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ABSTRACT

This paper discusses the benefits of using a hybrid ensemble Kalman filter and four-dimensional variational

(4D-Var) data assimilation (DA) system rather than a 4D-Var system employing theNationalMeteorological

Center (NMC, now known as NCEP) method (4D-Var-Bnmc) to predict severe weather events. An adjoint-

based 4D-Var systemwas employed with a background error covariancematrixB constructed from the NMC

method and perturbations in a local ensemble transform Kalman filter system. The DA systems are based on

the Japan Meteorological Agency’s nonhydrostatic model. To reduce the sampling noise, three types of

implementation (the spatial localization, spectral localization, and neighboring ensemble approaches) were

tested. The assimilation of a pseudosingle observation of sea level pressure located at a tropical cyclone (TC)

center yielded analysis increments physically consistent with what is expected of a mature TC in the hybrid

systems at the beginning of the assimilation window, whereas analogous experiments performed using the

4D-Var-Bnmc system did not. At the end, the structures of the 4D-Var-based increments became similar to

one another, while the analysis increment by the 4D-Var-Bnmc system was broad in the horizontal direction.

Realistic DA experiments showed that all of the hybrid systems provided initial conditions that yielded more

accurate TC track and intensity forecasts than those achievable by the 4D-Var-Bnmc system. The hybrid

systems also yielded some statistically significant improvements in forecasting local heavy rainfall events in

terms of fraction skill scores when a 160 km 3 160 km window size was used. The overall skills of the hybrid

systems were relatively independent of the choice of implementation.

1. Introduction

The prediction of high-impact weather events is of

particular importance in the field of atmospheric sci-

ences. Recent efforts have substantially improved the

ability to forecast such events (Courtier et al. 1994; Hunt

et al. 2004; Kunii 2014; Saito 2012). To realize further

improvements, a more sophisticated data assimilation

(DA) method that provides better initial conditions suit-

able for high-impact weather is required, as are further

developments in the physics of the numerical models.

The Japan Meteorological Agency (JMA) has incor-

porated an adjoint-based four-dimensional variational

(4D-Var) DA method into their regional forecast sys-

tem, which is based on the JMA nonhydrostatic model

[JMA-NHM; for details, see Saito et al. (2006)]. The

JMA-NHM-based variational DA (JNoVA; Honda and

Sawada 2009; Honda et al. 2005) system has been used

operationally by the JMA to performmesoscale analysis

for regional forecasts since 7 April 2009.
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The JNoVA system has substantially improved the

accuracy of severe rainfall event forecasts compared with

those of the hydrostatic-model-based 4D-Var method

(Honda et al. 2005). To further enhance the forecast

quality, the modeling of the background error covariance

B used for the JNoVA system should be more sophisti-

cated because at the beginning of the 4D-Var assimilation

window the specified B governs the structure of the

analysis increment in addition to the innovation and

model dynamics (Johnson et al. 2005). Therefore, im-

proved specification of this prescribed matrix will con-

tribute to more accurate modeling of the developing

modes that are related to high-impact weather.

Traditionally, B has been assumed to be static over

time in the JNoVA system, according to the National

Meteorological Center (NMC, now known as NCEP)

method, which uses the differences between a series of

two forecasts that are valid at the same time (Parrish and

Derber 1992). Although B, as obtained from the NMC

method, approximates the climatological background

error covariance, recent studies have shown that the

forecast quality made by the 4D-Var system can be en-

hanced further by making B flow-dependent based on

the perturbations evolved in an ensemble Kalman filter

(EnKF) system, which is a hybrid DA system (Bonavita

et al. 2012; Buehner et al. 2010a,b; Lorenc 2003a; Wang

et al. 2007).

Several operational centers employ hybridDA systems

for their global-scale forecasts (Bonavita et al. 2012;

Clayton et al. 2013; Kleist and Ide 2015; Kuhl et al. 2013).

However, the benefits of using a hybrid system can be

more pronounced in severe weather event predictions

because climatological estimates do not reflect the flow-

dependent nature of background error covariances for

high-impact and quickly evolving phenomena. Recently,

3D-Var DA experiments using ensemble-based B were

developed, and the abilities of the developed systems to

forecast tropical cyclones (TCs) and local heavy rainfall

events were tested (Pan et al. 2014; Schwartz and Liu

2014; Schwartz et al. 2013). Only a few studies have fo-

cused on mesoscale weather prediction using hybrid

EnKF-4D-Var systems (Poterjoy and Zhang 2014; Zhang

and Zhang 2012). Therefore, further experiments are

needed to confirm the benefits by analyzing large num-

bers of samples.

The main objective of this study was to determine

whether the use of an ensemble-based B could enhance

the accuracy of severe weather predictions initialized

by aDA system almost identical to the JMAoperational

mesoscale 4D-Var system. To do so, we computed B by

using a local ensemble transform Kalman filter DA

system (LETKF; Hunt et al. 2007), which is based on the

JMA-NHM (Kunii 2014), and performed 62 forecasts of

four intense TCs and 104 forecasts of three local heavy

rainfall events that occurred in 2011–12. The results will

contribute to the design of future DA systems and will

facilitate the prevention and mitigation of weather-

related disasters.

The remainder of this paper is organized as follows.

Section 2 describes the mathematical background and

DA systems. In section 3, the results of the single-

observation experiment are presented. In sections 4

and 5, the forecast quality of the hybrid system is eval-

uated for the four strongest TCs and three local heavy

rainfall events, respectively. Finally, our conclusions are

summarized in section 6.

2. Methodology

a. Formulation of mesoscale hybrid system

Among the many options for implementing flow-

dependent ensemble covariances in 4D-Var DA sys-

tems (Buehner 2005; Lorenc 2003a; Wang et al. 2007),

we chose to develop an adjoint-based 4D-Var system

using a mixture of NMC-based and flow-dependent

background error covariances. A flow-dependent B is

constructed from perturbations in the EnKF. The anal-

ysis field obtained from the hybrid system is not used to

update subsequent EnKF cycles, unlike in the ‘‘two-

way’’ hybrid system of Poterjoy and Zhang (2014).

The 4D-Var DA system used in JNoVA employs the

incremental approach following remark 5 in section 3 of

Courtier et al. (1994). A high-resolution model is first

run to calculate the innovation vector (observation mi-

nus high-resolution background state projected into

observation space). At each iteration, a simplified non-

linear version of the JMA-NHM is used to provide tra-

jectories with coarse resolution. The adjoint model,

which is based on the tangent linear model corre-

sponding to the simplified nonlinear model, is used to

calculate the gradient of the cost function. A low-

resolution analysis increment at the beginning of the

assimilation window is obtained as a result of the mini-

mization procedure. By running a high-resolutionmodel

with this analysis increment interpolated to a fine

mesh, a high-resolution analysis increment is obtained at

the end of assimilation window (Courtier et al. 1994;

JMA 2013, section 2.6.3).

