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Abstract

We introduce K-theory ranks and index for C*-algebras (consid-
ered as their Euler characteristic) and establish the fundamental the-
ory for the ranks and index. Furthermore, we consider similarly KK-
theory ranks and index for C*-algebras. Also, the ranks and index
for equivariant K- and KK-theory are considered as well.
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Introduction

This paper is primarily based on a (reviewed) part of the author’s doc-
toral dissertation [13], in which some basic results on Euler characteris-
tics for C*-algebras, due to Takai (superviser) [15], are just given without
proofs. It was discussed a decade ago, but his original paper [15] has not
been published (as a full paper) (cf. a report [14]). Therefore, this time I
would like to give a powered account for this certainly important concept
with some detailed proofs and some (not a few) additional (new) results by
us. It seems Takai is not the first to introduce such a notion in the literature,
but he should be the first to do so in the C*-algebra setting. Furthermore, it
should be (potentially) useful for classification of C*-algebras in the future.

Our first motivation for this paper is to find a (more) suitable notion
for dimension for C*-algebras. It is Rieffel [11] who first introduced the
stable rank for C*-algebras. Brown and Pedersen [5] also defined the real
rank for C*-algebras. The stable rank can be regarded as a noncommuta-
tive counterpart to complex dimension for spaces in some sense, and the
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real rank be as to real dimension. However, they are not much satisfactory
in some sense. Indeed, for instance, the noncommutative tori Tg (n > 2)
generated by n unitaries u; such that ugu; = ezwwﬁkujuk for 1 < j,k<m,
where © = (0;) is a skew-adjoint n X n matrix over R, should have the
same rank (or dimension) as the commutative C*-algebra C(T") generated
by commuting n unitaries, or of all continuous functions on the tori T™
since Tg are deformed in a sense to C(T™) with respect to the parameter
©. It is known that simple Tg have stable rank one and real rank zero but
C(T™) (n > 2) have both ranks > 2. This idea and situation have led us
to define K-theory rank(s) for C*-algebras as well as their K-index as non-
commutative Euler characteristic of Takai. We shall use this terminology
since we deal with K-theory mainly. Our K-theory rank and index are new
invariants for C*-algebras in this formulation and would become important
notions in the future.

The author is benefited very much from some stimulating conversations
with Professor Hiroshi Takai on visiting(s) at Tokyo.

This paper is organized as follows. In Section 1 we define K-theory
ranks and index for C*-algebras and study their fundamental and impor-
tant properties closely related with K-theory formulae in the literature (see
[1]). In Section 2 we consider equivariant K-theory ranks and index for
C*-algebras and study their properties similarly as in Section 1. Further-
more, presented are the tables as classification for nuclear and non-nuclear
examples by our K-theory ranks and index, and another table for group
C*-algebras. Collected data in those tables would be helpful for further
research on this topic. Moreover, in Section 3 we define KK-theory ranks
and index (certainly new invariants) for C*-algebras and study their fun-
damental properties closely related with KK-theory formulae ([1] and [12])
and our K-theory ranks and index. These frameworks and results would
be useful for classification of (some types of) C*-algebras, especially, group
C*-algebras. .

Finally, as Appendix, (roughly) reviewed in some detail from Brown’s
text book [4] are cohomological dimension, vitrual cohomological dimen-
sion, Euler characteristic for groups with or without torsion, and prelimi-
naries for these notions and some (not a few) facts. The contents (minimally
and variously picked up) are divided into two sections: Preliminaries and
facts; Cohomological dimensions and Euler characteristics. These sections
would be far from being (fully) self-contained, but we made an effort to
make a concise approach to what we would like to know for further re-
search, so that some remarkable (and yet elementary or classical) facts
and definitions are assembled suitably in a way, as desired, and as further



extended in a demand.

1 K-theory ranks and index

Let 2 be a unital C*-algebra. The Ky-group Ko(2) of 2 is defined to be the
abelian (or Grothendieck) group generated by stably equivalent classes of
projections of n x n matrix algebras M, (2) over /A (n > 1), where addition
is defined by [p] + [g] = [p ® q] € Ko(™) for projections p,q € My(A) for
some n, where ® means diagonal sum. Note that if p, q are projections of
M, () and there exists a continuous path of'projections of My, (2) between
p and ¢, then [p] = [g]. The isomorphism Ko(C) = Z for C of complex
numbers is given by sending [p] to the rank of p.

The Kj-group K;(?) of a unital C*-algebra 2 is defined to be the
abelian group generated by homotopy equivalent classes of unitaries of
M, (2A) (n > 1), where multiplication is defined by [u][v] = [uv] = [u®v] €
K () for unitaries u,v € My,(2) for some n.

For a nonunital C*-algebra 2, its Ky-group is defined to be the kernel of
the natural group homomorphism from Ko(21) to Ko(C), where ™ is the
unitization of 2 by C. Then we have the following short exact sequence:

0— Ko(2A) — Ko(Ql+) — Ko(C) — 0

and Ko(2A") & Ko(2A) & Z. The K;-group of 2 is defined similarly so that
K, (™T) & K, () since K;(C) 0.

Definition 1.1 Let 2 be a C*-algebra. We define the Kj-rank of 2 to be
the Z-rank of the Kj;-group of 2 (j = 0, 1), and denote it by

Kl‘j(m) = rankZKj(Ql) € {0, 1,2,--- ,-I-OO}.
We define the (Euler-Takai) K-index of 2 to be the following difference:
indexg (™) = Kro() — Kr1 (™A) € ZU {£o0}.

Remark. As usual, oo — oo is not allowed. (However, we may allow this
" case formally to distinguish it from other cases.) Since K-theory groups are
homotopy invariants, the ranks Kr; and index indexy are also so, where
two C*-algebras are homotopy equivalent if there exists a homotopy (or a
continuous deformation) between them. The original notation adopted by
Takai [15] for indexg(-) was x(-) as the usual Euler characteristics. On
the other hand, the Fredholm index for Fredholm operators is defined by
another difference: dimension of kernel minus dimension of cokernel for the



operators. Since our K-index is a certainly analytic property, and rank is
assumed to be dimension, its naming as index is fit well in this sense.

We define the K-index of a compact space X as:
index® (X) = rankz K°(X) — rankz K'(X),

where K%(X) = K(X) is the Grothendieck group of the semigroup of stable
isomorphism classes of C-vector bundles over X, and K!(X) = K(SX) with
SX=RxX.

Denote by Cp(X) the C*-algebra of continuous functions on a locally
compact Hausdorff space X vanishing at infinity. Set Co(X) = C(X) when
X is compact. Let K be the C*-algebra of compact operators on a separable
infinite dimensional Hilbert space.

Proposition 1.2 (1). If C*-algebras A and B are stably isomorphic, i.e.,
ARK = B QK, then indexg (A) = indexx (B). In particular,

indexx (A ® My (C)) = indexg (A @ K) = indexx (A).

Moreover, if A and B are homotopic, then indexg () = indexg (B).
(2). For the direct sum A @ B of C*-algebras A and B,

indexg (A & B) = indexg (A) + indexg (*B).
(3). For the suspension SA = Cp(R) ® A for a C*-algebra A,
indexg (S2) = —indexg (2A).

(4). If X is a compact space, then indexy (C (X)) = index® (X).

(5). If A is contractible, then indexx (A) = 0.

(6). For a C*-algebra 4, indexy (A*) = indexy (A) + 1, where AT is the
unitization of A by C.

Remark. For (1), (2), and (5), indexk(-) can be replaced with Kr;(-).
Proof. For (1), note that K;( ® M,(C)) = K;(2A @ K) = K; ().

For (2), we have K;(2 @ B) = K;(2A) & K;(*B).

For (3), we have K;(S2A) = K,;;1() (Bott periodicity). Hence we
obtain Kr;(SA) = Kr;j;1(2).

For (4), Ko(C(X)) = K°(X) (: Swan’s theorem which says that a stable
isomorphism class of a complex vector bundle over X can be associated with
a stably equivalent class of a finitely generated, projective module over

C(X) (that corresponds to a projection of a matrix algebra over C(X))),
and K;(C(X)) & Ko(SC(X)) 2 K9%(SX) = K}(X).



For (5), if 2 is contractible (to {0}), then its Ko-group is trivial and its
K, is also trivial since S is contractible when 2 is so.
For (6), note that Ko(™A) = Ko(2A) ® Ko(C) and K;(™A) = K; (™). O

Example 1.3 (1). Since Ko(C) = Z and K;(C) = 0, we have
indexg (C) = indexg (Mp(C)) = indexk (K) = 1.

Let 2 be a finite dimensional C*-algebra so that % = &7_; My, (C) for some
n > 1 and n; > 1. Then indexg (2A) = n.

(2). For any AF-algebra 2 (that is an inductive limit of finite dimen-
sional C*-algebras), indexy () = Kro(2) since K; for AF is trivial. This
can be infinite. Indeed, let My~ be the UHF algebra of type n®, that is an
inductive limit of tensor products ® M, (C) (k > 1). Then indexg (M) =
+00 while indexg (®*M,,(C)) = 1. This shows that K-index indexy as well
as K-ranks Kr; are not continuous with respect to inductive limits, but
K-theory groups Kj(-) are continuous. This is a serious lack in our the-
ory, but a little bit strange (see a discussion after the tables given below).
There exists a simple AF algebra such that its Ky-group is isomorphic to
01Z+62Z+ - - -+0,Z, where 6; (1 < j < n) in R are rationally independent.
Denote it by AF,. Hence indexg (AF,) = n.

(3). Let C(T™) be the C*-algebra of continuous functions on the n-torus
T™. Then '

index (C(T™)) = Kro(C(T")) — Kr; (C(T")) = 2"~ — 271 = 0.
For S™ the n-dimensional sphere, the Bott periodicity implies

2 if n even,

indexx (C(S™)) = indexg (Co(R™)") = indexx (Co(R™))+1 = i
0 ifn odd.

(4). Let C2U = C([0,1]) ® A be the cone of a C*-algebra 2. Since C is

contractible, we have indexy (C) = 0.

Proposition 1.4 Let A ¢ B be the pullback of C*-algebras A, B with
x-homomorphisms from A and B onto a C*-algebra €. Then

indexg (A D¢ B) = indexg (A) + index g (B) — indexx (€).
Furthermore, let

A= ( ot ((%1 De, %2) De, 583) e ) De, %n+1



be a successive pullback of C*-algebras B; (1< j<n+1)and€; (1<5<
n). If there exist x-homomorphisms from A; = (--- (B1 D¢, B2) -+ -) De;_,
B; and By onto €; for 1 < j < n, then

n+1 n
indexg (2A) = Zindexx(%j) - ZindexK(Q:j).
j=1 j=1

Proof. We have the Mayer-Vietoris sequence (MV):
0 — K;(€) — K;(2® B) — K;(% @ B) — 0.

For the second claim, we use this sequence repeatedly for the pullback C*-
algebras defined inductively. m]

Recall from [1] (or [12]) that C*-algebras 2 and B are KK-equivalent if
their KK-group KK (2,8) contains an invertible element, i.e., there exist
an element z € KK(2A,B) and an element y € KK(B,2) (called KK-
equivalences) such that zy = 1g and yz = 1 under the Kasparov product,
where 19 and lg are the classes corresponding to the identity maps on 2
and B respectively. A C*-algebra is K-abelian if it is KK-equivalent to an
abelian C*-algebra. The UCT class N is defined to be the family of all
separable K-abelian C*-algebras. The subclass of nuclear C*-algebras in N
is closed under taking closed ideals, quotients, and extensions and under
constructing crossed products of those C*-algebras by Z or R.

Theorem 1.5 Let A, B be C*-algebras in the UCT class N that are KK-
equivalent. Then indexg () = indexk (B), where € ZU {£o0} is assumed.

Proof. The universal coefficient theorem (see [12]) implies that K;(2A) =
K;(B) under the assumption. O

Corollary 1.6 For 2,B in the class N, if indexg () # indexg (*B), then
they are not KK-equivalent.

Remark. This consequence might be useful to show non-KK-equivalence.
The theorem above is very powerful as shown in examples below ([1]), but
somewhat tautological in a sense since KK-equivalence is deduced by K-
theory isomorphisms in many cases.

Example 1.7 Let A be a C*-algebra. All A, M,(2A) = AQ M,(C), ARK
are KK-equivalent. Homotopy equivalent C*-algebras are KK-equivalent.
AF-algebras are KK-equivalent if and only if their dimension groups (that
are inductive limits of free abelian groups Z*) are isomorphic as groups.
Some other interesting examples are given below.



Recall from [1] that the bootstrap category X is defined as the smallest
class of separable C*-algebras such that C € X and X is closed under taking
inductive limits, extensions, quotients, closed ideals, and KK-equivalence.
A C*-algebra in X is not necessarily nuclear.

Theorem 1.8 If 2 or B are nuclear C*-algebras in the bootstrap category
X (or in the UCT class N) and their K-groups K;(21) or K;(B) are torsion
free, then

indexg (A ® B) = indexk (2A) indexx (B).

Proof. The Kiinneth formula implies the isomorphisms:

Ko(2A® B) = (Ko(A) ® Ko(B)) © (K1(2A) ® K1(B)),
Ki1(A®B) = (Ko(2) ® K1(B)) @ (K1(2) ® Ko(B)).

Hence, we obtain

Kro(2 ® B) = Kro(A) Kro(B) + Kr1 () Kr1(8),
Kri (2 ® B) = Kro(A) Kr1(B) + Kr1 (2A) Kro("B).

It follows that

indexg (A @ B) = (Kro(™A) — Kr1(A))(Kro(B) — Kr1(B))
= indexg () indexg (*B).

Extensions of C*-algebras

Theorem 1.9 Let 0 - J — A — A/T — 0 be a short exact sequence of
C*-algebras. Its siz-term exact sequence is

Ko(J) — Ko() —— Ko(2/7)
o] s
Ki(%/3) —— Ki(%) —— Ki(9).
If the index maps O are both zero, then
Kr;(?) = Kr;(J) + Kr;(2/3), indexg () = indexg(J) +indexx (/7).

In particular, this is the case if the short exact sequence splits.
Moreover, if indexg (), indexg (J), and indexg (A/J) are finite, then

indexg (A) = indexg (J) + indexx (A/T),

where it is enough to assume that two of those are finite.



Proof. The first part of the statement is clear.
For the second, let I; = Kr;(J), m; = Kr;(®2), and n; = Kr;(/3J).
Furthermore, we assume by half exactness of the six term diagram above

that I; = I} + Ij, m; = m} + mj, and n; = n + nf such that generators

corresponding to =’ are mapped to zero and those to z”/ are not, i.e, we have
mg = ng, ng =1, If = m, m{ =nf, nf =1, and l§j = m{. Therefore, we
obtain

indexg (A) = mog — my = (mg+ mg) — (m) + my
= (lo +ng) — (I +n1) = (g — 1) + (ng — n1)
= (o — 1) + (ng —n1) + (lp — nY) + (ng — )
= (o +1g) — (I + 1)) + ((ng + mg) = (n + n))
= indexg (J) + indexx (/7).

O

Proposition 1.10 Let 0 — A — E — B — 0 be a split extension of
C*-algebras. If E is in the UCT class, then

indexg (F) = indexy (2 & ‘B).

Proof. Such an extension E is KK-equivalent to 21 & 8. Thus, the UCT
assumption implies the conclusion. O

Example 1.11 Let X be a locally compact Hausdorff space and Y its
closed subspace. Set U = X \ Y. Then we have the following short exact

sequence:
0— Co(U) = Co(X) — Cop(Y) — 0.

Hence, it follows that
indexg (Co(X)) = indexg(Co(U)) + indexg (Co(Y))
where finiteness of these indexes is assumed, which is equivalent to
index® (X) = index® (U) + index® (V).
Indeed, we have the following diagram:
K°U) —5— KO(x) —— KO(Y)
o s

KY(Y) —— K(X) << K\(U)



where i is the inclusion from Y to X and q is the map from X* to Ut
which is the identity on U and which sends X+ \ U to the point at infinity.
Let § be the Toeplitz algebra generated by an isometry. Then

0-K—-F—-C(T)—0

and indexg(F) = 1 — 0 = 1, indexg(K) = 1, and indexg (C(T)) = 0 (see
[17]). The Toeplitz algebra § is KK-equivalent to C. Furthermore, any
C*-algebra A and 2 ® § are KK-equivalent.

Let B be the C*-algebra of bounded operators on a Hilbert space. Then

0-K—-B—-B/K—0

and indexg (B) = 0 — 0 = 0 and indexg(B/K) =0—1 = -1 ([17]).
Let Ay be the real 2-dimensional az + b group and C*(Az2) its group
C*-algebra. Then we have

0-KeK-— C*(Az) —» Co(R) — 0.

Therefore, we obtain indexg (C*(Az2)) = indexx (K®K)+indexx (Co(R)) =
2+ (1) =1

Let HX be the real 3-dimensional Heisenberg Lie group and C*(HY) its
group C*-algebra. Then we have

0— Co(R\ {0}) ® K — C*(H3) — Co(R?) — 0
([8]). Therefore, we obtain

indexg (C*(HE)) = indexx (Co(R \ {0}) ® K) + indexx (Co(R?))
= 2indexk (Cp(R)) + indexg (C) = -2+ 1 = —1.

Proposition 1.12 Let M (2) be the multiplier algebra of a (nonunital) C*-
algebra A. Then

indexg (M (A)) = indexg (™) + indexg (M (A) /).
For any C*-algebra A and a unital C*-algebra B,
indexg (M (A Q K) ® B) = 0.

In particular, indexg (B®B) = 0, and if A is stable, then indexx (M (A)) =
0. Note that ® with B is any C*-tensor product.
Furthermore, for any C*-algebra 2,

indexg (A) = —indexx (M (2A @ K)/(A ® K)).
In particular, if 2 is stable, then indexy (A) = —indexg (M (A)/2A).



Proof. It is known that for any C*-algebra 2 and a unital C*-algebra B,

both Ky and Kj-groups of M (2 ® K) ® B are trivial (see [17, 10]).
Furthermore, it is known that for any C*-algebra 2, we have K;(2) =

K;1(M(2 ® K)/(A 8 K)). 0

Proposition 1.13 For any extension0 — J — B — € — 0 of C*-algebras
and a C*-algebra A, we have

indexx (A Qmax B) = index g (A ®max J) + indexg (A Qmax €)

provided that both sides are finite, where ®@max is the mazimal C*-tensor
product. Furthermore, if 2 is exact, then

index g (A ®min B) = indexx (A Qmin J) + indexx (A min €)
provided that they are finite, where Qmin is the minimal C*-tensor product.
Proof. We always have the exact sequence:
00— A®max T — A®max B — AQmax € — 0.
If A is exact,
0— A®min I — ABmin B > AQmin € — 0
holds. ]

Example 1.14 In particular, for 0 - K - B - Q =B/K — 0,

indexg (A ®max B) = indexx (A) + indexx (A Omax @),
index i (A ®min B) = indexx (A) + index g (A Omin ),
where 2 is exact for the second. If A = B, then indexg (B ®max B) =
indexx (B ®max @) = 0, but B is not exact. If A = @, then indexx (Q ®max

B) = 0 = —1+indexx (Q®max®@), but @ is not exact. Hence, indexx (Q®max
Q) = 1. We also have indexg (B ®min B) = 0 = indexx (B Qmin Q).

