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Abstract

This paper examines forecasting performance of a vector autoregressive (VAR)
model by a Bayesian stochastic search variable selection (SSVS) method. We use
several artificially generated data sets to evaluate forecasting performance using a
direct multiperiod forecasting method with a recursive forecasting exercise. We
find that implementing SSVS prior in a VAR improves forecasting performance
over unrestricted VAR models for either non-stationary or stationary data. As an
illustration of a VAR model with SSVS prior, we investigate US macroeconomic
data sets with three variables using a VAR with lag length of ten, and find that the
SSVS restrictions on insignificant parameters alleviates over-parameterized prob-
lem of VAR and thus offers an appreciable improvement in forecast performance.

1 Introduction
Vector Autoregressive (VAR) models have been widely used to forecast macroeco-
nomic variables and to analyze macroeconomics and policy. However, VAR models
tend to have over-parameterization problem, which leads to imprecise inference and
thus deteriorates the forecast performance. To remedy this problem, George et al.
(2008) apply a Bayesian stochastic search variable selection (SSVS) method to VAR
model. SSVS method, developed by George and McCulloch (1993) and George and
Mcculloch (1997), uses a hierarchical prior where each of the parameters in the model
is drawn in a Markov chain Monte Carlo (MCMC) from two different normal distribu-
tions - one with a small variance and the other with a large variance. There have been
several research that applied SSVS method to various multivariate time series models
by Hara and Sillanp (2009), Jochmann et al. (2010), Jochmann et al. (2013) and Koop
(2013).
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George et al. (2008) investigate numerical simulations and show that implementing
SSVS method in VAR can be effective at both selecting a satisfactory model and im-
proving forecast performance based on the 1-step ahead mean squared error of forecast
error and Kullback-Liebler divergence. In this paper, we examine numerical simula-
tions using several DGPs to evaluate forecasting performances with 1, 4, 8 and 12-step
ahead horizons, and compute predictive likelihoods and the mean squared forecast error
(MSFE) to compare restricted SSVS VAR model with other unrestricted VAR models.
We find that implementing SSVS in VAR improves forecasting performance apprecia-
bly, particularly when the data are non-stationary. We then illustrate an application of
SSVS VAR model to US macroeconomics model. We choose the lag length of ten for
the VAR based on the AIC. With this relatively long lag length and thus a large num-
ber of parameters in the model, we find that SSVS can effectively restrict insignificant
parameters in the model and thus improve forecasting performance.

The plan of this paper is as follows. Section 2 reviews prior and posterior distri-
butions of SSVS VAR model. We also review methods to evaluate forecasting perfor-
mances. In Section 3 we describe numerical experiments with artificially generated
data, and then examine the results of the numerical simulations. Section 4 illustrates an
application to a simple 3-variable VAR of US macroeconomics. Section 5 concludes
and suggests for future work. All results reported in this paper are generated using Ox
version 7.2 for Linux (see Doornik (2013)).

2 VAR model with SSVS prior

2.1 SSVS prior
In this section, we present a VAR model with SSVS prior, proposed by George et al.
(2008). Let yt be an n× 1 vector of observations at time t, then an unrestricted VAR
model with p lag is written as

y′t =C+
p

∑
i=1

y′t−iΘi + ε
′
t (1)

for t = 1, . . . ,T , where C is a 1×n vector of an intercept term; Θi are n×n matrices of
coefficients for i= 1, . . . , p; εt are n×1 independent Nn (0,Σ) errors; and the covariance
matrix Σ is an n×n positive definite matrix. Without any restriction on the regression
coefficients and the covariance matrix in (1), VAR models typically contain a very
large number of parameters to estimate relative to the number of the observations.
This over-parameterization problem leads to imprecision of inference and thus worsens
forecasting performance. To overcome this problem, George et al. (2008) implement
the SSVS method in a VAR, based on George and McCulloch (1993) and George and
Mcculloch (1997). SSVS is a Bayesian MCMC method to take restrictions on the
parameters of the model by using a hierarchical prior on the parameters, In this paper,
we follow George et al. (2008) method to investigate forecasting performances relative
to non-SSVS methods such as the MLE, unrestricted Bayesian VAR and the Minnesota
prior model.
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Let xt be a (1+np)×1 vector with xt = (1,yt−1, ...,yt−p)
′ , then we can rewrite the

VAR model (1) in matrix form as

Y = XΦ+ ε (2)

where the T×n matrix Y is defined as Y = (y1, ...,yT )
′; the T×(1+np) matrix X is de-

fined as X = (x1, ...,xT )
′; the (1+np)×n matrix Φ is defined as Φ = (C′,Θ′1, ...,Θ

′
p)
′;

and the ε is a T ×n matrix with ε = (ε1, ...,εT )
′.

SSVS defines the prior for the VAR coefficient Φ not as a whole but as all of the
elements in Φ. Let φ = vec(Φ) and m be the number of unrestricted elements in Φ,
then the prior for each element, φ j, j = 1,2, . . . ,m, is a hierarchical prior with mixture
of two normal distributions conditional on an unknown dummy variable γ j that takes
zero or one:

φ j|γ j ∼ (1− γ j)N(0,τ2
0, j)+ γ jN(0,τ2

1, j) (3)

where τ2
0, j is small when γ j = 0 and τ2

1, j is large when γ j = 1. This implies that if γ j = 0,
that is, the element φ j is restricted to be zero, the prior for ψ j is virtually zero, while
if γ j = 1, that is, the element φ j is unrestricted, the prior is relatively noninformative.
With regard to priors on γ j, SSVS assumes independent Bernoulli pi ∈ (0,1) random
variables:

P(γ j = 1) = p j

P(γ j = 0) = 1− p j (4)

where p j is the prior hyperparameter that is set to be 0.5 for a natural default choice.
Let γ = (γ1, . . . ,γm), then the prior for φ in (3) can be written as:

φ |γ ∼ N(0,DD) (5)

where D is a diagonal matrix as D = diag(d1, . . . ,dm); where

d j =

{
τ0 j if γ j = 0
τ1 j if γ j = 1

(6)

George and Mcculloch (1997) and George et al. (2008) recommend to use a default
semiautomatic approach that sets τk j = ckσ̂φ j for k = 0,1, where σ̂φ j is the least squares
estimates of the standard error of φ j, which is the coefficients in an unrestricted VAR.
The pre-selected constants c0 and c1 must be c0 < c1. George et al. (2008), Jochmann
et al. (2010) and Jochmann et al. (2013) set c0 = 0.1 and c1 = 10, however these
numbers should be adjusted by researcher to obtain an optimal forecasting perfor-
mance. George and McCulloch (1993) recommend these numbers to be such that
τ2

k1/τ2
k0 ≤ 10000, otherwise the MCMC would be very slow to converge if τk1/τk0

is chosen extremely large.
SSVS also considers the restrictions on the covariances in Σ. Let Ψ be a n× n

upper-triangular matrix, we can decompose the error covariance matrix as:
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Σ
−1 = ΨΨ

′ (7)

where the upper-triangular matrix Ψ can be obtained by the Choleski decomposition of
Σ and expressed as:

Ψ = {ψi j}=


ψ11 ψ12 · · · ψ1n
0 ψ22 · · · ψ2n
...

...
. . .

...
0 0 · · · ψnn

 (8)

For the diagonal elements of Ψ, let define ψ = (ψ11,ψ22, . . . ,ψnn)
′, then we assume

prior for each element of ψ as:

ψ
2
ii ∼ G(ai,bi) (9)

where G(ai,bi) denotes the gamma distribution with mean ai/bi and variance ai/b2
i .

For the elements above the diagonal, let define η j =
(
ψ1 j,ψ2 j, . . . ,ψ j−1, j

)′ for j =
2, . . . ,n, and η = (ψ12,ψ13,ψ23, . . . ,ψn−1,n)

′ = (η ′2, . . . ,η
′
n)
′ , then priors on η is as-

sumed as:

η j|ω j ∼ N(0,D jD j) (10)

where ω j =
(
ω1 j, . . . ,ω j−1, j

)′ is a vector of dummy variables which are assumed to be
independent Bernoulli as:

P(ωi j = 1) = qi j

P(ωi j = 0) = 1−qi j (11)

where qi j is equal to 0.5 for a natural default choice. D j in (10) is defined as D j =
diag(

(
h1 j, . . . ,h j−1, j

)
, where

hi j =

{
κ0i j if ωi j = 0
κ1i j if ωi j = 1

. (12)

The choice of κki j for k = 0,1 can be determined by using a semiautomatic default
approach that is similar considerations for setting τk j, that is, we set κki j = ckσ̂ψi j

with values of c0 < c1, where σ̂ψi j is an estimate of the standard error associated with
off-diagonal element of Ψ. With this prior, SSVS also considers restrictions on the
off-diagonal elements of Ψ, and thus each element of η j is a mixture of two normal
distributions so that

ψi j|ωi j ∼ (1−ωi j)N(0,κ2
0i j)+ωi jN(0,κ2

1i j) (13)

where κ2
0i j is small when ωi j = 0 and κ2

1i j is large when ωi j = 1.
This summarizes the SSVS hierarchical prior for VAR model. George et al. (2008)

and Jochmann et al. (2010) consider three patterns of SSVS - restrictions only for Ψ
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and for Φ separately, and then for both. In this paper, we consider stochastic search for
both of Ψ and Φ together. Note that, if we treat the unknown indicator parameters to
equal to 1, that is γ j = ωi j = 1 for all j and i, then our SSVS VAR is just unrestricted
VAR.

2.2 Posteriors
In this section, we show the conditional posterior distribution for each parameter, fol-
lowed by George et al. (2008). Let si j be the elements of S = (Y −XΦ)′(Y −XΦ),
s j =

(
s1 j, . . . ,s j−1, j

)′, and S j be the upper left j× j block of S, then the likelihood
function is

L (Y |Φ,Σ) ∝ |Σ|−T/2 exp
[
−1

2
(Y −XΦ)Σ

−1 (Y −XΦ)′
]

∝

n

∏
i=1

ψ
T
ii exp

[
−1

2

{
n

∑
i=1

ψ
2
iiυi +

n

∑
j=2

(
η j +ψ j jS−1

j−1s j

)′
S j−1

(
η j +ψ j jS−1

j−1s j

)}]
(14)

where υ1 = s11 and υi = |Si|/|Si−1| for i = 2, . . . ,n.
With the likelihood function (14) and priors of (4), (5), (9), (10), (11) and (13),

George et al. (2008) derive the conditional posterior distributions as follows. For the
VAR coefficients Φ, the conditional posterior is given as:

Φ|γ,η ,ψ;Y ∼ Nm(µ,Ξ) (15)

where

Ξ =
[(

ΨΨ
′)⊗ (X ′X)+(DD)−1

]
,−1

µ = Ξ
[{
(ΨΨ)′⊗

(
X ′X

)}
ψ̂M
]
,

ψ̂M = vec(Ψ̂M) = vec
[(

X ′X
)−1 X ′Y

]
.

