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ON THE SECURITY OF ZHANG-TAN’S VARIANTS

OF MULTIVARIATE SIGNATURE SCHEMES ∗

Yasufumi HASHIMOTO

Abstract

Until now, various multivariate public key cryptosystems (MPKCs) have
been proposed but some of them are known to be insecure. In IMACC 2015 and
Inscrypt 2015, Zhang and Tan proposed new variants of MPKCs for signatures
to enhance the security of the original schemes. However, Zhang-Tan’s variants
are much less secure than expected. In this paper, we describe an attack on
Zhang-Tan’s variants to recover a public key of the original scheme.

1 Introduction

After Shor [6] proposed polynomial-time algorithms to factor integers and to solve
discrete logarithm problems by quantum computers, constructing cryptosystems
secure against quantum attacks is one of big issues in cryptology. Multivariate
public key cryptosystems (MPKCs), public key cryptosystems whose public keys are
sets of multivariate quadratic forms over finite fields, have been expected to be such
cryptosystems. While various MPKCs have been proposed until now, some of them
were broken soon after proposed or known to be much less secure than expected.
In IMACC 2015 and Inscrypt 2015, Zhang and Tan [9, 10] proposed a new idea

to repair such insecure MPKCs for signatures. Their idea is adding several variables
and terms for the additional variables on the original polynomials, and hiding several
equations to eliminate the contributions of additional variables in the process of
signature generation. They actually used this idea on already broken schemes MI-
T [8] and YTS [7, 2] by adding HFE-like polynomials and claimed that this idea
enhanced the security drastically. However, the hidden equations can be recovered
by sufficiently many signatures and these equations tell us partial information of the
secret key. In this paper, we describe how to recover the hidden equations and the
secret key partially, and conclude that our attack removes the contributions of the
additional variables and recovers a public key of the original scheme.
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2 Multivariate Public Key Cryptosystem

In this section, we describe the general construction of multivariate public key cryp-
tosystems (MPKCs).
Let n,m ≥ 1 be integers, k a finite field and q := #k. Define a quadratic map

G : kn → km to be inverted feasibly, i.e. finding x ∈ kn with G(x) = y is feasible
for any (or most) y ∈ km. The secret key is a tuple of three maps (S, G, T ), where
S : kn → kn, T : km → km are invertible affine maps and the quadratic map
G : kn → km. The public key is the convolution of these three maps

F := T ◦G ◦ S : kn → km.

On an encryption scheme, the cipher-text y ∈ km for a given plain-text x ∈ kn

is computed by y = F (x). To decrypt y, find z ∈ kn with G(z) = T−1(y). Then
the plain-text is x = S−1(z). Since G is constructed to be inverted feasibly, one can
decrypt y feasibly.
On a signature scheme, a signature x ∈ kn for a given message y ∈ km is

generated as follows. Find z ∈ kn with G(z) = y and compute x = S−1(z). The
signature x ∈ kn for y is verified if y = F (x) holds.

3 Zhang-Tan’s variant

In this section, we describe Zhang-Tan’s variant [9, 10] on MPKC.
Let n, n0,m, l ≥ 1 be integers with n = n0 + l and x = t(x1, . . . , xn), x1 =

t(x1, . . . , xn0), x2 = t(xn0+1, . . . , xn) are variables. Define the quadratic maps G :
kn → km, H : kn → kl by

G(x) =t(g1(x), . . . , gm(x)),
H(x) =t(h1(x), . . . , hl(x)),

where g1(x), . . . , gm(x) are quadratic forms of x1 and

hi(x) =(homogeneous quadratic form of x2)

+
∑

1≤j≤l

xn0+j · (linear form of x1), (1 ≤ i ≤ l). (1)

Suppose that G,H are inverted feasibly, i.e. finding x1 ∈ kn0 with G(x1) = y is
feasible for any (or most) y ∈ km and finding x2 ∈ kl with H(x1,x2) = 0 is also
feasible for any (or most) x1 ∈ kn0 . In [9, 10], G is the central map of MI-T [8] or
YTS [7] and H is given by an HFE-like polynomial.
Zhang-Tan’s variant is given as follows.
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Secret key. Two invertible affine maps S : kn → kn, T : km → km, a linear map
T1 : kl → km and the quadratic maps G : kn → km, H : kn → kl defined above.
Public key. The quadratic map F : kn → km defined by

F := (T ◦G+ T1 ◦H) ◦ S.