The cost function used in this study is defined as
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where dx0 is the analysis increment of the initial state

vector x0 with respect to the first guess initial state vector

xb, which is defined at low-resolution model grid points;

R is the observation error covariance matrix; H is the

nonlinear observation operator that projects low-

resolution model variables onto the observation space;

and M is the simplified nonlinear model integration

operator from the initial time. The innovation vector d is

given by d5 y2 Ĥ(x̂b), where y is an observation vector,

Ĥ is the observation operator projecting the high-

resolution model variables onto the observation space,

and x̂ is the state vector defined at high-resolution grid

points. The superscript T represents the transpose, and

the subscripts 0 and t represent the values at times

0 and t, respectively. The Jp term is a penalty term that

is included to suppress spurious inertia–gravity waves

(Honda et al. 2005).

Note that the current J is different from the cost

function employed in several operational centers ac-

cording to remark 4 in section 3 of Courtier et al. (1994),

which is also known as an incremental approach:
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where Ht is a linearized low-resolution observation opera-

tor andMt is a low-resolution tangent linearmodel operator

from time 0 to t. This cost function can be made equivalent

to the current cost function [Eq. (1)] by using a first-order

Taylor series Ht[Mt(dx0 1 xb)]5Ht[Mt(xb)]1HtMtdx0,

which holds true reasonably well in JNoVA (Honda 2010).

In the current work, a perturbed run with the simple

nonlinear model instead of the tangent linear model was

conducted in JNoVA to obtain the cost function and its

gradient. Because the simplified nonlinear model is

cheaper than the tangent linear model, this implemen-

tation method reduces the calculation time.

Our hybrid system uses a background error covari-

ance Bhyb given by a weighted sum of an NMC-based

covariance matrix BNMC and an ensemble-based co-

variance matrix Bens (Hamill and Snyder 2000):

B
hyb

5bB
NMC

1 (12b)B
ens

, (3)

where b is a scalar weight, which was set to 0.2 as in the

default experiment by Zhang and Zhang (2012). The

analysis increment by the hybrid system dx0 can be ex-

pressed in terms of the contributions of the two co-

variances as follows:

dx
0
5
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b
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1
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. (4)

The ratio of
ffiffiffi
b

p
to

ffiffiffiffiffiffiffiffiffiffiffi
12b

p
is 1:2 (0.447 and 0.894).

The cost function [Eq. (1)] can be rewritten in terms

of new control variables dvNMC and dvens, which are de-

fined as

dx
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(5)

and
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ensdvens . (6)

Substituting Eqs. (5) and (6) into Eq. (1), a new form of

the cost function can be obtained:
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The gradients of the cost function J with respect to dvNMC and dvens are
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The set ofEqs. (3)–(9) defines an optimization problem that

can be solved by using the limited-memory quasi-Newton

algorithm (Liu and Nocedal 1989) and the adjoint model

operator MT
t .
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b. Modeling of background error covariances

Suppose that perturbations are obtained from an

EnKF system, and let X 5 (x1, x2, . . . , xN) be the de-

viation with respect to the ensemble mean normalized

by
ffiffiffiffiffiffiffiffiffiffiffiffi
N2 1

p
, where N is the ensemble size. When special

treatments are not applied, the ‘‘raw’’ sample ensemble

covariance and square rootmatrix are (Wang et al. 2007)

B
ens

5XXT (10)

and

B1/2
ens 5X . (11)

In this case, the size ofB1/2
ens isK3N, whereK represents

the dimension of the state vector, and the dimension of

dvens is N.

This raw background error covariancematrix [Eq. (10)]

includes the sampling errors resulting from the lack of

ensemble members in a large-dimensional system. To

remedy this problem, three types of modeling are tested

in current hybrid DA systems. One is a spatial localiza-

tion approach, which involves replacing Eq. (10) by

B
ens

5 (XXT)+C , (12)

where C is a correlation matrix describing a function

that becomes zero over some prescribed distance be-

tween two analysis grid points, ra, and the operator +
represents a Schur product. This approach has been used

to suppress spurious sampling noise in many previous

studies (Buehner et al. 2010a,b; Clayton et al. 2013;

Lorenc 2003b;Zhang andZhang 2012). To implement this

Bens, the so-called alpha control vector aens, which has a

length of NK0, where K0 represents the rank of C, is de-

fined by dxens 5B1/2
ensaens, as in Eq. (6). The formulation of

B1/2
ens andaens is the same as in Eqs. (A1) and (A2) ofWang

et al. (2007). This method currently requires substantial

computational resources since the control vector is quite

long, although Bishop et al. (2011) proposed an efficient

localization approach.Hereafter, a hybridDAsystem that

uses Eq. (12) is referred to as the 4D-Var-BenkfL system.

FIG. 1. Schematic illustration of an example of a neighboring ensemble approach. Original single realization defined

in 15-km mesh is regarded as nine different realizations forming 45-km mesh.

FIG. 2. Calculation domain.
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The second approach is to construct B1/2
ens based on

spectral localization. This approach relies on the hy-

pothesis that the amplitude of the correlations in spec-

tral space generally decreases as the absolute difference

between the wavenumbers of pairs of spectral compo-

nents increases (Buehner and Charron 2007). Spectral

localization has been shown to reduce analysis error

systematically by eliminating the rapid spatial varia-

tions, while it is not effective at removing spurious cor-

relations between variables at distant grid points.

Buehner and Charron (2007) showed that spectral lo-

calization in spectral space can be equivalent to spatial

smoothing of the correlation functions in gridpoint

space. In a discretized form, an element of a spectrally

localized background error covariance matrix for a

variable at points i and j becomes (for simplicity, the

expression is shown for one-dimensional case):

B(i, j)5s(i)s( j)C
sl
(i, j)

5s(i)s( j)Ds�
N

n51
�
m2Z

e
n
(i1mDs)e

n
(j1mDs)L(mDs),

(13)

where s(i) is a standard deviation at point i; Csl(i, j) is

the spectrally localized correlation in gridpoint space;

mDs is the spatial shift for integerm; en(i
0) is an element

of dxn, where n is an index of ensemble member, at lo-

cation i0; andL(mDs) is the inverse transform of spectral

localization weight satisfying

Ds �
m2Z

L(mDs)5 1. (14)

From Eq. (13), an element of the square root matrix can

be written as

B1/2(i,k
n,m

)5s(i)e
n
(i1mDs)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L(mDs)Ds

p
, (15)

where the index k runs over all members and spatial

shifts. The shifted ensemble members can simply be

considered as a much larger ensemble N0, which equals

N multiplied by the total number of shifted grid points.

In this case, the size of B1/2
ens isK3N0, and the dimension

of dxens isN
0. Excluding the cost to obtain EnKF results,

the additional computational cost for incorporating a

spectrally localized B is smaller than the cost required

for the 4D-Var-BenkfL system because the additional

length of the control vector is justN0. Hereafter, a hybrid

DA system that employs the spectral localization ap-

proach is referred to as a 4D-Var-BenkfS system.

