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Abstract 

In this paper we consider model selection for a Markov switching vector 
error correction model. We apply the algorithm proposed by Chib (1995) 
to calculate the marginal likelihood and the Bayes factors for this model to 
select the most appropriate model among all models under consideration. 
We perform a simple Monte Carlo simulation to illustrate the performances 
of the method for model selection. 

1 Introduction 

In this paper we consider model selection for a Markov switching vector error 
correction model (MS-VECM) using the marginal likelihood method proposed 
by Chib (1995). An MS-VECM is a nonlinear cointegration model which al­
lows for regime shifts in VECM. J ochmann and Koop (20 15) develop methods 
for Bayesian inference in an MS-VECM, and use a bridge sampling to calculate 
marginal likelihood to select a single model. In this paper, we present a proce­
dure for calculating the marginal likelihoods for models under consideration by 
extending Chib's method. We show simulated experiments with articifially gen­
erated data to evaluate how the Chib' s method can detect an appropriate model. 
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2 MS-VECM 

This section introduces an MS-VECM. A linear VECM with the number of lags 
p for 1 x n vector y1 can be written as: 

p 

~Yr = Yr-1~a+,u+ E~Yr-trt +er, (1) 
l=l 

where ~ ( n x r) contains the cointegrating vectors, a ( r x n) contains the ad­
justment terms, ,u ( 1 x n) is the vector of intercept terms, and r1 ( n x n) is the 
lag term, and £1 rv iidN(O, 0.). If we assume that r, ~' a, ,u, rt's, and Q in the 
VECM (1) are subject to an unobservable discrete state variable s1 that evolves 
according to an m-state, first-order Markov switching process with the transition 
probabilities, p ( s1 = i I sr-I = j) = q;J, i, j = 1, ... , m , then an MS-VECM with 
Er rv N(O, O.(s1)) is written as 

p 

~Yt = Yt-1 ~(sr )a(st) + ,u(sr) + E ~Yr-trt(sr) + Er, 
l=l 

(2) 

where ~(s1 ) is ann x r(s1), a(s1) is r(s1) x n, ,u(s1) is 1 x n, and r1(s1) is n x n 
matrix. 

The MS-VECM in (2) can be rewritten as 

(3) 

where z1 is 1 x m( 1 + np) and <P is m( 1 + np) x n, and defined as 
Zt = (t,(l ), ... , tr(m), tr(l )L\Yr-1, ... , tr(I )L\Yr-p, ... , lr(m)L\Yr-1, ... , tr(m)L\Yr-p), 
{p = (,U ( } )', · • • , ,U ( m) I, r 1 ( 1 )', ... , r p ( 1 )', ... , r l ( m )', ... , r p ( m) 1) 

1
, 

and t 1 ( i) in z1 is an indicator variable that equals to 1 if regime is i at t, and 0 
otherwise. From equation (3), let define 

the T x n matrices yT = ( ~y~, ... , ~y~ )1 and E = ( E~, ... , E~ )' , 

the T x n matrix X;= ( y~to(i), y~ tt (i), ... , Y~-J tT-l (i) )1
, 

theTxm(l+np)matrixZT=(z~, z~, ... , z~) 1 , 
the T x h (where h = m(I +np) + E/~ 1 r(i)) matrix W = ( X1 ~(1 ), ... , Xm~(m), zr ), 
the h x n matrix B = ( a( 1 )', ... , a(m )', <P1 

)', 

then we can simplify the model as follows: 
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m 

yT - Exi~(i)a(i) +ZT <I>+E 
i=l 

WB+E. 

(4) 

(5) 

Thus, to estimate the MS-VCEM in (3), we consider the simplified form given 
in (5). 

