琉球大学学術リポジトリ

妊娠期推奨体重増加量区分別にみた妊婦の生理的特 性および栄養素摂取量と正期産児の出生体重との関 連

メタデータ	言語:
	出版者: 琉球大学
	公開日: 2018-08-09
	キーワード (Ja):
	キーワード (En):
	作成者: Tamashiro, Yoko, 玉城, 陽子
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/42206

学位論文

Physiological and nutritional intake characteristics of pregnant women according to their recommended gestational weight gain in relation to the birth weight of their full-term infants

琉球大学大学院保健学研究科 保健学専攻

玉城 陽子

ABSTRACT

The purpose of the present study was to elucidate the relationship between the physiological characteristics and nutritional intake of pregnant women and the birth weight of their full-term infants. The women had been recommended a certain gestational weight gain according to their body mass index (BMI) classification. We surveyed 477 pregnant women who provided their consent to participate in the study at three hospitals and one clinic in Okinawa. We performed prenatal check-ups during the second and third trimesters and measured the women's body weight and ordered blood tests and assessed their nutritional intake status using a brief-type self-administered diet history questionnaire (BDHQ). We obtained the pre-pregnancy BMIs of the women using the World Health Organization (WHO) criteria, and classified the amount of gestational weight gain over the entire pregnancy as either "below," "within," or "above" the recommended weight gain as indicated by the Ministry of Health, Labour and Welfare. The fetal birth weights were divided into four percentile groups ($\leq 10^{\text{th}}$ percentile, $10-50^{\text{th}}$ percentile, $50-90^{\text{th}}$ percentile, and $\geq 90^{\text{th}}$ percentile) using the "Gestational age-specific standards for birth size (Revised edition)" created by the Japan Pediatric Society in 2010. We analyzed the associations between the four groups of fetal birth weight and the recommended actual gestational weight gains by the women. An analysis of covariance was performed between the birth weight percentile groups and the nutritional intake, with each recommended gestational weight gain classification, age, and prepregnancy BMI as covariates. As a result, with regard to the ratio of consumed energy and energy-producing nutrients, in the second trimester the ratio of carbohydrate energy was significantly lower for women gaining less than the

recommended weight (10-50th percentile) than for those in the 50-90th percentile group; and significantly higher for those gaining the recommended weight ($\leq 10^{th}$ percentile). The ratio of protein and fat energy was significantly higher for the group in the 10-50th percentile than for that in the 50-90th percentile. In the third trimester, no significant differences were observed. In the second trimester, increasing staple foods in underweight mothers increased the energy intake from carbohydrates, leading to fetal growth; however, projections suggested that overconsumption of energy from carbohydrates by mothers with normal weights according to the recommendations could lead to fetal birth weights that were smallfor-gestational-age.

Key words: fetal birth weight, gestational weight gain, nutrient intake

INTRODUCTION

Many epidemiological and clinical studies have been conducted demonstrating the concept of the "developmental origins of health and disease (DOHaD)" according to Barker's hypothesis¹⁻³⁾. The DOHaD theory explains well the phenomenon in which decreased birth weight is caused by deterioration of the nutritional environment in the uterus. According to the model, exposure to malnutrition or overnutrition during fertilization, the embryonic or fetal stages, or during infancy leads to the generation of factors underlying lifestyle-related diseases, and subsequent lifestyle stresses trigger the onset of lifestyle-related diseases³⁾. In addition, a recent study reported that small-for-gestational-age (SGA) infants was associated with adult psychological disorders as well. Children born full term but weighing less than 5.5lb (2,495g) had increased psychological distress in later life, and that a 1SD decrease in birth weight for gestational age was associated with increased psychological distress in adulthood⁴). In Japan, the mean birth weight of infants in single births over the past 30 years (1979-2010) has significantly decreased, and even though full-term infants, the rate of low-birth-weight (LBW) infants is increasing⁵⁾. Using vital statistics data, Yoshida et al. listed birth weights against various factors including sex, single/multiple birth, maternal age, postterm/full-term/preterm delivery, gestational age, and birth order; and then examined factors that influence low birth weight. They found that a shorter gestational duration can explain reductions of 0.04 kg in birth weights, but cannot account for all of the average 0.2 kg reduction that has occurred during the past 30 years⁶). In other developed countries, advancements in medical technology and improved physical fitness has led to a gradual and continued increase in birth weight, yet by

contrast, considering the DOHaD theory, the low birth weights in Japan carry the risk of lifestyle-related diseases developing later in life.

