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Abstract 

The Fisher effect has been commonly analyzed to investigate the long-run relationship between nominal interest 

rates and expected inflation rate, though it is rarely successful in finding the cointegration relationship as the 

Fisher effect states. In this paper, a Bayesian Markov switching vector error correction model is applied to 

analyze non-linearity in the Fisher effect in the case of Japan. We find that the Fisher effect holds in one regime 

although it does not hold in another regime when the nominal interest rate is stable and does not respond against 

disequilibrium by the monetary policy such as the zero interest rate policy. This model reveals non-linearity in 

the error correction mechanism of the Fisher effect in Japan. 

Keywords: Bayesian, cointegration, Markov-switching, Fisher effect 

1. Introduction 

The Fisher equation states that nominal interest rates are related with expected inflation rate in the long-run. 

Many researchers have empirically investigated the cointegrated relationships. However, empirical researches 

are rarely successful to find the long-run cointegration relationship between the two variables. Engsted (1995), 

Atkins and Serletis (2003), Rapach (2003), and Rapach and Weber (2004), among others, analyze the 

cointegration for the Fisher effect and conclude that there is no evidence for the Fisher effect. On the other hand, 

Bierens (2000), Kapetanios et al. (2003), and Lanne (2006) consider nonlinear models for cointegration and find 

that failure of the Fisher effect is due to the non-linearity. Gregory et al. (1996) and Beyer et al. (2009) study 

cointegration for the Fisher effect using models with structural breaks and find that the structural breaks 

influence the long-run relation between the two variables. Christopoulos and León-Ledesma (2007) find that the 

empirical failure of the Fisher effect may be due to the existence of non-linearities in the cointegrating vector, 

caused by monetary policy. 

In this paper, we apply a Bayesian Markov switching vector error correction model (MSVECM) to investigate 

the Fisher effect in Japan. A Bayesian MSVECM, based on Jochmann and Koop (2015), allows the regime shift 

in any parameter in the vector error correction model such as the cointegration rank, the cointegrating vector, and 

the lag length as well as other parameters in the model, so that we can study whether the non-linearities by 

monetary policy influence the error correction mechanism and the dynamic mechanism. 

The remainder of the paper is organized as follows. Section 2 overviews the Fisher effect and Japanese monetary 

policy. An MSVECM is introduced in Section 3. We specify the prior densities and show the conditional 

posterior densities. Section 4 presents the econometric results. Section 5 concludes. We use Ox v7.03 (Doornik 

(2013)) to write code for computation for this paper. 

2. Fisher Effect and Japanese Monetary Policy: Overview 

In this section, we offer a very brief overview of the Fisher effect and Japan‟s monetary policy. The Fisher effect 

states that the nominal interest rate is determined by the real interest rate and the expected inflation rate as Rt = rt 

+ Et[πt
s
] where Rt is the nominal interest rate that matures in period t+s; rt is the real interest rate; E[πt

s
] is the 

expected inflation rate in period t+s. Assuming rational expectation, Et[πt
s
] = πt

s 
+ εt, εt ∼iidN(0,ζ

2
), we have Rt = 

rt + πt
s 
+ εt, that implies the monetary super-neutrality. If both Rt and are I(1), both rates should be cointegrated 

and its cointegrating vector is (1,−1). 
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Figure 1. Money market rate (left) and CPI inflation (right) 

 

In this paper we examine whether the nominal interest rate and the inflation rate of Japan are related as the 

Fisher effect states using nonlinear regime switching cointegration model. Figure 1 depicts Japanese money 

market rate as nominal interest rate and the CPI inflation rate from 1960 to 2016. The nominal interest rate has 

fluctuated except for the period between 1964 and 1965 and the period since the late 1990s. In the period 

between 1964 and 1965, Japan experienced the securities market slumps and the Bank of Japan (BOJ) reduced 

the official discount rate. In the late 1980, Japan experienced the bubbled economy until the early 1990s. Then, 

the Japanese economy slowed down considerably after the bubble burst in 1992. The interest rate has dropped 

accordingly since then. The BOJ lowered the official discount rate suddenly in 1995, and adopted the zero 

interest rate policy (ZIRP) since 1999 - the uncollateralized overnight call rate (the targeted policy rate) was 

lowered to nearly zero per cent. The ZIRP was abandoned in 2000, however, it was adopted again with the 

quantitive easing (QE) policy (Note 1) in 2001. The BOJ ceased these policies in 2006, however, these policies 

were adopted again in 2008 along with the Lehman shock in US, and the interest rates have been barely 

fluctuated around zero per cent since then. 

