
18
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.1 JANUARY 2017

PAPER Special Section on Cryptography and Information Security

Key Recovery Attacks on Multivariate Public Key Cryptosystems
Derived from Quadratic Forms over an Extension Field
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SUMMARY One of major ideas to design a multivariate public key
cryptosystem (MPKC) is to generate its quadratic forms by a polynomial
map over an extension field. In fact, Matsumoto-Imai’s scheme (1988), HFE
(Patarin, 1996), MFE (Wang et al., 2006) and multi-HFE (Chen et al., 2008)
are constructed in this way and Sflash (Akkar et al., 2003), Quartz (Patarin
et al., 2001), Gui (Petzoldt et al, 2015) are variants of these schemes. An
advantage of such extension field type MPKCs is to reduce the numbers
of variables and equations to be solved in the decryption process. In the
present paper, we study the security of MPKCs whose quadratic forms are
derived from a “quadratic” map over an extension field and propose a new
attack on such MPKCs. Our attack recovers partial information of the secret
affine maps in polynomial time when the field is of odd characteristic. Once
such partial information is recovered, the attacker can find the plain-text
for a given cipher-text by solving a system of quadratic equations over the
extension field whose numbers of variables and equations are same to those
of the system of quadratic equations used in the decryption process.
key words: multivariate public-key cryptosystems (MPKC), post-quantum
cryptography, extension field, quadratic forms

1. Introduction

A multivariate public key cryptosystem (MPKC) is a cryp-
tosystem whose public key is a set of multivariate quadratic
forms over a finite field. It is known that the problem of find-
ing a solution of a system of multivariate quadratic equations
over a finite field of order 2 is NP hard [14] and then MPKC
has been expected as a cryptosystem resisting against attacks
by quantum computers.

One of major ideas to design MPKCs is to generate
quadratic forms by a polynomial map over an extension
field. For example, the quadratic forms in Matsumoto-Imai’s
scheme [21] and Hidden Field Equations (HFE) [23] are de-
rived from a univariate monomial/polynomial over an ex-
tension field, and those in MFE [27] and multi-HFE [8] are
derived from a set of multivariate quadratic forms over an
extension field. An advantage of such a construction is that
one can reduce the numbers of variables and polynomials in
the system of polynomial equations to be solved for decryp-
tion. Since, in general, the complexity of solving a system
of polynomial equations highly depends on the numbers of
variables and polynomials [5], [12], it is expected that an
efficient scheme can be generated by such a construction.

However, most known schemes in this type are less
secure than expected. In fact, Matsumoto-Imai’s scheme
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and MFE are broken by the linearlization attacks [10], [22],
Sflash [1] is broken by the differential attack [11] and (the
original) HFE/multi-HFE have an unwelcome trade-off be-
tween efficiency and security (especially against the min-
rank attack [6], [19]). These facts have made us suspect
that such extension field type MPKCs might have structural
vulnerabilities.

In the present paper, we study the security of gen-
eral MPKCs whose quadratic forms are derived from a
“quadratic” map over an extension field. As a result, we
propose a new attack on such MPKCs for odd characteristic
case to recover a quadratic map equivalent to the quadratic
map to be used for decryption in polynomial time. While
the complexity of the min-rank attack [6] highly depends on
the numbers of variables and quadratic forms over the ex-
tension field, our attack does not (highly) depend on them.
We actually succeeded to recover equivalent secret keys of
examples of multi-HFE in about fifteen seconds on average,
which were recovered in about nine days by the min-rank
attack. This means that, at least for the “quadratic” case,
the field extension approach is not practical for constructing
secure and efficient MPKCs.

2. Multivariate Public Key Cryptosystems

2.1 General Construction of MPKCs

Let n,m ≥ 1 be integers, k a finite field and q the order of
k. The public key of a multivariate public key cryptosystem
(MPKC) is given by a set of quadratic forms

f1(x1, · · · , xn) =
∑

1≤i≤ j≤n
a(1)
i j

xi x j +
∑

1≤i≤n
b(1)
i

xi + c(1),

...

fm(x1, · · · , xn) =
∑

1≤i≤ j≤n
a(m)
i j

xi x j +
∑

1≤i≤n
b(m)
i

xi + c(m),

over k. Most MPKCs are described as follows.
Secret key. Two invertible affine maps S : kn → kn, T :
km → km and a quadratic map G : kn → km inverted
feasibly.
Public key. The quadratic map F := T ◦ G ◦ S.