The calculation cost can be further decreased by

generating an analysis field only at the target grid point

that is coarsely defined at a grid spacing of m0Ds for a
constant integer m0 (which was set to 3 in the current

work) and by assuming L 5 0 in Eq. (13) outside a

neighboring block centered at the target grid point

(Aonashi et al. 2013; Aonashi et al. 2015, manuscript

submitted to Mon. Wea. Rev.). This approach is sche-

matically illustrated in Fig. 1. As shown, the number

of pseudoensemble members is Nm02. The additional

length of the control vector is just Nm02, and the size of

B1/2
ens becomes (K/m02) 3 (m02N). After obtaining the

analysis increments at the coarse grid points, they are

interpolated into the original analysis field grid points to

continue the iterations in the 4D-Var minimization

FIG. 3. Time scheduling of DA cycles in hybrid systems.
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process. Hereafter, this technique is referred to as the

neighboring ensemble approach, and we call a hybrid

DA system that employs this approach a 4D-Var-

BenkfN system.

c. JNoVA

The framework of JNoVA is outlined in this sub-

section. More detailed explanations are given in Honda

and Sawada (2009) and JMA (2013). The high-resolution

forwardmodel with 5km horizontal grid spacing employs

a horizontally explicit and vertically implicit scheme as a

dynamical core with six-category bulk microphysics

(Ikawa and Saito 1991), the modified Kain–Fritsch con-

vective scheme (Kain and Fritsch 1990), and a radiation

scheme. Boundary layer turbulence is determined by the

Mellor–Yamada–Nakanishi–Niino level-3 closure model

(Nakanishi and Niino 2004).

The physical processes retained in our adjoint and

simplified nonlinear models with 15-km horizontal grid

spacing are similar to those in the forward model, al-

though they include several simplifications such as the

replacement of the convective scheme with large-scale

condensation and moist convective adjustment. The

length of the assimilation window is 3 h. The observed

data were divided into the following four time slots

within each 3-h assimilation window: 0.0–0.5, 0.5–1.5,

1.5–2.5, and 2.5–3.0 h. The standard deviation of

the observation error is described in section 2.6.4 of

JMA (2013).

d. LETKF

The ensemble-based background error covariance

in our hybrid system uses perturbations in the LETKF

system based on JMA-NHM (Kunii 2014). The em-

bedded dynamical model is similar to that in the

simplified nonlinear model of the JNoVA system.

Currently, this LETKF system operates with 15-km

grid spacing and employs four-dimensional LETKF

(Hunt et al. 2004). The observed data were divided

into the following three time slots within each 3-h

assimilation window: 0.5–1.5, 1.5–2.5, and 2.5–3.5 h;

thus, this LETKF system uses a slightly different

FIG. 4. First guesses of (a) horizontal wind (m s21) at ninth level (zh 5 0.68 km); (b) potential temperature

anomaly (K) relative to basic state at 33rd level (zh 5 9.63 km); (c) azimuthal mean of tangential velocity (m s21)

centered at TC, where horizontal coordinate r and vertical coordinate zh indicate distance from TC center and

height in hybrid coordinates (km), respectively; and (d) azimuthal mean of potential temperature deviation

(K) from area-averaged potential temperature within r, 1000 km. Unit vector and shading scales are shown to the

right of each panel.
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partitioning scheme from JNoVA. The spatial localiza-

tion depends on the physical distance between an analysis

grid point and an observation location ro, which is known

as observation localization, rather than ra.

e. Assimilated data

The data used in the realistic DA experiments were

conventional observations recorded by surface stations,

radiosondes, ships, aircraft, and vertically integrated

precipitable water measurements derived from ground-

based global positioning systems, wind profiles, Doppler

radar radial velocity data, and TC bogus data [see JMA

(2013) for details]. These data had already been sub-

jected to several quality control checks in the opera-

tional system at the JMA. Note that although the JMA

operational DA system assimilates satellite radiance

and radar/rain gauge-analyzed precipitation (RAP;

Nagata 2011), they are not assimilated in the current

work because the LETKF system has not yet im-

plemented the observation operator.

f. Configurations

The background error covariance in the original

JNoVA system was constructed according to the NMC

method using the statistics of pairs of 12- and 6-h

forecasts made between January and December 2005.

Hereafter, a 4D-Var system that uses only BNMC is

called a 4D-Var-Bnmc system. In the hybrid DA sys-

tems, LETKF- and NMC-based background error co-

variances are combined [Eq. (3)].

The calculation domain is identical to that used in

JMA operational regional forecasts as of 2012. Its

3600km 3 2880km area encompasses Japan and the

surrounding regions1 (Fig. 2). The domain is discretized

into 721 3 577 grid points with 5-km grid spacing in the

forecast model and the high-resolution model of the

JNoVA system, while it is discretized into 2413 193 grid

points with 15-km grid spacing in the LETKF system

and the simplified nonlinear model of the JNoVA sys-

tem. The LETKF system and the high-resolution model

of the JNoVA system contain 50 vertical levels in the

hybrid2 terrain following coordinate zh (Ishida 2007),

FIG. 5. Analysis increment of potential temperature at 33rd vertical level (approximately 9.63 km) at t 5 0 h by (a) 4D-Var-Bnmc,

(b) 4D-Var-Benkf0, (c) 4D-Var-BenkfS, (d) 4D-Var-BenkfN, and (e) 4D-Var-BenkfL systems. (f) As in (e), but for ensemble-based part

of analysis increment [
ffiffiffiffiffiffiffiffiffiffiffi
12b

p
dxens in Eq. (3)]. Contours are drawn at 60.05, 60.1, 60.2, 60.4, 60.8, and 61.6 K in (a)–(e). Solid lines

indicate positive values, while dotted lines indicate negative values. For (f), contour interval (CI) is set to constant value of 0.01K. Zero

contours have been omitted. Rectangles indicate location at which sea level pressure observation was added at t 5 3 h.

1 In March 2013, the domain in the JMA operational regional

forecast was extended to 4080 km 3 3300 km (see http://www.jma.

go.jp/jma/jma-eng/jma-center/nwp/specifications_models.pdf).
2 Here, ‘‘hybrid’’ means the combination of the z* coordinate

near the surface and the z coordinate near the top of the model,

which is not the same as its meaning in relation to the 4D-Var and

EnKF systems.
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while the simplified nonlinear model of the JNoVA

system contains 40 vertical levels. The model top is

around 22km. See section 2.7 of Honda (2010) for more

details about the vertical grid spacings.