For the conditional posterior of γ , let define γ(−i) = (γ1, . . . ,γi−1,γi+1, . . . , ,γm), then
we have

γ j|φ ,γ j−1,η ,ψ;Y ∼ Bernoulli
(
u j1/(u j1 +u j2)

)
(16)

where

u j1 =
1

τ0 j
exp

(
−

φ 2
j

2τ2
0 j

)
pi,

u j2 =
1

τ1 j
exp

(
−

φ 2
j

2τ2
1 j

)
(1− pi).
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The conditional posterior distributions of ψ2
11,ψ

2
22, . . . ,ψ

2
nn are independent and

gamma distributions as:

ψ
2
j j|φ ,ω;Y ∼ G(a j +

T
2
,b j) (17)

where

b j =

b1 +
s11
2 if j = 1

b j +
1
2

{
s j j− s′j

[
Vj−1 +(D jD j)

−1
]−1

s j

}
if j = 2, . . . ,n

The conditional posterior distributions of η2, . . . ,ηn are independent and given as;

η j|φ ,ω,ψ;Y ∼ N j−1(µ j,∆ j) (18)

where

∆ j =
[
S j−1 +(D jD j)

−1
]−1

,

µ j =−ψ j j∆ js j.

Finally, the conditional posterior distribution of ωi j for j = 2, . . . ,n and i= 1, . . . , j−
1 is derived as:

ωi j|φ ,ψ,ωk,k 6= j;Y ∼ Bernoulli
(
ui j1/(ui j1 +ui j2)

)
(19)

where

ui j1 =
1

κ1i j
exp

(
−

ψ2
i j

2κ2
1i j

)
qi j,

ui j2 =
1

κ0i j
exp

(
−

ψ2
i j

2κ2
0i j

)
(1−qi j).

The MCMC stochastic search algorithm is obtained by drawing sequentially the
above conditional distributions (15) - (19).

2.3 Forecasting
In this section, we discuss methods for evaluating the forecasting performances among
SSVS VAR model and other unrestricted models. For point forecasting, we consider
the mean squared forecast error (MSFE) and the one-step ahead average mean squared
error (MSE) of forecast error, which measures the forecast error caused by deviation of
estimation of coefficients. We employ a direct multiperiod forecasting method using a
recursive forecasting exercise.

Let us consider the following VAR model instead of (1),
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y′τ+h =C+
p

∑
i=1

y′τ−iΘi + ε
′
τ

= Xτ−1Φ+ ε
′
τ (20)

where Xτ−1 =
(
1,y′

τ−1, . . . ,y
′
τ−p
)
, Φ=(C′,Θ′1, ...,Θ

′
p)
′, y′

τ+h is a vector of observations
at time τ +h for τ = τ0, ...,T −h−1, and h = 0,3,7, and 11, that are one-, four-, eight-
and twelve-step ahead forecasts. Let Yτ−1 = (Xτ−1,Xτ−2, . . . ,X1), then we estimate
Φ̂ using information up to τ − 1 to forecast values ŷτ+h starting from τ = τ0 up to
τ = T −h−1, and calculate the MSFE defined as:

1
T −h− τ0 +1

T−h

∑
τ=τ0

[
yτ+h− ŷτ+h|Φ̂,Yτ−1

]′ [
yτ+h− ŷτ+h|Φ̂,Yτ−1

]
. (21)

Note that in this paper we consider the MSFE for all variables by summing up each
MSFE for each variable.

For Monte Carlo simulation in the next section, since Φ is known a priori for h = 0
(1-step ahead forecast), we consider an average MSE of forecast error for point fore-
casts. The one-step ahead forecast error at period τusing information up to τ-1 can be
decomposed into tow parts such as:

yτ − ŷτ |Φ̂,Yτ−1 = (yτ − ŷτ |Φ)+
(
ŷτ |Φ− ŷτ |Φ̂,Yτ−1

)
(22)

The first term in the right hand side in (22), yτ − ŷτ |Φ, is the sampling error, and
the second term, ŷτ |Φ− ŷτ |Φ̂,Yτ−1, is the forecasting error caused by the deviation of
the estimates Φ̂ from the true parameters Φ. For the comparison of forecasting per-
formances among different models, the sampling error, yτ − ŷτ |Φ, is common to all
models under consideration and does not depend on Φ̂, so that the forecasting error,
ŷτ |Φ− ŷτ |Φ̂,Yτ−1, can be used for evaluation of forecasting performances among dif-
ferent models. The average one-step ahead MSE of the forecast error is calculated
as;

1
N

N

∑
n=1

[(
ŷ(n)T |Φ

(n)− ŷ(n)T |Φ̂
(n),Y (n)

T−1

)′(
ŷ(n)T |Φ

(n)− ŷ(n)T |Φ̂
(n),Y (n)

T−1

)]
(23)

where n = 1, . . . ,N is the number of simulation samples. Note that this average one-
step ahead MSE of the forecast error is also for all variables by summing up each MSE
for each variable.

MSFE or the on-step ahead MSE of forecast error mentioned above is the point
forecasts, that is a standard frequentist criterion for forecast evaluation. For Bayesian
forecast comparison, predictive likelihoods are more preferable than point forecasts
since they provide more comprehensive forecast with the entire predictive density (see
Corradi and Swanson (2006) for review). The predictive density p(ŷτ+h|Y ) can be
approximated using MCMC with replications for k = 1, . . . ,K as:
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p̂(ŷτ+h|Yτ−1) =
1
K

K

∑
k=1

p
(

ŷτ+h|Yτ−1,Φ
(k),Σ(k)

)
=

1
K

K

∑
k=1

fN

(
ŷτ+h = yτ+h|Xτ−1Φ

(k),Σ(k)
)

(24)

→ p(ŷτ+h|Y ) asK→ ∞

where fN denotes the normal density such as:

fN

(
ŷτ+h = yτ+h|Xτ−1Φ

(k),Σ(k)
)
=
|Σ(k)|− 1

2

(2π)
n
2

exp
[
−1

2

(
yτ+h−Xτ−1Φ

(k)
)′(

yτ+h−Xτ−1Φ
(k)
)]

.