Increasing numbers of SGA infants and LBW infants have been attributed to the low mean birth weight⁵). Earlier studies have found that maternal factors underlying SGA and LBW include low pre-pregnancy BMI, smoking during pregnancy, and poor gestational weight gain⁷⁻⁹). In Japan, over the past 50 years, BMIs for women in their 20s and 30s (so-called women of reproductive age) have drastically decreased, whereas the rates of underweight women have increased. However, BMI for women of other generations is in an upward trend, and an extremely unique nutritional state is now seen in developed countries with increases in underweight and obese women of reproductive age¹⁰). The "Healthy Parents and Children 21" promotion council of the Japanese Ministry of Health, Labour and Welfare prepared recommendations for weight gain throughout pregnancy according to the mother's BMI classification¹¹). Subsequent studies have confirmed that irrespective of the pre-pregnancy BMI, appropriate weight gains during pregnancy effectively decrease the risk of SGA

On the other hand, some nutrients are vital to fetal growth. Low serum concentrations of zinc, iron, and calcium in the first, second, and third trimesters in the pregnant women affect the birth weight of their baby¹⁵⁾. Furthermore, vitamin D in the first trimester helps to maintain fetal growth and bone development¹⁶⁾, and maternal serum levels of vitamin D at delivery are significantly low in the LBW group¹⁷⁾. According to a survey conducted in South Korea, which is geographically close to Japan, consumption of dietary fiber, phosphorus, iron, vitamin B6, and folic acid in the second trimester was significantly lower in a LBW group (<3.1 kg) than in a high birth weight group (>3.6 kg) ¹⁸⁾. However, the folic acid content of red

blood cells has also been shown to have a positive correlation with birth weight during late pregnancy and at delivery¹⁹⁾. Meanwhile, according to a cohort study in Europe, the consumption of seafood during pregnancy decreases the risk of preterm delivery and increases weight gain^{20,21)}. Furthermore, another study reported high omega-6 fatty acid levels in maternal total red blood cells at the time of delivery but low omega-3 fatty acid levels in the same cells in a LBW group²²⁾. In Japan, underweight pregnant women showing little weight gain usually have low intake of n-3 fatty acids, sodium, and zinc in the first trimester²³⁾, whereas pregnant women who were underweight before pregnancy have low intake of protein, iron, magnesium, and folic acid in the second trimester²⁴⁾.

As noted above, regarding the nutritional status of pregnant women, many surveys examine serum concentrations, whereas few surveys examine intake from actual food. Furthermore, although it has been pointed out that low gestational weight gain is a cause of SGA and LBW, gestational weight gain, and actual consumed nutrients have not been investigated in any longitudinal studies, including those in the second and third trimesters. The purpose of the present study was therefore to find associations between the maternal hemoglobin and hematocrit levels, the nutritional intake of food and the birth weight of full-term infants, according to the recommended gestational weight gain for each BMI classification.

METHODS

1. Subjects

Among the pregnant women seen for routine prenatal health check-ups at three hospitals (southern district, central district, and northern central district), and one

clinic (southern district) in Okinawa, we included in our study those scheduled for delivery between August 2010 and March 2011.

Of 964 candidates, we included 477 pregnant women who provided their consent to participate in the study after receiving an explanation of the study content. We had to exclude 35 women because of hospital transfers, 13 for preterm delivery, three for carrying multiple fetuses, six for pregnancy-induced hypertension, six for gestational diabetes mellitus, one for concurrent mental disease, two for consent withdrawal, 72 for unsatisfactory survey completion, and 36 for obesity with a pre-pregnancy BMI of $\geq 25 \text{ kg/m}^2$ (individual support is recommended in the event of pre-pregnancy obesity.¹¹) In the end, 303 women were included in our analysis.

2. Survey procedure

The subjects were explained the study significance, purpose, and content in writing in the waiting room of the outpatient services and gave their signed consent to participate. Blood tests were performed once during routine prenatal health examinations in the second trimester (24–28 weeks of pregnancy), third trimester (34–37 weeks of pregnancy), and on the day defined as the survey date.

3. Survey content

1) Maternal and infant birth data

Maternal and infant birth data were extracted retrospectively from hospital records (electronic charts). Information from the maternal records included age, height, pre-pregnancy weight, gestational weight gain, smoking status, parity, pregnancy complications, obstetric history. Physiological indices of pregnant women included blood test values in the second trimester (24–28 weeks of pregnancy) and

6

third trimester (34–37 weeks of pregnancy). Information extracted from the infant records included birth weight, gestational age and sex.

2) The nutritional intake status of pregnant women

For the nutritional intake status of pregnant women, we used the brief-type selfadministered diet history questionnaire (BDHQ). BDHQ is a four-page, structured self-administered questionnaire. BDHQ assesses dietary habits during the preceding month and consists of the following five sections: (1) intake frequency of food and nonalcoholic beverage items, (2) daily intake of rice and miso soup, (3) frequency of drinking and amount per drink of alcoholic beverages, (4) usual cooking methods, and (5) general dietary behavior. Estimates of dietary intake for 58 food and beverage items were calculated using an ad hoc computer algorithm (including weighting factors) for BDHQ²⁵⁾.

Regarding the reliability and validity of BDHQ, the mean correlation coefficient for intake values obtained using BDHQ and intake values obtained from 16-day weighted dietary records was 0.46–0.49, suggesting that BDHQ is superior to other similar questionnaires and dietary assessment methods²⁶.

