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Abstract

Hydrothermal fluids were collected from five hydrothermal fields around the Southern

Mariana Trough backarc spreading center for chemical and isotopic analyses. Yamanaka

site was interpreted as inactive, so we present results from Snail, Archaean, Pika and

Urashima sites. The slightly low pH and negative alkalinity suggests a little bit input of

magmatic volatiles, supported by high CO2 concentrations. Consequently low pH would

lead to the hydrothermal fluids rich in Fe compared to the MOR hydrothermal fluids.
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45.1 Introduction

The southern part of the Mariana Trough is an active backarc

spreading center that had propagated southward (Fig. 45.1a)

(Fryer 1995). Several hydrothermal fields have been mapped

around 12�500N in an alignment perpendicular to the spread-

ing axis (Fig. 45.1b) (Wheat et al. 2003; Ishibashi et al. 2004;

Utsumi et al. 2004; Kakegawa et al. 2008; Nakamura et al.

2013). This area is far from continents and large islands, so

terrestrial organic matter is absent, and the primary produc-

tion in surface seawater is poor. On the seafloor, sinking

organic matter is very sparse, but flourishing ecosystems

are sustained around hydrothermal fields despite high

temperatures and pressures (Deming and Baross 1993;

Takai and Horikoshi 1999; Kelley et al. 2002). Ecosystems

utilizing Fe for energy have been extensively documented,

especially around low-temperature hydrothermal vents (e.g.,

Boyd and Scott 2001; Edwards 2004; Edwards et al. 2003,

T. Toki (*)

Department of Chemistry, Biology and Marine Science, Faculty of

Science, University of the Ryukyus, 1, Senbaru, Nishihara, Okinawa

903-0213, Japan

e-mail: toki@sci.u-ryukyu.ac.jp

J.-i. Ishibashi

Department of Earth and Planetary Sciences, Faculty of Sciences,

Kyushu University, 6-10-1, Hakozaki, Fukuoka 812-8581, Japan

T. Noguchi

Marine Technology and Engineering Center (MARITEC), Japan

Agency for Marine-Earth Science and Technology (JAMSTEC),

2-15, Natsushima-cho, Yokosuka 237-0061, Japan

M. Tawata

Department of Physics and Earth Sciences, Faculty of Science,

University of the Ryukyus, 1, Senbaru, Nishihara, Okinawa 903-0213,

Japan

The online version of this chapter (doi:10.1007/978-4-431-54865-2_45)

contains supplementary material, which is available to authorized users.

U. Tsunogai

Graduate School of Environmental Studies, Nagoya University,

D2-1(510), Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

T. Yamanaka

Graduate School of Natural Science and Technology, Okayama

University, 1-1, Naka 3-chome, Tsushima, Kita-ku,

Okayama 700-8530, Japan

K. Nakamura

Precambrian Ecosystem Laboratory (PEL), Japan Agency for

Marine-Earth Science and Technology (JAMSTEC), 2-15,

Natsushima-cho, Yokosuka 237-0061, Japan

Present address: Department of Systems Innovation,

School of Engineering, The University of Tokyo, 7-3-1 Hongo,

Bunkyo-ku, Tokyo 113-8656, Japan

J.-i. Ishibashi et al. (eds.), Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept,
DOI 10.1007/978-4-431-54865-2_45, # The Author(s) 2015

587

mailto:toki@sci.u-ryukyu.ac.jp
http://dx.doi.org/10.1007/978-4-431-54865-2_1


Fig. 45.1 (a) A topographic map showing the Izu-Bonin-Mariana

trench/arc/back-arc system on the eastern edge of the Philippine Sea

plate. A box denotes the area of Fig. 45.1b. (b) A topographic map

around 12�500N. The stars represent the positions of hydrothermal

fields in this study. S, Y, A, P, and U denote the initial letter of Snail,

Yamanaka, Archaean, Pika, and Urashima sites, respectively
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2011; Little et al. 2004; Kato et al. 2009; Langley et al. 2009;

Toner et al. 2009). Ecosystems based on metabolism of

inorganic materials are of interest for their potential insight

into the origins of life (e.g., Alt 1988; Juniper and Fouquet

1988; Duhig et al. 1992; Juniper and Tebo 1995; Hofmann

and Farmer 2000; Reysenbach and Cady 2001).