F : kn S−→ kn G−→ km T−→ km.

Encryption. For a plain-text p ∈ kn, the cipher is c :=
F (p) ∈ km.

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers
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Decryption. Compute z := T−1(c) ∈ km and find w ∈ kn

such that G(w) = z. The plain-text is p = S−1(w) ∈ kn.

2.2 Extension Field Type Scheme

There have been MPKCs whose quadratic map G is derived
from a polynomial map over an extension field of k. In this
subsection, we study such schemes.

Let r ≥ 1 be a divisor of gcd(m, n), N := n/r , M :=
m/r and K an extension field with [K : k] = r . In extension
field type MPKCs, the map G is given by G = ϕ−1

M ◦ G ◦ ϕN

where ϕN : kn → KN is a one-to-one map and G : KN →
KM is a polynomial map over K .

G : kn ϕN−−−→ KN G−→ KM
ϕ−1
M−−−→ km.

For example, in Matsumoto-Imai’s scheme [21], q is even,
N = M = 1 (r = n) and

G(X ) = Xqi+1,

where i is an integer with gcd(qi + 1, qn − 1) = 1. The
decryption is computed by Y θ = G−1(Y ) = X with θ(qi +

1) ≡ 1 mod qn − 1. Unfortunately, Patarin [22] proposed
the linearlization attack to recover the message based on the
relation Yqi

X = Xq2i
Y . In HFE [23], the map G is given by

G(X ) =
∑

0≤i≤ j≤d
αi jXqi+q j

+
∑

0≤i≤ j≤d
βiXqi

+ γ.

where d ≥ 1 is an integer and αi j, βi, γ ∈ K . The inversion
of G is computed by the Berlekamp algorithm whose com-
plexity depends on the degree of G (see e.g. Chapter 20 of
[26]). Since the degree of G is at most 2qd , the numbers q, d
cannot be too large. It is known that the complexity of the
min-rank attack to recover (partial information of) T depends
on d and is estimated by O(

(
n+d+2
d+2

)w
) where 2 ≤ w < 3 is

the exponent of the Gaussian elimination [6], [19]. Then
HFE with small d is not secure against the min-rank at-
tack. Furthermore, it is also known that the Gr’́obner basis
algorithm can recover the message of HFE effectively if d
is small [9], [13], [16]. In fact, the degree of regularity
of the system { f1(x) − y1, . . . , fn(x) − yn} is bounded by
1
2 (q − 1)⌊logq (2qd − 1) + 1⌋ + 2 [9], [16]. This means that
HFE is not secure when q and d are small.

In both Matsumoto-Imai’s scheme and HFE, the poly-
nomial map G is given by a univariate (N = 1) polynomial
of higher degree. On the other hand, there have been MPKCs
such that G is multivariate (N > 1) and quadratic, namely

G(X1, . . . , XN )
= (G1(X1, . . . , XN ), . . . ,GM (X1, . . . , XN ))t

is written by

Gl (X1, . . . , XN )

=
∑

1≤i≤ j≤N
α(l)
i j XiX j +

∑
1≤i≤N

β(l)
i Xi + γ

(l)

for 1 ≤ l ≤ M . For example, MFE [27] is an extension field
type MPKC such that (N, M) = (12, 15) and G is a special
type quadratic map to be inverted feasibly. In multi-HFE
[8], N = M are small enough and G is a randomly chosen
quadratic map. Since N, M ≥ 1 are small, the complexity of
inverting G is not large (see Table 1 of [8] for the efficiency
of multi-HFE). Unfortunately, MFE is also broken by the
linearlization attack [10] and multi-HFE with small N is not
secure against the min-rank attack [6]. In fact, the complexity
is estimated by O

((
n+N+1
N+1

)ω)
= O

(
r (N+1)w

)
in Proposition

13 of [6].

