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Abstract 

This paper introduces statistical inference in a Markov switching vec­

tor error correction model using a Markov chain Monte Carlo method. The 

proposed model allows for regime shifts in the deterministic terms, the lag 

terms, the adjustment terms and the variance-covariance matrix. The pro-

posed method allows for estimation of the cointegrating vector within a non­

linear framework through a collapsed Gibbs sampling. We apply the pro­

posed model to U.S. term structure of interest rates. 
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1 Introduction 

This paper proposes a Markov switching vector error correction model (MS-VECM) 

that allows for regime shifts in the deterministic terms, the lag terms, the adjust­

ment terms and the variance-covariance matrix in a vector error correction model, 

using a Bayesian approach with a Markov chain Monte Carlo method. 

A number of studies consider nonlinear cointegration models with regime switch­

ing. Balke and Fomby (1997) consider a threshold cointegration model to inves­

tigate the model in which there is discontinuous adjustment to a long-run equi­

librium, based on the idea that only when the deviation from the equilibrium ex­

ceeds a critical threshold, do the benefits of adjustment exceed the costs and, hence 

economic agents act to move the system back toward the equilibrium. Ander­

son (1997), Tsay (1998), Martens et al (1998), and Clements and Galvao (2002) 

are examples of applying threshold cointegration model. Krolzig (1997) develops 

a regime switching cointegration model using Hamilton's (1989) Markov regime 

switching process instead of threshold cointegration model. Hall et al ( 1997) ana­

lyze the permanent income hypothesis using a single equation cointegration model 

with Markov regime switching. Psaradakis et al (2004) employ Markov switching 

to analyze an error correction model in a single equation. A vector error correction 

model with Markov regime switching is applied by Sarno and Valente (2005) for 

forecasting stock returns, and by Clarida et al (2006), who show regime switching 

in the term structure of interest rates. 

Estimation for the MS-VECM by classical methods requires a multi-stage max­

imum likelihood procedure. The first stage consists of testing for the number of 

cointegrating relationships in the system and estimating the cointegrating vectors 

by implementing Johansen's (1988, 1991) maximum likelihood method. The sec­

ond stage consists of estimating other parameters in the model by maximum likeli­

hood method. Thus, the cointegrating vectors and other parameters in a nonlinear 
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vector error correction model are estimated assuming the model is linear. The final 

stage consists of the implementation of an expectation-maximization (EM) algo­

rithm for maximum likelihood estimation for unobserved Markov state variables 

conditional on estimated values of the cointegrating vectors and other parameters 

by maximum likelihood. Thus, to estimate the Markov state variables, the maxi­

mum likelihood estimates are treated as if they were the true values. 

By applying a Bayesian approach, estimation of the MS-VECM is more ef­

ficient as inference on the state variable is based on a joint distribution, rather 

than a conditional distribution. The cointegrating vectors are estimated based on a 

joint distribution of other variables including the state variables, so that it allows 

estimation of the cointegrating vectors within a nonlinear framework, rather than 

assuming that the model is linear. 

This paper proposes a Bayesian approach to the MS-VECM that allows any 

set of the parameters in the model to shift with Markov process. For a Bayesian 

approach to the MS-VECM, Paap and van Dijk (2003) propose a nonlinear VECM 

where only intercept terms are affected by Markov regime shift to investigate U.S. 

consumption and income. They employ a Bayesian approach based on Kleibergen 

and Paap (2002), which requires linear normalizing restrictions on the cointegrat­

ing vectors. This linear normalizing restrictions is criticized by Strachan (2003) as 

being likely to be invalid. Strachan and van Dijk (2003) and Strachan and lnder 

(2004) discuss the further problems associated with the use of linear normaliz­

ing restrictions, and propose the Grassman approach that places a valid prior on 

the cointegrating space. See Koop, Strachan and van Dijk (2006) for details. In 

this paper, we apply the method by Koop, Leon-Gonzalez and Strachan (forth­

coming) who develop further prior elicitation for the cointegrating space. They 

propose an efficient posterior simulation algorithm for cointegrated models using 

a collapsed Gibbs sampler. Examples of application of this method include Koop, 
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Leon-Gonzalez, and Strachan (2006) for a cointegrating panel data model and Stra­

chan and van Dijk (2007) for model averaging in vector autoregressive models. 