A total of 50 ensemble members is used in the LETKF

system. The localization factor depends on ro. The fifth-

order polynomial of Eq. (4.10) of Gaspari and Cohn

(1999), which approximates aGaussian function, is used as

the covariance localization function. The spatial localiza-

tion scale (corresponding to the one-sigma length at which

the approximated Gaussian localization function became

e20.5 in this study) is 200km in the horizontal direction and

0:2 ln p in the vertical direction, as inKunii (2014). For the

4D-Var-BenkfL system, the localization scale is 200km in

the horizontal direction, and model levels in zh co-

ordinates that are equivalent to 0:2 ln p of the basic field

make the localization scale similar to that used in LETKF.

For the 4D-Var-BenkfS system, the same fifth-order

polynomial as in 4D-Var-BenkfL is used to define a

function of L(mDs) for ‘‘localizing’’ the horizontal co-

variance in gridpoint space. The localization scale is 15km.

In the 4D-Var-BenkfN system, the value of L(mDs) is

simply set to the same weight within a block of 33 3 grid

points centered at a target point and 0 outside the block.

The lateral boundary conditions in the forecast were

provided every hour by the JMA operational global

spectral model with TL959. They are notmodified in any

of the systems using the DA technique, although they

are perturbed to prevent underdispersive spread in the

LETKF system (Saito et al. 2012). The lateral boundary

perturbations in the LETKF system were derived from

the JMA operational 1-week ensemble prediction sys-

tem that is based on the global spectral model with

TL319 after subtracting the ensemble mean state (Kunii

2014; Saito et al. 2010).

For the single-observation experiment described in

section 3, we compared the analysis increments de-

rived from the 4D-Var-Bnmc and hybrid DA systems.

We also performed an experiment in which the back-

ground error covariances were constructed from the

raw perturbations by employing Eq. (10) to demon-

strate the impact of the localization and neighboring

ensemble approach that is referred to as the 4D-Var-

Benkf0 system.

For the realistic DA experiments, we conducted the

analysis by using theDA systems. The spinup time of the

LETKF cycles was more than one week. For TC de-

tection, we followed the same procedure as Ito et al.

FIG. 6. As in Fig. 5, but for analysis increment of azimuthally averaged potential temperature (K) at t5 0 h. CI is shown in the upper right

of each panel, and zero contours have been omitted. Note that (f) employs a different contour interval from the other panels.
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(2015). After completing each realistic DA experiment

with a time interval of 3 h, we conducted 36-h de-

terministic forecasts to evaluate the quality of each DA

system. These runs were initialized by the analysis state

at the end of the assimilation window for the 4D-Var-

based systems. The time scheduling is summarized for

the hybrid DA systems in Fig. 3. Although our main

objective was to verify the improvements over the

4D-Var-Bnmc system that resulted from using these hy-

brid DA systems, we also performed forecasts starting

from an ensemble mean analysis state in the LETKF

system for reference.

To judge the statistical significance of the improve-

ments made by the LETKF and the hybrid systems with

respect to the 4D-Var-Bnmc system, a two-tailed t test

for two paired samples was applied. Although we ob-

tained the samples from forecast experiments initialized

eight times a day, the sample size was replaced by the

effective sampling size in order to account for the per-

sistence of the sequential time data according to Kuhl

et al. (2013).

3. Single-observation experiment

To check the correct implementation of our system

before the realistic DA experiment, we conducted a

single-observation assimilation experiment. The 3-hDA

window lasted from 0900 until 1200 UTC 20 September

2011 (in this discussion, the beginning and end of the 3-h

assimilation window are referred to as t 5 0 and t5 3 h,

respectively). We introduced a minimum sea level

pressure (MSLP) innovation in the case of TC Roke

(2011) at t 5 3 h, as indicated by rectangles in Figs. 4a

and 4b. The introduced innovation had magnitude

of 15 hPa with respect to the first guess, which should

weaken the TC intensity.

Figure 4 illustrates the first-guess field at t 5 3 h. The

horizontal wind field at the ninth vertical level of the

model (zh5 0.68 km) indicates that the very strong wind

blowing to the south of Japan and the air masses

in the East China Sea and Japan Sea were directed to-

ward the TC center (Fig. 4a). TC Roke seems to have

affected the wind field across a broad area in the cal-

culation domain. The potential temperature field

around the TC at the 33rd vertical level (zh5 9.63 km) is

characterized by a warm core whose radius is about

200 km (Fig. 4b). The azimuthal mean of the tangential

wind exhibits a maximum value of 41.5m s21 at r 5
65 km (r represents the distance from the TC center) and

zh5 0.68 km, and the wind speed decreases as the height

increases (Fig. 4c). A warm core at the TC center has a

deep structure extending from the surface to zh 5 16km

and has a maximum value of 10.4K at zh 5 9.63 km

(Fig. 4d). These features are almost the same as those

observed in the first-guess field at t5 0 h, except that the

TC center was located about 40 km to the southwest

(figures not shown).

Figures 5a–e illustrate the analysis increments of the

potential temperature at the 33rd vertical level (zh 5
9.63 km) at t 5 0 h obtained from the 4D-Var-based

systems. In the 4D-Var-Bnmc system, the largest change

occurs more than 1000km south of the TC center, al-

though the decrease in the potential temperature

around the TC is as expected because of the TC weak-

ening (Fig. 5a). In the 4D-Var-Benkf0 system, a notable

decrease in the potential temperature occurs around the

TC center with a crescent-shaped pattern (Fig. 5b). The

value with the maximum decrease is20.30K, which is 4

times larger than the maximum decrease of 20.08K

obtained from the 4D-Var-Bnmc system. Aside from

the changes near the TC center, there are many small

patches far from the location of the observation, partly

due to sampling noise resulting from the insufficient

number of ensemble members. The analysis increments

obtained from the 4D-Var-BenkfS and 4D-Var-BenkfN

systems are similar to that obtained from the 4D-Var-

Benkf0 system (Figs. 5c,d). However, the spatial varia-

tions are not rapid as in the 4D-Var-Benkf0 system, and

FIG. 7. As in Fig. 6, but for analysis increment in (a) EXP_h2, (b) EXP_novert, and (c) EXP_h2novert.
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very small-scale increment patches are slightly suppressed.

The analysis increment obtained from the 4D-Var-

BenkfL system is similar to that from the 4D-Var-

Bnmc system, except for a notable change in the

shape of the analysis increment near the TC center with

the maximum decrease of 20.09K (Fig. 5e). The con-

tribution of the ensemble-based background error

covariance
ffiffiffiffiffiffiffiffiffiffiffi
12b

p
dxens from Eq. (4) shows that the

spatial localization approach significantly suppresses

the analysis increment away from the observation lo-

cation and that the spatial extent of decrease in the

potential temperature is similar to the TC warm core

size (Fig. 5f). The spatial localization approach effi-

ciently reduces the estimated correlations for the large

spatial separation more than the spectral localization

and neighboring ensemble approaches do.