3. Proposed Attack

In this section, we propose our attack for odd q. Before
describing it, we give several notations and lemmas as a
preparation of our attack.

3.1 Preliminary

3.1.1 Finite Fields k and K

Recall that k is a finite field of order q and K is its r-extension.
The following lemma holds.

Lemma 3.1: Let a ∈ K . Then we have
(i) a ∈ K satisfies aq = a if and only if a ∈ k,
(ii) a + aq + · · · + aqr−1 ∈ k.

Proof. It is clear that aq = a for any a ∈ k. Since the number
of solutions of the equation xq − x = 0 is at most q = #k, we
see that (i) holds.

Let b := a + aq + · · · + aqr−1 . Since bq = aq + · · · +
aqr−1

+ a = b, (ii) follows immediately from (i). □

3.1.2 Matrices of k and K

For integers n1, n2 ≥ 1, let Mn1,n2 (k) be the set of n1 × n2
matrices of k entries. Denote by In ∈ Mn,n(k) the identity
matrix and by 0n1,n2 ∈ Mn1,n2 (k) the zero matrix. For sim-
plicity, we write Mn(k) := Mn,n(k) and 0n := 0n,n. For
an integer l ≥ 1, a matrix A = (ai j )i, j and a polynomial
g(t) = c0 + c1t + · · · + cdtd, put

A(l) :=
(
al
i j

)
i, j
, g(l) (t) := cl0 + cl1t + · · · + cldtd .

For square matrices A1 ∈ Mn1 (k), . . . , Al ∈ Mnl (k), the
direct sum A1 ⊕ · · · ⊕ Al means

A1 ⊕ · · · ⊕ Al :=
*..,

A1
. . .

Al

+//- ∈ Mn1+· · ·+nl (k).

Recall that r = [K : k] and choose a basis {θ1, . . . , θr }
of K over k. Define the matrix

ΘN :=
(
θ
qi−1

j IN
)

1≤i, j≤r
∈ Mn(K )
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and the sets of matrices

AN :=
{(

A(qi−1)
j

)
1≤i, j≤r

��� A1, . . . , Ar ∈ MN (K )
}
,

BN :=
{(

B(q j−1)
i

)
1≤i, j≤r

��� B1, . . . , Br ∈ MN (K )
}
,

CN :=
{ (

C (qi−1)
( j−i mod r )+1

)
1≤i, j≤r

��� C1, . . . ,Cr ∈ MN (K )
}
.

Then the following lemma holds.

Lemma 3.2: For any N ≥ 1, we have

AN =ΘN ·Mn(k),

BN =Mn(k) · Θ−1
N ,

CN =ΘN ·Mn(k) · Θ−1
N .

(1)

Proof. First, choose A = (Ai j )1≤i, j≤r ∈ Mn(k) arbitrary.
The (i, j)-block A′i j of ΘN A is

A′i j = θ
qi−1

1 A1j + · · · + θq
i−1

r Ar j .

Since A(q)
i j = Ai j , we have

A′i j = (θ1 A1j + · · · + θr Ar j )(qi−1) = (A′1j )
(qi−1) .

This means that ΘN A ∈ AN and then ΘN ·Mn(k) ⊂ AN .
Next, choose B = (B(q j−1)

i )1≤i, j≤r ∈ BN arbitrary. The
(i, j)-block B′i j of BΘN is

B′i j = Biθ j + B(q)
i θ

q
j + · · · + B(qr−1)

i θ
qr−1

j .

Due to (ii) of Lemma 3.1, we see that B′i j ∈ MN (k). This
means that BΘN ∈ Mn(k) and then BN ⊂ Mn(k) · Θ−1

N .

Choose C =
(
C (qi−1)

( j−i mod r )+1

)
1≤i, j≤r

∈ CN arbitrary.