Proposition 1.15 Let A be a C*-algebra. If A has a finite composition
series of closed ideal J; with Jg = {0} and 3, = ¥, then

n
indexg (A) = ZindexK(Jj/jj_l)
j=1

where finiteness of each K-index is assumed.



Example 1.16 Suppose in the above proposition that each subquotient
J;5/3j-1 = Co(X;) ® K for X; a locally compact Hausdorff space. Then

n

indexg (2A) = ZindexK(Co(Xj)) = ZindexK(Xj)
Jj=1 j=1

where finiteness of each K-index is assumed.
Proposition 1.17 Let /U be a C*-algebra with a strictly positive element,
or with countable approximate units. If B is a full corner of A, i.e., the

hereditary C*-subalgebra pAp of A for a projection p of A (or the multiplier
algebra of A), that is not contained in any closed ideal of 2, then

Kr;() = Krj(®B), and indexg () = indexk(B).

Proof. Under the assumptions above, it is obtained by [4] that 2 is stably
isomorphic to B, ie., AIK =ZB QK. 0O

Remark. If 2 is a simple C*-algebra, the corner pRp is always full and
simple.

Crossed products of C*-algebras

Theorem 1.18 Let A X Z be the crossed product of a C*-algebra 2 by an

action a of Z. Its Pimsner-Voiculescu sequence is

Ko@) 2990 go@) — . K@ xa Z)

K@ x,Z) —— K@) 470 g

where (id — )« and i, are the maps induced from the identity action id
on A and the canonical inclusion i from A to ™A X, Z respectively. If two
(id — @)« are zero, then

Kro(2 X o Z) = Kro(2) + Kri () = Kry (A x4 Z).

Hence, indexg (2 xq Z) = 0.
Moreover, if both indexg () and indexy (U X Z) are finite, then

indexg (A x4 Z) = 0,

where it is enough to assume that indexg () is finite. Even if indexy () is
infinite, when the maps (id — o)« are isomorphisms, we have indexg (A X,
Z) =0,



Proof. The first part of the statement is clear.

For the second, let I; = Kr;(A) (the first one), m; = Kr;() (the
second one), and n; = Kr; (2 x4 Z). Of course, I; = m;. Furthermore, we
assume by half exactness of the six term diagram above that l; = I} + 7,
mj = m}+mj, and n; = n} +nj such that generators corresponding to z’
are mapped to zero and those to z” are not, i.e, we have mg = ng, ng =},
I =ml, m{ =nl, n{ =1, and I§ = my. Therefore, we obtain

indexg (A xq Z) = ng — n1 = (ng + ng) — (n] +nf
= (mi + 1) — (il +1g) = (m — ) — 1y~ 1)
= (mg —m) — (lo — 1) + (mo — lg) — (m1 — &)
= ((mo + mg) — (m1 +m1)) — (I + 1) — (b + 1))
= indexg (A) — indexg (A) = 0.

O

Remark. Now consider the crossed product Co(Z) Xo Z, where the action
a is the shift. It is isomorphic to K. Hence indexg (Co(Z) x4 Z) = 1 and
indexx (Co(Z)) = +o00. Thus, the finiteness condition for the proposition
above is required.

In the statement, we can replace & x, Z with the mapping torus M,
for a defined to be the C*-algebra of continuous 2A-valued functions f on
R such that f(z + 1) = a(f(z)) for x € R. Indeed, we have the exact
sequence: 0 — SA — M, — A — 0. Its six-term exact sequence implies
the same conclusions as above.

Corollary 1.19 Let A be a C*-algebra. If indexy () is finite, then
indexk (AXZXNZ---xZ)=0
for any successive crossed product A XZ X Z--- X Z by Z.

Remark. This is a (not many) merit of our K-index because we can deter-
mine it without knowing K-theory data of the successive crossed product
which may be difficult to compute in general.

Example 1.20 If o is trivial, then Ax,Z = ARC*(Z), and C*(Z) = C(T).
If 2 is a nuclear C*-algebra in the category X and its K-groups are torsion
free, then indexx (A ® C(T)) = indexk (A) indexg (C(T)) = 0.

Let G x Z be the direct product of a locally compact group G with Z,
and C*(G), Cr(G) the full and reduced group C*-algebras of G respectively.
Then the full and reduced group C*-algebras of G X Z are isomorphic



to tensor products C*(G) ® C(T) and C}(G) ® C(T) respectively. Hence
indexg (C*(G x Z)) = 0 = indexg (C} (G x Z)).

Consider the crossed product Co(Z) X, Z with a the shift. Then
Co(Z) x4 Z = K. The Pimsner-Voiculescu six-term exact sequence is:

Z°° (id—a),.\ Z°° ix Z
O ((id'_a)* 0 ‘ Tx 0

where i.([p]) = [p] and (id — a@)«([pn]) = [Pn] — [Pn+1], Where p is a rank 1
projection of K and py, is just the characteristic function at n € Z. In this
case, we have indexg (Co(Z) o Z) = 1 # 0 and (id — @)« is not zero on Kj.

Let HZ be the discrete Heisenberg group of rank 3 and C*(HZ) its
group C*-algebra. It can be written as the crossed product C(T?) x Z
since HZ = 72 x Z a semi-direct product. Hence indexy (C*(HZ)) = 0.
Furthermore, let G be an amenable discrete group that can be written as
a successive semi-direct product by Z, i.e., G = Z X --- x Z. Then C*(G)
is isomorphic to a successive crossed product by Z: C*(Z) x Z--- x Z.
Therefore, indexg (C*(G)) = 0 by induction.

Let TG be a noncommutative n-torus, that is defined to be the univer-
sal C*-algebra generated by n unitaries U; such that U;U; = ™% U,U;
for 1 < i,j < n, where © = (0;;) is a skew-adjoint n X n matrix over
R. It can be viewed as an n successive crossed product by Z, i.e., Tg =
(++-(C*(Z) Xy Z) -+ +) Xq, Z, where the action a; are induced from the
commutation relations. It is known that K;(Tg) = 72" by using the
Pimsner-Voiculesce exact sequence. Hence indexy (Tg) = 0. Furthermore,
if index () is finite, then indexg (A x Z-- - x Z) = 0 by induction, where
AXZ---x7Zis a successive crossed product of & by Z.

Furthermore, it is known that both any inductive limit of finitely gen-
erated, abelian free groups Z™ and a countable, torsion free, abelian group
can be realized as Ky and K;-groups of a unital simple AT algebra, i.e., an
iductive limit of finite direct sums of matrix algebras over C(T) (see, for
instance, [9, 4.7]). Denote by AT, m, such an AT algebra with

indexg (ATpm) =n—m

any integer or oo, where Kro(AT, ) = n and Kr; (AT, ) = m finite or
infinite. Also, it is known that a simple noncommutative 2 (or 3)-torus and
some special simple noncommutative n-torus written as a crossed product
C(T™ ') x Z is an AT algebra.



Let O, denote the Cuntz algebra, defined to be the universal C*-algebra
generated by n isometries S; (n > 2) such that E;‘l=1 §;S7 = 1. It is known
that Ko(Oyp) & Zp—1 = Z/(n—1)Z and K;(0Oy,) = 0. Hence indexg (On) =
0. Moreover, it is known that O, ® K is isomorphic to the crossed product
(Mp~ ®K) % Z, where My, is the UHF algebra that is an inductive limit of
tensor products of M, (C) (or an infinite tensor product of M,(C)). Then
indexx (Onp ® K) = 0 and indexg (Mpe~ ® K) = co. Since Ko(Mno) = Z[1]
and K (Mpe) = 0, we have

z[i] g W2, gl b g0 2 Z/(n—1)Z

I !

K(On) 20 i o J42%- 0

where

k k
1 1
(id — )« (Zay—)— —g Z =Y a (n—l)m
= ]:1
for a; € Z, and
k 1 k
i*(z ajﬁ) = Zaj + (n — I)Z.
j=1 j=1

Also, K9(Ooo) £ Z and K1(Owx) = 0. Hence indexg (Ox) = 1.

Let A = (a;;) be an n X n matrix with entries 0 or 1. The Cuntz-
Krieger algebra O4 is defined to be the universal C*-algebra generated
by n partial isometries s; (1 < j < n) such that sfs; = 30_; ai;s;s;.
The tensor product O4 ® K can be written as B X, Z for a stable AF
algebra B. Furthermore, the Pimsner-Voiculescu exact sequence implies

that Ko(O4) = Z"/(1 — A*)Z™ and K1(04) = ker(1 — At). Therefore,
indexy (04) = n — rankz (1 — A")Z" — rankzker(1 — A?) = 0.

Corollary 1.21 Let B be a C*-algebra with indexg(B) # 0. Then ‘B
cannot be written as a crossed product A Xo Z for a C*-algebra A either
with indexg (A) finite or with (id — @)« isomorphisms.

Remark. This consequence should be a some interesting criterion. Also,
an if-and-only-if characterization for indexy (2 x4 Z) to be zero has been
considered by Takai (but still remains open), and his point of view is quite
deep ([14]).



Example 1.22 A directed graph E consists of a vertex set E° and an edge
set E' with range and source maps r,s : E! — E°. A directed graph F is
called row finite if at most finitely many edges emits from any vertex. Let
C*(F) be the C*-algebra of a row finite directed graph E. Then

Ko(C*(E)) = coker(I — A%), K1(C*(E)) = ker(I — AL),

where I — A%, : ZE' — ZE", where ZE" is the free abelian group of finitely
supported functions from E! to Z, and Ag = (Ag(e, f))e,fepr is the edge
matrix of E defined by Ag(e, f) =1 if r(e) = s(f) and = 0 if r(e) # s(f).
Hence, we obtain

indexx (C*(E)) = rankgcoker(I — A%) — rankzker(I — A%)
= rankz(ZE'/(I — A%)ZE') — rankgker(I — AY%)
= rankz(ZE") - rankz(I — A%)ZE! — rankzker(I — AY),

where the last equation is conventional. However, if we allow this formal
convention, then

indexg (C*(E)) = rankz(ZE") — rankg (I — AL)ZE! — rankzker(I — A%)
= rankz(ZE') — rankzZE! = 0.

But this is not correct in general. Indeed, if we take A as

10 1
1100
110 1

A= 110 0

11 0 1

then Ko(C*(E)) = 0 and K;(C*(F)) & Z. Therefore, indexx(C*(E)) =
—1. Refer to [12].

Proposition 1.23 Let A xo R be the crossed prdouct of a C*-algebra A by
an action a of R. Then

indexg (A Xo R) = —indexg (A).

Proof. Use the Connes’ Thom isomorphism K;(2 xo R) =2 K; 1, (2%). O



Corollary 1.24 Let 2 be a C*-algebra. Then
| indexg(A X R R--- x R) = (=1)* indexg (%)
for any successive crossed product A X R x R--- x R (k times) by R.

Example 1.25 Let G be a simply connected solvable Lie group with di-
mension n. It can be viewed as an n successive semi-direct product by R.
Thus, the group C*-algebra C*(G) is isomorphic to an n successive crossed
product by R. Hence

1 if dim G even,

indexg (C*(G)) = {_1 if dim G odd

In particular, indexg (C*(A2)) = 1 and indexy (C*(HY)) = —1 as shown
before.

Proposition 1.26 The Takai duality is the isomorphism:
(A %0 G) Mar G 2 ASK(L(G))
for any C*-dynamical system (A, G, a) with G abelian (and ﬁm’ie or infinite)
and for the dual action a” of the dual group G" of G defined by a’(g) =
v(g9)g for g € G, v € G and " trivial on A. Thus,
indexx (A g G) Xor G) = indexg ().

Remark. Such a duality (or periodicity) for K-index might be true for other
(extended) cases.

Free products and amalgams of C*-algebras

Proposition 1.27 (1). Let A, B be C*-algebras and A * B their full free
product. Then

indexg (A * B) = indexg (A) + indexx (B).

(2). Let A, B be unital C*-algebras and A xc B their unital full free
product. Then

indexg (A ¢ B) = indexx (A) + indexx (B) — 1.
In particular, we obtain

indexg (A ¢ C(T)) = indexx (A) — 1.



(3). Let U x¢ B be an amalgam of C*-algebras A, B over a common
C*-subalgebra €. Suppose that there exist x-homomorphisms from 2 and B
onto €. Then

indexg (A *¢ B) = indexx (A) + indexg (B) — indexg (€).
Furthermore, let
A= (- ((B1 ¢, B2) *¢; B3) -+ -) *¢, Bl
be a successive amalgam of C*-algebras B; (1< j<n+1)and€; (1<5<

n). If there exist x-homomorphisms from A; = (- - - (Bi*e, Ba) -+ * ) *¢;_, B
and Bji1 onto € for 1 < j < n, then

n+1l
index (A ZmdexK B;) ZlndexK(Ql])
J=1 j=1

(4). Let T’ be a K-amenable group, and let C*(I') and C}(T') be its full
and reduced group C*-algebras. Then indexg (C*(I')) = indexg (Cr(T)).

Proof. For (1), we have K;(2 xB) = K;(A) ® K;(B) (see [1, 10.11.11]).

For (2), we have Ko(/ x¢ B) = (K;(A) @ K; (%))/Z and K;(2 ¢ B) =
(K1(2) ® K1(B)) (see [1, 10.11.11]).

For (3), we have K;(2 ®¢ B) = K;(2A *¢ %) (see [1, 10.11.11]). We
use this isomorphism repeatedly for the successive amalgam C*-algebras
defined inductively.

For (4), we have K;(C*(I")) = K;(Cr(T)). 0O
Remark. The class of K-amenable discrete groups is closed under exten-
sions, direct limits, direct products, and free products, and under taking
closed subgroups (see [6]). K-index amenability for I' may be defined as
that indexg (C*(I")) = indexg (C;(T")) holds.

Corollary 1.28 If we have indexg(C*(T')) # indexg(C;(T")), then I' is
not K-amenable.

Remark. Such an application might be usuful and interesting, but it has
not yet explored.

Example 1.29 Let F;, be the free group of n generators. Since F,, is
isomorphic to the n-fold free product *"Z, we have C*(F,,) is isomorphic
to the unital n-fold full free product *"C*(Z) = x¢C(T). It follows that



Ko(C*(Fp)) & Z and K;(C*(F,)) = Z™. Therefore, indexg(C*(Fy)) =
1 — n. Since F, is K-amenable, indexg (C;(Fy)) =1 —n.

Let F3%,Z be the semi-direct product for the action o defined by o(a) =
b and o(b) = a for generators a, b of Fy. Then C*(Fy x4 Z) = C*(F3) Xs Z
and C}(Fy x, Z) =2 C}(F2) g Z. Therefore, indexg (C*(Fy %, Z)) =
0 = indexg (C} (F2 X Z)). Indeed, the Pimsner-Voiculescu six-term exact
sequence implies that their Ko and K;-groups are Z2.

Let Fo, be the free group of countably infinite generators. Then we
have Ko(C;(Foo)) = 0 and K1(C}(Fx)) = Z*° (see [1, 10.11.10]). Thus,

we obtain indexg (C}(Fw)) = —o0. Since Fu, is K-amenable, we have
indexg (C*(Foo)) = —00.
Let G = lim Foo be an inductive limit of F,, via the commutator

subgroup [Foo, Foo] & Foo. Then Ko(C}(G)) = Z and K 1(C}(G)) = 0
(see [1, 10.11.10]). Hence indexg(C;(G)) = 1. Since G is K-amenable,
indexg (C*(G)) = 1.

Let Z™ % Z™ be the free product of Z™ and Z". Then C*(Z™ x Z™) =
C*(Z™) x¢c C*(Z™) = C(T™) *¢ C(T™). Therefore,

Ko(C*(Z™ + ZM)) 2 (Ko(C(T™) @ Ko(C(T™))/Ko(C) = 22" +2" -1

and K,(C*(Z™  Z")) = Z2™7'+2""' | Hence indexx (C*(Z™ * Z™)) = —1.
Since Z™ % Z™ is K-amenable, we have indexg (C}(Z™ * Z™)) = —1.

Let Zy, *z, Zy be an amalgam of finite cyclic groups. Then it is shown
in [10] that C}(Zn *z, Zm) has Ko-group isomorphic to Z"*™~! and K;
zero. Thus, indexg(Cr(Zy *z, Zm)) = n+m — l. Since Z, *z, Zp, is
K-amenable, indexg(C*(Zy *z, Zm)) = n + m — I. In particular, it is
known that SLo(Z) = Z4 *z, Ze¢. Therefore, indexg (C¥(SL2(Z))) = 8 =
indexg (C*(SL2(Z))). Since PSL(Z) = Zg * Z3, we have

indexg (Cy(PSL2(Z))) = 4 = indexg (C*(PSLy(Z))).

Let I'y be the fundamental group of an orientable closed surface M,
with genus > 2. We have I'y & Fj xz Fpq_o (see [10]), and it follows that
C*(Ty) = C*(Fy) *c=(z) C*(F2g—2). Hence

indexg (C*(Ty)) = indexg (C*(F2)) + indexg (C*(Fag—2)) — indexg (C*(Z))
=-1+(3-29)—0=2-2g.
Since I'y is K-amenable, we have indexg (C;(I'g)) = 2 — 2g.

Let ¥ be a closed non-orientable surface with k& > 2 cross-caps and
m1(Xk) its fundamental group. Then 71 (Xg) = Zxz F_; where Z =2 2Z C Z



(see [10]), and C*(Z *z Fy-1) = C*(Z) *¢+(zy C*(Fk-1). Therefore,

indexg (C*(m1(Zk))) = indexg (C*(Z)) + index g (C*(Fk—1)) — indexg (C*(Z))
=2-k.

Since 7 (Xk) is K-amenable, we have indexg (Cy(m1(Zg))) =2 — k.
Furthermore, note that

Ko(C*(Znx F3)) = (Z"® Z)/Z= Z",
Ki(C*(Znx F)) =002 =77,

Hence indexg (C*(Zn * F2)) = n — 2 = indexk(Cy(Zn * Fy)) since Zy, *
F5 is K-amenable. Furthermore, let li_r_)nan * F5 be an inductive limit of
Z,x * F5 (k > 1) by natural embeddings. Then C*(limZ,: * F3) is an
inductive limit of C*(Z,x * F3) by the induced embeddings. In this case, we
have Ko(C*(Uim Z,x * F»)) = Z* and K;1(C*(lim Z,x * F3)) = Z?. Hence
indexg (C*(lim Zx * F3)) = +oo. Similarly, we can apply this argument for
Cy (lim Z« * F3) to have the same K-ranks and K-index as C*(liml Zx x F3).

Example 1.30 Let G, =Z X --- X Z (n times). Let G = 1i_r)nGm Then
C*(G) = lim C*(Gr). We have the following Pimsner-Voiculescu six term
exact sequence for each n:

Ko(C*(Gn) 22, Ko(C*(Gr)) —2— Ko(C*(Gnt1))

aT la
Ki(C*(Gny1)) < Ki(C*(Gn)) €2 Ky (C*(Gn))

Note that (id — a)« on Kp-groups is always zero.

