Generalized Apéry－like numbers arising from the non－commutative harmonic oscillator

メタデータ	言語：
	出版者：琉球大学理学部数理科学教室
	公開日：2017－01－26
	キーワード（Ja）：
	キーワード（En）：
	作成者：Kimoto，Kazufumi，木本，一史 メールアドレス： 所属：
URL	http：／／hdl．handle．net／20．500．12000／36185

GENERALIZED APÉRY-LIKE NUMBERS ARISING FROM THE NON-COMMUTATIVE HARMONIC OSCILLATOR*

Kazufumi KIMOTO

Abstract

A generalization of the Apery-like numbers, which is used to describe the special values $\zeta_{Q}(2)$ and $\zeta_{Q}(3)$ of the spectral zeta function for the non-commutative harmonic oscillator, are introduced and studied. In fact, we give a recurrence relation for them, which shows a ladder structure among them. Further, we consider the 'rational part' of the generalized Apéry-like numbers. We discuss several kinds of congruence relations among them, which are regarded as an analog of the ones among Apéry numbers.

1 Introduction

The non-commutative harmonic oscillator is the system of differential equations defined by the operator

$$
Q=Q_{\alpha, \beta}:=\left(\begin{array}{cc}
\alpha & 0 \tag{1.1}\\
0 & \beta
\end{array}\right)\left(-\frac{1}{2} \frac{d^{2}}{d x^{2}}+\frac{1}{2} x^{2}\right)+\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(x \frac{d}{d x}+\frac{1}{2}\right)
$$

where α and β are real parameters. In this paper, we always assume that $\alpha>0$, $\beta>0$ and $\alpha \beta>1$. Under these conditions, one can show that the operator Q defines an unbounded, positive, self-adjoint operator on the space $L^{2}\left(\mathbb{R} ; \mathbb{C}^{2}\right)$ of \mathbb{C}^{2}-valued square integrable functions which has only a discrete spectrum, and the multiplicities $m(\lambda)$ of the eigenvalues $\lambda \in \operatorname{Spec}(Q)$ are uniformly bounded [27]. Hence, in this case, it is meaningful to define its spectral zeta function

$$
\zeta_{Q}(s)=\operatorname{Tr} Q^{-s}=\sum_{\lambda \in \operatorname{Spec}(Q)} m(\lambda) \lambda^{-s}
$$

This series converges absolutely if $\Re s>1$, and hence defines a holomorphic function on the half plane $\Re s>1$. Further, $\zeta_{Q}(s)$ is meromorphically continued to the whole complex plane \mathbb{C} which has 'trivial zeros' at $s=0,-2,-4, \ldots$ (see [8], [26]).

[^0]The aim of this paper is to study the generalized Apéry-like numbers $J_{k}(n)$ defined by

$$
J_{k}(n):=2^{k} \int_{[0,1]^{k}}\left(\frac{\left(1-x_{1}^{4}\right)\left(1-x_{2}^{4} \cdots x_{k}^{4}\right)}{\left(1-x_{1}^{2} \cdots x_{k}^{2}\right)^{2}}\right)^{n} \frac{d x_{1} d x_{2} \cdots d x_{k}}{1-x_{1}^{2} \cdots x_{k}^{2}} .
$$

for $k \geq 2$ and $n \geq 0$, which are a generalization of the Apéry-like numbers $J_{2}(n)$ and $J_{3}(n)$ studied in [13]. This object arises from the special values of the spectral zeta function $\zeta_{Q}(s)$: In [9], the generating functions of the numbers $J_{2}(n)$ and $J_{3}(n)$ are used to describe the special values $\zeta_{Q}(2)$ and $\zeta_{Q}(3)$ of the spectral zeta function $\zeta_{Q}(s)$. Similarly, the generalized Apéry-like numbers $J_{k}(n)$ are closely related to the special values $\zeta_{Q}(k)$ (see $\S 3.3$). Here we should remark that we also study another kind of a generalization of the Apéry-like numbers (which we call 'higher' Apéry-like numbers) in [11, 15, 16].

We first show that $J_{k}(n)$ satisfy three-term (inhomogeneous) recurrence relations, which is translated to (inhomogeneous) singly confluent Heun differential equations for their generating functions. The point is that these relations or differential equations are connecting $J_{k}(n)$'s and $J_{k-2}(n)$'s. This fact implies that there could be a certain relation between $\zeta_{Q}(k)$ and $\zeta_{Q}(k-2)$. It would be very interesting if one can utilize these relations to understand a modular interpretation of $\zeta_{Q}(4), \zeta_{Q}(6), \ldots$ based on that of $\zeta_{Q}(2)$ (see [14]). We also notice that these recurrence relations quite resemble to those for Apéry numbers used to prove the irrationality of $\zeta(2)$ and $\zeta(3)$ (see $[2,31]$), and this is why we call $J_{k}(n)$ the (generalized) Apéry-like numbers.

By a suitable change of variable in the differential equation, we also obtain another kind of recurrence relations, which allow us to define the rational part of the generalized Apéry-like numbers (or normalized generalized Apéry-like numbers) $\tilde{J}_{k}(n)$. In fact, each $J_{k}(n)$ is a linear combination of the Riemann zeta values $\zeta(k), \zeta(k-2), \ldots$ and the coefficients are given by $\bar{J}_{m}(n)$'s. Since there are various kind of congruence relations satisfied by Apéry numbers (see, e.g. [5], [6], [1]), it would be natural and interesting to find an analog for our generalized Apéry-like numbers. Actually, we give several congruence relations among $\tilde{J}_{2}(n)$ and $\tilde{J}_{3}(n)$ in [14]. We add such congruence relations among $\tilde{J}_{k}(n)$, and give some conjectural congruences.

2 Apéry numbers for $\zeta(2)$ and $\zeta(3)$

As a quick reference for the readers, we recall the definitions and several properties on the original Apéry numbers.

2.1 Apéry numbers for $\zeta(2)$

Apéry numbers for $\zeta(2)$ are given by

$$
\begin{aligned}
& A_{2}(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}, \\
& B_{2}(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}\left(2 \sum_{m=1}^{n} \frac{(-1)^{m-1}}{m^{2}}+\sum_{m=1}^{k} \frac{(-1)^{n+m-1}}{m^{2}\binom{n}{m}\binom{n+m}{m}}\right) .
\end{aligned}
$$

These numbers satisfy a recurrence relation of the same form

$$
\begin{equation*}
n^{2} u(n)-\left(11 n^{2}-11 n+3\right) u(n-1)-(n-1)^{2} u(n-2)=0 \quad(n \geq 2) \tag{2.1}
\end{equation*}
$$

with initial conditions $A_{2}(0)=1, A_{2}(1)=3$ and $B_{2}(0)=0, B_{2}(1)=5$. The ratio $B_{2}(n) / A_{2}(n)$ converges to $\zeta(2)$, and this convergence is rapid enough to prove the irrationality of $\zeta(2)$. Consider the generating functions

$$
\mathcal{A}_{2}(t)=\sum_{n=0}^{\infty} A_{2}(n) t^{n}, \quad \mathcal{B}_{2}(t)=\sum_{n=0}^{\infty} B_{2}(n) t^{n}, \quad \mathcal{R}_{2}(t)=\mathcal{A}_{2}(t) \zeta(2)-\mathcal{B}_{2}(t) .
$$

It is proved that

$$
L_{2} \mathcal{A}_{2}(t)=0, \quad L_{2} \mathcal{B}_{2}(t)=-5, \quad L_{2} \mathcal{R}_{2}(t)=5
$$

where L_{2} is a differential operator given by

$$
L_{2}=t\left(t^{2}+11 t-1\right) \frac{d^{2}}{d t^{2}}+\left(3 t^{2}+22 t-1\right) \frac{d}{d t}+(t+3)
$$

The function $\mathcal{R}_{2}(t)$ is also expressed as follows:

$$
\mathcal{R}_{2}(t)=\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-x y+\operatorname{txy}(1-x)(1-y)} .
$$

The family $Q_{t}^{2}: 1-x y+t x y(1-x)(1-y)=0$ of algebraic curves, which comes from the denominator of the integrand, is birationally equivalent to the universal family C_{t}^{2} of elliptic curves having rational 5 -torsion. Moreover, the differential equation $L_{2} \mathcal{A}_{2}(t)=0$ is regarded as a Picard-Fuchs equation for this family, and $\mathcal{A}_{2}(t)$ is interpreted as a period of C_{t}^{2} (see [3]).

2.2 Apéry numbers for $\zeta(3)$

Apéry numbers for $\zeta(3)$ are given by

$$
\begin{aligned}
& A_{3}(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}, \\
& B_{3}(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{m=1}^{n} \frac{1}{m^{3}}+\sum_{m=1}^{k} \frac{(-1)^{m-1}}{2 m^{3}\binom{n}{m}\binom{n+m}{m}}\right) .
\end{aligned}
$$

These numbers satisfy a recurrence relation of the same form

$$
n^{3} u(n)-\left(34 n^{3}-51 n^{2}+27 n-5\right) u(n-1)+(n-1)^{3} u(n-2)=0 \quad(n \geq 2)
$$

with initial conditions $A_{3}(0)=1, A_{3}(1)=5$ and $B_{3}(0)=0, B_{3}(1)=6$. The ratio $B_{3}(n) / A_{3}(n)$ converges to $\zeta(3)$ rapidly enough to allow us to prove the irrationality of $\zeta(3)$. Consider the generating functions

$$
\mathcal{A}_{3}(t)=\sum_{n=0}^{\infty} A_{3}(n) t^{n}, \quad \mathcal{B}_{3}(t)=\sum_{n=0}^{\infty} B_{3}(n) t^{n}, \quad \mathcal{R}_{3}(t)=\mathcal{A}_{3}(t) \zeta(3)-\mathcal{B}_{3}(t) .
$$

It is proved that

$$
L_{3} \mathcal{A}_{3}(t)=0, \quad L_{3} \mathcal{B}_{3}(t)=5, \quad L_{3} \mathcal{R}_{3}(t)=-5
$$

where L_{3} is a differential operator given by

$$
L_{3}=t^{2}\left(t^{2}-34 t^{2}+1\right) \frac{d^{3}}{d t^{3}}+t\left(6 t^{2}-153 t+3\right) \frac{d^{2}}{d t^{2}}+\left(7 t^{2}-112 t+1\right) \frac{d}{d t}+(t-5)
$$

The function $\mathcal{R}_{3}(t)$ is also expressed as follows:

$$
\mathcal{R}_{3}(t)=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{d x d y d z}{1-(1-x y) z-\operatorname{txyz}(1-x)(1-y)(1-z)} .
$$

The family $Q_{t}^{3}: 1-(1-x y) z-\operatorname{txy} z(1-x)(1-y)(1-z)=0$ of algebraic surfaces coming from the denominator of the integrand is birationally equivalent to a certain family C_{t}^{3} of $K 3$ surfaces with Picard number 19. Furthermore, the differential equation $L_{3} \mathcal{A}_{3}(t)=0$ is regarded as a Picard-Fuchs equation for this family, and $\mathcal{A}_{3}(t)$ is interpreted as a period of C_{t}^{3} (see [4]).

2.3 Congruence relations for Apéry numbers

Apéry numbers $A_{2}(n)$ and $A_{3}(n)$ have various kind of congruence properties. Here we pick up several of them, for which we will discuss an Apéry-like analog later.
Proposition 2.1. Let p be a prime and $n=n_{0}+n_{1} p+\cdots+n_{k} p^{k}$ be the p-ary expansion of $n \in \mathbb{Z}_{\geq 0}\left(0 \leq n_{j}<p\right)$. Then it holds that

$$
A_{2}(n) \equiv \prod_{j=0}^{k} A_{2}\left(n_{j}\right) \quad(\bmod p), \quad A_{3}(n) \equiv \prod_{j=0}^{k} A_{3}\left(n_{j}\right) \quad(\bmod p)
$$

Proposition 2.2 ([5, Theorems 1 and 2]). For all odd prime p, it holds that

$$
\begin{aligned}
& A_{2}\left(m p^{r}-1\right) \equiv A_{3}\left(m p^{r-1}-1\right) \quad\left(\bmod p^{r}\right), \\
& A_{3}\left(m p^{r}-1\right) \equiv A_{3}\left(m p^{r-1}-1\right) \quad\left(\bmod p^{r}\right)
\end{aligned}
$$

for any $m, r \in \mathbb{Z}_{>0}$. These congruence relations hold modulo $p^{3 r}$ if $p \geq 5$ (known and referred to as a supercongruence).

