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Abstract

We review and study noncommutative continuous deformation the

ory for soft C*-algebras such as the soft torus of Exel and other vari

ations by several others. This theory includes structure theory, K-

theory, and continuous field theory for those C*-algebras. In addition,

their (finite dimensional) representation theory is reviewed and con

sidered. Furthermore, noncommutative shape theory for C*-algebras

is also done.
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Introduction

This paper is devoted to reviewing and studying the noncommutative

continuous deformation theory for (certain) C*-algebras. Especially, we first

focus on the soft tori of Exel, that are parameterized on a closed interval

and are viewed as a softly noncommutative continuous deformation from

(or to) the commutative C*-algebra of all continuous functions on the usual

2-torus. In particular, the structure, K-theory, and continuous fields of the

soft tori are explicitly given and computed. Some proofs for these things

become more detailed and should be more (easily) readable by some efforts.

As mentioned in the abstract, this paper is organized as follows.
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1 Soft torus

1.1 The soft torus as a crossed product

The C*-algebra C(T2) of all continuous complex valued functions on the two-

torus T2 is the universal C*-algebra generated by two commuting unitaries,

and which is also the C*-tensor product C(T)®C(T) of C(T) for the torus T.
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The soft two-torus C(T2)£ of Exel for e € [0,2] is defined to be the universal

C*-algebra generated by two e-almost commuting unitaries ue and v£ in the

sense that

\\ueve - v£u£\\ < e.

Note that C(T2)0 = C(T2), and C(T2)2 is isomorphic to the full group

C*-algebra of the free group F2 of two generators, and which is also the

universal C*-algebra of generated by two unitaries which have no relations,

that is, the unital free product C*-algebra C(T) *c C(T). Note that the

above inequality always holds when e = 2. Therefore, the soft tori C(T2)£

defined on the closed interval [0,2] contain two such commutative and the

most noncommutative unital cases at the boundary points. That is of crucial

interest. However, it will be shown below in this subsection that highly or

lowly noncommutative C(T2)£ for e € (0,2) have rather different structure

from two extreme cases for e = 0, 2, but their K-theory is the same as that

of C(T2) and not the same as that of C(T2)2, while their stable rank is

the same infinity as that of C(T2)2 and not the same as that of C(T2) (in

the subsection 4.1). Furthermore, the soft tori will be viewed as fibers of a

continuous field of C*-algebras over [0,2] (in the section 2).

There is a *-homomorphism from C(T2)£ onto C(T2) by corresponding

their generators. This follows from the universality of C(T2)£ since the

relation of C(T2) is stronger than that of C(T2)e.

Lemma 1.1.1. Let u,v be unitaries of a C*-algebra 21 with \\u — v\\ = e < 2.

Then there is a continuous path u(t) of unitaries in 21 such that u(0) = u

and u{\) = v and \\u(t) - u(s)\\ < e for all t,s e [0,1].

Proof. Note that ||1 - u^vW = e < 2. Indeed, using the C*-norm property,

= \\(u* - OCO'u-Hti - f)ll = IKti* - v*)(u - v)\\
= \\u-v\\2.

Therefore, -1 is not in the spectrum of u~lv. Put h = i~l \og(u~lv). Then

h* = -r1 log^*^"1)*) = -r1 log^-1^) = -i~l log((u-lv)-1) = h.

Also, the spectral theorem implies that

\\h\\ = HlogOrMll < HIO^JIU = ||t(?||oo < 7T,
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where eie is in the spectrum of u~lv, and || log(ei<9)||oo means the supremum

norm of continuous functions on the spectrum of u~lv (cf. [14]). Thus,

\\h\\ < 7T. Note that

-eix\2 =

= (1 — cos x)2 + sin2 x

= 2 — 2 cos x = 2(1 — cos x)

= 22sin2(|) = |2sin(|)|2.

It follows from the spectral theorem that

Hence, one has \\h\\ = 2sin-1(f )• Let u(t) = ueith. Then

H*) - «(«)|| = ll«(*)(i - J{s-t)h)\\ = 111 - ei(

□

Define <Be to be the universal C*-algebra generated by unitaries un for

n G Z such that \\un+\ — un\\ < e for all n. Let z be the canonical generator

of the C*-algebra C(T) of all continuous functions on the 1-torus T. Let

V>e be the *-homomorphism from 23e onto C(T) by universality such that

xjj£{un) = z for all n.

Theorem 1.1.2. The map i\)e for e < 2 is a homotopy equivalence between

5S£ andC{T).

Proof Let a : C(T) —> Q3e be given by a{z) = ^o- Then ipeocr is the identity

map of C(T).

For any interger p > 0, let u£(t) and u^(t) be continuous paths of

unitaries in Q3£ such that u£(0) — u±p and u£(l) = w±(p+i). In particular,

Ikp (*) - w±|| < e for all t G [0,1].

Concatenating these paths and by reparametrization we obtain contin

uous paths 7+(t) and 7~~(i) for 0 < t < 1 such that 7±(p/(p + 1)) = ^±p,

and furthermore, ifp/(p+l) <t< (p+ l)/(p + 2), then I^^Ct) — u±p|| <e.
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Define a continuous path vn in <8e by

where sgn(n) = 1 if n > 0, and sgn(n) = — 1 if n < 0, and vo(t) = u$. It

follows that \\vn+i(t)—vn{t) \\<e for all t and n. Let pt be the endomorphism

of Q3e such that pt(un) = vn{t). This yields a homotopy from a o ijj£ to the

identity map of 2$e. □

Define a to be the automorphism of *Be defined by a(un) = un+i.

Let QS£ xi a Z be the crossed product C*-algebra corresponding to the C*-

dynamical system (*Be, a, Z).

Proposition 1.1.3. T/ie soft torus C(T2)£ is isomorphic to the crossed

product 53e xja Z.

Proof. Let ty be the unitary of 53e xja Z corresponding to the action a such

that wunw* = ^n+i- Then

i|| e.

Therefore, there is a *-homomorphism <p : C(T2)£ —> *B£ xia Z such that

ip(ue) = uq and y?(ve) = w;.

On the other hand,

+1) — 7;n?/ 7)~n|| — ||7Jnr7; 7/ 7;"1 —7/ ^;~nll

= \\VeUeV~1 -We|| < £.

Thus, there is a *-homomorphism ip : QSe —> C(T2)g; such that ip(un) =

v£lu£v~n. Since v£ip(un)v* = ^(itn+i) one can extend -0 to Q5£ xIq, Z by

setting ^(w;) = tj£.

By construction, tp and V7 str^ inverses each other. □

Let tpe : C(T2)£ —» C(T2) be the *-homomorphism defined by (p£(ue) =

z\ and <pe(v£) = z<i, where z\ and z<i are the canonical generators of C(T2).

Theorem 1.1.4. We have K-theory group isomorphisms from Kj(C(T2)£)

to Kj(C(T2)) induced by (p£, where j = 0,1 and e < 2.

Proof. Regard C(T2) as C(T) Xy Z the crossed product with the identity

action id. Note that there is a *-homomorphism from Q5e xiaZ to C(T) XidZ

by extending ^ : 53e -► C(T). Identify 53£ x)a Z with C(T2)£.
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The Pimsner-Voiculescu exact sequence of K-groups for crossed products

by Z implies the following diagram:

V
^(CfT2),) « K

)(»*) > a:o(C(t2)£)

and the similar diagram for C(T) xijd Z. Since the maps id — a* both vanish,

the above diagram splits into the following short exact sequences to make

another diagram:

where j + 1 mod 2. Homotopy invariance of K-groups and the five lemma

completes the proof. Q

Corollary 1.1.5. We have Kj(C(T2)£) ^ 1? where j = 0,1 and e<2.

1.2 Invariants for almost commuting unitaries

Let 21 be a C*-algebra. Suppose that u and v are unitaries of 21 such that

\\uv - vu\\ < e <2. There is a *-homomorphism p : C(T2)€ —► 21 such that

p(tfce) = u and p(ye) = v.

The K-theory invariant of such a pair (ix, v) is defined to be the element

of JKb(Sl) defined by k(u,v) = p*(6e), where b£ e K0(C(T2)£) is defined by

b£ = (p~l(b), where b E lfo(C'(T2)) is the class of the Bott projection of

M2(C(T2)). Note that k(u, v) does not depend on e if e > \\uv — vu\\.

Let 21 = Mn(C) be the C*-algebra of all n x n complex matrices. Since

K0(fS) = Z induced by the standard trace Tr on Mn(C), we identify k(uy v)

with its image under Tr*.

Let u and v be unitaries of Mn(C). Define w(u, v) the winding invariant

of the pair (u, v) to be the winding number of the following closed complex

path:

<y(t) = det(tvu + (1 - t)uv)

around zero.
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Lemma 1.2.1. Let u and v be unitaries of Mn(C) with \\uv — vu\\ = e < 2.

Then

w(u,v) = ——.Tr()og(vuv*u*)),
2ttz

where Tr denotes the standard trace.