As Christopoulos and León-Ledesma (2007) suggest, monetary policy such as the ZIRP may influence the 

relationship between nominal interest rates and inflation in Japan, and thus nonlinearity may exist in the 

equilibrium relationship between the two variables. 

3. Markov Switching Cointegration Model 

This section introduces a Bayesian approach to a Markov switching cointegration model based on Jochmann and 

Koop (2015). Cheung and Lai (1993) show that the Johansen„s cointegration tests are sensitive to the choice of 

the lag length. Bayesian cointegration analysis would also be affected by the choice of the lag length, so that we 

arrange the original model by Jochmann and Koop (2015), that suppose the lag length is constant over all 

regimes, to allow the regime shifts in the lag length. 

Let yt denote 1 × n vector of I(1) with r cointegrating vector. A VAR (p) model with 휀𝑡~𝑖𝑖𝑑𝑁(0, Ω) can be 

written as a vector error correction model (VECM) as: 

Δ𝑦𝑡 = (𝑦𝑡−1𝛽 + 𝜇1 + 𝑡𝛿1)𝛼 + 𝜇2 + 𝑡𝛿2 + ∑ Δ𝑦𝑡−𝑙Γ𝑙 + 휀𝑡  
𝑝−1
𝑙=1                   (1) 

where β (n × r) is the cointegrating vector; µ1 (1 × r) is the deterministic constant term and δ1 (1 × r) is the 

deterministic time trend term in the cointegration relations; α (r × n) is the adjustment term; µ2 (1 × n) is the 

deterministic constant term and δ2 (1 × n) is the deterministic time trend term in the VECM; Γl (n × n) is the lag 

term. 

We consider a Markov switching vector error correction model (MSVECM) where the cointegrating vector β, the 

number of the cointegrating rank r, the adjustment terms α, the deterministic term µ , the lag length p − 1, the lag 

term Γ, and the variance-covariance matrix Ω are subject to the regime i = 0,1,...,m − 1 such as: 

Δ𝑦𝑡 = (𝑦𝑡−1𝛽(𝑖) + 𝜇1(𝑖) + 𝑡𝛿1(𝑖))𝛼(𝑖) + 𝜇2(𝑖) + 𝑡𝛿2(𝑖) + ∑ Δ𝑦𝑡−𝑙Γ𝑙(𝑖) + 휀𝑡
𝑝(𝑖)−1
𝑙=1         (2) 

where εt(i) ∼  N(0,Ω(i)). The MSVECM in (2) differs from the model used by Jochmann and Koop (2015) or 

Sugita (2016): the model in (2) allows the lag length to change with regime. 

Let 𝑌 = (Δ𝑦′1, … , Δ𝑦′𝑇)′, then the MSVECM in (2) can be written as a matrix format in the following way: 

𝑌 = ∑ *𝑍(𝑖)𝛽∗(𝑖)𝛼(𝑖) + 𝑋(𝑖)Φ(𝑖)+ + 𝐸𝑚−1
𝑖=0                          (3) 
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where 

 𝛽∗(𝑖) = (𝛽′(𝑖), 𝜇1(𝑖)′, 𝛿1(𝑖)′)′, 𝐸 = (휀′1, … , 휀′𝑇)′, 

 Φ(𝑖) = (𝜇2(𝑖), 𝛿2(𝑖), Γ1(𝑖), … , Γ𝑝(𝑖)−1(𝑖)), 

 𝑍(𝑖) = [

𝜄1(𝑖)𝑦0 𝜄1(𝑖) 𝜄1(𝑖)
𝜄2(𝑖)𝑦1 𝜄2(𝑖) 2𝜄2(𝑖)

⋮ ⋮ ⋮
𝜄𝑇(𝑖)𝑦𝑇−1 𝜄𝑇(𝑖) 𝑇𝜄𝑇(𝑖)

], 

 𝑋(𝑖) =

[
 
 
 
𝜄1(𝑖) 𝜄1(𝑖) 𝜄1(𝑖)Δ𝑦0 𝜄1(𝑖)Δ𝑦−1 … 𝜄1(𝑖)Δ𝑦−𝑝(𝑖)