We denote by $\eta(\tau)$ the Dedekind eta function

$$
\begin{equation*}
\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right), \quad q=e^{2 \pi i \tau} \quad(\Im \tau>0) \tag{2.2}
\end{equation*}
$$

Proposition 2.3 ([30, Theorem 13.1]). For any odd prime p and any $m, r \in \mathbb{Z}_{>0}$ with m odd, it holds that

$$
\begin{equation*}
A_{2}\left(\frac{m p^{r}-1}{2}\right)-\lambda_{p} A_{2}\left(\frac{m p^{r-1}-1}{2}\right)+(-1)^{(p-1) / 2} p^{2} A_{2}\left(\frac{m p^{r-2}-1}{2}\right) \equiv 0 \quad\left(\bmod p^{r}\right) . \tag{2.3}
\end{equation*}
$$

Here λ_{n} is defined by

$$
\sum_{n=1}^{\infty} \lambda_{n} q^{n}=\eta(4 \tau)^{6}=q \prod_{n=1}^{\infty}\left(1-q^{4 n}\right)^{6}
$$

Proposition 2.4 ([6, Theorem 4]). For any odd prime p and any $m, r \in \mathbb{Z}_{>0}$ with m odd, it holds that

$$
\begin{equation*}
A_{3}\left(\frac{m p^{r}-1}{2}\right)-\gamma_{p} A_{3}\left(\frac{m p^{r-1}-1}{2}\right)+p^{3} A_{3}\left(\frac{m p^{r-2}-1}{2}\right) \equiv 0 \quad\left(\bmod p^{r}\right) \tag{2.4}
\end{equation*}
$$

Here γ_{n} is defined by

$$
\sum_{n=1}^{\infty} \gamma_{n} q^{n}=\eta(2 \tau)^{4} \eta(4 \tau)^{4}=q \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{4}\left(1-q^{4 n}\right)^{4}
$$

3 Apéry-like numbers for $\zeta_{Q}(2)$ and $\zeta_{Q}(3)$

We introduce the Apéry like numbers $J_{2}(n)$ and $J_{3}(n)$, and give a brief explanation on their basic properties and the connection between the special values $\zeta_{Q}(2), \zeta_{Q}(3)$ of the spectral zeta function $\zeta_{Q}(s)$.

3.1 Definition

We define the Apéry-like numbers for $\zeta_{Q}(2)$ and $\zeta_{Q}(3)$ by

$$
\begin{aligned}
& J_{2}(n):=4 \int_{0}^{1} \int_{0}^{1}\left(\frac{\left(1-x_{1}^{4}\right)\left(1-x_{2}^{4}\right)}{\left(1-x_{1}^{2} x_{2}^{2}\right)^{2}}\right)^{n} \frac{d x_{1} d x_{2}}{1-x_{1}^{2} x_{2}^{2}} \\
& J_{3}(n):=8 \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(\frac{\left(1-x_{1}^{4}\right)\left(1-x_{2}^{4} x_{3}^{4}\right)}{\left(1-x_{1}^{2} x_{2}^{2} x_{3}^{2}\right)^{2}}\right)^{n} \frac{d x_{1} d x_{2} d x_{3}}{1-x_{1}^{2} x_{2}^{2} x_{3}^{2}}
\end{aligned}
$$

The sequences $\left\{J_{2}(n)\right\}$ and $\left\{J_{3}(n)\right\}$ satisfy the recurrence formula (Propositions 4.11 and 6.4 in [9])

$$
\begin{align*}
& 4 n^{2} J_{2}(n)-\left(8 n^{2}-8 n+3\right) J_{2}(n-1)+4(n-1)^{2} J_{2}(n-2)=0 \tag{3.1}\\
& 4 n^{2} J_{3}(n)-\left(8 n^{2}-8 n+3\right) J_{3}(n-1)+4(n-1)^{2} J_{3}(n-2)=\frac{2^{n}(n-1)!}{(2 n-1)!!} \tag{3.2}
\end{align*}
$$

with the initial conditions

$$
J_{2}(0)=3 \zeta(2), \quad J_{2}(1)=\frac{9}{4} \zeta(2) ; \quad J_{3}(0)=7 \zeta(3), \quad J_{3}(1)=\frac{21}{4} \zeta(3)+\frac{1}{2}
$$

It is notable that the left-hand sides of these relations have the same shape. Since the relations (3.1),(3.2) and the one (2.1) for $A_{2}(n)$ have quite close shapes, we call the numbers $J_{2}(n)$ and $J_{3}(n)$ the Apéry-like numbers.

3.2 Generating functions and their differential equations

The generating functions for $J_{2}(n)$ and $J_{3}(n)$ are defined by

$$
\begin{align*}
& w_{2}(t):=\sum_{n=0}^{\infty} J_{2}(n) t^{n}=4 \int_{0}^{1} \int_{0}^{1} \frac{1-x_{1}^{2} x_{2}^{2}}{\left(1-x_{1}^{2} x_{2}^{2}\right)^{2}-t\left(1-x_{1}^{4}\right)\left(1-x_{2}^{4}\right)} d x_{1} d x_{2}, \tag{3.3}\\
& w_{3}(t):=\sum_{n=0}^{\infty} J_{3}(n) t^{n}=8 \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1-x_{1}^{2} x_{2}^{2} x_{3}^{2}}{\left(1-x_{1}^{2} x_{2}^{2} x_{3}^{2}\right)^{2}-t\left(1-x_{1}^{4}\right)\left(1-x_{2}^{4} x_{3}^{4}\right)} d x_{1} d x_{2} d x_{3} . \tag{3.4}
\end{align*}
$$

By the recurrence relations (3.1) and (3.2), we get the differential equations

$$
\begin{align*}
& \mathcal{D}_{\mathrm{H}} w_{2}(t)=0 \tag{3.5}\\
& \mathcal{D}_{\mathrm{H}} w_{3}(t)=\frac{1}{2}{ }_{2} F_{1}\left(1,1 ; \frac{3}{2} ; t\right), \tag{3.6}
\end{align*}
$$

where \mathcal{D}_{H} denotes the singly confluent Heun differential operator given by

$$
\begin{equation*}
\mathcal{D}_{\mathrm{H}}=t(1-t)^{2} \frac{d^{2}}{d t^{2}}+(1-3 t)(1-t) \frac{d}{d t}+t-\frac{3}{4} \tag{3.7}
\end{equation*}
$$

(3.5) is solved in [23] as

$$
w_{2}(t)=\frac{3 \zeta(2)}{1-t}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \frac{t}{t-1}\right) .
$$

Here ${ }_{2} F_{1}(a, b ; c ; z)$ is the Gaussian hypergeometric function. Now it is immediate that

$$
\begin{equation*}
J_{2}(n)=3 \zeta(2) \sum_{j=0}^{n}(-1)^{j}\binom{-\frac{1}{2}}{j}^{2}\binom{n}{j} \tag{3.8}
\end{equation*}
$$

Similarly, (3.6) is solved in [13] as

$$
\begin{aligned}
w_{3}(t)= & \frac{7 \zeta(3)}{1-t}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \frac{t}{t-1}\right) \\
& -2 \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}(-1)^{k}\binom{-\frac{1}{2}}{k}^{2}\binom{n}{k} \sum_{j=0}^{k-1} \frac{1}{(2 j+1)^{3}}\binom{-\frac{1}{2}}{j}^{-2}\right) t^{n} .
\end{aligned}
$$

Therefore it follows that

$$
\begin{align*}
J_{3}(n)= & 7 \zeta(3) \sum_{j=0}^{n}(-1)^{j}\binom{-\frac{1}{2}}{j}^{2}\binom{n}{j} \\
& -2 \sum_{j=0}^{n}(-1)^{j}\binom{-\frac{1}{2}}{j}^{2}\binom{n}{j} \sum_{k=0}^{j-1} \frac{1}{(2 k+1)^{3}}\binom{-\frac{1}{2}}{k}^{-2} . \tag{3.9}
\end{align*}
$$

Remark 3.1. The function

$$
W_{2}(T)={ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; T^{2}\right)=\frac{1}{3 \zeta(2)}(1-t) w_{2}(t) \quad\left(T^{2}=\frac{t}{t-1}\right)
$$

satisfies the differential equation

$$
\left(T\left(T^{2}-1\right) \frac{d^{2}}{d T^{2}}+\left(3 T^{2}-1\right) \frac{d}{d T}+T\right) W_{2}(T)=0
$$

which can be regarded as a Picard-Fuchs equation for the universal family of elliptic curves having rational 4-torsion [14]. This is an analog of the result [3] for the Apery numbers for $\zeta(2)$ (see also Section 2.1). It is natural to ask whether there is such a modular interpretation for $w_{3}(t)$ (or " $W_{3}(T)$ "). We have not obtained an answer to this question so far.

3.3 Connection to the special values of $\zeta_{Q}(s)$

We also introduce another kind of generating functions for $J_{k}(n)$ as

$$
\begin{aligned}
& g_{2}(z):=\sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n} J_{2}(n) z^{n}=4 \int_{0}^{1} \int_{0}^{1} \frac{d x_{1} d x_{2}}{\sqrt{\left(1-x_{1}^{2} x_{2}^{2}\right)^{2}+z\left(1-x_{1}^{4}\right)\left(1-x_{2}^{4}\right)}} \\
& g_{3}(z):=\sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n} J_{2}(n) z^{n}=8 \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{d x_{1} d x_{2} d x_{3}}{\sqrt{\left(1-x_{1}^{2} x_{2}^{2} x_{3}^{2}\right)^{2}+z\left(1-x_{1}^{4}\right)\left(1-x_{2}^{4} x_{3}^{4}\right)}} .
\end{aligned}
$$

The special values of $\zeta_{Q}(s)$ at $s=2,3$ are given as follows.
Theorem 3.2 (Ichinose-Wakayama [9]). If $\alpha \beta>2$ (i.e. $0<1 /(1-\alpha \beta)<1$), then

$$
\begin{aligned}
& \zeta_{Q}(2)=2\left(\frac{\alpha+\beta}{2 \sqrt{\alpha \beta(\alpha \beta-1)}}\right)^{2}\left(\zeta\left(2, \frac{1}{2}\right)+\left(\frac{\alpha-\beta}{\alpha+\beta}\right)^{2} g_{2}\left(\frac{1}{\alpha \beta-1}\right)\right) \\
& \zeta_{Q}(3)=2\left(\frac{\alpha+\beta}{2 \sqrt{\alpha \beta(\alpha \beta-1)}}\right)^{3}\left(\zeta\left(3, \frac{1}{2}\right)+3\left(\frac{\alpha-\beta}{\alpha+\beta}\right)^{2} g_{3}\left(\frac{1}{\alpha \beta-1}\right)\right)
\end{aligned}
$$

where $\zeta(s, x)=\sum_{n=0}^{\infty}(n+x)^{-s}$ is the Hurwitz zeta function.
Remark 3.3. We can determine the functions $g_{2}(x)$ and $g_{3}(x)$ as follows:

$$
g_{2}(x)=J_{2}(0) \widetilde{g}_{2}(x), \quad g_{3}(x)=J_{3}(0) \widetilde{g}_{2}(x)+\widetilde{g}_{3}(x)
$$

where

$$
\begin{aligned}
& \tilde{g}_{2}(x):=\frac{1}{\sqrt{1+x}}{ }_{2} F_{1}\left(\frac{1}{4}, \frac{1}{4} ; 1 ; \frac{x}{1+x}\right)^{2}={ }_{2} F_{1}\left(\frac{1}{4}, \frac{3}{4} ; 1 ;-x\right)^{2} \\
& \tilde{g}_{3}(x):=\frac{-2}{\sqrt{1+x}} \sum_{n=1}^{\infty}(-1)^{n}\binom{-\frac{1}{2}}{n}^{3}\left(\frac{x}{1+x}\right)^{n} \sum_{j=0}^{n-1} \frac{1}{(2 j+1)^{3}}\binom{-\frac{1}{2}}{j}^{-2} .
\end{aligned}
$$

See [23] and [13] for detailed calculation.

4 Generalized Apéry-like numbers

Looking at the definition of $J_{2}(n)$ and $J_{3}(n)$, it is natural to introduce the numbers $J_{k}(n)$ by

$$
J_{k}(n):=2^{k} \int_{[0,1]^{k}}\left(\frac{\left(1-x_{1}^{4}\right)\left(1-x_{2}^{4} \cdots x_{k}^{4}\right)}{\left(1-x_{1}^{2} \cdots x_{k}^{2}\right)^{2}}\right)^{n} \frac{d x_{1} d x_{2} \cdots d x_{k}}{1-x_{1}^{2} \cdots x_{k}^{2}}
$$

We refer to $J_{k}(n)$ as generalized Apéry-like numbers. In fact, the generating function

$$
\begin{align*}
g_{k}(z) & :=\sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n} J_{k}(n) z^{n} \tag{4.1}\\
& =2^{k} \int_{[0,1]^{k}} \frac{d x_{1} d x_{2} \ldots d x_{k}}{\sqrt{\left(1-x_{1}^{2} x_{2}^{2} \ldots x_{k}^{2}\right)^{2}+z\left(1-x_{1}^{4}\right)\left(1-x_{2}^{4} \ldots x_{k}^{4}\right)}} \tag{4.2}
\end{align*}
$$

and its further generalizations are used to describe the special values $\zeta_{Q}(k)(k \geq 4)$ like Theorem 3.2 (see Remark 4.1 below).