Subjects excluded from our analysis of nutritional intake status included those whose energy intake for each age group was either <0.5 times the estimated energy requirement for level I physical activity, or equivalent to or >1.5 times the estimated energy requirement for level III physical activity, in accordance with the 2015 Dietary Reference Intakes for Japanese people (Ministry of Health, Labour and Welfare). That is, pregnant women aged 18–29 years consuming <825 kcal/day or equivalent to or >3,300 kcal/ day, and pregnant women aged 30–49 years consuming <875 kcal/day or equivalent to or >3,450 kcal/ day were excluded. Furthermore, Murakami et al. found that the misreporting of dietary intake of energy, protein, potassium and sodium was differential among a group of lean young Japanese women with low-fat intake and was associated with their BMI. Nevertheless, the differential misreporting of energy-adjusted values of protein, potassium and sodium was not associated with BMI because of a positive correlation between the reporting accuracy of energy consumption and that of the absolute values of the three nutrients²⁷⁾. Therefore, for BDHQ, energy-adjusted intake values are highly reliable²⁸⁾, and we therefore used the value adjustsd per 1,000 kcal of energy intake for each nutrient intake value in the present study.

4. Analytical methods

Pre-pregnancy BMI classification was performed using the WHO criteria (underweight: BMI < 18.5, normal range: $18.5 \le BMI < 25$)²⁹⁾. Gestational weight gain was classified into the three categories of the recommended levels of the Healthy Parents and Children 21 Promotional Council, Ministry of Health, Labour and Welfare, Japan: below (< 9 kg), within (9-12 kg), and above (> 12 kg) for underweight (BMI < 18.5 kg/m^2) women; and below (< 7 kg), within (7-12 kg), and above (> 12 kg) for normal range ($18.5 \le BMI < 25.0 \text{ kg/m}^2$) women¹¹⁾. In the present study, the gestational weight gain was defined as the difference between measured weight at the prenatal visit closest to the delivery and self-reported pre-pregnancy weight (<1 week prior to delivery).

The fetal birth weights were classified into one of four categories using the "new gestational age-specific standards for birth size (revised edition)" created by the Japan Pediatric Society³⁰), namely into a $\leq 10^{th}$ percentile group (10th group), a $>10^{th}-\leq 50^{th}$ percentile group (10-50th group), a $>50^{th}-\leq 90^{th}$ percentile group (50-90th group), or a $>90^{th}$ percentile group (90th group).

The relationship between the four birth weight percentile groups and the

gestational weight gain for each pre-pregnancy BMI classification was examined by one-way analysis of variance, which revealed no statistically significant differences (underweight: F = .804, P = .497, normal range: F = 2.074, P = .104). The weight gain was thus classified into three groups, i.e., below, within, and above the recommended weight gain.

For each analysis, the relationship between the four birth weight percentiles and the blood tests and energy and nutrient intakes for each recommended gestational weight gain classification was examined by analysis of covariance. After that, we used the variables that showed a significant difference to perform a multiple comparison analysis using the Bonferroni test.

Statistical analyses were performed using the software SPSS Statistics Ver. 24.0 J, and a p value of <0.05 was considered significant.

5. Ethical considerations

The present study was performed in accordance with the Declaration of Helsinki and the "Ethical Principles for Medical Research Involving Human Subjects". The content of the survey was explained to the potential study participants in writing, and participants were also explained that participation in the study was voluntary, that they were free to withdraw from the study without any repercussions even after providing consent, and that due care would be paid to protecting their personal information and that all data would be processed statistically so as not to make individuals personally identifiable. Signed consent forms were subsequently obtained. The ethical review board for clinical research of the University of the Ryukus gave their approval for this survey to be conducted (approval number 246, July 21, 2010).

9

RESULTS

Table 1 shows the characteristics of the Subjects. Overall, the mean age of our participants was 31.8 ± 5.5 years, the mean height was 156 ± 5.5 cm, the mean weight was 49.7 ± 6.1 kg, and the mean pre-pregnancy BMI was 20.4 ± 2.0 kg/m². The pre-pregnancy BMI classification showed that 18.8% women were underweight and that the mean gestational weight gain was 11.3 ± 3.7 kg. According to the gestational weight gain classification, 11.6% women were below, 53.1% were within, and 35.3% were above the recommended pregnancy and 2.0% smoked during their pregnancy. Overall, 31.4% were primiparas, 74.3% of the subjects were delivered in normal delivery, and the rate of male neonates given birth to was 55.8%.

Regarding to the birth weight percentiles, the mothers of infants in the 10^{th} group accounted for 8.6%, those in the $10-50^{\text{th}}$ group for 45.2%, those in the 50–90th group for 37.0%, and those in the 90th group for 9.2%; thus, a higher rate was observed in the $10-50^{\text{th}}$ group than in the $50-90^{\text{th}}$ group.