The azimuthally averaged feature in a storm-centered

cylindrical coordinate shows that the analysis increment

of the potential temperature by the 4D-Var-Bnmc sys-

tem is characterized by large values at heights between

the surface and 4km (Fig. 6a). In contrast, the 4D-Var-

Benkf0, 4D-Var-BenkfS, and 4D-Var-BenkfN incre-

ments weaken the warm core, in particular around

heights of 8–12km (Figs. 6b–d). Although the analysis

increment obtained from the 4D-Var-BenkfL system is

similar to that from the 4D-Var-Bnmc system (Fig. 6e),

the ensemble-based part of the analysis increment

exhibits a pattern similar to those obtained from the

4D-Var-Benkf0, 4D-Var-BenkfS, and 4D-Var-BenkfN

systems, but with a different magnitude (Fig. 6f).

The magnitude of the analysis increment obtained

from the 4D-Var-BenkfL system is substantially smaller

with amaximum value in the lower troposphere near the

TC warm core compared to those of the other hybrid

systems, while the analysis increment forms a crescent-

shaped pattern just east of the observation location as in

the other hybrid systems. Because the difference be-

tween the 4D-Var-Benkf0 and 4D-Var-BenkfL systems

resulted from a specified background error covariance

matrix, the spatial localization was considered to sup-

press the magnitude of the analysis increment. To con-

firm this hypothesis, we conducted three analogous DA

experiments by changing the setup of 4D-Var-BenkfL:

in one, the horizontal localization scale was doubled

(EXP_h2); in the next, the vertical localization was not

applied (EXP_novert); and in the final experiment, the

horizontal localization scale was doubled without

the vertical localization (EXP_h2novert). In EXP_h2,

the axisymmetric structure of analysis increment at t 5
0 h is similar to that obtained from the original run in

FIG. 8. (a)–(e) As in Figs. 6a–e, but at t 5 3 h. (f) As in (a)–(e), but for LETKF analysis at t 5 3 h.
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that it has a maximum decrease in the lower troposphere

(Fig. 7a). In EXP_novert, a vertically deep structure ap-

pears around the TC center (Fig. 7b). The peak of the

potential temperature analysis increment in the upper

troposphere becomes more obvious in EXP_h2novert

(Fig. 7c). These results indicate that, while a large po-

tential temperature analysis increment in the upper tro-

posphere is physically reasonable as a response to the

innovation of sea level pressure in the TC, the vertical

localization with the aid of the horizontal localization

substantially suppresses the vertically coherent structure.

At the end of the assimilation window (t 5 3 h), the

analysis increment evolves in time according to the

model dynamics during the assimilation window as

shown in Fig. 2 of Kuhl et al. (2013) and Fig. 9 of Clayton

et al. (2013). The azimuthally averaged analysis in-

crements of the potential temperature field at t 5 3h

are shown in Fig. 8. The increments derived from all of

the 4D-Var-based methodologies exhibit similar pat-

terns characterized by warm core weakening, negative

potential perturbations in the upper troposphere, and

increased potential temperatures in the lower strato-

sphere. The weakening of the warm core is consistent

with the TC dynamics. Although the overall structures

are similar among the 4D-Var-based methodologies,

there are several differences between the increments

of the 4D-Var-Bnmc and hybrid DA systems. For ex-

ample, the horizontal coherence is rather strong in

the 4D-Var-Bnmc increment compared with the in-

crements obtained from the hybrid systems. Figure 9

shows that the potential temperature analysis incre-

ment at zh 5 11.5 km is similar among the hybrid

systems in that its magnitude rapidly decreases from

the center to r 5 100 km. In contrast, the radial gradi-

ent of the potential temperature analysis increment

is rather gentle up to r 5 300 km with the use of the

4D-Var-Bnmc system. Moreover, vertical coherence is

evident between 6 and 13 km at the TC center in the

hybrid results, while it is not apparent in the 4D-Var-

Bnmc results. These results indicate that the 4D-Var-

Bnmc increment still tends to capture horizontal scales

larger than those obtained from the hybrid systems

and that the potential temperature increments of the

hybrid systems are similar to each other at the end of

the DA window. For reference, the analysis increment

of the potential temperature that was derived from the

LETKF system is shown in Fig. 8f. It is almost zero in

the middle and upper troposphere, which does not

have a vertically deep structure as in the 4D-Var-

BenkfL system. This difference between 4D-Var-

BenkfL and LETKF can be explained by considering

the best linear unbiased estimates at t 5 0 that are re-

spectively written as

dx
0
5M

t
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t H
T
t
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where C0 denotes the diagonal matrix. Each element of

C0 is the inverse of the localization weight determined by

ro (Hunt et al. 2007; Miyoshi and Yamane 2007). The

analysis increment is set to completely zero in LETKF

where an analysis grid point is more than 2
ffiffiffiffiffiffiffiffiffi
10/3

p
ro away

from the observation location. In the 4D-Var-BenkfL

system, it is not necessarily zero even at an analysis grid

point away from an observation location because the

localization scale is defined by ra and the analysis in-

crement evolves in time according to the model dy-

namics. Similar difference between 4D-Var and LETKF

was also observed in Yokota et al. (2016).

In sum, the analysis increment differs largely between

the 4D-Var-Bnmc and hybrid methods at the beginning

of the assimilation window. At the end of the assimila-

tion window, the analysis increments become closer

to each other partly because of the time evolution

according to the model dynamics, and their structures

are physically reasonable. Nevertheless, there still re-

main differences between the analysis increments of the

4D-Var-Bnmc and hybrid methods; for example, the

FIG. 9. Azimuthally averaged analysis increment of potential

temperature at zh 5 11.5 km.
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4D-Var-Bnmc increment tends to have a stronger hor-

izontal coherence. In this section, we have not discussed

the analysis increment of the velocity field. Briefly

speaking, the hybrid DA systems yielded anticyclonic

circulation consistent with the dynamics of a mature TC

at the beginning of the assimilation window. The anal-

ysis increment derived from 4D-Var-Bnmc exhibited

both cyclonic and anticyclonic circulation patterns at the

beginning. This 4D-Var-Bnmc increment formed an

anticyclonic vortex at the end, while the horizontal co-

herence is relatively large (figures not shown). Note that

here the analysis increment was only investigated in

response to MSLP in one cycle. In realistic DA config-

urations, observations in different locations and during

multiple cycles propagate error information to broad

regions in the calculation domain.