It is immediate that $J_{k}(0)=\left(2^{k}-1\right) \zeta(k)$. Further, as we mentioned in [13], the formula

$$
\begin{equation*}
J_{k}(1)=\frac{3}{4} \sum_{m=0}^{\lfloor k / 2\rfloor-1} \frac{1}{4^{m}} \zeta\left(k-2 m, \frac{1}{2}\right)+\frac{1-(-1)^{k}}{2^{k-1}} \tag{4.3}
\end{equation*}
$$

holds (see $\S 6.2$ for the calculation). It is directly verified that

$$
4 J_{k}(1)-3 J_{k}(0)=J_{k-2}(1) \quad(k \geq 4)
$$

Remark 4.1. We can calculate that

$$
\begin{aligned}
\zeta_{Q}(4)= & 2\left(\frac{\alpha+\beta}{2 \sqrt{\alpha \beta(\alpha \beta-1)}}\right)^{4}\left(\zeta(4,1 / 2)+4\left(\frac{\alpha-\beta}{\alpha+\beta}\right)^{2} g_{4}\left(\frac{1}{\alpha \beta-1}\right)\right. \\
& +2\left(\frac{\alpha-\beta}{\alpha+\beta}\right)^{2} \int_{[0,1]^{4}} \frac{16 d x_{1} d x_{2} d x_{3} d x_{4}}{\sqrt{\left(1-x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2}\right)^{2}+\gamma_{1}\left(1-x_{1}^{4} x_{2}^{4}\right)\left(1-x_{3}^{4} x_{4}^{4}\right)}} \\
& \left.+\left(\frac{\alpha-\beta}{\alpha+\beta}\right)^{4} \int_{[0,1]^{4}} \frac{16 d x_{1} d x_{2} d x_{3} d x_{4}}{\sqrt{R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}}\right)
\end{aligned}
$$

where $\gamma_{1}=1 /(\alpha \beta-1), \gamma_{2}=\alpha \beta /(\alpha \beta-1)^{2}$ and

$$
\begin{aligned}
R\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =\left(1-x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2}\right)^{2} \\
& +\gamma_{1}\left(1-x_{1}^{4} x_{2}^{4}\right)\left(1-x_{3}^{4} x_{4}^{4}\right)+\gamma_{2}\left(1-x_{1}^{4}\right)\left(1-x_{2}^{4}\right)\left(1-x_{3}^{4}\right)\left(1-x_{4}^{4}\right) .
\end{aligned}
$$

See [11] for the calculation on the special values $\zeta_{Q}(k)$ for general $k \geq 2$ (see also [15,16$]$).
Remark 4.2. In [11, 15, 16], we discuss the 'higher' Apéry-like numbers associated to the special values $\zeta_{Q}(k)$ for $k \geq 2$, which is slightly different from our generalized Apéry-like numbers. Indeed, our generalized Apéry-like numbers are regarded as a refinement of the higher ones.

Similar to the case of $J_{2}(n)$ and $J_{3}(n)$, the generalized Apéry-like numbers $J_{k}(n)$ also satisfy a three-term recurrence relation as follows.

Theorem 4.3. The numbers $J_{k}(n)$ satisfy the recurrence relations

$$
\begin{equation*}
4 n^{2} J_{k}(n)-\left(8 n^{2}-8 n+3\right) J_{k}(n-1)+4(n-1)^{2} J_{k}(n-2)=J_{k-2}(n) \tag{4.4}
\end{equation*}
$$

for $n \geq 2$ and $k \geq 4$.
We give the proof of Theorem 4.3 in §5. It is remarkable that the left-hand side of (4.4) has a common shape with those of (3.1) and (3.2), and (4.4) gives a 'vertical' relation among $J_{k}(n)$'s, i.e. it connects $J_{k}(n)$'s and $J_{k-2}(n)$'s.

Example 4.4. First several terms of $J_{4}(n)$ are given by

$$
\begin{gathered}
J_{4}(0)=15 \zeta(4), \quad J_{4}(1)=\frac{45}{4} \zeta(4)+\frac{9}{16} \zeta(2), \quad J_{4}(2)=\frac{615}{64} \zeta(4)+\frac{807}{1024} \zeta(2), \\
J_{4}(3)=\frac{2205}{256} \zeta(4)+\frac{3745}{4096} \zeta(2), \quad J_{4}(4)=\frac{129735}{16384} \zeta(4)+\frac{1044135}{1048576} \zeta(2), \ldots
\end{gathered}
$$

We also see that

$$
\begin{aligned}
4 J_{4}(1)-3 J_{4}(0) & =\frac{9}{4} \zeta(2)=J_{2}(1), \\
16 J_{4}(2)-19 J_{4}(1)+4 J_{4}(0) & =\frac{123}{64} \zeta(2)=J_{2}(2), \\
36 J_{4}(3)-51 J_{4}(2)+16 J_{4}(1) & =\frac{441}{256} \zeta(2)=J_{2}(3), \\
64 J_{4}(4)-99 J_{4}(3)+36 J_{4}(2) & =\frac{25947}{16384} \zeta(2)=J_{2}(4)
\end{aligned}
$$

Define another kind of generating function for $J_{k}(n)$ by

$$
\begin{align*}
w_{k}(t) & :=\sum_{n=0}^{\infty} J_{k}(n) t^{n} \tag{4.5}\\
& =2^{k} \int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} \frac{1-x_{1}^{2} \cdots x_{k}^{2}}{\left(1-x_{1}^{2} \cdots x_{k}^{2}\right)^{2}-\left(1-x_{1}^{4}\right)\left(1-x_{2}^{4} \cdots x_{k}^{4}\right) t} d x_{1} d x_{2} \cdots d x_{k} \tag{4.6}
\end{align*}
$$

Theorem 4.3 readily implies the
Corollary 4.5. The differential equation

$$
\begin{equation*}
\mathcal{D}_{\mathrm{H}} w_{k}(t)=\frac{w_{k-2}(t)-w_{k-2}(0)}{4 t} \tag{4.7}
\end{equation*}
$$

holds for $k \geq 4$. Here \mathcal{D}_{H} is the differential operator given in (3.7).
Put

$$
\mathbb{J}_{0}(n):=0, \quad \mathbb{J}_{1}(n):=\frac{(-1)^{n}}{n}, \quad \mathbb{J}_{k}(n):=\binom{-\frac{1}{2}}{n} J_{k}(n) \quad(k \geq 2)
$$

By Theorem 4.3, we have

$$
\begin{aligned}
8 n^{3} \mathbb{J}_{k}(n)-(1-2 n)\left(8 n^{2}-8 n\right. & +3) \mathbb{J}_{k}(n-1) \\
& +2(n-1)(1-2 n)(3-2 n) \mathbb{J}_{k}(n-2)=2 n \mathbb{J}_{k-2}(n)
\end{aligned}
$$

for $k \geq 2$ and $n \geq 1$. Hence, if we put

$$
\begin{align*}
\mathcal{D}_{\mathrm{w}}:=8 z^{2}(1+z)^{2} \frac{d^{3}}{d z^{3}}+24 z(1+z)(1 & +2 z) \frac{d^{2}}{d z^{2}} \\
& +2\left(4+27 z+27 z^{2}\right) \frac{d}{d z}+3(1+2 z) \tag{4.8}
\end{align*}
$$

then we have the following (See also [13, Proposition A.3]).

Corollary 4.6. The differential equations.

$$
\begin{aligned}
& \mathcal{D}_{\mathrm{w}} g_{2}(z)=0 \\
& \mathcal{D}_{\mathrm{w}} g_{3}(z)=-\frac{2}{1+z} \\
& \mathcal{D}_{\mathrm{w}} g_{k}(z)=2 z \frac{d}{d z}\left(\frac{g_{k-2}(z)-g_{k-2}(0)}{z}\right) \quad(k \geq 4)
\end{aligned}
$$

hold.

5 Proof of Theorem 4.3

5.1 Setting the stage

Assume $k \geq 2$. We notice that

$$
\begin{aligned}
J_{k}(n) & =\int_{0}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{e^{-\left(t_{1}+\cdots+t_{k}\right) / 2}\left(1-e^{-2 t_{1}}\right)^{n}\left(1-e^{-2\left(t_{2}+\cdots+t_{k}\right)}\right)^{n}}{\left(1-e^{-\left(t_{1}+\cdots+t_{k}\right)}\right)^{2 n+1}} d t_{1} \cdots d t_{k} \\
& =\int_{0}^{\infty} \frac{e^{-u / 2}}{\left(1-e^{-u}\right)^{2 n+1}} d u \int_{0}^{u} \frac{t^{k-2}}{(k-2)!}\left(1-e^{-2 t}\right)^{n}\left(1-e^{-2 u+2 t}\right)^{n} d t
\end{aligned}
$$

for each $n \geq 0$. Let us introduce

$$
I_{n, m}^{(k)}=I_{n, m}^{(k)}(u):=\int_{0}^{u} \frac{t^{k-2}}{(k-2)!}\left(1-e^{-2 t}\right)^{n}\left(1-e^{-2 u+2 t}\right)^{m} d t
$$

for $n, m \geq 0$. We also put

$$
\mathbb{I}_{n, m}^{(k)}(u):=\frac{1}{2}\left(I_{n, m}^{(k)}(u)+I_{m, n}^{(k)}(u)\right), \quad \widetilde{\mathbb{I}}_{n, m}^{(k)}(u):=\frac{1}{2}\left(I_{n, m}^{(k)}(u)-I_{m, n}^{(k)}(u)\right) .
$$

$I_{n, m}^{(k)}(u)$ is symmetric in n and m if $k=2$ so that $\widetilde{\mathbb{I}}_{n, m}^{(2)}(u)=0$, but $\widetilde{\mathbb{I}}_{n, m}^{(k)}(u) \neq 0$ in general.

It is convenient to set $I_{n, m}^{(k)}(u)=0$ when $k<2$. We see that

$$
J_{k}(n)=\frac{1}{2^{2 n+1}} \int_{0}^{\infty} \frac{e^{n u}}{\left(\sinh \frac{u}{2}\right)^{2 n+1}} I_{n, n}^{(k)}(u) d u
$$

Thus we also set $J_{k}(n)=0$ if $k<2$. Under these convention, the following discussion for $J_{k}(n)$ is reduced to the one given by Ichinose and Wakayama [9] when $k=2,3$.

For later use, we define

$$
\begin{aligned}
a_{n}^{(k)}(u) & :=I_{n, n}^{(k)}(u)=\mathbb{I}_{n, n}^{(k)}(u) \quad(n \geq 0), \\
b_{n}^{(k)}(u) & :=\frac{1}{2}\left(I_{n, n-1}^{(k)}(u)+I_{n-1, n}^{(k)}(u)\right)=\mathbb{I}_{n, n-1}^{(k)} \quad(n \geq 1), \\
\tilde{b}_{n}^{(k)}(u) & :=\frac{1}{2}\left(I_{n, n-1}^{(k)}(u)-I_{n-1, n}^{(k)}(u)\right)=\widetilde{\mathbb{I}}_{n, n-1}^{(k)} \quad(n \geq 1), \\
\mathcal{A}_{n}^{(k)}(u) & :=e^{n u} a_{n}^{(k)}(u), \quad \mathcal{B}_{n}^{(k)}(u):=\frac{\mathcal{A}_{n}^{(k)}(u)}{\left(\sinh \frac{u}{2}\right)^{2 n+1}} \quad(n \geq 0),
\end{aligned}
$$

so that

$$
J_{k}(n)=\frac{1}{2^{2 n+1}} \int_{0}^{\infty} \mathcal{B}_{n}^{(k)}(u) d u .
$$

5.2 Recurrence formulas for $I_{n, m}^{(k)}(u)$

Integration by parts implies

$$
\begin{align*}
I_{n, m}^{(k-1)}= & \int_{0}^{u}\left(\frac{d}{d t} \frac{t^{k-2}}{(k-2)!}\right)\left(1-e^{-2 t}\right)^{n}\left(1-e^{-2 u+2 t}\right)^{m} d t \\
= & -\int_{0}^{u} \frac{t^{k-2}}{(k-2)!}\left(\frac{d}{d t}\left(1-e^{-2 t}\right)^{n}\right)\left(1-e^{-2 u+2 t}\right)^{m} d t \tag{5.1}\\
& -\int_{0}^{u} \frac{t^{k-2}}{(k-2)!}\left(1-e^{-2 t}\right)^{n}\left(\frac{d}{d t}\left(1-e^{-2 u+2 t}\right)^{m}\right) d t .
\end{align*}
$$

when $n, m \geq 1$. Since

$$
\begin{aligned}
\frac{d}{d t}\left(1-e^{-2 t}\right)^{n} & =2 n e^{-2 t}\left(1-e^{-2 t}\right)^{n-1} \\
& =2 n\left(\left(1-e^{-2 t}\right)^{n-1}-\left(1-e^{-2 t}\right)^{n}\right), \\
\frac{d}{d t}\left(1-e^{-2 u+2 t}\right)^{m} & =-2 m e^{-2 u+2 t}\left(1-e^{-2 u+2 t}\right)^{m-1} \\
& =-2 m\left(\left(1-e^{-2 u+2 t}\right)^{m-1}-\left(1-e^{-2 u+2 t}\right)^{m}\right)
\end{aligned}
$$

for $n, m \geq 1$, we obtain the
Lemma 5.1. The following three relations hold:

$$
\begin{gather*}
\frac{1}{2} I_{n, m}^{(k-1)}=(n-m) I_{n, m}^{(k)}-n I_{n-1, m}^{(k)}+m I_{n, m-1}^{(k)} \quad(n, m \geq 1), \tag{5.2}\\
n I_{n, m}^{(k)}-(2 n-1) I_{n-1, m}^{(k)}+(n-1) I_{n-2, m}^{(k)}-m e^{-2 u} I_{n-1, m-1}^{(k)} \\
=\frac{1}{2}\left(I_{n, m}^{(k-1)}-I_{n-1, m}^{(k-1)}\right) \quad(n \geq 2, m \geq 1), \tag{5.3}\\
m I_{n, m}^{(k)}-(2 m-1) I_{n, m-1}^{(k)}+(m-1) I_{n, m-2}^{(k)}-n e^{-2 u} I_{n-1, m-1}^{(k)} \\
=\frac{1}{2}\left(I_{n, m-1}^{(k-1)}-I_{n, m}^{(k-1)}\right) \quad(n \geq 1, m \geq 2) . \tag{5.4}
\end{gather*}
$$

