) Uégp)/ Ué?%/ (:rrfrf Aorre + Eprr /\QIF’F’>

1 2 2 - 3 - 3
-3 E dr UI(V%// Uép)u (ZFF/F” Aarr + Eprre )\2zr/r//>
F/I(#F,I‘/)

| R
1 U U, Qe Averr — 3 U Wrp Aaurr

1 ~ 1 -
K3 = 5 U2 UL Mrr Agrr — ZL UR U er Airr

— E U Wrr Agirr 4 = Urr (UFF + - Ur ) Qrr Agerr

1
I7/(£T)

111

2)2 2 -
- (dr - 2) Uép) =TTT /\2tFF + Z Z dpr Upp)n Errrv Aarrv

(F42)

(F43)

(F.44)

(F45)



1 - -
tl%l“’ =7 FQF' rr Mrr’ Aorr o AT Aorvr
K? 4U” U Mrr Aorr + U, Mpr A
1 ~ 1 2 ~
— Z Ulg;)/ Ulg?/ Q[T/ )\11‘1“’ — E UI(‘2F)’ WFF’ )\QZFF/
1 1 -
+ Z UIE?’ <U1£}'\)/ + Z Ué?/) QFF’ )\QtFF/
1 _ - _ -
+ 3 (dr — 1) Ué? Uﬁ% (:1“1“'1“ Aurr + Eprr )\ZtI"F>
1 _ - _ .
+ g (drf - 1) ngp)/ Ué?%/ <:FF’F’ Aot + Eprr )\2tF/I">
1 _ - _ -
+ 3 Z dr UIE?// Uﬁ%u (21“1“/1“" Agerr + Srrre >\2t1“’1“”> : (F.46)
IRECOMR)
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Appendix G

Appendix: Correlation Correction to
Electron Number

In this Appendix, we present the explicit expression of the correlation correction to the electron
number of orbital L in Eq. (5.118) in Sec. 5.2.

i O,
- . <O‘nZLOj>O ' (Gl)

The denominator is the renormalization factor of the wavefunction. Expression of <O~Z’T0~i>0 has
been given by Egs. (F.5) and (F.25). The numerator is expressed as follows.

~t. A (00) 1)2 (11) 1 (00’2
(O nzLO 0 = Z ULL ALLL”H LL + Z Z ULL’ LI/ Lvoo'or MLL

(LL'y oo’
(2) o) (o0’)
+2 Z Z ULL’ LL’AlLL’LVoa a”)\lLL’ AsiLir
(LL")
y(oo’)
+ Z Z ULL’ lLL’LVaa 1o AL L
(LL')
(0' o) 22) {(o—0)
+ Z Z ULL’ otr) ALL v o—oor AL - (G.2)
(LLy o

Here the elements { A} are expressed by the Laplace transformation. We obtain the relation be-
tween the { A} components as follows

AS’?E},T = Arrts (G.3)
ALY = Areor, (G.4)
402 _ r
Ll oo’ — _ZUU ALL’aa’a (GS)
1
Al(EQL)’oa’ = 1—6ALL’W’, (G.6)
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and
Ay = 1A (G.7)

In the paramagnetic state, the correlation correction (G.2) is expressed as follows with use of the
irreducible representation I with dimensions dr to which the orbital L belongs.

~ ~ 2 ~
(Of;1,0i)0 = 2 Arr [Ué(%) AT

2 - 1 2~ ~
+ (dr — 1) Arr (2 Uélr) Arr + 3 Uﬁr) (Agir + 2 AgtFI‘))]
d
2 - 1 2/~ ~
+ 2 Z dl’" Al’"l" |:2 UI(*})/ )\%FF/ + g U]_E%)/ <)\§ZFF/ + 2 A%tFF’)] . (G.S)
VAT

Here
Appr = — / dt dt'e*ect+t) [ar,(—t — ") b (t +t') ap(—t —t') bp(t) bp(t')
0
— a,l—v(—t — t/) br (t + t/) br (t + t/) Cl[‘(—t) CLF(—t/) . (G.9)

The functions ar(t) and br(¢) have been given in Egs. (C.28) and (C.29) in Appendix C.

114



Appendix H

Appendix: Expressions of the Average
Residual Interaction Elements

In this Appendix, we present the explicit expressions of the residual interactions. The expres-

sions are given in Sec. 5.2, which were obtained by using Wick’s theorem.