The case where i, on Ky-groups for each n is an isomorphism. Then
Ko(C*(G)) = Ko(C*(Gr)) for any n, and the map 9 from Ky to K; is
zero. Hence, (id — a), on Kj-groups for each n is an injection, so that it
is an isomorphism. Thus, i, on K;-groups for each n is zero. Therefore,
K;1(C*(G)) = 0. In this case, we obtain indexx (C*(G)) = Kro(C*(G,)) for
any n. Also, Ko(C*(Gn)) = K1(C*(Gni1)).

The case where i, on Kp-groups for each n is zero. Then Ko(C*(G)) =
0 = Ko(C*(Gn+1))- But this case does not exist since each Ko(C*(G,)) is
non-zero.

The case where i, on Kp-groups for each n is neither an isomorphism
nor zero. This is the most possible case. Then we may assume that
Kro(C*(Gr)) < Kro(C*(Gn+1)) for each n. Hence, Kro(C*(G)) = +o0.



Also, the map 9 from Ky to K; is non-zero. Hence, (id — o). on K;-
groups for each n is not an injection. Thus, i, on K;-groups for each
n is non-zero. Moreover, the map 9 from K; to Ky is onto, so that
Kri(C*(Gn+1)) = Kro(C*(Gr)), which goes to +0o as n — oo, Hence
Kr1(C*(G)) = +o0. In this case, we obtain indexx (C*(G)) = 400 — oo (or
undefined).

In particular, if G = limZ™ with G, = Z", then indexk(C*(G)) =
+00 — 0o (undefined) while indexg (C*(Gr)) = indexg (C(T")) = 0. How-
ever, if we allow the convention co — co = 0, then indexg (C*(G)) = 0 in
this sense.

Example 1.31 If the amalgam 2 x¢ B of C*-algebras has retractions to
¢, then it is KK-equivalent to the pullback A ®¢ B. In particular, C*(F},)
is KK-equivalent to C(X,,), where the space X, consists of n circles joined
at a point, that is the one-point compactification of the disjoint union of n
copies of R.

For many locally compact groups G including F),, the quotient map
from C*(G) to C;(G) gives a KK-equivalence. In particular, C}(F,) is
KK-equivalent to C(X5).

Proposition 1.32 Let 2 be a C*-algebra and o (1 < j < n) its auto-
morphisms. Let A X o Fy, be the reduced crossed product by the free group
Fy, for the action a given by a(a;) = aj(a;) for a; generators of Fy. If
indexg () is finite, then

indexg (A Xqo,r Frn) = (1 — n) indexg (A).
Proof. We have the following diagram:

71 Ko(d) —— Ko(%) —— Ko( Xa; Fn)

I !

Ky(% Xor Fr) —— Ki(A) —— & Ki(%),
where 0 = 3°7_ (1 — a;). (see [1, 10.8]). a
Corollary 1.33 Let 2 be a C*-algebra. If index () is finite, then
indexg (A 3, Fy X, Fpy -+ %, Fp) = (1 — n)¥ indexg ()

for any successive reduced crossed product A X, Fp, X, Fy, - - - x,. Fy, (k times)
by F,.



Example 1.34 Let F,, x F, be the direct product of free groups F,, and
F,, and C}(Fp, x Fy) its reduced group C*-algebra. Then C}(F,, x F,)
is isomorphic to the minimal tensor product C;(Fp,) ® C}(F,), which is
isomorphic to the reduced crossed product C;(Fp,) Xa,r Fr with « trivial.
Hence, it follows that

indexx (C*(Fm X Fy)) = indexi (C*(Fm) ® C*(F))
= indexk (C} (Fm) Xar Fn) = (1 = m)(1 —n).

In this case, the maps o on K-groups are zero. Thus, we obtain

KO(_C:(Fm) Ma,r Fn) = Ko(Cr (Fm)) ® (®?=1K1(C:(Fm))
~70 (@;lem) o~ Zmn+1,

K1(Cr (Fm) Xa,r Fn) & K1(Cr (Fn)) © (@?=1K0(C:(Fm))
=7Z™ @ (@], Z) = 2™

It follows that (mn + 1) — (m +n) = (1 — m)(1 — n). Since F, X Fy is
K-amenable, we obtain indexg (C*(Fp, X F,)) = (1 — m)(1 — n), where the
full group C*-algebra C*(F,, x F) is isomorphic to the maximal tensor
product of C*(Fy,) and C*(F,), which is isomorphic to the full crossed
product C*(Fy,) o F,, with a trivial.

Furthermore, if we replace Cy(Fp,) with C;(Fw), then Ko(C}(Foo X
Fy)) 2 @2Z* and K;(C}(Foo x F)) & Z°°. Hence indexy (C(Foo X F3)) =
00 — 00.

K-index conjectures

Proposition 1.35 Let ' = G; g G be an amalgam of discrete groups. If
we have the following siz-term ezact sequence (Congecture) :

Ko(A %y H) — ®?=1K0(Ql X g GJ) _— Ko(Q[ Mg F)

I | !

K](Ql Mo P) — @?=1K1(91 )dan) — Kl(‘.’l Mo H)

for any these full (or reduced) crossed products, then

,
indexg (A 1, I') = ZindexK(Ql X Gj) — index (A %o H).
i=1



In particular, if we take % = C, then
Ko(C*(H)) —— @5_1Ko(C*(G;)) —— Ko(C*())

I !

Ky(C*(I)) —— @2,Ki(C*(Gy)) —— Ki(C*(H))

for full group C*-algebras, so that we obtain

indexg (C*(I")) = ZmdexK(C*(G’J)) — indexg (C*(H)),
j=1

and furthermore, those full group C*-algebras in this formula and the dia-
gram can be replaced with their reduced group C*-algebras.

Remark. The conjecture has be proved to be affirmative in some cases as
given above and is expected to be true in full generality.

Proposition 1.36 Let ' be a discrete group with torsion free. The Baum-
Connes conjecture (BC) is the isomorphism from K;(C}(T')) to K7(BT),
where BT is the classifying space for I'. If this conjecture is ture, then

Kr;(C}([)) = Kr/(BT), and indexg(C?(T)) = indexX (BT).

Remark. This famous conjecture is known to be true for such I in a large
class. Indeed, such I' can be taken as any amenable group, F;, word-
hyperbolic groups such as m(M) for M a compact Riemannian manifold
with negative curvature. Furthermore, the conjecture to be true gives a
way to identity our K-index with the Euler characteristic for groups by
(co)homology theory. Thus, our K-index might have a potential contribu-
tion even to this conjecture (and this vision is of Takai). That connection
will be discussed in more details somewhere.

Now let X be a compact space (or a finite CW-complex). The Chern
characters from topological K-theory to cohomology theory for spaces are
the isomorphisms given by

Ch’: K°(X)®Q— P H"(X,Q) = H¥™(X,Q),

n:even

Ch': K'(X)® Q— P H(X,Q) = H**(X,Q),
n:odd

where H"(X,Q) denotes the n-th (Alexander or Cech) cohomology group
of X with coefficients in Q. (As a note, for a complex vector bundle V over



(a manifold) X, its Chern characteristic is defined in a way as Ch%(V) =
Ch(V) = >, Chg(V), where

Chi(V) = (k) [tr((27) " 'V=1Ky)¥] € H*(X),
Ch(V) = [trexp((2m) ' V=1Kv)] € H¥**(X) = @ H™(X),

n:even

where Ky is a curvature associated with a connection over V and H%(X)
means the (2k)-th de Rham cohomology of X.) Write

Ch*: K*(X)®Q — H*(X,Q),

where K* = KO@® K! and H* = He®"*" @ H°. The Euler characteristic
for X is defined by the following first (or second) equality:

dim X
X(X)= ) dimg H'(X,Q)
3=0

= dimg H***(X, Q) — dimg H°*(X, Q)
= dimg K°(X) ®z Q — dimg K!(X) ®z Q = index® (X).

In particular, for X = BT the classifying space of a group I,
Ch*: K*(BI')®@ Q — H*(BI',Q)
(an isomorphism). Furthermore, we have the following isomorphism:
H*(BI,Q) = H*(T',Q)

where the right hand side means the cohomology for a group I' (torsion
free) with coefficients in Q. Therefore, note that

index¥ (BT") = dimg K°(BT") ®z Q — dimg K!(BT') ®z Q
= dimg H®"*"( BT, Q) — dimg H°*(BT', Q)
= dimg H®**"(T', Q) — dimg H°%*(T, Q)
= dimz H®*™(T") — dimgz H°%(T") = x(I"),

which is the Euler characteristic for I" (torsion free), and it also may defined
as the following alternative sum:

x(T) =Y (~1Yrankz H'(T, Z)
j=0



with H7(T',Z) = H’(T'), where Q for ®zQ and dimg may be replaced with
R or C. Also, for a C*°-manifold M, its Euler characteristic can be defined
as the following alternative sum:

dim M
X(M) = Y (-1) dim H’(M,R)
520

where H(M,R) is the j-th (de Rham) cohomology of M with coefficients
in R. On the other hand,

indexg (Cr(T")) = dimg Ko(Cr (I')) ®z Q — dimg K1 (C;(I")) ®z Q
where C}(T") can be replaced with a C*-algebra. Therefore, we obtain

Proposition 1.37 Under the same assumption as above, the Baum-Connes
conjecture implies

index (C#(T)) = index® (BT") = x(BI') = x(I).

Remark. Also see below Appendix for x(I') in some details. For the Connes-
Chern character from K-theory to Connes’ cyclic cohomology theory (for
C*-algebras), its relation with K-index has been discussed by Takai [15].

2 Equivariant K-theory ranks and index

The representation ring R(G) of a compact group G is defined by formal
differences of equivalence classes of finite dimensional representations of G,
under the direct sum and tensor product as ring operations. The trivial
1-dimensional representation of G is the identity of R(G). Note that R(G)
can be identified with Ko(C*(G)) as an additive group.

Let (A, G, @) be a C*-dynamical system with 21 unital and G compact.
A (finitely generated) projective (2, G, a)-module is a pair (E,)\) for a
(finitely generated) projective A-module E and a strongly continuous ho-
momorphism A from G to the group of invertible elements of the set L(F)
of bounded linear operators on E such that A\j(ea) = A\g(€)agy(a) for g € G,
e € FE, and a € . Let ™ be a representation of G on a finite dimensional
vector space V. Then V ® A becomes a projective (2, G, a)-module under
the diagonal action of G, and is regarded as a free module. Every projec-
tive (2, G, a)-module is a direct summand of such a free module so that
there exists a G-invariant projection p of L(V) ® 2 such that p(V @ 2) is
a projective (2, G, a)-module.



The G-equivariant Ko-group K§ (2l) of a unital C*-algebra 2 is defined
to be the abelian (or Grothendieck) group generated by equivalence classes
of projective (2, G, @)-modules under the direct sum. Moreover, K§ (1)
can be viewed as an R(G)-module in the way that p(V ® ) is send to
(1®p)(W®V @) by the action of [W] € R(G). Note that K§(C) = R(G)
under the trivial G-action on C. For a nonunital C*-algebra %, its K§ (1)
is defined to be the kernel of the map from K§ (%) to K§(C), where the
action on the unitization At by C is induced by that of 2 and trivial on
C. Refer to [1, Section 11] for the equivariant K-theory for C*-algebras.

Set K& () = K§(SA). There is a definition for this in terms of invert-
ible elements, due to N. C. Phillips.

Definition 2.1 Let (2, G, a) be a C*-dynamical system, where 2 is a C*-
algebra, G is a compact group, and « is an action of G on U by automor-
phisms. We define the K JG -rank of & to be the Z-rank of the G-equivariant

K-group KjG(Ql) of 2 (j =0,1), and denote it by
Kr§ () = rankz K;(%) € {0,1,2,- -, +00}.

We define the G-equivariant (Euler-Takai) K-index (or K¢-index) of 2 to
be the following difference:

index$% () = Kr§ () — K (™) € ZU {£o0}.

Proposition 2.2 Let (A, G, a) be a C*-dynamical system with G compact
and U %o G its crossed product. Then

index$ (A) = index (A Xo G).

Proof. We have KjG(Ql) = KA xq G) for j =0,1 (P. Julg). O

Proposition 2.3 (1). If C*-algebras A, B are G-stably isomorphic, then
we have index% () = index%(B). In particular,

index% (A ® M,(C)) = index% (A ® K) = index% (),

where the actions of G on AQ Mp(C) and AR K are of the form a @ id.
Moreover, if % and B are G-homotopic, then index$ () = index% (B).

(2). If the action of G on the direct sum A® B of C*-algebras is of the
form a ® B, then

index% (A ® B) = index$ (A) + indexE (B).



(3). If A xa G, B xg H with G, H compact are nuclear C*-algebras in
the bootstrap category X and their K-groups are torsion free, then

indexﬁXH (2 ® B) = indexF () indexj(B),

where the action of G x H on A® B is o ® .

(4). For S = Cy(R) ® A, and if the action of G on Co(R) is trivial,
then index$ (SA) = —index% ().

(5). Let X be a compact space with a G-action. Then

index$ (C (X)) = index® (X) = rankz KZ(X) — rankz K& (X),

where K5 (X) is the G-equivariant K-theory for X defined to be the abelian
group(s) generated by the classes of G-vector bundles over X (and R x X).

Proof. For (1), note that K]-G(Ql ® M,(C)) = KJ-G(Ql Q@ K) = KJG(Ql).
For (2), we have the splitting exact sequence:

O—'ﬂNaG%(QlEB%)Na@gG—iﬁxﬁG—)O.

For (3), we have (AQ B) Xagp (G x H) = (AXqG)® (B xp H). Using
the Kiinneth formula we obtain

indexg)‘H(Ql ® B) = indexg ((A ¥o G) ® (B xg H))
= indexg (A o G) indexg (B x5 H)
= index$% () index}} (B).

For (4), KJ-G (SA) = chil(Ql) (Bott periodicity). Hence Ker(SQl) =
Kr$, ().

For (5), there exists a (Swan) isomorphism between the classes of G-
vector bundles F over X and the classes of projective (C(X), G; a)-modules

['(E) of continuous sections with a natural induced G-action, where the
action « is induced from that of G on X. Hence K& (C(X)) & K%(X). O

Example 2.4 (1). index) (C) = oo since C x T™ & C*(T") & Cy(Z").

(2). For the dual crossed product (C x4, Z™) x T" for a trivial so that
C x4 Z™ = C*(Z") = C(T™), we have indexy (C(T")) = indexg(K) = 1
because (C x4 Z™) x T" =2 C ® K by Takai duality.

Theorem 2.5 Let 0 — J — A — A/T — 0 be a short exact sequence of
C*-algebras invariant under an action of a compact group G. Its siz term



ezact sequence is
K§@3) —— K@) —— K§(A/7)
BT la
Kf(%/3) «—— Kf() —— K7(J).
If the index maps O are both zero, then
Kr§ () = Kr§ (3) + Kr§ (%/7), index%(2) = indexF(J) + indexF (/7).

In particular, this is the case if the short exact sequence splits.
Moreover, if index$ (1), index$ (3), and index$ (A/7F) are finite, then

index$ () = index% (J) + index$ (2A/J),
where it is enough to assume that two of those are finite.

Proof. We use similarly the argument for G trivial as shown in Section 1.
O

Theorem 2.6 LetAx,Z be the crossed product of a C*-algebra A by an ac-
tion o of Z. For a C*-dynamical system (2, G, B) with G compact, suppose
that the action B commutes with . If both index%(2) and index$ (A xq Z)
are finite, then

index% (A x4 Z) = 0,

where it is enough to assume that index$ () is finite.

Proof. By assumption, (A Xo Z) Xg G = (A Xg G) Xy Z. Then we use the
Pimsner-Voiculescu exact sequence. O

Proposition 2.7 Let (A, T,a) be a C*-dynamical system by the torus T.
If index} () and indexg () are finite, then indexg (A) = 0, where it is
enough to assume that indexk (2) is finite.

Proof. Let A%, T be the crossed product and (2 x4 T) xgZ its dual crossed
product with 8 the dual action since Z is the dual group of T. The Takai
duality implies that the dual crossed product is isomorphic to A® K. Thus,
the Pimsner-Voiculescu exact sequence implies

Ko xgT) —— Ko(AxqT) —— Ko(%1)

[ !

Kl(Ql) — Kl(Ql A T) — Kl(le Ao T)

The same argument as before deduces the conclusion. (m}



Corollary 2.8 Let2 be a C*-algebra with indexy () # 0. Then index ()
is not finite.

Proposition 2.9 Let (A, Zyn, @) be a C*-dynamical system by a finite cyclic
group Z,,. There exists the following exact sequence:

00— S™AXNgZp) > AxgZ — A X Zn — 0,

where A X, Z with the action o extended by that of Z, is isomorphic to the
mapping torus on A Xy Zy,.

If index%‘(" (A) and indexg (A x4 Z) are finite, then indexg (A Xy Z) =0,
where it is enough to assume that index}Z}1 () is finite.

Example 2.10 Since (Mp~ ® K) % Z = O, ® K, consider its dual crossed
product (Op, ® K) x5 T = Mpo @ K® K. Thus, indexg (O, ® K) = 0 but
index}(On ® K) = 0. '

Let T2 = C(T) x4 Z be a noncommutative 2-torus and T2 x4 T its dual
crossed product. Since T xg T = C(T) ® K by Takai duality, we obtain
index (T%) = indexx (C(T)) = 0 and indexx (T3) = 0.

Let ']I‘g X, Zso be the crossed product of a simple noncommutative 2-torus
T2 by the flip, i.e., o(u;) = uj (j = 1,2) for u; generating unitaries of T2.
It is known by [3] that Ko(T5 %o Z3) = Z5 and K;1(T% %, Z2) = 0. Hence
indexK(']I‘g Xg Zg) = 6. It follows that indexK(']I'g Xg Z) = 0. Furthermore,
let (T2)° be the fixed point algebra under the flip 0. Since (T3)° is a
corner of a simple C*-algebra T2 x, Zg, the K-theory of (T2)? is the same
as that of T2 x, Z,. Hence, indexx ((T%)?) = 6. Note that (T2) is said to
be a noncommutative sphere because C(T?)? is isomorphic to C(5?%). Set
S2 = (T2)?, but whose K-index is not equal 2 of C(S?). This is a little bit
strange in our point of view. Thus, S7 might be not a right deformation
for C(S?). Refer to [3] for more details.

Let A = Mo = @ M,(C). The gauge action a of T on 2 is defined
by a, = @ Ad(z @ 1) for z € T, where Ad(:) is the adjoint action by the
diagonal unitary matrix z@® 1 € M3(C). Since A Xq T Xon Z = AQ K,

Ko@xaT) 22 K@ naT) — 2%
0 — Ki(@xaT) S k(2 x, T).

where ( is the dual action of Z on A x4 T. Since the map (1 — )« on Ko-
groups is zero, we have Ko(2 x4 T) = 0. Indeed, note that 2 is contained



in A o T and the dual action 8 on 2 is trivial. Also, C*(T) = Cy(Z)
by Fourier transform. Furthermore, it follows that K;(2 x, T) = Z*.
Therefore, indexk (A) = —oo and indexx () = oo.