The (i, j)-block C ′i j in C · ΘN is

C ′i j =C (qi−1)
(1−i mod r )+1θ j + · · · + C (qi−1)

r−i+1 θ
qr−1

j

=

(
C1θ j + · · · + Crθ

qr−1

j

) (qi−1)
= (C ′1j )

(qi−1) .

This means that CΘN ∈ AN and then CN ⊂ AN · Θ−1
N .

It is easy to see that all of the numbers of elements in
the sets Mn(k), AN , BN and CN coincide with qn2 . We
thus conclude that this lemma holds. □

3.1.3 Diagonalization

For a monic polynomial h(t) = c0 + c1t + · · ·+ cd−1td−1 + td

of degree d, let

C(h) :=
*.....,
0 · · · 0 −c0
1 0 −c1

. . .
...

0 1 −cd−1

+/////-
.

The matrix C(h) is called the companion matrix of h(t).
Then the following lemma holds.

Lemma 3.3: (Lemma 4.1 of [17]) For a matrix H ∈ Mn(k),
let h(t) := det(t · In −H) be the characteristic polynomial of
H and h(t) = h1(t) · · · hl (t) is the factorization of h(t) over
k. Suppose that h(t) is square free and put di := deg(hi (t))
for 1 ≤ i ≤ l. Then the following (i) and (ii) hold.
(i) There exists an invertible matrix P ∈ Mn(k) such that

P−1HP = C(h1) ⊕ · · · ⊕ C(hl).

(ii) If P1, P2 ∈ Mn(k) satisfy

P−1
1 HP1 = P−1

2 HP2 = C(h1) ⊕ · · · ⊕ C(hl),

then there exist matrices M1 ∈ Md1 (k), . . . , Ml ∈ Mdl (k)
such that

P−1
1 P2 = M1 ⊕ · · · ⊕ Ml .

3.2 Quadratic Forms

In this subsection, we study the structure of the quadratic
forms in the public key F when G is a quadratic map.

Recall that the public map F is constructed by

F = T ◦ ϕ−1
M ◦ G ◦ ϕN ◦ S,

where S : kn → kn, T : km → km are invertible affine maps,
G : KN → KM is a quadratic map and ϕN : kn → KN is a
one-to-one map. Since

ϕN = ψ
−1
N ◦ ΘN (2)

where ψN : KN → Kn is a map with ψN (α1, . . . , αN ) =
(α1, . . . , αN, α

q
1 , . . . , . . . , α

qr−1

N )t , the public key F is de-
scribed by

F = (T ◦ Θ−1
M ) ◦ (ψM ◦ G ◦ ψ−1

N ) ◦ (ΘN ◦ S),

namely

F (x) =
(
T ◦ Θ−1

M

)
·
(
G1 (ϕN (S(x))) , . . . ,

GM (ϕN (S(x))) ,G1 (ϕN (S(x)))q , . . . ,

. . . ,GM (ϕN (S(x)))q
r−1 ) t

.

(3)

Since G1(X ), . . . ,GM (X ) are quadratic forms of X =

(X1, . . . , XN )t , the polynomial Gj (X )q
i−1 is expressed by

Gj (X )q
i−1
=X̄ t

(
0(i−1)N ⊕ G(qi−1)

j ⊕ 0n−iN
)

X̄

+ (linear form of X (qi−1)),

where

X̄ := ψN (X ) =
(
X1, . . . , XN, Xq

1 , . . . , . . . , Xqr−1

N

) t
and G j ∈ MN (K ) is the matrix with Gj (X ) = X tG jX +



HASHIMOTO: ATTACK ON MPKC DERIVED FROM QUADRATIC FORMS OVER AN EXTENSION FIELD
21

(linear form of X ). Then, due to Lemma 3.2, the quadratic
forms f1(x), . . . , fm(x) in the public key F are described by

f l (x) =xt (ΘN S0)t
(
El ⊕ · · · ⊕ E (qr−1)

l

)
(ΘN S0)x

+ (linear form of x),
(4)

where S0 ∈ Mn(k) is the linear part of S (namely S(x) =
S0x + s) and E1, . . . , Em ∈ MN (K ) are given by

(E1, . . . , Em)t

=(T0Θ
−1
M )(G1, . . . ,GM, 0N, . . . , 0N )t,

(5)

where T0 ∈ Mm(k) is the linear part of T (namely T (y) =
T0 y + t).