(25)
The predictive likelihood is the predictive density in (24) evaluated at the actual value
of yτ+h. Then, the sum of the log predictive likelihoods is computed as:

T−h

∑
τ=τ0

ln p̂(ŷτ+h|Yτ−1) =
T−h

∑
τ=τ0

ln

[
1
K

K

∑
k=1

fN

(
ŷτ+h = yτ+h|Xτ−1Φ

(k),Σ(k)
)]

(26)

We use the sum of the log predictive likelihoods to evaluate forecasting performance
instead of the Kullback-Leibler divergence used by George et al. (2008) to compare
predictive density estimates.

3 Monte Carlo Simulation
In this section, we present several Monte Carlo simulations to illustrate forecasting
performances of the SSVS for VAR models. We consider five data generating processes
(DGPs). For each DGPs, we simulate 100 samples of size T = 100 and T = 200, and
then for each sample we estimate MLE, Bayesian unrestricted VAR, Minnesota prior
model and SSVS VAR for comparison. For Bayesian unrestricted VAR, the indicator
parameters γ and ω in SSVS VAR are set to equal to one, that is γ j = ωi j = 1 for all j
and i. With regard to the Minnesota prior, Litterman (1986) proposes shrinkage prior
for a Bayesian VAR model with random walk components. For a VAR model with
p-the lag in (1), the Minnesota prior for the coefficients assumes that the importance of
the lagged variables is shrinking with the lag length, so that the prior is tighter around
zero with lag length such that Θi ∼ N(Θ̄i,V (Θi)) where the expected values of Θi is
defined as Θ̄1 = In and Θ̄2 = · · ·= Θ̄p = 0n, and the variance of Θi is given as:

V (Θi) =
λ 2

i2


1 θ σ̂1

2/σ̂2
2 · · · θ σ̂1

2/σ̂n
2

θ σ̂2
2/σ̂1

2 1 · · · θ σ̂2
2/σ̂n

2

...
...

. . .
...

θ σ̂n
2/σ̂1

2 θ σ̂n
2/σ̂2

2 · · · 1

 , (27)
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where 0 < θ < 1, and Σ = diag
(
σ̂2

1 , . . . , σ̂
2
n
)
. In our simulations, we set λ = 0.05 and

θ = 0.1. Note that these parameters should be adjusted for optimal results.
We consider the following five DGPs for VARs. All DGPs contain intercept term.

DGP 1 is a four-variable VAR with two lags. DGP 1 contains unit roots with parameters

DGP1: Φ(DGP1)=



0.2 0.2 0.2 0.2
1 0 0 0
0 0.8 0 0
0 0 0.7 0
0 0 0 0.6
0 0 0 0
0 0.2 0 0
0 0 0.3 0
0 0 0 0.4


and Ψ(DGP1)=


2 −1 1 −1
0 2 0 0
0 0 2 0
0 0 0 2

 .

Next, DGP 2 is a four-variable VAR with two lags, and is stationary data with parame-
ters

DGP 2: Φ(DGP2) =



1 1 1 1
0.5 0 0 0
−0.3 0.5 0 0

0 −0.3 0.5 0
0 0 −0.3 0.5

0.3 0 0 0
0 0.3 0 0
0 0 0.3 0
0 0 0 0.3


and Ψ(DGP2) = Ψ(DGP1).

DGP 3 is a four-variable VAR with four lags, and also shows stationary series and with
parameters

DGP 3: Φ(DGP3) =



0.5 0.5 0.5 0.5
0.6 0 0 0
−0.3 0.6 0 0

0 −0.3 0.6 0
0 0 −0.3 0.6
0 0 0 0
−0.2 0 0 0

0 −0.2 0 0
0 0 −0.2 0
−0.3 0 0 −0.2

0 −0.3 0 0
0 0 −0.3 0
0 0 0 −0.3

0.3 0 0 0
0 0.3 0 0
0 0 0.3 0
0 0 0 0.3



and Ψ(DGP3) = Ψ(DGP1).

9



DGP 4 is a six-variable VAR with two lags, and contains unit roots and its parameters
are

DGP 4: Φ(DGP4) =



0.2 0.2 0.2 0.2 0.2 0.2
1 0 0 0 0 0
0 0.8 0 0 0 0
0 0 0.8 0 0 0
0 0 0 0.6 0 0
0 0 0 0 0.6 0
0 0 0 0 0 0.5
0 0 0 0 0 0
0 0.2 0 0 0 0
0 0 0.2 0 0 0
0 0 0 0.4 0 0
0 0 0 0 0.4 0
0 0 0 0 0 0.5



and Ψ(DGP4) =


2 −1 1 −1 1 −1
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 .

DGP 5 is a six-variable VAR with two lags, and is stationary data with parameters

DGP 5: Φ(DGP5) =



1 1 1 1 1 1
0.4 0 0 0 0 0
−0.3 0.4 0 0 0 0

0 −0.3 0.4 0 0 0
0 0 −0.3 0.4 0 0
0 0 0 0−0.3 0.4 0
0 0 0 0 −0.3 0.4

0.3 0 0 0 0 0
−0.2 0.3 0 0 0 0

0 −0.2 0.3 0 0 0
0 0 −0.2 0.3 0 0
0 0 0 −0.2 0.3 0
0 0 0 0 −0.2 0.3


and Ψ(DGP5) = Ψ(DGP4).