Comparisons according to each birth weight percentile revealed the mean maternal age to be highest in the 10^{th} group (P = 0.035), whereas mean height and pre-pregnancy weight were lowest in the 10^{th} group (P < 0.001) and the mean pre-pregnancy BMI was lowest in the $10-50^{th}$ group (P = 0.022). According to the recommended gestational weight gain classification, for subjects with weight gain below the recommended amount, the birth weight percentile of their infants was most commonly in the 10^{th} group at 23.1%, and for subjects with weight gain above the recommended amount, their infants were most commonly in the 90^{th} group,

accounting for 46.4%.

For the mean hemoglobin and hematocrit levels in the second and third trimesters, we found no statistically significant differences among the four birth weight percentiles (Table 2).

To examine the relationship of the birth weight percentiles with consumed energy and the rate of energy-producing nutrient intake according to each recommended gestational weight gain classification, we performed an analysis of covariance, with age and pre-pregnancy BMI as covariates (Table 3). We observed no statistical significant difference between the consumed energy in both the second and third trimesters and the birth weight percentiles. On the other hand, the rate of energy from protein in the second trimester was significantly higher in the 10-50th group than it was in the 50–90th group in the "below" category (P = 0.043). Furthermore, the rate of energy from carbohydrates was significantly lower in the 10-50th group than in the 50–90th group in the "below" category (P = 0.012), whereas the rate of energy from carbohydrates was high in the 10th group in the "within" category (P = 0.044). The rate of energy from lipids was significantly higher in the 10-50th group than in the 50–90th group in the "below" category (P = 0.037). In the third trimester, we found no significant differences between the rate of energy from all energy-producing nutrients and the birth rate percentiles.

An analysis of covariance was performed to examine the relationship between nutrient intake corrected per 1,000 kcal and birth weight percentiles according to each recommended gestational weight gain classification (Table 4). To this end, age and pre-pregnancy BMI were included as covariates. In the second trimester, the vitamin B₆ intake was significantly higher in the 10–50th group than in the 50–90th group in the "below" category (P = 0.047), and intake of zinc was also significantly higher in the $10-50^{\text{th}}$ group than in the $50-90^{\text{th}}$ group in the "below" category (P = 0.010). In the third trimester, the intake of vitamin D was significantly higher in the $10-50^{\text{th}}$ group than in the $50-90^{\text{th}}$ group in the "within" category (P = 0.010).

DISCUSSION

According to WHO reports anemia is associated with abortion, preterm delivery, LBW, and fetal growth restriction^{31,32)}. Many previous studies have also reported an association between maternal hemoglobin and birth weight³³⁻³⁶⁾. However, in the present study we found no statistically significant differences between the four birth weight percentiles and the mean hemoglobin and hematocrit levels in the second and third trimesters. In Japan, fees for health check-ups are subsidized up to 14 times during pregnancy and testing for anemia is performed in the second trimester (at 24–27 weeks of pregnancy) when expectant mothers are physiologically prone to anemia. When hemoglobin levels are found to be <11.0 in these check-ups, iron tablets are often prescribed. The same tests are performed in the third trimester (at \geq 34 weeks of pregnancy) to verify whether the iron tables have improved the anemia, which suggests that no pregnancies occur with severe anemia that might affect birth weight.

An earlier study showed that age and BMI can influence the relative accuracy of energy intake among Japanese adults³⁷⁾. In the present study, age and BMI showed a significant difference with the birth weight percentile. We therefore conducted an analysis of covariance with age and pre-pregnancy BMI as covariates to examine their relationship with the birth weight percentile in each recommended gestational weight gain classification.

As a result, there were not significant differences among birth weight percentiles for the energy intake in the second and third trimesters. The Dietary Reference Intakes for Japanese people (2010), recommended by the Ministry of Health Labour and Welfare, indicate that an additional 250 kcal and 450 kcal in energy intake are needed in the second and third trimesters, respectively³⁸⁾. In the present study, the energy intake in the second and third trimesters did not meet the recommended amounts. A study by Konno et al. using BDHQ found that energy intake was less than the amount recommended by the Ministry of Health, Labour and Welfare by 180-230 kcal/day in the second trimester and by 320-370 kcal/day in the third trimester.²³⁾ In another survey, by Kubota et al., energy intake was found to be <1,600 kcal/day throughout pregnancy³⁹⁾. Results of the National Health and Nutrition Survey from 1995 to 1999 show no difference in energy intake between pregnant women and nonpregnant women at $1,869 \pm 498$ kcal/day⁴⁰. Furthermore, in Okinawa prefecture, the energy intake of women aged 20-39 years is low at just 1,549 kcal/day⁴¹). It may therefore be difficult to improve on pre-pregnancy dietary habits during pregnancy.

