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Kazufumi KIMOTO 

Abstract 

A generalization of the Apery-like numbers, which is used to describe the spe
cial values (Q(2) and (Q(3) of the spectral zeta function for the non-commutative 
harmonic oscillator, are introduced and studied. In fact, we give a recurrence 
relation for them, which shows a ladder structure among them. Further, we 
consider the 'rational part' of the generalized Apery-like numbers. We discuss 
several kinds of congruence relations among them, which are regarded as an 
analog of the ones among Apery numbers. 

1 Introduction 

The non-commutative harmonic oscillator is the system of differential equations de
fined by the operator 

{1.1) 

. where a and {3 are real parameters. In this paper, we always assume that a > 0, 
{3 > 0 and o.f3 > 1. Under these conditions, one can show that the operator Q defines 
an unbounded, positive, self-adjoint operator on the space L2{1R; C2) of C2-valued 
square integrable functions which has only a discrete spectrum, and the multiplicities 
m{.A) of the eigenvalues A E Spec(Q) are uniformly bounded [27]. Hence, in this case, 
it is meaningful to define its spectral zeta function 

(Q{s) = TrQ-s = L m(.X).A-s . 
.XeSpec(Q) 

This series converges absolutely if ~s > 1, and hence defines a holomorphic function 
on the half plane ~s > 1. Further, (Q(s) is meromorphically continued to the whole 
complex plane C which has 'trivial zeros' at s = 0, -2, -4, ... {see [8], [26]). 

*Received November 30, 2016. 
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The aim of this paper is to study the generalized Apery-like numbers Jk(n) defined 
by . 

k 1 ((1- xf)(1- x~ · · · x1) )n dx1dx2 · · · dxk Jk(n) := 2 2 · 
[o,I]'" (1 - x 1 · · · x~)2 1 - x~ · · · x~ 

for k ~ 2 and n ~ 0, which are a generalization of the Apery-like numbers J2(n) 
and J3 (n) studied in [13]. This object arises from the special values of the spectral 
zeta function (Q(s): In [9], the generating functions. of the numbers J2(n) and Jg(n) 
are used to describe the special values (Q(2) and (Q(3) of the spectral zeta function 
(Q(s). Similarly, the generalized Apery-like numbers Jk(n) are closely related to the 
special values (Q(k) (see §3.3). Here we should remark that we also study another 
kind of a generalization of the Apery-like numbers (which we call 'higher' Apery-like 
numbers) in [11, 15, 16]. 

We first show that Jk(n) satisfy three-term (inhomogeneous) recurrence relations, 
which is translated to (inhomogeneous) singly confluent Heun differential equations for 
their generating functions. The point is that these relations or differential equations 
are connecting Jk(n)'s and Jk_2(n)'s. This fact implies that there could be a certain 
relation between (Q ( k) and (Q ( k - 2). It would be very interesting if one can utilize 
these relations to understand a modular interpretation of (Q(4), (Q(6), ... based on 
that of (Q(2) (see [14]). We also notice that these recurrence relations quite resemble 
to those for Apeiy numbers used to prove the irrationality of ((2) and ((3) (see [2, 31]), 
and this is why we call Jk(n) the (generalized) Apery-like numbers. 

By a suitable change of variable in the differential equation, we also obtain another 
kind of recurrence relations, which allow us to define the rational part of the gener
alized Apery-like numbers (or normalized generalized Apery-like numbers) Jk(n). In 
fact, each Jk(n) is a linear combination of the Riemann zeta values ((k), ((k- 2), ... 
and the coefficients are given by lm(n)'s. Since there are various kind of congruence 
relations satisfied by Apery numbers (see, e.g. [5], [6], [1]), it would be natural and 
interesting to find an analog for our generalized Apery-like numbers. Actually, we give 
several congruence relations among ]2(n) and ]3 (n) in [14]. We add such congruence 
relations among ]k(n), and give some conjectural congruences. 

2 Apery numbers for ((2) and ((3) 

As a quic~ reference for the readers, we recall the definitions and several properties 
on the original Apery numbers. 

2.1 Apery numbers for ((2) 

Apery numbers for ((2) are given by 
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These numbers satisfy a recurrence relation of the same form 

n2u(n)- (11n2 - 11n + 3)u(n- 1)- (n- 1)2u(n- 2) = 0 (n 2: 2) - (2.1) 

with initial conditions A2 (0) = 1, A2 (1) = 3 and B2(0) = 0, B2 (1) ~ 5. The ratio 
B 2(n)/A 2 (n) converges to ((2), and this convergence is rapid enough to prove the 
irrationality of ((2). Consider the generating functions 

00 00 

A2(t) = L A2(n)tn, 132(t) = L B2(n)tn, :R2(t) = A2(t)((2) -132(t). 
n=O n=O 

It is proved that 

where L2 is a differential operator given by 

. d2 d 
L 2 = t(t2 + 11t- 1) dt2 + (3t2 + 22t- 1) dt + (t + 3). 

The function :R2 ( t) is also expressed as follows: 

:R2(t) = 1111 dxdy . 
0 0 1 - xy + txy ( 1 - x )(1 - y) 

The family Q~: 1- xy + txy(l- x)(1- y) = 0 of algebraic curves, which comes from 
the denominator of the integrand, is birationally equivalent to the universal family 
C'f of elliptic curves having rational 5-torsion. Moreover, the differential equation 
L 2A 2 (t) = 0 is regarded as a Picard-Fuchs equation for this family, and A 2 (t) is 
interpreted as a period of Cl (see [3]). 

2.2 Apery numbers for ((3) 

Apery numbers for ((3) are given by 

These num?ers satisfy a recurrence relation of the same form 

n3u(n) - (34n3 - 51n2 + 27n- 5)u(n- 1) + (n- 1)3u(n- 2) = 0 (n 2:: 2) 

with initial conditions A3(0) = 1,A3(l) = 5 and B3(0) = O,B3(1) = 6. The ratio 
·B3(n)/A3(n) converges to ((3) rapidly enough to allow us to prove the irrationality 
·of ((3). Consider the generating functions 

00 00 

A3(t) = L A3(n)tn, 133(t) = L B3(n)tn, :R3(t) = A3(t)((3) -133(t). 
n=O n=O 
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It is proved that 

L3A3(t) = 0, La13a(t) = 5, La~a(t) = -5, 

where L3 is a differential operator given by 

d3 d2 d 
L3 = t2 (t2

- 34t2 + 1) dt3 + t(6t2
- 153t + 3) dt2 + (7t2

- 112t + 1) dt + (t- 5). 