𝜄2(𝑖) 2𝜄2(𝑖) 𝜄2(𝑖)Δ𝑦1 𝜄2(𝑖)Δ𝑦0 ⋯ 𝜄2(𝑖)Δ𝑦−𝑝(𝑖)+1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝜄𝑇(𝑖) 𝑇𝜄𝑇(𝑖) 𝜄𝑇(𝑖)Δ𝑦𝑇−1 𝜄𝑇(𝑖)Δ𝑦𝑇−2 ⋯ 𝜄𝑇(𝑖)Δ𝑦𝑇−𝑝(𝑖)−1]

 
 
 

, 

and ιt(i) is the indicator variable that equals to 1 if regime is i at t, and 0 otherwise. 

Koop et al. (2010) develop an efficient posterior simulation method using a collapsed Gibbs sampler, and 

Jochmann and Koop (2015) and Sugita (2016) apply the method for a Markov switching cointegration model. 

Koop et al. (2010) propose the following priors: 

𝛽𝛼 = (𝛽𝜅)(𝜅−1𝛼) = [𝛽(𝛼𝛼′)1/2][(𝛼𝛼′)−1/2𝛼] ≡ 𝑏𝑎 

where 𝜅 ≡ (𝛼𝛼′)1/2 is a positive definite. Thus, the MSVECM in (3) can be written as: 

𝑌 = ∑ *𝑍(𝑖)𝑏∗(𝑖)𝑎(𝑖) + 𝑋(𝑖)Φ(𝑖)+ + 𝐸𝑚−1
𝑖=0                         (4) 

To estimate the MSVECM in (4), we need to assign prior densities for all parameters. We assign the following 

priors for parameters in (4): 

𝑣𝑒𝑐(𝑏∗(𝑖))~𝑁(𝑣𝑒𝑐(𝑏0
∗(𝑖)), 𝑉𝑏0

(𝑖))                             (5) 

𝑣𝑒𝑐(𝑎(𝑖))~𝑁(𝑣𝑒𝑐(𝑎0(𝑖)), 𝑉𝑎(𝑖))                              (6) 

𝑣𝑒𝑐(Φ(𝑖))~𝑁(𝑣𝑒𝑐(Φ0(𝑖)), 𝑉Φ0
(𝑖))                             (7) 

Ω(𝑖)~𝐼𝑊(Ω0(𝑖), 𝜈0(𝑖))                                 (8) 

where N denotes a normal and IW an inverted Wishart distribution with known hyperparameters. 

As for a transition probabilities qij = Pr(st = j|st−1 = i), i,j = 0,...,m −1, we assign a beta distribution as 

𝑞𝑖𝑗~𝑏𝑒𝑡𝑎(𝑢𝑖𝑗 , �̅�𝑖𝑗) where uij and �̅�𝑖𝑗  are defined as 𝑢𝑖𝑗 = Pr (𝑠𝑡 ≠ 𝑖|𝑠𝑡−1 = 𝑖)  and �̅�𝑖𝑗 = Pr (𝑠𝑡 = 𝑗|𝑠𝑡−1 =

𝑖, 𝑠𝑡 ≠ 𝑖) for 𝑖 ≠ 𝑗 with density 𝜋(𝑞𝑖𝑗|𝑢𝑖𝑗 , �̅�𝑖𝑗) =
Γ(𝑢𝑖𝑗+𝑢𝑖𝑗)

Γ(𝑢𝑖𝑗)+Γ(𝑢𝑖𝑗)
𝑞

𝑖𝑗

𝑢𝑖𝑗−1
(1 − 𝑞𝑖𝑗)

𝑢𝑖𝑗−1. 

With these priors and the likelihood, we derive the conditional posterior distributions for these parameters (see 

Sugita (2016) for derivation for these posteriors). As for the conditional posterior for 𝑏∗(𝑖),  

𝑣𝑒𝑐(𝑏∗(𝑖))|𝑎(𝑖), Φ(𝑖), Ω(𝑖), 𝑞, �̃�𝑇 , 𝑌~𝑁(𝑣𝑒𝑐(𝑏1
∗(𝑖), 𝑉𝑏1

(𝑖))                  (9) 

where 

   𝑉𝑏1
(𝑖) = [𝑉𝑏0

−1(𝑖) + (𝑎(𝑖)Ω(𝑖)−1𝑎(𝑖)′⨂(𝑍(𝑖)′𝑍(𝑖)]
−1

 

   𝑣𝑒𝑐(𝑏1
∗(𝑖)) = 𝑉𝑏1

(𝑖)[𝑉𝑏0

−1(𝑖)𝑣𝑒𝑐(𝑏0(𝑖)) + *(𝑎(𝑖)Ω(𝑖)−1)⨂𝑍(𝑖)′+𝑣𝑒𝑐(𝑌(𝑖) − 𝑋(𝑖)Φ(𝑖))]. 