On the other hand, regarding the rate of energy-producing nutrients among pregnant women who had "below" the recommended weight gain in the second trimester, the intake of carbohydrates was significantly lower in the 10–50th group than in the 50–90th group, whereas the protein and fat intake was significantly higher. Furthermore, for pregnant women classified "within" the recommended weight gain, the rate of energy intake from carbohydrates was highest in the 10th group. On comparing the dietary reference intakes for the pregnancy trimesters, the carbohydrate intake was within the reference range, but the fat intake exceeded the reference range. Moreover, additional protein is needed in the second and third trimesters. Sekiya et al. report the most sensitive period of maternal weight gain for the birth weight and length of gestation to be the second trimester⁴²). During the second trimester, increasing consumption of staple foods in pregnant women with poor weight gain improves fetal growth because of the increase in energy intake from carbohydrates and selection of foods that are low in fat and high in protein. Furthermore, if the pregnant woman's weight gain is as recommended, then consuming near the lower limit of the reference energy consumption from carbohydrates may effectively decrease their risk of a SGA birth. In Japan, for pregnant women who are underweight and for those with normal pre-pregnancy weights, the recommended weight gain per week from the second trimester through to the third trimester is 0.3-0.5 kg/week. As a result, a subsequent survey regarding the effects of physicians' guidance on weight gain listed no recommendations for increasing weight and the rate of weight gain was consequently decreased by half in prenatal health checks following this guidance on weight gain and snacking⁴³). British guidelines note the importance of measuring maternal weight and height at the initial prenatal checkup and discourage weighing on a daily basis when there is no benefit to it⁴⁴⁾. A pre-pregnancy BMI of $<25 \text{ kg/m}^2$ is also reported to be desirable to prevent Japanese women from developing pregnancy induced hypertension⁴⁵⁾. Furthermore, in the case of pre-pregnancy obesity, weight management throughout the trimesters is important. However, pregnant women who are underweight or within the normal weight range pre-pregnancy and who have no complications or problems in their family history should be instructed to watch the ratio of energy-producing nutrients they consume based on their recommended weight gain.

Regarding nutrient intake adjusted to 1,000 kcal of energy, we found that in the

second trimester, the intake of vitamin B₆ and zinc was significantly higher in the 10-50th group than in the 50-90th group among pregnant women with "below" the recommended weight gain, whereas in the third trimester, the intake of vitamin D was significantly higher in the 10-50th group than in the 50-90th group among pregnant women classified "within" the recommended weight gain. On comparing the Dietary Reference Intakes for Japanese people (2010) in the second and third trimesters³⁸⁾, adjusted to 1,000 kcal of energy intake, as recommended by the Ministry of Health, Labour and Welfare, we found that the reference amount was consume in the 50-90th group despite low intakes of vitamin B₆ and zinc in the second trimester, whereas in the 10-50th group, intakes were above the recommended amount. These nutrients are obtained from sources including meat and seafood, and thus among expectant mothers with "below" the recommended weight gain, a significantly high rate of energy intake from protein and fat was seen in the 10-50th group, which suggested that the birth weight was affected by an energy intake from fat that was higher than the reference value. Furthermore, in the third trimester, the intake of vitamin D among pregnant women classified "within" the recommended weight gain was at least twice the recommended amount in the 10-50th group, which indicates that, as in the second trimester, high fat consumption affects birth weight. According to reports, of the nutrients important to pregnancy, those associated with birth weight are iron^{15,18)}, vitamin B₆¹⁸⁾, and folic acid^{18,19)} in relation to blood formation, and calcium¹⁵⁾, vitamin D^{16,17)}, zinc¹⁵⁾, and n-3 fatty acids^{21,22}) in relation to bone formation and growth. The Okinawan diet is reportedly nutritionally characterized by a low caloric intake, high meat consumption, and low seafood consumption⁴⁶). Furthermore, it is said that the rapid post-war shift in dietary habits was mainly because of strong influences from the food culture of mainland Japan and the United States, and from socio-economic changes. However, the traditional cooking styles of Okinawa (such as "stir-fry" and "boiling") have been maintained despite the larger changes seen in the raw materials used in cooking⁴⁷⁾. The vast majority of nutrients associated with birth weight can be obtained from meat products. The food culture of Okinawa includes low seafood consumption with many fried dishes, which suggests that n-3 fatty acids, which contribute to fetal growth, can be obtained from seasoning oils.

LIMITATIONS

In the present study, we excluded subjects whose energy intake had been calculated using BDHQ. According to Okubo et al., underreporting, rather than over reporting, of energy intake has been predominant in the relatively lean Japanese female population and BMI has been the most important factor affecting the reporting accuracy of energy intake⁴⁸. In the present survey, the fact that the "below" category included only one individual with an infant birth weight below the 10th percentile indicates that many underweight pregnant women underreport on the BDHQ survey. This may explain their exclusion from analysis sets. Further investigation is needed into those who underreport. Furthermore, Okinawa prefecture, where the survey was conducted, is the prefecture in Japan with the lowest income per inhabitant; investigation into birth weights and dietary intake in relation to income should therefore also be conducted.

CONCLUSIONS

16

We found the energy intake of pregnant women to be below the required amount throughout the second and third trimesters of pregnancy. During the second trimester, increasing consumption of staple foods in pregnant women with poor weight gain led to improved fetal growth because of the increased energy intake from carbohydrates. However, our analysis suggested that if a pregnant woman's weight gain is as recommended, then consuming an amount of carbohydrates near the lower limit of the reference range may effectively lower the risk for giving birth to a SGA baby.