Plugging (5.2) into (5.3), we get

$$
\begin{equation*}
I_{n, m}^{(k)}-\left(I_{n-1, m}^{(k)}+I_{n, m-1}^{(k)}\right)+\left(1-e^{-2 u}\right) I_{n-1, m-1}^{(k)}=0 \quad(n \geq 1, m \geq 1), \tag{5.5}
\end{equation*}
$$

which is a generalization of (4.14) in [9]. In particular, if we let $n=m$ in (5.5), then we have

$$
\begin{equation*}
I_{n, n}^{(k)}-2 \mathbb{I}_{n, n-1}^{(k)}+\left(1-e^{-2 u}\right) I_{n-1, n-1}^{(k)}=0 . \tag{5.6}
\end{equation*}
$$

Letting $m=n-1$ (or $n=m-1$ and exchanging m by n) in (5.5), we also have another specialization

$$
\begin{array}{ll}
I_{n, n-1}^{(k)}-\left(I_{n-1, n-1}^{(k)}+I_{n, n-2}^{(k)}\right)+\left(1-e^{-2 u}\right) I_{n-1, n-2}^{(k)}=0 & (n \geq 2), \\
I_{n-1, n}^{(k)}-\left(I_{n-2, n}^{(k)}+I_{n-1, n-1}^{(k)}\right)+\left(1-e^{-2 u}\right) I_{n-2, n-1}^{(k)}=0 & (n \geq 2) .
\end{array}
$$

Adding these equations, we get

$$
\begin{equation*}
\mathbb{I}_{n, n-2}^{(k)}=b_{n}^{(k)}(u)-a_{n-1}^{(k)}(u)+\left(1-e^{-2 u}\right) b_{n-1}^{(k)}(u) \quad(n \geq 2) \tag{5.7}
\end{equation*}
$$

By specializing $m=n$ in (5.3) and (5.4), we have

$$
\begin{align*}
& n I_{n, n}^{(k)}-(2 n-1) I_{n-1, n}^{(k)}+(n-1) I_{n-2, n}^{(k)}-n e^{-2 u} I_{n-1, n-1}^{(k)}=\frac{1}{2}\left(I_{n, n}^{(k-1)}-I_{n-1, n}^{(k-1)}\right), \tag{5.8}\\
& n I_{n, n}^{(k)}-(2 n-1) I_{n, n-1}^{(k)}+(n-1) I_{n, n-2}^{(k)}-n e^{-2 u} I_{n-1, n-1}^{(k)}=\frac{1}{2}\left(I_{n, n-1}^{(k-1)}-I_{n, n}^{(k-1)}\right) \tag{5.9}
\end{align*}
$$

for $n \geq 2$. Similarly, specializing $m=n-1$ in (5.3) and $n=m-1$ in (5.4) (and exchanging m by n), we have

$$
\begin{aligned}
n I_{n, n-1}^{(k)}-(2 n-1) I_{n-1, n-1}^{(k)}+(n-1) I_{n-2, n-1}^{(k)} & -(n-1) e^{-2 u} I_{n-1, n-2}^{(k)} \\
= & \frac{1}{2}\left(I_{n, n-1}^{(k-1)}-I_{n-1, n-1}^{(k-1)}\right), \\
n I_{n-1, n}^{(k)}-(2 n-1) I_{n-1, n-1}^{(k)}+(n-1) I_{n-1, n-2}^{(k)} & -(n-1) e^{-2 u} I_{n-2, n-1}^{(k)} \\
= & \frac{1}{2}\left(I_{n-1, n-1}^{(k-1)}-I_{n-1, n}^{(k-1)}\right)
\end{aligned}
$$

for $n \geq 2$. Adding each pair of relations, we obtain

$$
\begin{align*}
2 n I_{n, n}^{(k)}-2(2 n-1) \mathbb{I}_{n, n-1}^{(k)}+2(n-1) \mathbb{I}_{n, n-2}^{(k)}-2 n e^{-2 u} I_{n-1, n-1}^{(k)} & =\widetilde{\mathbb{I}}_{n, n-1}^{(k-1)} \tag{5.10}\\
2 n \mathbb{I}_{n, n-1}^{(k)}-2(2 n-1) I_{n-1, n-1}^{(k)}+2(n-1)\left(1-e^{-2 u}\right) \mathbb{I}_{n-1, n-2}^{(k)} & =\widetilde{\mathbb{I}}_{n, n-1}^{(k-1)} \tag{5.11}
\end{align*}
$$

The formulas (5.6), (5.10) and (5.11) are rewritten as follows.

Lemma 5.2. The equations

$$
\begin{align*}
& a_{n}^{(k)}(u)+\left(1-e^{-2 u}\right) a_{n-1}^{(k)}(u)=2 b_{n}^{(k)}(u), \tag{5.12}\\
& n a_{n}^{(k)}(u)-(2 n-1) b_{n}^{(k)}(u)+(n-1) \mathbb{I}_{n, n-2}^{(k)}-n e^{-2 u} a_{n-1}^{(k)}(u)=\frac{1}{2} \tilde{b}_{n}^{(k-1)}(u), \tag{5.13}\\
& n b_{n}^{(k)}(u)-(2 n-1) a_{n-1}^{(k)}(u)+(n-1)\left(1-e^{-2 u}\right) b_{n-1}^{(k)}(u)=\frac{1}{2} \tilde{b}_{n}^{(k-1)}(u) \tag{5.14}
\end{align*}
$$

hold.
As a corollary, we also get

Lemma 5.3. The equation

$$
\begin{equation*}
n a_{n}^{(k)}(u)-(2 n-1)\left(1+e^{-2 u}\right) a_{n-1}^{(k)}(u)+(n-1)\left(1-e^{-2 u}\right)^{2} a_{n-2}^{(k)}(u)=\tilde{b}_{n}^{(k-1)}(u) \tag{5.15}
\end{equation*}
$$

holds.
Proof. If we substitute (5.12), then we have

$$
\begin{aligned}
\tilde{b}_{n}^{(k-1)}(u)= & 2 n b_{n}^{(k)}(u)-2(2 n-1) a_{n-1}^{(k)}(u)+2(n-1)\left(1-e^{-2 u}\right) b_{n-1}^{(k)}(u) \\
= & n\left(a_{n}^{(k)}(u)+\left(1-e^{-2 u}\right) a_{n-1}^{(k)}(u)\right)-2(2 n-1) a_{n-1}^{(k)}(u) \\
& +(n-1)\left(1-e^{-2 u}\right)\left(a_{n-1}^{(k)}(u)+\left(1-e^{-2 u}\right) a_{n-2}^{(k)}(u)\right) \\
= & n a_{n}^{(k)}(u)-(2 n-1)\left(1+e^{-2 u}\right) a_{n-1}^{(k)}(u)+(n-1)\left(1-e^{-2 u}\right)^{2} a_{n-2}^{(k)}(u),
\end{aligned}
$$

which is the desired formula.
Here we give one more useful relation. Using (5.2) twice, we see that

$$
\begin{aligned}
\frac{1}{4} I_{n, n}^{(k-2)}= & \frac{1}{2}\left(-n I_{n-1, n}^{(k)}+n I_{n, n-1}^{(k)}\right) \\
= & -n\left(-I_{n-1, n}^{(k)}-(n-1) I_{n-2, n}^{(k)}+n I_{n-1, n-1}^{(k)}\right) \\
& +n\left(I_{n, n-1}^{(k)}-n I_{n-1, n-1}^{(k)}+(n-1) I_{n, n-2}^{(k)}\right) \\
= & n\left(2 b_{n}^{(k)}(u)-2 n a_{n-1}^{(k)}(u)+2(n-1) \mathbb{I}_{n, n-2}^{(k)}\right) .
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
a_{n}^{(k-2)}(u)=8 n\left(b_{n}^{(k)}(u)-n a_{n-1}^{(k)}(u)+(n-1) \mathbb{I}_{n, n-2}^{(k)}\right) . \tag{5.16}
\end{equation*}
$$

Combining (5.7), (5.16) and (5.14), we obtain
Lemma 5.4. The equation

$$
\begin{equation*}
a_{n}^{(k-2)}(u)=4 n \tilde{b}_{n}^{(k-1)}(u) \tag{5.17}
\end{equation*}
$$

holds.
In particular, the formula (5.15) is rewritten as

$$
\begin{equation*}
n a_{n}^{(k)}(u)-(2 n-1)\left(1+e^{-2 u}\right) a_{n-1}^{(k)}(u)+(n-1)\left(1-e^{-2 u}\right)^{2} a_{n-2}^{(k)}(u)=\frac{1}{4 n} a_{n}^{(k-2)}(u) \tag{5.18}
\end{equation*}
$$

5.3 Relations for $\mathcal{B}_{n}^{(k)}(u)$

In view of (5.1), the differential

$$
\frac{d}{d u} a_{n}^{(k)}(u)=2 n \int_{0}^{u} \frac{t^{k-2}}{(k-2)!}\left(1-e^{-2 t}\right)^{n} e^{-2 u+2 t}\left(1-e^{-2 u+2 t}\right)^{n-1} d t
$$

is written in two ways as

$$
\frac{d}{d u} a_{n}^{(k)}(u)=2 n\left(I_{n, n-1}^{(k)}-I_{n, n}^{(k)}\right)=-2 n\left(I_{n, n}^{(k)}-I_{n-1, n}^{(k)}\right)+I_{n, n}^{(k-1)}
$$

for $n \geq 1$. Hence it follows that

$$
\begin{align*}
\frac{d}{d u} a_{n}^{(k)}(u) & =n\left(I_{n, n-1}^{(k)}-I_{n, n}^{(k)}\right)-n\left(I_{n, n}^{(k)}-I_{n-1, n}^{(k)}\right)+\frac{1}{2} I_{n, n}^{(k-1)} \tag{5.19}\\
& =-n a_{n}^{(k)}(u)+n\left(1-e^{-2 u}\right) a_{n-1}^{(k)}(u)+\frac{1}{2} a_{n}^{(k-1)}(u) .
\end{align*}
$$

Using this formula, we have

$$
\begin{align*}
\frac{d}{d u} \mathcal{A}_{n}^{(k)}(u)-2 n \sinh u \mathcal{A}_{n-1}^{(k)}(u) & =e^{n u}\left(\frac{d}{d u} a_{n}^{(k)}(u)+n a_{n}^{(k)}(u)-n\left(1-e^{-2 u}\right) a_{n-1}^{(k)}(u)\right) \\
& =\frac{1}{2} \mathcal{A}_{n}^{(k-1)}(u) . \tag{5.20}
\end{align*}
$$

Thus we obtain the
Lemma 5.5. The equation

$$
\begin{equation*}
2 \tanh \frac{u}{2} \frac{d}{d u} \mathcal{B}_{n}^{(k)}(u)=8 n \mathcal{B}_{n-1}^{(k)}(u)-(2 n+1) \mathcal{B}_{n}^{(k)}(u)+\tanh \frac{u}{2} \mathcal{B}_{n}^{(k-1)}(u) \tag{5.21}
\end{equation*}
$$

holds for $n \geq 1$.
Remark 5.6. The differential of $a_{0}^{(k)}(u)$ is given by

$$
\frac{d}{d u} a_{0}^{(k)}(u)=\frac{u^{k-2}}{(k-2)!}
$$

when $k \geq 2$. If $k \geq 3$, this is equal to $a_{0}^{(k-1)}(u)$.
We also see from (5.18) that

$$
\begin{align*}
& n \mathcal{A}_{n}^{(k)}(u)-2(2 n-1) \cosh u \mathcal{A}_{n-1}^{(k)}(u)+4(n-1) \sinh ^{2} u \mathcal{A}_{n-2}^{(k)}(u) \\
= & e^{n u} \tilde{b}_{n}^{(k-1)}(u)=\frac{1}{4 n} \mathcal{A}_{n}^{(k-2)}(u) . \tag{5.22}
\end{align*}
$$

This implies the

Lemma 5.7. The equation

$$
\begin{align*}
n\left(1-\frac{1}{\cosh ^{2} \frac{u}{2}}\right) \mathcal{B}_{n}^{(k)}(u)=4(2 n-1) \mathcal{B}_{n-1}^{(k)}(u)-\frac{2(2 n-1)}{\cosh ^{2} \frac{u}{2}} \mathcal{B}_{n-1}^{(k)}(u) \\
-16(n-1) \mathcal{B}_{n-2}^{(k)}(u)+\frac{1}{4 n}\left(1-\frac{1}{\cosh ^{2} \frac{u}{2}}\right) \mathcal{B}_{n}^{(k-2)}(u) \tag{5.23}
\end{align*}
$$

holds for $n \geq 2$.