Corollary 2.11 Let U x4 Z be the crossed product for a C*-algebra A with
a™ =1 and indexy (A Xy Z) # 0. Then index%{" (A) is not finite.

Proposition 2.12 Let A x4 R be the crossed prdouct of a C*-algebra A
by an action o of R. For a C*-dynamical system (A, G, ) with G com-
pact, suppose that the action 8 commutes with a. If both indexﬁ(Q[) and
index$ (A x4 R) are finite, then

index$ (A x4 R) = —index$ ().

Example 2.13 For the crossed product A %, Z, for a C*-algebra %, if o
is trivial, then

A X Zn 2 AR C*(Z,) 2 AR C™ 2 Q™.

Thus, indexg (A o Zyp) = nindexg (A).
For HR =~ R?xR and a semi-direct product HXxZ3 and (HXx HY)xZs,
assuming commutativity of the actions by R and Z, we have
index (C*(HR) x Zy) = index®2(C* (HY))
= —index%?(C) = 2(—1) = 2indexy (C*(HY)),
index (C*(HR x HR) x Z,) = index%2 (C*(HR x HY))
= index%?(C) = 2(+1) = 2indexg (C*(HX x HX)).
Moreover, for a simply connected solvable Lie group N 2 R x --- xR a
successive semi-direct product by R,
n(+1) dim N even,

indexg (C*(N) % Zp) = index%?(o*(N)) B {n(—-l) dim N odd

which is equal to nindexg (C*(N)), where commutativity of successive ac-
tions by R and an action of Z, is assumed. It is expected to have the
following reasonable formula:

indexg (A X Zy,) = nindexg (A)

for a C*-algebra 2 in a certain class. Those examples support this formula,
but it is false in general. Indeed, for instance, as a non-trivial example,

index (T3 %, Zs) = 6 # 2indexx (T2) =2-0 = 0.



Example 2.14 Let G be a simply connected amenable Lie group with its
radical R. Then G is isomorphic to the semi-direct product R x S for a
simply connected compact Lie group S such that G/R = S. Thus, the
group C*-algebra C*(G) is isomorphic to the crossed product C*(R) x S.
Hence

indexc(C*(G)) = index§¢(C" (R)) = indexc(C*()) (~1)*™ %,

where we assume that the action of S commutes with successive actions
of R accosiated with the decomposition R 2 R x R--- x R. Furthermore,
C*(S) = ®nr;esr Mp,;(C) by Fourier transform, where S” is the dual group
of S and n; are the dimensions for 7; € S* (the unitary equivalnce classes
of) irreducible representations of S. Therefore,

index g (C*(S)) = indexx (®r;esn Mn,(C)) = |S"],

where |S”| is the cardinal number of the discrete space S”. Therefore, a
discovery under the assumption for actions is the following formula:

indexg (C*(R) % S) = |S| indexx (C*(R)).

Example 2.15 Let G be a noncompact connected real semi-simple Lie
group with real rank 1 and finite center. It is obtained by [16] that
Ky (Cx(Q)) = Z*° and Kp41(Cr(G)) = 0, where p is the dimension of G/K
for a maximal compact subgroup K of G. It follows that indexx (C;(G)) =
+o0 if dim G/K even, and = —oo if dimG/K odd. It is known that G
is locally isomorphic to one of the following: SOgy(n, 1) (connected compo-
nent), SU(n,1), Sp(n,1), and Fy_o) for n > 2 (see [7]). Furthermore, for
G = S0¢(n,1), SU(n,1), and Sp(n, 1), its maximal compact subgroup K is
given by SO(n), (U(n) xU(1))NSLy+1(C), and Sp(n) x Sp(1) respectively,
and G/K is identified with the hyperbolic space H,(F) with dimension n
for F =R, C, and H respectively.

In particular, let G = SLa(R). Then G = KAN the Iwasawa decom-
position with K = SO(2), A = R (so that G has real rank 1), and N = R.
Therefore, indexg (Cr(SL2(R))) = +oo.

3 Classification by K-ranks and K-index

We give the following seven tables, six ones of which are given for classifi-
cation for nuclear and non-nuclear examples by our K-ranks and K-index
and the last one for classification for group C*-algebras by K-index. These
tables presented below with collected examples, some of which are very
important in C*-algebra theory, could be useful and helpful for further
classification for C*-algebras by K-ranks and K-index.



Table 1: Classification for nuclear examples by Krg

Kro Non-simple Simple
0 Co(R*+1) O3, O,
C*(HR), C*(R x -+ x R) (odd) O, ®K
Cr(SO(2n+1,1)) 02 ® T (simple)
Cr(SU(2n + 1,1)), C¥(Sp(2n + 1,1)) Moo x4 T
1 C(S 1), Co(R™) C, Mn(C)
C*(Az), C*(R x --- x R) (even) K
5 O
2 C(8*), C(T?) T% (simple)
6 C® = C*(Ze) T X5 Zs (simple)
Sz = (T%)? (simple)
n C" = C*(Zy) AF,, AT, m
2n—1 C(T"), Tg (non-simple) Tg (simple)
+00 C*(T"), C*(K) Mo
(K compact, K infinite) UHF
C: (SO(2TL, 1))’ C:(S[Q(R)) AF
CE(SU(2n, 1)), CE(Sp(2n, 1)) ATorm

Table 2: Classification for nuclear examples by Kr;

Kr; Non-simple Simple
0 C”, C(57), Co(R?™) Mo(C), K
F, C*(As) My, UHF
C*(R x --- x R) (even) AF,
C*(Zy), C*(T"), C*(K) On, Ox
C1(SO(2n,1)), CH(SLo(R)) | T2, Zs
C(SU(@n, 1)), C(Sp(2n, 1) | 3 = (T3)°
1 C(S2n+1), CO(R2n+1) ATn,l
C*(HY), C*(R x --- x R) (odd)

n ®"Co(R) AT,
P C(T™), T% (non-simple) T% (simple)
+00 Cr(SO(2n+1,1)) Mseo x4, T

CHSU(2n +1,1)) AT, o
Cx(Sp(2n +1,1))




Table 3: Classification for nuclear examples by indexg

index g Non-simple Simple
00 — 00 Co(R) ® AT o0,00 AT 0,00
+00 c*(T"), C*(K) M0, UHF
C3(SO(2n, 1)), C3(SLa(R)) (O ®K) %5 T
Cr(SU(2n,1)) AF o
C2(Sp(2n, 1)) AT
n CcCr= (Zn) AFna ATn+m,m
6 =0 (Zs) TS %y Za, 53 = (T3
2 C(S°) AF,
1 Co(R?") C
3, ©FF Mn(C)
C*(Az) K
C*(Rx ---xR) (even) O
0 C(T"), C(5%+) On, Oa
Tg (non-simple) Tg (simple)
C*(H%) On®K
C*(Zx---x1Z) 02,0 TY
A ® C(T) (nuclear) T2 x, Z
AXZ---xZ (non-simple) AXZ---x Z (simple)
(A nuclear, indexg () finite) | (A nuclear, indexg () finite)
-1 CO(R2n+l) ATn,n+l
C*(HR)
C*(Rx---xR) (odd)
—n SC™ = d"Co(R) AT ntm
SAF,, SAT imm
—00 Cr(SO(2n +1,1)) Moo x4, T
Cr(SU(2n +1,1)) AT,

Cr(Sp(2n+1,1))




Table 4: Classification for non-nuclear examples by Krg

Kro Non-simple Simple
0 B, MA®K)®B B/K
C*(Foo) C':(FOO)
1 C*(Fy) C}(Fy)
C*(lim Foo) Via Foo & [Foo, Foo] | C(lim Fuv)
C*(m1(My)), m(Mg) = Fo xz Fag—o | C7(m1(My))
C*(m1(Zk)), m1(Xk) = Z *z Fi—1 Cr(m(Zk))
2 C*(Fz Ao Z), C:(Fz Ao Z) C:(ZQ*Fz)
4 C*(PSLy(Z)), PSLy(Z) = Zo x Zg | Cy(PSLs(Z))
8 . C*(SLQ(Z)), SLQ(Z) 7y *Z, Zs C:(SLQ(Z))
mn + 1 C*(Fm X Fy) CH(Fp x Fy)
om-1 4 on-1_1 C*(Z™ x Z™) CHZ™ x Z™)
n+m-—1 C*(Zy, xz, Lp,) C(Zp *z, L)
+00 C*(Foo X F3) C}(Foo X Fy)

Table 5: Classification for non-nuclear examples by Kr;

Kry Non-simple Simple
0 C* (lig Fo) C7 (lim Foo)
C*(SLQ(Z)), SLg(Z) = Z4 *Z, Z6 C:(SLz(Z))
C*(PSLy(Z)), PSLy(Z) = Zy x Z3 | CH(PSLy(Z))
Cc* (Zn *7, Zm) C,:(Zn *7, Zm)
B, MARK)®B
! C*(11(22)) B/K
2 C*(Fy %q Z), C*(F3 %q Z) Cx(m1(T3))
n C*(Fn) C:(Fp)
m+n C*(Fm x Fy,) Cr(Fm x Fp)
2m—1 + 2n—1 C*(Zm * Zn) C;(zm * Zn)
2g—1 C*(ﬂ'l(Mg)), 7!'1(Mg) = Fy xg F29—2 C,:(ﬂ‘l(Mg))
k-1 G’*(m(Zk)), 1r1()3k) EZ*Z Fk—l C:(ﬂ'l(zk))
+00 C*(Fw) C; (Feo)




Table 6: Classification for non-nuclear examples by indexx

indexg Non-simple Simple
00 — 00 C*(Fo x F3) Cr(Foo x Fy)
+o00 h_l')n C*(an * F2) h_r‘n C,: (an * FQ)
n+m—1 C*(Zy, ¥z, L) Cr(Zp, xz, Ly,
(I1-m)(1-n) C*(Fm % Fy) Cr(Fp X Fy)
n—2 C*(Zn *Fz) C:(Zn*Fg)
8 C*(§L2(2)), Cr(SLy(2))
SLo(Z) = Zy xz, Ze
1 C*(PSL,(Z)), CE(PSTAZ))
PSLy(Z) = 7 % Z3
T C(lim Foo) Cr(lim Foo)
via Foo & [Foo, Foo)
0 B, MRASK)® B
C*(Fa X4 Z), C}(Fa2 X4 Z)
2 ® C(T) (non-nuclear) | Cy(Fp)® T (simple)
AXZ---xZ (non-simple), | A X Z--- x Z (simple),
(A non-nuclear), (A non-nuclear),
(indexg (A) finite) (indexg () finite)
= C*(Fy) C:(F)
c*(zm+2Zm) Cr(z™ «Z™)
B/K
i—n C*(Fa) Cx (F)
2-2g C*(m(My)), Cr (m1(My))
7T1(Mg) I F2 %7, Fgg_g
2-k C*(m(Zk)), Cr (m1 (k)
m1(Zk) = Z *g Fi—y
—0 C*(Foo) Cr (Foo)




Table 7: Classification for group C*-algebras by indexy

indexy Non-simple Simple
o0 — 0 C*(Foo X Fz) C:(Foo X F2)
+00 C*(lim Z,,x * F3) Cr(lim Zx * Fy)
(™), C*(K)
(K compact, K" infinite)
Cr(50(2n, 1)), Cr(SL2(R))
C2(8U(2n,1)), C¥(Sp(2n, 1))
n+m-—1 C*(Zy, %z, Zr,) CH(Zy, %z, L)
(1-m)(1-mn) C*(Fn X Fy) Cr(Fm x Fy)
n C*(Zn) C:(Fg X Fn+1)
C*(Zn+2 * Fg) C:(Zn.'_z * F2)
8 C*(SLQ(Z)), SLQ(Z) > 74 *Z, Zg C:(SL2(Z))
4 C*(PSLQ(Z)), PSL;(Z) > 7o %23 C:(PSLQ(Z))
2 C*(R*™)* (unitization) Cr(Fy x F3)
C*(Rx -+ xR)" (even)
1 C*(l_ii)n Fy) C:(lﬂl_)l Fy)
via Foo = [Foo, Fool
0 C*(FQ Ao Z), C,:(F2 Ao Z) C’;*(7r1(22))
C*(Zn), C*(Zz * F2) C:(Z2 * Fg)
C*(GxZ),CrGxZ)
C*(Zx---xZ)
C*(R?+1)* (unitization)
C*(Rx---xR)* (odd)
1 C(F) CH(F)
C*(Zz™ x Z™) Cx(Z™ * Z™)
1-n C*(Fy) Cr(Fy)
2—2g C*(m1(My)), m(My) = F xz Fag—o Cr(m(Mg))
2—k C*(ﬂ'l(zk)), Wl(zk) gZ*Z Fk-—l C:(Wl(zk))
—00 C*(Feo) Cr (Feo)

C*(SO(2n + 1,1))
C*(SU(2n +1,1))
Cr(Sp(2n +1,1))




Remark. In general, it is complicated to compute K-groups of crossed
products of C*-algebras by Z or by successive actions by Z. However, as
the tables above suggests, the (most) merit for our K-index is that the K-
index for those crossed prdocuts is (almost) always zero without knowing
their K-theory groups explicitly.

The K-ranks are finer than the K-index indexg in a sense that they
can distinguish noncommtative n-tori for n different while indexy can not.
However, the K-index is more computable in a sense than the K-ranks as
explained above.

Problem. Determine the classes of C*-algebras that have K-index positive,
zero, and negative respectively.

Remark. This major problem has been considered, but not yet solved
completely. This is also a noncommutative analogue to the classical clas-
sification result for closed orientable Riemann surfaces M: if x(M) > 0,
then M ~ S?%; if x(M) = 0, then My ~ T?; if x(M) < 0, then M ~ M,
(g > 2), where x(-) is the Euler characteristic for spaces, and ~ is homotopy
equivalence (see Example below). Hopf’s theorem says that for a manifold
M, its Euler characteristic is zero if and only if there exists a non-singular
vector field on M. Its noncommutative version could be considered.

As mentioned before, homotopy equivalent C*-algebras have the same
K-index. Therefore, the problem we want to consider is to show its converse
in some subclasses of C*-algebras such as certain classes of simple, nuclear
(or purely infinite) C*-algebras.

Example 3.1 Let S™ be the n-dimensional sphere (n > 1). Let H7(S", Z)
be the j-th cohomology of S™ with coefficients in Z. Then we have

HO(S"Z) =2, HI(S%2)=0 (1<j<n-1), H“(S"Z)=Z,
n . .
X(S™) = (~1)Yrankg H'(S",Z) = {2 if n is even,

— 0 if n is odd.
j=0

In particular, x(S2) = 2 > 0. For the 2-torus T?, we have
HYT%,2) =27, HYT?Z)=7% H*T%Z) =27,

2
x(T?) = E(—l)jrankZHj(TQ, Z) = 0.
=0

Furthermore, we have x(T") = 0 (n > 1). Let My be a closed Riemann



surface with genus g (> 2). Then we have

H(M,,Z) =2, HY(M,,Z)=12%, H*(M,Z)=2,
n
X(My) =Y (—1)rankg H' (M,, Z) = 2 — 29 < 0.
=0

Let I'y = m1(My) be the fundamental group of My and BTy its classifying
space. Since M, is homotopic to BI'y, it follows

H’(M,,Q) = H’(BI4,Q) = H'(Ty,Q)
(Cartan-Eilenberg). See also Appendix below.

Definition 3.2 We say that a C*-algebra 2 is K-index positive, K-index
zero, and K-index negative if

indexg (A) >0, indexg(™A) =0, indexg(A)<O0
respectively. A C*-algebra 2 is K-index unital if indexg () = 1.

Remark. Some examples are given in those tables. Both K-index zero and
K-index unit are not unique at all.

Problem. Without taking inductive limits such as AF or AT, find ex-
amples of C*-algebras with (explicit) generators and relations that fill the
boxes in those tables.

Remark. Since finiteness (in structure or steps to construct C*-algebras)
is crucial in computing our K-index, this question is some reasonable. As
mentioned above, it is known that both any inductive limit of finitely gen-
erated, abelian free groups Z™ and a countable, torsion free, abelian group
can be realized as Ky and Kj-groups of a unital simple AT algebra respec-
tively (see, for instance, [9, 4.7]).

As mentioned early above, our K-index do non behave well with induc-
tive limits of C*-algebras. For recovering this, we introduce

Definition 3.3 Let 2 be a C*-algebra that is an inductive limit of C*-
algebras 2,. Define the forgetful K-index of 2 to be the following limit:

f-indexg (™) = nlmgo index g (2A)

if it exists (or the limit may be replaced with limit infimum).



Remark. This definition depends on the choice of inductive limit systems so
that it, precisely, should be defined as the minimum of such limits (or limit
infimums). For instance, (certain) AH algebras that are inductive limits
of homogeneous C*-algebras can be written as AT algebras through some
known classification theorems (see [9]).

Example 3.4 Let 2 be an AF algebra. Then f-indexg () = 1. This
consequence comes from that the index f-index is forgetful about positions
of units in inductive limit systems for 2 (which are crucial to determine
K-theory of 2). Such an important information is lost, but so that we can
get consistency for continuity with respect to inductive limits. This is the
reason for naming the index f-indexg.

Let A be an AT algebra. Then f-indexg(2A) = 0. It is known that
simple noncommutative 2-tori ']1‘2 are AT. This fact is consistent with
indexx (T2) = 0 = f-indexg (T3) .

However, surprisingly, it is shown by [3] that T2 x, Zy and (T3)° are
AF-algebras. Hence they have f-indexg 1, but they have indexg 6.

As a summary, a (partial) permanence result for our K-index is

Theorem 3.5 The K-indez is homotopy invariant and functorial in some
senses as follows:
(Additive) indexy (A @ B) = indexg (A) + indexx (B),
(Multiplicative) indexg (A ® B) = indexg () indexx (B),
(Stability) indexg (A ® M,(C)) = indexg (A)
= indexg (A ® K) = indexg (A ® Oxo),
(Periodicity) indexg (SA) = —indexg (A) = indexg (A x4 R),
(Vanishing) indexg (2 Xo Z) = 0 = indexg (A ® O2)
= indexy (A ® B) = indexg (A ® M (B ® K)),
(Dividity) indexx (%) = indexx (J) + indexx (A/3),
(K-index MV) indexg (A ®¢ B)
= indexk (A) + indexx (B) — indexx ()
= indexg (A x¢ B) (with retractions to €),
(Shifting) indexy (A") = indexx () + 1 = indexx (A & C),
indexg (A *¢ C(T)) = indexg (™A) — 1 (™A unital),
(Scaling)  indexg (%A Xqr Fr) = (1 — n) indexg (A),
(K-index BC)  indexg(C*(T')) = index® (BI),
(4

(Classical)  indexy (C(X)) = index¥ (X),



where some restrictive assumptions such as being in the UCT or the class
X, K-indez finiteness, and some K-theory conditions are necessary as dis-
cussed above.

