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Abstract

We study weighted unilateral and bilateral shift operators and their
C∗-algebras in a systematic way. We mainly consider some basic or ex-
tended, spectrum theory for those operators and their C∗-algebras. As
results we obtain several extended generalizations from certainly known
results in some cases.

Primary 46L05, 47A10, 47A53, 47B35.
Keywords: Unilateral shift, bilateral shift, weighted shift, C*-algebra, Toeplitz
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1 Introduction

In this paper we would like to study weighted unilateral and bilateral shift
operators and their C∗-algebras respectively in some details, beyond the usual
(non-weighted) unilateral shift operator and bilateral operator and their C∗-
algebras (as an account as in Murphy [11]), although weighted or not, such
operators and C∗-algebras are quite well known in the literature in Operator
Theory and Operator Algebras. For instance, may refer to Bunce [1], Bunce-
Deddens [2], Conway [4], Davidson [6], Ghatage [7], Ghatage-Phillips [8], Halmos
[9], and Hiai-Yanagi [10] (and more items). Especially, it has been noticed that
the paper [12] by Shields should be refereed as a reference, but this item has
not been at hand and so not checked. This is the very first reason for this work
as a motivation, before the notice, to make some details by ourselves on this
subject for some purpose using them later somewhere suitably.

This paper is organized as follows. In Section 2, we review and study
weighted unilateral and bilateral shift operators respectively in a systematic
way (cf. [4] and [2]). As a result we determine the spectrums of those operators
in terms of, or under conditions of bounded sequences of complex numbers as
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weights of shifts in some cases. In particular, we obtain several extended gen-
eralizations from the cases of the usual shift operators ([10]) and hyponormal
weighted shift operators ([4]). In Section 3, as an attempt we consider Banach
spaces of all weighted shift operators. In Section 4, we consider C∗-algebras
generated by weighted shift operators. As a result we determine the algebraic
structures of those C∗-algebras in terms of, or under conditions of bounded
sequences as weights of shifts in some cases. In particular, we obtain several
extended generalizations from the case of C∗-algebras generated by hyponormal
weighted shift operators ([1] and [4]).

The results obtained, but containing several or many basic and elementary
facts, as accumulation would be some useful as a convenient reference for further
studying this topic. More investigations on this subject may be continued and
considered in elsewhere.

Added as a note. The (early) versions of this paper with slightly different
titles have been reviewed, from which this paper is improved to some extent for
this publication.

2 Weighted shift operators

We denote by L2(N) the Hilbert space of all square summable sequences a =
(aj) =

∑∞
j=1 ajej of complex numbers aj ∈ C over N of natural numbers, with

the 2-norm squared as

∥a∥2
2 =

∞∑
j=1

|aj |2 =
∞∑

j=1

ajaj = 〈a, a〉

as the inner product, which is linear in the first variable and complex-conjugate
linear in the second, where (ej)∞j=1 is the canonical orthonormal basis of L2(N).
Similarly, we define the Hilbert space L2(Z) of all square summable sequences
b = (bj) =

∑
j∈Z bjej of bj ∈ C over Z of the integers.

Let w = (wn) be a bounded sequence of complex numbers. We denote by
Cb(N) the C∗-algebra of all bounded sequences w = (wn), z = (zn) of complex
numbers with the pointwise operations such as addition w + z = (wn + zn),
multiplication wz = (wnzn), and involution w∗ = (wn), and with the uniform
norm as ∥w∥∞ = supn∈N |wn|. Similarly, we define the C∗-algebra Cb(Z).

Define the unilateral weighted shift (UWS) operator Sw with weight
w ∈ Cb(N), acting on L2(N) as an ∞×∞ infinite matrix:

Sw =


0 0 · · · · · ·
w1 0 · · · · · ·

0 w2
. . .

...
. . . . . . . . .


so that Sw(

∑∞
j=1 ajej) =

∑∞
j=1 wjajej+1 for

∑∞
j=1 ajej ∈ L2(N). Namely,

Sw(a1, a2, · · · )t = (0, w1a1, w2a2, · · · )t ∈ L2(N).
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Because

∥Sw(a)∥2
2 =

∞∑
j=1

|wjaj |2 ≤ ∥w∥2
∞

∞∑
j=1

|aj |2 = ∥w∥2
∞∥a∥2

2 < ∞.

If w = (wn) = 1 = (1) with wn = 1, then S1 is the usual unilateral shift operator
on L2(N). The adjoint operator S∗

w of Sw is identified with

S∗
w =

0 w1

0 w2

. . . . . .


so that S∗

we1 = 0, S∗
wej = wj−1ej−1, and S∗

w(
∑∞

j=1 ajej) =
∑∞

j=2 wj−1ajej−1

as
S∗

w(a1, a2, · · · )t = (w1a2, w2a3, · · · )t ∈ L2(N).

Because

∥S∗
w(a)∥2

2 =
∞∑

j=1

|wjaj+1|2 ≤ ∥w∥2
∞

∞∑
j=1

|aj+1|2 ≤ ∥w∥2
∞∥a∥2

2 < ∞.

The bilateral weighted shift (BWS) operator Uw for w ∈ Cb(Z), acting
on L2(Z) is defined by Uwej = wjej+1 for j ∈ Z. If w = 1, then U1 is the usual
bilateral shift operator on L2(Z). The adjoint operator U∗

w of Uw is defined by
U∗

wej = wj−1ej−1 for j ∈ Z. Namely,

Uw =



. . . . . .

. . . 0 0

wj 0
. . .

. . . . . .

 and U∗
w =



. . . . . .

. . . 0 wj

0 0
. . .

. . . . . .

 .

We denote by Dw the diagonal operator on L2(N) with w = (wn) ∈ Cb(N)
as entries on the diagonal. Similarly, we define the diagonal operator Dw on
L2(Z) with w ∈ Cb(Z).

Let H be a Hilbert space with the 2-norm associated to an inner product,
such as ∥ · ∥2 =

√
〈·, ·〉. We denote by B(H) the C∗-algebra of all bounded

(linear) operators on H, with the operator (uniform or supremum) norm

∥B∥ = sup
ξ∈H,∥ξ∥2≤1

∥Bξ∥2 finite for any B ∈ B(H).

Lemma 2.1. The product S∗
wSw is the diagonal operator Dw∗w with the bounded

sequence (|wj |2) on the diagonal, so that the operator norm ∥S∗
wSw∥ is equal to

supj∈N |wj |2 = ∥w∥2
∞.

The similar as above holds for U∗
wUw on L2(Z).
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The product SwS∗
w is the diagonal sum operator 0 ⊕ Dw∗w ≡ D(0,w∗w), so

that the operator norm ∥SwS∗
w∥ is equal to supj∈N |wj |2 = ∥w∥2

∞.
We have UwU∗

w = D(w∗w)−1 with (w∗w)−1 = (w∗
j−1wj−1)j∈Z defined so, so

that ∥UwU∗
w∥ = ∥w∥2

∞.

Proof. By computing the infinite matrix multiplication, we have S∗
wSw = Dw∗w

and SwS∗
w = 0 ⊕ Dw∗w.

Since Dw∗wej = |wj |2ej with ∥ej∥2 = 1, we have ∥Dw∗w∥ ≥ ∥w∥2
∞. Con-

versely, for ξ = (ξj) ∈ L2(N),

∥Dw∗wξ∥2 = 〈w∗wξ,w∗wξ〉 =
∞∑

j=1

wjwjξjwjwjξj

≤ sup
j∈N

|wj |4
∞∑

j=1

|ξj |2 = ∥w∥4
∞∥ξ∥2

2.

Therefore, we obtain ∥Dw∗w∥ ≤ ∥w∥2
2.

The proof for U∗
wUw and UwU∗

w is similar.

We denote by T = S1 the real 1-dimensional torus or the circle.

Corollary 2.2. The product SwS∗
w is not invertible in B(L2(N)).

The product S∗
wSw is invertible if and only if the sequence w = (wj) is

bounded away from zero, that is, there is ε > 0 such that |wj | ≥ ε for any j ∈ N.
The products U∗

wUw and UwU∗
w are invertible if and only if the sequence

w = (wj) is bounded away from zero.
The unilateral weighted shift Sw is isometry if and only if each wj ∈ T, that

is, w is a unitary of Cb(N).
The adjoint S∗

w is a partial isometry if and only if each wj ∈ T, that is, w
is a unitary of Cb(N).

The bilateral weighted Uw and U∗
w are unitaries if and only if each wj ∈ T,

that is, w is a unitary of Cb(Z).
The bilateral weighted Uw and U∗

w are invertibles if and only if w is invertible
in Cb(Z). In this case,

U−1
w = D(w∗w)−1U∗

w = D(w∗w)−1DwU∗
1

= U∗
wD(w∗w)−1

−1
= DwU∗

1 D(w∗w)−1
−1

and

(U∗
w)−1 = UwD(w∗w)−1 = U1DwD(w∗w)−1

= D(w∗w)−1
−1

Uw = D(w∗w)−1
−1

U1Dw,

where (w∗w)−1 = ((|wj |2)−1), (w∗w)−1
−1 = (|wj−1|−2) ∈ Cb(Z) defined so.

4 Takahiro Sudo



Proof. It is clear that the being bounded away from zero implies the invert-
ibility. If not being bounded away from zero, there is a subsequence (|wj(k)|2)
converging to zero. Since each |wj(k)|2 belongs to the spectrum σ(S∗

wSw) of
S∗

wSw = Dw∗w, that is a compact subset of C, thus the zero point belongs to
σ(S∗

wSw). This says that S∗
wSw is not invertible in B(L2(N)).

If w is invertible in Cb(Z), then U∗
wUw = Dw∗w is invertible, and thus

D−1
w∗wU∗

w = D(w∗w)−1U∗
w is the left inverse for Uw. Also, UwU∗

w = D(w∗w)−1

is invertible, and hence U∗
wD−1

(w∗w)−1
= U∗

wD(w∗w)−1
−1

is the right inverse for Uw.
The similar holds for UwU∗

w. The converse for these also holds.

Lemma 2.3. The weighted shift operator Sw for w = (wn) ∈ Cb(N) is bounded,
with the operator norm ∥Sw∥ = ∥w∥∞ = ∥S∗

w∥. Namely, Sw, S∗
w ∈ B(L2(N)).

The similar holds for Uw and U∗
w.

Proof. For ξ = (ξn) ∈ L2(N),

∥Swξ∥2 = 〈Swξ, Swξ〉 = 〈S∗
wSwξ, ξ〉 = 〈Dw∗wξ, ξ〉.

The Cauchy-Schwarz inequality implies that

〈Dw∗wξ, ξ〉 ≤ ∥Dw∗wξ∥∥ξ∥ ≤ ∥Dw∗w∥∥ξ∥2 = ∥w∥2
∞∥ξ∥2.

It thus follows that ∥Sw∥ ≤ ∥w∥∞.
Conversely, ∥Swej∥ = ∥wjej+1∥ = |wj |. Hence ∥Sw∥ ≥ ∥w∥∞.
Similarly, we obtain that ∥S∗

w∥ = ∥w∥∞. It is well known that the operator
norm of bounded operators preserves the involution ∗ (cf. [11]).