With regard to Ψ of these DGPs, we assume that partial correlation between the
i-th component and the j-th component of the error term for i, j > 1 in (8) is zero. In
all Bayesian models, the prior for the intercept term is not restricted and assigned a
normal with a zero mean and a variance of 50 for relatively non-informative prior. For
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the SSVS priors, the hyperparameters are set at pi = 0.5 in (4), qi = 0.5 in (11), a =
b = 0.01 in (9), c0 = 0.1 and c1 = 50 for τk j and κki j in (6) and (12). For each sample,
MCMC is run with 20,000 draws after 5,000 burn-in. We consider joint restriction
search for both Φ and Ψ for SSVS. The lag length is assumed to be known a priori for
all models.

Table 1 - 6 present results of numerical simulations with T = 100 and 200 by DGP1
- 5. We consider four models labeled by MLE (unrestricted Maximum Likelihood
Estimation), BVAR(Bayesian unrestricted VAR with relatively non-informative priors),
Minn.prior (Bayesian unrestricted VAR with Minnesota prior) , and SSVS (Bayesian
restricted VAR with SSVS priors).

Table 1 presents the one-step ahead average MSE of forecast error over 100 sam-
ples, calculated by (23). We find that there is little difference between the MLE and the
BVAR for all DGPs, since the BVAR uses relatively non-informative priors, generating
similar posterior estimates to those by MLE. The Minnesota prior presents better fore-
cast compared with the MLE or the BVAR for DGP1 and DGP4 that contain unit roots
since the Minnesota prior suppose non-stationary process. The SSVS priors show sub-
stantially better than the MLE or the BVAR, especially for non-stationary DGP1 and
DGP4.

Tables 2 - 6 report the sum of the log predictive likelihoods and the MSFEs for h =
0, 3, 7, and 11, calculated by (26) and (21) respectively. As in the case of the one-step
ahead average MSE of forecast error, there is little difference between the MLE and
the unrestricted BVAR. From these results, it is often the case that the SSVS performs
best and the MLE performs worst in terms of both the predictive likelihood and the
MSFE. For any DPG, SSVS leads to higher predictive likelihoods and lower MSFEs,
and improvements of forecasting performances by SSVS over MLE are higher with
T = 100 than with T = 200. This is because prior that affects to posterior is having
little impact when the size T is large.

In the case of DGP 1 in Table 2 and DGP 4 in Table 5, both of which contain unit
roots in the data, the Minnesota prior exceeds to the SSVS for T =200 and h = 3. For
stationary data such as DGP 2, 3, and 5, the SSVS performs best, while the Minnesota
prior performs poorly in some cases due to the assumption of random walk process.
Comparing DGP 2 with DGP 3, the SSVS perform much better for the case of DGP 3
than for the case of DGP2. This is because DGP 3 includes longer lags (4 lags) than
DGP 2 (2 lags), suggesting restrictions were effectively imposed by the SSVS. Overall,
Tables 2 - 6 indicate that implementing SSVS leads to better forecasting performances
for either non-stationary or stationary data with small or large size.

4 An empirical analysis
In this section, we apply SSVS VAR model to an empirical study of US macroeco-
nomics that uses three variables - unemployment rate, inflation rate and interest rate. A
VAR model that uses these variables has been analyzed by Cogley and Sargent (2005),
Primiceri (2005), Koop et al. (2009), and Jochmann et al. (2010), among many oth-
ers. Our US data are quarterly, from 1953:I to 2017:III with sample size T = 259.
Unemployment rate is measured by the civilian unemployment rate, inflation by the
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400 times the difference of the log of CPI, which is the GDP chain-type price index,
and interest rate by the 3-month treasury bill. We obtained these data from the Federal
Reserve Bank of St. Louise.1 These data are plotted in Figure 1.

The choice of the number of lags in a VAR affects efficiency in estimation and thus
forecasting performances. Cogley and Sargent (2005) and Primiceri (2005) work with
VAR(2) to analyze US macroeconomy with the three variables. They do not mention
reason why the lag length was chosen to be two particularly, however probably by
parsimonious reason. Jochmann et al. (2010) use VAR(4) for their SSVS VAR model
with reason that the SSVS can find zero restrictions on the parameters of longer lags
even if the true lag length is less than 4. However, there is possibility that the true lag
length is more than 4. With our data set, the choice of the number of lags is scattered
depending on which criterion we use - VAR(10) by the AIC, VAR(4) by the Hannan-
Quinn criterion, and VAR(2) by the BIC. Even if the true lag length is less than 10,
the SSVS can set zero restrictions on the longer lags, thus we choose VAR (10) as
suggested by the AIC. Forecast horizons are 1 quarter, 1 year, 2 year, and 3 year, which
corresponds to h = 0, 3, 7, and 11 respectively in our VAR in (20). We work with a
recursive forecasting exercise using a direct multistep forecasting method, using data
up to time τ − 1, where τ = τ0, . . . ,T − h− 1, to forecast at time τ + h for h = 0, 3, 7
and 11.

Table 7 presents the sum of the log predictive likelihoods (26) and the MSFEs (21)
for the three-variable VAR with lag length of ten for MLE, BVAR, Minn.prior and
SSVS models. For any forecast horizon, SSVS improves the forecasting performance
with large lag length in terms of the highest predictive likelihood among all models.
SSVS reduces the MSFE against the MLE at 38.9% for h = 0, 28.8% for h = 3, 38.2%
for h = 7 and 26.5% for h = 11. However VAR with the Minnesota prior leads to the
lowest MSFEs at longer horizons with h= 3 and 11, although there are little differences
of the MSFEs between SSVS prior and Minnesota prior.