In the context of the TAIGA project, hydrothermal activ-

ity in the Southern Mariana Trough is recognized as Sulfur

TAIGA and Iron TAIGA (Urabe et al. Chap. 1), and the

project aims to elucidate what kind of ecosystems are preva-

lent, what kind of metabolisms they employ, and what kind

of chemical environments they live in (Urabe et al. 2009). In

this tectonic setting, in which hydrothermal activities are

extending southward, how ecosystems propagate may shed

light on more general questions about the evolution of life

processes. Also, a fundamental question about mass flux at

Earth’s surface is the influence of subducting materials and

magmatic volatiles. Extremely acidic fluids affected by mag-

matic volatiles raise the solubility of metals and mobilize

them from rocks to fluids (Gamo et al. 1997b, 2006; Gena

et al. 2001; Yang and Scott 2006). This aspect of the metal

supply may have a great influence on Fe-utilizing

ecosystems. It was with these topics in mind that we

investigated the chemical and isotopic compositions of

hydrothermal fluids in the Southern Mariana Trough.

45.2 Geological Setting

In the Mariana Trough, the Pacific plate subducts beneath

the Philippine Sea plate, and the shape of the trough is

convex to the east as a result of backarc spreading

(Fig. 45.1a). Spreading activity started between 5 and

10 Ma (Hussong and Uyeda 1981; Karig 1971; Bibee et al.

1980; Eguchi 1984; Yamazaki and Stern 1997), and the

northern part of the Mariana Trough represents the early

stage of rifting of a backarc basin (Yamazaki et al. 1993).

The central part of the Mariana Trough, from 16� to 20�N,
represents the early stage of backarc basin spreading, and the

volcanic arc and backarc are clearly distinguishable (e.g.,

Hart et al. 1972; Hawkins 1977; Fryer et al. 1981; Natland

and Tarney 1981). The backarc is very close to the volcanic

arc south of 16�N, and the spreading center of the backarc is
ambiguous south of 12.5�N (Hawkins 1977; Smoot 1990).

The hydrothermal fields in this study are located around

13�N. Five hydrothermal systems have been discovered

around 13�N, which are aligned perpendicular to the axis

(Fig. 45.1b). The Snail and Yamanaka sites are on the

spreading axis, and the Archaean, Urashima, and Pika sites

are off the axis. Around the area, hydrothermal activities

have been documented in the TOTO caldera (Gamo et al.

2004), Forecast vent field (Johnson et al. 1993), and Alice

Springs field (Craig et al. 1987; Gamo 1993; Gamo et al.

1997a). Descriptions of these hydrothermal systems are

found in the InterRidge Vents Database (Beaulieu 2013).

45.2.1 Snail Site

Snail site is on the spreading axis (12�57.2140N,
143�37.1470E, depth: 2,860 m) (Fig. 45.1b), where hydro-

thermal fluids as hot as 248 �C were observed in 2003

(Wheat et al. 2003). However, most of the seafloor around

the site is covered by snails exposed to low-temperature fluid

around 100 �C, and covered by a yellow microbial mat and

shimmering fluid below 100 �C (Wheat et al. 2003). The

microbial mat may be composed of iron hydroxide and

associated with Fe-oxidizing bacteria (Kato et al. 2010). In

2004 and 2010, the Benthic Multicoring System (BMS)

penetrated several meters below the seafloor, and basalt

was recovered (Urabe et al. 2004). In 2012, an ROV investi-

gation found that hydrothermal fluid of 45 �C was

discharging from the casing pipe that was placed in the

BMS drilling hole in 2004 (NT12-24 Cruise Report).