Remark. The above Lemma 2.1 together with the C∗-norm condition for the
operator norm of B(H) as ∥B∗B∥ = ∥B∥2 implies the preceding lemma.

Proposition 2.4. For any w = (wj) ∈ Cb(N), we have the unique polar de-
composition Sw = (S1Deiarg(w))D|w|, with S1Deiarg(w) a proper isometry and
ker(Sw) = ker(S1Deiarg(w)), where |w| = (|wj |) ∈ Cb(N) and eiarg(w) = (eiarg(wj)) ∈
Cb(N) with wj = eiarg(wj)|wj | the polar decomposition of wj ∈ C, with each
arg(wj) ∈ [0, 2π] and i2 = −1.

Also, we have the polar decomposition Uw = (U1Deiarg(w))D|w| on L2(Z) in
the same sense, with U1Deiarg(w) a unitary.

Proof. It follows from Lemma 2.1 above that
√

S∗
wSw = D|w|. Compute that

(S1Deiarg(w))∗(S1Deiarg(w)) = De−iarg(w)S∗
1S1Deiarg(w) = 1,

(S1Deiarg(w))(S1Deiarg(w))∗ = S1Deiarg(w)De−iarg(w)S∗
1 = 0 ⊕ 1,

and hence S1Deiarg(w) is an isometry and not a unitary. The uniqueness follows
from the equality of the kernels in the statement.

Remark. This result certainly generalizes a similar statement in the case that
each component wj is non-negative, as mentioned before [2, Lemma 2.1].

As well, we have
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Lemma 2.5. We have Sw = S|w|Deiarg(w) with Deiarg(w) a unitary of B(L2(N)).
Also, Uw = U|w|Deiarg(w) with Deiarg(w) a unitary of B(L2(Z)).

Moreover, as mentioned in [2], it holds that

Proposition 2.6. ([4, Proposition 8.1]). The unilateral weighted shift operator
Sw for w = (wj) ∈ Cb(N) is unitarily equivalent to the unilateral weighted shift
operator S|w| with |w| = (|wj |) ∈ Cb(N).

The similar holds for Uw bilateral.

Remark. Constructed in the proof below is a unitary equivalence between Sw

and S|w| by a diagonal unitary operator.

Proof. Let V be a unitary operator defined on L2(N) by V en = λnen with
|λn| = 1 for all n ∈ N. Compute

V SwV ∗en = λn+1wnλnen+1

and suppose that

S|w|en = |wn|en+1 = λn+1wnλnen+1

for n ∈ N. If we take λ1 = 1, then λ2 = e−iarg(w1), and then λ3 = e−iarg(w2)eiarg(w1),
and inductively, we can determine such a unitary operator V .

Corollary 2.7. If w ∈ Cb(N) is a unitary, then Sw is unitarily equivalent to
S1.

If w ∈ Cb(Z) is a unitary, then Uw is unitarily equivalent to U1.

Remark. If T ∈ B(L2(N)) is unitarily equivalent to Sw, then T = V SwV ∗ for
some unitary V on L2(N). Then T ∗T = 1 and TT ∗ = V (SwS∗

w)V ∗. Thus, T is
the same as Sw up to the choice of a basis for L2(N). Namely, for any j, k ∈ N,

〈Tej , ek〉 = 〈Sw(V ∗ej), V ∗ek〉.

We denote by σ(B) the (full) spectrum of a bounded (linear) operator
B ∈ B(H) on a Hilbert space H. By definition, a complex number λ ∈ C does
not belong to σ(B) if and only if λ1 − B is invertible in B(H).

Corollary 2.8. We have that σ(Sw) = σ(S|w|) and σ(Uw) = σ(U|w|).

Proof. The unitary equivalence between bounded operators as in Proposition
2.6 above implies the equality of their spectrums.

Proposition 2.9. ([4, Proposition 8.4]). The unilateral weighted shift operator
Sw for w = (wj) ∈ Cb(N) is unitarily equivalent to zSw for any z ∈ T.

The same also holds for Uw bilateral.

6 Takahiro Sudo



Proof. Define a unitary operator V on L2(N) by V en = znen for n ∈ N. Then
compute

V SwV ∗en = z−nV Swen = z−nwnV en+1

= z−nwnzn+1en+1 = zwnen+1 = zSwen.

Corollary 2.10. For any real θ ∈ R, We have the equalities of the spectrums:

σ(Sw) = σ(eiθSw) = eiθσ(Sw).

Namely, it says that the spectrum of Sw is circular in this sense.
The same holds for Uw bilateral.

Proposition 2.11. If w ∈ Cb(N) is a unitary, then we have

σ(Sw) = σ(S1) = D = {z ∈ C | |z| ≤ 1},

that is, D is the closed unit disk in C.
If w ∈ Cb(Z) is a unitary, then we have

σ(Uw) = σ(U1) = T.

Proof. The first equality in the first statement follows from the unitary equiva-
lence between Sw and S|w| = S1 as in Corollary 2.7. The second equality in the
first statement is well known. Refer to [10].

The second statement follows similarly. May use Corollary 2.10.

Recall that an element B of B(L2(N)) is said to be a Fredholm operator if
the kernel ker(B) is finite dimensional and the image im(B) is finite codimen-
sional. In this case, the index of B is defined to be an integer:

index(B) = dim(ker(B)) − dim(L2(N)/im(B)),

where L2(N)/im(B) is the quotient space of L2(N) by im(B) closed in this case.

Lemma 2.12. If w = (wn) is an invertible bounded sequence of non-zero com-
plex numbers in C0(N), then Sw is irreducible. The converse also holds.

If w = (wn) is an invertible bounded sequence of complex numbers in C0(N),
then Sw is a Fredholm operator with index −1 and S∗

w is a Fredholm operator
with index 1. Moreover,

index(Sw) = index(S1) = index(S|w|) = −1.

For Uw bilateral with w invertible in Cb(Z), we have

index(Uw) = index(U1) = index(U|w|) = 0 = index(U∗
w).

But if w is unitary in Cb(Z), then Uw is not irreducible.
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Proof. In the first case, note that Sw = S1Dw with Dw invertible. Hence, the
irreducibility of Sw is equivalent to that of S1. It is known that S1 is irreducible
(cf. [11]). For the converse, if Sw is irreducible, then suppose that w is not
invertible. Then we may assume that Dw is a compact operator, so is Sw. But
this implies that Sw is not irreducible as a fact in the invariant subspace problem
([10]).

As in the case above, note also that Sw is injective, so that ker(Sw) = {0}
and im(Sw) ∼= L2(N \ {1}), and that ker(S∗

w) = Ce1 and im(S∗
w) = L2(N).

Indeed, as well,

index(Sw) = index(S1) + index(Dw) = index(S1)
= index(S|w|) + index(Deiaug(w)) = index(S|w|).

Note that an invertible bounded operator always has index zero by definition.
As a fact in the invariant subspace problem, it is known that a normal

operator such as unitary operators always has a non-trivial invariant closed
subspace via functional calculus ([10]).

Lemma 2.13. If wn is the first zero of w ∈ Cb(N), then Sw = Fn ⊕ Sw′ a
diagonal (or direct) sum of the finite rank operator Fn identified with

0

w1
. . .
. . . . . .

wn−1 0


and the weighted shift operator Sw′ of w′ = (w′

j) with w′
j = 0 for 1 ≤ j ≤ n and

w′
j = wj for j ≥ n + 1, identified with its restriction to L2(N \ {1, · · · , n}).

For w ∈ Cb(Z), if wn = 0 for some n ∈ Z, then Uw = Uw′ ⊕ Uw′′ , where
w′ = (w′

j) with w′
j = wj for j ≤ n − 1 and w′

j = 0 for j ≥ n and w′′ = (w′′
j )

with w′′
j = 0 for j ≤ n and w′′

j = wj for j ≥ n + 1. Namely, Uw′′ is identified
with Sw′′ on L2(N), where each k ∈ N is identified with k′ = k +n− 1 of the set
{k′ ∈ Z | k′ ≥ n}, and Uw′ is identified with S∗

w′ on L2(N) for w′ = (w′
j), where

each k ∈ N is identified with k′ = n − k of the set {k′ ∈ Z | k′ ≤ n − 1}. In
other words, Uw is the direct sum of the forward and backward unilateral shift
operators Sw′′ and S∗

w′ = Bw′ so denoted, so that

Uw =


. . .
. . . . . .

wn−1 0

 ⊕


0

wn+1
. . .
. . . . . .

 = Bw′ ⊕ Sw′′ ,

where the last equality is obtained by converting the orthonormal basis for L2(N).

Proof. The first part of the statement is clear.
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For the second, note that Uw′en−1 = 0 and for j = n − k ≤ n − 2,

Uw′ej = wj+1ej+1 = wn−(k−1)en−(k−1),

which is identified with wk−1ek−1 = S∗
w′ek with ek identified with ej .

We denote by C0(N) the C∗-algebra of all bounded sequences w = (wj)
of complex numbers vanishing at infinity, so that limj→∞ wn = 0. Denote by
C0(Z) the C∗-algebra of all bounded sequences vanishing at both ±∞.

We denote by K(H) the C∗-algebra of all compact operators on a Hilbert
space H.

Lemma 2.14. If w = (wj) ∈ C0(N), then Sw and S∗
w are compact operators.

If w = (wj) ∈ C0(Z), then Uw and U∗
w belong to K(L2(Z)).

Proof. In this case, these operators are norm limits of finite rank operators.

Lemma 2.15. If w = (wj) ∈ Cb(N) has no or finitely many components wj

not equal to 1, then Sw and S∗
w are not compact, but 1 − S∗

wSw and 1 − SwS∗
w

are compact operators.
The same holds for Uw and U∗

w.

Proof. It is clear.

A bounded operator B ∈ B(H) on a Hilbert space H is said to be essentially
invertible if π(B) is invertible in the Calkin algebra B(H)/K(H) = B/K, where
π is the quotient map from B to B/K. This is equivalent to say that B is a
Fredholm operator on H.

Corollary 2.16. If w ∈ Cb(N) has no or finitely many zero components, then
Sw and S∗

w are essentially invertible.
The same holds for Uw and U∗

w.

Lemma 2.17. For Sw with w ∈ Cb(N), the (additive) commutator [S∗
w, Sw] =

S∗
wSw − SwS∗

w is given by

[S∗
w, Sw] = Dw∗w − (0 ⊕ Dw∗w),

so that [S∗
w, Sw]e1 = |w1|2e1 and [S∗

w, Sw]en = (|wn|2 − |wn−1|2)en for n ≥ 2.
For w ∈ Cb(Z), we have

[U∗
w, Uw] = Dw∗w − D(w∗w)−1 ,

so that [U∗
w, Uw]en = (|wn|2 − |wn−1|2)en for each n ∈ Z.