Based on our study, we recommend that pregnant women who are underweight pre-pregnancy receive nutritional guidance to select foods that are low in fat and high in protein, while increasing carbohydrate intake up until the second trimester. If the recommended weight gain is achieved, carbohydrate intake should be decreased, and protein intake should be increased.

Dietary habits are strongly associated with the food culture surrounding pregnant women and can be difficult to improve after a woman becomes pregnant. We therefore believe that in addition to recommendations regarding gestational weight gain and dietary intake, interventions are needed in secondary schools and other educational institutions to improve the dietary habits of young women prior to them becoming pregnant.

REFERENCES

- 1) Baker DJP: Fetal origins of coronary heart disease. BMJ. 311: 171-174, 1995.
- Baker DJP: Fetal nutrition and cardiovascular disease in later life. Br Med Bull.
 53(1): 96-108, 1997.

- Hideoki Fukuoka: DOHaD (Developmental Origins of Health and Disease) and Birth Cohort Research. J Nutr Sci Vitaminol. 61: S2-S4, 2015.
- 4) Nicola J. Wiles, Tim J. Peters, David A. Leon and Glyn Lewis: Birth weight and psychological distress at age 45-51 years: Results from the Aberdeen Children of the 1950s cohort study. Br. j. Psychiatry. 187: 21-28, 2005.
- 5) Yo Takemoto, Erika Ota, Daisuke Yoneoka, Rintaro Mori and Satoru Takeda: Japanese secular trends in birthweight and the prevalence of low birthweight infants during the last three decades: A population-based study. Sci Rep, 2016. DOI: 10.1038/srep31396
- Honami Yoshida, Noriko Kato and Tetsuji Yokoyama: Current trends in low birth weight infants in Japan. J. Natl. Inst. Public Health. 63(1): 2-16, 2014. (in Japanese)
- Hiroko Tsukamoto, Hideoki Fukuoka, Mieko Koyasu, Yasushi Nagai and Hidemi Takimoto: Risk factors for small for gestational age. Pediatr Int. 49(6): 985-990, 2007.
- H Takimoto, T Sugiyama, H Fukuoka, N Kato and N Yoshiike: Maternal weight gain ranges for optimal fetal growth in Japanese women. Int J Gynaecol Obstet. 92: 272-278, 2006.
- 9) Yuji Orita, Masaki Tajima, Sayuri Hiwatashi, Sayori Terao, Ichiro Iwamoto, Toshimichi Oki and Tsutomu Douchi: Decreasing full-term neonatal birthweight over the 2 decades in a single institute in Japan. J Obstet Gynaecol Res. 39(6): 1173-1178, 2013.
- 10) Goto Yukio: The epidemic of the 21st century. Journal of Japan Society for the Study of Obesity. 12(1): 1-2, 2006. (in Japanese)
- 11) Ministry of Health, Labour and Welfare: Indicator of eating habit for pregnant

and postpartum women, promotion of healthy parents and children 21 report. pp.61-74, Mother's & Children's Health Organization, Tokyo,2006. http://www.mhlw.go.jp/houdou/2006/02/h0201-3a.html.pdf. (in Japanese)

- 12) Emi Akahoshi, Kazuhiko Arima, Kiyonori Miura, Takayuki Nishimura, Yasuyo Abe, Naoko Yamamoto, Kazuyo Oishi, Hideaki Masuzaki and Kiyoshi Aoyagi: Association of maternal pre-pregnancy weight, weight gain during pregnancy, and smoking with small-for-gestational-age infants in Japan. Early Hum Dev, 92: 33-36, 2016.
- 13) Nobuko Harita, Masatoshi Kariya, Tomoshige Hayashi, Kyoko Kogawa Sato, Takuya Aoki, Kimiko Nakamura, Ginji Endo and Katsuhiko Narimoto: Gestational bodyweight gain among underweight Japanese women related to small-for-gestational-age birth. J Obstet Gynaecol Res, 38(9): 1137-1144, 2012.
- 14) Hiroko Watanabe, Kazuko Inoue, Masako Doi, Momoyo Matsumoto, Kayoko Ogasawara, Hideoki Fukuoka and Yasushi Nagai: Risk factors for term small for gestational age infants in women with low prepregnancy body mass index. J Obstet Gynaecol Res, 36(3): 506-512, 2010.
- 15) Fahimeh Khoushabi, Mohammad Reza Shadan, Ali Miri and Javad Sharifi-Rad: Determination of maternal serum zinc, iron, calcium and magnesium during pregnancy in pregnant women and umbilical cord blood and their association with outcome of pregnancy. Mater Sociomed, 28(2): 104-107, 2016.
- 16) Daphna K Dror: Vitamin D status during pregnancy: maternal, fetal, and postnatal outcomes. Curr Opin Obstet Gynecol, 23(6): 422-426, 2011.
- 17) Nasrin Khalessi, Majid Kalani, Mehdi Araghi and Zahra Farahani: The Relationship between Maternal Vitamin D Deficiency and Low Birth Weight Neonates. J Family Reprod Health, 9(3): 113-117, 2015.