Signature generation. For a message y ∈ km to be signed, find z1 ∈ kn0 with
G(z1) = T−1(y), and z2 ∈ kl with H(z1, z2) = 0. The signature is w = S−1(z1, z2).
Signature verification. The signature w is verified if F (w) = y holds.
Since G(x) is a set of quadratic forms of x1 and is constructed to be inverted

feasibly, z1 is found feasibly. Similarly, finding z2 is also feasible. Note that H is
constructed such that H(x1, 0) = 0 for any x1. Then z2 = 0 is acceptable in the
process of signature generation if there are no non-trivial z2 for a given z1.

4 On the security of Zhang-Tan’s variant

In this section, we propose our attack to reduce the problem of solving F (x) = y to
the problem of solving F0(x1) = y1 where F0 := T ◦ G ◦ S0 is a public key of the
original scheme derived from G, where S0 : kn0 → kn0 is an invertible affine map.
For simplicity, we assume that S is a linear map.
First, recall that one finds z1, z2 with H(z1, z2) = 0 in the process of signature

generation, and the signature w satisfies (z1, z2) = S(w). Then H ◦ S(w) = 0
holds for any signature w generated by the corresponding Zhang-Tan’s variant.
This means that there are l-linearly independent quadratic forms u1(x), . . . , ul(x)
with ui(w) = 0 for any signature w and these quadratic forms are linear sums of
h1(S(x)), . . . , hl(S(x)). Since hi is a quadratic form of n variables, we can recover
u1(x), . . . , ul(x) by N � 1

2n(n+ 1) signatures.
By the construction (1) of H, we see that the polynomials ui(x) are written by

ui(x) = txtS

(
0n0 ∗
∗ ∗l

)
Sx+ (linear form)

for 1 ≤ i ≤ l. This is similar to the quadratic form in UOV [5, 3] and then,
once u1(x), . . . , ul(x) are given, the attacker can recover an invertible linear map

S1 : kn → kn with SS1 =
(∗n0 ∗
0 ∗l

)
by Kipnis-Shamir’s attack on UOV [4, 3] in

time O(qmax(0,l−n0) · (polyn.)).
Since F̄ := F ◦ S1 = (T ◦ G + T1 ◦ H) ◦ (S ◦ S1) and SS1 =

(
S0 ∗
0 ∗l

)
with

some n0 × n0 matrix S0, we see that H ◦ (S ◦ S0) is a set of quadratic forms as
given in (1). Then we have F̄ (x1, 0) = (T ◦G ◦ S0)(x1), which is a public key of the
original scheme derived from G. We thus conclude that Zhang-Tan’s variant does
not protect the original scheme strongly.
Our attack is summarized as follows.
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Step 1. Let N be an integer sufficiently larger than 1
2n(n + 1). Choose N mes-

sages y1, . . . ,yN ∈ km randomly, and generate signatures w1, . . . ,wN ∈ kn for
y1, . . . ,yN ∈ km respectively.
Step 2. Find l linearly independent quadratic forms u1(x), . . . , ul(x) with
ui(wj) = 0 for any 1 ≤ j ≤ N .
Step 3. Find an invertible linear map S1 : kn → kn with

ui(S1(x)) = tx
(
0n0 ∗
∗ ∗l

)
x+ (linear form)

for 1 ≤ i ≤ l by Kipnis-Shamir’s attack [4, 3].
Step 4. Let F̄ := F ◦ S1. Then F̄ (x1, 0) is a public key of the original scheme.

As already explained, the complexity of Step 3 is O(qmax(0,l−n0) · (polyn.)). It
is easy to see that the complexities of other steps of our attack are in polynomial
time. Then the total complexity of our attack is O(qmax(0,l−n0) · (polyn.)), which is
much less than O(ql · (polyn.)) expected by Zhang and Tan [9, 10]. This means that
l must be sufficiently larger than n0, namely the number n of variables in Zhang-
Tan’s variant must be sufficiently larger than twice of the number n0 of the variables
in the original scheme. This situation is similar to UOV [3], and we can consider
that Zhang-Tan’s variant does not have an advantage over UOV. Furthermore, the
complexity O(qmax(0,l−n0) · (polyn.)) might be improved if H has a special structure.
For example, when H is given by an HFE-like polynomial [9, 10], the rank attack
[1] will reduce the complexity. We thus conclude that Zhang-Tan’s variant is not
practical at all.
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