Since the sum of log predictive likelihoods (26) can be interpreted as the log of the
marginal likelihood as suggested by Geweke and Amisano (2011), we can use them
for model selection. Thus, we find that SSVS for VAR (10) is preferable model among
all models under consideration. Table 8 presents a complete set of posterior means,
standard deviations and inclusion probabilities, denoted by P(inc.) = Pr(γ j = 1|Y ) or
Pr(ω j = 1|Y ), of the VAR coefficients Φ and the off-diagonal elements of the error
covariance Ψ respectively. The posterior inclusion probabilities for the VAR coeffi-
cients can be used for model averaging, or choosing single model that includes only
coefficients with P(inc.)>0.5. We find that there are only 20 important coefficients with
Pr(γ j = 1|Y )> 0.5 out of 90 in Φ, excluding the intercepts, and only 1 important ele-
ment with Pr(ω j = 1|Y ) > 0.5 out of the 3 possible off diagonal elements in Ψ. This
indicates that SSVS is effective to ensure parsimony in over-parameterized VAR(10)
model. If we use SSVS to select lag length of VAR, we find that the number of lag
would be ten (or more) but fourth and sixth lag should be excluded since none of the
coefficients on the sixth lag variables are important where all inclusion probabilities in
the sixth lag variables are less than 0.5..

For the posterior results of Ψ, we find that two out of three off-diagonal elements

1https://fred.stlouisfed.org
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of Ψ are restricted to be zero as Pr(ω j = 1|Y )≤ 0.5. Let define ε =
(
εUnemp,εInf,εInt

)′
to denote the VAR residuals and e to denote the structural shock vector, then the
point estimates of the Ψ restricts on how regression residuals relate to one another
as 1.6413εInt =−1.9905εUnemp+0.0116εInf+uInt, suggesting unexpected interest rate
equals 1.2128 times that of unemployment rate and an idiosyncratic shock with a stan-
dard deviation of about 0.6093%.

In this section, we have examined the forecasting performances of SSVS VAR
models to compare with other models. We chose VAR (10) which contains relatively
large coefficients and found that the SSVS restricts many insignificant coefficients to
be zero. We have strong evidence that SSVS improves forecasting performance for
VAR model.

5 Conclusion
George et al. (2008) develop method for implementing SSVS in VAR models, and
show numerical simulations to illustrate that VAR with SSVS prior improves forecast-
ing performance using one-step ahead forecasting MSE and the KL distance between
the unrestricted and SSVS predictive density. In this paper, we investigate VAR model
with SSVS prior to examine forecast performances using not only 1-step ahead aver-
age MSE of forecast error but also predictive likelihood, MSFE for 1, 4, 8 and 12-step
ahead forecasting horizons. We find that SSVS VAR model appreciably improves the
forecast performance for all DGPs. This improvement of forecasting is notable partic-
ularly when the DGP is random walk process.

We illustrate an application of US macroeconomics to show a benefit of using SSVS
prior in a VAR. We choose the lag length of 10 based on the AIC, instead of 2 or 4
lag length, which has been often chosen. With longer lags and thus large number of
parameters that may include many insignificant, we find that SSVS alleviates over-
parameterization problem in VAR model by restricting insignificant parameters of the
model, and enables to improve forecasting performance.

We choose a direct multiperiod forecast method for both numerical simulation and
an application. Since VAR with SSVS prior greatly improves the 1-step ahead MSE
of forecast error, the coefficients are estimated more efficiently and thus an iterated
multiperiod forecast method would be preferable. So, it is of interest if we compare a
direct method with an iterated multiperiod method using SSVS VAR model.
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Table 1: 1-step ahead average MSE of forecast error

DGP 1 DGP 2 DGP 3 DGP 4 DGP 5
T 100 200 100 200 100 200 100 200 100 200

MLE 0.1630 0.0908 0.1324 0.0712 0.3275 0.1281 0.4318 0.1816 0.2889 0.1344
BVAR 0.1611 0.0905 0.1279 0.0699 0.3239 0.1278 0.4245 0.1808 0.2813 0.1327

Minn.prior 0.1251 0.0787 0.1204 0.0691 0.2726 0.1330 0.3159 0.1448 0.2697 0.1416
SSVS 0.0732 0.0359 0.1132 0.0290 0.2560 0.0829 0.1160 0.0499 0.2275 0.0793

Table 2: Log predictive likelihoods and MSFEs by DGP 1

(a) T = 100

h = 0 h = 3 h = 7 h = 11
Pr.L MSFE Pr.L MSFE Pr.L MSFE Pr.L MSFE

MLE -218.40 1.4524 -590.95 6.3145 -1320.5 17.257 -2276.1 30.941
BVAR -240.24 1.4432 -558.27 6.1051 -1142.6 16.391 -1856.1 29.225

Minn. prior -213.41 1.3568 -415.95 4.7059 -842.96 11.937 -1513.4 22.791
SSVS -203.77 1.2759 -421.09 4.7161 -803.25 11.091 -1305.9 22.500

(b) T = 200

h = 0 h = 3 h = 7 h = 11
Pr.L MSFE Pr.L MSFE Pr.L MSFE Pr.L MSFE

MLE -314.42 1.3305 -603.27 4.7046 -986.65 11.812 -1427.1 21.343
BVAR -335.44 1.3296 -617.97 4.6855 -977.86 11.680 -1388.9 21.034