The function ~3 (t) is also expressed as follows: 

1
11111 dxdydz 

~a(t) = 0 0 0 1 - (1 - xy)z- txyz(l - x){1- y){1- z)" 

The family Q~: 1-(1-xy)z-txyz(l-x)(1-y)(1-z) = 0 of algebraic surfaces coming 

from the denominator of the integrand is birationally equivalent to a certain family 

Ct of K3 surfaces with Picard number 19. Furthermore, the differential equ~tion 
L 3A 3 (t) = 0 is regarded as a Picard-Fuchs equation for this family, and A3 {t) is 

interpreted as a period of Ct (see [4]). 

2.3 Congruence relations for Apery numbers 

Apery numbers A2 ( n) and Aa ( n) have various kind of congruence properties. Here 

we pick up several of them, for which we will discuss an Apery-like analog later. 

Proposition 2.1. Let p be a prime and n = n0 + n 1p + · · · + nkpk be the p-ary 

expansion of n E Z;:::o {0 ~ ni < p). Then it holds that 

k k 

A2(n) = IT A2(ni) (mod p), Aa(n) = IT A3(ni) (mod p). 
j=O j=O 

Proposition 2.2 ([5, Theorems 1 and 2]). For all odd prime p, it holds that 

A2(rnpr- 1) = A3{mpr-l - 1) {mod pr), 

Aa(m,pr- 1) = Aa (mpr-l - 1) {mod pr) 

for any m, r E Z>O· These congruence relations hold modulo p3r if p ~ 5 (known and 

referred to as a supercongruence). 

We denote by TJ(r) the Dedekind eta function 

00 

TJ(T) = ql/24 11 (1 _ qn), q = e21rir (S'r > O). {2.2) 
n=1 

Proposition 2.3 {[30, Theorem 13.1]). For any odd prime p and any m, r E Z>o 

with m odd, it holds that 

A2{mp;-1)- ApA2{mpr;l-l) + (-1)(p-l)/2p2A2(mpr;2-1) := 0 {mod pr). {2.3) 

Here An is defined by 

00 00 

2: AnQn = TJ{4r)6 = q 11 {1- q4n)6. 
n=l n=1 
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Proposition 2.4 ([6, Theorem 4]). For any odd prime p and any m, r E Z>o with m 
odd, it holds that 

A3(mp; -1) - ')'pA3( mpr;l-1) + p3 A3{mpr;2-1) = 0 {mod pr). (2.4) 

Here 'Yn is defined by 
00 00 

n=1 n=1 

3 Apery-like numbers for (Q(2) and (Q(3) 

We introduce the Apery like numbers J 2(n) and J3(n), and give a brief explanation 
on their basic properties and the connection between the special values (Q(2), (Q(3) 
of the spectral zeta function (Q ( s). 

3.1 Definition 

We define the Apery-like numbers for (Q{2) and (Q(3) by 

J. ( ) ·- 4 [
1 

[
1 

( {1 - xj){1 - x~) )n dx1dx2 
2 n .- }0 } 0 {1- x~x~) 2 1- x~x~' 

J ( ) ·- 8 [
1 

[
1 

[
1 

( (1- xf)(l- x~x~))n dx1dx2dx3 
3 n .- }0 } 0 } 0 (1 - x~x~x~)2 1 - x~x~x~ · 

The sequences {J2 (n)} and {J3 (n)} satisfy the recurrence formula (Propositions 4.11 
and 6.4 in [9]) 

4n2 J2(n)- {8n2
- Bn + 3)J2{n- 1) + 4{n- 1)2 J2(n- 2) = 0, (3.1) 

2 · 2 2 2n { n - 1)! 
4n J 3 (n)- (Bn - Bn + 3)J3 (n- 1) + 4(n- 1) J3(n- 2) = (

2
n _ 

1
)!! {3.2) 

with the initial conditions 

J3(0) = 7((3), 
21 1 

J3(1) = 4((3) + 2' 
It is notable that the left-hand sides of these relations have the same shape. Since 
the relations (3.1),(3.2) and the one (2.1) for A2 (n) have quite close shapes, we call 
the numbers J2 (n) and J3 (n) the Apery-like numbers. 

3.2 Generating functions and their differential equations 

- 5-



By the recurrence relations (3.1) and (3.2), we get the differential equations 

~w2(t) = 0, 

1),.wa(t) = ~ 2F1 (1, 1; ~; t), 
where 1)H denotes the singly confluent Heun differential operator given by 

d2 d 3 
'DH = t(1 - t) 2 dt2 + (1- 3t)(1- t) dt + t- 4' 

(3.5) is solved in [23] as 

3((2) (1 1 t ) 
w2(t) = 1 _ t 2F1 2' 2; 1; t _ 1 . 

(3.5) 

(3.6) 

(3.7) 

Here 2F 1 (a, b; c; z) is the Gaussian hypergeometric function. Now it is immediate that 

(3.8) 

Therefore it follows that 

Ja(n) = 7((3) ~( -1); ( ~! Y (;) 

- 2 t(-1); ( ~~y (;)I: (2k ~ 1)3 ( -}r 
J=O k=O 

(3.9) 

Remark 3.1. The function 

( T2= _t ) 
t-1 

satisfies the differential equation 

( T(T
2

- 1) d~2 + (3T
2 -1) d~ + T) W2(T) = 0, 

which can be regarded as a Picard-Fuchs equation for the universal family of elliptic 

curves having rational 4-torsion [14]. This is an analog of the result [3] for the Apery 
numbers for ((2) (see also Section 2.1). It is natural to ask whether there is such a 

modular interpretation for w3(t) (or "W3(T)"). We have not obtained an answer to 
this question s9 far. 
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3.3 Connection to the special values of (Q(s) 

We also introduce another kind of generating functions for Jk(n) as 

9a(z) := f (-!) J2(n)z" = 8/.1 {1/.1 dxldx2dx3 . 
n=O n o lo o vf(1- x~x~x~)2 + .z;(1- x1)(1- x~xj) 

The special values of (q(s) at s = 2, 3 are given as follows. 

Theorem 3.2 (Ichinose-Wakayama [9]). If a{3 > 2 (i.e. 0 < 1/(1- a{3) < 1), then 

(q(2) = 2 Cva~;; _1J ( ((2. ~) + (: ~ ;)' u2(a/- 1)), 

(q(3) = 2 Cva~;;_ 1J (((3, ~) +3 (:~;)' ua(a/- 1)), 

where ((s, x) = E~0(n + x)-s is the Hunnitz zeta function. 