Corollary 2.18. The unilaterel Sw is normal, that is, [S∗
w, Sw] = 0 in B, if

and only if w1 = 0 and |wn| = |wn−1| for any n ≥ 2, so that w is the zero
sequence.

The bilateral Uw is normal if and only if |wn| = |wn−1| for any n ∈ Z.
The Sw is essentially normal, that is, [π(Sw)∗, π(Sw)] = 0 in B/K, if and

only if Dw∗w − (0 ⊕ Dw∗w) ∈ K, if and only if w∗w − (0, w∗w) ∈ C0(N).
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In particular, if w ∈ C0(N), then Sw is essentially normal.
The Uw is essentially normal, that is, [π(Uw)∗, π(Uw)] = 0 in B/K, if and

only if Dw∗w − D(w∗w)−1 ∈ K, if and only if w∗w − (w∗w)−1 ∈ C0(Z).
In particular, if w ∈ C0(Z), then Uw is essentially normal.

A bounded operator B ∈ B(H) is said to be hyponormal if B∗B ≥ BB∗,
i.e., 〈B∗Bξ, ξ〉 ≥ 〈BB∗ξ, ξ〉 for every ξ ∈ H.

Lemma 2.19. A bounded operator B ∈ B(H) is hyponormal if and only if
∥Bξ∥ ≥ ∥B∗ξ∥ for any ξ ∈ H.

Proof. By definition, B∗B ≥ BB∗ implies that for any ξ ∈ H,

∥Bξ∥2 = 〈B∗Bξ, ξ〉 ≥ 〈BB∗ξ, ξ〉 = ∥B∗ξ∥2.

Remark. Note that B∗ is hyponormal if BB∗ ≥ B∗B. Namely, B∗B ≤ BB∗

as the reverse inequality of the inequality of B hyponormal.

Proposition 2.20. ([4, Proposition 8.6]). For w ∈ Cb(N), the weighted unilat-
eral shift Sw is hyponormal if and only if the sequence |w| = (|wj |) ∈ Cb(N) is
monotone increasing as that |wj | ≤ |wj+1| for j ∈ N.

Also, the similar holds for Uw with w ∈ Cb(Z).
Similarly, S∗

w is hyponormal if and only if the sequence |w| = (|wj |) is mono-
tone decreasing.

Also, the similar holds for U∗
w.

Proof. Note that

S∗
wSw − SwS∗

w = Dw∗w − [0 ⊕ Dw∗w] = |w1|2 ⊕ (⊕∞
j=1|wj+1|2 − |wj |2) ≥ 0

if and only if |wj+1| ≥ |wj | for all j ∈ N.

Corollary 2.21. If Sw for w ∈ Cb(N) is hyponormal, then the norm ∥Sw∥ =
limj→∞ |wj | the limit at + infinity.

If Uw for w ∈ Cb(Z) is hyponormal, then ∥Uw∥ = limj→∞ |wj | the limit at
+ infinity, and the infimum infj∈Z |wj | = limj→−∞ |wj | the limit at − infinity.

Similarly, if S∗
w is hyponormal, then infj∈N |wj | = limj→+∞ |wj |.

Also, if U∗
w is hyponormal, then ∥U∗

w∥ = limj→−∞ |wj | and infj∈Z |wj | =
limj→+∞ |wj |

We may define ∥w∥0 = infj∈Z |wj | (or infj∈N |wj |) for w ∈ Cb(Z) (or Cb(N))
and use this notation in what follows, which may be called as infimum height
(or weight) for w. It is clear that w ∈ Cb(Z) is invertible if and only if ∥w∥0 > 0.
It also holds that ∥αw∥0 = |α|∥w∥0 for α ∈ C as only one of three axioms
of norms, but does not hold by some particular examples that ∥w + w′∥0 ≤
∥w∥0 + ∥w′∥0 for some w,w′ ∈ Cb(Z). As well, for any w,w′ ∈ Cb(Z), we have
∥w∥0∥w′∥0 ≤ ∥w · w′∥0 as the reverse submultiplicativity.
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Proof. For instance, let w = (0, 1, 1, · · · ) and w′ = (1, 1
2 , 1

3 , · · · ) in Cb(N). Then

∥w∥0 + ∥w′∥0 = 0 + 0 < ∥w + w′∥0 = 1.

Also, for any w = (wj), w′ = (w′
j) ∈ Cb(Z), we have ∥w∥0∥w′∥0 ≤ |wjw

′
j | for

any j ∈ N. Hence ∥w∥0∥w′∥0 ≤ ∥w ·w′∥0. In particular, if w = ( 1
2 , 1, 1, · · · ) and

w′ = (2, 1, 1, · · · ) in Cb(N), then

∥w∥0∥w′∥0 =
1
2

< ∥w · w′∥0 = 1.

For any A ∈ B(H), we denote by σp(A) the point spectrum of A consisting
of λ ∈ C such that the kernel ker(λ1 − A) is nonzero.

We define that an element w = (wj) ∈ Cb(N) or Cb(Z) is continuous at
plus infinity +∞ to α ∈ C if limj→+∞ wj = α. As well, an element w =
(wj) ∈ Cb(Z) is continuous at minus infinity −∞ to β if limj→−∞ wj = β.
In particular, if |w| = (|wj |) is continuous at +∞ to ∥Sw∥, or if |w| = (|wj |) is
continuous at +∞ to ∥Uw∥ and continuous at −∞ to ∥w∥0, then we may define
that the corresponding Sw and Uw are hyponormal-like, respectively. This
condition holds, in particular, if Sw and Uw are hyponormal.

We define that an element w = (wj) ∈ Cb(N) or Cb(Z) is upper boundedly
continuous at plus infinity +∞ to α ∈ C if limj→+∞ wj = α and |wj | ≤ |α|
for any j ≥ n0 for some n0 ∈ N. As well, an element w = (wj) ∈ Cb(Z) is lower
boundedly continuous at minus infinity −∞ to β ∈ C if limj→−∞ wj = β
and |wj | ≥ |β| for any j ≥ n0 for some n0 ∈ N. In this case, we may define that
the corresponding Sw and Uw are less hyponormal-like. In this definition, we
may replace w = (wj) with |w| = (|wj |) from the beginning, as in what follows.

Similarly, we may define that S∗
w is hyponormal-like if |w| = (|wj |) is

continuous at +∞ to ∥w∥0, and U∗
w is hyponormal-like if |w| = (|wj |) is

continuous at −∞ to ∥U∗
w∥ and continuous at +∞ to ∥w∥0.

Also, S∗
w is less hyponormal-like if |w| = (|wj |) is lower boundedly con-

tinuous at +∞ to β, and U∗
w is less hyponormal-like if |w| = (|wj |) is upper

boundedly continuous at −∞ to α and lower boundedly continuous at +∞ to
β.
Remark. Under those assumptions as above, we could obtain the similar results
on S∗

w and U∗
w as those on Sw and Uw given below in this section, but omitted

or only commented. The upper or lower boundedness at ±∞ is crucial as a
technical assumption below. As a problem to be considered, this condition may
(or not) be weakened only to the continuity at ±∞. This remark is also applied
for several results given below in this section.

Proposition 2.22. (Extended from [4, Proposition 8.7]). Suppose that every
component wj of w ∈ Cb(N) or Cb(Z) is non zero.

If Sw is hyponormal, or if |w| = (|wj |) is continuous at +∞ to ∥Sw∥ (namely,
Sw is hyponormal-like), and if |λ| < ∥Sw∥, then λ ∈ σp(S∗

w) and dim(ker(S∗
w −

λ1)) = 1.
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If |λ| ≥ ∥Sw∥, then λ ̸∈ σp(S∗
w).

The first statement also holds by replacing ∥Sw∥ with α ≤ ∥Sw∥ if |w| is con-
tinuous at +∞ to α, and the second holds if |w| is upper boundedly continuous
at +∞ to α.

If Uw is hyponormal, or if |w| = (|wj |) is continuous at ±∞ to ∥Uw∥ and
∥w∥0 = infj∈Z |wj | respectively (namely, Uw is hyponormal-like), and if ∥w∥0 =
limj→−∞ |wj | < |λ| < ∥Uw∥, then λ ∈ σp(U∗

w) and dim(ker(U∗
w − λ1)) = 1.

If |λ| ≥ ∥Uw∥ or |λ| ≤ ∥w∥0 = limj→−∞ |wj |, then λ ̸∈ σp(U∗
w).

The first statement also holds by replacing ∥Uw∥ and ∥w∥0 with α ≤ ∥Uw∥
and β ≥ ∥w∥0 if |w| is continuous at +∞ to α and continuous at −∞ to β,
and the second holds if |w| is upper boundedly continuous at +∞ to α and lower
boundedly continuous at −∞ to β.

Proof. Suppose that S∗
wx =

∑∞
j=2 wj−1xjej−1 = λx for some λ ∈ C and x =∑∞

j=1 xjej ∈ L2(N). Then wj−1xj = λxj−1 for j ≥ 2. It then follows that for
j ≥ 2,

xj =
λ

wj−1
xj−1 = · · · =

λj−1

wj−1 · · ·w1
x1,

so that

∥x∥2 =
∞∑

j=1

|xj |2 = |x1|2 + |x1|2
∞∑

j=2

|λ|2(j−1)

|wj−1 · · ·w1|2
.

Now suppose that |λ| < ρ < ∥Sw∥. Then there is n0 ∈ N such that |wj | > ρ for
j ≥ n0. If j ≥ n0 + 1, then

|λ|2(j−1)

|wj−1 · · ·w1|2
≤ |λ|2n0

|wn0 · · ·w1|2

(
ρ

|wn0 |

)2(j−1−n0)

with ρ
|wn0 |

< 1. Therefore, the series displayed above converges for any x1 ∈ C,

and then x =
∑∞

j=1 xjej ∈ L2(N) is defined with each xj = λ
wj−1

xj−1, to satisfy
(S∗

w − λ1)x = 0.
If |λ| = ∥Sw∥ (or |λ| > ∥Sw∥), then the above equation for xj in terms of x1

implies that |xj | ≥ |x1|. Hence it follows that x1 = 0 = xj for every j ∈ N.
Note as well that the arguments above essentially only depend on the behav-

ior at infinity and can be converted to the case of converging to α if necessary
changing the base point x1 to a suitable point xk for some k large enough.

For Uw, use the same approach to compute U∗
wx = λx to determine similarly

xj as well as x−j for j positive as

x−j =
w−j

λ
x−j+1 = · · · =

w−j · · ·w−1

λj
x0.

Then suppose that limj→−∞ |wj | < ρ′ < |λ| < ρ < ∥Uw∥, to deduce the similar
estimate in the terms of the series of x over positive and negative integers.
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Proposition 2.23. (Extended from [4, Proposition 8.10]). Suppose that every
component wj of w ∈ Cb(N) or Cb(Z) is non zero. Then the point spectrum
σp(Sw) = ∅ the empty set.

The same also holds for Uw for |w| = (|wj |) ∈ Cb(Z) continuous at infinity
+∞ to ∥Uw∥ or upper boundedly continuous at +∞ to α ≤ ∥Uw∥.