We choose the following priors: 

D.(st) rv IW (Oo(st ), Vo(st)). (6) 

Let define B = (a( 1 )', ... , a(m)' ,J1(1 )', ... ,Jl(m)', r1 (1 )', ... , r p(m)')', then 

vec(B) rv MN(vec(Bo), VB0 ). (7) 

where MN denotes the matricvariate-Normal and IW denotes the inverted Wishart 
distribution. For a prior for the co integrating vector ~( s1), we consider the follow­
ing transformation (see Koop et al. (2010)): 

~(st)a(st) = [~(st)K(st)] [K(sr)-1a(st)] 

= [~(st) ( a(st)«(st)') 112
] [ ( a(st )a(st)'r112 a(st)] = b(st)a(st ), 

where K(sr) = [a(s1)a(s1)']
112

, and thus b(s1) = ~(st)K(s1 ). We assign a prior for 
vec(b(s1)) as 

b(s1) = vec(b(s1)) rv MN(bo(st), Vb0 (st)). (8) 

A prior for the transition probabilities, qij, i,j = 1, ... ,m, is beta distribution as 

qij rv beta (utj,iiij)' (9) 

where iiu = Pr(s1 i= i I St-1 = i) and Uij = Pr(st = j I St-1 = i,sr i= i) fori i= j, 
With the above priors, the conditional posteriors are given as (see Sugita 

(20 16) for details): 

D.(i) I b(i),B,ST,YT rv IW ( (Yi- W;B)' (Yi- W;B) +D.o(i),ti+Vo(i) + n + 1)' 
(10) 
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where 

- T vec(B) I b,il,Sr,Y rvMN(vec(BI),VBl), 

b(i) I n(i),vec(B),Sr,YT rvMN(b*(i),Vb*(i)), 

( .. I s- ) Uij+mij-1 ( 1 - -. ·) iiij+filij-1 P q,J T oc qij q,J · 

vec(BI) =VB, { VBo1vec(Bo) + ~ [(n(i) ®lh)-
1 vee (WfY;)]}, 

Vb. (i) = [ Vjj
0 
(i)-1 + { (a(i)D.(i)- 1a(i)') ®(X{ X;)} r1

, 

b*(i) = Vb*(i) [vbu(i)- 1vec(bo(i)) + { (a(i)D.(i)- 1
) ®X[}~. 

(11) 

(12) 

(13) 

To sample the state variable Sr = { St, s2, . .. , sr }', we employ the multi-move 
Gibbs sampling method. 

3 Model Selection 

In this section we discuss model selection by computing Bayes factors. In Bayesian 
framework, Bayes factors, defined as ratios of marginal likelihoods, are often used 
for comparing models, see Kass and Raftery ( 1995). To calculate the Bayes fac­
tors, there are several methods such as Chib ( 1995), Gelfand and Dey ( 1994 ), the 
Savage-Dickey density ratio (see Verdinelli and Wasserman, 1995), Laplace's ap­
proximation method (see Tierney and Kadane, 1986), and the Schwarz Bayesian 
information criterion (SBIC) approximation method (Schwarz (1978)). The SBIC 
method is easy to implement and does not require evaluation of the prior distri­
bution, however, it gives only a rough approximation and does not produce the 
correct value even for large samples, see Kass and Raftery ( 1995) for details. In 
this paper, we choose Chib (1995)'s method for the marginal likelihood calcula­
tion that utilizes the output of the Gibbs sampler. Chib (1996), Chib (1998), and 
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Kim and Nelson (1999) use Chib's method for a Markov switching model. Sup­
pose we have M different models Jlth for h = 1, ... ,M. The marginal likelihood 
for Jlth, p(YTIJith), can be expressed as 

Or, on the computationally convenient logarithm scale, 

lnp(YTI./Ith) = lnf(YTIS*, M,t) + lnp(S*I9v4) -lnp(S*IYr, 9v4), (15) 

where f(YT IS*, 9v4) is the likelihood for 9v4 evaluated at S* = (B*, b*,Q*,q*), 
b = (b(l), ... ,b(m)), Q = (0(1), ... ,O(m)), and q = (qu,q12, ... ,qmm), which 
is the Gibbs output or the posterior mean of S in 9v4, p(S*I9v4) is the prior 
density for ~ evaluated at S*, and p( S* I yT, 9v4) is the posterior density for 
!Jv[h evaluated at S*. We show how each of the quantities required for the marginal 
likelihood calculation is obtained in the rest of the discussion. The model index 
./It is suppressed for convenience. 