Remark 3.3. We can determine the functions g2 (x) and g3 (x) as follows: 

where 

_ 1 ( 1 1 X )
2 

( 1 3 )
2 

92(x) := v"f+X 2F1 4' 4; 1; 1 + x = 2F1 4' 4; 1; -x , 

-2 oo (_!)3 ( X )nn-1 1 (_!)-2 
9a(x) := v"f+X ~(-1t n

2 
1 + x ~ (2j + 1)3 / · 

See [23] and [13] for detailed calculation. 

4 Generalized Apery-like numbers . 

Looking at the definition of J 2 (n) and J3 (n), it is natural to introduce the numbers 
Jk(n) by 

. k l. ( (1- x1)(1- x~ · • · x~) )" dx1dx2 · · · dxk 
Jk(n) := 2 ( 2 2)2 2 2 · 

(0,1)"' 1- Xl •• ·Xk 1- XI •. •Xk 

We refer to Jk(n) as generalized Apery-like numbers. In fact, the generating function 

(4.1) 

(4.2) 
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and its further generalizations are used to describe the special values (Q(k) (k ~ 4) 
like Theorem 3.2 (see Remark 4.1 below). 

It is immediate that Jk(O) = (2k- 1)((k). Further, as we mentioned in [13), the 
formula 

(4.3) 

holds (see §6.2 for the calculation). It is directly verified that 

(k ~ 4). 

Remark 4.1. We can calculate that 

(Q{4) = 2 ( a.+ {3 )

4 

(((4, 1/2) + 4 (Q- /313 )
2 

94 (-{31 
1) 

2.Ja.f3{a/3-1) a:+ a: -

where "Yl = 1/(a:/3- 1), 12 = a:/3/(o./3- 1)2 and 

R(xb x2, x3, x4) = {1 - x~x~x~x~) 2 

+ "Yt(1- xix~)(1- x~x:) + 1'2(1- xi){1- x~){1- x~){1- x!). 

See [11) for the calculation on the special values (Q(k) for general k ~ 2 (see also 
[15, 16)). 

Remark 4.2. In [11, 15, 16), we discuss the 'higher' Apery-like numbers associated 
to the special values (Q(k) for k ~ 2, which is slightly different from our generalized 
Apery-like numbers. Indeed, our generalized Apery-like numbers are regarded as a 
refinement of the higher ones. 

Similar to the case of J2 (n) and J3 (n), the generalized Apery-like numbers Jk(n) 

also satisfy a three-term recurrence relation as follows. 

Theorem 4.3. The numbers Jk(n) satisfy the recurrence relations 

for n ~ 2 and k ~ 4. 

We give the proof of Theorem 4.3 in §5. It is remarkable that the left-hand side 
of {4.4) ·has a common shape with those of (3.1) and (3.2), and (4.4} gives a 'vertical' 
relation among Jk(n)'s, i.e. it connects Jk(n)'s and Jk_ 2 (n)'s. 
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Example 4.4. First several terms of J4 (n) are given by 

J4(0) = 15((4), J4(1) = ~ ((4) + 1
9
6((2), J4(2) = 

66~ ((4) + 180°;4 ((2), 

J4(3) = 2;~: ({4) + !~:: ((2), J4(4) = 112:3~345 ((4) + ~~::~~! ((2), ... 

We also see that 

9 
4J4(1)- 3J4(0) = 4((2) = J2(1), 

123 
16J4(2)- 19J4(1) + 4J4(0) = 64((2) = J2(2), 

441 
36J4(3)- 51J4(2) + 16J4(1) = 256 ((2) = J2(3), 

25947 
64J4(4)- 99J4(3) + 36J4(2) = 16384 ((2) = J2(4). 

Define anot·her kind of generating function for Jk(n) by 

00 

Wic(t) := L Jk(n)tn (4.5) 

/.1/.1 /.1 1 2 2 k - X1 • · ·xk 
= 2 · · · dx1dx2 · .. dxk 

o · 0 o (1- x~ .. · x~)2- (1- x1)(1- x~ .. · xt)t · 

Theorem 4.3 readily implies the 

Corollary 4.5. The differential equation 

~Wk(t) = Wk-2(t)- Wk-2(0) 
4t 

holds fork~ 4. Here 1>a is the differential operator given in (3.7). 

Put 

( -1)n ( 1) 
.Uo(n) := 0, .lh(n) := -n-' .Uk(n) := -n2 Jk(n) (k ~ 2). 

By Theorem 4.3, we have 

8n3 ]k(n)- (1- 2n)(8n2 - 8n + 3)]k(n- 1) 

(4.6) 

(4.7) 

+ 2(n- 1)(1- 2n)(3- 2n)Jrk(n- 2) = 2n.1rk-2(n) 

fork~ 2 and n ~ 1. Hence, if we put 

d3 d2 
'Dw := 8z2(1 + z) 2 

dz3 + 24z(1 + z)(1 + 2z) dz2 
. d 

+ 2(4 + 27z + 27z2) dz + 3(1 + 2z), (4.8) 

then we have the following (See·also [13, Proposition A.3]). 
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Corollary 4.6. The differential equations 

2\vgz(z) = 0, 
2 

1>w 93 ( z) = - 1 + z ' 

fJ"\ ( ) 2 d (9k-z(z) - 9k-z(O)) .vw9k z = z-
dz z 

(k ~ 4) 

hold. 