4. TC forecasts

a. Selected events

To investigate the quality of each DA system, we se-

lected the four TCs that were the strongest in 2011–12 in

terms of the MSLPs reported by the Regional Special-

ized Meteorological Center (RSMC) Tokyo within the

calculation domain: TCs Roke (2011), Bolaven (2012),

Samba (2012), and Jelawat (2012). The center positions in

the RSMC best tracks are shown in Fig. 10, while the

experimental periods and peak intensities are summa-

rized in Table 1.We validated only the events in which all

of the systems reproduced TCs at the verification time

within the verification region described in the best track

for fair comparison (see Fig. 10). The total numbers of

cases for verification were 62, 61, 57, and 51 for forecast

times of 0 (analysis), 12, 24, and 36h, respectively.

b. Forecast quality

The mean errors (MEs) of the TC track forecasts along

with the root-mean-square errors (RMSEs) of the fore-

casted MSLPs and maximum wind speeds at 10-m height

(Vmax) for the four TCs are shown in Fig. 11. The posi-

tion errors are smaller for the forecasts initialized by the

LETKF and hybrid systems than they are for those initi-

ated by the 4D-Var-Bnmc system at forecast times equal

to and longer than 6h (Fig. 11a). The track forecast errors

at 24h are improved by about 10%. It is intriguing that the

forecast errors are similar to each other among the

LETKF and hybrid experiments. In the TC intensity

predictions, the LETKF error is initially larger than the

errors of the results obtained from the otherDAmethods,

and the 4D-Var-Bnmc-based initial conditions caused the

error to increase rapidly with increasing forecast time up

to 9h. The intensity errors in the forecasts initialized by

the hybrid systems are smaller than those of the forecasts

initialized by the 4D-Var-Bnmc and LETKF systems.

The results of t tests for the position errors and the

squared errors of MSLP and Vmax indicate that the

improvements over the 4D-Var-Bnmc system by using

the hybrid systems are generally statistically significant

(Fig. 12). The LETKF system is generally more accurate

than the 4D-Var-Bnmc model in terms of track pre-

diction, although it is not necessarily superior in terms of

intensity prediction. Note that this does not indicate that

LETKF is inferior to 4D-Var-based methodologies be-

cause the LETKF system employed the coarse resolu-

tion of 15 km as well as an ensemble average on the

geographically fixed coordinate.

To understand the quality of track prediction, the

steering flowwas calculated because it is closely related to

FIG. 10. RSMC best track of TCs investigated in this study (thick

lines). Thin lines indicate the track for an extratropical cyclone that

was a former TC.

TABLE 1. List of TCs investigated in this study. MSLP and Vmax indicate the peak values during the verification period

(1 kt 5 0.5144 m s21).

TC name Initial time End time MSLP (hPa) Vmax (kt)

Roke (2011) 0900 UTC 20 Sep 0000 UTC 22 Sep 940 85

Bolaven (2012) 1800 UTC 26 Aug 1800 UTC 28 Aug 940 80

Samba (2012) 0000 UTC 16 Sep 1800 UTC 17 Sep 935 90

Jelawat (2012) 0900 UTC 29 Sep 0600 UTC 1 Oct 935 90
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TC motion (Elsberry 1995). The steering flow was de-

fined as the mean wind vector between 850 and

300 hPa within a 600 km 3 600 km rectangle centered

at the TC center position, which is the same as the

definition used by Wu et al. (2007). The composite

mean of the steering flow (u, y) is shown in Fig. 13. The

zonal wind seems to be a bit different at the initial time

(Fig. 13a), though the meridional component of the

steering flow shows weaker southerly wind at the ini-

tial time in the analysis obtained from the LETKF and

hybrid systems unlike in that obtained from the 4D-

Var-Bnmc system (Fig. 13b). It is consistent with the

similarity in the position errors initialized by the

LETKF and hybrid systems.

The composite means of the meridional wind fields

around the TCs in the 4D-Var-Bnmc system indicate

cyclonic circulation (Fig. 14a). The southerly winds to

the east of the TCs are generally stronger than the

northerly winds to the west partly because the north-

ward translation speed was added to the cyclonic wind

field associated with the TC motion. The difference in

the hybrid systems relative to the 4D-Var-Bnmc system

show that the cyclonic circulation becomes stronger in

an inner core region and the southward wind anomalies

appear in the surrounding area (Figs. 14b–d). This

southward wind anomaly in the surrounding area is also

observable in the LETKF result. Comparison of the

4D-Var-Bnmc and LETKF analysis increments further

FIG. 11. (a)MEof track, andRMSEof (b)MSLP and (c) Vmaxwith respect toRSMCTokyo best track. Results obtained using 4D-Var-

Bnmc, LETKF, 4D-Var-BenkfL, 4D-Var-BenkfS, and 4D-Var-BenkfN systems are indicated by blue, green, red, light purple, and cyan,

respectively.

FIG. 12. Results of two-tailed paired sample t tests for (a) track error, (b) squared MSLP error, and (b) squared

Vmax error. Shadings in red (blue) indicate improvement (degeneration) in forecasts initialized by LETKF,

4D-Var-BenkfL, 4D-Var-BenkfS, and 4D-Var-BenkfN systems with respect to 4D-Var-Bnmc system.
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reveals that a larger TC vortex was reproduced by the

LETKF system, which shows cyclonic (anticyclonic)

circulation outside (inside) the radius at which the

maximum wind occurs in the 4D-Var-Bnmc system

(Fig. 14e). Therefore, the changes in the inner core

structure differ between the LETKF and hybrid sys-

tems, while their resultant steering flows, defined as the

600 km 3 600 km area-averaged winds, both exhibit

southward wind anomalies relative to the 4D-Var-Bnmc

results.

FIG. 13. (a) Composite of zonal component of steering flow. (b) As in (a), but for meridional component. See

section 4b for definitions. Line colors are identical to those used in Fig. 11.

FIG. 14. (a) Composite of meridional wind in 4D-Var-Bnmc analysis. (b) Composite of meridional wind anomaly in the 4D-Var-BenkfL

analysis relative to the 4D-Var-Bnmc analysis. (c)–(e) As in (b), but for 4D-Var-BenkfS, 4D-Var-BenkfN, and LETKF analyses, re-

spectively, relative to 4D-Var-Bnmc analysis.
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We proceeded to investigate the mean biases in the TC

intensity forecasts because the RMSE is the square root of

the sum of the squared mean bias and residual. Figure 15

shows the mean biases of MSLP and Vmax. In general, the

TCs are weakly reproduced at the initial time in all of the

systems. Among them, the MSLP has a large positive bias

and theVmaxhas a large negative bias in the 4D-Var-Bnmc

results from t 5 3 to t 5 12h, contributing to the worse

intensity forecast score (Figs. 11b,c). Figure 16 shows that

the composite mean of the radius of maximum wind

(RMW) tends to become large after 3h when initial state is

given by the 4D-Var-Bnmc system. This increase in the

RMW is consistent with the excessive weakening of the TC

intensity because of the quasi-conservation of absolute an-

gular momentum, which is approximately proportional to

the tangential velocity times the radius in the TC inner core.

This rapid increase of theRMWisnot evident in theRMWs

of the LETKF and hybrid results. This enlargement of

RMW may be related to the nature of the 4D-Var-Bnmc

system, which tends to distribute more energy to a broad

region away from the TC center, as described in section 3.