Proof. Since ||1 — viw;*i4*|| = e < 2, the spectrum of vuv*u* does not

contain —1. Therefore, let h = i~l log(t;m;*u*) by spectral theory. Then

= 2 arcsin(|). Indeed,

= ||1 - vuv*u*\\ = ||1 -

= ||2sinQ|| = 2sin(^)

since ||/i|| = || \og(vuv*u*)\\ < 7r.

Claim that the following continuous paths:

t»—► elthuv and £ h

are homotopic in GLn(C). Indeed,

= ||tei/l + (1 - t) - Jth\\ < \\teie + (l-t)- e^lU

by spectral theory, where e%e is in the spectrum of eih. Furthermore,

for all t e [0,1] and ei0. In fact, we view tei$ + (1 - t) as the point divided

internally on the line segment between el° and 1 with ratio 1 — t : t, so

that we need to estimate the distance between that point and (e%e)1 as the

above inequality. This task should be done by using elementary geometry

(but it seems to involve a somewhat complicate estimate to complete it

analytically, and see also the remark below). It follows from this estimate

that tvu + (l — t)uv are invertible since elthuv are unitary. Also, the estimate

obtained implies that the continuous paths are homotopic in GLn(C).

Therefore, the winding number w(u,v) of j(t) is equal to the winding

number of the path: t »-> det(eithuv). Since &et{eithuv) = det(eith) det(uv),
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the winding number is the same as the winding number of the path: t h-> elth.

Since h is hermitian, there is a unitary p such that p*hp is diagonal, so let

Ai o

P*hP=\

It follows that

det(eith) = det{p*eithp)

(eitx1 o

0 eitx«

_ eit(\i+-+\n)

which implies that the winding number of the path: t i-> ezth is equal to the

following

as desired.

Remark. The estimate:

\tei0 + (l-t)-eite\ <l-cos

is attained if t = 1/2 and 0 = \\h\\. Indeed,

2

cos

_ cos

-H = l-cosY.
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Lemma 1.2.2. Let a be an automorphism of a C*-algebra. Let r1 and r2

be traces on 21 xia Z such that r1 = r2 on 21. Then r* = r2 on ifo(2l xiQ Z).

Proo/. Without loss of generality we may assume that 21 is unital. Let p be a

projection of Mfc(2l xaZ) for some fc. It suffices to prove that rx(p) = r2{p).

Without loss of generality we may assume that k = 1. Let aA be the

dual action of a , i.e., an action of T on 21 xia Z defined by a*(a) = a for

a G 21 and a^(U) = zll for any 2 G T, where U is the unitary corresponding

to the action a. Observe that TJ'(a^(p)) does not depend on z € T via trace

property since close projections are (unitarily) equivalent. Thus,

rj(p) = I TJ(a
Jt

where E is the canonical conditional expectation from 21 xia Z to 21 defined

by £(/) - JTa^(f)dfi(z) for / € 21 xa Z, where d/u(s) = {2m)-lz-1dz is

the normalized Lebesgue measure on T. Hence rl(p) = r2(p). □

Remark. The conditional expectation i£ defined above is a positive, unital,

idempotent map and satisfies the following:

E(fb) = E(f)b

for a, 6 € 21 and / G 21 xi^ Z. Indeed,

Also, for every a G 21,

E(a) = / a£(a
Jt

/

= a[t]i = a.

Hence E2 = E, i.e., an idempotent map. Note that 21 is just the fixed point

algebra under the dual action aA. Furthermore, if k ^ 0, then

E(Uk) = [ a*{Uk)dn(z) = Uk—. f zk~ldz
Jt 2m JT

i /*1 p2irikt

— e^ikt27ridt = Uk\-^-77-\\ = 0.
ki Jo
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It follows that for a finite sum £fc akUk G 21 xio Z with afc G 2t,

Theorem 1.2,3- Letu andv be unitaries of Mn(C) with \\uv-vu\\ — e < 2.

Then the K-theory invariant k{u,v) is equal to the winding number w(u>v).

Proof Let p : C(T2)£ -> Mn(C) be a *-homomorphism such that p(u£) = u

and p(v£) = v. Define a unital trace r on C(T2)£ by r = n~xTr o p.

Identify 55£ with a subalgebra of C(T2)£. By restriction, r is an a-

invariant trace on 25e. Note that r is an integral trace on 2$e.

Let r~ be the canonical extension of r on <B£ to C(T2)e. Then r~ is

often different from r on C(T2)£. As shown above, r* = r~ on K0(C(T2)e).

We have

r~(6e) = r*(6e) - -Tr»p*(6e) = -k(u,v),
n it

b£ E K0(C(T2)£) that corresponds to the class of K0(C{T2)) for the Bott

projection.

The commutative diagram of Exel for an integral unital C*-algebra with

a trace-preserving automorphism a is:

where the connecting map d is of the Pimsner-Voiculescu sequence, and for

[p] G X0(2l >iQ Z) with d(\p\) = [u], we have

exp(27m-*([p])) = ^(M) = det(a(ti>)

where the second equality is the definition of the rotation number map pTa

for [u] G Ki(2l)a the subgroup of fixed points under a*, i.e., a*([it]) = [it] G

i^i(2l), where detT is a group homomorphism from the group of unitaries of

21 to T satisfying det(e^) = eir(/l), where h is a self-adjoint element of 21.

Applying that diagram to the those equations above we obtain

2iri
exp( k(u,v)) =

n
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where we identify C(T2)e with Q5£ xa Z, K0(C(T2)e) with K0(C{T2)), and

K0(*Be) with jro(C(T)), and the Bott element of K0(C(T2)) is mappped

to the class of z* e C(T) under the connecting map d from K0(C(T2)) to

#i(C(T)), so that d(be) = [u*0] €

On the other hand,

= Mi«o = exp(log(«itio)) = exp(u~1

Therefore,

«S) = exp(tr(r

Furthermore,

T(log(tiiuS)) = -
ft

= exp(r(log(wi«$))).

= -Tr(log(p(Ulu*0)))
it

Hence we obtain

= ±Tr(log(p((veuev*e)u*e)))
1 27TZ

= —Tr(log(vuv*u*)) = w(u, v).
n n

27T2 2-Kl
exp( k(u, V)) = exp( w(u, v))

n n

so that (fc(u, v) — w(u, v))/n G Z.

Replace u and v by iz©lm and v©lm respectively, where lm is the mxm

identity matrix. Then note that k{u,v) = fc(u© lm, v © lm) and iy(u, v) =

«;(u©lm,i;©lm). Thus, it follows that {k(u,v) — w(u,v))/(n + m) G Z for

all m. Hence k(u,v) = ty(u,v).

Theorem 1.2.4. T/ie unital traces of C(T2)£ form a separating family of

maps for its Kq-group.

Proof. Recall that Voiculescu's unitaries Sn and S7n for n > 2 are defined

by

/0 1\ /wn 0\

1 0

1 0)

4
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where u)n = e2mln. Compute:

/0

>n 0

/o *>\

/» 0

0 0

It follows that ||Snfin — JlnSn || tends to zero as n tends to infinity.

Given 0 < e< 2, let no be such that ||*SnOn — f^S^H < e whenever

n > no- For each n > no, let pn : C(T2)£ —> Mn(C) be a *-homomorphism

defined by pn(u£) = S^ and pn(v£) = £2n. Let rn be the unital trace on

C(T2)e given by rn = n~lrIY o pn.

Claim that the set {rn>* : n > no} is a separating family for iiTo(C'(T2)e).

In fact, note that Kq(C(T2)£) is generated by b£ and [1], We have Tn>*([l]) =

1, while

(&) k(Sft) (S£l)
' n n

Indeed, the last equality holds as follows:

n

/0

4

/o

ol

<

<

0\

\0

/o

,-,n

o\ /0 1

0 \

••• c^r1

o\

■•■ 1
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which implies that log(fin5nf2*5*) = ©nlogwn, from which it follows that

w(sn,nn) = ^

2iri ^—' n
n

The conclusion now follows from observing:

rn *(s[l] + tb£) = s H—
n

for s,teZ. Indeed, s + ~ = s' + ^ if and only if r — rr = ^(sf — s). However,

if n is large enough, always r — rl ^ ^(sf — s). □

Notes. This section of two subsections is based on the paper [9] of Exel. In

[22] of the author, a version of the soft torus by replacing almost commut

ing unitaries with almost commuting isometries has been considered. Also,

almost commuting unitary operators as well as almost commuting unitary

matrices and their invariants have been of interest. Its interesting history is

omitted. Another topic on almost commuting self-adjoint operators is also

not contained in this review.

2 Continuous fields of Soft tori

2.1 Soft tori as continuous fields

For e e [0,2], let C(T2)£ be the soft torus that is the universal C*-algebra

generated by unitary elements u£ and v£ such that \\u£v£ — v£u£\\ < e.

By universality, if e\ < 62, there is a *-homomorphism (/)£2i£l from

C(T2)£2 to C(T2)£l sending the generators of C(T2)£2 to those of C(T2)£l.