5 Proof of Theorem 4.3 

5.1 Se~ting the stage 

Assume k ~ 2. We notice that 

/.

oo/.oo /.ooe-(t1 + .. ·Hk)/2(1 _ e-2tt )n (1 _ e-2(t2+···+tk))n 
Jk(n) = o o . . . o (1- e-(tt +···+tk))2n+l dtt ... dtk 

1
00 e-u/2 1u tk-2 -2t n -2u+2t n 

= o {1- e-u)2n+l du o (k- 2)! (1- e ) (1- e ) dt 

for each n ~ 0. Let us introduce 

J(k) = J(k) (u) ·= {1 _ e.:....2t)n(1 _ e-2u+2t)m dt 1
u tk-2 

n,m n,m · 
0 

(k _ 2)! 

for n, m 2:: 0. We also put 

rr<k) (u) := ~ (J(k) (u) + J(k) (u)) n,m 2 n,m m,n ' if<k) (u) := ~ (J(k) (u) - J(k) (u)). n,m 2 n,m m,n 

D 

~~~tn(u) is symmetric in n and m if k = 2 so that n~~~(u) = 0, but n~~~(u) # 0 in 
general. 

It is convenient to set ~~~/n(u) = 0 when k < 2. We see that 

. Jk(n) = 22~+11"" (sinhe;~2n+l ~~~~(u) du. 

Thus we also set Jk(n) = 0 if k < 2. Under these convention, the following discussion 
for Jk(n) is reduced to the one given by Ichinose and Wakayama [9] when k = 2, 3. 

For later use, we define 

a<k>(u) := /(k) (u) = n<k) (u) (n > 0) n n,n n,n - ' 

(k)( ) ·- ~ ( (k) ( ) (k) ( )) - (k) bn u ·- 2 In,n-t u + ln-t,n u - Hn,n-t 

-(k)( ) ·- ~ ( (k) ( ) - (k) ( )) - -(k) bn u ·- 2 In,n-1 u In-t,n u - lln,n-t 

(k) .-
A~k) (u) 

An(k)(u) ·.= enuan(k)(u), <"D (u) 
.vn .- (sinh~ )2n+l 

- 10 -
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so that 

1 roo (k) 
Jk(n) = 22n+I Jo ~n (u) du. 

5.2 Recurrence formulas for I~~fn(u) 
Integration by parts implies 

when n, m ~ 1. Since 

!£(1 _ e-2t)n = 2ne-2t(l _ e-2t)n-l 
dt 

= 2n ((1 _ e-2t)n-1 _ (1 _ e-2t)n), 

!£(1 - e-2u+2t)m = -2me-2u+2t(l - e-2u+2t)m-1 
dt 

=-2m ((1 _ e-2u+2t)m-l _ (1 _ e-2u+2t)m) 

for n, m ~ 1, we obtain the 

Lemma 5.1. The following three relations hold: 

~J(k- 1 ) = (n- m)J(k) - nl(k) + ml(k) (n, m ~ 1), (5.2) 2 n,m n,m n-1,m n,m-1 

nl~~Jn..:... (2n- 1)J~kJ. 1 ,m + (n- 1)I~kJ.2,m- me-2u I~kJ. 1 ,m_ 1 
= ~ (J(k-1) - J(k-1) ) (n ~ 2, m ~ 1), 2 n,m n-l,m 

ml~~Jn - (2m- 1)1~~~- 1 + (m- l)J~~~-2 - ne-2
u !~k_l 1 ,m_ 1 

= ~ (I<k-l) - J(k-1)) (n ~ 1, m ~ 2). 2 n,m-1 n,m 

Plugging (5.2) into (5.3), we get 

(5.3) 

(5.4) 

0 

J(k) - (I(k) + I(k) ) + (1 - e-2u)I(k) = 0 (n _> 1, m >_ 1), (5.5) n,m n-1,m n,m-1 n-1,m-1 

which is a generalization of (4.14) in [9]. In particular, if we let n =min (5.5), then 
we have 

J(k) - 2ll(k) + (1 - e-2u)J(k) = 0. 
n,n n,n-1 n-1,n-1 (5.6) 
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Letting m = n- 1 (or n = m- 1 and exchanging m by n) in (5.5), we also have 

another specialization 

I(k) - (I(k) + I(k) ) + (1 - e-2u)!{k) = 0 (n >_ 2), 
n,n-1 n-1,n-1 n,n-2 n-1,n-2 

I(k) - (I(k) + I(k) ) + (1 - e-2u)!(k) = 0 (n >_ 2). 
n-1,n n-2,n n-l,n-1 n-2,n-1 

Adding these equations, we get 

By specializing m = n in (5.3) and (5.4), we have 

nl(k) - (2n- 1)!(k) + (n- 1)!(k) - ne-2u I(k) = !(I(k-1) - I(k-1)) 
n,n n-1,n n-2,n n-l,n-1 2 n,n n-1,n ' 

(5.8) 

nl(k) - (2n- 1)!(k) + (n- 1)!(k) - ne-2u I(k) = ~(!(k-1) - !(k-1)) 
n,n n,n-1 n,n-2 n-1,n-1 2 n,n-1 n,n 

(5.9) 

for n ~ 2. Similarly, specializing m = n - 1 in (5.3) and n = m - 1 in (5.4) (and 
exchanging m by n), we have 

(k) (k) (k) -2u (k) 
nln,n-1 - (2n- 1)!n-1,n-1 + (n- 1)!n-2,n-l - (n- 1)e !n-1,n-2 

= ~(I(k-1) _ !(k-1) ) 
2 n,n-1 n-1,n-1 ' 

( k) ) ( k) ( ) ( k) ( ) - 2u ( k) 
nln-1,n - (2n- 1 !n-1,n-1 + n- 1 !n-l,n-2 - n- 1 e !n-2,n-1 

= ~(!(k-1) - !(k-1)) 
2 n-1,n-l n-1,n 

for n ~ 2. Adding each pair of relations, we obtain 

I (k) ( )ll(k) ( )ll(k) -2uf(k) _ filk-1) 
2n n,n - 2 2n- 1 n,n-1 + 2 n- 1 n,n-2 - 2ne n-1,n-1 - n,n-1' 

(k) ( ) (k) ( )( -2u) (k) -(k-1} 
2nlln,n-1 - 2 2n- 1 !n-l,n-1 + 2 n- 1 1 - e lln-1,n-2 = nn,n-1• 

The formulas (5.6), (5.10) and (5.11) are rewritten as follows. 

Lemma 5.2. The equations 

(5.10) 

(5.11) 

a~k>(u) + (1- e-2u)a~k~ 1 (u) = 2b~k>(u), (5.12) 

na~k>(u)- (2n- 1)b~k>(u) + (n -1)ll~~~-2 - ne-2ua~~ 1 (u) = ~ij~k- 1>(u), (5.13) 

nb~k)(~)- (2n- 1)a~~ 1 (u) + (n- 1)(1- e-2u)b~k~ 1 (u). = ~ij~k-l)(u) (5.14) 

~~ 0 

As a corollary, we also get 
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Lemma 5.3. The equation 

na~k>(u)- (2n -1)(1 + e-2u)a~~ 1 (u) + (n- 1)(1- e-2u) 2a~k~2 (u) = i)~k-l)(u) 
(5.15) 