The residual interaction elements Z< LIy (Ofg)L,> for o =0, 1, and 2 are given by Eq. (5.121):

- Z O OzLL/ 0~ Z <01(231/O~i>0 + Z <O~iTO§z)L/O~i>0

o (LL") (LL') (LL')
Z <OZ(L}/> = ~t ~
(LL) 1+ <Ol OZ>0
Here ) )
Z<O§2)L0i>0 = Z drp U#p Prr Aorr ,
L
> (OO =2 Z dr (dr — 1) U Por Aaer +4 Y de dp ULy Pors Aarr
(L,L) (0,17)
~ 1 . ~
Z <O§?L’Oi>0 = _g ZdF (dF - 1) UI(‘%) Prr ()\QZFF +2 )\2trr>
(L,L') r
1 ~ -
1 Z dr dr UEQF)/ Prrs ()\QZFF/ +2 )\2t1“1“’) ;
(r,r)
Z <OTO$L Z dr U, FF )‘OFF Qrr
L

+ Z dr (dr — 1) (4 Uy Npp — - Urr Agzrr) Errr

1 — -
+ Z dr dr < UIS}“)’ /\IFF’ T UFF’ AQZFF’) <:F’FF + :FF’F’> )

(r,r7)
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(H.2)

(H.3)

(H4)

(H.5)



Z (0104),,0,) = SZdF = 1) UL Mirr U Aorr My

(L, L")
+ 8 Z dr dr/ UFF' S\H‘FI (UI(‘(;‘) S\OFF MFF/ + Ulggl)w 5\0p/rl MF’F)
(r,rr)
+2 Z dr (dr — 1) /\1FF (USF) Airr Qrr + Tr(1r1)>
+4 Z dr dr UFF, )\1FF' (UIE?/ 5\11“1“’ Qprr + Té?)
(r,re)
1 2 (5 <
+ g Z dr (dF - 1) Uézr) (AglFF +2 )‘gtFF) Qrr
r
1 2 /< <
+ Z Z dl“ dl"/ Ulg?/ ()\%lFF/ + 2 AgtPF’) QFF/ . (H.6)
(r,re)
Here

Tr(lrlr) =2 (UI(‘? Errr Arr + Ué}% Zrrr 5\mr)
-2 <U1£F)/ el N AN )\11-\1-\/ + UF/F, ST )\11"/1"/)

+2 Z drn ( L Errvre Aree 4 quw =TT )\lF’F”> : (H.7)
F//

Finally we have

Z <OTO£)L/ Jo = Zdr T )\orr (0)

(L.L)
1 1 2) X (1
+3 Z dr (dr — 1) [4 Ut Jarr B9 = 7 U Aaire K§F>2]
N
- N 1 ~ ~
+ 3 drdp [4 Ut Jarr Kip = 7 UfE) darr i)
)
+ Z dF r— 1 /\2tFF th‘[‘ + Z dr dr/ UFF’ )\Qﬂ"l“/ Kt(FF’ . (HS)
()
Here

kl(“?“ = (dF —1) U (Azlrr + 2 )\ztrr) Mrr

+ Z Z dl"/ UFF/ <5\2l[‘[‘/ + 2 x?tl—‘l—") MFF’ 5 (Hg)
I (£T)
(1) 1 3 5
Kppn = — 16 UFF, (>\2lFF' +2 )\2tFF’) Qpp (H.10)
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f(ﬁlr)/g = —Uﬁ? My Aorr — Ué?%/ My Xorre
- 1 -
+ U Qre M + 5 UZ), Wer Mg
1 _ ~ _ -
+ 5 <U1(‘?‘) = Agrr + Uﬁ% ST )\2lI"I‘)

1 _ ~ _ ~
+ 5 <U1£?/ Errr Aarr + Ulg?l)'v =rrr >\21F'F')

- = g dr ( T SIrT )\211“1“" + UF/F// ST >\2zrfr~) . (H.1T)

1"//

/\(2

=

“
™
=i

|

<UFF My Aorr + Ur/r/ My Aorw)
1 -

(U 2p) Zrrr Asrr + US% =rrT S\QtF/I‘>

ool»—*oolr—wlklv—upu—l

(2) = Y (2) = \
(Upp/ Errr Aarre + Uprp Zrrr Mg

+ 3 Z dp ( A R=) anZ )\ZtFF” + Up/pu ST/ )\M'FH) . (H.12)

F//

The expressions of Prr/, Mrr/, Zrpre, Qrre, and Wrr at the rhs of the above expressions have
been given in Appendix C (see Egs. (C.19) ~ (C.23)).
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Appendix I

Appendix: Momentum Distribution
Function

In this Appendix, we present the explicit expressions of the momentum distribution function
(5.122) in the paramagnetic state, and derive the average quasiparticle weights (5.125) and (5.128).

The numerator of the correlation correction to the momentum distribution (ny,,,) is given in
Eq. (5.123):

N<O~jﬁknaéz>0 = Z q7(_o¢) U[(j,)? :\ZTLL’ <BLL/n(k) f(_gkn) - éLL’n(k> f(gk:n)> . (Il)

at (LL")
The particle and hole contributions, By n(k) and o n(k) are expressed by Eq. (5.124):
Brim(k) = [upn(k)|*Brr(exn) + [urm(B)* B (exn) , (1.2)

Crim(k) = [upn(K)|*Cror(ern) + [upm (k) > Cri () - (L.3)

Assuming that orbital L belongs to an irreducible representation I', we obtain the expressions of
the BLL’<€kn) and CLL’(Ekn) as follows.