3.3 Proposed Attack

According to the previous subsection, we see that the map

ϕM ◦ F ◦ ϕ−1
N : KN → KM

is described as a set of quadratic forms of X̄ =(
X1, . . . , XN, Xq

1 , . . . , . . . , Xqr−1

N

) t . Since the polynomials
G1(X ), . . . ,GM (X ) in the mapG : KN → KM are quadratic
forms of X = (X1, . . . , XN )t , there exist S′ ∈ Mn(k) and
T ′ ∈ Mm(k) such that the map

ϕM ◦ T ′ ◦ F ◦ S′ ◦ ϕ−1
N

= (ϕM ◦ T ′ ◦ ϕ−1
M ) ◦ (ϕM ◦ G ◦ ϕ−1

N ) ◦ (ϕN ◦ S′ ◦ ϕ−1
N )

is also a set of quadratic forms of (X1, . . . , XN ). Once such
S′ and T ′ are recovered, the attacker can obtain the desired
message or a dummy signature by solving a system of M
quadratic equations of N variables over K , not a system of
m quadratic equations of n variables over k. This means that
the advantage of extension field type construction is lost by
S′ and T ′.

In this subsection, we propose an attack to recover such
S′ and T ′ when q is odd.

Proposed Attack

Input: Public key F (x) = ( f1(x), . . . , fm(x))t .
Output: Two invertible matrices S′ ∈ Mn(k),T ′ ∈
Mm(k) such that

ϕM ◦ T ′ ◦ F ◦ S′ ◦ ϕ−1
N : KN → KM

is a quadratic map.

Step 1. Let F1, . . . , Fm ∈ Mn(k) be the symmetric
matrices with

f l (x) = xtFl x + (linear form of x).

Take two linear sums W1,W2 of F1, . . . , Fm such that W1
is invertible and put

W := W−1
1 W2.

Step 2. Compute the characteristic polynomial w (t) :=
det (t · In −W ) of W and factor w (t) over K . Choose a
polynomial w0(t) of degree N such that

w (t) = w0(t) · w (q)
0 (t) · · · w (qr−1)

0 (t).

Step 3. If w (t) is square free and w0(t) is irreducible,
go to the next step. If not, go back to Step 1.
Step 4. Find a matrix P0 ∈ Mn,N (K ) satisfying
w0(W )P0 = 0 and put

P :=
(
P0, P

(q)
0 , · · · , P(qr−1)

0

)
∈ Mn(k) · Θ−1

N .

Step 5. If P is invertible, go to the next step. If not, go
back to Step 4.
Step 6. Let F̂l := PtFlP. Find a matrix Q0 ∈ MM,m(K )
such that

Q0
*..,
F̂1
.
.
.

F̂m

+//- =
*..,
Ê1 ⊕ 0n−N

.

.

.

ÊM ⊕ 0n−N

+//- (6)

for some Ê1, . . . , ÊM ∈ MN (K ).
Step 7. If the matrix

Q :=
*....,

Q0
Q

(q)
0
.
.
.

Q
(qr−1 )
0

+////-
∈ ΘM ·Mm(k)

is invertible, go to the next step. If not, go back to Step
6.
Step 8. Output S′ = PΘN and T ′ = Θ−1

MQ.

We now explain why our attack is available. Due to the
equation (4), we can write the matrix W by

W = (ΘN S0)−1
(
W0 ⊕ · · · ⊕W (qr−1)

0

)
(ΘN S0) (7)

for some W0 ∈ MN (K ). Then the polynomial w (t) is

w (t) = det (t · IN −W0) · · · det
(
t · IN −W (qr−1)

0

)
.