Our model in this paper is more general than Paap and van Dijk (2003), and is 

flexible to modify to consider the model in which other parameters are also subject 

to the regime shift. For example, in this paper we assume that the cointegrating 

vectors are unaffected by the regime shifts. It is, however, possible to consider 

the model where the cointegrating vectors are also dependent on the regime shifts. 

Also, it is possible to consider the trend or the drift in the cointegration relations to 

be affected by the regime shifts by a slight modification. 

The plan of the paper is as follows. Section 2 presents estimation method 

for the MS-VECM using a collapsed Gibbs sampler. We specify prior densities 

and likelihood functions, and then derive the posterior distributions. Section 3 il­

lustrates application to U.S. term structure of interest rates using the MS-VECM. 

Section 4 contains concluding remarks. All results reported in this paper are gen-

erated using Ox version 5.10 (see Doomik, 2007). 

2 Markov Switching Vector Error Correction Model 

This section introduces the MS-VECM and presents a Bayesian approach to es­

timate this model. Let y1 denote an /(1) vector of 1 x n with r linear cointe-

grating relations. A VAR system with normally distributed Gaussian innovations 

£1 rv iidN(O, Q) can be written as a vector error correction model (VECM) with the 

number of lags p 

p 

llyt =Yr-tf3a+8fJ+ LllYr-lrt+er (1) 
l=l 

where a ( r x n) is adjustment term; {3 ( n x r) is cointegrating vector; r1 ( n x n) 

is lag term. The deterministic terms 8 fJ ( 8 is 1 x d, and fJ is d x n) are defined as 
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follows. For example, if the process contains both a constant and linear time trend, 

then 8 = (J.l', i)' and o = ( 1 ,t), or if the process contains a constant but no time 

trend, then 8 = J.l and 5 = 1. If we assume that the deterministic term 8, the adjust-

ment term a, the lag terms r 1, and the variance-covariance matrix .Q in the VECM 

are subject to an unobservable discrete state variable s1 that evolves according to 

a m-state, first-order Markov switching process with the transition probabilities, 

p(s, = i I s1-t = j) = q;b i,j = 1, ... ,m, then the VECM representation is written 

as 

p 

fly, = Yt-1Pa(s,) + o8(sr) + E flYt-lrl(s,) + e,(s,) (2) 
1=1 

where e1(s1 ) rv N(O,D.(s1 )). 

2.1 Likelihood 

The MSVECM in (2) can be rewritten as 

fly,= Z1,rPa(s,) +z2,rcl>+er(s,) (3) 

where Z2,r = ( lt ( 1 )o, ... , t, (m )o, t, ( 1 )L\y,_,, ... , z, ( 1 )L\Yr-p, ... , t,(m )L\Yr-1, ... , lt (m )L\Yr-p ), 

ci> = (8'(1), ... ,8'(m),r~(1), ... ,r~(l), ... ,r'1(m), ... ,r~(m))', zt,r =Yr-h and 

Z1 ( i) in z2,r is an indicator variable that equals to 1 if regime is i at t, and 0 oth­

erwise. From (3 ), let define the T x n matrices Y = ( fly~, ... , fly~ )' and E = 

( ef(sJ), ... , e~(sr) )',theTxnmatrixZ;=( ~. 1 z0 (i), z'1,2z1(i), ... , Zt,rlr-t(i) )', 

the T x m(d+np) matrix X= ( z~ 1, ~ 2 , ••• , z~T )',the T x h (where h = 
' ' , 

m(r+d+np))matrixW=( z1 ~, ... , Zm~, X ),thehxnmatrixB=( a'(I), ... , a'(m), <1>' )', 

then we can simplify the model as follows: 
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m 
y [, Z;/3 a; +X <I>+ E 

i=l 

- WB+E 

(4) 

(5) 

The likelihood function for B,!l(l), ... ,!l(m), J3 and the state variables Sr = 

{ St, s2, ... , sr }' is given by, 

i! ( B,/3,0(0), ... ,O(m),Sr I Y) 

oc ( fi lil{j) ~-t,fZ) exp (- ~tr [~ { il{it 1 (Y; - W;B )
1 

(Y; - W;B)}]) ( 6) 

= (fi1n{j)l-'d2
) exp ( -i ~ [(vec(Y;- W;B))

1 
(Q(j) 0/1.f1 

(vec(Y;- W;B))]) 

(7) 

(8) 

where Y; = .F;Y, W; = J;W, J; is a vector consists of 1 if j-th row's regime is i and 

0 otherwise, and t; is the total number of observations when s1 = i, i = 1, ... , m. 