In particular, in the case where e\= e and €2 = 2, denote by 4>e : C(T2)2 —►

C(T2)£ such a map. Let 3£ = ker(0e) be the kernel of </>e, which is a closed

two-sided ideal of C(T2)e. Since C(T2)2/3£ ^ C(T2)£ we have

||^(a)||= inf ||o-6||=dist(a,ae)
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for a G C(T2)2, where the first equality is the definition of the quotient norm

and the second is also the definition of the distance between a and 3£.

If e < e', then 3e D 3£' since we have the following commutative diagram:

C(T2)2 -^-* C(T2)£,

C(T2)2 -**-

by uniqueness of those maps, so that ||0e(a)|| < ||^c'(a)||.

Denote by 3f the closure of the union Ue<e/2f£/ of 3e/ for ef > e, and by

3~ the intersection rv<e3e' of 3e/ for e' < e. Note that

where e1 <e<e ".

Proposition 2.1.1. Let e G [0,2). I/3e = 3+, then the function defined by

/o(e) = ||0e(a)|| for a e C(T2)2 is right continuous at e.

Let e e (0,2], //3e = 3~, then the same function is left continuous at e.

Proof Note that for a G C(T2)2, we have

= inf dist(a,3e"), dist(a,3J") = supdist(a,3
e<e" e'<e

Indeed, since 3f D 3£», we have dist(a,3+) < dist(a,3fe//). Thus,

dist(a,3+) < inf dist(a,ae//).

Conversely, let b G 3+. Then for any k > 0 there exists c G 3e" with e <£ /;

such that ||6 - c|| < fe"1. Then

1

inf dist(a,3e") < dist(a,3e//) < \\a — c\\ < \\a — b\\ + -.
e<e"

Hence infe<£// dist(a, 3e») < dist(a, 3f) as k —> oo.

To prove the second, let 0 : C(T2)2 -> IIe/<eC(T2)£/ be given by </>(a) =

{(j)£>{a))£><e. Observe that 3~ = ker(^) the kernel of <f>. In fact, note that

3£> = ker(<^e/), and <j>(a) = 0 if and only if 0e/(a) = 0 for every £7 < e. Thus,

dist(a,D^) = ||0(a)|| = sup ||0£/(a)|| = supdist(a,3e/).
e'<e e'<e
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The conclusions follow from those equalities and the assumptions respec

tively. □

Remark. Now let E = C([0,1]). For f e E, set

sup |/(t)|.
[]

Let E€ = {f eE\ /([0,1 - e]) = 0} for 0 < e < 1. If ef < e, then Eei D E£}

so that Ee are decreasing closed ideals as e increases. Let g = 1 be the

constant function. Then dist(g,E£) = 1 for all 0 < e < 1. Indeed, define

g£ G E£ by g£(t) = 0 for t G [0,1 - e], ^e(«) = 1 for t G [1 - (e/2), 1], and

5e(t) = 2£~1(t - 1 + e) for t G [1 - e, 1 - (e/2)]. Then \\g - g£\\ = 1. Also,

for any / G £e, we have ||p - /|| > |5(0) - /(0)| = 1.

On the other hand, note that E~ — C\£i<£E£t is equal to E£ for any

e G (0,1], but we have dist(^,ne/<i£?e/) = ||p|| = 2 since ne/<i£7£/ = {0}. It

follows that

Hence the above statements can not be generalized to Banach spaces in

general.

Proposition 2.1.2. One has that 3f the closure of the union Ue<e/3e/ is

equal to 3£ for every e G [0, 2).

Proof Denote by u+ and vf the images of U2 and V2 in C(T2)2/^t- Then

««II <e.

Indeed, we have

for every er > e.

Universality of C(T2)£ implies that there is a *-homomorphism from

C(T2)£ ^ C(T2)/3£ onto C(T2)2/3+ sending u£ and v£ to u£ and v+ re

spectively. Therefore, 3£ C 3f. Also, 3£ contains 3+ by definition. □

Now assume that 0 < e< 2 in the following:
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Lemma 2.1.3. Suppose that Uj (0 < j < n) are unitaries of a C* -algebra

93 such that \\uj-i - Uj\\ < e for 1 < j < n. Then for every S > 0, there are

unitaries Vj (0 < j <n) of 93 such that

\\vj-Uj\\<5 (0<j<n), ||t7^_i — v^H < e: (1 < j < n).

Proof. Since ||uj_i-?zj|| < e < 2, it follows that ||tfcj'u*_1-l|| < 2, so that -1

is not in the spectrum of UjU*j_v Therefore, define hj = log^jU^^), which

is a skew-adjoint element of 93, that is, hj = -hj, and we have Uj = eh^Uj-\

for 1 < j < n.

Choose Vj (0 < j < n) as follows: i>o = ^o and Vj = e^Uj-i for 1 <

j ^ ^5 where each tj is a suitably chosen positive real number approaching

1 from below.

Define

rf(x) = |l-eia:| = 2|sin(-)|

for x e M, where the second equality is shown above. Also, if h is skew-

adjoint and \\h\\ < ir, then

||i - eh\\ = ||i - c*«-lfc>||

by the spectral theorem. Moreover, for 1 < j; < n,

which implies that

\\hk\\ ^siT'fj) <tt

because e < 2, where d'1 is the inverse of d since d is increasing on [0,tt].

Observe that

IN - «i|| = ||uo -

and for j > 1 we have

II«j - Vj+i\\ < \\vj ~ uj\\ + \\uj ~ vj+i\\
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Note that the derivative d'(x) - cos(a;/2) for x <£ [0,6], and 1 > d'(x) >

m = cos(0/2) > 0. By the mean value theorem, for t, (t >)s € [0,0} we have

\d(t) - d(s)\ = d'(s + 0{t - a))\t - s\ for some 0 < 6 < 1, so that

m\t - s\ <\ d(t) - d(s)\ <\ t - s\.

Using this we obtain

IN — vi|| < d(ti9) = s- (d(0) - d{tx0))

while for j > 1,

- tj)9) + d(tj+16)

< (1 - tj)^ + e -

< (1 - tj)6» + e -

= e + (1 - tj - m(l - tj+i))0.

Therefore, the condition that ||vj_i - Vj\\ < e (1 < j < n) holds whenever

1 - h > 0 and 1 - tj+i > (1 - tj)/m.

If we thus put tj = 1 - (2V/m-?) for a < (m/2)n(< (m/2)^), then each

tj € (0,1) and

m mJ m

As <r tends to zero,

= ||e(^i)^ _ i|| = sup \ei(tj-i)x _ !| _ o
X

where the last equality is by the spectral theorem and the supremum is taken

over x in the spectrum of i~lhj) which implies \\vj — Uj\\ < 5. □

As shown before, C(T2)£ ^ 5S£ xa Z, where Q3£ is the universal C*-

algebra generated by unitaries u£,n for n E Z such that ||u£)7l — ^,n+i|| < ^

for all n, and the action a is defined by a(u£^n) = ue,n+i for n G Z.

Proposition 2.1.4. T/iere exi5it endomorphisms i\)n [n E N) o/Q3£ converg

ing pointwise to the identity map, such that

SUp

kez
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Proof. By the previous lemma, there exist unitaries vnj (—n < j < n) of

%$£ such that

\\vnj-Uej\\ < 1/n (-n < j < n), ||vn,j-i-i>nj|| < e (-n + 1 < j < n).

Define V>n : Be —> ®e by V>n(^e,fc) = vn,-n for & < ~™> and = vnjfc for

—n < fc < n, and = i>n)ri for fc > n. It follows that

lim i)n{u£,k) = u£,k

for all fc, which implies that ipn converges pointwise to the identity.

Since, by definition,

for —n < k < n — 1, and the norm zero otherwise, so that the supremum in

the statement is < e. D

Let <££ be the closed ideal of ©2 given by the kernel of the *-homomorphism

Theorem 2.1.5. One has rv<e<£e/ = Ce.

Proof. Let x € n£/<£C£/ C 932- Put y = <t>£(x) G 53e. We have

2/ = lim tj)n{y) = lim ipn(<p£(x))
n-+oo n—>-oo

because ^ converge pointwise to the identity map. Observe that

4 = SUp ||VVi(<£e(u2,fc)) ~ ^
k

= SUp ||^n((^,/c) ~ V>n(U

Hence i/;n o <\>£ factors through 2J£^. That is, we have the following commu

tative diagram:

where the bottom map to the image of ^n o 4>£ comes from universality of

33^. Since x G £e^ the kernel of <f>e^ we have xpn((/)£(x)) = 0 by the diagram.

Thus, y = 0, which implies that iGfe.
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On the other hand, the following diagram commutes:

for e7 < e, so that <£e is always contained in (t^, which implies that (£e C

rV<eCe/.- . □

Lemma 2.1.6* Let y> : 21 —► OS 6e a C*-algebra homomorphism. Suppose

that cp is equivariant with respect to automorphisms a and (3 of % and 93

respectively. Let J and J~ be the kernels of (p and ip~ respectively\ where yT

is the canonical extension of ip from the crossed product 2lxiaZ to OS x@Z.