Proof. Suppose that Swx = λx for some λ ∈ C and x = (xj) ∈ L2(N). If λ = 0,
then x = 0. If λ ̸= 0, then λx1 = 0 and λxj = wj−1xj−1 for j ≥ 2, so that

xj =
wj−1

λ
xj−1 = · · · =

wj−1 · · ·w1

λj−1
x1 = 0,

and hence x = 0.
If |λ| ≥ ∥Uw∥, then for j > 0,

x−j =
λ

w−j
x−j+1 = · · · =

λj

w−j · · ·w−1
x0

and thus,

|x−j | ≥
(

|λ|
∥Uw∥

)j

|x0|.

Since |x−j | → 0 as j → ∞, then |x0| = 0. Hence xj = 0 for any j ∈ Z follows.
Similarly, if 0 < |λ| < ρ < ∥Uw∥, then there is n0 ∈ Z such that |wj | ≥ ρ for

j ≥ n0. Since xj → 0 as j → ∞, it follows from the above equation for xj that
xn0 = 0. Hence x = 0.

The arguments above also valid in the case where |w| is upper boundedly
continuous at infinity.

Recall that for any A ∈ B(H), the spectrum σ(A) is decomposed into the
following disjoint union:

σ(A) = σp(A) ⊔ σr(A) ⊔ σc(A),

where the residue spectrum σr(A) consists of λ ∈ C such that ker(λ1−A) = {0}
but the closure of the range (λ1 − A)(H) of λ1 − A is not equal to H, and the
continuous spectrum σc(A) consists of λ ∈ C such that ker(λ1−A) = {0}, the
closure of the range (λ1−A)(H) is H, but the closure is not equal to the range.
Also, denote by σap(A) the approximate point spectrum of A, consisting of λ ∈
C such that there is a sequence (ξn) of H with norm 1 such that ∥Aξn−λξn∥ → 0
as n → ∞, or equivalently, inf{∥(A − λ)ξ∥ | ξ ∈ H, ∥ξ∥ = 1} = 0, or A − λ1 is
not left invertible. As facts,

• If λ ∈ σr(A), then its complex conjugate λ ∈ σp(A∗).
• If λ ∈ σp(A), then λ ∈ σr(A∗) ⊔ σp(A∗).
• It holds that λ ∈ σc(A) if and only if λ ∈ σc(A∗).
• Note as well that σ(A∗) = σ(A) the complex conjugate of σ(A).
• Note that both σp(A)⊔σc(A) and ∂σ(A) ⊂ σap(A) contained, and σap(A)

is closed, where ∂σ(A) is the boundary of σ(A). Note also that λ ∈ σ(A)\σap(A)
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if and only if the range of A− λ1 is closed, but proper, and ker(A− λ1) = {0},
so that σ(A) \ σap(A) ⊂ σr(A). For these facts, may refer to [4] or [10].

We denote by B(r) the closed ball in C with center 0 and radius r > 0 and
by B(r1, r2) the closed (balled) band (or annulus) in C with center 0 and (outer
and inner) radii r1 and r2 with 0 < r2 ≤ r1. Set B(r, 0) = B(r). Let B◦(r) and
B◦(r1, r2) be the interiors of B(r) and B(r1, r2) respectively. Denote by ∂B(r)
and ∂B(r1, r2) the boundaries of B(r) and B(r1, r2) respectively. As a note,
B(r1, r2) = B(r1)∩B◦(r2)c with B◦(r2)c the complement of B◦(r2) in C. Also,
B(r, r) = ∂B(r).

Corollary 2.24. (Extended from [10, Example 3.1.21]). Suppose that every
component wj of w = (wj) ∈ Cb(N) or Cb(Z) is non zero.

If Sw is hyponormal, or if |w| = (|wj |) is continuous at +∞ to ∥Sw∥, then
we have σr(S∗

w) = ∅ and σ(S∗
w) = {λ ∈ C | |λ| ≤ ∥S∗

w∥}, so that

σ(Sw) = {λ ∈ C | |λ| ≤ ∥Sw∥} ≡ B(∥Sw∥).

If |w| = (|wj |) ∈ Cb(Z) is continuous at +∞ to ∥Uw∥ and continuous at
−∞ to ∥w∥0, then σr(U∗

w) = ∅ and

σ(U∗
w) = {λ ∈ C | ∥w∥0 = inf

j∈Z
|wj | ≤ |λ| ≤ ∥U∗

w∥},

so that

σ(Uw) = {λ ∈ C | ∥w∥0 ≤ |λ| ≤ ∥Uw∥} ≡ B(∥Uw∥, ∥w∥0).

Namely,

σ(S∗
w) = σp(S∗

w) ⊔ σc(S∗
w) = B◦(∥S∗

w∥) ⊔ ∂B(∥S∗
w∥)

= σ(Sw) = σr(Sw) ⊔ σc(Sw) = B◦(∥Sw∥) ⊔ ∂B(∥Sw∥),

where B◦(∥S∗
w∥) = {λ ∈ C | |λ| < ∥S∗

w∥} and ∂B(∥S∗
w∥) = {λ ∈ C | |λ| = ∥S∗

w∥},
with σap(S∗

w) = σ(S∗
w) = B(∥S∗

w∥) and σap(Sw) = σc(Sw) = ∂B(∥Sw∥), and

σ(U∗
w) = σp(U∗

w) ⊔ σc(U∗
w) = B◦(∥U∗

w∥, ∥w∥0) ⊔ ∂B(∥U∗
w∥, ∥w∥0)

= σ(Uw) = σr(Uw) ⊔ σc(Uw) = B◦(∥Uw∥, ∥w∥0) ⊔ ∂B(∥Uw∥, ∥w∥0),

where B◦(∥U∗
w∥, ∥w∥0) = {λ ∈ C | ∥w∥0 < |λ| < ∥U∗

w∥} and ∂B(∥U∗
w∥, ∥w∥0) =

{λ ∈ C | |λ| = ∥w∥0 or |λ| = ∥U∗
w∥}, with

σap(U∗
w) = σ(U∗

w) = B(∥U∗
w∥, ∥w∥0),

σap(Uw) = σc(Uw) = ∂B(∥Uw∥, ∥w∥0).

Proof. It follows from that σp(Sw) and σp(Uw) are empty sets in this case and
that the compact set σ(S∗

w) contains the interior B◦(∥S∗
w∥) of B(∥S∗

w∥) equal to
σp(S∗

w) and is contained in B(∥S∗
w∥) and that the compact set σ(U∗

w) contains
the interior B◦(∥U∗

w∥, ∥w∥0) of B(∥U∗
w∥, ∥w∥0) equal to σp(U∗

w) and is contained
in B(∥U∗

w∥, ∥w∥0).
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Corollary 2.25. Suppose that every component wj of w = (wj) ∈ Cb(Z) is non
zero.

If |w| = (|wj |) ∈ Cb(N) is upper boundedly continuous at +∞ to α, then

σ(S∗
w) = σp(S∗

w) ⊔ σc(S∗
w), σp(S∗

w) = B◦(α), σc(S∗
w) ⊃ ∂B(α),

σ(Sw) = σr(Sw) ⊔ σc(Sw), σr(Sw) = B◦(α), σc(Sw) ⊃ ∂B(α),

with σap(S∗
w) = σ(S∗

w) ⊃ B(α) and σ(Sw)ap = σc(Sw) ⊃ ∂B(α).
If |w| = (|wj |) ∈ Cb(Z) is upper boundedly continuous at +∞ to α and is

lower boundedly continuous at −∞ to β, with 0 ≤ β < α, then

σ(U∗
w) = σp(U∗

w) ⊔ σc(U∗
w), σp(U∗

w) = B◦(α, β), σc(U∗
w) ⊃ ∂B(α, β),

σ(Uw) = σr(Uw) ⊔ σc(Uw), σr(Uw) = B◦(α, β), σc(Uw) ⊃ ∂B(α, β),

with σap(U∗
w) = σ(U∗

w) ⊃ B(α, β) and σap(Uw) = σc(Uw) ⊃ ∂B(α, β).

Remark. The assumption on the equality β < α is rather restrictive and not
automatic. In fact, as noticed in the last moment, the case where β = α does
hold, and the proof has already done as contained above, and the case as with
B(α, α), B◦(α, α), and ∂B(α, α) can be contained in the above case. The left
case of β > α may be considered as a problem left to be considered. As a slightly
different case, as a question, if |w| = (|wj |) is lower boundedly continuous at
+∞ to α, then does the same statement hold by (or without) replacing Sw

with S∗
w? Philosophically, this should be true. Namely, the limits at ± infinity

determine the boundary (or origin) of the spectrums. Also, if |w| = (|wj |) is
upper boundedly continuous at −∞ to α and lower boundedly continuous at
+∞ to β, with β < α, then the same statement does hold by replacing Uw with
U∗

w. It follows from the philosophical point of view that even in the left case
where β > α, the same statement would hold by the same replacing as above.
This remark is also applied for several results given below in this section.

Recall from [10] the following facts.
Let A ∈ B(H). The essential spectrum σe(A) of A is defined to be the

set of λ ∈ C such that π(λ1 − A) is not invertible in B(H)/K(H). Namely,
the complement C \ σe(A) consists of λ ∈ C such that λ1 − A is a Fredholm
operator on H. The Weyl spectrum σW (A) of A is defined to be the intersection
of σ(A + K) for any K ∈ K(H).

A moment of thought implies that σe(A) = σe(A∗) and σW (A∗) = σW (A)
for any A ∈ B(H). Also, σW (A) = σW (A + K) for any K ∈ K(H).

Proof. Fix K ∈ K(H). For any K ′ ∈ K(H), K + K ′ ∈ K(H). Thus, σW (A) ⊂
σ(A + K + K ′) for any K ′ ∈ K(H). Hence σW (A) ⊂ σW (A + K). Conversely,
σW (A + K) ⊂ σ(A + K −K + K ′) = σ(A + K ′) for any K ′ ∈ K(H). Therefore,
σW (A + K) ⊂ σW (A).

It is known as a fact that for any A ∈ B(H), λ ∈ C \ σe(A) if and only if
the range of λ1 − A is closed, the dimension of ker(λ1 − A) is finite, and the
dimension of the orthogonal complement of the range of λ1 − A is finite.

15The spectrum theory for weighted shift operators and their C *₋ algebras



For any A ∈ B(H), both σe(A) and σW (A) are non-empty closed sets, and

σc(A) ⊂ σe(A) ⊂ σW (A) ⊂ σ(A).

Proof. If λ ∈ σc(A), then the range of λ1 − A is not closed.
If we take K = 0 in the definition, then σW (A) ⊂ σ(A).
If λ1 − A is invertible in B(H), then π(λ1 − A) is invertible. Thus σe(A) ⊂

σ(A).
For any K ∈ K(H), we have σe(A) = σe(A + K) ⊂ σ(A + K) since π(λ1 −

A) = π(λ1 − (A + K)). Hence, σe(A) ⊂ σW (A).