5.4 Recurrence formula for $J_{k}(n)$

Define

$$
\begin{equation*}
K_{k}(n)=\frac{1}{2^{2 n+1}} \int_{0}^{\infty} \frac{\mathcal{B}_{n}^{(k)}(u)}{\cosh ^{2} \frac{u}{2}} d u, \quad M_{k}(n)=\frac{1}{2^{2 n+1}} \int_{0}^{\infty} \tanh \frac{u}{2} \mathcal{B}_{n}^{(k-1)}(u) d u \tag{5.24}
\end{equation*}
$$

By integrating (5.21) and (5.23), we have

$$
\begin{align*}
K_{k}(n)= & (2 n+1) J_{k}(n)-2 n J_{k}(n-1)-M_{k}(n), \tag{5.25}\\
2 n\left(J_{k}(n)-K_{k}(n)\right)= & (2 n-1)\left(2 J_{k}(n-1)-K_{k}(n-1)\right)-2(n-1) J_{k}(n-2) \\
& +\frac{1}{2 n}\left(J_{k-2}(n)-K_{k-2}(n)\right) \tag{5.26}
\end{align*}
$$

Plugging these equations, we obtain
Lemma 5.8. Put

$$
\begin{equation*}
L_{k}(n):=J_{k-2}(n)-J_{k-2}(n-1)+2 n M_{k}(n)-(2 n-1) M_{k}(n-1)-\frac{1}{2 n} M_{k-2}(n) \tag{5.27}
\end{equation*}
$$

The recurrence formula

$$
\begin{equation*}
4 n^{2} J_{k}(n)-\left(8 n^{2}-8 n+3\right) J_{k}(n-1)+4(n-1)^{2} J_{k}(n-2)=L_{k}(n) \tag{5.28}
\end{equation*}
$$

holds for $k \geq 2$ and $n \geq 2$.
When $k=2$, the inhomogeneous term $L_{2}(n)$ in (5.28) vanishes and we get (3.1). When $k=3$, we see that $L_{3}(n)=2 n M_{3}(n)-(2 n-1) M_{3}(n-1)$, which is equal to $\frac{2^{n}(n-1)!}{(2 n-1)!!}$ (Lemma 6.3 in [9]), so we have (3.2).

5.5 Calculation of the inhomogeneous terms

Let us put

$$
\begin{equation*}
Q_{k}(n):=\frac{1}{2^{2 n+1}} \int_{0}^{\infty} \frac{\mathcal{B}_{n}^{(k)}(u)}{\tanh \frac{u}{2}} d u \tag{5.29}
\end{equation*}
$$

This definite integral converges if $k \geq 3$.

From (5.21), we have

$$
2 \frac{d}{d u} \mathcal{B}_{n}^{(k)}(u)=8 n \frac{\mathcal{B}_{n-1}^{(k)}(u)}{\tanh \frac{u}{2}}-(2 n+1) \frac{\mathcal{B}_{n}^{(k)}(u)}{\tanh \frac{u}{2}}+\mathcal{B}_{n}^{(k-1)}(u) .
$$

It follows then

$$
0=8 n \cdot 2^{2 n-1} Q_{k}(n-1)-(2 n+1) 2^{2 n+1} Q_{k}(n)+2^{2 n+1} J_{k-1}(n),
$$

and hence

$$
\begin{equation*}
J_{k-1}(n)=(2 n+1) Q_{k}(n)-2 n Q_{k}(n-1) \tag{5.30}
\end{equation*}
$$

for $k \geq 3$ and $n \geq 1$.
From (5.22), we also see that

$$
\begin{aligned}
& n \tanh \frac{u}{2} \mathcal{B}_{n}^{(k)}(u)-2(2 n-1)\left(\frac{1}{\tanh \frac{u}{2}}+\tanh \frac{u}{2}\right) \mathcal{B}_{n-1}^{(k)}(u) \\
& \quad+16(n-1) \frac{\mathcal{B}_{n-2}^{(k)}(u)}{\tanh \frac{u}{2}}=\frac{1}{4 n} \tanh \frac{u}{2} \mathcal{B}_{n}^{(k-2)}(u) .
\end{aligned}
$$

Thus we have

$$
\begin{array}{r}
n 2^{2 n+1} M_{k+1}(n)-2(2 n-1) 2^{2 n-1}\left(Q_{k}(n-1)+M_{k+1}(n-1)\right) \\
\quad+16(n-1) 2^{2 n-3} Q_{k}(n-2)=\frac{1}{4 n} 2^{2 n+1} M_{k-1}(n)
\end{array}
$$

which implies

$$
\begin{array}{r}
2 n M_{k+1}(n)-(2 n-1) M_{k+1}(n-1)-\frac{1}{2 n} M_{k-1}(n) \tag{5.31}\\
\quad=(2 n-1) Q_{k}(n-1)-2(n-1) Q_{k}(n-2)
\end{array}
$$

for $k \geq 3$ and $n \geq 2$.
Using (5.30) and (5.31), we obtain

$$
\begin{aligned}
& 2 n M_{k}(n)-(2 n-1) M_{k}(n-1)-\frac{1}{2 n} M_{k-2}(n) \\
= & (2 n-1) Q_{k-1}(n-1)-2(n-1) Q_{k-1}(n-2)=J_{k-2}(n-1)
\end{aligned}
$$

for $k \geq 4$ and $n \geq 2$. Hence the inhomogeneous term is computed as

$$
\begin{equation*}
L_{k}(n)=J_{k-2}(n)-J_{k-2}(n-1)+J_{k-2}(n-1)=J_{k-2}(n) \tag{5.32}
\end{equation*}
$$

for $k \geq 4$ and $n \geq 2$. This completes the proof of Theorem 4.3.
Remark 5.9. It may be "natural" to assume (or interpret) that

$$
J_{0}(n)=0, \quad J_{1}(n)=2 \int_{0}^{1}\left(1-x^{2}\right)^{n-1} d x=\frac{2^{n}(n-1)!}{(2 n-1)!!}
$$

and

$$
w_{0}(t)=0, \quad " w_{1}(t)-w_{1}(0) "=\sum_{n=1}^{\infty} \frac{2^{n}(n-1)!}{(2 n-1)!!} t^{n}=2 t_{2} F_{1}\left(1,1 ; \frac{3}{2} ; t\right) .
$$

Under this convention, Theorem 4.3 and Corollary 4.5 would include the case where $k=2,3$.

6 Infinite series expression

We give an infinite series expression of $J_{k}(n)$. Using it, we prove the equation (4.3).

6.1 Infinite series expression of $J_{k}(n)$

Let us put

$$
f_{n}(s, t):=\frac{1}{\left(1-s^{2} t^{2}\right)}\left(\frac{\left(1-s^{4}\right)\left(1-t^{4}\right)}{\left(1-s^{2} t^{2}\right)^{2}}\right)^{n}=\left(1-s^{4}\right)^{n}\left(1-t^{4}\right)^{n}\left(1-s^{2} t^{2}\right)^{-2 n-1}
$$

Then we have

$$
J_{k}(n)=2^{k} \int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} f_{n}\left(x_{1}, x_{2} \cdots x_{k}\right) d x_{1} \cdots d x_{k}
$$

Since

$$
\begin{aligned}
f_{n}(s, t) & =\left(1-s^{4}\right)^{n}\left(1-t^{4}\right)^{n} \sum_{l=0}^{\infty}\binom{-2 n-1}{l}\left(-s^{2} t^{2}\right)^{l} \\
& =\frac{1}{(2 n)!} \sum_{l=0}^{\infty}(l+1)_{2 n} s^{2 l}\left(1-s^{4}\right)^{n} t^{2 l}\left(1-t^{4}\right)^{n}
\end{aligned}
$$

it follows that

$$
J_{k}(n)=\frac{2^{k}}{(2 n)!} \sum_{l=0}^{\infty}(l+1)_{2 n} I_{1}(l, n) I_{k-1}(l, n)
$$

Here $I_{p}(l, n)$ is given by

$$
I_{p}(l, n):=\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1}\left(u_{1} \cdots u_{p}\right)^{2 l}\left(1-\left(u_{1} \cdots u_{p}\right)^{4}\right)^{n} d u_{1} \cdots d u_{p}
$$

Notice that

$$
\begin{aligned}
I_{1}(l, n) & =\int_{0}^{1} u^{2 l}\left(1-u^{4}\right)^{n} d u=\frac{4^{n} n!}{(2 l+1)(2 l+5) \cdots(2 l+4 n+1)}, \\
I_{p}(l, n) & =\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1}\left(u_{1} \cdots u_{p}\right)^{2 l+4 j} d u_{1} \cdots d u_{p} \\
& =\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \frac{1}{(2 l+4 j+1)^{p}} .
\end{aligned}
$$

Thus we obtain the expression

$$
\begin{equation*}
J_{k}(n)=\frac{2^{k} 4^{n} n!}{(2 n)!} \sum_{l=0}^{\infty} \frac{(l+1)_{2 n}}{(2 l+1)(2 l+5) \cdots(2 l+4 n+1)} \sum_{j=0}^{n}\binom{n}{j} \frac{(-1)^{j}}{(2 l+4 j+1)^{k-1}} . \tag{6.1}
\end{equation*}
$$

6.2 Example: calculation of $J_{k}(1)$

When $n=1$, we see that

$$
\begin{aligned}
J_{k}(1) & =2 \cdot 2^{k} \sum_{l=0}^{\infty} \frac{(l+1)(l+2)}{(2 l+1)(2 l+5)}\left(\frac{1}{(2 l+1)^{k-1}}-\frac{1}{(2 l+5)^{k-1}}\right) \\
& =2 \cdot 2^{k} \sum_{l=0}^{\infty} \frac{(l+1)(l+2)\left((2 l+5)^{k-1}-(2 l+1)^{k-1}\right)}{(2 l+1)^{k}(2 l+5)^{k}}
\end{aligned}
$$

Using the identity

$$
\begin{aligned}
& (l+1)(l+2)\left((2 l+5)^{k-1}-(2 l+1)^{k-1}\right) \\
= & ((2 l+1)(2 l+5)-(2 l+1)+(2 l+5)-1) \sum_{j=0}^{k-2}(2 l+1)^{j}(2 l+5)^{k-2-j}
\end{aligned}
$$

we have

$$
\begin{aligned}
& J_{k}(1)=2 \cdot 2^{k} \sum_{j=0}^{k-2}\{S(k-j-1, j+1) \\
&-S(k-j-1, j+2)+S(k-j, j+1)-S(k-j, j+2))\}
\end{aligned}
$$

where

$$
S(\alpha, \beta):=\sum_{l=0}^{\infty}(2 l+1)^{-\alpha}(2 l+5)^{-\beta} .
$$

Since

$$
\begin{aligned}
\sum_{j=1}^{k-1} S(j, k-j) & =\sum_{l=0}^{\infty} \sum_{j=1}^{k-1}(2 l+1)^{-j}(2 l+5)^{j-k} \\
& =\sum_{l=0}^{\infty} \frac{1}{(2 l+5)^{k}} \frac{2 l+5}{2 l+1} \frac{1-\left(\frac{2 l+5}{2 l+1}\right)^{k-1}}{1-\left(\frac{2 l+5}{2 l+1}\right)} \\
& =\frac{1}{4} \sum_{l=0}^{\infty}\left(\frac{1}{(2 l+1)^{k-1}}-\frac{1}{(2 l+5)^{k-1}}\right)=\frac{1+3^{1-k}}{4}
\end{aligned}
$$

we have

$$
\begin{equation*}
J_{k}(1)=2^{k+1}\left(\frac{2}{3^{k+1}}+S(k, 1)-S(1, k)+S(k+1,1)+S(1, k+1)\right) . \tag{6.2}
\end{equation*}
$$