holds. 

Proof. If we substitute (5.12), then we have 

i)~k-l)(u) = 2nb~k>(u)- 2(2n- 1)a~k~ 1 (u) + 2(n- 1)(1- e- 2u)b~k~ 1 (u) 

= n ( a~k) (u) + (1 - e-2u)a~~ 1 (u)) - 2(2n- 1)a~k~ 1 ( u) 

+ (n- 1)(1- e-2u) ( a~k~I (u) + (1- e-2u)a~~2 (u)) 
= na~k>(u)- (2n -1)(1 + e-2u)a~~ 1 (u) + (n -1)(1- e-2u)2a~k~2 (u), 

which is the desired formula. D 

Here we give one more useful relation. Using (5.2) twice, we see that 

~ (k-2) - ~ (- (k) (k)" ) 
4 In,n - 2 nln-t,n + nln,n-t 

( 
(k) ( (k) (k) ) 

= -n -In-t,n - n- 1)/n-2,n + n/n-l,n-1 

( 
(k) (k) (k) ) + n ln,n-1 - nln-t,n-1 + (n- 1)/n,n-2 

= n ( 2b~k>(u)- 2na~~ 1 (u) + 2(n- 1)ll~~~-2). 

Thus we have 

a~k-2>(u) = 8n (b~k>(u)- na~~ 1 (u) + (n -1)ll~~!-2). (5.16) 

Combining (5.7), (5.16) and (5.14), we obtain 

Lemma 5.4. The equation 

holds. 

In particular, the formula (5.15) is rewritten as 

(5.17) 

D 

na~k>(u)- (2n- 1)(1 + e-2u)a~k~ 1 (u) + (n -1)(1- e-2u)2a~~2 (u) = 4~ a~k-2>(u). 
(5.18) 
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5.3 Relations for ~~k)(u) 

In view of ( 5.1), the differential 

d lu tk-2 
-a~k)(u) = 2n (1 - e-2t)ne-2u+2t(1 _ e-2u+2t)n-ldt 
du 0 (k- 2)! 

is written in two ways as 

~a<k>(u) = 2n (1(k) - J(k)) = -2n (1(k) - I(k) ) + J(k-1) du n n,n-1 n,n n,n n-1,n n,n 

for n ~ 1. Hence it follows that 

~a(k) (u) = n (I(k) - J(k)) - n (I<k) - /(k) ) + !J(k-1) du n n,n-1 n,n n,n n-l,n 2 n,n 

= -na~k>(u) + n{1- e-2u)a~k2 1 (u) + ~a~k-I)(u). 

Using this formula, we have 

(5.19) 

:U A~k>(u) - 2nsinh uA~k2 1 (u) = enu ( :u a~k>(u) + na~k>(u)- n(l- e-2u)a~k2 1 (u)) 

= ~A~k-I)(u). 
(5.20) 

Thus we obtain the 

Lemma 5.5. The equation 

2tanh ~ ddu ~~k>(u) = Bn~~~~ (u)- {2n + l)~~k>(u) +tanh~ ~~k- 1>(u) (5.21) 

holds for n ~ 1. D 

Remark 5.6. The differential of a~k) ( u) is given by 

d (k) uk-2 
dua0 (u) = (k- 2)! 

when k ~ 2. If k ~ 3, this is equal to a~k-I)(u). 

We also see from (5.18) that 

nA~k) ( u) - 2 ( 2n - 1) cosh uA~k2 1 ( u) + 4 ( n - 1) sinh 2 uA~k~ 2 ( u) 

= enui)~k-l)(u) = 4~ A~k-2)(u). 
This implies the 

- 14 -
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Lemma 5.7. The equation 

n (1 - 1 ) ~(k)(u) = 4(2n- 1)~(k) (u) - 2(2n- 1) ~(k) (u) 
h2 u. n n-1 h2 u n-1 cos 2 cos 2 

) (k) ( 1 ( 1 ) (k 2) -16(n- 1 ~n-2 u) +- 1- ~n :- (u) 
4n cosh2 .!!. 

2 

holds for n ~ 2. 

5.4 Recurrence formula for Jk(n) 

Define 

(5.23) 

0 

1 1oo ~~>(u) . ( ) - 1 1oo u (k-1) Kk(n) = 22 +1 2 du, Mk n - 22n+1 
0 

tanh -
2 

13n (u) du. (5.24) 
n o cosh ~ 

By integrating (5.21) and (5.23), we have 

Kk(n) = (2n + 1)Jk(n)- 2nJk(n- 1)- Mk(n), (5.25) 

2n(Jk(n)- Kk(n)) = (2n- 1)(2Jk(n- 1)- Kk(n- 1))- 2(n- 1)Jk(n- 2) 
1 (5.26) 

+ 
2
n (Jk-2(n)- Kk-2(n)). 

Plugging these equations, we obtain 

Lemma 5.8. Put 

1 
Lk(n) := Jk-2(n) - Jk-2(n- 1) + 2nMk(n)- (2n- 1)Mk(n- 1)-

2
nMk-2(n). 

(5.27) 

The recurrence formula 

holds for k ~ 2 and n ~ 2. 0 

When k = 2, the inhomogeneous term L2 (n) in (5.28) vanishes and we get (3.1). 
When k = 3, we see that L3(n) = 2nM3 (n)- (2n- 1)M3(n -1), which is equal to 

~;i~~~N (Lemma 6.3 in [9]), so we have (3.2). 

5.5 Calculation of the inhomogeneous terms 

Let us put 

1 1oo ~~k)(u) 
Qk(n) := 22 +1 h u. du. 

n 0 tan 2 

This definite integral converges if k ~ 3. 

15 

(5.29) 



From (5.21), we have 

~ (k) ( ) (k) ( ) 
2~~<k>(u) = Bn n-1 u - (2n + 1) 13n u + 13(k-1)(u). 

du n tanh ~ tanh ~ n 

It follows then 

0 = Bn · 22n-lQk(n- 1)- (2n + 1)22n+lQk(n) + 22n+1 Jk-1 (n), 

and hence 

(5.30) 

for k 2:: 3 and n 2:: 1. 
From (5.22), we also see that 

n tanh~ ~<k>(u)- 2(2n- 1) (-
1
- +tanh~) ~(k2 1 (u) 

2 n tanh~ 2 n 

13(k) ( ) 
+ 16(n- 1) n-~: = 

4
1 

tanh ~2 13~k-2)(u). tan 2 n 

Thus we have 
n22n+l Mk+t(n)- 2(2n- 1)22n-l (Qk(n- 1) + Mk+l(n- 1)) 

+ 16(n- 1)22n-JQk(n- 2) = 4~ 22n+l Mk-l(n), 

which implies 
1 

2nMk+l (n) - (2n- 1)Mk+1 (n- 1)-
2
n Mk-1 (n) 

= (2n- 1)Qk(n- 1)- 2(n- 1)Qk(n- 2) 

for k 2:: 3 and n 2:: 2. 
Using (5.30) and (5.31), we obtain 

1 
2nMk(n)- (2n- 1)Mk(n- 1)-

2
n Mk-2(n) 

= (2n -1)Qk-l(n -1)- 2(n -1)Qk-l(n- 2) = Jk-2(n -1) 

for k ;:::: 4 and n 2:: 2. Hence the inhomogeneous term is computed as 