- 18) Seo Won Bang and Sang Sun Lee: The factors affecting pregnancy outcomes in the second trimester pregnant women. Nutr Res Pract, 3(2): 134-140,2009.
- 19) Evelyne M. van Uitert and Regine P.M. Steegers-Theunissen: Influence of maternal folate status on human fetal growth parameters. Mol Nutr Food Res, 57(4): 582-595, 2013.
- 20) Vasiliki Leventakou, Theano Roumeliotaki, David Martinez, Henrique Barros, Anne-Lise Brantsaeter, Maribel Casas, Marie-Aline Charles, Sylvaine Cordier, Merete Eggesbo, Manon van Eijsden, Francesco Forastiere, Ulrike Gehring, Eva Govarts, Thorhallur I Halldorsson, Wojciech Hanke, Margaretha Haugen, Denise HM Heppe, Barbara Heude, Hazel M Inskip, Vincent WV Jaddoe, Maria Jansen, Cecily Kelleher, Helle Margrete Meltzer, Franco Merletti, Carolina Molto-Puigmarti, Monique Mommers, Mario Murcia, Andreia Oliveira, Sjurour F Olsen, Fabienne Pele, Kinga Polanska, Daniela Porta, Lorenzo Richiardi, Sian M Robinson, Hein Stigum, Marin Strom, Jordi Sunyer, Carel Thijs, Karien Viljoen, Tanja GM Vrijkotte, Alet H Wijga, Manolis Kogevinas, Martine Vrijheid and Leda Chatzi: Fish intake during pregnancy, fetal growth, and gestational length in 19 European birth cohort studies. Am J Clin Nutr, 99: 506-516, 2014.
- 21) Sjurour Frooi Olsen and Niels Jorgen Secher: Low consumption of seafood in early pregnancy as a risk factor for preterm delivery: prospective cohort study.
 BMJ, 324: 1-5, 2002.
- 22) Akshaya Meher, Karuna Randhir, Savita Mehendale, Girija Wagh and Sadhana Joshi: Maternal Fatty Acids and Their Association with Birth Outcome: A Prospective Study. PloS One, DOI: 10.1371/journal.pone.0147359, 2016.
- 23) Yoshie Konno, Hiromitsu Chihara, Momoyo Matsumoto, Kayoko Ogasawara, Yasushi Nagai, Hideoki Fukuoka, Hiroko Watanabe and Nobuo Yoshiike: The

relationship between maternal body weight gain during pregnancy, nutrient intake and the physical condition of newborn infants. Japanese Journal of Maternal Health, 52(2): 286-293, 2011. (Japanese with English abstract)

- 24) Kaoru Uno, Yukari Takemi, Fumi Hayashi and Momo Hosokawa: Nutritional status and dietary intake among pregnant women in relation to pre-pregnancy body mass index in Japan. Japanese Journal of Public Health, 63(12): 738-749, 2016. (Japanese with English abstract)
- 25) Satomi Kobayashi, Kentaro Murakami, Satoshi Sasaki, Hitomi Okubo, Naoko Hirota, Akiko Notsu, Mitsuru Fukui and Chigusa Date: Comparison of relative validity of food group intake estimated by comprehensive and brief-type selfadministered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr, 14(7): 1200-1211, 2011.
- 26) Satoshi Sasaki. Development and evaluation of dietary assessment methods using biomarkers and diet history questionnaires for individuals. In: Heizou Tanaka (ed). Research for evaluation methods of nutrition and dietary lifestyle programs held on Healthy Japan 21. Summary report. pp10-44: Ministry of Health, Welfare, and Labour; Tokyo, 2004. (in Japanese)
- 27) K Murakami, S Sasaki, Y Takahashi, K Uenishi, M Yamasaki, H Hayabuchi, T Goda, J Oka, K Baba, K Ohki, T Kohri, R Watanabe and Y Sugiyama: Misreporting of dietary energy, protein, potassium and sodium in relation to body mass index in young Japanese women. Eur J Clin Nutr, 62: 111-118, 2008.
- 28) Satomi Kobayashi, Satoru Honda, Kentaro Murakami, Satoshi Sasaki, Hitomi Okubo, Naoko Hirota, Akiko Notsu, Mitsuru Fukui, Chigusa Date: Both Comprehensive and Brief Self-Administered Diet History Questionnaires Satisfactorily Rank Nutrient Intakes in Japanese Adults. J Epidemiol, 22(2):

151-159, 2012.