Moreover, for any A ∈ B(H), λ ∈ C \ σW (A) if and only if λ1 − A is a
Fredholm operator and the index of λ1 − A is 0, and λ ∈ σW (A) \ σe(A) if and
only if λ1 − A is a Fredholm operator and the index of λ1 − A is not zero.

If A ∈ B(H) is normal, then σe(A) = σW (A).

Corollary 2.26. (Extended from [4, Proposition 8.13] and [10, Example 6.1.21]).
Suppose that every component wj of w = (wj) ∈ Cb(N) or Cb(Z) is non zero.

If Sw is hyponormal, or if |w| = (|wj |) is continuous at +∞ to ∥Sw∥, then

σe(S∗
w) = σc(S∗

w) = ∂B(∥S∗
w∥) = ∂B(∥Sw∥) = σap(Sw) = σc(Sw) = σe(Sw)

and

σW (S∗
w) = σ(S∗

w) = σap(S∗
w) = B(∥S∗

w∥) = B(∥Sw∥) = σ(Sw) = σW (Sw).

If |w| = (|wj |) ∈ Cb(Z) is continuous at +∞ to ∥Uw∥ and continuous at
−∞ to ∥w∥0, then

σe(U∗
w) = σc(U∗

w) = ∂B(∥U∗
w∥, ∥w∥0)

= ∂B(∥Uw∥, ∥w∥0) = σap(Uw) = σc(Uw) = σe(Uw)

and

σW (U∗
w) = σ(U∗

w) = σap(U∗
w) = B(∥U∗

w∥, ∥w∥0)
= B(∥Uw∥, ∥w∥0) = σ(Uw) = σW (Uw).

Proof. If |λ| = ∥S∗
w∥ = ∥Sw∥, then λ ∈ σc(S∗

w) = σc(Sw), so that the ranges of
λ1 − S∗

w and λ1 − Sw are not closed. Thus, λ ∈ σe(S∗
w) = σe(Sw).

If |λ| < ∥S∗
w∥ = ∥Sw∥, then λ ∈ σr(Sw) and λ ∈ σp(S∗

w), so that ker(λ1 −
Sw) = {0} and dimker(λ1 − S∗

w) = 1. Moreover, since

∥(Sw − λ1)ξ∥ ≥ (∥Sw∥ − |λ|)∥ξ∥,

it then follows that any Cauchy sequence in the range of Sw − λ1 converges in
the range, so that the range is closed. Thus, Sw − λ1 is a Fredholm operator
with index −1 ̸= 0. Hence π(Sw − λ1) is not invertible, so that λ ̸∈ σe(Sw) but
λ ∈ σW (Sw).
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Similarly, if |λ| = ∥U∗
w∥ = ∥Uw∥ or |λ| = ∥w∥0, then λ ∈ σc(U∗

w) = σc(Uw),
so that the ranges of λ1−U∗

w and λ1−Uw are not closed. Thus, λ ∈ σe(U∗
w) =

σe(Uw).
If ∥w∥0 < |λ| < ∥U∗

w∥ = ∥Uw∥, then λ ∈ σr(Uw) and λ ∈ σp(U∗
w), so that

ker(λ1 − Uw) = {0} and dimker(λ1 − U∗
w) = 1. Moreover, since

∥(Uw − λ1)ξ∥ ≥ (∥Uw∥ − |λ|)∥ξ∥,

it then follows that any Cauchy sequence in the range of Uw − λ1 converges in
the range, so that the range is closed. Thus, Uw − λ1 is a Fredholm operator
with index −1 ̸= 0. Hence π(Uw − λ1) is not invertible, so that λ ̸∈ σe(Uw) but
λ ∈ σW (Uw).

Corollary 2.27. Suppose that every component wj of w = (wj) ∈ Cb(N) or
Cb(Z) is non zero.

If |w| = (|wj |) is upper boundedly continuous at +∞ to α, then

B◦(α)c ⊃ σe(S∗
w) ⊃ σc(S∗

w) ⊃ ∂B(α) ⊂ σap(Sw) = σc(Sw) ⊂ σe(Sw) ⊂ B◦(α)c

and
σW (S∗

w) = σ(S∗
w) = σap(S∗

w) ⊃ B(α) ⊂ σ(Sw) = σW (Sw).

If |w| = (|wj |) ∈ Cb(Z) is upper boundedly continuous at +∞ to α and lower
boundedly continuous at −∞ to β, with 0 ≤ β < α, then

B◦(α, β)c ⊃ σe(U∗
w) ⊃ σc(U∗

w) ⊃ ∂B(α, β)
⊂ σap(Uw) = σc(Uw) ⊂ σe(Uw) ⊂ B◦(α, β)c

and
σW (U∗

w) = σ(U∗
w) = σap(U∗

w) ⊃ B(α, β) ⊂ σ(Uw) = σW (Uw).

In fact, we obtain

Theorem 2.28. Under the same assumptions as above, we have

σW (S∗
w) = σ(S∗

w) = σap(S∗
w) = B(α) = σ(Sw) = σW (Sw)

and
σe(S∗

w) = σc(S∗
w) = ∂B(α) = σap(Sw) = σc(Sw) = σe(Sw).

Similarly,

σW (U∗
w) = σ(U∗

w) = σap(U∗
w) = B(α, β) = σ(Uw) = σW (Uw)

and
σe(U∗

w) = σc(U∗
w) = ∂B(α, β) = σap(Uw) = σc(Uw) = σe(Uw).
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Proof. Let Fn be a finite rank operator obtained from restricting Sw on Cn gen-
erated by the standard basis vectors e1, · · · , en of Cn viewed in L2(N) canon-
ically. By the assumption, there exists n0 ∈ N such that if n ≥ n0, then the
limit α = limj→∞ |wj | is equal to the norm ∥Sw − Fn∥. Therefore,

σW (S∗
w − F ∗

n) = σ(S∗
w − F ∗

n) = B(α) = σ(Sw − Fn) = σW (Sw − Fn),

with σW (S∗
w − F ∗

n) = σW (S∗
w) and σW (Sw − Fn) = σW (Sw), and

σe(S∗
w − F ∗

n) = σc(S∗
w − F ∗

n) = ∂B(α) = σc(Sw − Fn) = σe(Sw − Fn).

with σe(S∗
w − F ∗

n) = σe(S∗
w) and σe(Sw − Fn) = σe(Sw). It then follows from

Corollary 2.27 above that

σ(S∗
w) = B(α) = σ(Sw) and σc(S∗

w) = ∂B(α) = σc(Sw).

Similarly, the same argument as above is applied for Uw by using Corollaries
2.26 and 2.27.

Remark. There may be more results on this subject in the literature, or in
the future to be continued. As a summary, given as a non-surprising present
(to the experts) are the following tables for the spectrums of UWS Sw and
BWS Uw before the last minute or so. As a note, for UWS∗ S∗

w and BWS∗

U∗
w hyponormal-like or less hyponormal-like, the same tables could be obtained

by just exchanging (or replacing) Sw for (or with) S∗
w and Uw for (or with) U∗

w

respectively, where, in the case of U∗
w, α at +∞ and β at −∞, with α ≥ β ≥ 0,

are respectively replaced with α at −∞ and β at +∞, with α ≥ β ≥ 0. The last
table (as in [10]) in the next page corresponds to one of the cases where α = β.

Table 1: The spectrums of the hyponormal-like UWS and BWS

Spectrum Sw S∗
w Uw U∗

w

Full σ B(∥Sw∥) B(∥S∗
w∥) B(∥Uw∥, ∥w∥0) B(∥U∗

w∥, ∥w∥0)
Weyl σW Ball Disk Band Annulus
Point σp ∅ B0(∥S∗

w∥) Empty ∅ B0(∥U∗
w∥, ∥w∥0)

Conti. σc ∂B(∥Sw∥) ∂B(∥S∗
w∥) ∂B(∥Uw∥, ∥w∥0) ∂B(∥U∗

w∥, ∥w∥0)
Ess. σe Circle Boundary 1 or 2 circles Same as left
Res. σr B0(∥Sw∥) ∅ B0(∥Uw∥, ∥w∥0) No ∅

App. σap σc(Sw) σ(S∗
w) σc(Uw) σ(U∗

w)

18 Takahiro Sudo



Table 2: The spectrums of the less hyponormal-like UWS and BWS

Spectrum Sw S∗
w Uw U∗

w

Full σ B(α) B(α) B(α, β) B(α, β)
Weyl σW The same as above
Point σp ∅ B0(α) ∅ B0(α, β)
Conti. σc ∂B(α) ∂B(α) ∂B(α, β) ∂B(α, β)
Ess. σe The same as above
Res. σr B0(α) ∅ B0(α, β) ∅

App. σap σc(Sw) σ(S∗
w) σc(Uw) σ(U∗

w)

Table 3: The spectrums of the US and BS

Spectrum S1 S∗
1 U1 U∗

1

Full σ B(1) D = B(1) ∂D T = ∂D
Weyl σW Ball Disk Circle Torus
Point σp ∅ D0 ∅ ∅
Conti. σc ∂B(1) ∂D ∂D T
Ess. σe The same as above
Res. σr B0(1) ∅ ∅ ∅

App. σap σc(S1) σ(S∗
1 ) σc(U1) σ(U∗

1 )

3 Banach spaces of all weighted shift operators

The C∗-algebras Cb(N) and Cb(Z) with the supremum norm may be viewed as
only Banach spaces by the same symbols, with forgetting product and involu-
tion.

We denote by S(Cb(N)) the (linear) space of all unilateral weighted shift
operators Sw corresponding to w ∈ Cb(N) and by U(Cb(N)) the (linear) space
of all bilateral weighted shift operators Uw corresponding to w ∈ Cb(Z).

Define a linear map S : Cb(N) → S(Cb(N)) by S(w) = Sw and a linear map
U : Cb(Z) → U(Cb(Z)) by U(w) = Uw (for both of which, see the proof below).

Proposition 3.1. There are Banach space linear isomorphisms between Cb(N)
and S(Cb(N)) and between Cb(Z) and U(Cb(Z)) under the maps S and U re-
spectively.

Proof. Check that for w,w′ ∈ Cb(N) and k ∈ C,

Sw+w′ej = (wj + w′
j)ej+1 = Swej + Sw′ej ,

Skwej = kwjej+1 = kSwej .

It is shown in Lemma 2.3 above that ∥Sw∥ = ∥w∥∞.
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Define a conjugate linear map S∗ : Cb(N) → S∗(Cb(N)) by S∗(w) = S∗
w and

a conjugate linear map U∗ : Cb(Z) → U∗(Cb(Z)) by U(w) = U∗
w (for both of

which, see the proof below).
Define the linear map S⊕S∗ from the direct sum Cb(N)⊕Cb(N) = ⊕2Cb(N)

to the sequilinear direct sum S(Cb(N)) ⊕∼ S∗(Cb(N)) by (S ⊕ S∗)(w ⊕ w′) =
Sw ⊕S∗

w′ and define the linear map U ⊕U∗ similarly (for both of which, see the
proof below). We assume that these linear and sesquiliner direct sums have the
maximum norm defined as ∥w ⊕ w′∥∞ = max{∥w∥∞, ∥w′∥∞}. In details,

Proposition 3.2. There are Banach space linear isomorphisms between the lin-
ear direct sum ⊕2Cb(N) and the sesquilinear direct sum S(Cb(N))⊕∼S∗(Cb(N))
and between ⊕2Cb(Z) and U(Cb(Z))⊕∼U∗(Cb(Z)) under the linear maps S⊕S∗

and U ⊕ U∗ respectively.