Minn.prior -345.77 1.3477 -578.29 4.2544 –811.36 9.7949 -1091.4 17.549
SSVS -310.75 1.2598 -580.56 4.3386 -828.79 10.349 -1107.8 17.854
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Table 3: Log predictive likelihoods and MSFEs by DGP 2

(a) T = 100

h = 0 h = 3 h = 7 h = 11
Pr.L MSFE Pr.L MSFE Pr.L MSFE Pr.L MSFE

MLE -218.06 1.4216 -361.43 3.6244 -558.68 8.3217 -502.19 12.545
BVAR -224.80 1.4052 -357.68 3.4838 -538.17 7.8093 -480.89 11.574

Minn.prior -210.66 1.3577 -325.35 3.1973 -481.97 6.6719 -458.52 10.748
SSVS -208.20 1.3428 -310.07 3.0091 -448.49 6.4266 -408.39 10.349

(b) T = 200

h = 0 h = 3 h = 7 h = 11
Pr.L MSFE Pr.L MSFE Pr.L MSFE Pr.L MSFE

MLE -325.62 1.2930 -454.60 2.7581 -542.98 5.0483 -584.54 7.9008
BVAR -320.64 1.2913 -457.63 2.7463 -541.13 4.9667 -588.48 7.7129

Minn.prior -337.84 1.3101 -473.48 2.7969 -577.91 5.0617 -657.20 7.8814
SSVS -308.00 1.2601 -445.54 2.6517 -527.82 4.7872 -571.32 7.3561

Table 4: Log predictive likelihoods and MSFEs by DGP 3

(a) T = 100

h = 0 h = 3 h = 7 h = 11
Pr.L MSFE Pr.L MSFE Pr.L MSFE Pr.L MSFE

MLE -198.52 1.6203 -310.11 4.1628 -402.37 6.5414 -524.01 8.7630
BVAR -213.33 1.6117 -307.80 4.1029 -367.86 6.3499 -430.44 8.3547

Minn.prior -196.34 1.5905 -283.81 3.8096 -298.92 4.9912 -342.41 6.2802
SSVS -176.47 1.4556 -255.60 3.5156 -278.75 5.1400 -281.69 5.8245

(b) T = 200

h = 0 h = 3 h = 7 h = 11
Pr.L MSFE Pr.L MSFE Pr.L MSFE Pr.L MSFE

MLE -156.64 1.3513 -222.98 3.1107 -223.16 4.0159 -219.15 5.3372
BVAR -157.03 1.3509 -222.08 3.1078 -221.43 4.0105 -217.67 5.3230

Minn.prior -171.55 1.4830 -225.29 3.1879 -220.79 3.9612 -218.68 5.0314
SSVS -147.36 1.2939 -216.17 3.0265 -217.38 4.0510 -209.02 5.0773
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Table 5: Log predictive likelihoods and MSFEs by DGP 4

(a) T = 100

h = 0 h = 3 h = 7 h = 11
Pr.L MSFE Pr.L MSFE Pr.L MSFE Pr.L MSFE

MLE -314.64 2.4437 -890.84 10.168 -1807.9 23.464 -2780.2 36.746
BVAR -342.29 2.4221 -821.58 9.9079 -1522.6 22.352 -2238.7 35.367

Minn.prior -288.46 2.2079 -571.07 6.9395 -1039.1 16.055 -1773.3 27.058
SSVS -258.20 1.9852 -561.62 6.9047 -972.93 16.022 -1357.9 24.793

(b) T = 200

h = 0 h = 3 h = 7 h = 11
Pr.L MSFE Pr.L MSFE Pr.L MSFE Pr.L MSFE

MLE -240.46 2.0387 -453.10 7.2985 -697.53 17.325 -940.70 30.330
BVAR -248.42 2.0371 -464.21 7.2685 -690.68 17.118 -932.92 29.980

Minn.prior -237.08 2.0914 -405.72 6.1949 -522.95 13.191 -679.50 23.575
SSVS -221.52 1.8677 -410.26 6.2075 -544.47 14.526 -697.09 24.710

Table 6: Log predictive likelihoods and MSFEs by DGP 5

(a) T = 100

h = 0 h = 3 h = 7 h = 11
Pr.L MSFE Pr.L MSFE Pr.L MSFE Pr.L MSFE

MLE -285.39 2.3226 -462.69 5.9286 -730.46 17.769 -1069.2 37,441
BVAR -307.20 2.2952 -460.03 5.7424 -645.79 15.907 -799.50 29.742

Minn.prior -279.30 2.1960 -441.97 5.6980 -679.37 15.834 -867.30 30.304
SSVS -265.53 2.1140 -383.56 4.9508 -536.04 15.008 -621.14 27.899

(b) T = 200

h = 0 h = 3 h = 7 h = 11
Pr.L MSFE Pr.L MSFE Pr.L MSFE Pr.L MSFE

MLE -232.25 1.9728 -320.60 4.2765 -352.85 9.8018 -363.33 21.914
BVAR -235.05 1.9710 -321.80 4.2709 -352.09 9.6982 -360.18 21.427

Minn.prior -249.87 2.0258 -351.63 4.7073 -421.35 10.782 -484.01 25.150
SSVS -221.98 1.8000 -309.36 4.0449 -344.56 9.1659 -349.68 20.521

Table 7: Predictive Likelihood and MSFE for US Macroeconomic analysis

h = 0 h = 3 h = 7 h = 11
Pr.L MSFE Pr.L MSFE Pr.L MSFE Pr.L MSFE

MLE -1178.8 3.3154 -2540.1 11.799 -5058.3 27.786 -7617.2 41.608
BVAR -1036.7 3.1341 -2025.9 10.951 -3133.0 24.017 -5432.5 38.678