45.2.2 Yamanaka Site

Yamanaka site is on a mound about 30 m high on the

spreading axis (12�57.60N, 143�36.70E, depth: 2,830 m),

1 km northwest of Snail (Fig. 45.1b). Observations have

documented many sea anemones and dead chimneys as

well as shimmering fluid below 20 �C seeping from the

rocky seafloor (Kakegawa et al. 2008). Magnetic mapping

in 2009 showed strong magnetization here, suggesting that

hydrothermal alteration is weak (Fujii et al. 2013). Based on

these facts, Yamanaka has been considered to be past its

peak of hydrothermal activity (Yoshikawa et al. 2012).

45.2.3 Archaean Site

Archaean site is on a sulfide mound ~100 m high that is 2 km

from the spreading axis (12�56.350N, 143�38.00E, depth:

2,990 m) (Fig. 45.1b). The ROV ROPOS, during cruise

TN167A in 2004, documented black smokers venting fluid

at temperatures up to 343 �C (Ishibashi et al. 2004). The BMS

drilling campaign in 2010 recovered basalt and andesite from

the base of the mound (Nakamura et al., Appendix 3-A1).

45.2.4 Pika Site

Pika site is on a 75 m-high knoll, with two peaks 5 km from

the spreading axis (12�55.10N, 143�38.90E, depth: 2,830 m)

(Fig. 45.1b). The manned submersible Shinkai 6500, during
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cruise YK03-09 in 2003, documented a black smoker

venting high-temperature fluid up to 330 �C at the top of

the western peak of the knoll and no hydrothermal activity

on the eastern peak (Utsumi et al. 2004). In 2004 the BMS

campaign recovered andesite from borehole APM03

(Kakegawa et al. 2008), which means drilling site No.3 of

Archaean Park Project in Mariana (Urabe et al. 2001).

45.2.5 Urashima Site

Urashima site is on a mound several meters high 500 m north

of Pika (12�55.300N, 143�38.890E, depth 2,922 m)

(Fig. 45.1b), and several gray smokers venting hydrothermal

fluids as hot as 280 �C were documented by Shinkai 6500

during cruise YK10-10 in 2010 (Nakamura et al. 2013). A

strong negativemagnetic anomalywas observed by the auton-

omous underwater vehicle (AUV) Urashima in 2009 (Seama

et al. Chap. 17), suggesting demagnetization by hydrothermal

alteration (Rona 1978; Tivey and Johnson 2002). The site

includes black dead chimneys, red-brown shimmering

chimneys, and areas of yellow microbial mat exposed to

low-temperature hydrothermal fluids. The microbial mat is

probably composed of iron hydroxide like that at Snail.

45.3 Materials and Methods

45.3.1 Sampling Methods

Hydrothermal fluids were collected during YK03-09 (Octo-

ber, 2009), TN167A (March, 2004), YK05-09 (July, 2005),

YK10-10 (August, 2010), YK10-13 (October, 2010), and

NT12-24 (September, 2012) (Suppl. 45.1a and 45.1b)

using the ROCS and the WHATS (Tsunogai et al. 2003;

Saegusa et al. 2006). The WHATS is multi-bottle gastight

sampling system, which avoids degassing and contamination

by tightly closing the valves of sample bottles in situ. During

sampling, the bottle inlet was held as close as possible to the

hydrothermal vent, but in typical operation the inlet some-

times drops off the vent and draws in seawater. With allow-

ance for a small degree of seawater admixture, the sample

represents the average composition of hydrothermal fluid

during the sampling period. The fluid temperature was

recorded during sampling. The samples were collected

with two bottles at each vent, one for gas analyses and the

other for fluid analyses.