Proof. Check that for w,w′ ∈ Cb(N) and k ∈ C, S∗
w+w′e1 = 0 = S∗

we1 + S∗
w′e1,

S∗
kwe1 = 0 = kS∗

we1, and

S∗
w+w′ej = (wj−1 + w′

j−1)ej−1 = S∗
wej + S∗

w′ej ,

S∗
kwej = kwj−1ej−1 = kS∗

wej

for j ≥ 2. Moreover, for k ∈ C,

(S ⊕ S∗)(kw, kw′) = Skw ⊕ S∗
kw′ = kSw ⊕ kS∗

w′ ≡ k(Sw ⊕ S∗
w′),

where the last identification is the definition of the component-wise, sesquilin-
ear scalar multiplication (which we define so). Note that by Lemma 2.3,

∥Sw ⊕ S∗
w′∥ = max{∥Sw∥, ∥S∗

w′∥} = max{∥w∥∞, ∥w′∥∞} = ∥w ⊕ w′∥.

Remark. The sesquilinear scalar multiplication as well as the sequilinear direct
sums of linear spaces, which we introduce as an attempt, but only for this, may
not be found in the literature so far. But these notions may be natural in that
sense and be some useful for some purposes somewhere later.

Lemma 3.3. For w,w′ ∈ Cb(N), the product SwSw′ is equal to S2
1Dw+1w′ with

the pointwise multiplication w+1w
′ = (wj+1w

′
j) ∈ Cb(N), and is not equal to

Sww′ = S1Dww′ if non-zero.
The operator Sw is equal to S1Dw, and is not equal to S∗

w = DwS∗
1 .

Similarly, UwUw′ = U2
1 Dw+1w′ and Uw = U1Dw.

It then follows that the maps S, U , S ⊕ S∗, and U ⊕ U∗ can not extend to
∗-homomorphisms of C∗-algebras.

Proof. Compute

SwSw′ej = Sww′
jej+1 = wj+1w

′
jej+2 = wj+1w

′
jS

2
1ej .

The reason for those maps not to be extended to ∗-homomorphisms is simply
in that the C∗-algebras Cb(N) and Cb(Z) are commutative, but the C∗-algebras
generated by the images under those maps are non-commutative.
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Corollary 3.4. For w ∈ Cb(N), we have S2
w = S2

1Dw+1w and

Sk+1
w = Sk+1

1 Dw+k···w+1w,

where the successive pointwise multiplication w+k · · ·w+1w = (wj+k · · ·wj+1wj) ∈
Cb(N).

For w ∈ Cb(Z), we have U2
w = U2

1 Dw+1w. Moreover, we have Uk+1
w =

Uk+1
1 Dw+k···w+1w.

A weighted shift operator Sw for w ∈ Cb(N) is said to be p-periodic if there
is a positive integer p such that wj = wj+p for all j ∈ N, where such p is assumed
to be the least period. Similarly, Uw for w ∈ Cb(Z) is defined to be p-periodic.

Note that if Sw is 1-periodic, then w = w11 and Sw = w1S1.

Lemma 3.5. If Sw is p-periodic, then Sp
w = w1w2 · · ·wpS

p
1 .

If Uw is p-periodic, then Up
w = w1w2 · · ·wpU

p
1 .

Proof. Note that in this case

Sp
w = Sp

1Dw+(p−1)···w+1w = Sp
1w1 · · ·wpD1 = w1 · · ·wpS

p
1 .

Remark. There may be more results on this subject in the literature, or in the
future to be continued. In fact, the last and several corresponding results in the
next section are just the beginning of the advanced theory for certain non-type
I C∗-algebras involving the inductive limit structure for C∗-algebras (cf. [2]).
Namely, the limit C∗-algebra is the Bunce-Deddens algebra (cf. [6]).

4 C∗-algebras of weighted shift operators

For any w ∈ Cb(N) (fixed), we denote by C∗(Sw) the (universal) C∗-algebra
generated by the unilateral weighted shift operator Sw (and S∗

w), which may be
called the unilateral weighted shift C∗-algebra. Similarly, we define C∗(Uw)
as the bilateral weighted shift C∗-algebra.

Recall that C∗(S1) is said to be the Toeplitz C∗-algebra generated by the
non-untary isometry S1, and the C∗-algebra C∗(U1) generated by the unitary U1

is isomorphic to the C∗-algebra C(T) of all continuous, complex-valued functions
on the 1-torus T, by functional calculus. Indeed, C∗(U1) ∼= C(σ(U1)) = C(T)
by the Gelfand transform ([11]).

There is a short exact sequence of C∗-algebras ([3], or for instance [11]):

0 → K → C∗(S1) → C(T) ∼= C∗(U1) → 0.

Indeed, the quotient map is induced by the universality of C∗(S1) as well as
C∗(U1). Note that 1 − S∗

1S1 = 0 but 1 − S1S
∗
1 is the rank one projection in K.

It then follows that K is contained in C∗(S1) as a two-sided closed ideal, so that
the quotient C∗-algebra C∗(S1)/K is isomorphic to C∗(T).

21The spectrum theory for weighted shift operators and their C *₋ algebras



Corollary 4.1. For any w ∈ Cb(N), the C∗-algebra C∗(Sw) is isomorphic to
C∗(S|w|).

For any w ∈ Cb(Z), the C∗-algebra C∗(Uw) is isomorphic to C∗(U|w|).

Proof. The unitary equivalence between Sw and S|w| as in Proposition 2.6 above
extends to a ∗-isomorphism between C∗(Sw) and C∗(S|w|).

The proof for Uw is the same as this.

Corollary 4.2. If w ∈ Cb(N) is a unitary, then C∗(Sw) is isomorphic to
C∗(S1).

If w ∈ Cb(Z) is a unitary, then C∗(Uw) is isomorphic to C∗(U1).

Proof. The unitary equivalence between Sw and S|w| = S1 as in Corollary 2.7
above extends to a ∗-isomorphism between C∗(Sw) and C∗(S1).

The proof for Uw is the same as this.

Slightly generalizing from [2, Lemma 2.1] we obtain

Lemma 4.3. [2, Lemma 2.1]. If w ∈ Cb(N) is invertible, then C∗(Sw) contains
the C∗-algebra K of all compact operators.

Proof. Since Sw = S1Dw, then S∗
wSw = DwDw = D|w|2 is in C∗(Sw). Thus,

D|w| ∈ C∗(Sw).
Suppose now that each component wj of w is positive. Then we have Dw =

(S∗
wSw)

1
2 ∈ C∗(Sw). Since Dw is invertible by hypothesis, then its inverse D−1

w

belongs to C∗(Sw). Hence S1 = SwD−1
w ∈ C∗(Sw). It is known that C∗(S1)

contains K, so that C∗(Sw) does also.
In the general case, we use the fact that Sw is unitarily equivalent to S|w| in

the sense that there is a unitary V on L2(N) such that Ad(V )Sw = V SwV ∗ =
S|w|. The adjoint map Ad(V ) extends to a ∗-isomorphism from C∗(Sw) onto
C∗(S|w|). Since C∗(S|w|) contains K by hypothesis, then C∗(Sw) contains
Ad(V ∗)K ∼= K.

We denote by {eij}2
i,j=1 the matrix unit for M2(C). We define

F2 = w1e21 =
(

0 0
w1 0

)
∈ M2(C)

for w1 ∈ C non-zero. Note that F2F2 = F 2
2 = 0 and σ(F2) = {0}.

Lemma 4.4. The C∗-algebra C∗(F2) generated by the nilpotent matrix F2 is
isomorphic to the 2 × 2 matrix C∗-algebra M2(C).

Proof. Since F ∗
2 F2 = |w1|2e11 and F2F

∗
2 = |w1|2e22, then e11, e22 ∈ C∗(F2).

Since F2 = w1e21 and F ∗
2 = w1e12, then e21, e12 ∈ C∗(F2).

We denote by {eij}3
i,j=1 the matrix unit for M3(C). We define

F3 = w1e21 + w2e32 =

 0 0 0
w1 0 0
0 w2 0

 ∈ M3(C)
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for w1, w2 ∈ C non-zero. Note that F 2
3 = w1w2e31, F 3

3 = 0 and σ(F3) = {0}.

Lemma 4.5. The C∗-algebra C∗(F3) generated by the nilpotent matrix F3 is
isomorphic to the 3 × 3 matrix C∗-algebra M3(C).

Proof. Since F ∗
3 F3 = |w1|2e11 + |w2|2e22 and F3F

∗
3 = |w1|2e22 + |w2|2e33, it then

follows that e11, e22, e33 ∈ C∗(F3). Since F3 = w1e21 + w2e32, then e22F3 =
w1e21, e33F3 = w2e32 ∈ C∗(F3).

We denote by {eij = ei,j}n
i,j=1 the matrix unit for Mn(C). We define

Fn = w1e21 + · · · + wn−1en,n−1 =


0 0

w1 0
. . . . . .

0 wn−1 0

 ∈ Mn(C)

for non-zero w1, · · · , wn−1 ∈ C. Note that Fn
n = 0 and σ(Fn) = {0}.

Proposition 4.6. The C∗-algebra C∗(Fn) generated by the nilpotent matrix Fn

is isomorphic to the n × n matrix C∗-algebra Mn(C).

Proof. Since F ∗
nFn = |w1|2e11 + · · · + |wn−1|2en−1,n−1 and FnF ∗

n = |w1|2e22 +
· · · + |wn−1|2enn, it then follows that e11, · · · , enn ∈ C∗(Fn). Indeed, note that

(F 2
n)∗F 2

n = |w1w2|2e11 + · · · + |wn−2wn−1|2en−2,n−2,

F 2
n(F 2

n)∗ = |w1w2|2e33 + · · · + |wn−2wn−1|2en,n,

and we compute inductively (F k
n )∗(F k

n ) and (F k
n )(F k

n )∗ and then the products
Fn−1

n and (Fn−1
n )∗(Fn−1

n ) implies that en,1 and e11 belong to C∗(Fn), and use
the equations of those products reversely.

It then also follows that ei,j ∈ C∗(Fn) for i ̸= j by taking products of the
matrix unit components ejj on the diagonal with F k

n and (F k
n )∗.

Lemma 4.7. The C∗-algebra generated by Fn ⊕ Fm with n ̸= m is isomorphic
to C∗(Fn) ⊕ C∗(Fm) as a direct sum C∗-algebra.

But the C∗-algebra generated by Fn ⊕ Fn is isomorphic to C∗(Fn).