Minn.prior -906.96 2.1542 -1613.8 8.3161 -3162.9 18.874 -3725.4 28.748
SSVS -673.16 2.0245 -1476.1 8.3962 -2361.1 18.181 -3017.2 30.578
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Figure 1: Data: Inflation Rate, Unemployment Rate, Interest Rate
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Table 8: Results for SSVS-VAR (10)

unemp inflation interest
mean (s.d.) P (inc.) mean (s.d.) P (inc.) mean (s.d.) P (inc.)

constant 0.1848 (0.0797) —— 0.5433 (0.3125) —— 0.0841 (0.2141) ——
unemp (-1) 1.6074 (0.0744) 1.0000 -0.1192 (0.2217) 0.2996 -0.9058 (0.2191) 0.9865
inflation (-1) 0.0044 (0.0107) 0.2028 0.6411 (0.0725) 1.0000 0.0517 (0.0554) 0.5393
interest (-1) 0.0047 (0.0103) 0.1704 0.0089 (0.0304) 0.0875 0.8322 (0.0644) 0.9838
unemp (-2) -0.5701 (0.1584) 0.9898 0.0781 (0.3244) 0.1377 1.1198 (0.3886) 0.9838
inflation (-2) 0.0098 (0.0165) 0.3209 0.0922 (0.1008) 0.5385 0.0153 (0.0380) 0.2010
interest (-2) 0.0011 (0.0066) 0.0622 0.0030 (0.0237) 0.0543 -0.0403 (0.0771) 0.2660
unemp (-3) -0.1816 (0.1437) 0.7002 -0.0635 (0.2126) 0.0947 -0.1848 (0.2756) 0.3686
inflation (-3) -0.0049 (0.0136) 0.1823 0.1058 (0.1099) 0.5623 0.1701 (0.0570) 0.9741
interest (-3) 0.0011 (0.0061) 0.0587 0.0074 (0.0320) 0.0753 0.2425 (0.0737) 0.9910
unemp (-4) -0.0045 (0.0527) 0.1178 -0.0157 (0.1035) 0.0520 0.0011 (0.0929) 0.0800
inflation (-4) -0.0005 (0.0060) 0.0880 0.1105 (0.1047) 0.6104 -0.0180 (0.0419) 0.2127
interest (-4) 0.0010 (0.0059) 0.0532 -0.0012 (0.0254) 0.0571 -0.0174 (0.0479) 0.1518
unemp (-5) 0.1933 (0.0972) 0.8616 0.0071 (0.0609) 0.0388 -0.0287 (0.0758) 0.0993
inflation (-5) -0.0030 (0.0108) 0.1336 -0.0134 (0.0427) 0.1439 -0.1435 (0.0619) 0.9242
interest (-5) 0.0033 (0.0096) 0.0974 -0.0085 (0.0328) 0.0893 0.0035 (0.0245) 0.0720
unemp (-6) 0.0131 (0.0510) 0.1344 0.0102 (0.0545) 0.0344 -0.0277 (0.0649) 0.0842
inflation (-6) 0.0119 (0.0188) 0.3442 0.0025 (0.0244) 0.0831 0.0101 (0.0305) 0.1456
interest (-6) 0.0004 (0.0055) 0.0452 -0.0566 (0.0856) 0.3263 -0.0004 (0.0214) 0.0680
unemp (-7) 0.0194 (0.0608) 0.1422 0.0102 (0.0512) 0.0304 -0.0071 (0.0451) 0.0387
inflation (-7) -0.0014 (0.0075) 0.0980 -0.0124 (0.0398) 0.1371 -0.0029 (0.0172) 0.0856
interest (-7) 0.0001 (0.0061) 0.0597 -0.0282 (0.0662) 0.1844 -0.3272 (0.0663) 0.9987
unemp (-8) -0.4494 (0.0857) 1.0000 0.0014 (0.0463) 0.0260 -0.0071 (0.0435) 0.0362
inflation (-8) 0.0032 (0.0098) 0.1395 -0.0039 (0.0267) 0.0938 0.0022 (0.0149) 0.0779
interest (-8) -0.0021 (0.0079) 0.0724 -0.0080 (0.0380) 0.0908 0.2441 (0.0680) 0.9814
unemp (-9) 0.5278 (0.1059) 1.0000 0.0015 (0.0432) 0.0219 0.0030 (0.0524) 0.0369
inflation (-9) 0.0044 (0.0124) 0.1674 0.0049 (0.0287) 0.1065 0.0133 (0.0321) 0.1884
interest (-9) -0.0011 (0.0052) 0.0596 -0.0043 (0.0415) 0.0907 0.0097 (0.0372) 0.1010
unemp (-10) -0.1974 (0.0572) 0.9911 -0.0021 (0.0290) 0.0372 0.0159 (0.0468) 0.0867
inflation (-10) -0.0131 (0.0191) 0.3867 0.0606 (0.0733) 0.4755 -0.0033 (0.0189) 0.0985
interest (-10) -0.0011 (0.0050) 0.0639 0.0556 (0.0799) 0.3772 -0.0054 (0.0231) 0.0970

Note: P(inc.) denotes posterior probability of inclusion of parameter, Pr
(
γ j = 1|Y

)
.

Ψ̂ =


4.0458 0.1463 1.9905
(0.1908) (0.3000) (0.2955)

1.0412 −0.0116
(0.0495) (0.0406)

1.6413
(0.0785)

 , ω̂ =

 1.0000 0.2155 1.0000
1.0000 0.0844

1.0000


Note: The posterior standard deviation is in parentheses.
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