The likelihood function for the transition probabilities q;j, i, j = 1, ... , m, which 

are independent of the data set and the model's other parameters but conditional on 

the set of the state variables, is given: 

where m;,j, i, j = 0, ... , m, denotes the number of the transition from the regime ito 

j, that can be counted from given Sr. This likelihood for the transition probabilities 

is used by Albert and Chib (1993) and Kim and Nelson (1998). 
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2.2 Priors 

In selecting a prior density for cointegrating vectors, one approach is to choose 

an informative prior such as a normal or a Student t distribution with ?- linear 

normalization restrictions on {3 for identification such that {3' =(In {3;) where {3* is 

( n - r) x r unrestricted matrix. Bauwens and Lubrano ( 1996) and Kleibergen and 

Paap (2002) choose this type of prior with linear normalization on {3. 

Recently, several authors have argued that it is important to elicit a prior on 

the space spanned by the cointegrating vectors rather than to a particular identified 

choice for these vectors (see Strachan (2003), Strachan and lnder (2004), Strachan 

and van Dijk (2004 and 2006), Villani (2005 and 2006), Koop, Leon-Gonzalez, and 

Strachan (forthcoming)). Strachan (2003) and Strachan and Inder (2004) criticize 

the linear normalization on the cointegrating vector restricts the estimable region 

of the cointegrating space. Koop et al (forthcoming) develop efficient posterior 

simulation algorithms using a collapsed Gibbs sampler to estimate cointegrating 

space. The approach we use in this paper is based on the collapsed Gibbs sampling 

method proposed by Koop et al (forthcoming). 

They propose the following transformation. 

where 1C = (aa') 112 is positive definite matrix and a= JC- 1a is semi-orthogonal. 

Then, we assign the multivariate normal distribution to the prior for b as 

(10) 

For a prior for the transition probabilities q;j, i, j = 1, ... , m, we assign a beta dis­

tribution 
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q;; rv beta ( Uii, Uij) (11) 

(12) 

h b ti b d. .b . . h d . ( I ) r(u;;+uij) uu-1 ( 1 w ere eta re ers to a eta tstn utton wtt enstty 1t p;; u;;, Uij = r(uu)r(uij) P;; -

P .. )llij-l 
II • 

With regard to priors forB, .Q(i) in (5), we assume prior independence between 

Band .Q(i) such that p(B,.Q(1), ... ,.U(m)) = p(B)I1~ 1 p(.Q(i)). We assign prior 

for the variance-covariance matrix as an inverted Wishart distribution with the de-

grees of freedom vo(i) as 

.Q{i) rv lW (.Uo(i), Vo(i)) (13) 

where .Q0(i) E Rnxn_ As for a prior forB, we consider the vector form of Bun­

conditional on .Q(i) because if we consider that the prior forB is conditional on 

.Q{i) as is often used in regression models with the natural conjugate priors, it is 

not convenient to consider a case when the error covariance is subject to change 

with regime. We assign prior for B as a multivariate normal as 

vec(B) rv MN(vec(Bo) ,r.n0 ) (14) 

where MN refers to a multivariate normal with mean vee (Bo) E JR.nhx 1, and variance­

covariance matrix r,80 E JR.nhxnh. 

2.3 Posterior Specifications 

In this subsection we derive the posterior densities from the priors and the like­

lihood functions. First, we derive the state variable S-r: = { s1, s2 , ... , s-r: }' by the 
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multi-move Gibbs sampler, then derive the posterior distributions for other param-

eters. 