Brr () = — / dt dt' e )T g (—t — ) bp(t + ') ap(—t — 1), (1.4)
0

Crr (€gn) = — / dt dt’ et g (—t — ") bp(t +t') b (t 4+ 1) . (1.5)
0

The quasiparticle weight is obtained from the jump at the Fermi level: Zy.,, = (Ngno)kp. —
{(Nkno ) ki, - Here kp_ (kpy) means the wavevector just below (above) the Fermi surface. According
to Eq. (5.123), it is given by

5(N<O~;rﬁknoéi>0)k17

Zan:1+ ~ T ~

(1.6)
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Here the numerator of the correlation corrections is given by

S(N (OiiknaOi)o), = — > [dF Uty Mpr+2dr (de — 1) U My

T

1 2 /. ~ o ~
t3 dr (dr — 1) U (Agzrr +2 )‘gtl"l")} X (Brrn(kF) + Crrn(kF)>

2 ~ 1 2 [/~ ~ ~ ~
- Z dr drs [2 U N + 3 U ()‘glrrf +2 Agtl‘l")] X <BFF’n(kF) + CFF’n(kF)> :
(r,r)
1.7)

Brrln(kF) and C'pp/n(kp) are defined by Egs. (I.2) and (I.3) in which L and L’ have been replaced
by their irreducible representations I" and I".

Taking average over the Fermi surface, we obtain the average quasiparticle weight Z, Eq.
(5.125) as follows.

5(N<O~jﬁkn001>0)kF

= (1.8)

Z=1+

SN (OfknaOido)yy, = = | drUSY Mrp +2dr (dr = 1) Ul N
r

1 2 /. ~ _ _
t3 dr (dr — 1) U (Aglrr +2 Agtrrﬂ X (Brrn(kF) + CPFn("’F))

2 - 1 2/~ ~ _ _
- Z dr drs [2 U e + 3 U (AglI‘I" +2 Agtl‘[")] X (BFF’n(kF) + CFF’n(k’F)> :

@,r)
(1.9)
Here Brr, (kr) and Crrv, (kr) are defined by
Brirn(kr) = |urn(kr)|? Brr(ep) + [urm (kr)[? Brr(er) (1.10)
éFF’n(kF> = \urn(kF)P CF'P(EF) + |UF’n(kF)|2 CFF'(GF) . (I11)
The average amplitude of eigenvector |ur, (kr)|? is obtained as follows.
er(epn(er+A lu (k)|2 (er)
o (lop)[2 = Z=kn o B A 112
|UF ( F)| ZZ<€kn<€F+A P(EF) ( )
Here pr(er) ( p(er)) is the partial (total) density of states at the Fermi level eg.
The projected momentum distribution function (MDF) is defined by
<nkLa> - Z<nk’na> |uLTLU(k)|2 . (113)
Using the formula (B.29), we obtain the expression of the projected MDEF, Eq.(5.126):
N N{(O1.,0;
(k20 = F(er) + Qe iLoOido (L14)
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The correlation correction of the projected MDF at the rhs is expressed as follows after taking the
average over k with constant energy €, as in Eq. (I.12).

o)y ) D € 2z 2 ~
N(OJTLkLgODO = M Z [dF’ Ulg?%, )\(Q)F’F’ + 2 dl“/ (dr‘/ _ 1) Ulg)/ )\%F/F/
perr) o
1 2 /. ~
+ é dF/ (dF/ — 1) Ulg?)’ <>\§lr/r/ + 2 A%tl“T’)]
pr(exr) . )
B v — _ C’/ ,
X e ( e (€exr) f(—€kr) v (€kr) f(%L))
D pr(exr) 1?2 9 1 op [ y
m (1—%:”) dF/ dF// |:2 UF’F” )\1F/F// + g UF’F" (AQZF/F” + 2 AQtF/F”>i|
1 (€ R B
X |:pF ( kL) (BF//F/(EkL) f(_ek;L) — CF”F’(EkL) f(ekL)>
plexr)
m\ € N 3
+ P;(ékg) (Bm//(em) F(=&ur) — Cron(enr) f(%)ﬂ . (L15)

This is the explicit expression of the numerator of the second term of Eq. (5.126).
With use of Egs. (I.14) and (I.15), the partial quasiparticle weight Z;, is given by Eq. (5.128):

3(N(OlitkrsOi)o)y,

ZL:1+ ~T~

(1.16)

and the explicit expression of the numerator of the correlation correction is given as follows.

= = 2 ~ 2 ~
S(N (Ol ks Oido)yy, = = [dr Ut Mpr+2dr (de — 1) Uy My
I

1 2 /.~ -
1 _ (2) 2 2 pr(er)
+3 dr (dr — 1) Upp ()‘m“r +2 Azﬂ“rﬂ X o(er) (BFF(EF) + CFF(EF)>

1)? % I @2 (% Y

(T.I)

X [’0:((;17)) (BF/F(EF) + CF’F(EF)> + pr(€r) (Brr/(€F) + C’ppl(eF)ﬂ _ (1.17)
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