Figure 17 shows the MSLP analysis compared to the

RSMC best track. TheMSLP analysis agrees well with the

RSMC values for weak TCs. However, the intensities of

strong TCs are not fully reproduced; in particular, the

analysis of MSLPs obtained using the LETKF system is

sometimes above 960hPa, even when the actual MSLP is

less than or equal to 940hPa. These differences are pre-

sumably evident because the 15-km grid spacing (used in

the simplified nonlinear model of the 4D-Var system and

the LETKF system) is not sufficient to resolve the inner

core structure of an intense TC (Gentry and Lackmann

2010) and because of the potential issue of simplified and/or

linearized physics evenwith a bogus TCassimilation. This

situation might be improved in the 4D-Var-based meth-

odologies that employ horizontal grid spacings of 5km in

the high-resolutionmodel. In addition, the spatially sharp

structures of the variables are lost in the LETKF system

because the analysis is performed using the geographi-

cally fixed ensemble mean of the peak values reproduced

at the different location in each realization. This charac-

teristic caused themeanRMWs of the TCs in the LETKF

analysis to be larger than those obtained using the 4D-

Var-based methodologies by about 10km (Fig. 16) and

also caused the horizontal wind fields associated with the

TCs to become broader (Fig. 14e).

FIG. 15. Composite mean bias for (a) MSLP (hPa) and (b) Vmax (m s21) at each forecast time obtained from each

DA system.

FIG. 16. As in Fig. 13, but for composite of RMW.
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It is notable that all of the hybrid systems yield

TC track, MSLP, and Vmax predictions with similar

skills and that these predictions are more accurate

than those obtained from the 4D-Var-Bnmc system,

even though the strategies of constructing Bens are

rather different. This fact is supported by the simi-

larity between their steering flow structures, potential

temperatures, humidity profile, and RMWs (figures

for potential temperature and humidity profile are

not shown).

5. Local heavy rainfall events

a. Selected events

Local heavy rainfall events have sometimes caused

flooding and debris flows that have killed many people.

The JMA designated three events as rainfall-related di-

sasters3 in 2011–12; these disasters occurred in Niigata–

Fukushima (2011), northern Kyushu (2012), and Kinki

(2012) (http://www.data.jma.go.jp/obd/stats/data/bosai/

report/index_1989.html). In this work, we applied the

DA systems to initialize the forecasts for these torrential

rainfall events, whose locations are shown in Fig. 18a. In

each case, the frontal zone was located near the areas of

local heavy rainfall. Warm and humid winds flowed along

these fronts, which brought torrential rainfall (Figs. 18b–d).

Kunii (2014) showed that the northern Kyushu heavy

rainfall event could have been predicted better at forecast

times of 12 and 24h by using an initial state obtained from

the LETKF system compared with the 4D-Var-Bnmc

system. Nevertheless, hybrid systems have never been

applied to these events. The forecast experiments are

verified during the periods of torrential rainfalls reported

by the JMA as dates (in local standard time) shown in

Table 2. Verification periods are 4 days (96h), 4 days

(96h), and 2 days (48h) for the Niigata–Fukushima area

(2011), northern Kyushu region (2012), and Kinki region

(2012) events, respectively. The initial forecast times

were every 3h between 24h prior to the beginning of

the verification time and 3h prior to the end of the veri-

fication time. A total of 104 forecast experiments were

initialized by each DA system.

FIG. 17. MSLP in RSMC best track and corresponding (a) 4D-Var-Bnmc, (b) LETKF, (c) 4D-Var-BenkfL, (d) 4D-Var-BenkfS, and

(e) 4D-Var-BenkfN analyses.

3 Rainfall events associated with TCs were excluded.

3432 MONTHLY WEATHER REV IEW VOLUME 144

http://www.data.jma.go.jp/obd/stats/data/bosai/report/index_1989.html
http://www.data.jma.go.jp/obd/stats/data/bosai/report/index_1989.html


b. Forecast quality

Figure 19 shows the RAP analysis of the total accu-

mulated rainfall during the verification period4 for the

heavy rainfall event in Niigata–Fukushima (2011) and

the corresponding model forecasts initialized by all

the DA systems. To compare with the RAP analysis,

we compiled model-derived 3-h accumulated rainfall

amounts at forecast times of 30–33h. The total rainfall

amount is also shown for the event in northern Kyushu

(2012) (Fig. 20). All of the systems predicted the peak

total rainfall amount to be more than 400mm for the

Niigata–Fukushima and northern Kyushu events. Thus,

the occurrence of unusual local heavy rainfall was suc-

cessfully predicted regardless of the choice of a DA

scheme, although the total rainfall amount was generally

underestimated in the model forecasts. The optimum

initialization scheme in terms of predicting the peak

rainfall locations differs among the events. For the

Niigata–Fukushima event, the peak rainfall location was

predicted reasonably well by the hybrid-based initial

FIG. 18. (a) Verification region for local heavy rainfall events investigated in this study. Squares indicate verification region of 500 km on

each side centered at location ofmaximum total rainfall in each event. (b)–(d) Surfaceweathermaps produced by JMAat 0000UTC 28 Jul

2011, 0000 UTC 12 Jul 2012, and 0000 UTC 14 Aug 2012, respectively.

4 The data for the first 6 h from the beginning of the verification

time are excluded from this plot. Because the forecast initial time

begins 24 h prior to the verification time, the corresponding model

outputs at forecast times of 30–33 h are not available.
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condition, while it was incorrectly reproduced far to the

west of the actual location by the LETKF-based initial

condition. In contrast, the peak rainfall location was

predicted reasonably by using the LETKF system for

initialization for the northern Kyushu event, while the

4D-Var-Bnmc system yielded the peak location in the

southern part of Kyushu Region. The better skill of

LETKF for the northernKyushu event is consistent with

the results of Kunii (2014).

To evaluate the forecast quality of heavy rainfall

events over several experimental cycles, the threat score

(TS) and fractions skill score (FSS) were used (Duc et al.

2013; Ebert 2009; Wilks 2011). TS is defined as

TS5
H

H1F1M
, (18)

where F is the number of points at which the predicted

precipitation corresponds to a false alarm, M is the

number of points at which the observed precipitation

was missed by the prediction, and H is the number of

successful predictions. TS ranges from 0 to 1, where

TS 5 1 means a perfect forecast. FSS is defined as

FSS5 12
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where the forecast fraction p and observation fraction o

are computed by taking the ratio between the number of

occurrences of the event of interest and the number of

grid points inside a spatial window. The index j runs over

TABLE 2. List of local heavy rainfall events investigated in this study.

Event name Initial day End day Total rainfall (mm) Max 3-h rainfall (mm)

Niigata–Fukushima (2011) 27 Jul 30 Jul 711.5 167.0

Northern Kyushu (2012) 11 Jul 14 Jul 816.5 288.5

Kinki (2012) 13 Aug 14 Aug 228.5 109.5

FIG. 19. Total accumulated rainfall amount within verification region for the local heavy rainfall event in Niigata–Fukushima area

(2011). (a) RAP analysis. (b) Total rainfall amounts corresponding to (a) in the model forecasts initialized by 4D-Var-Bnmc system.