{5.31) 

Lk(n) = Jk-2(n)- Jk-2(n- 1) + Jk-2(n- 1) = Jk-2(n) {5.32) 

for k 2:: 4 and n 2:: 2. This completes the proof of Theorem 4.3. 

Remark 5.9. It may be "natural" to assume (or interpret) that 

Jo(n) = 0, J1 (n) = 211 

(1- x2 )n-1dx = 2n(n- 1)! 
o (2n -1)!! 

and 

wo(t) = 0, " ( ) (O)" ~ 2n(n- 1)! n F ( 3 ) 
w1 t - w1 = ~ (2n _ 1)!! t = 2t 2 1 1, 1; '2; t . 

Under this convention, Theorem 4.3 and Corollary 4.5 would include the case where 
k = 2,3. 
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6 Infinite series expression 

We give an infinite series expression of Jk(n). Using it, we prove the equation (4.3). 

6.1 Infinite series expression of Jk(n) 

Let us put 

Then we have 

Since 

it follows that 

Here lp(l, n) is given by 

Ip(l,n) := 1111

• • ·11 

(u1 • • ·up)21(1- (u1 •• ·u.)4)ndu1 • • ·dup. 

Notice that 

{1 2l 4 n 4nn! 
It(l, n) ~ )

0 
u (1 - u ) du = (2l + 1){2l + 5) · · · (2l + 4n + 1)' 

lp(l, n) = t(-1)i (~) 1111

· · ·1{u1 • • • up) 2
l+

4idu1 • • • dup 
j=O J 0 0 0 

= t(-l)j (;) {21 + 4~ + 1)•. 
J=O 

Thus we obtain the expression 

2k4nn! 
00 

(l + 1)2n n (n) ( -1)i 
Jk(n) = (2n)! ~ (21 + 1)(21 + 5) · · · (21 + 4n + 1) ~ j (21 + 4j + 1)k-1 · 

(6.1) 
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6.2 Example: calculation of Jk(l) 

When n = 1, we see that 

lc~ (l+1)(l+2) ( 1 1 ) 
J~c(l) = 2 . 2 L...J (2l + 1)(2l + 5) (2l + 1)/c-1 - (2l + 5)k-l 

l=O 

k 
00 (l + 1)(l + 2) ( (2l + 5)/c-1 - (2l + 1)/c-l) 

= 2 · 2 L: . (2l + 1)k(2t + 5)k · 
l=O 

Using the identity 

(l + 1)(l + 2) ( (2l + 5)k-l - (2l + l)k-1) 
k-2 

= ((2t + 1){2t + 5)- (2t + 1) + (2l + 5) -1) L:(2t + 1)i(2t + 5)/c-2-i, 
j=O 

we have 

k-2 

J~c(1) = 2. 2/c L { S(k- j- 1, j + 1) 
j=O 

- S(k- j- 1,j + 2) + S(k- j,j + 1)- S(k- j,j + 2)) }, 

where 
00 

S(a, {3) := L(2l + 1)-a(2l + 5)-13. 
l=O 

Since 

k-1 00 k-1 
'L,S(j,k-j) = LL(2l+1)-i(2l+5)j-lc 
j=1 l=Oj=l 

~ 1 2l+5 1 - (~)lc-
1 

= 'L..-J (2l + 5)1c 2l + 1 1- (2l+5) 
l=O 2l+1 

1 oo ( 1 1 ) 1 + a1-lc 
= 4 L: (2z + 1)k-1 - (2l + 5)/c-1 = 4 , 

l=O 

we have 

Jk(1) = 2k+1 ( 
3
k:t + S(k, 1)- 8(1, k) + S(k + 1, 1) +8(1, k + 1)) . (6.2) 

Let us calculate S(k, 1) and 8(1, k). By the partial fraction expansion 

1 1 (1 1 )' k 1 . 
x(x+a)k =ale ;- x+a -l;ak-m+1(x+a)m' 
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we see that 

(21 + 1)!(21 + 5) =- ( -~r C~ ~ 1- 21 ~ 5) + 2~ t. ( -Dk-m+2 (I +\)m. 

(21+1)~21+5)k = Gr(21~1- 21~5) +;k 't. Gfm+•(l+2~!lm· 
Thus it follows that 

1 k ( 1)k-m+2 1 1 ( 1)k-1 
S(k, l) = 2k f. -2 (( m, 2) + 3 -4 ' 

1 k (1)k-m+
2 

1 1 (1 )k-
1 

1 1 S(l k) = -- ~ - ((m -) +- - +- + -. 
' 2k L.., 2 ' 2 3 4 3 3k 

m=2 

If we substitute these to (6.2), then we have 

Now it is straightforward to see that 

k 1 + (-1)k-m ( 1) 1 + (-1)k-1 
Jk(1) = 3 L 2k-m+3 ( m, 2 + 2k-1 

m=2 
3 2m - 1 1 + ( -1) k-1 

= 4 L -2-k--m-( ( m) + _...;..2k=---~1-
2<m<k 
2Tk--m 

= ~ lk~-1 2"'""2mr(k- 2 ~) 1- ( -1)k 
4 L.., ':, m, 2 + 2k-1 . 

m=O 

7 Differential equations for generating functions 

Utilizing the differential equations for the generating functions wk(t), we give another 
kind of relations among the generalized Apery-like numbers Jk(n). 
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7.1 Equivalent differential equations 

Consider the inho~ogeneous (singly confluent) Helin differential equation 

for a given function u(t). Put z = t~l and v(z) = (1 - t)w(t). Then we have 

:Dov(z) = z~l u(z~J 
Here 1)0 is the hypergeometric differential operator given by 

d2 d 1 
1)o = z(1- z) dz2 + (1- 2z) dz - 4" 

We also remark that this is also the Picard-Fuchs differential operator for the family 

y 2 = x(x- 1)(x- z) of elliptic curves. 

7.2 Recurrence formula for Jk(n) 

Put z = t~l and vk(z) = (1- t)wk(t). By Theorem 4.3, Vk(z)satisfies the differential 
equation 

(7.1) 

The polynomial functions 

4 (_l)-2 n (_1)2 k 

Pn(z) :=- (2n + 1)2 n2 L k2 z 
k=O 

(7.2) 

satisfy the equation 

(7.3) 

Hence we can construct a local holomorphic solution to (7.1) as 

(7.4) 

Notice that the difference vk(z)- v(z) satisfies the homogeneous differential equation 