The log likelihood function at S*, f(YT IS*), in equation (15) can be evalu­
ated as 

T 
lnf(YTIS*) = E lnf(YriYt-l, S*), (16) 

t=l 

where 
m 

lnf(YriYt-I ,S*) = L!(YriY1
-

1 ,S*,sr = i) x p(sr = iiY1
-

1 ,S*). (17) 
i=l 

The quantity f(y1 IY1
-

1,S*,s1 = i) in equation (17) is the conditional density at 
s1 = i and S = S*, and p(s1 = iiYt-I, S*) is the mass. 
The log of prior density at S*, lnp(S*), in (15) is given by 

lnp(S*) = lnp(vec(B*)) +lnp(b*) +lnp(Q*) +lnp(q*). (18) 

To estimate the marginal posterior density at S*, lnp(S*IYT), in (15) using 
the conditional posteriors, first blockS into L segments asS= (9;, ... , 9~)', and 
define <i>k-1 = ( 9; , ... , 9~_ 1 ) and <pk+ 1 = ( 9~+ 1 , •.. , 9~). Since 

L 

p(S* IY) = Ilp(9Z IY,<f>k-1) 
k=1 
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and 

P (e* IY, q>k-1 ) = J P ( e; IY, q>k-1 , q>k+ 1) P ( q>k+ 1IY, q>k-1 )dq>k+ 1 , 

we can draw elg), <pk+ 1,(g), where g indicates the Gibbs output g = I, ... , G, from 

(eb ... ,eL) = (9k,<pk+ 1) rv p(9b<pk+1 I y,<pk-1), and estimate p(e; I y,<pk-1) as 

fJ(9k I y,q>k-d = ~ t p(9k I y,q>k-l,q>k+l,(g))--+ p(9k I y,q>k-d as G--+ oo, 

g=l 

where the superscript (g) refers to the g-th draw of the full Gibbs sampler. Thus, 

the log of the posterior density p( ®* I Y) can be estimated as 

lnj}(E>* I yT) = t lnj}(9k I q>k-1, yT) =tIn { ~ t p(9k I q>LI ,q>k+l,(g) ,Yr)}. 
k=I k=1 g=l 

(19) 

In our MS-VECM case, the log of the posterior density evaluated at ®* is given 

by 

lnp(®*IYT) lnp(vec(B*)IYT) + lnp(b*lvec(B*), YT) 

+ lnp(O*Ivec(B*), b*, YT) + lnp(q*lvec(B*), b*,Q*, YT) 

where 

p (vec(B*)IYT) =I I I I p (vec(B*)Ib*,Q*,q*,Srf) p (b*,Q*,q*,SrJYr) db*dQ*dq*dSr 

(20) 

p (b*lvec(B*)f) =I I I p(b*lvec(B*) ,n*,q*,Srf)p (n*,q*,Srlvec(B*)f) dQ*dq*dSr 

(21) 

p(!l*lvec(B*),b*f) =I I p(!l*lvec(B*),b*,q*,Srf)p (q*,Srlvec(B*),b*,vT)dq*dSr 

(22) 
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p (q*lvec(B*), b*,n*,Yr) = j p (q*ivec(B*), b*,n*,Srf) p (Srivec(B*), b*,n*,Yr) dSr 
(23) 

The above decomposition of the posterior density suggests that p ( vec(B*) IYT) 
can be calculated based on draws for the full Gibbs run, and p (b*lvec(B*), yr), 
p (.O.*Ivec(B*), b*, yr), and p ( q*lvec(B*), b*, .Q*, yT) can be calculated based on 
draws from the reduced Gibbs runs as follows: 