The sample for fluid analyses was first subsampled into

two 5-mL vials for measurement of pH, alkalinity, and H2S

concentration. The remaining fluid was then filtered using a

0.45-μm pore-size disk filter attached to a plastic syringe and

distributed into 15- and 30-mL plastic bottles. The 15-mL

subsample was measured for NH4
+ and Si concentrations on

board, and Cl� and SO4
2� concentrations on land. The 30-

mL subsample was combined with 300 μL of 3N HNO3 on

board the tender ship and then measured for major and minor

elements on shore.

The sample bottle for gas analyseswas processed as soon as

possible (Konno et al. 2006); the fluid in the bottle was trans-

ferred to a 300-mL evacuated glass container, then acidified

with amidosulfuric acid to convert all dissolved carbonate

species to CO2 in the headspace of the container. The fluid

was treated with sufficient HgCl2 to thoroughly convert H2S

to HgS in the vacuum line. The gas phase was transferred to a

50-mL evacuated stainless steel container for gas analyses

on shore, and then the residual fluid in the container was

filtered for measurement of major elements on shore.

45.3.2 Analysis

The pH was measured by electrode with a precision of�0.02

(Gieskes et al. 1991). The calibration was done using buffers

of pH 4.01 and pH 6.86 once a day before the measurements.

Alkalinity was measured by HCl titration, which endpoint

was determined by the Gran’s plot, with a precision of�2 %

(Gieskes et al. 1991). The concentration of H2S was

measured by colorimetry using methylene blue with a preci-

sion of �10 %. Ammonia concentration was measured by

colorimetry using phenol blue with a precision of�8 %. The

Si concentration was determined by colorimetry using

molybdate blue with a precision of �1 %. Chlorinity was

analyzed by the Mohr method with a precision of �1 %. The

SO4
2� concentration was determined by ion chromatography

with a precision of�4 %. Major and minor elements (Na, Ca,

Mg, Sr, Ba, Mn, Fe, Si, B, and Li) were analyzed by

inductively coupled plasma atomic emission spectroscopy

(ICP-AES). The K concentration was analyzed by atomic

absorption spectrometry. The Na concentration was also

calculated independently on the basis of charge balance.

Gas concentrations of O2, N2, CO2, H2, and He were

measured by using gas chromatography with a thermal con-

ductivity detector. CH4 concentration and its stable carbon

isotope ratio were determined with a continuous-flow iso-

tope ratio mass spectrometer (CF-irMS) (Tsunogai et al.

2000). The hydrogen isotope ratio (D/H) of CH4 was

analyzed by using a CF-irMS with a precision of �10 ‰.

The hydrogen isotope ratio of H2 was analyzed by using a

CF-irMS with a precision of �4 ‰ (Komatsu et al. 2011).

Helium isotope ratios (3He/4He) were measured by using

noble gas mass spectrometry with a precision of �2 %

(Sano et al. 2006). The ratio of 4He to 20Ne was determined

by using quadrupole mass spectrometry with a precision of

�10 % (Sano et al. 2006). Dissolved organic matter was

measured with a Shimadzu TOC-5000 total organic carbon

analyzer with a high-temperature catalytic method.
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45.4 Results

The analytical results for hydrothermal fluids from the five

sites are shown in Suppl. 45.1a for fluid chemistry and

Suppl. 45.1b for gas chemistry, together with the maximum

and average temperatures recorded during sampling.

45.4.1 Calculation of End-Member
Compositions

Graphs of the concentrations of each chemical component

relative to Mg concentration are shown in Fig. 45.2. Under

the assumption that pure hydrothermal fluid is free of Mg, its

chemical composition was calculated as the y-axis intercept

of linear relationship among data plots (Von Damm 1995).

The Yamanaka site yielded only low-temperature hydrother-

mal fluids with compositions that could not be distinguished

from that of seawater, and this site is not discussed further.

End-member concentrations of the hydrothermal fluids in

the remaining four sites are listed in Table 45.1 for aqueous

components and Table 45.2 for volatile components, and

discussed below.