Then

j~ = {f e%L>\aZ\E^{fu~n) eJ.ne Z},

where E^ : 21 xia Z —> 21 is the associated conditional expectation, and u is

the unitary implementing a.

Proof. We have the following commutative diagram:

2t^aZ _^U 21

where E?& is the same as for i&a. Indeed, for a finite sum / = Ylj aju^

2lxiaZfor a,j e 21,

= V( f
Jt
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where v is the unitary implementing the action (3.

Given / G 2txaZ, we have that / is in J~ if and only if ip~(f) = 0, which

is equivalent to that E<s(<P~(f)v~n) = 0 for all n G Z, which is equivalent to

that ip(E%(xu~n)) = 0 for all n by the diagram. This says that the equality

of the statement holds. E

Theorem 2.1.7. One has 3~ = 3£ /or every ee(0,2).

Proof. Let j£ : C(T2)2 —► ©2 be the conditional expectation induced by the

isomorphism C(T2)2 = ©2 xiaZ. Given / in 3~ the intersection rv<e3c/, we

have that E(fu~n) is in ££/ for all n G Z and e' < e. Note that the extension

<£~, of Ce/ as in the lemma above is 3e/. Hence E(fu~n) G fV<e<£e/ = <£e for

all n G Z, which shows that / G 3e the extension of £e. Thus, 3j C 3e. The

converse inclusion is clear. D

Now let us consider the case where e = 2 to prove that 3^" =^2, that is,

n£<23e = {0}.

Lemma 2.1.8. Letwi andw<i benxn unitary matrices. Then \\wi--w2\\ = 2

if and only if det(iui + ^2) = 0.

Proof Note that \\wi - w2\\ = 2 if and only if ^2^2 ~ M\ = 2 which

is equivalent to that —1 is in the spectrum of wiw^ which is to say that

1 + 1) = 0 which is equivalent to that det(wi + w^) = 0. □

Proposition 2.1.9. Given nxn unitary matrices u and v such that \\uv —

vu\\ = 2, there is, for every 5 > 0, a unitary v! such that \\vf — u\\ < d and

\\u'v-vu'\\ < 2.

Proof. Write u — eh for some skew adjoint h. Let u(t) = ue~th for t real.

Put f(t) = det(u(t)v + vu(t)). Observe that

/(I) = det(2v) ^ 0, /(0) = det(uv + vu) = 0.

Therefore, / is not a constant function. Since / is analytic, its zeros are

isolated. Thus, there are arbitrarily small values of t for which /(*) ^ 0,

which is to say that \\u(t)v - vu(t)\\ < 2. Taking t sufficiently small implies

that \\u(t) - u\\ <5. □

Remark. As for /, in fact, observe that the matrix-valued function u(t)v +

vu(t) is analytic, so that its determinant /(*) is also analytic. Hence f(t) =

Y^=oantn Taylor expansion around 0. Moreover, since /(0) = 0we have

f(t) = tkg(t) for some k > 1 and a holomorphic function g(t) with #(0) ^ 0

(This is the case where ao = 0, • • • ,a/c_i = 0 and a^ ^ 0). Therefore,

f(t) 7^ 0 for t in a neighbourhood of 0.
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Theorem 2.1.10. One has 3% = ^2-

Proof. Assume by way of contradiction that there is a rion-zero a G 3^". Note

that C(T2)2 is isomorphic to the full group C*-algebra of the free group of

two generators. It is shown by Choi [5] that the group C*-algebra has a

separating family of finite dimensional representations. Therefore, there is

a *-homomorphism n : C(T2)2 —> Mn(C) such that n(a) =£ 0.

Put u = tt(u2) and v — 7r(i>2). Write u = lim^_oo u^ where ||itj-v—vu'^W <

2. For each j, let ttj be a representation of C(T2)2 such that ttj(u2) = u^

and 7Tj(v2) = v. Set \\u'jV — vv!j\\ = €j. Then ttj vanishes on 3ej. Indeed, use

the following diagram:

0 > 3£j > C(T2)2 > C(T% > 0

0 > Ker(Tr) > C(T2)2 —^^ Mn(C) > 0

It follows that ixj vanishes on 3^", so that 7Tj(a) = 0. Furthermore, ttj

converges pointwise to tt, so that 7r(a) = 0, which is a contradiction. □

Remark. In the proof above, it seems there might be a small gap because

\\uv — vu\\ < \\u2V2 — V2U21| = 2.

But we could modify -zr to have ||m; — vu\\ =2 and 7r(a) ^ 0 since we always

have a representation of C(T2)2 by sending U2 and V2 respectively to any

unitaries v! and vf such that ||ttV — v'u'\\ = 2.

Theorem 2.1.11. There exists a continuous field of C*-algebras over the

interval [0,2] such that C(T2)£ is the fiber at e G [0,2] and for every a G

C(T2)2, the section fa defined by fa(e) = <j)£{a) € C(T2)£ is continuous.

Proof. Note that the set of all the sections fa for a G C(T2)2 becomes a

*-algebra under the point-wise operations such as: for a,b,a* G C(T2)2,

(fa + fb)(e) = 4>e{a) + 4>£{b) = <f>e(a + 6) = /a+6(e),

fab{e) = Mab) = M^e(b) = fa(e)fb(e),

Since it has been shown above that the norm ||0e(a)|| is continuous over

[0, 2], the existence of the continuous field in the statement is obtained by

continuous field theory (for C*-algebras). □
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Now let us consider the following related problem:

Problem. Given unitary operators u and v with uv ^ vu, do there exist

unitaries v! and vf perturbing u and v respectively, such that ||uV —vV|| <

\\uv — vu\\ ?

In other words, this is a characterization of pairs of unitary operators

which are not local minimum points for the commutator norm. The last

proposition above is a partial answer to this problem and it says that a pair

(u, v) of unitary matrices with \\uv - vu\\ = 2 is never such a local minimum

point.

Theorem 2.1.12. Let u and v be non-commuting unitary operators on a

Hilbert space H. Then there are nets (uj) and (vj) of unitary operators on

®°°H the direct sum of infinitely many copies ofH such that \\ujVj—vjUj\\ <

\\uv - vu\\ and the compressions pujp and pvjp of uj and Vj to H converge

*-strongly to u and v respectively, where p means the projection from ®°°H

to H.

Proof Let e = \\uv - vu\\. Consider the set N of states on C(T2)2 which
vanish on some 3e> for ef < e. Since rv<£3£/ = 3e, it follows that N is

weakly dense in the set M of states of C(T2)2 that vanish on 3£. In fact, a

point is to treat the case where the kernel of a state / of M is just 3£. If

f(a) i=- 0, then note that a £ 3e/ for some e( < e. Then there exists g € N

such that g(a) = /(a) and the kernel of g is just 3e/. Inductively, it can be

proved.

Let 7r be a representation of C(T2)2 on H such that irfa) = u and

7r(v2) = v. Assume without loss of generality that ir is cyclic with a cyclic

vector £ G H. Put /(a) = (7r(a)£,£) the inner product for a € C(T2)2.
Since tt factors through C(T2)£ we have that / vanishes on 3e, so there

exists a net (fj) in N converging weakly to /. For every j, let Kj be the GNS

representation of C(T2)2 corresponding to fj. Since each fj vanishes on some

3e/. with £p the same is true for ttj. Hence \\^j{u2)ttj{v2) - ^()11

One may assume that the space Hj on which itj acts is a subspace of

®°°H, and the conclusion holds with

Uj = 7rj(u2) + 1 - Pj, Vj = 7Tj(v2) + 1 - Pj,

where pj is the projection onto TiTj. Indeed, note that

+ (1 - Pj))(7rj(v2) + (1 -Pj)) = ^-(^2)^(^2) + (1 -Pj).
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Also,

where Pj(®kVk) — €j and we may identified pj with p. The same is true for

v. u

Theorem 2.1.13. For n > 3, i/iere e:ns£s a neighbourhood O of the pair

(Qn>Sn) of Voiculescu n x n unitary matrices such that

\\uv-vu\\ > \\£lnSn ~ Snttn\\

for all (u,v) of O in U{n) x U{n).

Proof Note that ClnSn^nSn = unln with u>n = e2™/n and In the n x n
identity matrix, as computed before. If (u,v) is close enough to (Qn,Sn),

then the spectrum of uvu*v* is in a small neighbourhood of ujn in C.

On the other hand, note that det(uvu*v*) = 1, so that if the spectrum

of uvu*v* a unitary is the set {e*^}^=1 with —n < 9j < 7r, one has that

]C£=i fy ^s in 2ttZ. In fact, set uvu*v* = w. There is a unitary matrix q

such that q*wq = ©^=1e1^ a diagonal matrix, so that

1 = det(tu) = det(q*wq) = det(0^=1e^) = e1^^^.

Since each Oj is near 27r/n, it follows that ]C£=i ^J ~ 271*- Therefore, for

some fco we must have 0£o > 2?r/n (by Pigeon Hole Principle). It follows

that

\\uv - vu\\ > \ei0ko _ 1| > |o,n - l|

= \\nnsnn*ns*n -1|| = \\nnsn - 5nnn||.