To sample the state variable St we employ the multi-move Gibbs sampling 

method, which is originally proposed by Carter and Kohn (1994) and is applied 

to a Markov switching model by Kim and Nelson (1998). The multi-move Gibbs 

sampling refers to simulating s1, t = 1, 2, ... , T, as a block from the following con-

ditional distribution: 

T-1 

p (sT 1 e,Y) = p(st 1 e,Y) Ilp(st 1 st+l,e,Y) 
t=p 

(15) 

where 9 = {B,Jj,.Q(1), ... ,.Q(m),qll, ... ,qmm}· The first term of the right hand 

side of the equation (15), p (s-r I e, Y), can be obtained from running the Hamil­

ton filter (Hamilton, 1989). To draw s1 conditional on s1+ 1, e and Y, we use the 

following results: 

p(s, I Sf+t,0,Y) = p(st+l I s(,e,~~~) I e,Y) oc p(st+l I s,)p(s, I e,r) (16) 
p St+I M' 

where p(sr+l I sr) is the transition probability, and p(s, I e,Y) can be obtained 

from the Hamilton filter. Using Equation (16) we compute: 

p ( -OI E>Y)- p(sr+IIsr=1)p(sr=1IE>,Y) 07) 
r St- St+I, ' - LJ=IP(St+I I St = j)p(sr = j I e,Y) 

Once above probability is computed, we draw a random number from a uniform 

distribution between 0 and I, and if the generated number is less than or equal to 

the value calculated by (17), we set s1 = 1, otherwise, set equal to 0. 

After drawing S-r by multi-move Gibbs sampling, we generate the transition 

probabilities, q00 and q11 , by multiplying (11) and (12) by the likelihood function 

(9) 
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Next, we can construct X and Z in (4) using the draw of S-r, and then the joint 

posterior distribution can be obtained from the priors given in (13) and (14) and 

the likelihood function forB, f3,il(i), and S-r, that is, 

p ( B,p,n(t), ... ,n(m),Sr 1 Y) oc p (B,p,n(1), ... ,n(m),Sr) £ (B,p,n(t), ... ,n(m),Sr 1 Y) 

oc g(b) [D (1ilo(i)l"'(i)/2 IO(i)I-(',+Vo(i)+n+l)/2)] I EBo l-112 exp { -~ [ tr (tn(it1) 

+ ~ [vec(Y;- W;B)' (O(i) ®l,,t 1 vec(Y;- W;B)] + [vec(B- B0)'E;;,1vec(B- Bo)]]} 

where g (b) refers to the prior for J3 given in ( 1 0). From the joint posterior, we have 

the following posterior distributions: 

Q(i) I f3,B,S-r,Y rv IW ( (Y;- W;B)' (Y;- W;B) +ilo(i),t; + Vo(i) +n + 1) (19) 

(20) 

where 

M* = { Efj~ + t. [!l(i)- 1 ® (W/W;)]} -I 
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To obtain the conditional posterior for the cointegrating vectors, we rewrite the 

expression in ( 4) as 

m 

Y -XCI> - EZ;f3a(i) +E 
i=l 
m 

EZ;ba(i) +E 
i=l 

(21) 

1 1 
where a(i) and bare such that a(i) = (a(i)a(i)')-1a(i) and f3 = b(b'b)-1. Then 

vectorize both side of (21) as 

m 

vec(Y-XCI>) - Evec(Z;ba(i))+vec(E) 
i=l 
m 

- L (a(i)' ®Z;) vee( b)+ vee( E) (22) 
i=l 

or 

y=Ab+e (23) 

where y = vec(Y- XCI>), A = E~1 a(i)' ® Z;, b = vec(b ), and e =vee( E). With the 

prior forb rv MVN(bo, Vb0 ), that is, b rv MN(vec(bo), Vb0 ), the conditional P<?Sterior 

distribution of b; is obtained as 

(24) 

where 

vb. = [Vb;; 1 + ~ { (a(i)!l(i)-1a(i)') ® (zfz;)}] -• 

b* = vb. ( Vb;;1vec(bo) + ~ { (a(i)!l(i)- 1a(i)'r
1 

® (zfz;r
1

} b) . 
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Given the conditional posterior distributions, we implement the Gibbs sam-

pling to generate sample draws. The following steps can be replicated until con-

vergence is achieved. 

• Step I: Set j = I. Specify starting values for the parameters in the model, 

s,o) = { s\0)' s~O)' ••• 's~O) r B{O)' J3 {0) and Q~O). 