Also, the KC-index is homotopy invariant and functorial similarly in
(some of) those senses.

Remark. In particular, the multiplicativity for K€ is just
index$*¢ (A ® B) = index§ (A) indexF (B)

as showen before.
As for classification of group C*-algebras by K-index,

Theorem 3.6 Let G a simply connected solvable Lie group. Then

2 ifdimG even,

indexg (C*(G)*') =
GG {0 if dim G odd.
Let G be a solvable discrete group that can be written as a successive semi-
direct product by Z. Then

indexg (C*(G)) = 0.
In addition, for a locally compact group G,
indexg (C*(G x Z)) = 0 = indexg (C (G x Z)).

Proof. Any simply connected solvable Lie group can be written as a succes-
sive semi-direct product by R. Hence C*(G) is isomorphic to a successive
crossed product by R. The other statements are proved in Examples above.
O

Remark. Those vanishing formulae are of some interest.

Problem. Let G be a solvable (or amenable) Lie (or locally compact)
group. Determine G such that indexyx(C*(G)*) > 0, i.e., C*(G)* is K-
index positive. .

Remark. 1t should be right to consider the unitization of C*(G) as in
the theorem above. Note that C*(G) is (almost) non-unital if G is non-
discrete, and solvable locally compact groups are always amenable. The
K-index inequality indexg (C*(G)*1) > 0 is easily false in general. In fact,
let G be a connected commutative Lie group so that G = R® x T* for
some s,t > 0. Then C*(G) = Cp(R?®) ® Co(Z*) by the Fourier transform.
Thus indexg (C*(G)) = (—1)% indexi (Co(Zt)) = —oo if s is odd and t > 1,



and = +oo if s is even and t > 1. This alternative is discussed in Ex-
amples above for simply connected amenable Lie groups and non-compact
connected semi-simple Lie groups.

In general, we obtain

Proposition 3.7 Let G be a locally compact group. If Kro(C*(G)) is finite
and Kr1(C*(G)) =0, then

indexg (C*(G x T)) = +o0,
and if Kr1(C*(Q)) is finite and Kro(C*(G)) = 0, then
indexg (C*(G x T))

and C*(G), C*(G x T) can be replaced with C}(G), Cr(G x T) respectively.
Furthermore, T can be replaced with a compact group whose dual discrete
group is infinite.

If

— 00,

Proof. Note that C*(G x T) =2 C*(G) @ Cp(Z) and C}(G x T) = C}(G) ®
Co(Z). The statement follows from the Kiinneth formula. o
Also, at this moment, it is likely that

Conjecture. If T is a non-amenable, highly non-commutative discrete
group without torsion, then indexg(Cy(I')) < 0, ie., C¥(T) is K-index
negative.

Remark. Torsion freeness is necessary as the examples such as I' = SLy(Z)
and PSLy(Z) in the tables given above. Highly non-commutativeness for
discrete groups should be defined as that such groups are a kind of free
groups F;, but they are not a sort of products F,, x F,, as required.

One of the classification results by Kirchberg (see [12]) says that the
tensor product A ® O is isomorphic to O2 if and only if A is a simple,
separable, unital, and nuclear C*-algebra. If 2 is in the category X, then
indexg (A ® O2) = 0 = indexg(O3) since Kr;j(A ® O2) = 0. Another by
Kirchberg is that for a simple, separable, and nuclear C*-algebra 2, we
have A = A® O if and only if A is purely infinite. If 2 is in the category
X, then indexx (A ® Ouo) = indexg (A) since Kr;j(A ® Os) = Kr;(A).

Theorem 3.8 (Kirchberg-Phillips), ([12, 8.4.1 and 8.4.7]) Let A, B be
Kirchberg algebras, i.e., purely infinite, simple, nuclear separable C*-algebras.
Then

(1). A = B if and only if they are KK-equivalent.

(2). If A, B are in the UCT class, then A = B if and only if K;(2A) =
K;(B) (j = 0,1).

(3). A =B if and only if they are homotopy equivalent.



Remark. Note that a Kirchberg algebra is either stable or unital. In each
case above, it implies indexx (A) = indexx (B).

Proposition 3.9 ([12, 8.4.4]) Every Kirchberg algebra in the UCT class
is isomorphic to an inductive limit of C*-algebras of the form:

(O”ll 60'"-2 69'”@0’"1-)@0(']1‘)7 n; € {2’3‘:"' 700}-

Every stable Kirchberg algebra in the UCT class is isomorphic to a crossed
product B X Z, where B is a simple, real rank zero AT algebra, i.e., an
inductive limit of matriz algebras over C(T). If K1(A) is torsion-free, then
B can be a simple AF algebra.

Remark. From this it might be likely to show that every Kirchberg alge-
bra (not isomorphic to Oy whose K-index is 1) has K-index zero. If so,
our K-index is not useful in this case, and just distinguishes Oy, from oth-
ers. At least, any Kirchberg algebra in the UCT has f-indexy zero since
indexg ((On; ® On, @ -+ - ® Oy,) ® C(T)) = 0.

However, that expectation is false by

Proposition 3.10 [12, 4.3.3] Let Go, G1 be countable abelian groups and
let go € Go be an element. There exist a unital simple AT algebra B of real
rank zero, a proper projection p € B, and an isomorphism p : B — pBp
such that A = B x, N is a unital Kirchberg algebra in the UCT and

(Ko(21), (1o, K1(®)) = (Go, 90, G1)-

If G, is torsion-free, then B can be chosen to be a unital simple AF algebra.
Also, there exist a unital simple AT algebra B of real rank zero and an
automorphism p of B such that A = B x, Z is a stable Kirchberg algebra
in the UCT and
(Ko(9), K1(21)) = (Go, G1)-

If Gy is torsion-free, then B can be chosen to be a stable simple AF algebra.

Remark. For n,m non-negative integers or oo, we denote by uKy ,, such
a unital Kirchberg algebra such that indexx (uKnm) = n — m, where n =
Kro(uKn,m) and m = Krj(uKpn m), and by sK, m such a stable Kirchberg
algebra such that indexy (sKnm) = n — m. Hence, all AT algebras AT, »,
in those tables 1 to 3 can be replaced with either uKy, ;, or sKy .



4 KK-theory ranks and index

Let 2 and B be (graded) C*-algebras. The K K°-group KK°(2,B) of
2A and B is defined to be the abelian group of homotopy classes of Kas-
parov 2-B-modules, or of homotopy equivalent classes of (Cuntz) quasi-
homomorphisms from 2 to B, where a quasi-homomorphism from 2 to B is
a pair of *-homomorphisms ¢+ : A — M(*BQK) such that p(a)—¢p_(a) €
BRK for a € 2.

Set KK1(2,8) = KK°(2,SB) (or KK(S2,B)). See [1] or [12] for
more details in KK-theory of C*-algebras.

Definition 4.1 Let A, B be (graded) C*-algebras. We define the K K-
rank of 2 and B to be the Z-rank of their KK7-group (5 = 0,1), and
denoted it by

KKr/ (2, B) = rankg KK7 (2, B) € {0,1,2, - - , +o0}

where KK° = KK of Kasparov. Define the K K-index of 2 and B to be
the following difference:

index® ¥ (2, B) = KKr°(2, B) — KKr!(2, B) € Z U {£o0}.

Proposition 4.2 For a C*-algebra 2 in the UCT class N and a separable
C*-algebra B, we have

1
KKr%(%,8) > )  rankzHom(K;(%), K;(B)),
j=0
and in addition, if either K, () is free or K.(B) is divisible, then
1

KKr’(%,%B) = > rankzHom(K; (%), K;(B)).
j=0

Proof. The first inequality follows from the universal coefficient theorem
(UCT): under the first assumption there exists the following split exact
sequence:

0 — &l_oExth(K; (%), K;41(B)) — KK°(2,B)
— @j_oHom(K; (), K;(%B)) — 0.

See Appendix below for the functor Ext. The second assumption induces
KKO(Ql7 B) = @_}:OHom(KJ’ (Q(), KJ(%)) o



Corollary 4.3 Under the same assumption as above, if Krj(2A) = oo and
Kr;(B) # 0 (j = 0 or 1), then KKr%(2, B) = +o0, so that index" ¥ (2, B) =
+00 (or undefined).

Example 4.4 Note that Hom(Z,Z) = Z, where it consists of the maps
nx : Z — nZ C Z with n x m = nm for m € Z. Also, Hom(Z,Z*) =
®*Hom(Z,Z) = Z*F and Hom(Z!,Z) = ®'Hom(Z,Z) = Z'. Hence, we have
Hom(Z!, ZF) = 7'*.

It follows from UCT that KK°(2, B) = Hom(Ko(2), Ko(B)) for AF
algebras 2 and B because their K;-groups are trivial. Hence

KKr?(2l, B) = rankzHom (Ko (), Ko(B)).
More generally, these hold for C*-algebras with K trivial and UCT.
Proposition 4.5 For any C*-algebras A and ‘B,

index® ¥ (2, B) = index¥¥ (A ® M, (C), B ® M,,(C))
= index®K (% ® K, B) = index®* ¥ (2, B @ K)
= index* ¥ (A ® K, B ® K),

and index® X can be replaced with KKr7.
Proof. We have
KK’(,%8) =2 KK’ (A ® M,(C),B ® My,(C))
~ KK'(A®K,B) = KK’ (A,B ®K)
~ KK'(A®K, B ® K).

Proposition 4.6 For any C*-algebras A, A, and B, B; (j =1,2),

index™ ¥ (2, @ Az, B) = index®H (A1, B) + index K (s, B),
index®¥ (2, B; @ Bo) = index™ K (A, B,) + index¥¥ (A, B5),

KK can be replaced with KKr/.

and index
Proof. This follows from the additivity:
KK](Q[l @ m?) %) = KK](Ql]_, %) @ KKJ(Ql% %))
KK'(%,8, ® B,) = KK (2,8;) ® KK’ (2, B5).



Proposition 4.7 Let A = ©;2; be a countable direct sum of separable
C*-algebras A;. For any C*-algebra B,

index®¥ (2, 98) = ) " index" ¥ (2;, B).
J

If 2 is in the UCT class and K.(2A) is finitely generated, and B = @;B;
of separable C*-algebras, then

index X (%, B) = ) _ index* X (2, B;).
J
Proof. Under the assumption, the coordinate inclusions from 2l; to 2 induce

an isomorphism:
KK°(,8) = II, K K°(A;,B)

by [1, Theorem 19.7.1]. Also, KK°(2,B) = II; K K°(, B;) by [1, 23.15.5].
a

Remark. KK-theory KK?9(-,-) is countably additive in the first variable in
that sense, but not so in the second variable in general. If B = ®;B;,
then for any C*-algebra 2 there exists a natural map from &;KK°(, B;)
to KK°(2, B), however, this is not surjective in general. For example, if
2 = Co(N) = B with B; = C, then the unit of KK°(,B) is not in the
image under the map.

Proposition 4.8 For any C*-algebras A and ‘B,
index®¥ % (A, SB) = index® X (S, B) = —index¥* (A, B).
Proof. This follows from the Bott periodicity:

KK°(2,8) ~ KK'(2,58) =~ KK'(S%,B),
KK'(2,8B) =~ KK°(2, SB) =~ KK°(S2,B).

Example 4.9 We have index¥ (C,C) = 1 because

KK°(C,C) = Hom(Z,Z) & Z, and
KK'(C,C) = KK°(C, SC) = Hom(Z,0) ® Hom(0, Z) = 0.



Furthermore, we have

index¥®(C,C) = 1 = index® ¥ (M,,(C), M,,(C))
= index® ¥ (K, C) = index ¥ (C, K) = index®** (K, K),

and index®¥ can be replaced with KKr°, and with KKr! where 1 is replaced
with 0. By additivity, index®¥ (C",C™) = nm.

A C*-algebra 2 is called K-contractible if K K°(2,2) = 0.
Proposition 4.10 If a C*-algebra A is K-contractible, then
index® X (2, B) = 0 = index®* (B, )
for any C*-algebra *B.

Proof. The assumption implies that K K°(2,8) = 0 = KK°(8,2) for any
C*-algebra 8. Hence

KK'(2,8) = KK°(%,5%8) = 0= KK'(8,%) = KK°(SB,2).

O

Example 4.11 Any contractible C*-algebra is K-contractible. In particu-
lar, CB = C([0,1]) ® B and Co([0,1)) ® B = C'B for any C*-algebra B
are K-contractible. Therefore,

index® X (%, CB) = 0 = index¥ ¥ (0B, ),
index™ X (2, C'B) = 0 = index¥ ¥ (C"8, )

for any C*-algebra .
Proposition 4.12 Let A be a C*-algebra. Then
indexy () = index® ¥ (C, ).

Proof. Note that Ko(2) & KK°(C,2) and K;(2) & KK(SC,) =
KKI(C,2). o

By definition, the K-homology (group) K7(21) (j = 0,1) of a C*-algebra
2 is defined to be KK (2, C).



Definition 4.13 Let A be a C*-algebra. .Deﬁne the K J-homology rank of
2A to be the Z-rank of the K-homology K7(2) = KK7(,C), and denote it
by

Kr/ (%) = rankz K7 (2) € {0,1,2,-- -, +00}.

We define the K-homology index of 2 to be the following difference
index® () = Kr®(2) — Kr}(2) € Z U {£00}.

Recall that two extensions E; of C*-algebras 2 and (stable) B: 0 —
B — E; — A — 0 identified with the Busby invariants 7; : 24 — M(B)/B
( = 1,2) are strongly equivalent if there exists a unitary u € M(B) such
that 72(a) = w(u)71(a)w(u)* for a € A, where 7 : M(B) — M(B)/B. The
sum 71 @77 is defined by 71 @7y : (M (B)/B)D(M(B)/B) C Mx(M(B)/B) =
M(*B)/B. An extension E of 2 by B with 7 : 2 — M (B)/B is trivial if it
lifts to a *-homomorphism from 2 to M (8), which is the case if and only if
there exists a *-homomorphism s : % — E such that gos = idg the identity
map on A, where ¢ : E — A — 0. The extension theory Ext(%, B) of 2 and
B is defined to be the commutative group of strong equivalence classes of
extensions of 2 by B modulo trivial extensions. Set Ext(2) = Ext(2, K).

Proposition 4.14 For aﬁy C*-algebras A and (stable) B,
rankzExt(2, B) = KKr!(2, B).

In particular, rankzExt(2) = KKr!(2, C) = Kr!(2).

Proof. We have

Ext(2,B) =~ KK°(2, $B) =~ KK (2, B).

In particular, Ext(2) = Ext(2,K) = KK°(2,SC) ~ KK(2,C) = K1().
O

Example 4.15 We have Ext(M,(C),K) = 0. Also, Ext(C,B) = K;(B).
In particular, Ext(C,Cy(R)) = Z. If X is a locally compact Hausdorff
space, then Ext(X) = Ext(Co(X)) = Ext(Co(X),C) = KK!(Co(X),C) =
K1 (Co(X)).

Example 4.16 If we take 20 in the UCT class N and B = C, then
Ext(2A) = KK°(2, SC) so that UCT becomes

0 — ®l_oExth(K;(%), K;(C)) — KK°(%, SC)
— ®j_oHom(K;(2), K;11(C)) — 0,



which implies immediately that
0 — Ext} (Ko(2A),Z) — Ext(A) — Hom(K;(™),Z) — 0.
This is Brown’s universal coefficient theorem.

Theorem 4.17 The siz-term ezact sequence for KK: Let

0 329 2,03 ——0

be a semi-split exact sequence of o-unital (graded) C*-algebras (i.e,, there
exists a completely positive, norm decreasing, grading-preserving section for
q). For any separable (graded) C*-algebra D,

KK%®,7) LN KK°(®,9%) LN KK%(®,/3)
KKY(D,%/3) «—— KK!(D,) «—— L. KK(9,7),
and if A is separable, then for any o-unital graded C*-algebra D,

KK°(3,D) L KK®,9) L KK°(2/3,D)
KKY(2/3,D) -2 KK'(%,D) 2 KK\(3,D).
Ifindex® ¥ (D, 7), index™¥ (D, ), and index®¥ (D, 2/3) are finite, then
index® ¥ (D, 2) = index®* ¥ (D, 7) + index¥¥ (D, 2/7),

and if index®¥(3,D), index®¥ (2, D), and index®E(A/3,D) are finite,
then
index®™ ¥ (A, D) = index¥¥ (3, D) + index®* (2%/3,D),

where it is enough to assume that two of those are finite in each case.

Proof. This can be proved as shown in the K-theory case above. a

Theorem 4.18 Let A be a (trivially graded) o-unital C*-algebra and A x4
Z its crossed product by Z. For any separable (graded) C*-algebra D,

KKO®D,2) 129 KEO®D,%) —— KKO(D,% xaZ)

I !

KK'(®,%%,Z) —— KEK\(®,2) L kK1(D,2),



and if A is separable, then for any o-unital (graded) C*-algebra D,

KK'@,D) 5 KR, D) —— KK xq Z,D)

1 I

KK\ %y Z,D) —— KK'(2,D0) 2%,  KK!(21,9).
If index®™ ¥ (D, ) and index®™ ¥ (D, A x4 Z) are finite, then
index®¥ % (D, % x4 Z) = 0,
and if index™¥ (A, D) and index®¥ (A x4, Z,D) are finite, then
index®® (A x4 Z,D) = 0,

where it is enough to assume that index™¥ (D, A) or index® ¥ (A, D) is finite
in each case.

Proof. The proof is the same as given in Section 1 for indexx (A x4 Z) = 0.
O

Proposition 4.19 Let 2 be a (trivially graded) C*-algebra and A x4, R its
crossed product. For any C*-algebra B, we have

index® ¥ (A x4 R, B) = —index®* (A, B),
index® ¥ (B, % x4 R) = —index® ¥ (B, ).

Proof. This follows from the Thom isomorphism for KK:
KK/ (A %o R, A) = KKt (A,8), KK/(B,% %, R) = KKIT(B,2).

O

Theorem 4.20 Let 2 and B be separable C*-algebras and A in the UCT
class N. If K, () or K.(*B) is finitely generated, then

index® ¥ (2, B) > index™ () indexx (B),
and in addition, if K*(A) or K.(B) is torsion-free, then

index® ¥ (2, B) = index® (2) indexx (B).



Proof. The Kiinneth theorem is
0— K*(2) @ K,(B) - KK*(2,B) — Tor?(K*(2), K.(B)) — 0

under the first assumption. In particular, the second assumption implies
that

KK*(1,8) 2 K*(A) @ K.(B), ie.,
KKO@,B) = (K°(%) ® Ko('B)) ® (K" (%) ® K1(B)),
KK'(%,%8) = (K°(%) ® K1(B)) ® (K' () ® Ko(B)).

Therefore;

KKr%(2, B) = Kr®(2) Kro(B) + Kr' () Kr, ('B),
KKr!(2, B) = Kr(2) Kr; (B) + Kr! () Kro(B).