□

Remark. The same is also true for any pair of unitary matrices whose

multiplicative commutator is a scalar multiple of the identity matrix, but

not equal to —In.

We say that a pair of unitary operators is irreducible if there is no proper

invariant subspace for both operators of the pair.

Denote by 7 the map 7 : U(n) x U(n) —> SU(n) defined by 7(16, v) =
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Lemma 2.1.14. A point (uyv) G U(n) x U{n) is regular for 7 in the sense

that 7 is a submersion at (u, v) if and only if (it, v) is an irreducible pair.

Theorem 2.1.15. // (u, v) is an irreducible pair in U(n) x U{n) and is a

local minimum for the commutator norm, then uvu*v* is a scalar.

Let us consider a reducible pair (u, v) = (®jV>j,®jVj) of unitary matrices,

where each (uj, Vj) is an irreducible pair of unitary matrices Uj and Vj. Note

that \\uv — vu\\ = maxj \\ujVj — VjUj\\.

Theorem 2.1.16. Let (u,v) = (©j^j,©^) be a reducible pair as above.

Suppose that (n, v) is a local minimum for the commutator norm. Then

UjVjU^Vj is a scalar for j such that \\ujVj — VjUj\\ = \\uv — vu\\.

Notes. This section of one subsection is based on the paper [10] of Exel. In

[22] of the author, it is shown that the versions of the soft tori by replacing

almost commuting unitaries with almost commuting isometries also have

continuous field structure.

3 Softening the 2-sphere

As before, let C(T2)£ be the soft 2-torus generated by two unitaries u

and v subject to the relation ||uv — vu\\ < e. Consider the flip (or symmetry)

a on C(T2)e defined by a(u) = u* and a(v) — v*, that is, an automorphism

of C(T2)£ with a2 the identity map on C(T2)£. The connection with the

2-sphere S2 is that

C(T2Y ^ C(52), C(T2) xa Z2 C C(52, M2(C)),

where C(T2)a is the fixed point algebra under a on C(T2)0 = C(T2), and

C(T2) xia Z2 is the crossed product of C(T2)o by a of the 2-cyclic group

Z2, and C(S2,M2(C)) is the C*-algebra of all continuous M2(C)-valued

functions on S2 (see [8] and [3]). Therefore, as a reasonable replacement for

C(S2), we may accept C(T2) xiaZ2. There are two ways to soften this crossed

product. The first one is to consider the crossed product C(T2)£ xia Z2

defined similarly as above and we call it the soft sphere. The second is to

consider the soft flip. That is, rather than adjoining an order-two unitary

w implementing a to C(T2)£ we require that

— u*\\ < £, Huwu;* — v*\\ < e.
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For 0 < 0 < 1, let Tig the rotation algebra defined to be the crossed

product C(T) y\e Z by the rotation action 0 of Z on T by 9(z) = e2lxiez for

^Gl The noncommutative sphere T^ xia Z2 that is the crossed product by

the flip is regarded as a quantized sphere and not a softened sphere, and is

shown to be an AF algebra.

A truely soft torus would be a unital C*-algebra T£ generated by two

elements a and b subject to the relations: \\ab — ba\\ < £, ||a*a — 1|| < e,

\\aa* - 1|| < e, \\b*b - 1|| < e, and ||66* - 1|| < e. The question whether the

natural surjection from Te to C(T2) induces an isomorphism on K-theory

might be still open.

3.1 The soft sphere

Recall that C(T2)£ = Q3e *\a Z, where

that ||nn+i — UnW < e for n G Z, and a

is generated by unitaries un such

Proposition 3.1.1. For all e G [0,2], t/ie soft sphere C(T2)£ x\a Z2 is iso-

morphic to the crossed product 55e xi/?*7 (Z2 * Z2), ^ere ^9 and 7 are au£o-

morphisms of <Be defined by (3(un) = ^!_n and 7(nn) = ^i_n /or n € Z, and

/3 * 7 Z5 tfee action on 5Se extended to the free product Z2 * Z2.

Proo/. Note that C(T2)e xia Z2 is the universal unital C*-algebra generated

by unitaries u, v, 5 such that \\uv — vu\\ < e, SU5* = ^*, and s^5* = v*, and

s2 = 1. On the other hand, QS^ X/?*7 (^2 * ^2) is the universal unital C*-

algebra generated by unitaries z\, 2:2, and ^n for n G Z such that z\ — \ — z\^

\\Un - Un+i\\ < £, ^ltfcn4 = ^-n> and ^2^n^2 = wl-n for n G Z'
Consider the *-homomorphisms:

given by (p(u) = ^o, <p(v) = z\Z2, and ip(s) = z\, while i/j(un) = vnu(v*)n,

il)(z\) = s, and ipfa) = ^5, respectively. They are each other's inverse.

Indeed,

0(11 )£ XIo- £,2 = (U5e XIQ £L) y\a £»2

by sending w, v, and 5 to t^o, w, and 5 respectively. Note that ZX1Z2 =
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by sending w and s to z\z2 and z2 respectively. In details, check that

<p(sus*) = ziUqz\ = Uq = (p(u*),

ip(svs*) = zi(ziz2)z* = zjz2zi = (ziz2y = ^(v*),

= SVnu(v*)nS = (^*)n5^5(^)n

= (v*)nu*t;n = (u-n)*,

= ^-n^*(^*)-n = (v*)nU*Vn = (ti-n)*,

□

Definition 3.1.2. We say that two C*-dynamical systems (21, a, G) and

(53,/?,//) are homotopically equivalent if there are *-homomorphisms cp :

21 —* 53 and ip : 53 —» 21 such that %j) o ip and (p o ip are both homotopic to

the respective identity maps on 21 and 53 in such a way that the homotopies

involved commute with the group actions a and (3 of G and H respectively.

Homotopically equivalent C*-dynamical systems give rise to homotopi

cally equivalent crossed product C*-algebras.

Consider the map p : 53£ -> C(Sl) given by p(un) = z the standard

unitary generator of C(SX) for all n G Z.

Proposition 3.1.3. For e < 2, £/ie map p is a homotopy equivalence from

both (53e,/?,Z2) and (53e,7,Z2) to (C(5x),r,Z2);

Sketch of Proof. Let us consider the case for 7. Put m = (no + ^i)/2. Since

e < 2, one can check that m is an invertible element of 53£:. Indeed,

2>e>

= ||2uo - (no + tii)|| = 2||uo -

which implies that Uq(uq + u\)/2 is invertible in 53£.

Define a *-homomorphism (p : C(Sl) —► 53e by <p(z) = itm, where um

stands for the unitary part of the polar decomposition of m, i.e., um =
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m\m\ * = m(m*m) 1^2. We have that

7(m) = Z2{uq + m)2~lZ2 = 2~l{u\ + u%) = m*,

) = 7(m(m*m)-1/2) = ro

.which says that <p is equivariant with respect to 7 and r. Indeed, we check

(only) a non-trivial m*(mm*)~1/2 = (m*m)~1/2m* as follows:

Moreover, m(m*m)~1/2m* = (mm*)1/2. Indeed,

(m(m*m)~1/2rn*)(m(m*m)~1//2m*) = mm*.

Clearly, the composition p o tp is the identity map on C(S1). Indeed,

p(m) — {z + z)/2 = 2?, so that p(um) = z(z*z)~1/2 = z.

We need to check that (p o p is equivariantly homotopic to the identity

map on 2$£. We claim that <p o p is equivariantly homotopic to the map

rj) : *B£ —> 55e given by i(j(un) = uo if n < 0 and = wi if n > 1. Let

at = (1 — t)i*o + t^i for all t e [0,1]. Note that each at is invertible in QSe.

Indeed, check that

= Hi - (i - 0i -

= t\\u0 - «i|| < te

so that if t < 1/2, then Uq((1 — t)uo + tui) is invertible, hence, (1 — t)uo + tui

is invertible. Also.

- t)tio

= 11(1 - t)(l - uluo)\\ = (1- t)^ - uo\\ < (1 - t)e < 2(1 - t)

so that if 1—t < 1/2, i.e., t > 1/2, then u*((l—t)uo+tui) is invertible, hence,

(1 — t)uo + tu\ is invertible. Let uat denote the unitary part of the polar

decomposition of at. For t 6 [0,1/2], define V>t : ©e —* ®e by

if n > 0 and = /uai_t if n > 1.

In order to verify that each %j)t is a well-defined endomorphism of *B£ one

needs to check that \\ipt(^n-\-i) — ^t(^n)|| < S" for all n. For this we prove

that ||uat — uas|| < e for t,sG [0,1], We have

uat -
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where note that (uQat)*(uQat) = a$at so that \at\ = |^oa*l f°r a^ *•

bt = UQdt — 1 — t + tuQU\. Then

Note that bt is in the commutative C*-algebra C*(v,qUi) generated by

Therefore,

where the supremum is taken over all characters x : C*(uqU\) —» C. Since

x(fej) = 1 —t + tx(^o^i)5 the path {x{bt) : 0 < t < 1} is just the line segment

joining x(&o) = 1 and x(&i) = x(uoui) which are points in the unit circle

within e of each other. Now, xiubt) ls the radial projection of xtyt) onto

the unit circle and lies in the arc from x(&o) to x(&i)- I* ^s verified that any

two points in the arc are within e of each other. This shows ipt to be well

defined for all t.