• Step 2: Generate n( i) (j) from p( n( i) I s;- 1
)' {3 (j-l)' BU- 1)' y) for i = 0, 1. 

• Step 3: Generate vec(B)U) from p( vee( B) I s;- 1
) ,f3U-I) ,n(o)Ul ,n( I )U), Y), 

then obtain a*(O), a* (I), and <t>j. Compute a(i)* using a(i)* = ( a(i)* a(i)*') 1/
2 a(i)* 

fori= 0, I. 

• Step 4: Generate b* from p(b I w- 1
)' B(j) '.Q( 0) (j) '.Q( I) (j)' Y). Then, com­

pute f3/i) = b7(bj'bj)-~ and a(i)(j) = a(i)*(bj'bj)~ fori= 0, 1. 

• Step 5: Generate the transition probabilities (q;;)(j) from p ( q;; I w-•)) in 

(18) fori= 0, 1. 

• Step 6: Generate w) = { sP) 's~j)' ... 'sV)} I from p ( S-r I eU), y)' where 

E> = {B,.Q(O),.Q(l),f3,q00 ,q11 } in (15), using multi-move Gibbs sampling 

algorithm. 

• Step 7: Set j = j+ I, and go to Step 2. 

Step 2 through Step 7 can be iterated N times to obtain the posterior means or 

standard deviations. Note that the first No times iterations are discarded in order to 

attenuate the effect of the initial values. To check the Gibbs sampler to converge 

to a sequence of draws from the posteriors, Geweke ( I992) suggests the MCMC 

diagnostic that tests whether the estimate based on the first set of the draws after No 

burn-in replications is the same as the estimate based on the last set of the draws. 
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3 Application: U.S. Term Structure of Interest Rates 

In this section, we present an empirical study using the MS-VECM to analyze U.S. 

term structure of interest rates. 

3.1 Expectation Hypothesis 

The expectations hypothesis of the term structure of interest rates implies an f­

period interest rate is the weighted average of the expected future one-period inter­

est rates plus risk premium. For an overview of the expectations hypothesis theory, 

see Shiller ( 1990). Let r J,t be the yield to maturity for an f -period at time t, L J,t be 

the risk premium for an /-period at timet, then the hypothesis implies: 

f 
rf,t = f- 1 [,Erri,t+i-1 +LJ,t 

i=I 

(25) 

By rewriting the above equation, the interest rate spreadS J,r can be expressed as 

J-I i 

SJ,t = rf,t- rt,t = f- 1 L L E,ilrt,t+j + LJ,t· 
i=l j=l 

(26) 

If r1 ,1 is integrated of order one, then r J,t is also integrated of order one and thus r J,t 

and rt ,1 are cointegrated with cointegrating vector ( 1, -1) as analyzed by Campbell 

and Shiller (1987). The risk premium is assumed to be /(0) so that the hypothesis 

states that r J,r - r1 ,1 - L J,t is a stationary process. 

The expectations hypothesis in (26) with constant risk premium implies the 

following vector error correction model with the lag length at p: 

p 

ily, = 11 + (Yr-tf3- LJ,r)a + [,ilYr-lrl + e, (27) 
/=1 

where y1 = ( r1,1 , r1,, )';a (1 x 2) is the adjustment term; f3 (2 x 1) is the coin­

tegrating vector;'¥; (2 x 2) is the lag coefficient; and e, (2 x 2) is iidN(O,D.). 
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There is a number of research that confirms nonlinearity of U.S. term structure 

of interest rates due to changes in monetary policy. Tsay ( 1998), Hansen and Seo 

(2002), Clements and Galvao (2002) use a threshold cointegration model, while 

Clarida et al (2006) employ a Markov switching vector error correction model to 

detect regime switching. All these studies find nonlinearity due to the instability 

for interest rates between 1979 and 1982 as a potential source of shifts. This period 

between 1979 and 1982 is known as the non-borrowed reserves operating proce­

dure, that the Federal Reserve moved from interest rate targeting to money growth 

targeting and allowed the interest rate to fluctuate freely. 