As for the conditional posterior for a(i), 

𝑣𝑒𝑐(𝑎(𝑖))|𝑏∗(𝑖), Φ(𝑖), Ω(𝑖), 𝑞, �̃�𝑇 , 𝑌~𝑁(𝑣𝑒𝑐(𝑎1(𝑖), 𝑉𝑎1
(𝑖))                (10) 

where 

   𝑉𝑎1
(𝑖) = [𝑉𝑎0

−1(𝑖) + Ω(𝑖)−1⨂(𝑏(𝑖)′𝑍(𝑖)′𝑍(𝑖)𝑏(𝑖))]
−1

 

   𝑣𝑒𝑐(𝑎1(𝑖)) = 𝑉𝑎1
(𝑖)[𝑉𝑎0

−1(𝑖)𝑣𝑒𝑐(𝑎0(𝑖)) + *Ω(𝑖)−1⨂𝑏(𝑖)′𝑍(𝑖)′+𝑣𝑒𝑐(𝑌(𝑖) − 𝑋(𝑖)Φ(𝑖))]. 

The conditional posterior for vec(Φ(i)) is obtained as: 

𝑣𝑒𝑐(Φ(𝑖))|𝑎(𝑖), 𝑏∗(𝑖), 𝑞, Φ(𝑖), Ω(𝑖), �̃�𝑇 , 𝑌~𝑁(𝑣𝑒𝑐(Φ1(𝑖), 𝑉Φ1
(𝑖))             (11) 

where 

   𝑉Φ1
(𝑖) = [𝑉Φ0

−1(𝑖) + Ω(𝑖)−1⨂(𝑋′𝑋)]
−1
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   𝑣𝑒𝑐(Φ1(𝑖)) = 𝑉Φ1
(𝑖)[𝑉𝑎0

−1(𝑖)𝑣𝑒𝑐(Φ0(𝑖)) + {Ω(𝑖)−1⨂𝑋(𝑖)′′′}𝑣𝑒𝑐(𝑌(𝑖) − 𝑍(𝑖)𝑏∗(𝑖)𝑎(𝑖))]. 

Regarding the conditional posterior for Ω(i), we obtain an inverted Wishart distribution as: 

Ω(𝑖)|𝑎(𝑖), 𝑏∗(𝑖), 𝑞, Φ(𝑖), �̃�𝑇 , 𝑌~𝐼𝑊((𝑌𝑖 − 𝑊𝑖𝐵)′(𝑌𝑖 − 𝑊𝑖𝐵) + Ω0(𝑖), 𝑡𝑖 + 𝜈0(𝑖) + 𝑛 + 1)       (12) 

To derive the state variable �̃�𝑇 = *𝑠1, … , 𝑠𝑇+′, we employ the multi-move Gibbs sample, which is originally 

proposed by Carter and Kohn (1994) and is applied to a Markov switching dynamic factor model by Kim and 

Nelson (1998), see Sugita (2016) for detail. To generate the transition probabilities qij, we follow Albert and Chib 

(1993) and Kim and Nelson (1998). 

𝑝(𝑞𝑖𝑗|𝑆�̅�) ∝ 𝑞
𝑖𝑗

𝑢𝑖𝑗+𝑚𝑖𝑗−1
(1 − �̅�𝑖𝑗)

𝑢𝑖𝑗+�̅�𝑖𝑗−1                           (13) 

where mij, i,j = 1,...,m , denotes the number of the transition from the regime i to j, that can be counted for given 

�̃�𝑇. 

Given the conditional posterior distributions from (9) to (13), we implement the Gibbs sampling to generate 

sample draws. 