(1)o(Vk- v))(z) = 0. (7.5) 

- 20 



Thus it follows that 

vk(z) - v(z) = Ckv2(z), 

where the constant ck is determined by 

C _ vk(O)- v(O) _ (2k - 1)((k) - v(O) 
k - v2(0) - 3((2) ' 

and v(O) is given by 

oo ( 1)-2 n ( ) 
v(O) = - ,E (2n ~ 1)2 -n'i .E< -I)i+l ~ Jk-2(j + 1). 

n=O .1=0 J 

Therefore we have 

vk(z) = (2k -l)((k)2F1 (~. ~; l;z) + ( v(z)- v(0)2F1 (~. ~; l;z)). 

Consequently, we obtain the 

Theorem 7.1. When k ~ 4, the equation 

Jk(n) = ~(-1)" ( -;,! )" (;) 

X ( (2k _ l)((k) _ ~ (2i ~ 1)2 ( -i! r ~(-l)j G)Jk-2(j + 1)) 

holds. 

Remark 7.2. If we formally put J1 (n) = ~;~~~~l11 in (7.10), then we have 

since 

i . (i) 2j+1j! 2 
~(-I)' j (2j + 1)!! = 2i+ 1· 

This is nothing but the explicit formula (3.9) for J3(n). 

Example 7.3. Since 

we have 

J4(n) = t(-l)P(-~)
2

(n) (15((4)- 3((2) f (-~t') · 
p=O p p t=l 
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7.3 Normalized generalized Apery-like numbers 

For a given sequence {J(n)}n2:0, we associate a new sequence 

J(n)U := t.(-1)"(-P!y (:) {~ (2i~\)2 (-i!f t(-l)iG)J(j + 1)} · 
(7.11) 

Notice that J(O)~ = 0. It would be natural to extend J(n)~ = 0 if n < 0. By the 
discussion in the previous subsection, we have the 

Lemma 7.4. Let {J(n)} be a given sequence and {J(n)~} the one defined by (7.11). 
Then the equation 

4n2 J(n)U- (8n2 - Bn + 3)J(n- 1)~ + 4(n- 1)2 J(n- 2)~ = J(n) (7.12) 

holds for n ~ 1. 

Let us introduce the rational sequences Jk(n) by 

- 2n(n- 1)! - J2(n) 
J1(n) := (2n _ 1)!! (n ~ 1), J2(n) := J

2
(0) (n ~ 0), 

Jk(n) := Jk-2(n)U (k ~ 3, n ~ 0). 

We see that 
- 3 - 2 

J2k(1) = 4k' J2k+1 (1) = 4k. (7.13) 

It is immediate to verify the 

Proposition 7 .5. 

D 

Based on this fact, we call ]k(n) the normalized (generalized) Apery-like numbers. 
By definition, Jk(n) for k ~ 2 are written in the form 

(7.15) 

where 

p-
1 

1 (-~)-2 
p-

1 
(1/2)i(1)r1i 

Sa(p) = - 2 ~ (2i + 1)3 i = - 2 ~ (3/2)~ i!' 
t=O t=O t 

(k ~ 4). 

Thus it is enough to investigate Sk(P) to obtain an explicit expression for normal
ized Apery-like numbers. 
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Lemma 7.6. 
Sk(P + 1) Sk(P) 

sk+2(P + 1) - sk+2(p) = (2P + 2)2 - (2P + 1)2 · (7.16) 

Proof. By definition, we have 

Sk+2(p + 1)- Sk+2(P) = (2p·~;_\)2 ( -P4 r ~(-1}; (~) Jk(i + 1}. (7.17} 

The sum in the right hand side is calculated as 

~(-l)i 0) Jk(j + 1} 

= ~(-1);0) (~(-1)•( -q~)" (i; 1)sk(q) + (-1)H' C~\)"sk(j + 1)) 

= t(-1)q (-4)2 

Sk(q) L.p (-1)j (~) (j + 1) - L.p (~·) ( .-}1)
2 

Sk(j + 1). 
q=O q J=q J q J=O J J 

By the elementary identity 

we get 

t(-1);(~) (j + 
1
) = t(-1);(~) (j) + t<- 1>;(~) ( ~ 1) 

J =q J q J =q J q J=q J q 

= (-1)• (opq + C ~ 1)). 
Thus it follows that 

t(-i)i (~) jk(j + 1) = (-
1
/
2
)

2 

Sk(P) + t (-!)2 

Sk(q) ( ~ 1) 
J=O J p q=O q q 

-~ 0) c~~ssk(j+i) 
= (~!)" sk(P)- ~-}Ssk(p+ 1) 

=(2 + 1 ) 2 (-~)
2

( Sk(P) _Sk(p+l))· 
p p (2p + 1)2 (2p + 2) 2 

Therefore we obtain 

Sk(P + 1) Sk(P) 
sk+2(P + 1) - sk+2(P) = (2P + 2)2 - (2P + 1)2 

as we desired. 
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As a corollary, we readily have the 

Lemma 7.7. 

Using this lemma repeatedly, we obtain the 

Proposition 7 .8. For each r ~ 1, 

where 

{
0 1 ~ 3j < r s.t. ii = ii+l = 1 

€it, ... ,ir := 1 otherwise. 

Example 7 .9. We have 

2p ( -l)i 
S4(P) = L -.2-, 

j=l J 

(mod 2), 

( -l)i+j ( -l)i+j p 1 
S6(P) = L •2 '2 €i,j = L i2 '2 + L (2i)4' 

l$i$j$2p t J 1$i<j$2p J i=l 

( -l)i+j+k 
Ss(p) = L ·2 '2k2 ei.J,k 

1$i$j$k$2p t J 

(-1)i+i+k ·( 1 ) ( ( l)k) 
= :L i2 ·2k2 + :L (2i)4 :L ~2 • 

1$i<j<k$2p J l$2i$2p 1$k$2p 

Remark 7 .10. We see that 

In general, we can prove that 

. ((2r) 
hm S2r+2(P) = --22 1 . 

p-+oo r-

See [17] for the proof as well as its generalizations. 
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8 Congruence relations among Apery-like numbers 

In this section, we study the congruence relation among the normalized Apery-like 
numbers introduced in the previous section. 

8.1 Congruence relations for Apery-like numbers 

We give several congruence relations among Apery-like numbers. 