It follows that

index®¥ (21, B) = (Kr°(2) — Kr} (2A))(Kro(B) — Kr1(B))
= index® (2A) indexx (B).

]

Remark. Note that Tor?(M,N) = H\(M ®z P,) by definition is the first
twisted product of Z-modules M and N, where P, means a projective
resolution of N:

o Pp—o P> P >R —>N-0
from which the following becomes a complex of Z-modules:
= Pp o Py —- o> P> B —0
so that M ®z P, means the following complex of abelian groups:
oM@z P, > M®zP, > MQzPL —>M®zPy—0

and therefore, H;(M ®z P,) is the first homology group of this complex.

Theorem 4.21 For a pullback diagram of separable nuclear C*-algebras:
P L’ Qll

o |

A L2 D



the Mayer-Vietoris siz-term ezact sequence (MV) is

(=f1.f3) 91 +95
_— E—

KK(D,®) KK(21,B) ® KK (%, B) KK(P,B)
KK'(P,B) S ppi(en 8)e KK'(M,8) <) kg1, 8)
for any o-unital C*-algebra B, from which if follows that

index®¥ (P, B) = index® ¥ (1, B) + index" ¥ (A5, B) — index* ¥ (D, B),

" where finiteness of these indezes is assumed.
For a pullback diagram of o-unital nuclear C*-algebras:

p 2 B
921 lfl
B, LN
the Mayer- Vietoris siz-term ezact sequence is:
KK@,P) BE, grons)e KK®, 8, L0 kK@, D)

I !

KE'@,0) E70 g\, B @ KK(,%8,) <E%) kK1(1, P)
for any separable C*-algebra A, from which if follows that
index® ¥ (2, P) = index®™ ¥ (2, B;) + index® ¥ (A, B5) — index K (2, D),
where finiteness of these indezes is assumed.

Equivariant KK-theory ranks and index

Definition 4.22 Let 2 and B be (graded) G-C*-algebras for G a (com-
pact) group. We define the G-equivariant KK-rank of 2 and B to be the
Z-rank of the G-equivariant KK (abelian) group K KJG(Ql B) (j =0,1),
and denote it by

KKrL (2, B) = rankz K KL (%, B) € {0,1,2,- -+ , +oo},

where KK2, = KK¢. Define the G-equivariant KK-index (or K K-index)
of A and B to be the following difference

indexB K (2, B) = KKr& (2, B) — KKr§ (2, B) € Z U {£o0}.



Proposition 4.23 For any G-C*-algebras A and B,

indexX ¥ (2, SB) = indexX¥ (52, B) = —indexE¥ (A, B),
where the action of G on Cp(R) is trivial.
Proof. This follows from the Bott periodicity for K K; ’G

KKL(2,8) = KK2(2, SB) = KK2(S%,B),
KK2(,B) & KKL(, SB) = KKL (S, B).

Theorem 4.24 The siz-term ezact sequence for KK¢ : Let

0 vy LA L A3 —— 0

be a semi-split exact sequence of o-unital (graded) G-C*-algebras with G
compact. For any separable (graded) G-C*-algebra D,

KK%(D,3) —I KKL(®,%) —*— KKY%(D,%/7)
KKL(D,%/3) <=~ KKL(D,%) 2~ KKL(D,7),
and if 2 is separable, then for any o-unital graded G-C*-algebra D,

KK%(3,D) <X — KK(%,D) —X— KK(%/3,D)
KKL(%/3,D) —%— KKL(®,D) -~ KKL(3,D).
IfindexBX (D, 7), indexB X (D, 2), and indexE¥ (D, A/3) are finite, then
indexX% (D, ) = indexXZ % (D, 7) + indexB X (D, 2/7),

and if indexX¥ (3,D), indexB% (A, D), and indexBX (A/3,D) are finite,
then
index& X (A, D) = index&¥ (3, D) + index2 X (21/3, D),

where it is enough to assume that two of those are finite in each case.

Proof. This can be proved as shown in the KK-theory case above. a
Set K¢(%8) = KK%(C,®) and KL(%) = KKL(2,C) for C*-algebras
A and B.



Proposition 4.25 For a C*-dynamical system (8, 8,G) with G compact,
indexX¥ (C, B) = indexx (B x5 G),

and for a C*-dynamical system (U, a, G) with G discrete,
index& X (A, C) = index™ (A x4 G).

whgre indeng , indexg, and index¥ can be replaced with KKr? , Krj, and
Kr? respectively.

Proof. It is shown under the assumptions that

K$(B) = K;(BxgG), KL®)=KI(Ax,G).

Example 4.26 In particular, if G is compact, then
indexZ X (C, C) = indexg (C*(G)) = |G|,
where G” is the dual group of G and is discrete.

Example 4.27 In general, there exists a homomorphism from K K¢ (2, B)
to KK(A x4 G,'B xg G), so that there exists a homomorphism from
KKL(Y,8) to KK' (A xq G,B x5 G). In particular, there exists a ho-
momorphism from KKg(C,C) to KK(C*(G),C*(G)), so that there exists
a homomorphism from KK}(C,C) to KK(C*(G),C*(G)). Compute

index¥¥ (C*(G), 0*(3)) = index®™® (@ e n M, (C), Brean My, (C))
= Z Z indexKK(Mn,,(C),Mn"(C))

TEGN TEGA

=Y ) index®¥(C,C) = |G

TeEGN 7eGN

Hence, if G" is non-trivial and finite, then
index%¥ (C,C) # index® ¥ (C*(G), C*(G))
but the non-equality becomes equality if G is infinite.

As a summary, a (partial) permanence result for our KK-index is



Theorem 4.28 The KK-index is homotopy invariant and functorial in
some senses as follows:

(Additive) index®™¥(@,2;,B) = ZindexKK(Qlj,’B),
j
index* ¥ (2, ®,;%8;) = Z index™ ¥ (21, 8;),
j
(Multiplicative) index®® (2, B) = index® (A) indexx (B),
index™¥ (2, B, ® B5) = index®¥ (A, B) indexy (B3),
index™ ¥ (2; ® Ay, B) = index™ (A, )indexK ¥ (Ay, B5),
(Stability) index™ ¥ (2, B) = index®¥ (A ® K, B)
= index® ¥ (A, B ® K) = index* ¥ (A K, B ® K)
= index®* ¥ (A ® M,(C), B ® M,(CT)),
(Periodicity) index®¥ (2, $%B) = —index®* (2, B) = index¥¥ (52, B),
index® ¥ (2, B x5 R) = —index ¥ (2, B)
= index™ ¥ (2 x4 R, B),
(Vanishing) index®% (2, CB) = 0 = index® ¥ (C%, B),
index® ¥ (U, B x5 Z) = 0 = index® ¥ (A x4 Z,B),
(Dividity) index®¥ (2, B) = index¥ ¥ (3,8) + index™ ¥ (2/3,B),
index® ¥ (2, B) = index¥¥ (A, D) + index®* (A, B/D),
(KK-index MV) index® K (A1 Bp A2, B) =
index®¥ (24, B) + index ¥ (A,, B) — index¥X (D, B),
index® ¥ (21, B1 ®p Bs) =
index® % (2, B1) + index® X (A, B5,) — index¥¥ (A, D),
(K-index) index®®(C,®B) = indexg (‘B),
(K-hom index) index®® (2, C) = indexX (2A),

1
(Hom rank) index®¥(2,B) = (Z rankzHom(K;(2), K;(B)))
7=0

1
— (D _ rankzHom(K;(2), K;41(B))),
=0

with KK'(2,8) = KK°(2, $B) = Ext(, B),

where some restrictive assumptions such as being in the UCT or the class



X, KK-index finiteness, and some K-theory conditions are necessary as
discussed above.

Also, the K Kg-index is homotopy invariant and functorial similarly in
(some of) those senses.

5 Appendix: Preliminaries and facts

Chain complexes

Let R be a ring. A graded R-module is a sequence C = (Cp)nez of R-
modules. If z € Cy,, then z has degree n = deg(z). A map of degree p from a
graded R-module C to another C’ is a sequence f = (fn : Cn — Cpy,)nez of
R-module homomorphisms. A chain complex over R is a graded R-module
C = (C,d) with d = (dp, : C, = Cn—1)nez a map of degree —1 such that
d? =0, i.e., dyodpy1 = 0 for each n, called the differential or boundary map
of C. Define the cycles Z(C), boundaries B(C), and homology H(C) by
Z(C) = ker(d) = (ker(dn))nez the kernel, B(C) = im(d) = (im(dn+1))nez
the image, and H(C) = Z(C)/B(C) = (Hn(C) = ker(d,)/im(dn+1))nez-

A cochain complex is a graded R-module C' = (C")pez with d = (d" :
C™ — C™*1),cz a map of degree 1 such that d*> = 0, called the coboundary
map of C. Define the cocycles Z(C), coboundaries B(C), and cohomology
H(C) = (H™"(C))nez similarly as above.

A chain map from (C,d) to (C',d’) is a graded module homomorphism
f : C — C' of degree 0 such that d'f = fd. A homotopy from a chain map
f to another g is a graded module homomorphism h : C — C’ of degree 1
such that d’h + hd = f — g, and we then say that f is homotopic to g.

Proposition 5.1 A chain map f : C — C' induces a map H(f) : H(C) —
H(C"), and H(f) = H(g) if f is homotopic to g.

We denote by Homg(C, C"), the set of graded module homomorphisms
of degree n from a chain complex (C,d) over R to another (C’,d’). Then
we have Hompg(C, C'), = IljezHomp(Cy, Cyy,). The boundary map D, :
Hompg(C,C")p, — Hompg(C,C")p—1 is defined by D,(f) =d'f — (-1)"fd,
so that D? = 0. Note that O-cycles are the chain maps C — C’, and 0-
boundaries are the null-homotopic chain maps. Thus, Ho(Homg(C,C"))
is the abelian group of homotopy classes of the chain maps. There is an
interpretation of Hp,(Hompg(C, C")) in terms of homotopy for any n.

A chain map f : C — (' is called a homotopy equivalence if there is
a chain map f' : C' — C such that f' o f and f o f’ are homotopic to
the identity maps on C and C’ respectively. A chain map is called a weak



equivalence if H(f) : H(C) — H(C') is an isomorphism. Any homotopy
equivalence is a weak equivalence.

A chain complex is called contractible if it is homotopy equivalent to the
zero complex. Any contractible chain complex is acyclic, i.e., H(C) = 0.

Proposition 5.2 A short exact sequence of chain complezes:

0 ¢ —‘t-oc -0 —0
gives rise to a long exzact sequence in homology:
H(i H(m
—— Ho(C) = H(C) — Ha(C") —2 Haoa(C') ——

where the connecting homomorphism 0 is natural in the sense that a com-
mutative diagram of chain complexes:

0 » C' » C c” » 0
[
0 » E » E » B/ —— 0

yields a commutative square in homology:
Hn(C") —— Hpa(C)

! !

Hp(E") —— Hn_1(E").

The tensor product C ®g C’ of chain complexes (C,d) and (C',d’) of R-
modules is defined by (C ®r C')n = @p14=nCp ®r C, and with differential
D given by D(c®¢) = d(c) ® ¢ + (—1)9€)c®d'(¢) for c€ C and ¢ € C'.
Note that C ®g C’ is a complex of abelian groups in general, and it is a
complex of R-modules if R is commutative. '

Proposition 5.3 (Kinneth Formula) Let R be a principal ideal domain
and let C and C' be chain complezes over R such that C is dimension-wise
free. Then there exist natural ezact sequences:

0 — @D Hyp(C) ®r Hn—p(C') — Hn(C ®R C')

PEZ
— P Torf(H,(C), Hp—p_1(C")) — 0,
PEZ
0 — [ Exth(Hy(C), Hpsn41(C")) — Hn(Hompg(C,C"))

peZ

- H Hompg(Hy(C), Hp4n(C")) — 0,
pEZ



and these sequences split.

In particular, if C' consists of a single module M, i.e., C) = M and
C;, =0 for n # 0, then the ezact sequences become the universal coefficient
theorem:

0 — Hp(C) ®r M — Hy,(C ®g M) — Torf*(H,_1(C), M) — 0,
0 — ExtL(H,_1(C), M) — H"(Homg(C, M)) — Hompg(H,(C), M) — 0,

where we regard Hompg(C, M) as a cochain complez with Homg(C, M)" =
Hompg(C, M)_, = Hompg(Cp, M).

Resolutions
Let R be a ring and M an R-module. A resolution of M is an exact
sequence of R-modules:

o B> F - Fy—-M-—0.

If each Fj is free, then it is called a free resolution. Free resolutions always
exist for any module M by a step-by-step construction: Choose a surjection
€ from a free Fy to M, then choose a surjection from a free F; to the kernel
of g, etc. If there is an integer n such that F; = 0 for ¢ > n + 1, then we
say that the resolution has length < n.

Example 5.4 (1). A free module F admits the free resolution: 0 — F u
F — 0 of length 0.

(2). If R = Z, then any submodule of a free module is free. Hence any
module M admits a free resolution

0O-F—->F—-M-—>0
of length < 1. For example, we have
052322y 0.

(3). Let M = Z9 and R = Z[z| the polynomial ring. Then we have the
free resolution of length 2:

0-RZ%RORZ RS20

where the map ¢ from R to Zg is defined by ¢(f) = f(0) mod 2, and the
maps 0; and O, are given by the matrix (z,2) and the transpose of the
matrix (2, —z) respectively.



Let G be a group. Let ZG (or Z[G]) be the free Z-module generated
by elements of G, which is called the integral group ring of G with the
natural ring structure. The augmentation map € : ZG — Z is the ring
homomorphism defined by €(g) =1 for g € G.

A G-complex is a CW-complex X with an action of G on X which
permutes cells of X. If X is a G-complex, then the action of G on X
induces that of G on the cellular chain complex C.(X), which becomes a
chain complex of G-modules, where Cy,(X) is the free Z-module generated
by the (n + 1)-tuples of elements of X and has a Z-basis which is freely
permuted by G, hence C,(X) is a free ZG-module with one basis element
for every G-orbit of cells. If X is contractible, H.(X) = H,(point), so that
the following is exact:

coe = Cp(X) = Cp—1(X) = -+ = Co(X) 57 —0.
Therefore, we have

Proposition 5.5 Let X be a contractible free G-complex. Then the aug-
mented cellular chain complex of X is a free resolution of Z over ZG.

An (Eilenberg-MacLane) K(G,1)-complex is a CW-complex Y such
that Y is connected, 71(Y) = G, and the universal cover X of Y is con-
tractible. The last condition can be replaced with H;(X) =0 for i > 2, or
mi(Y) =0 fori> 2.

Proposition 5.6 If Y is a K(G,1)-complez, then the augmented celluar
chain complex of the universal cover of Y is a free resolution of Z over ZG.

Recall that an R-module P is projective if the functor Hompg(P,-) is
exact. This is equivalent to that every exact sequence 0 - M’ - M —
P — 0 splits, or to that P is a direct summand of a free module.

Recall that an R-module F is flat if the functor (-) ® g F' is exact. Free
modules are flat, so that projective ones are flat.

Homology for groups

Let G be a group and M a G-module. The group Mg of co-invariants
of M is the quotient of M by the subgroup generated by the elements
gm —m for g € G and m € M. Note that Mg is the largest quotient of
M on which G acts trivially, whereas the group M€ of invariants (under
a G-action) is the largest submodule of M on which G acts trivially. Note
also that Mg = Z ®z¢ M via the maps [m] —» 1®@m =g®m =1Q® gm
and a ® m — a[m].



For an exact sequence of G-modules: M’ — M — M" — 0, we have
the induced exact sequence: M} — Mg — M{ — 0.

Let G be a group and F' a projective resolution of Z over ZG. Define
the homology groups of G by

H;(G) = H;(F ®z¢ Z) = Hi(Fg),

which is independent of the choice of a resolution.
If G = Z, with t a generator, there is a resolution;

Hzelrzeiize Sz -0
where N =1+t+---+t""! € ZG, and Fg is given by
-z3z2725%7
Thus, Ho(G) = Z, Hi(G) = Z, for i odd and = ( for i > 1 even.
Proposition 5.7 IfY is a K(G,1)-complez, then H,(G) = H.(Y).

The Hurewicz theorem says that if m;(X) =0fori < n-1 (n > 2),
then H;(X)=0for 1 <i<n-—1and m(X) = Ha(X).

Theorem 5.8 (Hopf) For any connected CW-complex Y, there is a canon-
ical map from H.(Y) to Hi(m (Y)). If m(Y) =0 for2<i<n-1(n>2),
there is an isomorphism from H;(Y') to Hy(m1(Y)) for i < n—1, and the
following sequence is exact:

Ta(Y) = Ha(Y) = Ha(m(¥)) = 0.

Theorem 5.9 (Hopf) If G = F/R where F' is free, then Hy(G) = (RN
[F, F])/[F, R].

Theorem 5.10 (Seifert-van Kampen) Let X be a CW-complez that is the
union of two connected subcomplexes X, and X, whose intersection Y is
connected and non-empty. Then there is an diagram:

7!’1(Y) —_— 7r1(X2)

! l

m(X1) — m(X)
so that m1(X) = m1(X1) *x (v) T1(X2)-
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This theorem says that m; is a functor from connected, pointed com-
plexes to groups, preserving amalgamation.

Theorem 5.11 (Whitehead) The amalgamation diagram for groups:
22, Gy
all lﬂz
G1 -2 Gy xi Gy
with a1, as injective can be realized by a diagram:
Y=XiNnX;, — X2

! |

X, — X=X UXy
for K(m1(W),1)-complezes for W =Y, X1, X2, and X.

Note that since «; and ao are injective, then so are #; and B3. The
proof requires the following two lemmas:

Lemma 5.12 Let X' — X be an inclusion of connected CW-complezes
such that the induced maps m1(X') — 71(X) of fundamental groups is in-
jective. Let p: X~ — X be the universal cover of X. Then each connected
component of p~1(X') is simply connected (hence it is a copy of the uni-
versal cover of X'). Moreover, these components are permuted transitively
by the action of m1(X) on X~, and w1 (X') is the isotropy group of one of
them, i.e., mo(p~1(X')) & 7 (X)/m(X").

Sketch of Proof. We have the following diagram:

m (P H(X')) —— m(X™)

| |

m(X)  —— m(X)

where the vertical maps are induced by the map p, and the horizontal maps
are by inclusions. Since 71 (X ™) is trivial, the first assertion follows. O

Lemma 5.13 A diagram of groups: G; — H — Gy can be realized by a
diagram of K(m,1)-complezes: X1 — Y = X; N X5 — Xs.
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Sketch of Proof. Since K (m,1)-complexes can be constructed functorially,
we can realize the group homomorphisms by cellular maps of K(w,1)-
complexes: X; «— Y — X,. Taking mapping cylinders if necessary, we
can make these maps inclusions. O
Sketch of Proof for the theorem. Take X; «— Y — X5 as in the lemma
above. Let X = X; Uy X3 be the adjunction space obtained from the
disjoint union of X; and X, by identifying two copies of Y. Then m(X) =
G1 ¥y G2 = G, so we need only show that H;(X™~) = 0 (¢ > 2) for the
universal cover X~ of X. Let X7, X3, and Y~ be the inverse images
of X1,X5, and Y in X" respectively. Since X;, X9, and Y have acyclic
universal covers, it follows that X7’, X5°, and Y~ have trivial homology in
positive dimensions. The Mayer-Vietoris sequence for the diagram:

Yy~ — X3

L

Xy — X~

shows that H;(X~) =0 for ¢ > 2. o

Corollary 5.14 For G = G; xg Gy an amalgam of groups, there is the
Mayer-Vietoris sequence:

-+ — Hp(H) — Hp(G1) ® Hn(G2) — Hn(G) — Hp—1(H) — -+
As a bi-product, we obtain
0 — Z|G/H] - Z|G/G1]) ® Z|G/G3) —» Z — 0.