4. Empirical Results 

In this section, we examine Japanese Fisher effect using the MSVECM in (2). We employ quarterly data for 

Japan from 1960:1 to 2016:3 with 228 observations from the International Financial Statistics. The nominal 

interest rate is the money market rate, Rt. The inflation rate, πt, is calculated from the first differences of the 

natural logarithm of the CPI, multiplied by 400 to obtain annualized rates in percent. Figure 1 plots the money 

market rate in the left and the inflation rate in the right. We first test for unit roots in the interest rate, Rt, and the 

inflation rate, πt. We apply the ADF (Augmented Dickey-Fuller) test, ADF-GLS test by Elliot et al. (1996), and 

test by Kwiatkowski et al. (1992). The lag length is chosen based on the Akaike information criterion (AIC) for 

the ADF tests, and the modified Akaike information criterion (MAIC), that is proposed by Perron and Qu (2007), 

for the ADF-GLS and the KPSS tests. Both the ADF and the ADF-GLS tests the null hypothesis of a unit root, 

while the KPSS tests the null of stationary. Table 1 shows that we cannot reject the null of a unit root for the both 

variables and the KPSS test reject the null of stationary when only a constant is considered in the regression. 

However, when both constant and trend are considered, the results are somewhat ambiguous for the interest rate 

Rt, the ADF-GLS test rejects the null of a unit root with 5% significant level while the KPSS test rejects the null 

of stationary. 

 

Table 1. Tests for unit roots 

 ADF ADF ADF-GLS ADF-GLS KPSS KPSS 

Variable 𝜏𝑐  𝜏𝑐𝑡  𝜏𝑐 𝜏𝑐𝑡 cons cons&trend  

𝑅𝑡 -1.3222 -3.2526* -0.3420 -2.9813** 2.0120*** 0.1640** 

𝜋𝑡 -1.7365 -3.0120 -1.7332* -2.0529 1.2231*** 0.1243* 

Note. ηc is the test statistic for unit root with the drift term. ηct is with both drift and time trend terms. 

 

4.1 Linear VECM 

In this subsection, we proceed to apply a linear VECM in (1), where yt = (Rt, πt). We compute the marginal 

likelihood by Chib (1995) for all models under consideration. We set the prior specification as b = 0 and Vb0 = 5I 

in (5), a0 = 0 and Va0 = 5I in (6) Φ0 = 0 and VΦ0 = 5I in (7), ν0 = 10 and Ω0 = I in (8). The full Gibbs sampler is run 

with 10,000 draws and additional 4 × 10,000 draws for the reduced Gibbs sampler to calculate the marginal 

likelihood by the Chib„s method. We consider various models that contain or do not contain deterministic 

constant term and/or time trend in the cointegration relations and/or in the VECM, and conclude that no 

deterministic term in either cointegration relations or the VECM is needed. Table 2 gives the logarithms of 

marginal likelihoods for models with different cointegrating rank and different lag length and with no 

deterministic term added in the model. We vary the number of rank from r = 0 to 2 and the lag length from p = 1 

to 5. We also consider the case that the cointegrating vector is restricted with β = (1,−1), denoting r = 1
R
, if the 

Fisher effect holds. We find that the model with the highest marginal likelihood has cointegrating rank r = 1 and 

the lag length p = 2, however, the Fisher effect (r = 1
R
) does not seem to hold. We also compute the Bayes factor 

to test the Fisher effect using the Savage-Dickey density ratio, proposed by Verdinelli and Wasserman (1995). 

The Bayes factor by the Savage-Dickey density ratio, BFSDDR, is defined as: 

𝐵𝐹𝑆𝐷𝐷𝑅 =
𝑝(𝑏=𝑏𝑅|𝑌)

𝑝(𝑏=𝑏𝑅)
                                     (14) 
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where the denominator, the marginal prior for b evaluated at b = (1,−1), can be computed using (5). The 

numerator of (14) is the marginal posterior for β evaluated at b = (1,−1) and can be obtained by integrating out 

the other parameters, such as: 

 

where the subscript i denotes the sample from the posterior; p(b = b
R
|ai,Φi,Ωi,Y ) is the conditional posterior 

density (9) evaluated at b = b
R 

. The computed BFSDDR by the Savage-Dickey density ratio (14) is 1.6924, which 

is “not worth more than a bare mention”, according to the guidelines provided by Kass and Raftery (1995). Thus, 

from the marginal likelihood and the Bayes factor by the Savage-Dickey density ratio, we can conclude that the 

linear VECM find the one cointegrating relation but does not give strong support for the Fisher effect. Table 3 

gives the results by the Johansen‟s trace test for cointegration for reference. We select the lag length p = 2 by the 

Schwarz‟s BIC and p = 5 by the Hannan-Quinn criterion, and the model without any deterministic terms in the 

VECM. The Johansen‟s classical tests also reject the null of no cointegration and cannot reject the null of r = 1 at 

the 5% significance level with either lag length. 