1 G 
j)(vec(B*)IYT) = G [, p(vec(B*)Ib(g) ,.Q(K), q!K) ,S~), Yr), (24) 

g=l 

1 G 
p(b*lvec(B*),YT) = G [, p(b*lvec(B*),.Q(gJ),q(gt),S~J),Yr), (25) 

8J=l 

j)(.Q*ivec(B*),b*,Yr) = ~ f p(.Q*Ivec(B*),b*,q(K2l,S~2l,yr), (26) 
82=1 

1 G 
j)( q*ivec(B*), b* ,.Q*, YT) = G [, p( q*ivec(B*), b*,.Q* ,S~3 ), Yr), (27) 

83=1 

where the superscript (g) refers to the g-th draw of the full Gibbs sampler and 
the superscript g;, i = 1, 2, 3, refers to the g;-th draw from the appropriate reduced 
Gibbs sampler. Thus, we need the usual G iterations for the full Gibbs sampler 
for (24) and additional 3 x G iterations for the appropriate reduced Gibbs sampler 
for (25), (26), and (27) to calculate the log of the posterior density lnjJ(E>*IYT) 
in (18). From the estimated log of the posterior density lnjJ(E>*IYT) with the log 
of the likelihood lnf(YT I E>*) in (16) and the log of the prior density lnp(E>*) in 
(18), we can calculate the marginal likelihood in (15). In this way, we calculate the 
marginal likelihoods for all models under consideration. Then, we compute the 
Bayes factor for Jlth and J/4 as BFj,; = exp {lnjJ(YTIJith) -lnp(YTIJ/4) }, where 
h = 2, ... , M, and J/4 (i = 1) is a base model for comparison. The posterior odds 
POh; can be obtained by PO~z; = BFh; x p(Jith)/p(J/4), where p(Jith)/p(J/4) 
is the prior odds. In this paper we set the prior odds as p(Jitj)/p(J/4) = 1 for 
noninformative choice. Then, we can obtain posterior model probability for each 
model as p(Jith I Y) = POh;/[~ 1 POk;,. 
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4 Monte Carlo Simulation 

In this section we perform a simple Monte Carlo simulation to illustrate the per­
formances of the marginal likelihood method for model selection described in the 
previous section. The data generating processes (DGPs) consist of two-state and 
two-variable MS-VECMs as follows: 

M1: ~Yt = Yt-t~<lt +,ut +Er, Er rv iidN(O,Qt) 

M2: ~Yt = Yt-I~a.(sr) +,u(s,) +E,, Et rv N(O,QI) 

M3: ~Yt = Yt-I~a.(s,) +,u(s,) +E,, Et rv N(O,Q(sr)) 

where~= (1,-1)', <It= a.(s1 = 1) = (-0.1,-0.1), a.(sr = 2) = (0,0), ,Ut = 
,u(s1 = 1) = ( -0.1, -0.1 ), ,u(s1 = 2) = (0.1, 0.1 ), Ql = Q(s1 = 1) = 0.5/2, Q(s, = 
2) = 0.1/2, the transition probability (Ptt,P22) = (0.95,0.95), and the sample 
size T = { 100, 200, 500, 1000}. M 1 is a linear VECM, while M2 and M3 are MS­
VECMs. We compute the Bayes factors for these three model to calculate the pos­
terior probability for each model. For prior parameters, we set b = ( 1, 0 )', V bo = /2 
in (8), q11 rv beta( Uti, U12) = beta(9, 1) and q22 rv beta(u22, U21) = beta(9, 1) in 
(9), fJ.o(i) = /2 and Vo(i) = 10 fori= 1 or 2 in (6), VB = 10/Knand Bo = 0 in (7) 
favoring the absence of cointegration. These values are assigned to ensure fairly 
large variances for representing prior ignorance. The simulation is replicated 100 
times. For each iteration, the full Gibbs sampler is run with G = 1, 000 and addi­
tional 3 x G = 3, 000 draws for the reduced Gibbs sampler after 500 discarded to 
calculate the marginal likelihood by the Chib's method. The number of cointegra­
tion rank and the number of the lags is assumed to be known. 

Table 1 summarizes the results of Monte Carlo simulations. The values in the 
columns are the average posterior probabilities. Increasing the sample size to 500 
improves the performances considerably. 

5 Conclusion 

In this paper we show the Chib 's method for marginal likelihood calculation for 
the MS-VECM to compute the Bayes factors to select an appropriate model. A 
simple Monte Carlo experiment shows that the Chib's method is useful to select 
the model. It is of interest that we compare the Chib's method to a bridge sam­
pling method used by J ochmann and Koop (20 15) by conducting Monte Carlo 
simulation for future research. 
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Table 1: Average posterior probabilities for model selection 
Model T = 100 T=200 T=500 T = 1000 
True model: M1 

M1 0.811 0.867 0.922 0.960 
M2 0.164 0.131 0.078 0.040 
M3 0.025 0.002 0.000 0.000 

True model: M2 
M1 0.066 0.011 0.000 0.000 
M2 0.530 0.725 0.917 0.957 
M3 0.403 0.264 0.083 0.043 

True model: M3 
M1 0.020 0.002 0.000 0.000 
M2 0.188 0.100 0.059 0.038 
M3 0.792 0.898 0.941 0.962 
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