This is the low-dimensional part of the Mayer-Vietoris sequence that we
used in the proof above.

Homology and cohomology with coefficients

Recall that for a right R-module M and a left R-module N, the tensor
product M ®g N (over a ring R) is defined to be the quotient of M @ N =
M ®z N obtained by assuming the relations: mr@n = m®rn for m € M,
n € N, and r € R. For a group G, M ®g N is obtained from M ® N by
assuming the relations: g7!m ® n = m ® gn. Since m ® n = gm ® gn, we
have M ®¢ N = (M ® N)g, where g(m ® n) = gm ® gn.

Let F be a projective resolution of Z over ZG and let M be a G-module.
Define the homology of G with coefficients in M by

H.(G, M) = H,(F ®c M).
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If we take M = Z, then H,.(G,Z) = H.(G).
Define the cohomology of G with coefficients in M by

H*(G, M) = H*(Homg(F, M)),

where note that Homg(F, M)* = Homg(F, M)—-, = Homg(Fn, M) and
Homg(F, M), = Homg(F_n, M).
Note that an exact sequence F} — Fy — Z — 0 yields the following:

0 — Homg(Z, M) — Homg(Fp, M) — Homg(F1, M).
Example 5.15 (1). If G = Z with generator ¢, then we have a resolution
0-2G 326 -2 -0.
Hence H.(G, M) is the homology of
s MBS M
and H*(G, M) is the cohomology of
ME M-0--...

Thus, we have

Ho(G,M) = HY(G,M) = Mg = Z®z¢ M,

Hi(G,M) = HG,M)=M®={meM:gm=mforall g € G},
and Hi(G, M) = Hi(G, M) = 0 for i > 2.

Now take projective resolutions F' — M and P — N of two G-modules
M and N. Set

Tor¥ (M, N) = H,(F ® N) = H,(F ®¢ P) = H,(M ®¢ P).
Note that H,(G,-) is recovered as Tor(Z,-). Set
Extg(M,N) = H*(Homg(F, N)).
Note that H*(G, ) is recovered as Ext’é(Z, ).
Proposition 5.16 Let M and N be G-modules. If M is Z-torsion-free,
Tor® (M, N) = H,(G,M ® N),
where G acts diagonally on M ® N. If M is Z-free,
Extg(M,N) = H*(G,Hom(M, N)),
where G acts diagonally on Hom(M, N).
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Proof. Let € : F — Z be a projective resolution, and consider the resolution
EQM: F®M — M. This is flat if M is Z-torsion-free, and is projective
if M is Z-free. Therefore, if M is Z-torsion-free, then
Tor¢(M,N) = H,((F ® M) ®¢ N)
=H,(F®M®N)g)
and if M is Z-free, then

Extg(M,N) = H*(Homg(F @ M, N))
= H*(Hom(F ® M, N)®)
= H*(Hom(F,Hom(M, N))®)
= H*(Homg(F,Hom(M, N))) = H*(G,Hom(M, N)).
O

Proposition 5.17 (Shapiro’s lemma) If H is a subgroup of a group G and
M is an H-module, then

H,(H,M) = H,(G,ind§M), H*(H,M)= H*(G,co-ind§M),

where indGM = ZG ®zy M and co-ind§M = Homzy(ZG, M) are the
induced and co-induced modules respectively.

Proof. Let F be a projective resolution of Z over ZG. Then F can be viewed
as a projective resolution of Z over ZH, so that H,(H, M) = H,(F®zug M).
Also,

F®zu M = F @6 (ZG @z M) = F ®¢ (ind§M),

which implies the first isomorphism. The second isomorphism follows from
the universal property of co-induction, which implies that Hom g (F, M) =
Homg(F, co-indg )- O

If we take M = Z, then
H.(H) = H.(G,Z[G/H)).
If [G : H] = |G/H| is finite, then co-ind§;M = ind§ M, so that we have
H*(H,Z) = H*(G,Z|G/H)),

and also H*(H,ZH) = H*(G,ZG) since ZG ®zy ZH = ZG.

— 104 —



Cohomology and group extensions

An extension of a group G by a group N is a short exact sequence of
groups: 1 > N — E — G — 1. Extensions E and E’ of G by N are
equivalent if there is a map ¢ : E — E’ such that the diagram

1 N E -5 G > 1
[ —_—
1 N E’ s G 1

commutes so that ¢ is an isomorphism.

Now assume that N is an abelian group M. Then M becomes a G-
module; for E acts on M by conjugation and the conjugation action of M
on itself is trivial, so there is an induced action of G on M.

An extension E of G by M a G-module splits if there is a homomorphism
s : G — FE (called a splitting) such that m o s = idg. This is equivalent to
that the extension F is equivalent to the extension: 0 - M — M x G —
G — 1, where M x G is the semi-direct product of G and M with product
given by (a, g)(b,g9) = (a + gb,gh) for a,b € M and g,h € G.

Derivations are functions d : G — M such that d(gh) = d(g) + gd(h) for
g,h € G. Note that a splitting s : G — M x G has the form s(g) = (d(g), g9)
for a derivation d.

Two splittings s; and so are said to be M-conjugate if there is an
element a € M such that s;(g) = asa(g)a™ for g € G. This relation
becomes di(g) = a + da(g) — ga in terms of the corresponding derivations
d; and dy. Thus, so and so are M-conjugate if and only if the difference
dz — d; has the form g — ga — a for some fixed ¢ € M and is called a
principal derivation.

Proposition 5.18 For any G-module M, there is a one-to-one correspon-
dence between H'(G, M) and the set M-conjugacy classes of splittings for
the split extension:

0O-M-MxG—-G—-1.

Proof. The M-conjugacy classes of splittings of a split extension of G by
M correspond to the elements of the quotient group of the abelian group of
derivations from G to M by the group of principal derivations, that is just
the quotient of the group of 1-cocycles by the group of 1-coboundaries. O

Proposition 5.19 There is a bijection between H%(G, M) for any G-module

M and the set of equivalent classes of extensions E of G by M : 0 - M —
EFE—-G-1.
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Sketch of Proof. Choose a set-theoretic cross-section of 7 : E — G, ie., a
function s : G — FE such that m o s = idg. Assume that s(1) = 1 (normal-
ization condition). There is a function f : G x G — M that measures the
failure of s to be a homomorphism and is defined by s(g)s(h) = f(g, h)s(gh)
for g, h € G. Note that f is normalized if f(g,1) =0= f(1,g) forg e G. It
is known that there is an bijections between extensions with a normalized
section s and normalized 2-cocycles f of G with coeflicients in M. a

Let E and N be groups. Suppose that we are given an action § of E
on N and a homomorphism o : N — E such that B4, (n') = nn'n~! and
a(Bz(n)) = za(n)z~! for n,n’ € N and £ € E. We then say that N is a
crossed module over FE.

Theorem 5.20 There is a bijection between H3(G, M) and the set of equiv-
alent classes of 4-term ezact sequences as:

0-M->N3E->G-1,

where N is a crossed module over E, M is the kernel of o, and G is the
cokernel of o, and the equivalence means that the diagram

0 — M » N E » G 1
I
0 M » N’ » E' » G > 1

commutes for these 4-term ezact sequences.

Sketch of Proof. Choose a set-theoretic cross-section s : G — E for the
quotient map 7w : E — G. Its failure to be multiplicative is measured
by a function f : G x G — ker(m) such that s(g)s(h) = f(g,h)s(gh) for
g, h € G. Associativity of the product in E forces a cocycle condition on f
such that f(g,h)f(gh, k) = s(g9)f(h,k)s(g)~1f(g, hk) for g, h,k € G. Since
ker(m) = im(a), we can lift f to a function F : G x G — N. The failure of
F to satisfy the analogue of the cocycle condition is measured by a function
c:G® — M such that

s(g)F(h, k)s(g) "' F(g, hk) = c(g, h, k) F (g, k) F(gh, k).

Then the function c is a 3-cocycle, whose cohomology class is independent
of the choices of s and F, and is the desired element of H3(G, M). O

Spectral sequences
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A double complex is a bigraded module C' = (Cpq)p,qez With a horizontal
differential &’ of bidegree (—1,0) and a vertical differential 8” of bidegree
(0, —1) such that 8’9" = §"'9":

al
Cp—l,q A Opq

al/ J{ lali

6/
Cp—l,q—'l — C:q_l'

For each g we have a horizontal chain complex C,, with differential &',
and we are given chain maps 0" : Cyq — Cygq-1 such that 8" 0 @' = 0.
Similarly, for each p we have a vertical chain complex Cp,, with differential
&, and we are given chain maps & : Cpx — Cp_1« with &' 0 & = 0.

A double complex C gives rise to a chain complex T'C called the total
complex: (TC)n = @p4q=nCpq with differential 0 given by d|c,, = &' +
(—-1)Pd".

For two chain complexes C’ and C”, we have a double complex C with
Cpq = C, ® Cy, and TC is the tensor product C' ® C" of chain complexes.

Now assume that Cpq = 0 when p < 0 or ¢ < 0. Then we have a spectral
sequence {E"} converging to H,(T'C). By definition, EJ, = Cpq with d° =
+0", and E}, = Hy(Cp,») with the differential d' : E}, — E,_; , induced by
the chain map & : Cp» — Cp—1,«, and E? can be described as the horizontal
homology of the vertical homology of C. There is another spectral sequence
converging to H,(TC) such that E} = Cgp, E}, = Hy(C.p) with d' :
E;, — E}_, ,induced by 8" : Cyp — Cip_1.

Let F' be a projective resolution of Z over ZG and C' a non-negative
chain complex of G-modules. We set H,(G, C) = H.(F®gC). Since FQacC
is the total complex of the double complex of abelian groups (F, ®g Cy),
we have two spectral sequences converging to H.(G, C). The first spectral
sequence has E, = Hy(F,®cCy) = F,®cHg(C) and E2, = Hp(G, Hy(C)),
so that

EZ, = Hy(G, Hy(C)) = Hp44(G,C)

The second spectral sequence has E;q = Hy(Fy ®c Cp) = Hy(G, Cp) so that

and the group qu is described as the p-th homology group of the complex
obtained from C by applying the functor Hy(G,-) dimension-wise. Both
spectral sequences can be thought of as giving approximations to H,(G, C)
in terms of homology groups H.(G, M).
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If G acts trivially on C, then F ®¢ C = Fg ® C, so there is a Kiinneth
formula:

0~ P Ho(G)® Hy(C) = Hn(G,C)
p+g=n ‘
- @ Tor(Hp(G), Hg(C)) — 0.
ptg=n-1

If ¢ is a field and C is a complex of &-ventor spaces with the trivial G-action,
then H.(G,C) = H.(G,¥t) Q¢ H.(C).

Proposition 5.21 Let C be a non-negative chain compler of G-modules
such that each C, is H,.-acyclic. Then there is a spectral sequence of the
form:

E}, = Hp(G, Hy(C)) = Hp44(Co).

Sketch of Proof. The assumption implies that the E!-term is concentrated
on the line ¢ = 0, and E;,O = (Cp)g, so that the spectral sequence collapses
at E? to yield H.(G,C) = H,(Cg). a

Theorem 5.22 (Hochshiid-Serre) Forl - H— G — @ — 1 an extension
of gruups and M any G-module, there is a spectral sequence denoted by
qu = Hy(Q,Hq(H,M)) = Hpq(G, M), which implies the following 5-
term ezact sequence of low-dimensional homology groups:

Hy(G, M) — Hy(Q, My) — Hi(H,M)q — H\(G, M) — Hi(Q, My) — 0.
In particular,

Hy(G) — Ha(Q) — Hi(N)q — Hi(G) — Hi(Q) =0,
which is deduced from Hopf’s formula.

Sketch of Proof. If F is a projective resolution of Z over ZG, and M is a
G-module, then F ®c M = (F ® M)¢ can be computed by first dividing
out by the action of H on F'® M and then dividing out by the action of Q:

FOcM=((FM)y)g=(FQuM)g.

Thus, H.(G,M) = Hy(Cg), where C = F ® g M. Note also that we have
a @-module isomorphism: H,(H, M) = H,(C). Claim that the @-modules
Cp = (Fp® M)y are H,-acyclic. In fact, it suffices to show that (ZGQ M)y
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is H,-acyclic. For this one need only observe that (ZG® M)y is an induced
@Q-module ZQ ® A. Now apply the above proposition to the Q-complex C.
Furthermore, note that there is an exact sequence:

0— ESy— E3g— E3y — Hi(G,M) - E}y — 0

where E}, = Ef and EZ, = Hy(Q, Hy(H,M)) and ES% is a quotient of
H. 2(0 , M ) a
Equivariant Homology

Let X be a G-complex and C,(X) the cellular chain complex of X. The
equivariant homology groups of (G, X) are defined by

HY(X) = Hi(G, Cu(X)).

More generally, if M is a G-module, there is a diagonal G-action on C,(X, M) =
Ce(X) ® M, and set

HE(X, M) = H.(G,C.(X, M)).
Similarly, the equivariant cohomology groups are defined by
Hi(X, M) = H*(G,C*(X, M)).

Note that HE ({point}, M) = H,(G, M). Since any G-complex X ad-
mits a G-map to a point, there is a canonical map from HE(X, M) to
H,(G,M). Furthermore,

Proposition 5.23 If f : X — Y is a cellular map of G-complezes such
that fi : Hi(X) — H.(Y) is an isomorphism, then f induces an isomor-
phism HG(X, M) = HE(Y, M) for any G-module M.

In particular, if X is acyclic, then there is an isomorphism HS (X, M) =
H,(G, M) induced by the canonical map.

We have the spectral sequence:

E2, = Hy(G, Hy(X, M)) = HS, (X, M)

where the E?-term involves the diagonal action of G on H,(X, M) induced
by the action of G on X and M.
For each p-cell o of X, we have a G,-module Z, which is isomorphic
to Z. Let My = Z; ® M, which is a G,-module isomorphic to M. Let X,
be the set of p-cells of X and let ¥, be a set of representatives for X,/G.
Then
Cp(Xa M) = Cp(X) M= @UEX,,MJ’
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from which we obtain Cp(X, M) = @esx, indga M, . Shapiro’s lemma yields

so that
El, = ®sex, He(Go, M) = HES, (X, M).

Theorem 5.24 (Cartan-Leray) If X is a free G-complez, then there is a
spectral sequence of the form: qu = H,(G, Hy(X)) = Hp4(X/G).

Sketch of Proof. Since the G-action is free, we have G, = {1}. The above
spectral sequence for M = Z collapses at E? to yield

H7(X) 2 Hi(C(X)g) = Hi(X/G).

O

Example 5.25 Consider an amalgam G = G} xg G3. Let X be the tree
associated to GG such that G acts on X with no inversions, i.e., no elements
of G interchanges the vertices of a 1-simplex of X, where a tree is a graph
(or a 1-dimensional CW-complex) such that it is either contractible, simply
connected, acyclic, or connected and contains no non-trivial reduced loops,
equivalently. There is a single 1-simplex e which maps isomorphically onto
the quotient graph X/G, and the isotropy groups of e and its vertices v
and w are given by G, = G1, Gy, = G9, and G = H. Therefore, for any
G-module M we have a spectral sequence converging to H,(G, M) with

Ej. = H(G1,M) ® H,(G2, M), E},=H.(H M),

and E;’* = 0 for p > 2. The spectral sequence collapses at E? to yield a
Mayer-Vietoris sequence:

— Hp(H,M) — Hp(G1, M)®Hp(Ga, M) — Hp(G, M) — Hy_1(H, M) — .

A graph of groups is a connected graph Y with groups G, and G, for
vertices v and edges e of Y such that there are injections Ge — G, for
v vertices of every edge e. As in the case of amalgams, there is a tree X
associated to Y such that the fundamental group G of Y acts on X without
inversion. Then Y = X/G and the groups G, and G, are the isotropy
subgroups of G. Consequently, we obtain a Mayer-Vietoris sequence:

s @eeYlHn(Gea M) - ®v€YoHn(Gva M) - Hn(G) M)
- @eeYiHn—l(Ge» M) —F e
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where Y; is the set of i-cells of Y. In particular, the amalgam G = G, xy Go
is the fundamental group of the graph Y of groups with Yy = {G; =
Gy,Gy = Gy} and Yy = {H = G}, where v, w are vertexes of the single
edge e. Also, for a group H, a subgroup K, and an injection 6§ : K — H,
an HNN extension G = Hxg is defined by adjoining an element ¢ to H
subject to the relations tlat = f(a) for a € K. Then G is regarded as the
fundamental group of the graph Y of groups with Yy = {H = G, = Gy}
and Y7 = {K = G.} to make a circle and with the inclusion K — H and
the map 6 : K — H as injections. In this case, we have

-+ — Hy(K,M) - Hp(H,M) - Hp(G,M) - Hp_1(K,M) — - .

6 Appendix: Cohomological dimensions
and Euler characteristics

Cohomological dimension

If R is a ring and M is an R-module, then the projective dimension of
M, denoted by projdimpg M, is defined to be the least non-negative integer
n such that M admits a projective resolution

0-P,—---—>FP—-M-—>0
of length n. Recall that the Ext functors are deﬁned by
Extg(M, ) = H'(Homg(P,")),

where P is a projective resolution of M. In particular, Ext%P(Z, ) =
HY(T,.).

Lemma 6.1 The following conditions are equivalent:

(1). projdimg M < n.
(2). Exth(M,)=0 fori>n+1.
(3). Ext(M,-)=0.

4). If0 > K - P,y = --- = Pp > M — 0 is any ezact sequence of
R-modules with each P; projective, then K is projective.

Sketch of Proof. It is obvious that (4) = (1) = (2) = (3). We need only
prove (3) = (4). Given a partial resolution as in (4), complete it to a
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projective resolution such that

5 P, v Py — -
L]
K —— K,
! [
0 0

where we just set K = K,. For any R-module N, an (n + 1)-cocycle in
Hompg(P, N) is a map Pp4+1 — N whose composition with the map P, o —
Pp41 is zero. Such a cocycle can be regarded as a map ¢ : Kpy1 — N,
where K, is defined as K, by replacing n with n + 1. The cocycle is a
cobundary if and only if ¢ extends to a map P, — N. Thus, (3) implies
that every map on K, extends to P,. In particular, the identity map on
K, +1 extends to P,, so that P, = K,+1 ® K,. Hence K, is projective. O

Consider the special case of R = ZI" for a group I' and M = Z. The
cohomological dimension of a group I' is defined to be the integer:

cd(T") = projdimzr Z
= inf{n > 0 : Z admits a projective resolution of length n}
=inf{n >0: H/(T,-) =0 for j > n+1}
=sup{n > 0: H*(I', M) # 0 for some I'-module M}.