To show that i\)t is equivariant for 7, we check that if n < 0,

since 7(at) = (1 — t)n| + ^0 = ai-^ and also> ^ n -

The assertion is thus proved since 1JJ0 = ip and ^1/2 — ty ° P-

It is shown similarly as in the second section that ^ is equivariantly

homotopic to the identity map on 55e.

The proof for (3 is essentially contained in the argument in the second

section. Indeed, one just needs to observe that the homotopy given there is

equivariant for (3 and r. D

Theorem 3.1.4. If e < 2, the natural *-homomorphism from C(T2)£ xiaZ2

to C(T2) xia Z2 induces isomorphisms at the level of K-theory groups. It

follows that

Ko(C(T2)£ xa Z2) £* Z6, Ki(C(T2)£ xa Z2) = 0.
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Proof. Using the isomorphisms obtained above, it is enough to prove the

corresponding result for the natural map:

(Z2 * Z2) = £>e -+ 93O xi/?*7 (Z2 * Z2).

Now set a1 = (3 and a2 = 7. There is the following six-term exact sequence:

where rf is the natural inclusion of Q3e into 2$£ xaj Z2 (j = 1,2), and kP is

the natural inclusion of *B£ xaj Z2 into S)e (see [15] and [17] also). Since

#*(®e *W Z2) = i^*(C(51) xjrZ2) for * = 0,1 by the homotopy equivalence

shown above, applying the five lemma for the half splitting short exact

sequences of Ko and K\ in the above six-term diagrams for e ^ 0 and e = 0

we obtain the isomorphisms at the level of K-theory groups for S)£ and S)o-

In fact, the six-term exact sequence becomes as follows:

(see [23]). Therefore, Ko(££) = Z6 and K^) ^ 0. □

Lemma 3.1.5. Let F be a discrete amenable group and a£ an action oJT

on 5Se {for each e e [0,2]) such that the canonical map <j>e : 2*2 —> 25e is

T-equivariant. Then there exists a continuous field of C*-algebras over the

interval [0,2] such that Q5e xia£ T is the fiber at e, and the map fa for every

a G 2$2 x>a2 r defined by fa(^) = ^i.0) ^ ®e ^ae T is a continuous section,

where <j>~ : ©2 >^a2 r —> Q5e xiae F is t/ie natural extension of'<f>e.

Sketch of Proof Let Le be the kernel of <p~. We claim that

\ei for e e [0,2), and

L£ = n£f<£L£f for ee (0,2].

The first assertion can be proved by the universal properties of both Q5e and

the full crossed products 55e X3ae F as it was done in the previous section.
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As for the second claim, recall that if €£ is the kernel of <pe, then for

e e (0,2), we have

n£<<£££> = Cc.

The same also holds for e = 2 since we have ££ = 3e H 932 so that

n£'<2££/ c rv<23£> = {0} = c2,

where J£ is the kernel of the map from Q32 Xa Z to 93e Xa Z.

We next need to check that the lemma in the previous section for a C*-

algebra homomorphism and its crossed products by Z extends to crossed

products by a discrete amenable group T. The key point for this is the fact

that an element x in Q5£ x\ae T is zero if and only if E^e{x\t-i) = 0 for all

t e F, where Er&e : 25£ xiae T —> 53e is the canonical conditional expectation

and A is the regular representation of I\ This is a consequence of T being

amenable.

In fact, note that it is known (by [18, Theorem 7.3.9]) that a locally

compact group G is amenable if and only if the regular representation of the

full group C*-algebra C*(G) of G is faithful, so that C*(G) is isomorphic to

the reduced group C*-algebra of G.

The second assertion now follows from the same consideration as for Z,

extended to the case of I\

The proof is concluded as the same way as for Z. D

Theorem 3.1.6. There exists a continuous field of C* -algebras over the

interval [0,2] such that the soft sphere C(T2) xa Z2 is the fiber at e, and the

function fa for a G C(T2)2 xa Z2 defined by fa(e) = <p£(a) e C(T2)£ xJa Z2

is a continuous section, where ipe : C(T2)2 Xo- Z2 —> C(T )£ ^a Z2 is the

natural map.

Proof. Recall that

C(T2)£ xa Z2 ^ Q5£ X/?*7 (Z2 * Z2).

The statement follows from the previous lemma since Z2 * Z2 = Z xZ 2 is

amenable. D

3.2 Softening crossed products

Let (21, a, T) be a C*-dynamical system, where T is a discrete group and 21

is a unital C*-algebra. Assume that 21 is generated by a set {ai}iei as a

C*-algebra and T is generated by a set {gj}je J as a group.
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Definition 3.2.1. For every e > 0, the soft crossed product associated

to the C*-dynamical system (21,a,F) with {ai}ieI and {gj}jej generating

sets of 21 and F respectively is defined to be the universal unital C*-algebra

generated by 21 and unitaries ug for g G F subject to the relations:

\\U9jaiUlj ~ a9j(ai)\\ < e and UgUh = Ugh

for i G /, j G J, and g,h G F. Denote it by 21 x\a^£ F.

Remark When e — 0 we recover the usual crossed product 21 xia F. The

soft torus C(T2)e is viewed as the soft crossed product C(T) xi^ Z, where

id is the trivial action. On the other hand,

C(T2)£ *„ Z2 ^ (C(T) xid|C Z) xa Z2

can be considered as a semi-soft crossed product.

Let F = Z xi Z 2, where the action of Z2 on Z is given by the involution:

n i—> —n G Z. The semi-direct product F admits the presentation:

F = (7ti, s : sms~1 = m"1, s2 = 1).

Consider the action p of F on C(S1) given by

Note that F = Z2 * Z2 via the identitication of ms with w, where w2 = 1.

Proposition 3.2.2. One has that the (truly) soft crossed product C(S1) ^p^£

F is isomorphic to the (usual) crossed product 53£ xi7*<5 (Z2 *Z2), where S is

the involution of*B£ defined by 5(un) = u^_n.

Proof. In order to simplify the notation, describe QSe as the universal uni

tal C*-algebra generated by unitaries an and bn for n G Z subject to the

relations:

In other words, it is relabeling by an = u<in and bn = <U2n+i- The automor

phisms 7 and 5 are given by

= n2(l-n) = al-n-
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Therefore, 93£ xi7*<5 (Z2 * Z2) is described as the universal unital C*-algebra

generated by unitaries an, bn (n 6 1) and s and £ subject to the relations:

sbns* = a!_n,

where we are denoting implement unitaries corresponding to the actions by

the same symbols s and t.

On the other hand, C(S1) xip,£ P is the universal unital C*-algebra gen

erated by unitaries z, w, and s such that

\\wzw* - z'l\\ < e, \\szs* - z~l\\ < e,

and w2 = 1 and s2 = 1, where we are using the same symbol as 5 above.

The map cp from *8£ x7*<5 (Z2 * Z2) to C(51) xip>e T (extended to a *-

homomorphism) is given by

(^5)n2(^)-n, vp(an) = s{ws)-nz*(ws)ns,

<p(t) = ta, (^(5) = 5,

and the map ip from C^S1) x^ T to 55e x7#<j (Z2 * Z2) is given by

rl){w) = t, ^(5) = 5, i/>(z) = 60,

so that y? and ^ are inverses each other. Indeed, check that

Man) - f(bn)\\ = \\s(ws)-nz*(ws)ns - (W^Wl

= \\s(sw)nz*(ws)ns - (ws)nz(sw)n\\

= \\(ws)n-lwz*w(sw)n-1 - (ws)nz(sw)n\\

= ||wz*w — wszsw\\ = \\z* — szs\\ < e,

and also

- (ws)nz(wsyn\

= \\s(sw)n+lz*(ws)n+ls - (ws)nz(sw)n\\

= \\(ws)nwz*w(sw)n - (ws)nz(sw)n\\

= \\wz*w — z\\ < e,
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which implies the existence of (p by universality, and on the other hand,

HVMVWM - Hz-'n = ||*6o«* - &3II = IK - 65|| < e,

||V(*M*MO - iK*"1)!! = ||*6o«* - 6g|| = ||oS - 6g|| < e,

which implies the existence of i\) by universality, and moreover,

= (ts)nb0(ts)-n = (ts)nH(V

o ip(an) = s(ts)-nb*0(ts)ns =

= • • • = s&!.ns = an

and also y? o ^(^) = y>(6o) = 2;. □

Theorem 3.2.3. The canonical map from the soft C(S1) >\Py£ F for e < 2

to £/ie wswaZ C(S1) xP}o F induces an isomorphism at the level of K-theory

groups. It follows that their Ko-group is Z6 and K\ is zero.