Proof. If n < m, then (Fn ⊕ Fm)n = 0 ⊕ Fn
m = Fn

m. Hence (Fn
m)∗Fn

m belongs
to C∗(Fn ⊕ Fm). It then follows that C∗(Fm) is contained in C∗(Fn ⊕ Fm), so
that C∗(Fn) and C∗(Fn)⊕C∗(Fm) are contained in C∗(Fn ⊕Fm). Its converse
also holds.

Corollary 4.8. The C∗-algebra generated by Fn1 ⊕ · · · ⊕ Fnk
with n1, · · · , nk

mutually distinct is isomorphic to C∗(Fn1) ⊕ · · · ⊕ C∗(Fnk
).

Proposition 4.9. If w ∈ Cb(N) has only one zero component wn = 0, then
C∗(Sw) is isomorphic to C∗(Fn) ⊕ C∗(Sw′) with Sw = Fn ⊕ Sw′ , where Sw′ is
assumed to be an isometry. Moreover, C∗(Sw) is unital in this case.

If w ∈ Cb(Z) has only one zero component wn = 0, then C∗(Uw) is isomor-
phic to C∗(Bw′) ⊕ C∗(Sw′′), with Uw = Bw′ ⊕ Sw′′ , where Bw′ is assumed to a
co-isometry and Sw′′ is an isometry. Moveover, C∗(Uw) is unital in this case.
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Proof. Let L2(N) = Cn ⊕H ′ be the corresponding direct sum of Hilbert spaces.
Then S∗

wSw = F ∗
nFn ⊕ S∗

w′Sw′ , with S∗
w′Sw′ = 1H′ the identity operator on H ′

and F ∗
nFn = |w1|2⊕· · ·⊕|wn−1|2⊕0. Since Fn

n = 0, we have Sn
w(S∗

wSw) = 0⊕Sn
w′ .

Hence, (S∗
w)n(0⊕Sn

w′) = 0⊕1H′ belongs to C∗(Sw). It then follows that C∗(Sw′)
is contained in C∗(Sw), so that Fn ⊕ 0H′ as well as C∗(Fn) are contained in
C∗(Sw). Therefore, the direct sum C∗(Fn) ⊕ C∗(Sw′) is contained in C∗(Sw)
and its converse also holds.

Since Bw′ can be identified with S∗
w′ , we may assume that Uw = S∗

w′ ⊕Sw′′ .
Then U∗

wUw = Sw′S∗
w′ ⊕ 1H′′ with 1 = 1H = 1H′ ⊕ 1H′′ the corresponding

identity operator. Then

Uw(U∗
wUw) − Uw = S∗

w′Sw′S
∗
w′ ⊕ 0H′′ = S∗

w′ ⊕ 0H′′ ∈ C∗(Uw).

It then follows that C∗(Bw′) is contained in C∗(Uw), so that 0H′ ⊕ Sw′ as well
as C∗(Sw′′) are contained in C∗(Uw). Hence the direct sum C∗(Bw′)⊕C∗(Sw′′)
is contained in C∗(Sw), and its converse also holds.

Corollary 4.10. If w ∈ Cb(N) has finitely many zero components wn1+···+nj

with nj ≥ 1 (1 ≤ j ≤ k−1) mutually distinct such that Sw = Fn1 ⊕· · ·⊕Fnk−1 ⊕
Sw′ , where Sw′ is assumed to be an isometry. Then C∗(Sw) is isomorphic to
C∗(Fn1) ⊕ · · · ⊕ C∗(Fnk−1) ⊕ C∗(Sw′).

If w ∈ Cb(Z) has finitely many zero components wl+n0+n1+···+nj with n0 = 0
and otherwise nj ≥ 1 (0 ≤ j ≤ k−1) mutually distinct for some l ∈ Z such that
Uw = Bw′ ⊕ Fn1 ⊕ · · · ⊕ Fnk−1 ⊕ Sw′′ , where Bw′ is assumed to a co-isometry
and Sw′′ is an isometry. Then C∗(Uw) is isomorphic to

C∗(Bw′) ⊕ C∗(Fn1) ⊕ · · · ⊕ C∗(Fnk−1) ⊕ C∗(Sw′′).

Proposition 4.11. ([6, V.3]). For p ≥ 1, if Sw is p-periodic with w ∈ Cb(N)
invertible, then C∗(Sw) is isomorphic to the p×p matrix C∗-algebra Mp(C∗(S1))
over C∗(S1).

The same also holds for C∗(Uw) with w ∈ Cb(Z) p-periodic and invertible.

Proof. It is clear for p = 1.
Since C∗(Sw) ∼= C∗(S|w|) by Corollary 4.1, we may assume that each com-

ponent wj of w is positive, and w1, · · · , wp are mutually distinct, and as well
that 0 < w1 < w2 < · · · < wp.

If p = 2, then

Sw(
∞∑

j=1

xjej) = Sw(
∑

j = 1 mod 2

xjej +
∑

j = 0 mod 2

xjej)

= w1(
∑

j = 1 mod 2

xjej+1) + w2(
∑

j = 0 mod 2

xjej+1)

= w1S1(
∑

j = 1 mod 2

xjej) + w2S1(
∑

j = 0 mod 2

xjej).
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If we set H = H1 ⊕ H0 with each Hk the Hilbert space generated by elements∑
j = k mod 2 xjej , then we have the identification as

Sw =
(

0 w2S1

w1S1 0

)
.

We then have

S∗
wSw =

(
|w1|2S∗

1S1 0
0 |w2|2S∗

1S1

)
= |w1|21H1 ⊕ |w2|21H0

on H = H1⊕H0. Since the spectrum σ(S∗
wSw) is equal to the set {|w1|2, |w2|2},

the functional calculus implies that both 1H1⊕0H0 and 0H1⊕1H0 are contained in
C∗(S∗

wS∗
w) ⊂ C∗(Sw). It then follows that M2(C∗(S1)) is contained in C∗(Sw),

and its converse also holds.
For p in general,

Sw(
∞∑

j=1

xjej) = Sw(
p−1∑
k=0

 ∑
j = k + 1 mod p

xjej

)

=
p−1∑
k=0

wk+1

 ∑
j = k + 1 mod p

xjej+1


=

p−1∑
k=0

wk+1S1

 ∑
j = k + 1 mod p

xjej


If we set H = H1 ⊕ · · · ⊕ Hp−1 ⊕ H0 with each Hk the Hilbert space generated
by elements

∑
j = k mod p xjej , then we have the identification as

Sw =


0 wpS1

w1S1 0
. . . . . .

wp−1S1 0

 .

We then have

S∗
wSw =

|w1|2S∗
1S1 0

. . .
0 |wp|2S∗

1S1

 = |w1|21H1 ⊕ · · · ⊕ |wp|21Hp

on H = H1 ⊕ · · · ⊕Hp−1 ⊕H0. Since the spectrum σ(S∗
wSw) is equal to the set

{|w1|2, · · · , |wp|2}, the functional calculus implies that 1Hj for 1 ≤ j ≤ p are
contained in C∗(S∗

wS∗
w) ⊂ C∗(Sw). It then follows that Mp(C∗(S1)) is contained

in C∗(Sw), and its converse also holds.
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Corollary 4.12. For p ≥ 1, if Sw is p-periodic with w ∈ Cb(N) invertible, then
there is a short exact sequence of C∗-algebras

0 → K → C∗(Sw) → Mp(C(T)) → 0.

If Uw is p-periodic with w ∈ Cb(Z) invertible, then C∗(Uw) ∼= Mp(C(T)).

Proof. Tensoring the short exact sequence for C∗(S1) (as given in the first of
this section) with Mp(C) implies the statement.

Lemma 4.13. For any w = (wj) ∈ Cb(N) such that each wj ̸= 0 and the limit
limj→∞ |wj | = 0, then C∗(Sw) is isomorphic to K.

The same also holds for C∗(Uw) with w ∈ Cb(Z) such that each wj ̸= 0 and
both of the limits limj→±∞ |wj | are zero.

Proof. Since the limit is zero, Sw is a non-zero compact operator, so that C∗(Sw)
is contained in K. Conversely, since Sw is irreducible by the non-zero condition
of w = (wj), C∗(Sw) is also irreducible and has non-zero intersection with K,
so that K is contained in C∗(Sw) ([11, Theorem 2.4.9]).

Proposition 4.14. For any w = (wj) ∈ Cb(N) such that each wj ̸= 0 and the
limit limj→∞ wj ≡ α exists and is nonzero, if Sw is non-normal, then C∗(Sw)
is isomorphic to C∗(S1).

For any w = (wj) ∈ Cb(Z) such that each wj ̸= 0 and both of the limits
limj→±∞ wj ≡ α exist and coincide, and is nonzero, if Uw is non-normal, then
C∗(Uw) is isomorphic to C∗(K, U1) the C∗-algebra generated by K and U1, which
is isomorphic to C∗(S1).

Proof. It holds that Sw = αS1+G for G some compact operator. Then compute

S∗
wSw − Sw(Sw)∗ = (αS∗

1 + G∗)(αS1 + G) − (αS1 + G)(αS∗
1 + G∗)

= |α|2(1 − S1S
∗
1 ) + α(S∗

1G − GS∗
1 ) + α(G∗S1 − S1G

∗) + G∗G − GG∗,

which belongs to K and is non-zero by non-normality of Sw. Since C∗(Sw)
is irreducible, then C∗(Sw) contains K. Thus S1 is contained in C∗(Sw), and
hence C∗(S1) is contained in C∗(Sw). Conversely, Sw is contained in C∗(S1) by
the equation, and hence C∗(Sw) is contained in C∗(S1).

It holds that Uw = αU1 + G for G some compact operator. Then U∗
wUw −

UwU∗
w is computed to be a non-zero compact operator. Since C∗(Uw) is irre-

ducible, then C∗(Uw) contains K. Thus U1 is contained in C∗(Uw), and hence
C∗(U1) is contained in C∗(Uw). Therefore, C∗(K, U1) is contained in C∗(Uw).
Its converse also holds by the equation.

As shown in [1] or [4, Proposition 4.14], with some refinement,

Proposition 4.15. ([4, Proposition 4.14]). Let A ∈ B(H) and C∗(A, 1) the
C∗-algebra generated by A and 1 the identity operator, where H is a Hilbert
space. If there is a ∗-homomorphism ϕ from C∗(A, 1) to C, i.e. a character of
C∗(A, 1) such that ϕ(A) is equal to λ, then λ ∈ σap(A).
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Proof. We refer to the proof of Conway [4, Proposition 4.14].
Suppose that ϕ : C∗(A, 1) → C is a character with ϕ(A) = λ. If we assume

that λ ̸∈ σap(A), then there is a constant c > 0 such that ∥(A − λ1)ξ∥ ≥ c∥ξ∥
for any ξ ∈ H. This implies that

〈(A − λ1)∗(A − λ1)ξ, ξ〉 = ∥(A − λ1)ξ∥2 ≥ c2∥ξ∥2 = 〈c2ξ, ξ〉,

so that (A − λ1)∗(A − λ1) − c21 is a positive operator. Thus,

0 ≤ ϕ((A − λ1)∗(A − λ1) − c21)

= (ϕ(A∗) − λ∗ϕ(1))ϕ(A) − λϕ(1)) − c2ϕ(1) = −c2 < 0,

a contradiction. Hence λ ∈ σap(A).