The end-member carbon isotopic composition of meth-

ane, δ13C(CH4), was estimated as the intercept of the y-axis

on a graph of δ13C(CH4) against the reciprocal of CH4

concentration, as shown in Fig. 45.3 (Keeling 1961).

Estimates of this type are based on the assumption that the

background concentration is negligible. In the case of

methane, background CH4 in seawater is several nM,

whereas CH4 in hydrothermal fluid is several hundred μM,

a difference of five orders of magnitude.

However, because the background CO2 concentration is

substantial in seawater (2 mM) compared to hydrothermal

fluid (several tens mM), we relied on a method used in

atmospheric chemistry to evaluate end-member δ13C(CO2)

(Miller and Tans 2003). As illustrated in Fig. 45.4, a product

that CO2 concentration multiplies δ13C(CO2) is plotted to

CO2 concentration, when the slope can be taken as δ13C
(CO2) of the source.

Helium in hydrothermal gases is a mixture of mantle, crust,

and seawater contributions. Because 20Ne is negligible in rock,

helium isotope ratios can be corrected for seawater admixture

using 4He/20Ne ratios, as shown in Fig. 45.5 (Craig et al. 1978).

45.4.2 End-Member Concentrations
of Dissolved Constituents

Maximum fluid temperatures were as follows: Snail, 116 �C;
Archaean, 343 �C; Pika, 330 �C; Urashima, 280 �C
(Table 45.1).

The lowest pH ranged from 2.8 to 3.5, and only at Snail

was it greater than 3. Except for Snail, these values are lower

than that of hydrothermal fluids in mid-ocean ridges ranging

about 3–3.5 on average (Von Damm 1995).

The end-members for all sites have negative alkalinity;

�0.94 for Snail, �1.41 for Archaean, �1.14 for Pika, and

�1.44 for Urashima. These data suggests that these hydro-

thermal fluids have substantial strong acidity compared with

hydrothermal fluid in the mid-ocean ridge setting, where the

fluid is rather neutralized during high temperature fluid-rock

interactions. This view is supported by relatively low pH in

Southern Mariana Trough hydrothermal fluids.

The Si concentrations were measured by colorimetry on

board and by ICP-AES on land, and both end-member

concentrations were consistent with each other. Values lay

in a narrow range between 16.4 and 17.0 mM except for

Snail, where the Si concentration was greater than 18 mM.

The end-member Cl� concentrations deviated from that

of seawater (550 mM) at all sites. At Archaean, the Cl� end-

member in 2004 (466 mM) had a higher concentration than

those in 2005 and 2010 (407 mM). At Pika, high-Cl� fluids

(603 mM) were consistently reported after its discovery in

2003, but a low-Cl� fluid (460 mM) was recovered in 2010

(Table 45.1). Such Cl� deviations from that of seawater have

been reported in many hydrothermal systems in the world,

which are thought to be due to phase separation beneath the

seafloor (Von Damm 1995). Especially, higher-Cl� and

lower-Cl� fluids than that of seawater have been sampled,

like those at Pika, suggesting that active phase separation

beneath the seafloor has occurred there, as mentioned in

many hydrothermal systems in the world (Von Damm

1995). A positive Cl� deviation from that of seawater, like

those at Urashima, can be due to input of HCl derived from

magmatic volatiles, as mentioned at DESMOS hydrothermal

field in Manus Basin (Gamo et al. 1997b). In that case, the

hydrothermal fluids also have extremely low pH and an

excess of SO4
2� (Gamo et al. 1997b), and we found that

hydrothermal fluids from Urashima site have an end-

member pH slightly lower than 3 as mentioned above

(Table 45.1).