Proof. This is done by using the isomorphism obtained above and the six-

term exact sequence for the crossed product by F = Z2 * Z2 used above and

the five lemma. d

Theorem 3.2.4. There exists a continuous field of C*-algebras over the

interval [0,2] such that C(S1) xiPj£ F is the fiber at e, and the function fa for

a G C(SX) Xp2 F defined by fa(e) = ¥>e(o) G C(S1) xiP)£ F is a continuous

section.

Remark. Without using the identification of F = Z xi Z2 with Z2 * Z2, the

soft C(S1) xi pjC F can be isomorphic to the hard crossed product of F by

the C*-algebra defined to be the universal unital C*-algebra generated by

unitaries un<m for n G Z and m G Z2 such that

nfi ~ Un,i\\ < 6,

for n G Z and m G Z2. However, its homotopy class has not been determined

yet (probably).

Notes. This section of two subsections is based on the paper [8] of Elliott-

Exel-Loring. In [23] of the author, the flip crossed products of the isometric

versions of the soft tori are also considered.
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4 More Soft C*-algebras

4.1 Softening C*-algebras

Definition 4.1.1. Define a soft C*-algebra by unitaries to be the universal

C*-algebra generated by unitaries i*i, • • • ujfe such that

-l|| <e

(1 < p < I) for a fixed e G [0, 2], where each rp is a monomial of k variables.

Denote it by F£.

Definition 4.1.2. Let T be a finitely generated, finitely presented group

with generators pi,#2, • • • ,9k and relations rp(gi,... ,gk) = 1 (1 < P < 0>
where rp are monomials in ^ and their inverses. Define a soft group C*-

algebra to be the universal C*-algebra generated by unitaries u\, • • • , Uk such

that ||rp(iti, • • • ,Ufc) - pp|| < sp for some ppGT (1-torus) and £p € [0,2].

Denote it by C*(r).

Definition 4.1.3. Let 21 be a unital C*-algebra generated by a finite set

{ai\ and F a discrete group finitely generated by {gj}. Define a soft crossed

product C*-algebra to be the universal C*-algebra generated by 21 and uni

taries ug (g € F) such that for each i, jf,

\\ugjaiu*g. - Pi,jagj(ai)\\ < eij

for some pij G T and e%j E [0,2], where a means an action of generators

(only) of F on 21, and u is a unitary representaion of V. Denote it by 21 xia)£r.

Denote by 21 y\a T the ordinary crossed product C*-algebra of 21 by a of F.

Example 4.1.4. Define the soft group C*-algebra C£*(Z3) of Z3 to be the

universal C*-algebra generated by three unitaries ^i,U2>^3 such that for

each 2,7,

\\UiUj — UjUi\\ < €{j

for some Sij > 0.

Proposition 4.1.5. The C*-algebra C*(Z3) is isomorphic to W£x\TZy where

W£ is the universal C*-algebra generated by unitaries Ui, V\ (I G Z) such

that \\UtVi - ViUi\\ < £i,2, \\Ul+l - Ui\\ < eil3, and \\Vl+1 - Vt\\ < e2,3 for

I G Z, and the action r on W£ is defined by r(Ui) = t/^+i and r(V/) = V/+i

/or / G Z.
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Proof. Set U[ = u\u\u%l and VJ' = U3U2U3l for I £ Z. Then

- V{\\ < e2,3.

Therefore, there is a *-homomorphism tt from W£ to C*(Z3) such that

7r([//) = [// and tt(V/) = Vj} which can be extended to W£ >JT Z by setting

tt(w) — U3, where w is the unitary implementing the action r of Z. Con

versely, the unitaries 17o, Vb, and w satisfy the same relations as ui, 112,U3

in C*(Z3). Hence there is a *-homomorphism /? from C*(Z3) to We xiT Z

such that p{u\) = £/o> p{^2) = ^0? and ^(7x3) = w. By definition, tt and p

are inverses each other. □

More generally,

Example 4.1.6. Define the soft group C*-alge.bra C*(Zn+1) of Zn+1 to be

the universal C*-algebra generated by unitaries Uj (1 < j < n+1) such that

for each i,j,

for some Sij > 0.

Proposition 4.1.7. The C*-algebra C*(Zn+1) is isomorphic to W£,n >oT Z,

where W£>n is ^/ie universal C*-algebra generated by unitaries XJ^i (1 < .7 <

n,l G Z) 5nc/i <fcat ||C/j,/t/M - C/ife,/t/J-,/|| < e^, H^m+i - Ujj\\ <

and the action r on W£yn is defined by r{Ujj) = Ujj,+\ for I € Z.

Proof Set [/^ = i4+i^n+i for 1 < J < n, Z G Z. Then

Therefore, there is a *-homomorphism tt from W^^ to C*(Zn+1) such that

n(Ujti) = Ujj, which can be extended to W£<a y\T Z by setting 7r(tt;) = un+i>

where w is the unitary implementing the action r of Z. Conversely, the

unitaries Ujyo (1 < j < n), and ty satisfy the same relations as Uj (1 < j <

n + 1) in C*(Zn+1). Hence there is a *-homomorphism p from C*(Zn+1)

to We>n xiT Z such that p(uj) = Uj$ (1 < j < n), and p(^n+i) = w. By

definition, tt and p are inverses each other. □

Theorem 4.1.8. Let 21 be a finitely generated and finitely polynomially

presented C* -algebra. Let Y be a finitely generated and finitely presented

group. Suppose that there is an action a of generators {only) ofT on 53 by

monomial automorphisms. Then there is an action (3 ofT on a C*-algebra

05 such that
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Proof. Suppose that 21 is generated by unitaries clj (1 < j < m) subject

to the polynomial relations r^, k G K a finite set. Let gj (1 < j < n) be

generators of F such that zp(gi,-- ,gn) — I for p € P a finite set. Assume

that agi(a,j) = Pj,i(au • • • ,am). Note that rfc(a|£(ai), • • • ,a^(am)) = 0 for

Define 05 to be the universal C*-algebra generated by unitaries b^g and

bj^j for 1 < j < m, 1 < / < n, g G F subject to the relations

and ||bj,^, - bj,^,z|| < ^j,z and bj^j = Pj,i{h,g, • • • , bmj^).

Note that 21 xia)£ F is the universal C*-algebra generated by 21 and uni

taries iti,--- ,un such that zp('ai,"- ,-Un) = 1, ||it/OjU* = tt^(aj)|| < Ejj,.

Set

aj,^ = u>gajul> ah9l = U9a9i (Pj)u*g-

Then

\H99i - = Wu99iaJuggi U9<*gi(aj)u*g\

- agi{aj)\\ <eiJL.

Moreover, it follows that

= 0, = 0

Note also that a^/ = Pj,Kai,s>' *' > am,^)- Hence there is a *-homomorphism

(^ from 53 to 21 Xq;^ F such that (p{bjy9) = ajt9 and <p(bji9ii) = a^f. Define

the automorphisms /?* of 53 (1 < t < n) by ^(bj^) = bjj9tg and /?*(%^,/) =

bj,gtg,l- They satisfy zp{j3l, • • • ,/?n) = 1. Hence they determine an action /3

of F on 53. Since a^9t9 — utaj,gul and a>i,9ig,i = utdj^jul, we can extend

<p to 53 y\p F by setting y>(Ut) = v>t, where we denote by Ut the unitary

implementing /3*.

On the other hand, the elements b^i, bj^,/, and t/^ satisfy the following

relations:

= 0,

Hence there is a *-homomorphism ^

^(aj) = bj,!, tp(agi(aj)) = bjxu and

inverses each other.

21 xa?e F to 53 Xp F such that

= ^/- Clearly, ip and ^ are

□
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Proposition 4.1.9. The soft C*-algebras {Fe}ee[0,2] for a set of monomials

{rp}p=1 and e G [0,2] form a right continuous field of C* -algebras over [0,2].

Proof Assume that each F£ is finitely generated by I unitaries. Let C*(F/)

be the full group C*-algebra of the free group Ft of I generators. There is

the canonical *-homomorphism ipe from C*(F/) to F£ by universality. Let

J£ be the kernel of ipe. To have right continuity, we show that J£ = J+ for

e G [0,2), where J+ is defined to the closure of the union U$>£ J$. There is a

*-homomorphism from C*(Fi)/J£ to C*(F/)/J+ by universality. Therefore,

Je C J£+. Its inverse inclusion also holds. □

Proposition 4.1.10. The soft crossed product C*-algebras {C*(Fn) xid)£

^}ee[o,2] for the identity representation id ofZ on C*(Fn) /arm a continuous

field of C*-algebras over [0,2].

Proof It is shown above that C*(Fn) x^ Z is isomorphic to the crossed

product 93 X/?Z, where 93 is the universal C*-algebra generated by unitaries

C/ij for 1 < i < n, / G Z subject to the relations \\Uij — C^,j+i|| < e, and

the implementing unitary F for (3 satisfies VUijV* = E/ij+i. The rest of

the proof is the same as above. □

Theorem 4.1.11. The soft group C*-algebra C*(Z2) (0 < e< 2) has stable

rank equal to oo.