Forecasts were constructed by integration of 3-h accumulated rainfall at forecast times of 30–33 h. (c)–(f)As in (b), but formodel forecasts

initialized by (c) LETKF, (d) 4D-Var-BenkfL, (e) 4D-Var-BenkfS, and (f) 4D-Var-BenkfN systems.
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all pixels inside the verification area, and this N is the

total number of grid points inside a verification area.

FSS ranges from 0 to 1, where FSS 5 1 means a perfect

forecast. In contrast to the strict requirement of TS

evaluating the exact point–point match, FSS relaxes this

requirement between the forecasts and the observations

by taking adjacent grid points into account; thus, it can

be used to verify the quality of a precipitation forecast

from a coarse-grained view. Here, we verified the model

output by comparing it to RAP data that were obtained

on land within the verification region of 500km 3
500km centered at the location of maximum total ac-

cumulated rainfall over the verification periods, as

shown in Fig. 18.

Figures 21a–c show TS for 3-h accumulated rainfall at

forecast times of 6–9, 15–18, and 33–36 h. Notably, the

hybrid systems exhibit no clear improvements compared

to the 4D-Var-Bnmc system at any forecast time.

Comparison between the LETKF-based and 4D-Var-

based forecasts indicates that TS is smaller in the

LETKF-based forecasts by up to 25mm(3 h)21. This

feature has also been observed in previous studies

(Kunii 2014; Saito et al. 2011). In general, the differences

(relative to the 4D-Var-Bnmc method) are statistically

neutral, except for the degeneration of the weak rainfall

prediction accuracy initialized by the LEKTF system

(figures not shown). Please note that the worse skill of

LETKF may come from a coarse resolution of 15 km

and the use of a geographically fixed ensemble mean.

The behavior of FSS with a window size of 20 km 3
20 km is similar to that of TS, indicating that the quality

of forecasts initialized by the different DA methodolo-

gies does not differ as a result of smoothing the hori-

zontal scale over this spatial range (Figs. 21d–f). The

behavior of FSS with a window size of 160 km3 160 km

is generally improved for forecast times of 33–36 h in the

hybrid-based forecasts compared to the 4D-Var-Bnmc-

based forecasts, while the 4D-Var-Bnmc system pro-

vides reasonable estimates in terms of predicting very

intense rainfall for forecast times of 15–18 h. Therefore,

the evaluation of the heavy rainfall predictions can be

changed by taking a coarse-grained view on this hori-

zontal scale, although grid-scale prediction of the exact

location yields no improvement, perhaps because of its

extreme difficulty (Duc et al. 2013). Figure 22 shows the

results for the statistical significance test of FSS for 3-h

accumulated rainfall with a window size of 160 km 3
160 km. All of the hybrid DA systems sometimes pro-

vide initial conditions that yield forecasts at 0–6 and 30–

36 h that are statistically more accurate than those of the

4D-Var-Bnmc system, while the changes were not de-

tected as statistically significant improvements at other

FIG. 20. As in Fig. 19, but for the local heavy rainfall event in northern Kyushu region (2012).
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forecast times. It is possible that hybrid DA systems can

generate the initial condition to predict local heavy

rainfall events. However, further experiments are nec-

essary to confirm the current findings with certainty.

6. Summary

To predict hazardous events accurately, the modeling

of background error covariances should be more

sophisticated. Therefore, we developed three hybrid

mesoscale DA systems (spatial localization, spectral

localization, and neighboring ensemble approaches)

that use flow-dependent covariances constructed from

the perturbations in the LETKF system. The adjoint-

based 4D-Var system used is almost identical to the

JMA operational regional DA system.

The single-observation assimilation experiment showed

that the analysis increments obtained from the hybrid

systems at the beginning of the assimilation window

were physically reasonable. In contrast, the analysis in-

crement obtained from the 4D-Var-Bnmc method did

not capture TC-related features. At the end of the 3-h

assimilation window, the TC-related features were cap-

tured by the analysis increments from both the hybrid

DA and 4D-Var-Bnmc systems. Nevertheless, there

were still some differences, for example, the 4D-Var-

Bnmc increment was more horizontally coherent.

The realistic-DA experiments showed that hybrid-

based initial conditions yielded TC track predictions and

intensity forecasts that were more accurate than those

obtained using 4D-Var-Bnmc-based initial conditions.

LETKF-based initial conditions also yielded track fore-

casts that were more accurate than those resulting from

4D-Var-Bnmc-based initial conditions, while they did not

improve the forecast quality of TC intensity. In general,

these results were found to be statistically significant. We

also applied theseDA systems to initialize the predictions

of three local heavy rainfall events that occurred in Japan

in 2011–12. Although a relatively large number of fore-

cast experiments (104 cycles) were performed, the hybrid

DA systems exhibited no clear improvements over the

4D-Var-Bnmc systemwhenTSwas employed as ametric.

FIG. 21. (a) TS for 3-h accumulated rainfall during at forecast times between 6 and 9 h initialized by 4D-Var-Bnmc, LETKF, 4D-Var-

BenkfL, 4D-Var-BenkfS, and 4D-Var-BenkfN systems. (b),(c) As in (a), but for 15–18 and 33–36 h, respectively. (d)–(f) As in (a)–(c), but

for FSS. Solid and broken lines in (d)–(f) correspond to scores for 160 km 3 160 km and 20 km 3 20 km windows, respectively. These

results are averaged over all the available cycles.
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Another metric, FSS, indicated that initial conditions

obtained from the hybrid DA systems yielded some im-

provements in predictions at forecast times of 0–6 and

30–36hwhen awindow size of 160km3 160kmwas used.

However, more experiments are needed to confirm the

improvements in the prediction of local heavy rainfall

events. It is worth noting that the hybrid DA system

employing the different strategies for suppressing the

sampling noise exhibited similar quality in terms of pre-

dicting these severe weather events.

One may wonder why the LETKF system performs

differently than the 4D-Var-based methodologies. Care

should be taken when comparing the 4D-Var-based and

LETKF methodologies because their model physics,

observation binning, and configurations are not com-

pletely the same. In particular, the 4D-Var-based meth-

odologies use the high-resolutionmodelwith grid spacings

of 5km to generate analysis increments, while the analysis

field in the LETKF system has a grid spacing of 15km.

This difference could be the reason that the 4D-Var-based

initialization is more accurate in very short term pre-

dictions of heavy rainfall than the initialization from

an ensemble mean state of LETKF. Moreover, a TC

simulation starting from a single member in the LETKF

model could yield forecasts that are more accurate than

those achievable by performing analysis defined by the

ensemble mean state (Chang et al. 2014), which should be

investigated in the future.
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