- 29) World Health Organization: Global Database on Body Mass Index, http://www.assessmentpsychology.com/icbmi.htm
- 30) Japan Pediatric Society: 'The new gestational age-specific standards for birth size ' (revised edition).
 http://www.jpeds.or.jp/modules/guidelines/index.php?content_id=21 (in Japanese)
- 31) World Health Organization: Maternal, infants and young child nutrition. 2016. http://apps.who.int/gb/ebwha/pdf_files/WHA69/A69_7-en.pdf10gatu
- 32) World Health Organization: Global Nutrition Targets 2025 Anaemia Policy Brief. 2014. http://apps.who.int/iris/bitstream/10665/148556/1/WHO_NMH_NHD_14.4_eng.p df?ua=1
- 33) Yunus Yildiz, Emre Ozgu, Serdar Bekir Unlu, Burcin Salman and Elif Gul Yapar Eyi: The relationship between third trimester maternal hemoglobin and birth weight/length; results from the tertiary center in Turkey. J Matern Fetal Neonatal Med: 2013. DOI: 10.3109/14767058.2013.837445
- 34) Abdel-Raoufabdel-Aziz Afifi R, Ali DK and Talkhan HM: Pregnancy outcome and the effect of maternal nutritional status. J Egypt Soc Parasitol, 43(1): 125-32, 2013.
- 35) Manpreet Kaur, Aarti Chauhan, MD Dilshad Manzar and Mohammad Muntafa Rajput: Maternal Anaemia and Neonatal Outcome: A Prospective Study on Urban Pregnant Women. J Clin Diagn Res, 9(12): QC04-QC08, 2015.
- 36) Fatemeh Moghaddam Tabrizi and G Saraswathi: Maternal anthropometric measurements and other factors: relation with birth weight of neonates. Nutr Res

Pract, 6(2): 132-137, 2012.

- 37) Hitomi Okubo, Satoshi Sasaki, Naoko Hirota, Akiko Notsu, Hidemi Todoriki, Ayako Miura, Mitsuru Fukui and Chigusa Date: The influence of age and body mass index on relative accuracy of energy intake among Japanese adults. Public Health Nutr, 9(5): 651-657, 2006.
- 38) Ministry of Health, Labour and Welfare of Japan: Dietary Reference Intakes for Japanese, 2010, pp.285-290, Daiich Shuppan Publishing Co., Ltd., Tokyo, 2010. (in Japanese)
- 39) Kimie Kubota, Hiroaki Itoh, Mitsue Tasaka, Hatue Naito, Yoshiharu Fukuoka, Keiko Muramatsu Kato, Yukiko Kobayashi Kohmura, Kazuhiro Sugihara, Naohiro Kanayama and Hamamatsu Birth Cohort (HBC) Study Team: Changes of maternal dietary intake, bodyweight and fetal growth throughout pregnancy in pregnant Japanese women. J Obstet Gynaecol Res, 39(9): 1383-1390, 2013.
- 40) Hidemi Takimoto, Nobuo Yoshiike, Akane Katagiri, Hiromi Ishida and Shiro Abe: Nutritional status of pregnant and lactating woman in Japan: A comparison with non-pregnant/non-lactating controls in the National Nutrition Survey. J Obstet Gynaecol Res, 29(2): 96-103, 2003.
- 41) Department of Welfare and Health of Okinawa: The summary of health and nutrition survey 2011.

http://www.kenko-okinawa21.jp/090-docs/2015121101060/files/H23gaiyou.pdf

- 42) Nobuko Sekiya, Takanobu Anai, Michiru Matsubara, Fumiko Miyazaki: Maternal weight gain rate in the second trimester are associated with birth weight and length of gestation. Gynecol Obstet Invest 63(1): 45-48, 2007.
- 43) Melissa K. Melby, Goro Yamada and Pamela J. Surkan: Inadequate Gestational Weight Gain Increases Risk of Small-for-Gestatioanl-Age Term Birth in Girls in

Japan: A Population-Based Cohort Study. Am J Hum Biol, 2016. DOI: 10.1002/ajhb.22855.

- 44) National Institute for Health and Care Excellence: Routine antenatal care for healthy pregnant women. 2008. https://www.nice.org.uk/guidance/cg62/resources/routine-antenatal-care-forhealthy-pregnant-women-254938789573
- 45) Tomohito Tanaka, Keisuke Ashihara, Michihiko Nakamura, Takayoshi Kanda, Daisuke Fujita, Yoshiki Yamashita, Yoshito Terai, Hideki Kamegai and Masahide Ohmichi: Associations between the pre-pregnancy body mass index and gestational weight gain with pregnancy outcomes in Japanese women. J Obestet Gynaecol Res, 40(5): 1296-1303, 2014.
- 46) Terue Kawabata, Noriko Iwama, Shigeji Miyagi and Kyoko Hasegawa: Animal food intakes and lipid nutrition in Okinawa prefecture. J Lipid Nutr, 16(1): 39-47, 2007. (Japanese with English abstract)
- 47) Hidemi Todoriki, D. Craig Willcox and Bradley J. Willcox: The Effects of Post-War Dietary Change on Longevity and Health in Okinawa. OJAS, 1: 52-61, 2004.
- 48) Hitomi Okubo and Satoshi Sasaki: Underreporting of energy intake among Japanese women aged 18-20 years and its association with reported nutrient and food group intakes. Public Health Nutr, 7(7):911-917,2004.