3.2 MS-VECM 

We apply the MS-VECM to U.S. term structure of interest rate based on (27) to 

account for the regime shifts. The MS-VECM considered in Section 2 is applied: 

p 

!!y, - Tls, + (Yr-tf3- Ls,)as, + [, !!y,_;rL,s, + Er,s, (28) 
l=l 

p 

- Jls, +Yr-tf3as, + [,!!y,_;rL,s, +Er,s, 
l=l 

(29) 

where Jls, = Tls, - Ls, as,, £1 ,s, rv N ( 0, O.s,); Ls, is the risk premium term depending 

upon the state variables. 

We analyze U.S. term structure of interest rates using the MS-VECM described 

above. The data set is monthly Federal fund rate, rf, and 1-year Treasury bill rate, 

rf, covering the period 1960:1 to 2008:8 with 584 observations, obtained from the 

Federal Reserve Bank of St. Louis. Figure 1 plots the data set and its spread. 

Let y1 = (rfrf), then we consider the following seven models: 
' 
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p 

~1: Ay, =J.l+Yr-tf3a+ EAy,_zrl+e, 
I= I 

p 

~2: ll.y, = J.l(s,) +Yr-tf3a+ EAy,_zrl +& 
1=1 

p 

~3: Ay, = J.l(s,) + Yr-tf3a(s,) + E ll.y,_zrl + e, 
1=1 

p 

~4: Ay, =J.l(s,)+Yr-lf3a+ Lil.Yt-lrl+e,(s,) 
l=l 

p 

~5: Ay, =J.l(s,)+Yt-tf3a(s,)+ EAYr-Lrz+e,(s,) 
I= I 

p 

~6: ll.y, = J.l(s,) + Yr-lf3a + E Ay,_zrz(s,) + e,(s,) 
I= I 

p 

~7: Ay, = J.l(s,) +Yr-tf3a(s,) + EAy,_lrl(s,) +e,(s,) 
1=1 

where e, r-.J iidN(O, .Q) and E1 (s1) r-.J iidN(O, .Q(s1) ). ~1 represents a linear VECM, 

and other models, ~2 - ~7, are various specifications of the MSVECMs. 

To estimate these models, we implement the collapsed Gibbs sampling al­

gorithm described Section 2.2, For prior hyperparameters, we set bo = ( 1, -1 )', 

Vho =.Qo(i) = 0.01h and Vo(i) = 0.001for i = 0 or 1 in (13), Es = 100/K"nand Bo = 0 

in ( 14) favoring the absence of cointegration. These values are assigned to ensure 

fairly large variances for representing prior ignorance. For prior hyperparameters 

for the transition probabilities, we set uoo = uu = 9, uo1 = uw = 1 in (11) and (12). 

The Gibbs sampler is run with 40,000 times with the first 5,000 discarded. 

In this paper, selection of the number of the rank and lags is treated as a problem 

of model selection. In Bayesian framework, the posterior model probability p( ~j I 
Y) is used to assess the degree of support for each model, ~j· From the Bayes 

rule, we have p(~j I Y) = p(Y I ~j)P(~j)/p(Y), where p(Y I ~j) is referred 

to as the marginal likelihood for ~j; and p(~j) is the prior model probability 
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for .41. Since p(Y) is often hard to calculate, comparison of two models, Jft1 

and .A;, by the posterior odds ratio, PO 1;, is often used to obtain the posterior 

model probability. The posterior odds ratio is defined as the ratio of their posterior 

d I b b'l' . PO ( Jf I Y)/ ( Jf I Y) p(YI.-ltj)p(./tj) h h mo e pro a 1 tttes as Ji = p Jn J p Jrt; = p(YI.-lt;}p(A'I;) , w ere t e 

ratio of the marginal likelihoods ~~~t~? is defined as the Bayes factor. With the 

posterior odds ratios, we can obtain the posterior model probability as p(Jft1 I Y) = 

PO Ji / E2!: 1 POk; where M is the number of models under consideration. Thus, in 

order to obtain the posterior model probability by the posterior odds, we need to 

calculate the Bayes factor. 