Let us calculate $S(k, 1)$ and $S(1, k)$. By the partial fraction expansion

$$
\frac{1}{x(x+\alpha)^{k}}=\frac{1}{\alpha^{k}}\left(\frac{1}{x}-\frac{1}{x+\alpha}\right)-\sum_{m=2}^{k} \frac{1}{\alpha^{k-m+1}(x+\alpha)^{m}}
$$

we see that

$$
\begin{aligned}
& \frac{1}{(2 l+1)^{k}(2 l+5)}=-\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{2 l+1}-\frac{1}{2 l+5}\right)+\frac{1}{2^{k}} \sum_{m=2}^{k}\left(-\frac{1}{2}\right)^{k-m+2} \frac{1}{\left(l+\frac{1}{2}\right)^{m}} \\
& \frac{1}{(2 l+1)(2 l+5)^{k}}=\left(\frac{1}{4}\right)^{k}\left(\frac{1}{2 l+1}-\frac{1}{2 l+5}\right)+\frac{1}{2^{k}} \sum_{m=2}^{k}\left(\frac{1}{2}\right)^{k-m+2} \frac{1}{\left(l+2+\frac{1}{2}\right)^{m}}
\end{aligned}
$$

Thus it follows that

$$
\begin{aligned}
& S(k, 1)=\frac{1}{2^{k}} \sum_{m=2}^{k}\left(-\frac{1}{2}\right)^{k-m+2} \zeta\left(m, \frac{1}{2}\right)+\frac{1}{3}\left(-\frac{1}{4}\right)^{k-1}, \\
& S(1, k)=-\frac{1}{2^{k}} \sum_{m=2}^{k}\left(\frac{1}{2}\right)^{k-m+2} \zeta\left(m, \frac{1}{2}\right)+\frac{1}{3}\left(\frac{1}{4}\right)^{k-1}+\frac{1}{3}+\frac{1}{3^{k}} .
\end{aligned}
$$

If we substitute these to (6.2), then we have

$$
\begin{aligned}
J_{k}(1)= & 2^{k+1}\left(\frac{2}{3^{k+1}}+\frac{1}{2^{k}} \sum_{m=2}^{k}\left(-\frac{1}{2}\right)^{k-m+2} \zeta\left(m, \frac{1}{2}\right)+\frac{1}{3}\left(-\frac{1}{4}\right)^{k-1}\right. \\
& +\frac{1}{2^{k}} \sum_{m=2}^{k}\left(\frac{1}{2}\right)^{k-m+2} \zeta\left(m, \frac{1}{2}\right)+\frac{1}{3}\left(\frac{1}{4}\right)^{k-1}-\frac{1}{3}-\frac{1}{3^{k}} \\
& +\frac{1}{2^{k+1}} \sum_{m=2}^{k+1}\left(-\frac{1}{2}\right)^{k-m+3} \zeta\left(m, \frac{1}{2}\right)+\frac{1}{3}\left(-\frac{1}{4}\right)^{k} \\
& \left.-\frac{1}{2^{k+1}} \sum_{m=2}^{k+1}\left(\frac{1}{2}\right)^{k-m+3} \zeta\left(m, \frac{1}{2}\right)-\frac{1}{3}\left(\frac{1}{4}\right)^{k}+\frac{1}{3}+\frac{1}{3^{k+1}}\right) .
\end{aligned}
$$

Now it is straightforward to see that

$$
\begin{aligned}
J_{k}(1) & =3 \sum_{m=2}^{k} \frac{1+(-1)^{k-m}}{2^{k-m+3}} \zeta\left(m, \frac{1}{2}\right)+\frac{1+(-1)^{k-1}}{2^{k-1}} \\
& =\frac{3}{4} \sum_{\substack{2 \leq m \leq k \\
2\lceil k-m}} \frac{2^{m}-1}{2^{k-m}} \zeta(m)+\frac{1+(-1)^{k-1}}{2^{k-1}} \\
& =\frac{3}{4} \sum_{m=0}^{\lfloor k / 2\rfloor-1} 2^{-2 m} \zeta\left(k-2 m, \frac{1}{2}\right)+\frac{1-(-1)^{k}}{2^{k-1}} .
\end{aligned}
$$

7 Differential equations for generating functions

Utilizing the differential equations for the generating functions $w_{k}(t)$, we give another kind of relations among the generalized Apéry-like numbers $J_{k}(n)$.

7.1 Equivalent differential equations

Consider the inhomogeneous (singly confluent) Heun differential equation

$$
\mathcal{D}_{\mathrm{H}} w(t)=u(t)
$$

for a given function $u(t)$. Put $z=\frac{t}{t-1}$ and $v(z)=(1-t) w(t)$. Then we have

$$
\mathcal{D}_{\circ} v(z)=\frac{1}{z-1} u\left(\frac{z}{z-1}\right)
$$

Here \mathcal{D}_{O} is the hypergeometric differential operator given by

$$
\mathcal{D}_{\mathrm{O}}=z(1-z) \frac{d^{2}}{d z^{2}}+(1-2 z) \frac{d}{d z}-\frac{1}{4}
$$

We also remark that this is also the Picard-Fuchs differential operator for the family $y^{2}=x(x-1)(x-z)$ of elliptic curves.

7.2 Recurrence formula for $J_{k}(n)$

Put $z=\frac{t}{t-1}$ and $v_{k}(z)=(1-t) w_{k}(t)$. By Theorem 4.3, $v_{k}(z)$ satisfies the differential equation

$$
\begin{align*}
\left(\mathcal{D}_{\circ} v\right)(z) & =\frac{1}{4(z-1)} \sum_{j=0}^{\infty} J_{k-2}(j+1)\left(\frac{z}{z-1}\right)^{j} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{4} \sum_{j=0}^{n}(-1)^{j+1}\binom{n}{j} J_{k-2}(j+1)\right) z^{n} . \tag{7.1}
\end{align*}
$$

The polynomial functions

$$
\begin{equation*}
p_{n}(z):=-\frac{4}{(2 n+1)^{2}}\binom{-\frac{1}{2}}{n}^{-2} \sum_{k=0}^{n}\binom{-\frac{1}{2}}{k}^{2} z^{k} \tag{7.2}
\end{equation*}
$$

satisfy the equation

$$
\begin{equation*}
\left(\mathcal{D}_{\mathrm{o}} p_{n}\right)(z)=z^{n} . \tag{7.3}
\end{equation*}
$$

Hence we can construct a local holomorphic solution to (7.1) as

$$
\begin{equation*}
v(z)=\sum_{n=0}^{\infty}\left(\frac{1}{4} \sum_{j=0}^{n}(-1)^{j+1}\binom{n}{j} J_{k-2}(j+1)\right) p_{n}(z) \tag{7.4}
\end{equation*}
$$

Notice that the difference $v_{k}(z)-v(z)$ satisfies the homogeneous differential equation

$$
\begin{equation*}
\left(\mathcal{D}_{\circ}\left(v_{k}-v\right)\right)(z)=0 \tag{7.5}
\end{equation*}
$$

Thus it follows that

$$
\begin{equation*}
v_{k}(z)-v(z)=C_{k} v_{2}(z) \tag{7.6}
\end{equation*}
$$

where the constant C_{k} is determined by

$$
\begin{equation*}
C_{k}=\frac{v_{k}(0)-v(0)}{v_{2}(0)}=\frac{\left(2^{k}-1\right) \zeta(k)-v(0)}{3 \zeta(2)} \tag{7.7}
\end{equation*}
$$

and $v(0)$ is given by

$$
\begin{equation*}
v(0)=-\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}\binom{-\frac{1}{2}}{n}^{-2} \sum_{j=0}^{n}(-1)^{j+1}\binom{n}{j} J_{k-2}(j+1) \tag{7.8}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
v_{k}(z)=\left(2^{k}-1\right) \zeta(k)_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; z\right)+\left(v(z)-v(0)_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; z\right)\right) . \tag{7.9}
\end{equation*}
$$

Consequently, we obtain the
Theorem 7.1. When $k \geq 4$, the equation

$$
\begin{align*}
J_{k}(n) & =\sum_{p=0}^{n}(-1)^{p}\binom{-\frac{1}{2}}{p}^{2}\binom{n}{p} \\
& \times\left(\left(2^{k}-1\right) \zeta(k)-\sum_{i=0}^{p-1} \frac{1}{(2 i+1)^{2}}\left(-\frac{1}{2}\right)^{-2} \sum_{j=0}^{i}(-1)^{j}\binom{i}{j} J_{k-2}(j+1)\right) \tag{7.10}
\end{align*}
$$

holds.
Remark 7.2. If we formally put $J_{1}(n)=\frac{2^{n}(n-1)!}{(2 n-1)!!}$ in (7.10), then we have

$$
J_{3}(n)=\sum_{p=0}^{n}(-1)^{p}\binom{-\frac{1}{2}}{p}^{2}\binom{n}{p}\left(7 \zeta(3)-2 \sum_{i=0}^{p-1} \frac{1}{(2 i+1)^{3}}\binom{-\frac{1}{2}}{i}^{-2}\right)
$$

since

$$
\sum_{j=0}^{i}(-1)^{j}\binom{i}{j} \frac{2^{j+1} j!}{(2 j+1)!!}=\frac{2}{2 i+1}
$$

This is nothing but the explicit formula (3.9) for $J_{3}(n)$.
Example 7.3. Since

$$
\begin{aligned}
\sum_{j=0}^{i}(-1)^{j}\binom{i}{j} J_{2}(j+1) & =3 \zeta(2)\left(\binom{-\frac{1}{2}}{i}^{2}-\binom{-\frac{1}{2}}{i+1}^{2}\right) \\
& =3 \zeta(2)\binom{-\frac{1}{2}}{i}^{2}\left(1-\frac{(2 i+1)^{2}}{(2 i+2)^{2}}\right)
\end{aligned}
$$

we have

$$
J_{4}(n)=\sum_{p=0}^{n}(-1)^{p}\binom{-\frac{1}{2}}{p}^{2}\binom{n}{p}\left(15 \zeta(4)-3 \zeta(2) \sum_{i=1}^{2 p} \frac{(-1)^{i-1}}{i^{2}}\right) .
$$

7.3 Normalized generalized Apéry-like numbers

For a given sequence $\{J(n)\}_{n \geq 0}$, we associate a new sequence

$$
\begin{equation*}
J(n)^{\sharp}:=\sum_{p=0}^{n}(-1)^{p}\binom{-\frac{1}{2}}{p}^{2}\binom{n}{p}\left\{\sum_{i=0}^{p-1} \frac{-1}{(2 i+1)^{2}}\binom{-\frac{1}{2}}{i}^{-2} \sum_{j=0}^{i}(-1)^{j}\binom{i}{j} J(j+1)\right\} . \tag{7.11}
\end{equation*}
$$

Notice that $J(0)^{\sharp}=0$. It would be natural to extend $J(n)^{\sharp}=0$ if $n<0$. By the discussion in the previous subsection, we have the
Lemma 7.4. Let $\{J(n)\}$ be a given sequence and $\left\{J(n)^{\sharp}\right\}$ the one defined by (7.11). Then the equation

$$
\begin{equation*}
4 n^{2} J(n)^{\sharp}-\left(8 n^{2}-8 n+3\right) J(n-1)^{\sharp}+4(n-1)^{2} J(n-2)^{\sharp}=J(n) \tag{7.12}
\end{equation*}
$$

holds for $n \geq 1$.
Let us introduce the rational sequences $\tilde{J}_{k}(n)$ by

$$
\begin{aligned}
& \tilde{J}_{1}(n):=\frac{2^{n}(n-1)!}{(2 n-1)!!} \quad(n \geq 1), \quad \tilde{J}_{2}(n):=\frac{J_{2}(n)}{J_{2}(0)} \quad(n \geq 0), \\
& \tilde{J}_{k}(n):=\tilde{J}_{k-2}(n)^{\sharp} \quad(k \geq 3, n \geq 0) .
\end{aligned}
$$

We see that

$$
\begin{equation*}
\tilde{J}_{2 k}(1)=\frac{3}{4^{k}}, \quad \tilde{J}_{2 k+1}(1)=\frac{2}{4^{k}} \tag{7.13}
\end{equation*}
$$

It is immediate to verify the

Proposition 7.5.

$$
\begin{equation*}
J_{k}(n)=\sum_{m=0}^{\lfloor k / 2\rfloor-1} \zeta\left(k-2 m, \frac{1}{2}\right) \tilde{J}_{2 m+2}(n)+\frac{1-(-1)^{k}}{2} \tilde{J}_{k}(n) . \tag{7.14}
\end{equation*}
$$

Based on this fact, we call $\bar{J}_{k}(n)$ the normalized (generalized) Apéry-like numbers. By definition, $\tilde{J}_{k}(n)$ for $k \geq 2$ are written in the form

$$
\begin{equation*}
\tilde{J}_{k}(n)=\sum_{p=0}^{n}(-1)^{p}\binom{-\frac{1}{2}}{p}^{2}\binom{n}{p} S_{k}(p), \tag{7.15}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{2}(p)=1, \quad S_{3}(p)=-2 \sum_{i=0}^{p-1} \frac{1}{(2 i+1)^{3}}\binom{-\frac{1}{2}}{i}^{-2}=-2 \sum_{i=0}^{p-1} \frac{(1 / 2)_{i}(1)_{i}^{3} 1^{i}}{(3 / 2)_{i}^{3}} \frac{1!}{i!}, \\
& S_{k}(p)=\sum_{i=0}^{p-1} \frac{-1}{(2 i+1)^{2}}\binom{-\frac{1}{2}}{i}^{-2} \sum_{j=0}^{i}(-1)^{j}\binom{i}{j} J_{k-2}(j+1) \quad(k \geq 4) .
\end{aligned}
$$

Thus it is enough to investigate $S_{k}(p)$ to obtain an explicit expression for normalized Apéry-like numbers.