 

Table 2. Linear VECM: Model selection by logarithm of marginal likelihoods 

Rank Lag length 

 𝑝 = 1 𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5 

𝑟 = 0 -911.51 -842.79 -845.30 -835.85 -841.73 

𝑟 = 1 -805.70 -787.93 -798.60 -791.87 -823.07 

𝑟 = 2 -876.71 -836.53 -850.13 -849.17 -861.60 

𝑟 = 1𝑅 -868.06 -832.70 -844.14 -838.64 -850.43 

 

Table 3. Johansen‟s cointegration tests 

𝐻0 Trace test (p=2) Trace test (p=5) 

𝑅𝑎𝑛𝑘 statistic p-val statistic p-val 

𝑟 = 0 54.606 0.0000 19.357 0.0025 

𝑟 = 1 3.6802 0.0655 2.7444 0.1139 

Note. We consider the VECM with no deterministic terms. The lag length p = 2 is selected by the Schwarz‟s Bayesian information criterion, 

and p = 5 by the Hannan-Quinn criterion. 

 

4.2 MSVECM 

In this subsection, we move on to the non-linear analysis using the MSVECM in (2). We consider the MSVECM 

with both two and three regimes to compute the marginal likelihood for model selection, and find that there is 

never any evidence for three regimes. Accordingly, we focus on the MSVECM with two regimes to analyze the 

Japanese Fisher effect. We consider models with the cointegration rank r = 0 or 1 for each regime, that is, 

(r(0),r(1))=(0, 0), (0, 1), (1, 0) and (1, 1). For the implications of the Fisher effect, we also consider models with 

the restriction on β = (1,−1) in one or both regimes. 

As in the case of the linear VECM, we compute the marginal likelihood by Chib (1995) for all models we 

consider, running the Gibbs sampler with 10,000 draws and the additional 4 × 10,000 draws for the marginal 

likelihood calculation. We need to add the bias correction as lnML∗ 
= lnML + ln2 where lnML∗ 

is the corrected 

marginal likelihood and ln2 is the bias correction, see Frühwirth-Schnatter (2004) for detail. We set the prior 

specification as b(i) = 0 and 𝑉𝑏0
(𝑖) = 5𝐼 in (5), a0(i) = 0 and 𝑉𝑎0

(𝑖) = 5𝐼 in (6) Φ0(i) = 0 and 𝑉Φ0
(𝑖) = 5𝐼 in (7), 

ν0(i) = 10 and Ω0(i) = I in (8). 

Table 4 gives the logarithms of marginal likelihoods for models with different cointegrating rank and different 

lag length in the two regimes. We find that the model with the highest marginal likelihood has the lag length of 

two in the regime 0 and one in the regime 1, (p(0),p(1)) = (2,1), and specifies that both regimes are cointegrated 

but the Fisher effect restriction only holds in the regime 0, (𝑟(0), 𝑟(1)) = (1𝑅 , 1). The marginal likelihood of 
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this model is 𝑀𝐿∗ = −549.91, while the second largest marginal likelihood is 𝑀𝐿∗ = −553.46 for the model 

with (p(0),p(1)) = (2,1) and (r(0),r(1)) = (1,1). Compared with the results for the linear VECM, we find that the 

marginal likelihood for the MSVECM with (p(0),p(1)) = (2,1) and (𝑟(0), 𝑟(1)) = (1𝑅, 1) is much higher than 

those for any linear VECM shown in Table 2. Thus, we find that the MSVECM, that supports the Fisher effect in 

one regime, is much preferred to the linear VECM, that does not support the Fisher effect. In other words, we 

can conclude that the evidence strongly supports the nonlinearities in Fisher effect. 