If det (t · IN −W0) is irreducible, the polynomial w0(t) is

w0(t) = det
(
t · IN −W (ql )

0

)
(8)

for some 0 ≤ l ≤ r − 1. According to Lemma 3.3, we
see that there exists an invertible matrix L ∈ MN (K ) with
L−1W (ql )

0 L = C(w0) and it holds
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(
L ⊕ · · · ⊕ L(qr−1)

)−1 (
W0 ⊕ · · · ⊕W (qr−1)

0

)
·
(
L ⊕ · · · ⊕ L(qr−1)

)
= C(w0)(qr−l ) ⊕ · · · ⊕ C(w0)(qr−1)

⊕ C(w0) ⊕ · · ·C(w0)(qr−l−1) .

(9)

On the other hand, (i) of Lemma 3.3 tells that there exists
an invertible matrix P ∈ Mn(K ) with

P−1W P = C(w0) ⊕ · · · ⊕ C(w0)(qr−1) . (10)

It is easy to check that P ∈ Mn(k)Θ−1
N in Step

4 satisfies (10) by comparing the matrix W P with
P

(
C(w0) ⊕ · · · ⊕ C(w0)(qr−1)

)
. Applying (7), (9), (10) into

(ii) of Lemma 3.3, we get

ΘN S0P = σl
(
S̃ ⊕ · · · ⊕ S̃(qr−1)

)
, (11)

for some invertible matrix S̃ ∈ MN (K ), where

σ := *.,
1

.
.
.

1
1

+/- ⊗ IN ∈ Mn(k)

is a permutation matrix. Then the matrix F̂l in Step 6 satisfies

F̂l =PtFlP

=(ΘN S0P)t
(
El ⊕ · · · ⊕ E (qr−1)

l

)
(ΘN S0P)

=Ẽl ⊕ · · · ⊕ Ẽ (qr−1)
l

(12)

for some Ẽl ∈ MN (K ).
From the equations (4), (5) and Lemma 3.2, we see that

*....,
E1 ⊕ · · · ⊕ E (qr−1)

1
...

Em ⊕ · · · ⊕ E (qr−1)
m

+////-

= (T0Θ
−1
M )

*..............,

G1 ⊕ 0n−N
.
.
.

GM ⊕ 0n−N
0N ⊕ G

(q)
1 ⊕ 0n−2N
.
.
.
.
.
.

0n−N ⊕ G
(qr−1 )
M

+//////////////-
.

This means that, if the matrix Q0 satisfies

Q0T0Θ
−1
M =(T̃, 0M,m−M ), (0M, T̃, 0M,m−2M ),

. . . , or (0M,m−M, T̃ )
(13)

for some T̃ ∈ MM (K ), the equation (6) holds for some
Ê1, . . . , ÊM ∈ MN (K ). Then the matrix Q0 in Step 6 exists
and it is found by the Gaussian elimination. From (13), we
see that the matrix Q in Step 7 satisfies

QT0Θ
−1
M = σ

l1
(
T̃ ⊕ · · · ⊕ T̃ (qr−1)

)
(14)

for some 0 ≤ l1 ≤ r − 1. Combining (4), (11) and (14), we
can conclude that the map

ϕM ◦ T ′ ◦ F ◦ S′ ◦ ϕ−1
N

=ψ−1
M ◦ (ΘM ◦ T ′ ◦ T ◦ Θ−1

M ) ◦ (ψM ◦ G ◦ ψ−1
N )

◦ (ΘN ◦ S ◦ S′ ◦ Θ−1
N ) ◦ ψN

=ψ−1
M ◦ (Q ◦ T ◦ Θ−1

M ) ◦ (ψM ◦ G ◦ ψ−1
N )

◦ (ΘN ◦ S ◦ P) ◦ ψN

is a quadratic map from KN to KM . □

3.4 Complexity and Experiments

In this subsection, we estimate the complexity of our attack
and describe experimental results.

3.4.1 Complexity

Step 1 includes several basic operations of n × n matrices
over k. Then its complexity is estimated by≪ n3(log q)2 if
one uses naive algorithms for multiplications of elements of
k and matrices over k.