Lemma 7.6.

$$
\begin{equation*}
S_{k+2}(p+1)-S_{k+2}(p)=\frac{S_{k}(p+1)}{(2 p+2)^{2}}-\frac{S_{k}(p)}{(2 p+1)^{2}} \tag{7.16}
\end{equation*}
$$

Proof. By definition, we have

$$
\begin{equation*}
S_{k+2}(p+1)-S_{k+2}(p)=\frac{-1}{(2 p+1)^{2}}\binom{-\frac{1}{2}}{p}^{-2} \sum_{j=0}^{p}(-1)^{j}\binom{p}{j} \tilde{J}_{k}(j+1) \tag{7.17}
\end{equation*}
$$

The sum in the right hand side is calculated as

$$
\begin{aligned}
& \sum_{j=0}^{p}(-1)^{j}\binom{p}{j} \tilde{J}_{k}(j+1) \\
= & \sum_{j=0}^{p}(-1)^{j}\binom{p}{j}\left(\sum_{q=0}^{j}(-1)^{q}\binom{-\frac{1}{2}}{q}^{2}\binom{j+1}{q} S_{k}(q)+(-1)^{j+1}\binom{-\frac{1}{2}}{j+1}^{2} S_{k}(j+1)\right) \\
= & \sum_{q=0}^{p}(-1)^{q}\binom{-\frac{1}{2}}{q}^{2} S_{k}(q) \sum_{j=q}^{p}(-1)^{j}\binom{p}{j}\binom{j+1}{q}-\sum_{j=0}^{p}\binom{p}{j}\binom{-\frac{1}{2}}{j+1}^{2} S_{k}(j+1) .
\end{aligned}
$$

By the elementary identity

$$
\sum_{j=p}^{n}(-1)^{j}\binom{n}{j}\binom{j}{p}=(-1)^{p} \delta_{n p} \quad\left(n, p \in \mathbb{Z}_{\geq 0}\right)
$$

we get

$$
\begin{aligned}
\sum_{j=q}^{p}(-1)^{j}\binom{p}{j}\binom{j+1}{q} & =\sum_{j=q}^{p}(-1)^{j}\binom{p}{j}\binom{j}{q}+\sum_{j=q}^{p}(-1)^{j}\binom{p}{j}\binom{j}{q-1} \\
& =(-1)^{q}\left(\delta_{p q}+\binom{p}{q-1}\right)
\end{aligned}
$$

Thus it follows that

$$
\begin{aligned}
\sum_{j=0}^{p}(-i)^{j}\binom{p}{j} \tilde{J}_{k}(j+1)= & \binom{-1 / 2}{p}^{2} S_{k}(p)+\sum_{q=0}^{p}\binom{-\frac{1}{2}}{q}^{2} S_{k}(q)\binom{p}{q-1} \\
& -\sum_{j=0}^{p}\binom{p}{j}\binom{-\frac{1}{2}}{j+1}^{2} S_{k}(j+1) \\
= & \binom{-\frac{1}{2}}{p}^{2} S_{k}(p)-\binom{-\frac{1}{2}}{p+1}^{2} S_{k}(p+1) \\
= & (2 p+1)^{2}\binom{-\frac{1}{2}}{p}^{2}\left(\frac{S_{k}(p)}{(2 p+1)^{2}}-\frac{S_{k}(p+1)}{(2 p+2)^{2}}\right)
\end{aligned}
$$

Therefore we obtain

$$
S_{k+2}(p+1)-S_{k+2}(p)=\frac{S_{k}(p+1)}{(2 p+2)^{2}}-\frac{S_{k}(p)}{(2 p+1)^{2}}
$$

as we desired.

As a corollary, we readily have the
Lemma 7.7.

$$
\begin{equation*}
S_{k+2}(p)=\sum_{q=1}^{p}\left(\frac{S_{k}(q)}{(2 q)^{2}}-\frac{S_{k}(q-1)}{(2 q-1)^{2}}\right) \tag{7.18}
\end{equation*}
$$

Using this lemma repeatedly, we obtain the
Proposition 7.8. For each $r \geq 1$,

$$
\begin{align*}
& S_{2 r+2}(p)=\sum_{1 \leq i_{1} \leq \cdots \leq i_{r} \leq 2 p} \frac{(-1)^{i_{1}+\cdots+i_{r}}}{i_{1}^{2} \ldots i_{r}^{2}} \varepsilon_{i_{1}, \ldots, i_{r}}, \tag{7.19}\\
& S_{2 r+3}(p)=\sum_{1 \leq 2 j-1<i_{1} \leq \cdots \leq i_{r} \leq 2 p} \frac{1}{(2 j-1)^{3}}\binom{-\frac{1}{2}}{j-1}^{-2} \frac{(-1)^{i_{1}+\cdots+i_{r}}}{i_{1}^{2} \ldots i_{r}^{2}} \varepsilon_{i_{1}, \ldots, i_{r}}, \tag{7.20}
\end{align*}
$$

where

$$
\varepsilon_{i_{1}, \ldots, i_{r}}:= \begin{cases}0 & 1 \leq \exists j<r \text { s.t. } i_{j}=i_{j+1} \equiv 1 \quad(\bmod 2) \tag{7.21}\\ 1 & \text { otherwise }\end{cases}
$$

Example 7.9. We have

$$
\begin{aligned}
S_{4}(p) & =\sum_{j=1}^{2 p} \frac{(-1)^{j}}{j^{2}}, \\
S_{6}(p) & =\sum_{1 \leq i \leq j \leq 2 p} \frac{(-1)^{i+j}}{i^{2} j^{2}} \varepsilon_{i, j}=\sum_{1 \leq i<j \leq 2 p} \frac{(-1)^{i+j}}{i^{2} j^{2}}+\sum_{i=1}^{p} \frac{1}{(2 i)^{4}}, \\
S_{8}(p) & =\sum_{1 \leq i \leq j \leq k \leq 2 p} \frac{(-1)^{i+j+k}}{i^{2} j^{2} k^{2}} \varepsilon_{i, j, k} \\
& =\sum_{1 \leq i<j<k \leq 2 p} \frac{(-1)^{i+j+k}}{i^{2} j^{2} k^{2}}+\left(\sum_{1 \leq 2 i \leq 2 p} \frac{1}{(2 i)^{4}}\right)\left(\sum_{1 \leq k \leq 2 p} \frac{(-1)^{k}}{k^{2}}\right) .
\end{aligned}
$$

Remark 7.10. We see that

$$
\begin{equation*}
\lim _{p \rightarrow \infty} S_{2}(p)=1, \quad \lim _{p \rightarrow \infty} S_{4}(p)=-\frac{\pi^{2}}{12}, \quad \lim _{p \rightarrow \infty} S_{6}(p)=-\frac{\pi^{4}}{720} . \tag{7.22}
\end{equation*}
$$

In general, we can prove that

$$
\begin{equation*}
\lim _{p \rightarrow \infty} S_{2 r+2}(p)=-\frac{\zeta(2 r)}{2^{2 r-1}} . \tag{7.23}
\end{equation*}
$$

See [17] for the proof as well as its generalizations.

8 Congruence relations among Apéry-like numbers

In this section, we study the congruence relation among the normalized Apery-like numbers introduced in the previous section.

8.1 Congruence relations for Apéry-like numbers

We give several congruence relations among Apéry-like numbers.
Proposition 8.1 ([13, Proposition 6.1]). Let p be a prime and $n=n_{0}+n_{1} p+\cdots+n_{k} p^{k}$ be the p-ary expansion of $n \in \mathbb{Z}_{\geq 0}\left(0 \leq n_{j}<p\right)$. Then it holds that

$$
\tilde{J}_{2}(n) \equiv \prod_{j=0}^{k} \tilde{J}_{2}\left(n_{j}\right) \quad(\bmod p)
$$

The following claim is regarded as an analog of Proposition 2.2.
Proposition 8.2 ([13, Theorem 6.2]). For any odd prime p and positive integers m, r, the congruence relation

$$
\begin{aligned}
\tilde{J}_{2}\left(m p^{r}\right) & \equiv \bar{J}_{2}\left(m p^{r-1}\right) \quad\left(\bmod p^{r}\right) \\
\tilde{J}_{3}\left(p^{r}\right) p^{3 r} & \equiv \bar{J}_{3}\left(p^{r-1}\right) p^{3(r-1)} \quad\left(\bmod p^{r}\right)
\end{aligned}
$$

holds.
Proposition 8.3. For any odd prime p, the congruence relation

$$
\begin{equation*}
\sum_{n=0}^{p-1} \tilde{J}_{2}(n) \equiv 0 \quad\left(\bmod p^{2}\right) \tag{8.1}
\end{equation*}
$$

holds.
Proof. We see that

$$
\begin{aligned}
\sum_{n=0}^{p-1} \tilde{J}_{2}(n) & =\sum_{n=0}^{p-1} \sum_{j=0}^{n}(-1)^{j} 16^{-j}\binom{2 j}{j}^{2}\binom{n}{j}=\sum_{j=0}^{p-1}(-1)^{j} 16^{-j}\binom{2 j}{j}^{2} \sum_{n=j}^{p-1}\binom{n}{j} \\
& =\sum_{j=0}^{p-1}(-1)^{j} 16^{-j}\binom{2 j}{j}^{2}\binom{p}{j+1} \equiv p \sum_{j=0}^{\frac{p-1}{2}} 16^{-j}\binom{2 j}{j}^{2}\binom{p-1}{j} \frac{(-1)^{j}}{j+1} \\
& \equiv p \sum_{j=0}^{\frac{p-1}{2}} 16^{-j}\binom{2 j}{j}^{2} \frac{1}{j+1} \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

since $\binom{2 j}{j}$ is divisible by p^{2} if $\frac{p-1}{2}<j<p$. Notice that

$$
16^{-j}\binom{2 j}{j}^{2} \equiv(-1)^{j}\binom{\frac{p-1}{2}+j}{j}\binom{\frac{p-1}{2}}{j} \quad(\bmod p)
$$

for $0 \leq j<p$. Hence we have

$$
\sum_{n=0}^{p-1} \tilde{J}_{2}(n) \equiv p \sum_{j=0}^{\frac{p-1}{2}}\binom{\frac{p-1}{2}+j}{j}\binom{\frac{p-1}{2}}{j} \frac{(-1)^{j}}{j+1} \quad\left(\bmod p^{2}\right)
$$

By putting $n=\frac{p-1}{2}$ and $m=0$ in the identity (see [7, Chapter 5.3])

$$
\begin{equation*}
\sum_{k \geq 0}\binom{n+k}{k}\binom{n}{k} \frac{(-1)^{k}}{k+1+m}=(-1)^{n} \frac{m!n!}{(m+n+1)!}\binom{m}{n} \tag{8.2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sum_{j=0}^{\frac{p-1}{2}}\binom{\frac{p-1}{2}+j}{j}\binom{\frac{p-1}{2}}{j} \frac{(-1)^{j}}{j+1}=\frac{(-1)^{\frac{p-1}{2}}}{\left(\frac{p+1}{2}\right)!}\binom{0}{\frac{p-1}{2}}=0 . \tag{8.3}
\end{equation*}
$$

Hence we obtain the desired conclusion.
Proposition 8.4. For each odd prime p, it holds that

$$
\begin{equation*}
\tilde{J}_{2}\left(\frac{p-1}{2}\right) \equiv A_{2}\left(\frac{p-1}{2}\right) \quad\left(\bmod p^{2}\right) . \tag{8.4}
\end{equation*}
$$

Here $A_{2}(n)$ is the Apéry number for $\zeta(2)$.
Proof. It is elementary to check that

$$
\begin{aligned}
\binom{\frac{p-1}{2}}{k} & \equiv\binom{-\frac{1}{2}}{k}\left\{1-p \sum_{j=1}^{k} \frac{1}{2 j-1}\right\} \quad\left(\bmod p^{2}\right), \\
\binom{\frac{p-1}{2}+k}{k} & \equiv(-1)^{k}\binom{-\frac{1}{2}}{k}\left\{1+p \sum_{j=1}^{k} \frac{1}{2 j-1}\right\} \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

for $k=\dot{0}, 1, \ldots,(p-1) / 2$. Using these equations, we easily see that both $A_{2}\left(\frac{p-1}{2}\right)$ and $\bar{J}_{2}\left(\frac{p-1}{2}\right)$ are congruent to

$$
\sum_{k=0}^{(p-1) / 2}(-1)^{k}\binom{-\frac{1}{2}}{k}^{3}\left\{1-p \sum_{j=1}^{k} \frac{1}{2 j-1}\right\}
$$

modulo p^{2}.
Remark 8.5. The following supercongruence

$$
A_{2}\left(\frac{p-1}{2}\right) \equiv \lambda_{p} \quad\left(\bmod p^{2}\right)
$$

holds if p is a prime larger than 3 (see [10]; see also [20, 32]).
The following result is conjectured in [13].