Proposition 8.1 ([13, Proposition 6.1]). Let p be a prime and n = no+n1p+· · ·+nkpk 
be the p-ary expansion of n E Z~o (0 ~ ni < p). Then it holds that 

k 

J2(n) = IT i2(ni) (mod p). 
i=O 

The following claim is regarded as an analog of Proposition 2.2. 

Proposition 8.2 ([13, Theorem 6.2]). For any odd prime p and positive integers 
m, r, the congruence relation 

holds. 

J2(mpr) = J2(mpr-l) (mod pr), 

J3(pr)p3r = j 3(pr-l)p3(r-1) (mod pr). 

Proposition 8.3. For any odd prime p, the congruence relation 

p-1 

L J2(n) = 0 (mod p2) 
n=O 

holds. 

Proof. We see that 

since (j)2 
is divisible by p2 if P21 < j < p. Notice that 

. (2 ')2 (f=:! + ') (f=:!) 16-j : =(-1)i 2 j J j (mod p) 
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for 0 :::; j < p. Hence we have 

E.=.! 

p-1 - - 2 (~ + j) (~) (-1)i 
LJ2(n)=PL . . -.-

1 
(modp2

). 

n=O i=O J J J + 

By putting n = ~ and m = 0 in the identity (see [7, Chapter 5.3]) 

(n + k) (n) (-1)k n m!n! . (m) L k k k+1 +m = (-1) (m+n+1)! n ' 
k~O 

we have 

~(~+j)(~)(-1)i =(-1)~( 0 )= L::: . . . + 1 (l~±.! )' E=.! o. 
j=O J J J 2 • 2 

Hence we obtain the desired conclusion. 

Proposition 8.4. For each odd prime p, it holds that 

i2( ~) = A2( E:f!) (mod p2). 

Here A2(n) is the ·Apery number for ((2). 

Proof. It is elementary to check that 

(~) = (-}) {1-pt 2j~ 1 } (modp
2
), 

(~k+k) = (-l)k( -}) { 1+ P t 2j ~ 1} (mod p•) 

(8.2) 

(8.3) 

D 

(8.4) 

for k = 0, 1, ... , (p- 1)/2. Using these equations, we easily see that both A2(~) 
and i 2 ( ~) are congruent to 

(p-1)/2 k (- ~)3 { k 1 } 
~ (-1) k 1 -p{;.2j-1 

D 

Remark 8.5. The following supercongruence 

A2(E:f!) = Ap (mod p2
) 

holds if p is a prime larger than 3 (see [10); see also [20, 32]). 

The following result is conjectured in (13). 
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Theorem 8.6 (Long-Osburn-Swisher [18]). For any odd prime p, the congruence 
relation 

p-1 

L i2(n)2 = (-1)¥ (mod p3) (8.5) 
n=O 

holds. 

Remark 8.7. The theorem above is quite similar to the Rodriguez-Villegas-type con
gruence due to Mortenson [19] 

~ (-n~y = ~ C:)\a-n = (-1)¥ (mod p2 ). (8.6) 

We also remark that the following ''very similar" congruence relation is also obtained 
in the earlier work [24]: 

(p-1)/2 2 (p-1)/2 . 

~ (~) wn + ~p(-1)(p-l)/2 ~ e·) ~ = (~1) (mod p3
), (8.7) 

where pis an arbitrary odd prime number. 

8.2 Conjectures 

In the final position, we give several conjectures on congruence relations among nor
malized (generalized) Apery-like numbers. 

The following conjecture is regarded as a "true" analog of Proposition 2.2: 

Conjecture 8.8 (Kimoto-Osburn [12]). For any odd prime p, the congruence relation 

(8.8) 

holds for any integers m, r ~ 1. 

Remark 8.9. When r = 1, (8.8) is obtained by using the elementary formulas 

(k;l j) = (-}) (-}) (mod p), 

(-lt (mp~ -1) = (-l)lllJ (mprl;J -1) (mod pr) 

and Mortenson's result (8.6) as follows: 

mp-1 ( 1)2( ) p-1m-1 ( 1 )2( ) i2(mp -1) = I: (-1)j -.2 mp :-1 =I: I: (-1)kp+j. k -2 . 7p- ~ 
j=O J J j=O k=O p + J p + J 

= I:~(-1)k(-}r (-.~r (m; 1) 
j=O k=O J 

(mod p) 

= ( -1) ~ i2(m- 1) (mod p). 
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We have 

p-1 7npr-1_1 ( 1 ) 2 ( r-1 1) 
_ '""' '""' k - 2 mp - · 
=L.., L.., (-1) k . k 

j=O k=O p + J 

and hence 

Lemma 8.10. 

I: ( -~ .)2 = (-1)~ (-~)2 
j=O kp + J k 

Conjecture 8.11. For any odd prime p and m, r E Z>o with m odd, it holds that 

where An is given by 

00 00 

L AnQn = q II (1- q4n)6 = TJ(4r)6. 
n=l n=l 

Further, the congruence (8.9) holds modulo p2r if p ~ 5. 

Notice that (8.4) is a special case of the conjecture above (see [20, 32]). It is 
remarkable that both A2 ( 1np; -l ) and j 2 ( mp; -l ) satisfy exactly the same congruence 
relation ((2.3) and (8.9)), though they are not congruent modulo pr in general. 

Conjecture 8.12. For any odd prime p, the congruence relation 

p-1 

L J2k(n) = -1 (mod p2) (8.10) 
n=O 

holds for any k ~ 2. 

Acknowledgement. The author would like to thank Robert Osburn for pointing 
out an error in the first draft and telling him a right reference. 
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