Step 2 is for computing the characteristic polynomial
of n× n matrix W and factoring a polynomial w (t) of degree
n over K (r-extension of k). The numbers of field operations
of these computations are known to be ≪ n3 by Keller-
Gehrig’s algorithm [18] and≪ n3+n2 log qr by Berlekamp’s
algorithm [3], [4] respectively. Then the complexity of Step
2 is≪ (r2n3 + r3n2 log q) · (log q)2.

It is well known that the probability that a randomly
chosen polynomial of degree N is irreducible is about N−1

[20]. In our case, while it is difficult to prove that W0 given
in Step 2 is distributed randomly, Table 1, which is based
on the result of 10,000 times experiments, shows that the
probability that w0(t) satisfies the condition in Step 3 is
about N−1. Then the attacker will repeat Step 1–3 about N
times on average.

Step 4 is for finding a kernel matrix of w0(W ). Before
computing the kernel, we need to compute W2,W3, . . . ,W N

for determining w0(W ). Furthermore, the number of opera-
tions to compute the kernel is known to be ≪ n3 [2]. Then
the complexity of Step 4 is≪ Nn3·r2(log q)2 = n4r (log q)2.
Step 5 is for checking invertibility of an n× n matrix over K
with the complexity≪ n3 · r2(log q)2.

In Step 6, the attacker computes 2m times multiplica-
tion of n × n matrices over K to compute F̂ and use the
Gaussian elimination to find Q0. Then the complexity of
Step 6 is ≪ m · n3 · r2(log q)2. Step 7 is for checking

Table 1 Probability (%) that det (t · IN −W0) is irreducible for q = 31.
N 2 3 4 5 6 7

Prob. 49.2 33.4 25.2 19.5 17.4 13.7

8 9 10 11 12 · · ·
12.7 11.2 9.9 9.0 8.2 · · ·
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Table 2 Experiments of our attack for q = 31.
n N r min-rank our attack
30 3 10 1h38m 1.01s
33 3 11 — 1.57s
36 3 12 — 1.75s
39 3 13 — 3.82s
42 3 14 — 6.58s
45 3 15 2d1h 5.08s
48 3 16 — 7.26s
51 3 17 — 11.4s
54 3 18 9d16h 14.5s
57 3 19 — 19.6s
60 3 20 — 26.3s
50 5 10 — 7.58s
55 5 11 — 10.7s
60 5 12 — 12.9s
65 5 13 — 24.8s
70 5 14 — 46.4s
75 5 15 — 38.8s
80 5 16 — 64.7s
85 5 17 — 83.3s
90 5 18 — 103s
72 3 24 — 61.8s
72 4 18 — 43.0s
72 6 12 — 27.9s
72 8 9 — 23.9s
72 9 8 — 25.5s
72 12 6 — 16.2s
72 18 4 — 4.16s
72 24 3 — 2.44s

invertibility and then its complexity is≪ m3 · r2(log q)2.
We thus conclude that the total complexity of our at-

tack is roughly estimated by≪ (r2n3 + r3n2 log q)(log q)2 ·
N + rn4(log q)2 + n3mr2(log q)2 + m3r2(log q)2 ∼ (rn4 +
r2n3 log q + r2n3m + r2m3)(log q)2 on average. When N
and M are similar and q is not much larger than 2N , it is
O

(
n4r2(log q)2

)
, namely our attack works in polynomial

time, and it is faster than the min-rank attack
(
n+N+1
N+1

)w
[6]

especially for large N .

3.4.2 Experiments

We implemented our attack by using Magma [7] ver.2.15-10
on Windows 7, Core-i7 2.67 GHz and succeeded to recover
equivalent secret keys. Table 2 describes the running times
of our attack for q = 31 and N = M . We also attach on
Table 2 the running times of the min-rank attack given in
[6] by using Magma ver.2.16-10 on 2.93 GHz IntelRO XeonRO

CPU. This table shows that our attack can recover equivalent
keys much faster than the min-rank attack for N = 3 and is
able to recover them also for larger N with feasible running
times. We thus claim that the extension field type MPKCs
with quadratic G is vulnerable against our attack and our
attack works much faster than the min-rank attack.