Theorem 8.6 (Long-Osburn-Swisher [18]). For any odd prime p, the congruence relation

$$
\begin{equation*}
\sum_{n=0}^{p-1} \tilde{J}_{2}(n)^{2} \equiv(-1)^{\frac{p-1}{2}} \quad\left(\bmod p^{3}\right) \tag{8.5}
\end{equation*}
$$

holds.
Remark 8.7. The theorem above is quite similar to the Rodriguez-Villegas-type congruence due to Mortenson [19]

$$
\begin{equation*}
\sum_{n=0}^{p-1}\binom{-\frac{1}{2}}{n}^{2}=\sum_{n=0}^{p-1}\binom{2 n}{n}^{2} 16^{-n} \equiv(-1)^{\frac{p-1}{2}} \quad\left(\bmod p^{2}\right) \tag{8.6}
\end{equation*}
$$

We also remark that the following "very similar" congruence relation is also obtained in the earlier work [24]:

$$
\begin{equation*}
\sum_{n=0}^{(p-1) / 2}\binom{2 n}{n}^{2} 16^{-n}+\frac{3}{8} p(-1)^{(p-1) / 2} \sum_{i=1}^{(p-1) / 2}\binom{2 i}{i} \frac{1}{i} \equiv\left(\frac{-1}{p}\right) \quad\left(\bmod p^{3}\right) \tag{8.7}
\end{equation*}
$$

where p is an arbitrary odd prime number.

8.2 Conjectures

In the final position, we give several conjectures on congruence relations among normalized (generalized) Apéry-like numbers.

The following conjecture is regarded as a "true" analog of Proposition 2.2:
Conjecture 8.8 (Kimoto-Osburn [12]). For any odd prime p, the congruence relation

$$
\begin{equation*}
\tilde{J}_{2}\left(m p^{r}-1\right) \equiv(-1)^{\frac{p-1}{2}} \tilde{J}_{2}\left(m p^{r-1}-1\right) \quad\left(\bmod p^{r}\right) \tag{8.8}
\end{equation*}
$$

holds for any integers $m, r \geq 1$.
Remark 8.9. When $r=1,(8.8)$ is obtained by using the elementary formulas

$$
\begin{aligned}
\binom{-\frac{1}{2}}{k p+j} & \equiv\binom{-\frac{1}{2}}{k}\binom{-\frac{1}{2}}{j} \quad(\bmod p), \\
(-1)^{n}\binom{m p^{r}-1}{n} & \equiv(-1)^{\left\lfloor\frac{n}{p}\right\rfloor}\binom{m p^{r-1}-1}{\left\lfloor\frac{n}{p}\right\rfloor} \quad\left(\bmod p^{r}\right)
\end{aligned}
$$

and Mortenson's result (8.6) as follows:

$$
\begin{aligned}
\tilde{J}_{2}(m p-1) & =\sum_{j=0}^{m p-1}(-1)^{j}\binom{-\frac{1}{2}}{j}^{2}\binom{m p-1}{j}=\sum_{j=0}^{p-1} \sum_{k=0}^{m-1}(-1)^{k p+j}\binom{-\frac{1}{2}}{k p+j}^{2}\binom{m p-1}{k p+j} \\
& \equiv \sum_{j=0}^{p-1} \sum_{k=0}^{m-1}(-1)^{k}\binom{-\frac{1}{2}}{k}^{2}\binom{-\frac{1}{2}}{j}^{2}\binom{m-1}{k}(\bmod p) \\
& \equiv(-1)^{\frac{p-1}{2}} \tilde{J}_{2}(m-1) \quad(\bmod p) .
\end{aligned}
$$

We have

$$
\begin{aligned}
\tilde{J}_{2}\left(m p^{r}-1\right) & =\sum_{j=0}^{p-1} \sum_{k=0}^{m p^{r-1}-1}(-1)^{k p+j}\binom{-\frac{1}{2}}{k p+j}^{2}\binom{m p^{r}-1}{k p+j} \\
& \equiv \sum_{j=0}^{p-1} \sum_{k=0}^{m p^{r-1}-1}(-1)^{k}\binom{-\frac{1}{2}}{k p+j}^{2}\binom{m p^{r-1}-1}{k}\left(\bmod p^{r}\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \tilde{J}_{2}\left(m p^{r}-1\right)-(-1)^{\frac{p-1}{2}} \tilde{J}_{2}\left(m p^{r-1}-1\right) \\
& \equiv \sum_{k=0}^{m p^{r-1}-1}(-1)^{k}\left(\sum_{j=0}^{p-1}\binom{-\frac{1}{2}}{k p+j}^{2}-(-1)^{\frac{p-1}{2}}\binom{-\frac{1}{2}}{k}^{2}\right)\binom{m p^{r-1}-1}{k} \quad\left(\bmod p^{r}\right)
\end{aligned}
$$

Lemma 8.10.

$$
\sum_{j=0}^{p-1}\binom{-\frac{1}{2}}{k p+j}^{2} \equiv(-1)^{\frac{p-1}{2}}\binom{-\frac{1}{2}}{k}^{2} \quad\left(\bmod p^{2}\right)
$$

Conjecture 8.11. For any odd prime p and $m, r \in \mathbb{Z}_{>0}$ with m odd, it holds that

$$
\begin{equation*}
\tilde{J}_{2}\left(\frac{m p^{r}-1}{2}\right)-\lambda_{p} \tilde{J}_{2}\left(\frac{m p^{r-1}-1}{2}\right)+(-1)^{p(p-1) / 2} p^{2} \tilde{J}_{2}\left(\frac{m p^{r-2}-1}{2}\right) \equiv 0 \quad\left(\bmod p^{r}\right), \tag{8.9}
\end{equation*}
$$

where λ_{n} is given by

$$
\sum_{n=1}^{\infty} \lambda_{n} q^{n}=q \prod_{n=1}^{\infty}\left(1-q^{4 n}\right)^{6}=\eta(4 \tau)^{6}
$$

Further, the congruence (8.9) holds modulo $p^{2 r}$ if $p \geq 5$.
Notice that (8.4) is a special case of the conjecture above (see [20, 32]). It is remarkable that both $A_{2}\left(\frac{m p^{r}-1}{2}\right)$ and $\tilde{J}_{2}\left(\frac{m p^{r}-1}{2}\right)$ satisfy exactly the same congruence relation ((2.3) and (8.9)), though they are not congruent modulo p^{r} in general.

Conjecture 8.12. For any odd prime p, the congruence relation

$$
\begin{equation*}
\sum_{n=0}^{p-1} \tilde{J}_{2 k}(n) \equiv-1 \quad\left(\bmod p^{2}\right) \tag{8.10}
\end{equation*}
$$

holds for any $k \geq 2$.
Acknowledgement. The author would like to thank Robert Osburn for pointing out an error in the first draft and telling him a right reference.

References

[1] S. Ahlgren and K. Ono: A Gaussian hypergeometric series evaluation and Apéry number congruences. J. Reine Angew. Math. 518 (2000), 187-212.
[2] R. Apéry: Irrationalité de $\zeta(2)$ et $\zeta(3)$. Astérisque 61 (1979), 11-13.
[3] F. Beukers: Irrationality of π^{2}, periods of an elliptic curve and $\Gamma_{1}(5)$. Diophantine approximations and transcendental numbers (Luminy, 1982), 47-66, Progr. Math. 31, Birkhäuser, Boston, Mass., 1983.
[4] F. Beukers and C. A. M. Peters: A family of $K 3$ surfaces and $\zeta(3)$. J. Reine Angew. Math. 351 (1984), 42-54.
[5] F. Beukers: Some congruence for the Apery numbers. J. Number Theory 21, 141-155 (1985).
[6] F. Beukers: Another congruence for the Apéry numbers. J. Number Theory 25, 201-210 (1987).
[7] R. L. Graham, D. E. Knuth and O. Patashnik: Concrete Mathematics. A foundation for computer science. Second edition. Addison-Wesley Publishing Company, Reading, MA, 1994.
[8] T. Ichinose and M. Wakayama: Zeta functions for the spectrum of the noncommutative harmonic oscillators. Commun. Math. Phys. 258 (2005), 697-739.
[9] T. Ichinose and M. Wakayama: Special values of the spectral zeta function of the non-commutative harmonic oscillator and confluent Heun equations. Kyushu J. Math. 59 (2005), 39-100.
[10] T. Ishikawa: Super congruence for the Apéry numbers. Nagoya Math. J. 118 (1990), 195-202.
[11] K. Kimoto: Arithmetics derived from the non-commutative harmonic oscillator. Casimir Force, Casimir Operators and the Riemann Hypothesis (ed. G. van Dijk and M. Wakayama), 199-210, de Gruyter, 2010.
[12] Private discussion with Robert Osburn at Dublin, October 2008.
[13] K. Kimoto and M. Wakayama: Apéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators. Kyushu J. Math. 60 (2006), 383-404.
[14] K. Kimoto and M. Wakayama: Elliptic curves arising from the spectral zeta function for non-commutative harmonic oscillators and $\Gamma_{0}(4)$-modular forms. Proceedings of the Conference on L-functions (eds. L. Weng, M. Kaneko), 201-218, World Scientific, 2007.
[15] K. Kimoto and M. Wakayama: Spectrum of non-commutative harmonic oscillators and residual modular forms. Noncommutative geometry and physics 3 (ed. G. Dito et al.), 237-267, World Scientific, 2013.
[16] K. Kimoto and M. Wakayama: Apéry-like numbers for non-commutative harmonic oscillators and Eichler forms with the associated cohomology groups. In preparation.
[17] K. Kimoto and Y. Yamasaki: A variation of multiple L-values arising from the spectral zeta function of the non-commutative harmonic oscillator. Proc. Amer. Math. Soc. 137 (2009), no. 8, 2503-2515.
[18] L. Long, R. Osburn and H. Swisher: On a conjecture of Kimoto and Wakayama. Proc. Amer. Math. Soc. 144 (2016), no.10, 4319-4327.
[19] E. Mortenson: A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function. J. Number Theory 99 (2003), 139-147.
[20] E. Mortenson: Supercongruences for truncated ${ }_{n+1} F_{n}$ hypergeometric series with application to certain weight three newforms. Proc. Amer. Math. Soc. 133 (2005), no.2, 321-330.
[21] H. Ochiai: Non-commutative harmonic oscillators and Fuchsian ordinary differential operators. Comm. Math. Phys. 217 (2001), 357-373.
[22] H. Ochiai: Non-commutative harmonic oscillators and the connection problem for the Heun differential equation. Lett. Math. Phys. 70 (2004), 133-139. .
[23] H. Ochiai: A special value of the spectral zeta function of the non-commutative harmonic oscillators. Ramanujan J. 15 (2008), 31-36.
[24] R. Osburn and C. Schneider: Gaussian hypergeometric series and supercongruences. Math. Comp. 78 (2009), no. 265, 275-292.
[25] A. Parmeggiani: On the spectrum and the lowest eigenvalue of certain noncommutative harmonic oscillators. Kyushu J. Math. 58 (2004), 277-322.
[26] A. Parmeggiani: Introduction to the spectral theory of non-commutative harmonic oscillators. COE Lecture Note, 8. Kyushu University, The 21st Century COE Program "DMHF", Fukuoka, 2008.
[27] A. Parmeggiani and M. Wakayama: Oscillator representations and systems of ordinary differential equations. Proc. Natl. Acad. Sci. USA 98 (2001), 26-30.
[28] A. Parmeggiani and M. Wakayama: Non-commutative harmonic oscillators-I, II, Corrigenda and remarks to I. Forum. Math. 14 (2002), 539-604, 669-690, ibid 15 (2003), 955-963.
[29] A. Parmeggiani and M. Wakayama: A remark on systems of differential equations associated with representations of $\mathfrak{s l}_{2}(\boldsymbol{R})$ and their perturbations. Kodai Math. J. 25 (2002), 254-277.
[30] J. Stienstra and F. Beukers: On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces. Math. Ann. 271 (1985), no. 2, 269-304.
[31] A. van der Poorten: A proof that Euler missed. . . Apéry's proof of the irrationality of $\zeta(3)$. Math. Intelligencer 1 (1978/1979), 195-203.
[32] L. van Hamme: Proof of a conjecture of Beukers on Apéry numbers. Proceedings of the conference on p-adic analysis (Houthalen, 1987), 189-195.
[33] D. Zagier: Modular forms and differential operators. Proc. Indian Acad. Sci. Math. Sci. 104 (1994), no 1, 57-75.
[34] D. Zagier: Integral solutions of Apéry-like recurrence equations. Group and Symmetries, 349-366, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009.

Department of Mathematical Sciences
Faculty of Science
University of the Ryukyus
Nishihara-cho, Okinawa 903-0213
JAPAN

[^0]: *Received November 30, 2016.