There are several methods to calculate the Bayes factor such as Chib ( 1995), 

Gelfand and Dey (1994), the Savage-Dickey density ratio (see Verdinelli and Wasser­

man, 1995), and the Schwarz Bayesian information criterion (BIC) approxima­

tion method (Schwarz, 1978). Chib ( 1995) provides a method of computing the 

marginal likelihood that utilizes the output of the Gibbs sampler. The marginal 

likelihood can be expressed from the Bayes rule as 

p(y I .A;) = p(y I et)P( et) 
p( er I y) 

(30) 

where p(y I 8j) is the likelihood for .A; evaluated at 8j, which is the Gibbs output 

or the posterior mean of 8;, p( 8;*) is the prior density and p( 8;* I y) is the poste­

rior density. If the exact forms of the marginal posteriors are not known like our 

case, p( 8;* I y) cannot be calculated. To estimate the marginal posterior density 

evaluated at 8;* using the conditional posteriors, first block (} into l segments as 

8 = ( 8f, ... , 8{)', and define cp;-t = ( 8f, ... , 8{_ 1) and cpi+ 1 = ( 8f+ 1, ... , 8{). Since 

p( (}* I y) = n~= I p( 8;* I y, cpj_l)' we can draw eF)' cpi+ 1 ,(j}' where j indicates the 

Gibbs output j = 1 ' ... 'N, from ( 8;' ... ' (}I) = ( 8;' cpi+ 1 
) rv p ( 8;' cpi+ 1 I y' cpj_ 1 ) ' and 

then estimate ji( 8;* I y, cpj_ 1) as 
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Thus, the posterior p( er I Y) can be estimated as 

(31) 

Choosing a model among .-41 - .-47 and testing for cointegration rank with 

various lag length p = 1 to 3 is conducted using the Chib's method. There are 

three possible rank (r = 0, 1, and 2) for models with lag length p = 1 to 3 where 

the adjustment term is constant (.-41, --42, .-44, and .-46). Thus, for models with 

constant a, we consider 3 x 3 x 4 = 36 models. There are two possible rank (r = 1 

and 2) for models with p = 1 to 3 where the adjustment term changes according 

to the regime (.43, .-44, and --47,). Thus, for models with regime dependent a, 

we consider 2 x 3 x 3 = 18 models. Therefore, we consider total 54 models and 

select the most appropriate model among them. From the results of computing 

the Bayes factors for all 54 models shown in Table 1, the highest posterior model 

probability is 47.0 percent given to a model of .-45 with p = 2 and r = 1. Table 

2 reports the results of the posterior estimation of the parameters for .-45 with 

p = 2 and r = 11• From the results, the 95% of f3 (after normalizing) contains 

/32. = - 1, that is implied by the expectations hypothesis of the term structure. To 

examine whether the restriction of /32. = -1 is appropriate in a more formal way 2, 

we calculate the Bayes factor as BF ~ exp[-0.5(BICR- BICuR)], where BICuR is 

the unrestricted BIC, and BICR is the restricted BIC with the restriction of f3 = ( 1,-

1), and the value is 132.52, which shows a very strong evidence to support the 

1 Geweke's MCMC convergence diagnostic test (Geweke 1992) for one element of the cointegrat­
ing vector generates the statistic -0.17187 with probability 0.43177, that means a sufficiently large 
number of draws has been taken. 

2 As Koop (2004) note, "the justification for using the HPDis to compare models is an informal 
one which, in contrast to posterior odds, is not rooted firmly in probability theory." 
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expectations hypothesis. 3 

The posterior expectation of the state variables is plotted in Figure 2. The non-

borrowed reserves operating procedure between 1979 and 1982 is detected as the 

regime shift. Regime shift occurs also in 1973 and 1984. These regime shifts are 

corresponding to higher inflation regime (Goodfriend, 1998), and are characterized 

by a much higher variance of both the long and the short interest rate than those of 

regime 1. In regime 1, that is relatively stable period, the variance of the long rate 

is higher than that of the short rate; on the other hand, in regime 0, the short rate 

fluctuates much more than the long rate. 

We find that the magnitudes of the adjustment terms for the short-term rate 

for both regimes are larger than those for the long-term rate, which implies that 

the short-term rate tends to adjust toward the equilibrium in either regime. The 

posterior mean of the adjustment term for the short rate in regime 0, aJ, is -0.2298, 

which is faster than that for the short rate in regime 1 of lower volatility. This 

implies that interest rates adjust much faster in periods of high volatility with high 

inflation and anti-inflationary monetary policy. 