We compute the posterior probability, Pr(Mj|Y ), that is probability for model Mj among all other models, defined 

by Pr(𝑀𝑗|𝑌) =
𝐵𝐹𝑗𝑘

∑ 𝐵𝐹𝑚𝑗
𝑁
𝑚=1

 where N is the number of models under consideration and BFjk is the Bayes factor for 

model Mk against model Mj and defined as 𝐵𝐹𝑗𝑘 = exp(𝑀𝐿𝑘
∗ − 𝑀𝐿𝑗

∗). The posterior probability for the model 

with the highest marginal likelihood is 0.9251, while it is 0.0266 for the second highest marginal likelihood. 

Therefore, the model with the highest marginal likelihood is dominant over the rest of models, and thus we can 

consider the model as the best fitted. If the highest marginal likelihood (and thus the posterior probability) is not 

dominant among other models, we would consider BMA (Bayesian model averaging) to deal with model 

uncertainty. 

Figure 2 presents the posterior expectation of the regime variable, Pr(st = 1|Y ). The Fisher effect holds only in 

the regime 0 (st = 0), and seems to not hold when the interest rate dropped suddenly and had been stable between 

1965 and 1966 due to the securities market slump, and between 1995 and late 1997 after the bubble economy 

burst. The Fisher effect did not hold in the regime when the BOJ adopted the ZIRP between 1999 and 2000, and 

when the BOJ adopted the ZIRP and the QE policy during 2001 and 2006 and since 2008. 

The posterior means, standard deviations, and the 95%HPDI (highest posterior density interval) of parameters 

for the model with (p(0),p(1)) = (2,1) and (𝑟(0), 𝑟(1)) = (1𝑅 , 1) are reported in Table 5. We find that the 

variance of both the interest rate and the inflation rate in regime 0 is much lower than those in the regime 0. This 

is because the regime 1 is mainly characterized by the ZIRP. In regime 1, where there is no support for the Fisher 

effect, the cointegrating vector is estimated as β(1) = (0.4753,−0.8769), or β(1) = (1,−1.845) if the first element 

is normalized. The posterior density for β(1) is plotted in Figure 3. We compute the Bayes factor to test the 

restriction for the Fisher effect by the Savage-Dickey density ratio in (14), and obtain the results as BFSDDR 

=0.5156, which is “not worth more than a bare mention” by Kass and Raftery (1995). In regime 0 when the 

Fisher effect holds, the α(0)1, that is the coefficient for the interest rate, is significantly negative, and the α(0)2, 

that is the coefficient for the inflation rate, is significantly positive. The posterior density for α(0) is plotted in the 

left column of the Figure 4. Thus, in the period when the Fisher effect holds, the adjustment toward equilibrium 

occurs through both the interest rates and the inflation rate. However, in regime 1 when the Fisher effect does not 

hold, α(1)1 is not significantly different from zero while α(1)2 is significant with positive sign, meaning that the 

interest rates does not respond against the disequilibrium and only inflation rate moves to adjust for the 

equilibrium. The posterior density for α(1) is plotted in the right column of the Figure 4. In regime 1 when the 

ZIPR was adopted, the interest rate has set to almost zero and has not been allowed to move for the adjustment 

toward the equilibrium. 

5. Conclusion 

We examined the empirical evidence on the relationship between the interest rate and inflation in Japan. We find 

that the linear VECM detects the cointegration relation but does not support the Fisher effect due to neglected 

non-linearity caused by the ZIRP. We employed a two-regime MSVECM to analyze Japanese Fisher effect, and 

find that, although the cointegration relation is found in both regimes, the Fisher effect is supported only in one 

regime. In the regime when the ZIRP had been adopted, the interest rate did not react against the disequilibrium 

and thus the Fisher effect does not hold. Thus, the monetary policy such as the ZIRP influenced the relationship 

between the nominal interest rates and the inflation rates. 

The MSVECM that we employ in this paper is versatile and allows for regime shifts not only in the determinant 

terms, the adjustment of speed terms, lag terms, and the variance-covariance matrix but also in the number of 

cointegrating rank, the cointegrating vectors, and the lag length. Using this model, we find that the non-linearity 

is found in the error correction as well as other parameters. In this paper, we choose Markov switching as a 

switching behavior. However, it is possible to choose alternative regime switching model such as smooth 

transition model to analyze non-linearity of the Fisher effect. 
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Table 4. MSVECM: Model selection by logarithms of marginal likelhoods 

Lag Cointegration rank in each regime (𝑟(0), 𝑟(1)) 