The Na concentration was independently calculated by

charge balance as well as measured by ICP-AES. The calcu-

lated values were more clearly linear relative to Mg

concentrations than the measured values. Although the

errors of the calculated concentrations are larger than those

of the measured concentrations, we took the calculated

values as those of the preferred end-members. The end-

member value for Snail was close to that of seawater

(460 mM). The end-member Na concentration for Archaean

(345 mM) was lower than that of seawater. At Pika, the end-

member value in 2003 and 2005 was higher than that of

seawater, although sample D1219 W-4, taken in 2010, had a

lower value than seawater (Table 45.1). For Urashima, the
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Fig. 45.2 A plot of each chemical component vs. Mg concentration in the hydrothermal fluid for each site in the Southern Mariana Trough in

this study
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Fig. 45.2 (continued)
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end-member Na concentration (515 mM) was higher than

that of seawater.

For Ca concentrations, the end-members for all four sites

had higher values than that of seawater (10 mM). At

Archaean, the end-member Ca concentration for 2004 was

higher than the one for 2005 and 2010, which is similar to

our finding for Cl� concentrations.

For K concentrations, end-member values for all sites fell

into a narrow range (31.3–32.8 mM), and the values for Pika

and Archaean were significantly higher than those for Snail

and Urashima.

For Fe concentrations, the end-members for all four sites

had higher concentrations than that of seawater (<1 nM).

The end-member value was 0.64 mM for Snail, 2.55 mM

for Archaean in 2003–2005, 3.00 mM for Archaean in

2010, 7.38 mM for Pika, and 6.37 mM for Urashima

(Table 45.1). The end-member Fe concentration at Snail

site is as low or lower when compared to those in the

Fig. 45.2 (continued)
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hydrothermal fluids in EPR21�N (0.2–2.4 mM; Von Damm

et al. 2002), but otherwise those in the Southern Mariana

Trough appear higher as compared with those in EPR21�N.
Fe leaches from rocks at low pH attributed to an input of

magmatic volatiles (Mottl et al. 1979; Hajash and Chandler

1982; Seyfried and Janecky 1985; Seewald and Seyfried

1990). The cause of Fe enrichment in Pika, Urashima, and

Archaean sites would be low pH coming from an input of

magmatic volatiles.

The end-members of major elements had two

concentrations for both Pika and Archaean and unique

values for both Snail and Urashima (Table 45.1).

45.4.3 Distribution of Gas Components

Dissolved oxygen concentrations showed nonlinear

relationships to Mg concentrations, so end-member

concentrations were not computed (Fig. 45.2). We just

explain the concentration for each Mg concentration

(Suppl. 45.1b and Fig. 45.2). At Snail, samples contained

Mg concentrations higher than 40 mM and had oxygen

concentrations higher than that of seawater, ranging around

100–200 μM. At Archaean, samples had Mg concentrations

lower than 40 mM and oxygen concentrations lower than

20 μM. The single sample from Pika contained 12 mM Mg

and an oxygen concentration of 18 μM. Urashima yielded

samples containing from 7 to 54 mM Mg, and oxygen was

not detected in samples with less than 40 mM Mg.

Dissolved nitrogen was detected in all samples, but its

concentrations showed nonlinear relationships to Mg

concentrations (Fig. 45.2). At Snail, all samples contained

Mg concentrations above 40mM, and nitrogen concentrations

were higher than that of seawater (500–1,000 μM). At

Archaean, two samples had Mg concentrations around 10

and 30 mM, and the N2 concentration of the latter was higher

than that of the former. The single sample from Pika had a

Mg concentration of 12 mM and a N2 concentration of about

1 mM.

End-member dissolved CO2 concentrations were calcu-

lated for each site from their relation to Mg concentrations

(data for Archaean did not fit a linear relation). The end-

member values were all higher than that of seawater

(2.4 mM). At Snail, although the majority of samples had

values close to that of seawater, the end-member value,

78.8 mM, was highest among our sites. Although we did

not calculate an end-member concentration for Archaean,

the range of CO2 concentrations there was 6.4–32.6 mM. For

Pika, samples taken in 2005 had an especially high value

(69.1 mM); whereas the end-member concentration for

2003, 2004, and 2010 samples was much lower (33.7 mM).