Conversely, in part,

Proposition 4.16. ([4, Proposition 4.14]). Let A ∈ B(H) and C∗(A, 1) the C∗-
algebra generated by A and 1, where H is a Hilbert space. If A is hyponormal
and λ ∈ σap(A), then there is a ∗-homomorphism ϕ from C∗(A, 1) to C, i.e. a
character of C∗(A, 1) such that ϕ(A) is equal to λ.

Proof. We refer to the proof of Conway [4, Proposition 4.14].
Suppose that λ ∈ σap(A). Then there is a sequence (ξn) of unit vectors in

H such that ∥(A − λ1)ξn∥ → 0 as n → ∞. Define a positive linear functional
ϕ : B(l2(N)) → C by ϕ(b) = B-lim(〈bξn, ξn〉)n for b ∈ B(H), where B-lim :
l∞(C) → C means the Banach limit, defined to be a positive linear functional
such that the norm is 1, i.e., ϕ is a state, B-lim is the usual limit for convergent
sequences, and the B-limit is invariant under the shift on N (see [5, III, 7]).

For any b ∈ B(H), we have ∥b(A − λ1)ξn∥ → 0 as n → ∞, so that ϕ(b(A −
λ1)) = 0. In particular, ϕ(A) = λ, so that ϕ(A∗) = λ∗. Since A is hyponormal,
then

(A − λ1)∗(A − λ1) = A∗A − λA∗ − λ∗A + |λ|2

≥ AA∗ − λA∗ − λ∗A + |λ|2 = (A − λ1)(A − λ1)∗,

and hence ∥(A − λ1)∗ξn∥ ≤ ∥(A − λ1)ξn∥. Thus, ϕ(b(A − λ1)∗) = 0 for any
b ∈ B(H). Also, ϕ(1) = B-lim ∥ξn∥2 = 1. Therefore, if p(A − λ1, A∗ − λ∗1) is a
polynomial without the constant term, then ϕ(p(A − λ1, A∗ − λ∗1) + α1) = α
for any α ∈ C. It then follows that ϕ is multiplicative on C∗(A, 1), because if
q(A − λ1, A∗ − λ∗1) is another such polynomial, then

ϕ({p(A − λ1, A∗ − λ∗1) + α1}{q(A − λ1, A∗ − λ∗1) + β1}) = αβ

= ϕ(p(A − λ1, A∗ − λ∗1) + α1)ϕ(q(A − λ1, A∗ − λ∗1) + β1).

Note as well that C∗(A − λ1, 1) is isomorphic to C∗(A, 1).

Similarly, but extendedly in part,
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Proposition 4.17. Let A ∈ B(H) and C∗(A, 1) the C∗-algebra generated by A
and 1, where H is a Hilbert space. If λ ∈ σap(A) and λ ∈ σap(A∗), then there
is a ∗-homomorphism ϕ∼ from C∗(A, 1) to C, i.e. a character of C∗(A, 1) such
that ϕ∼(A) is equal to λ.

Remark. In fact, that ϕ∼ is defined to be the normalization of ϕ obtained
similarly but slightly differently as in the proof above, without the normalization
condition.

Proof. We modify the proof of Conway [4, Proposition 4.14].
Suppose that λ ∈ σap(A) and λ ∈ σap(A∗). Then there is a sequence (ξn)

and (ηn) of unit vectors in H such that ∥(A − λ1)ξn∥ → 0 as n → ∞ and
that ∥(A∗ − λ1)ηn∥ → 0 as n → ∞. Define a bounded sequence (sn) as sn =
sn(b) = 〈bξn, ηn〉 for n ∈ N and b ∈ B(H). Define a bounded linear functional
ϕ : B(l2(N)) → C by ϕ(b) = B-lim(sn(b)) for b ∈ B(H). For any b ∈ B(H),
we have that ∥b(A − λ1)ξn∥ → 0 as n → ∞ and that ∥b∗(A∗ − λ1)ηn∥ → 0
as n → ∞. It then follows that ϕ(b(A − λ1)) = 0 and ϕ((A − λ1)b) = 0. In
particular, ϕ(A) = λϕ(1). But ϕ(1) = B-lim(〈ξn, ηn〉) may not be equal to 1.
We thus need to redefine ϕ∼ = 1

ϕ(1)ϕ, so that ϕ∼(1) = 1 and ϕ∼(A) = λ. It then
follows from the same argument in the proof above that ϕ∼ is multiplicative on
C∗(A, 1).

Theorem 4.18. Suppose that every component wj of w = (wj) ∈ Cb(N) or
Cb(Z) is non zero.

If |w| = (|wj |) is upper boundedly continuous at +∞ to α, then λ ∈ σap(Sw) =
∂B(α) if and only if there is a ∗-homomorphism ρ from C∗(Sw, 1) to C, i.e. a
character of C∗(Sw, 1) such that ρ(Sw) is equal to λ, where C∗(Sw, 1) is the
C∗-algebra generated by Sw and 1.

If |w| = (|wj |) ∈ Cb(Z) is upper boundedly continuous at +∞ to α and lower
boundedly continuous at −∞ to β, with β < α, then λ ∈ σap(Uw) = ∂B(α, β) if
and only if there is a ∗-homomorphism ρ from C∗(Uw, 1) to C, i.e. a character
of C∗(Uw, 1) such that ρ(Uw) is equal to λ, where C∗(Uw, 1) is the C∗-algebra
generated by Uw and 1, and C∗(Uw, 1) = C∗(Uw) if and only if β is positive in
this case.

Proof. It is shown in Theorem 2.28 that σap(Sw) = ∂B(α) ⊂ B(α) = σap(S∗
w).

It is also shown in Theorem 2.28 that σap(Uw) = ∂B(α, β) ⊂ B(α, β) =
σap(U∗

w).

Lemma 4.19. ([4, Lemma 13.1]). Let A be a unital C∗-algebra. Denote by A∧
1

the space of all non-zero ∗-homomorphisms (or characters) from A to C (with
the weak ∗, or the point-wise convergence topology). Let [A,A] denote the closed
(commutator) ideal of A generated by additive commutators [a, b] = ab − ba
for a, b ∈ A, as the completion of the algebraic commutator [A,A]. Then the
following equality holds:

[A,A] ≡ C = ∩ϕ∈A∧
1
ker(ϕ) ≡ I,

the intersection of all kernels of ϕ ∈ A∧
1 .
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Proof. It is clear that I is a closed (two-sided) ideal of A. For any a, b ∈ A and
any ϕ ∈ A∧

1 , we have ϕ([a, b]) = ϕ(a)ϕ(b)−ϕ(b)ϕ(a) = 0. Hence, C is contained
in I.

Conversely, take a ∈ A \ C. Then the class a + C is non zero in the commu-
tative, quotient C∗-algebra A/C. Thus, there is a ∗-homomorphism ρ from A/C
to C such that ρ(a+C) ̸= 0. Then define an element ϕ ∈ A∧

1 as the composition
ϕ = ρ ◦ q, where q : A → A/C is the quotient homomorphism, so that ϕ(a) ̸= 0.
Hence a ̸∈ I. Therefore, I is contained in C.

Proposition 4.20. ([4, Proposition 13.2]). With the same notation as in the
preceding lemma, A∧

1 is the maximal ideal space of A/C. It then follows that
A/C ∼= C(A∧

1 ) the C∗-algebra of all continuous, complex-valued functions on
A∧

1 under the Gelfand transfrom defined as (a + C)∧(ϕ) = ϕ(a) for a ∈ A and
ϕ ∈ A∧

1 .

Proof. If ϕ ∈ A∧
1 , then ϕ(C) = 0. Thus, we define ϕ : A/C → C by the same

symbol as ϕ(a+C) = ϕ(a). Hence A∧
1 is identified with the space of all characters

of A/C with the weak-∗ topology, which is identified with the maximal ideal
space of A/C, that is, the space of all kernels of characters of A/C. Since A/C is
a commutative C∗-algebra, then the C∗-algebra isomorphism in the statement
is deduced from the Gelfand transform (for instance, see [11]).

Since we may have C∗(A) ̸= C∗(A, 1) in general, with some refinement we
obtain

Corollary 4.21. ([4, Corollary 13.3]). If A ∈ B(H) is hyponormal, then

C∗(A, 1)/[C∗(A, 1), C∗(A, 1)] ≡ C∗(A, 1)/C ∼= C(C∗(A, 1)∧1 ) ∼= C(σap(A)),

where A+C is sent to the coordinate function on σap(A), identified with elements
λ ∈ σap(A).

Proof. There is a homeomorphism from C∗(A, 1)∧1 onto σap(A) by sending ϕ ∈
C∗(A)∧1 to ϕ(A) ∈ σap(A). It is checked that the map is well defined and
is surjective. Since C∗(A, 1) is generated by A and 1, then if ϕ(A) = ψ(A),
then ϕ = ψ in C∗(A, 1)∧1 . Thus, the map is injective. It is clear that the
map is continuous and so is its inverse as well, because σap(A) is compact and
C∗(A, 1)∧1 is a Hausdorff space. Note that (A + C)∧(ϕ) = ϕ(A) = λ.

Similarly, but extendedly in part,

Corollary 4.22. Let A ∈ B(H). Suppose that if λ ∈ σap(A), then λ ∈ σap(A∗)
(which is not automatic). It then follows that

C∗(A, 1)/[C∗(A, 1), C∗(A, 1)] ≡ C∗(A, 1)/C ∼= C(C∗(A, 1)∧1 ) ∼= C(σap(A)).

Therefore, we get
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Theorem 4.23. Suppose that every component wj of w = (wj) ∈ Cb(N) or
Cb(Z) is non zero.

If |w| = (|wj |) is upper boundedly continuous at +∞ to α, then

C∗(Sw, 1)/[C∗(Sw, 1), C∗(Sw, 1)] ≡ C∗(Sw, 1)/C ∼= C(C∗(Sw, 1)∧1 ) ∼= C(σap(Sw)).

If |w| = (|wj |) ∈ Cb(Z) is upper boundedly continuous at +∞ to α and lower
boundedly continuous at −∞ to β, then

C∗(Uw, 1)/[C∗(Uw, 1), C∗(Uw, 1)] ≡ C∗(Uw, 1)/C ∼= C(C∗(Uw, 1)∧1 ) ∼= C(σap(Uw)),

where C∗(Uw, 1) = C∗(Uw) if and only if β is positive in this case.

Remark. There may be more results on this subject in the literature, or in the
future to be continued. For more advanced details, may refer to, for instance, [2],
[7], and [8]. In fact, we could only consider the quotient structure as given above,
but not the corresponding ideal structure which does involve a pathological but
familiar non-type I representation theory.
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