(p(0),p(1)) (0, 0) (1, 1) (1R, 1) (1, 1R) (1R, 1R) (1, 0) (1R, 0) (0, 1) (0, 1R) 

(1, 1) -616.51 -568.58 -566.54 -582.83 -579.22 -592.31 -588.79 -590.98 -604.79 

(1, 2) -607.65 -578.06 -575.99 -600.21 -596.83 -591.92 -588.03 -596.28 -621.08 

(1, 3) -620.97 -601.46 -598.64 -614.41 -610.54 -608.50 -603.66 -613.73 -626.03 

(1, 4) -616.89 -600.62 -605.32 -609.33 -606.33 -600.84 -596.81 -620.73 -622.28 

(2, 1) -581.64 -553.46 -549.91 -562.75 -558.87 -578.49 -574.90 -555.10 -562.97 

(2, 2) -571.70 -559.65 -556.80 -572.02 -568.68 -568.53 -564.71 -560.20 -571.68 

(2, 3) -586.70 -583.96 -579.58 -587.18 -583.05 -584.25 -580.72 -578.97 -586.71 

(2, 4) -581.07 -576.61 -585.07 -587.04 -583.17 -578.70 -575.37 -587.23 -587.47 

(3, 1) -589.26 -566.75 -565.15 -570.95 -567.36 -591.71 -587.79 -563.28 -567.04 

(3, 2) -581.35 -573.07 -569.85 -581.03 -577.11 -581.66 -578.30 -570.61 -576.75 

(3, 3) -594.04 -591.81 -588.13 -597.95 -594.63 -596.22 -592.49 -591.86 -594.46 

(3, 4) -589.27 -597.67 -591.86 -598.55 -595.35 -590.20 -587.59 -583.03 -595.92 

(4, 1) -578.16 -559.23 -561.29 -564.66 -564.06 -584.80 -583.94 -553.04 -557.88 

(4, 2) -572.69 -568.62 -566.25 -575.70 -575.14 -577.73 -576.42 -567.17 -569.85 

(4, 3) -584.12 -587.21 -590.69 -591.94 -591.41 -590.20 -588.96 -580.95 -586.27 

(4, 4) -592.55 -587.02 -588.53 -597.23 -595.59 -597.75 -595.17 -581.22 -588.44 

 

 

Figure 2. Posterior expectation of the regime variable 

 

Table 5. Posterior parameter estimates 

 mean s.d. 95% HPDI   mean s.d. 95% HPDI 

𝛽(1)1 0,4753 0.0634 0.3388 0.5876  Φ(0)2,2
1  -0.3413 0.0804 -04991 -0.1829 

𝛽(1)2 -0.8769 0.0337 -0.9409 -0.8092  Ω(0)1,1 0.3983 0.0457 0.3188 0.4975 

𝛼(0)1 -0.0467 0.0197 -0.0854 -0.0077  Ω(0)1,2 0.4268 0.0587 0.3261 0.5562 

𝛼(0)2 0.5940 0.1288 0.3389 0.8467  Ω(0)2,2 17.029 1.8952 13.732 21.170 

𝛼(1)1 0.0000 0.0006 -0.0013 0.0012  Ω(1)1,1 0.0001 0.0000 0.0000 0.0002 

𝛼(1)2 1.1087 0.1136 0.8915 1.3373  Ω(1)1,2 0.0000 0.0006 -0.0019 0.0009 

Φ(0)1,1
1  0.5025 0.0678 0.3690 0.6348  Ω(1)2,2 2.4847 0.6332 1.6782 4.2487 

Φ(0)1,2
1  1.1673 0.4394 0.3086 2.0310  𝑞00 0.8675 0.0391 0.7823 0.9352 

Φ(0)2,1
1  -0.0053 0.0123 -0.0292 0.0190  𝑞11 0.9270 0.0214 0.8802 0.9633 

Note. Φ(i)p
j,k denotes the j-th row and the k-th column element in the matrix Φ(i)j

p
 that is i-th regime, p-th lag of the lag matrix. Ω(i)j,k denotes 

the j-th row and the k-th column element in the matrix Ω(i). 
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Figure 3. Posterior density for β(1) 

 

3  
Figure 4. Posterior density for α(0) and α(1) 
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Notes  

Note 1. The BOJ shifted its main operating target from the policy rate to the current account balance at the bank. 
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