The geometric dimension of I is defined to be the minimal dimension of
a K(T',1)-complex, denoted by geomdimI'. Since the cellular chain com-
plex of the universal cover of a K(T',1)-complex Y yields a free resolution
of Z over ZI" of length equal to the dimension of Y, we have

Proposition 6.2 cd(I') < geomdimI'.

Example 6.3 (1). cd(I") = 0 if and only if I' is trivial.

(2). If T is free and non-trivial, then cd(I') = 1. Its converse is a deep
theorem of Stallings and Swan. In other words, if I" is a group with no
non-split extension with abelian kernel, then I' has no non-split extension.

(3). If T is the fundamental group of a connected closed surface Y
other than S? or P?, then Y is a 2-dimensional K (T, 1), so cd(I') < 2.
Since H%(T,Z3) & H%(Y,Z3) # 0, thus cd(I') = 2. If I is a one-relator
group whose relator is not a proper power, then c¢d(I') < 2 by Lyndon’s
theorem.
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(4). If I' = Z", then the n-torus T" is a K(I', 1) with H*(T",Z) = Z #
0, hence cd(T") = n.

(5). Let I' = HZ be the discrete Heisenberg group of rank 3. Then
H3(T',Z) = Z, hence cd(T') = 3. More generally, if I is a finitely generated,
torsion free, nilpotent group, then

cd(T) = rank(I"),

which is the rank (or Hirsch number) of I that is defined to be the sum of
ranks of free abelian subquotients associated with central series of I, which
is independent of the choise of central series.

Proposition 6.4 If cd(I") < oo, then
cd(T") =sup{n > 0: H*(T', F) # 0 for some free ZI'-module F}.

Proof. Let n = cd(T"). In view of the long exact cohomology sequence, the
functor H™(T', ) is right exact. Since H™(I", M) # 0 for some M, it follows
that H*(T', F') # 0 for any free module F' which maps onto M. a

Proposition 6.5 If I is a subgroup of a group I, then
cd(T') < cd(T)

where equality holds if cd(T") < oo and [I" : IV] < o0.
If1 5TV 5T =TI — 1 is a short exact sequence of groups, then

cd(T) < cd(TY) + cd(TY).
IfT'=T *xyg 'y is an amalgam of groups, then
cd(T") < max{cd(T'1),cd(I'2),1 + cd(H)}.

Sketch of Proof. The first inequality follows from Shapiro’s lemma, or
from the fact that a projective resolution of Z over ZI' can be regarded
as a projective resolution of Z over ZI". If ¢cd(T') = n < oo, there is a
free ZI'-module F with H*(I', F) # 0. If F' is a free ZI'-module of the
same rank, then F = indL F’ = ZT ®zp F’, so Shapiro’s lemma yields
H™I',F') = H*(I',F) # 0. Thus cd(I") > n.

The second follows from a consequence of the Hochschild-Serre spectral
sequence. The third follows from the cohomology version of the Mayer-
Vietoris sequence. (]
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Corollary 6.6 If cd(I") < oo, then ' is torsion-free.

Proof. If T is not torsion-free, then I' contains a nontrivial finite cyclic

subgroup I'. Then cd(IV) = oo since H**(IV,Z) # 0 for all k, which

implies ¢d(T) = oo. O
If ' is a group with torsion, then cd(I') = oo.

Proposition 6.7 For any group I, there is a free resolution of Z over ZI"
of length equal to cd(T").

Note that for a projective module P over a ring, there is a free module F’
such that P® F = F (Eilenberg’s trick). In fact, F is taken as a countable
direct sum of P & Q that is free for a module Q.

Proof. Let n = c¢d(T") for some 0 < n < oo. Choose a partial free resolution
F, {— .- — Fy — Z — 0 of length n — 1. Let P is the kernel of the
map 0 : F,_; — Fy,_o, where F_; = Z. Then P is projective, so there is
a free module F such that P @ F' is free. Replacing F;,_; with Fj,_ & F
and setting 0|F = 0, we obtain a partial free resolution of length n —1 with
ker(0) free. O

Theorem 6.8 (Serre) If I is a torsion-free group and I is a subgroup of
finite indez, then cd(I") = cd(T).

Sketch of Proof. In view of Proposition 6.5 above, we need only show
that if cd(I') < oo, then c¢d(I') < oco. Suppose that cd(I') < oo. Then
there is a finite dimensional K (I",1)-complex whose universal cover X' is
a finite dimensional, contractible free ['-complex. To prove cd(I') < oo, we
construct from X’ a finite dimensional, contractible free I'-complex X. The
construction is a straightforward analogue of the co-induction construction
for modules, where it is omitted. To complete the proof, it is shown that
I acts freely on X as follows. There is a canonical map X — X’ given
by evaluation at 1 € I'. This map is ['-equivalent and takes cells to cells.
Since I acts freely on X', it follows that I'' acts freely on X. For any cell
o of X, we have I'; NIV = {1}, hence I, is finite. Since I' is torsion-free,
these finite isotropy groups ', are trivial. 0O

. Example 6.9 The group SLn(Z) (n > 2) has torsion. Hence we have
¢d(SLp(Z)) = oo. It has torsion-free subgroups I' of finite index. The
intersection of I' with the strict upper triangular group N has finite index
in N and has cd = n(n —1)/2. Thus, c¢d(T") > n(n —1)/2. In fact, equality
holds.
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Virtual cohomological dimension

A group I' is virtually torsion-free if I' has a torsion-free subgroup of
finite index. In this case Serre’s theorem implies that all such subgroups
have the same cd; for if IV and I'” are two torsion-free subgroups of finite
index, then I NI has finite index in both IV and I'”, so that

cd(I'") = cd(I" NT") = cd(I").

This common cohomological dimension is called the virtual cohomological
dimension of I' and is denoted by ved(T').

Theorem 6.10 Let I' be a virtually torsion-free group. Then ved(I") <
oo if and only if there exists a finite dimensional, contractible proper I'-
complex.

Example 6.11 (1). ved(I") = 0 if and only if T is finite.

(2). T =Ty xg 'y where I'1 and I'y are finite, then ved(I") < 1.
Moreover, if I is the fundamental group of a finite graph of finite groups,
then ved(I") < 1, which follows from Serre’s theory of groups acting on
trees, providing a contractible 1-complex on which I'" acts properly, with
finite quotient. If ved(I') < 1, then Stallings-Swan theorem shows that
I" has a free subgroup of finite index, and it is then known that I' is the
fundamental group of a graph of finite groups. . °

(3). If I is a finitely generated one-relator group, then ved(I') < 2.
Indeed, T is virtually torsion-free by Fischer-Karrass-Solitar, and Lyndon
showed the following exact sequence:

0—-Z[I'/H| - F - ZI' - Z — 0,

where F' is a free ZI'-module of finite rank and H is a finite cyclic subgroup
of I'. Note that Z[I'/H] is a free ZI'-module of finite rank for any torsion-
free subgroup IV of I" with finite index. Also, we have a contractible proper
2-dimensional I'-complex with finite quotient.

(4). Let G be a Lie group and X its homogeneous space G/K, where
K is a maximal compact subgroup. Let I' be a discrete subgroup of G, and
assume that I is virtually torsion-free. This is automatic if, for instance, I'
is a subgroup of GL,(Z). It follows that

ved(T') < dim X,
where equality holds if and only if I" is co-compact in G. For instance,

ved(SLp(Z)) = n(n—1)/2.
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Proposition 6.12 If I' is a virtually torsion-free group and I is a sub-
group, then
ved(IY) < ved(T),

where equality holds if [T : '] < oo.

Euler characteristic for complexes
Let G be a finitely generated abelian group. The rank (or torsion-free
rank) of G is defined by

rankz(G) = dimg(Q ®z G).

In particular, rankz(G) = 0 if and only if G is finite.

Let C be a non-negative chain complex of abelian groups. We say that
C is finite dimensional if C; = 0 for sufficiently large 7. If, in addition, each
C; is finitely generated, then C is called finite.

Suppose that C is finite dimensional and H,(C) is finitely generated.
Define the Euler characteristic of C by

X(C).= Y (~1)'rankzH;(C).
120

If C is the cellular chain complex C(X) of a finite dimensional CW-complex
X, set x(X) = x(C«(X)), so that

X(X) = (—1)'rankz H;(X).

>0

If X is finite, then x(X) = 3".(—1)n; the classical Euler characteristic for
X, where n; is the number of i-cells of X. Indeed,

Proposition 6.13 If C is a finite chain complez, then
X(C) =Y (~1)'rankg(C;).
i

Proposition 6.14 Let C be a finite dimensional free chain complex over
Z such that H.(C) is finitely generated. Let p be a prime number. Then

x(C) = (~1)*dimz, H;(C ® Zy).

1
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Proof. Let r; = dimgz, H;(C), and s; = dimgz, ,H;(C), where for G an
abelian group, G, = G ® Z, = G/,G for ,G = {g € G : pg = 0} =
Tor(G,Zp). Using the universal coefficient theorem (or the long exact
homology sequence associated to the short exact sequence: 0 — C 5
C - C®Zy, — 0), one finds dimz, H;(C ® Zp) = r; + s;i—1. On the
other hand, since H;(C) is a direct sum of cyclic groups, one sees that
r; = rankz H;(C) + s;. Thus, dimz, H;(C ® Zp) = rankz H;(C) + si + si—1.
O

Theorem 6.15 Let G be a finite group and let C be a finite dimensional
chain complex of projective ZG-modules. If H,(C) is finitely generated,
then so is H.(Cg), and

x(C) = |G| x(Cq)-

Corollary 6.16 Let G be a finite group and let X be a finite dimen-
sional free G-CW-complez with H,(X) finitely generated. Then H.(X/G)
is finitely generated, and x(X) = |G| x(X/G).

If T is a group such that H;(I") is finitely generated for all ¢ and finite
for sufficiently large i, then set

x~(T) = Z(—l)irankZHi (),

which is a sort of Euler characteristic for I', but not always right in a sense
as explained below and that this Euler characteristic is ignorant of torsion
data of I' (or H,.(I')) and is in the same spirit as defining our K-index.

Corollary 6.17 Let I" be a group with cd(I') < oo and let I be a normal
subgroup of finite index. If H,(I") is finitely generated, then so is H.(T'),
and x~(I') = [[5T'] x~(T).

Proof. Let P be a projective resolution of finite length of Z over ZI', let G =
I'/T', and C = Pr» = ZG ®zr P. Then C is a finite dimensional complex of
projective ZG-modules such that H,(C) = H,(I') and H.(Cg) = H.(T).
0 :
Euler characteristic for groups without torision

A group I is said to be of finite homological type if ved(I') < oo,
and for every I'-module M which is finitely generated as an abelian group,
H;(T', M) is finitely generated for all j. If " is torsion-free, then ved(T") < oo
implies cd(T") < oo.
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Lemma 6.18 If I is a group and I is a subgroup of finite index, then T’
is of finite homological type if and only if I’ is so.

Suppose that I' is of finite homological type and torsion-free. Define
the (Brown’s) Euler characteristic of I' by

x(T) = (~1)rankg H;(T).
J
In this case, x(T') = x™~(I"). Also, if P is a finite projective resolution of Z
over ZI', then
x(T) = (~1)rankz(Z ®zr P;)
j=0

(Serre’s Euler characteristic of I').

Example 6.19 Let F, be the free group with n generators. There exists
a K(Fy,1)-complex with one vertex and n 1-cells. Hence x(F,) =1 —n.
The n-torus T" is a K(Z", 1)-complex with Euler chracteristic x(T") =
X(T)---x(T) = 0. Hence x(Z") = 0.
Let T’ be the commutator subgroup of SLy(Z). Then I' = F5. Hence
Xx(I') =1—2= —1. Note that I" is of index 12 in SLy(Z).

Theorem 6.20 IfT is torsion-free and of finite homological type and I is
a subgroup of finite indezx, then

x(T') = [T : T'] x(D).

Corollary 6.21 For a group extension 1 - I' - E — G — 1 such that T
is torsion-free and of finite homological type and G is of prime order p, if
p does not divide x(I'), then the extension splits. (IfT' = F,,, then such an
extension do split whenever p does not divide n — 1.)

Proof. The group E necessarily has torsion; for if it were torsion-free, then
p must devide x(I'), contrary to the hypothesis. Let H be a non-trivial
finite subgroup of E. Since I' is torsion-free, H NT' = {1}. Thus H is
maped injectively to G. Since |G| is prime, H is maped isomorphically and
it provides a splitting. , m]

Euler characteristic for groups with torision
If T is a group of finite homological type, then we choose a torsion-free
subgroup I" of finite index and set

x(0)=[C:T)'x(I) eQ
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where it is shown that the right hand side is independent of the choice of
I". Indeed, suppose that I'” is another such subgroup and let 'o = ' NT".

Then
xT) __ x(T9)  _ x(To)
[:I] [:TV[IV:Tg] [I:T)
and similarly [T : T”]=1x(I"") = [[ : To] x(To).

Example 6.22 If I is finite, then we can take I" = {1} and
x(T) = [P~
If T' = SLy(Z), then we take I as the commutator subgroup and

_x(r) _ -1
Proposition 6.23 (1). If T is torsion-free and of finite homological type,
then

X(T) = x~(T) = Z(—l)i dimg,, H;(T, Zp)

for any prime p.

(2). Let1 > I 5T — I — 1 be a short ezact sequence of groups with
I and T of finite homological type. If T' is virtually torsion-free, then T’
is of finite homological type and

x(T) = x(I") x(T").

(3). Let ' =Ty xyg I's be an amalgam of groups, where I'y, ', and H
are of finite homological type. If T' is virtually torsion-free, then T" is of
finite homological type and

x(T) = x(T'1) + x(T'2) — x(H).

Sketch of Proof. (1). The first equality follows by definition and the second
equality follows from Proposition 6.14 given above.

(2). Let I'g be a torsion-free subgroup of I" with finite index whose image
Iy in I'” is torsion-free. Let I'y = I'o NI, Claim that

[P To] = [I*: T4) - [0 : T4
for ' : Ty] = [[' : I'Ty] - [['T : Ty} and the isomorphism laws of group

theory imply that [I' : I'Tg] = [I” : I'§] and [['Ty : Ty] = [[V : Ty
Therefore, we replace the given exact sequence by 1 — I'y — I'p — I'yj — 1,
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so that we may assume that [, I', and I'” are torsion-free. Then cd(T") < oo,
and the Hochschild-Serre spectral sequence:

E2, = Hy(I", Hy(I', M)) = Hp1o(T, M)

shows that I' is of finite homological type. Now take M = Z,. Since
H,(I",Z,) is finite, there is a subgroup I'j of I’ with finite index which acts
trivially on it. Replacing I’ by 'y and I" by the inverse image of I'jj, we may
assume that I acts trivially on H,(I",Z3). Then Ef,q = Hy(I', Zy) ®z,
Hy(I",Z3). Computing Euler characteristics from this spectral sequence,
we obtain x(I') = x(I') x(T").

(3). This follows from the statement (3) in the next proposition, applied
to the tree associated to I'y ¥y I's. ]

Example 6.24 Since SLy(Z) = Z4 %z, Ze and PSLy(Z) = Zy * Z3,

1 1 1 1
x(SLa(Z)) = 176 2T 1
1 1 1
x(PSLy(Z)) = gtz l=—¢

Let M, be a closed Riemann surface with genus g (> 2) and I'y =
m1(My). Since T'y = Fj xz Fyy_9, it follows that

X(Tg) = x(F2 *z Fag—2) = x(F2) + x(Fag-2) — x(Z)
=(1-2)4+(1+2-29)+0=2-29 = x(M,).

Remark. It seems not clear to extend the definition of Euler characteris-
tic (or K-index) for C*-algebras with torsion-free K-groups to those with
K-groups with torsion, without deleting torsion data. Our K-index is igno-
rant of torsion data. That point of view for extending the notion will be
discussed somewhere in the future. '

Now suppose that X is a I'-complex such that every isotropy group I,
is of finite homological type and X has only finitely many cells mod T
Define the equivariant Euler characteristic xr(X) for such X by setting:

xr(X) =Y (~1)™O)x(T,),
o€e¢

where € is a set of representatives for the cells of X mod I'. Note that
x(I') = xr(point). Thus, the equivariant Euler characteristic can be viewed
as a generalization of x(-).
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Proposition 6.25 (1). If xr(X) is defined and I is a subgroup of I with
finite indez, then xr/(X) is defined, and

xr(X) = [[': V] xr(X).

(2). If xr(X) is defined and each T’ is torsion-free, then the equivariant
homology HE (X) is finitely generated, and

xr(X) = xF(X) = ) _(~1)'rankz H] (X).

1

(3). Suppose that X is a contractible I'-complex such that xr(X) is
defined. If T is virtually torsion-free, then I" is of finite homological type

and x(T) = xr(X).

Sketch of Proof. To prove (1), fix a cell o0 of X. Consider the set 'o
of cells which are equivalent to o mod I'. There is a 1-1 correspondence
between I'c and I'/T',, so that it decomposes into finitely many I"-orbits,
represented by the cells yo where 7 ranges over a set S of representatives
for I'\I'/T;. Note that I'), = "Ny, =T'N 4T's7~1, which is conjugate
in T to v~ 'I"y NT,. Therefore,

Z(_l)dim(qa)x(l—\l N ’Yro’)‘—-l) — (_1)dim(a) Z X('Y_lrl’)’ n Fo)
YES YES

= ("l)dim(a) Z[Fa cy~ Iy N To] x(Ts)
YES
= ()"0 : ] x(To).

To prove (2), consider the equivariant homology spectral sequence:
E;q = @pee, Ho(l's, Zo) = H;I;+q(X),

where €, is a set of representatives for the p-cells of X mod I'. Since I',
is torsion-free and of finite homological type, H.(I';) is finitely generated.
Hence HI'(X) is finitely generated, and we can compute x3(X) from the
El-term of the spectral sequence. Now assume that I', acts trivially on Z,
for all o, so that

XE(X) =" > (~1)P*rankz Hy ()

pq O'EGAP

=Y > (-1)Px(To) = xr(X).

P o€
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In the general case, note that all Euler characteristics can be computed from
homology with Zg-coefficients. Since I', acts trivially on (Z3)s, the result
follows from as above from the equivariant homology spectral sequence with
Zo-coefficients.

It suffices to prove (3) when I is torsion-free. Since X is contractible,
we have H,(I', M) = HI(X,M) for any I'-module M, and similarly for
cohomology. A spectral sequence argument then shows that H*(T', M) =0
for i > dim X + max{cd(T';)} + 1 and that H.(T, M) is finitely generated
if M is. Hence T is of finite homological type. Moreover,

x(T') = x~(T) = xr(X) = xr(X)

because I is torsion-free, H,(I') = HI'(X), and (2) in the statement. O
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