3.5 Remarks on Even Characteristic Cases

When q is odd, we can choose symmetric matrices F1, . . . , Fn

as coefficient matrices of the quadratic forms. However,

if q is even, Fl cannot be symmetric and we should use
Fl + Ft

l
instead of Fl . It is easy to see that these matrices

are symmetric and their diagonal entries are zero. For such
matrices, the following lemma holds.

Lemma 3.4: Let k be a finite field of even characteristic,
N ≥ 1 an integer and A, B ∈ MN (k) symmetric matrices.
Suppose that the diagonal entries of A and B are zero. Then
we have
(i) if N is odd then det A = det B = 0,
(ii) if N is even and det A , 0, then the polynomial
det (t · IN − A−1B) is a square of another polynomial of de-
gree N/2.

Proof. When k is of even characteristic, the determinant of
the matrix X = (xi j )1≤i, j≤N ∈ MN (k) is given by

det X =
∑

σ∈SN

x1σ(1) x2σ(2) · · · xNσ(N ), (15)

where SN is the set of all permutations among 1, . . . , N .
Now, let i j := σ−1( j) for a given σ ∈ SN and 1 ≤ j ≤ N .
Since j = σ(i j ) and {i1, . . . , iN } = {1, . . . , N }, we have

x1σ−1 (1) x2σ−1 (2) · · · xNσ−1 (N )

=xσ(i1)i1 xσ(i2)i2 · · · xσ(iN )iN

=xσ(1)1xσ(2)2 · · · xσ(N )N

(16)

From the equation (16) and the assumption that X is sym-
metric, we see that

x1σ−1 (1) x2σ−1 (2) · · · xNσ−1 (N )

=x1σ(1) x2σ(2) · · · xNσ(N ) .
(17)

The equation (17) means that, since the right hand side of
(15) includes both the terms corresponding to σ and σ−1

if σ2 , id, the terms corresponding to σ with σ2 , id
vanish when k is of even characteristic. Furthermore, since
x11, . . . , xNN are zero, we have

det X =
∑

σ∈S(2)
N

x1σ(1) x2σ(2) · · · xNσ(N ), (18)

where

S
(2)
N := {σ ∈ SN | σ2 = id, σ(i) , i, 1 ≤ ∀i ≤ N }.

When N is odd, it is clear thatS(2)
N is empty and then (i) holds.

When N is even, there are pairs (i1, j1), . . . , (iN/2, jN/2) such
that σ(il) = jl , σ( jl) = il and {i1, . . . , iN/2, j1, . . . , jN/2} =
{1, . . . , N } for any σ ∈ S(2)

N . Thus we have

det X =
∑

σ∈S(2)
N

(
xi1 j1 · · · xiN /2 jN /2

)2

=

( ∑
σ∈S(2)

N

xi1 j1 · · · xiN /2 jN /2

)2

, (19)

where {(i1, j1), . . . , (iN/2, jN/2)} depends on σ. Thus
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(ii) follows immediately from (19) and the fact that
det (t IN − A−1B) = (det A)−1 det (t A − B). □

This lemma shows that our attack given in §3.3 cannot
be used directly for even characteristic cases, because W2 in
Step 1 cannot be invertible when N is odd and w0(t) in Step
3 cannot be irreducible when N is even. We need to arrange
our attack for even characteristic cases in the future.

4. Conclusion

In the present paper, we propose an attack on general exten-
sion field type MPKCs with quadratic G for odd characteris-
tic cases. Our attack can recover partial information S′,T ′ of
the secret affine maps S,T in polynomial time. Once S′,T ′

are recovered, the attacker can find the plain-text for a given
cipher-text by solving a system of M quadratic equations of
N variables. Though, in general, solving such a system of
quadratic equations is in exponential time for N, M , it is al-
most same to inverting G in the decryption process and is
much faster than inverting F directly. This implies that the
advantage of such a construction of MPKC was lost at least
the case that G is quadratic and q is odd. While our attack is
not presently available on even characteristic cases, it might
be improved in near future. We thus cannot recommend ex-
tension field type MPKCs derived from a quadratic map as
a practical MPKC.
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