4 Conclusion 

In this paper we consider a Markov switching vector error correction model where 

the adjustment terms, the lag terms, the intercept terms, and the variance-covariance 

matrix are subject to the regime shifts with the first order unobservable Markov 

process while the cointegrating vector is unaffected by the regime shifts. 4 

Estimations are carried out entirely by a Bayesian method. The cointegrat-

3 See Kass and Raftery ( 1995) for a rule of thumb for evaluating Bayes factors. According to this 
rule of thumb, if BFij is between 20 and 150, there is a strong evidence against model j, and if BFij 
exceeds 150, there is a very strong evidence against model j. 

4It is possible to allow the cointegrating vectors to change with Markov process by slight modifi­
cation. However, we have not done this because changing the long-run relationship is not reasonable 
idea unless economic theory support this. 
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ing vector is drawn using the Markov Chain Monte Carlo method by Koop, Leon­

Gonzalez, and Strachan (forthcoming) in a nonlinear framework so that the estima­

tion of the cointegrating vector is more efficient than multi-step classical methods 

where the cointegrating vector is estimated assuming the model is linear. 

As an application to illustrate the use of the MS-VECM, we illustrate U.S. 

term structure of interest rates using the MS-VECM with regime dependent risk 

premium. We find that regime with high volatility and high speed of adjustment 

captures the non-borrowed reserves operating procedure during the 1979-82 and 

other phases of inflation scare, while the stable regime with low volatility and low 

speed of adjustment prevails after the mid of 80's. 

In this paper Markov switching is chosen as a switching behavior, assuming 

that one regime jumps to another regime suddenly at particular dates. It is of inter­

est to consider alternative multivariate nonlinear models such as a smooth transition 

vector error correction models (ST-VECM) to analyze the nonlinear cointegration 

where the regime shifts occur not suddenly but smoothly, and compare the ST­

VECM with the MS-VECM by the Bayes factors. 
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Table 1: Model Selection for U.S. Term Structure of Interest Rate 

.411 .412 .413 .414 .415 .416 .417 

p=l r=O 0.000 0.000 0.000 0.002 

r=l 0.000 0.000 0.003 0.012 0.152 0.011 0.032 

r=2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

p=2 r=O 0.000 0.001 0.003 0.006 

r=l 0.000 0.000 0.027 0.073 0.470 0.052 0.102 

r=2 0.000 0.000 0.000 0.000 0.004 0.000 0.003 

p=3 r=O 0.000 0.000 0.000 0.000 

r=l 0.000 0.000 0.000 0.001 0.025 0.003 0.008 

r=2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Note: Each value in the Table shows the posterior model probability calculated by using the 

Chib's method. 
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Table 2 Posterior Results for .415 with p = 2 

()=standard deviation 

parameter mean 95% HPDI 

f3z -1.0494 (0.0355) -1.1212, -0.9819 

aL(o) 0.0054 (0.0608) -0.1143, 0.1242 

as(o) -0.2298 (0.0752) -0.3803, -0.0854 

aL(t) -0.0361 (0.0283) -0.0917, 0.0186 

as(l) -0.1210 (0.0223) -0.1644, -0.0773 

J.LL(o) -0.0162 (0.0885) -0.1888, 0.1577 

J.Ls(o) -0.0144 (0.1383) -0.2527, 0.2965 

J.LL( 1) -0.0127 (0.0174) -0.0487, 0.0199 

J.Ls(l) -0.0465 (0.0246) -0.0955, -0.0001 

Poo 0.9814 (0.0067) 0.9663, 0.9921 

Ptt 0.9276 (0.0248) 0.8725, 0.9682 

0.7469 0.6008 0.0580 0.0257 

Oo= 
(0.0895) (0.0936) 

,fit= 
(0.0035) (0.0022) 

0.6008 1.1828 0.0257 0.0344 

(0.0936) (0.1809) (0.0022) (0.0027) 
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Figure 1: US Federal fund rate, 1-year treasury bill rate a the spread 
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Figure 2: Posterior expectation of the regime variable for 1 he US Term Structure of 

Interest rates 
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