For Urashima, the end-member value was 23.2 mM. The

reported range of CO2 concentrations in hydrothermal fluids

from EPR are lower than 10 mM (Von Damm et al. 2002),

and so the observed CO2 concentrations in hydrothermal

fluids in the Southern Mariana Trough in this study are

relatively higher than those in EPR. Such CO2 enrichments

could be influenced by a little input of magmatic volatiles, as

mentioned in hydrothermal systems related to arc systems

(Sakai et al. 1990; Gamo 1993; Tsunogai et al. 1994; Gamo

et al. 2006; Lupton et al. 2008).

The end-member value of CH4 for Snail was 29.6 μM,

although the error was large because values for most

samples were close to seawater values. For Archaean, the

data were too scattered to calculate an end-member con-

centration, but sample D903 W-3, from a clear smoker vent

with a maximum temperature of 117 �C, had the highest

concentration of CH4 in this study, 115 μM. For Pika,

the 2005 end-member concentration (29.9 μM) was higher

than the end-member concentration for the other years

(7.2 μM). The end-member value for Urashima was

10.8 μM.

Hydrogen concentrations were not linearly related to Mg

concentrations, and we did not calculate H2 end-member

concentrations. The maximum H2 concentrations were

549 μM at Snail, 466 μM at Archaean, 301 μM at Pika and

105 μM at Urashima.

Helium was not detected in Snail samples. For Archaean,

the relation of He to Mg concentrations was not clearly

linear, but the end-member concentration was calculated to

be 2.1 μM. Although we have only one sample from Pika,

the end-member value was 1.8 μM. For Urashima, given the

helium concentration in seawater (2 nM), the relationship

between He and Mg concentrations was smoothly linear, and

the end-member value was 2.4 μM.

45.4.4 Isotopic Compositions of End-Members

The end-member δ13C(CO2) ranged from �2.3 to +0.1 ‰
(all values are relative to VPDB): �1.3 ‰ for Snail,

�2.0 ‰ for Archaean, +0.1 ‰ for Pika, and �2.4 ‰ for

Urashima (Table 45.2), which was the only value higher than

that of seawater (0 ‰).

The δ13C(CH4) values showed a nonlinear relationship to

1/CH4. For Snail, the δ13C(CH4) values in CH4-rich samples

were around �5 ‰ and �25 ‰ for Snail, �10 ‰ and

�50 ‰ for Archaean, around �5 ‰ for Pika, and �5 ‰
and �0 ‰ for Urashima.

The helium isotope ratios in source fluids, corrected for

seawater admixture, were 8.1RA for Snail, 8.4RA for

Archaean, 8.3RA for Pika, and 8.0RA for Urashima.
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Table 45.2 End-member compositions of volatile components in the hydrothermal fluids for all the sites in the Southern Mariana Trough

in this study

Site Tmax

H2S

(μM)

ΔH2S

(μM)

O2

(μM)

N2

(μM)

CO2

(mM)

ΔCO2

(mM)

CH4

(μM)

ΔCH4

(μM)

H2

(μM)

Snail 116 N.D. N.D. 78.8 �12.4 29.6 �5.1 N.D.

Archaean 343 N.D. N.D. N.D. N.D. N.D. N.D. N.D.

2004

2005–2010

Pika 330 N.D. N.D. 33.7 �0.6 7.2 �0.2 N.D.

2005 69.1 �2.1 29.9 �2.0

Urashima 280 883 �43 N.D. N.D. 23.2 �0.4 10.8 �0.3 N.D.

N.D. not determined

Table 45.1 End-member concentrations of aqueous components in the hydrothermal fluids for all the sites in the Southern Mariana Trough

in this study

Site

CB

Tmax pHmin

Alk.

(meq)

ΔAlk
(meq)

Na

(mM)

ΔNa
(mM)

Na

(mM)

ΔNa
(mM)

K

(mM)

ΔK
(mM)

Li

(μM)

ΔLi
(μM)

Ca

(mM)

ΔCa
(mM)

Sr

(μM)

ΔSr
(μM)

Ba

(μM)

Snail 116 3.52 �0.94 �0.04 454 �21 466 �91 31.3 �0.7 555 �22 29.9 �1.1 71.9 �4.0 N.D.

Archaean 343 2.94 �1.41 �0.03 32.8 �0.5 500 �8 76.6 �1.5 N.D.

2004 388 �11 20.6 �0.5

2005–2010 315 �7 345 �33 15.7 �0.3

Pika 330 2.86 �1.14 �0.02 32.6 �0.3 644 �9 39.4 �0.5 122.8 �1.7 N.D.

2003–2005 461 �7 495 �63

2010 436 �15 351 �75

Urashima 280 2.85 �1.44 �0.03 447 �11 515 �56 31.7 �0.5 764 �28 35.2 �0.8 106.2 �6.3 N.D.

CB means the Na concentrations are calculated by charge balance

AES and Color means the Si concentration are measured by ICP-AES and colorimetry, respectively
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He

(μM)

ΔHe
(μM)

δ13C(CO2)

(‰VPDB)

Δδ13C(CO2)

(‰VPDB)

δ13C(CH4)

(‰VPDB)

δD(H2)

(‰VSMOW)

δD(CH4)

(‰VSMOW)

3He/4He

(RA)

Δ3He/4He

(RA)

N.D. N.D. �1.33 �0.10 N.D. N.D. N.D. 8.15 �0.09

2.10 �2.00 �0.61 N.D. N.D. N.D. 8.37 �0.03

1.83 �0.08 0.14 �0.06 N.D. N.D. N.D. 8.27 �0.10

2.40 �0.1 �2.36 �0.17 N.D. N.D. N.D. 8.09 �0.19

AES Color

Mn

(mM)

ΔMn

(mM)

Fe

(mM)

ΔFe
(mM)

Cl

(mM)

ΔCl
(mM)

SO4

(mM)

ΔSO4

(mM)

Br

(mM)

ΔBr
(mM)

NO3

(μM)

ΔNO3

(μM)

NH4

(μM)

Si

(mM)

ΔSi
(mM)

Si

(mM)

ΔSi
(mM)

B

(μM)

ΔB
(μM)

2.08 �0.08 0.64 �0.02 588 �6 �1.71 �0.37 0.72 �0.10 �269 �53 N.D. 18.6 �0.8 18.7 �0.3 1,112 �37

0.01 �0.03 0.75 �0.02 N.D. 16.7 �0.3 16.7 �0.1 959 �34

1.06 �0.02 2.55 �0.06 466 �3 �0.82 �0.04

1.2 �0.02 3.00 �0.06 407 �2 �372 �5,609

1.13 �0.01 7.38 �0.10 �1.57 �0.06 0.95 �0.02 N.D. 16.9 �0.2 16.4 �0.1

603 �3 �992 �3,483 1,130 �43

460 �5 �1.5 �0.2 673 �10

2.22 �0.08 6.37 �0.13 629 �4 �3.02 �0.20 0.81 �0.02 �0.9 �0.3 N.D. 17.0 �0.4 16.5 �0.1 1,109 �45
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45.5 Summary

Hydrothermal fluids were sampled from several hydrother-

mal activities around the Southern Mariana backarc spread-

ing center, and analyzed for chemical and isotopic

compositions. The fluid chemistry around the Southern

Mariana Trough would be influenced by a little input of

magmatic volatiles, leading to low pH and high CO2

concentrations, consequently the hydrothermal fluids are

characterized by rich in Fe alongside of the MOR hydrother-

mal fluids.
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Fig. 45.3 Plots of δ13C vs. 1/(CH4 concentration) in the hydrothermal fluids for all the sites in the Southern Mariana Trough in this study
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