Sketch of Proof There is a unital *-homomorphism ip from C*(F2) onto the

tensor product C([0, l]n2) ® Mn+i(C) for any n G N. It follows that the
stable rank of C*(F2) is oo. It is shown that -0 factors through C*(Z2). □

Proposition 4.1.12. Let C*(Z2) 9* W£)i xr Z a5 a6ot;e. T/^en We,i has

stable rank equal to oo.

Proof Use the formula of Rieffel [21]: sr(93 XpZ) < sr(93) +1 for the crossed

product 93 y\p Z of a C*-algebra 93 by an action (3 of Z, where sr(-) means

the stable rank (see [21]). □

Similarly,

Proposition 4.1.13. The soft group C*-algebras C£(Zn+1) (n > 1) and

W£<a both have stable rank oo.

- 67 -



4.2 Soft torus extended

Lemma 4.2.1. If u and v are unitary elements in a C* -algebra 21, then

\\uv - vu\\ < e < 2 if and only if there exists a self-adjoint element h e 21

such that uvu*v* = eih and \\h\\ < a = 2arcsin(e/2).

Proof Note that

2 > e > \\uv - vu\\ = \\uvu*v* - 1||.

Thus, let h = i~l \og{uvu*v*). Then

h* = -r1 log^m/V) = -i^logduvrfv*)-1) = h

and elh = uvu*v* and

\\h\\ = ||log(ttt;tiV)|| < ||log(ew)||oo = H^Hoo

where e%Q is in the spectrum of uvu*v*. Since

2sin(^) = |1 - eie\ <\\ 1 - uvu*v*\\ < £

so that \\h\\ < sup^ |^| < 2arcsin(s/2).

Conversely,

||Mt; - Vu\\ = ||1 - uvu*v*\\ = ||1 - eih\\.

Moreover,

||1 _ eih\\ = sup|l - eil\ - sup|2sin(t/2)| < 2sin(a/2) = e
t t

where t is in the spectrum of h. D

Now, for s e [0,oo), define Cs to be the universal C*-algebra generated

by unitaries us and vs, and a self-adjoint hs such that u3vsu*v* = elhs and

ll^ll < s.
For e e [0,2), the soft torus C(T2)e is isomorphic to <£s with s =

2arcsin(^/2) by universality. Therefore, we may call £s the extended soft

torus (of Cerri). However, only C(T2)2 that is isomorphic to the full group

C*-algebra of the free group F<i never happen in <£s.

Let S)s be the universal C*-algebra generated by unitaries un and self-

adjoint hn for n € Z such that unu^+1 = e2/ln and \\hn\\ < s for all n. Define

an automorphism (3 of 3DS by (3(un) — un+i ^nd P(hn) = hn+\ for all n.
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Proposition 4.2.2. The extended soft torus <£s of Cerri is isomorphic to

the crossed product 2)s y\p Z.

Proof. Note that ©s >\p Z is the universal C*-algebra generated by J)s and

an unitary element w implementing the action /?, so that f3(x) = wxw* for

x e 2)5, and

eiho = uoul = txo/?(uo)* = ^ow^ow*-

By the universal property of <£s, there exists a *-homomorphism (p : <£s —*

2)s xi/3 Z such that v?(us) = uo, ip(vs) = w, and y?(/is) = /io-

In order to define the inverse of y>, observe that

\y3usvs ){vs usvs ) — vsusvsusvsvs

^ihs~n iv?hsV°n Mh~n\\ < s,< s,

vs(vnsusvjn)vjl = vns+lusvJn-\ and

Thus, by the universal property of S)s X/? Z there is a *-homomorphism

V^ : ©s xi^ Z -^ Cs such that ip(un) = v^usvjn, >4>(hn) = v^hsvjn, and

ij)(w) — vs-

Also compute that

o <p(h8) = ij){ho) = /is, and

o

o ^(/in) = <p(v"hsvjn) = wnhow~n = hn

as required. □

By the universal property of 2)5, there exists a *-homomorphism ^s :

2)5 —> Cr(51) such that Vs(^n) — ^ and VK^n) = 0 for all n G Z, where z is

the canonical unitary generator of C(Sl).

Proposition 4.2.3. The homomorphism ^s is a homotopy equivalence be

tween 2)s and C(S1), so that the induced maps on their K-theory groups are

isomorphisms, so that Kj(1)s) = Z for j = 0,1.

Theorem 4.2.4. The K-theory group Kj(<£s) is isomorphic to Z2, for j =

0,1.

Theorem 4.2.5. There exists a continuous field of C* -algebras over the in

terval [0, t] for any t > 0 such that the fiber at s E [0, t] is (£s and continuous

operator fields are given as in the case of the soft torus.
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Recall that the rotation algebra denoted by T^ for 9 G R is defined to

be the universal C*-algebra generated by two unitaries uq and v$ such that

uqvqilqVq = e27rl<9, and is isomorphic to the crossed product C(S1) x$ Z,

where the action 6 is given by 0{f)(z) = f{e~2niez) for / G C(5x) and

zeS1 (cf. Rieffel [20]).

Suppose that s > 2tt\8\. Then there exists a *-homomorphism tp : €s —>

T^ such that <p(us) = uq, <p(vs) = vq, and vK^s) — 2?r01.

Theorem 4.2.6. For s > 27r|0|7 £/&e induced map </?* : jFsTj(Cs)

an isomorphism, for j = 0,1.

Prw/. Note that ^t^1 = e"27r*W Also, (e

e27r20l. Thus, there is a *-homomorphism p : 3DS —> C(S1) such that
e-2mn0z ancj p^^) = 2?r^. Check that p is covariant:

p o p(un) = pK+i) = e-2^n^°z = 9 o p{un)

p O P(hn) = P(hn+l) = 21X91 = 9 O p(hn),

so then p can be extended to p~ : 2)s xi^ Z —> C(S ) x\$ Z. In fact, p~ = ip.

Applying the Pimsner-Voiculescu exact sequence, we obtain the following

commutative diagram:

for j = 0,1 (mod 2). Since we have that p* is an isomorphism, the Five

Lemma completes the proof. □

It is known that Ko(C(T2)) is generated by the classes [1] and [2?], where

B is the Bott projection. As for the map 8 : X0(C(T2)) -> K^cls1)) in
the P-V sequence, we have <$([!?]) = [z]. Also, [B] generates the kernel of

r* : Ko(C(T2)) —> Z, where r* is the map induced by a unital trace r on

C(T2).

Let s = 2tt|0|. Let [Bo] = ^Ht^]) € K0(£a)y where ^ = V as 0 = 0,

and [Be] = ¥ 2

Proposition 4.2.7. 7/5 : K0(T|) -> ^i(C(Sr1)) is t/ie map m t/ie Pimsner-

Voiculescu exact sequence, then 6([Be]) = [z].
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Proof Using that the following diagram commutes:

0 > KoiCiS1)) •-> K0(C(T2))

t (

I

P* | V?* I P*

0

we compute that

so

D

Consider the trace r on T| given by r(/) = J5l f(z)dz for / G ^(S1).

It is shown by Rieffel [20] that if x G [0,1] fl (Z + 6>Z) for (9 irrational,

then there exists a projection px such that r(px) = x. Furthermore, it

shown by Pimsner and Voiculescu [19] that there exists [qe] G i^o(T^) such

that T*{[qo]) = ^ and <5([g^]) = [2]. Note that* the classes [1] and [q#] are

generators of Kq(T%).

Proposition 4.2.8. The map f : R -► E de/med 6y /(x) = t*([Bx]) is

continuous, where each r is the trace on T^.

Corollary 4.2.9. We have f(x) = x /or any xGR.

Theorem 4.2.10. If s >0, then the positive cone Ko(£s)+ is contained in

{{n,m) G I? : \m\s < 27rn}.

Proof Take y = n[l] + m[5s] G i^o(^s)+. As for 0 = s/2n > 0, we have

r* ° <£*(?/) = n + m^ > 0, while for -0 we have r* o y?*(y) = n - mO > 0.

Hence, 2?rn + ms > 0 and 2im — ms > 0. □

Proposition 4.2.11. It s > 0, then we have

(1) : ifo(es')+ C Ko(£s)+ for s' > s;

(2) : ns>oXo((ts)+ = {(n,0) : n > 0}

(3) : If{n,m) G #o(£s)+, ^en (n,-m) G

(4) : XO(CS)+ ^ Xo(C(T2))+ /or 5 ^ 0.
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Sketch of Proof. As for (1), the canonical *-homomorphism from £s/ to £s

induces the K-theory group homomorphism from Ko(£s') to Ko(<£8), and

moreover, the image of Ko(£8')+ is contained in K0(£s)+, where this is true

for C*-algebras and their *-homomorphisms. In fact, the induced map is an

isomorphism. Note also that if sf > s and \m\s' < 2im, then \m\s < 2irn.

As for (2), note that the equations 2im + ms > 0 and 27rn - ms > 0

for any s > 0 require m = 0. Since K0(£s)+ ~ ^o(£s)+ = #o(£s)> where

this is true for a unital C*-algebra, and Kq(£3) = Z2 we can not have

As for (3), note that if \m\s < 2im, then | - m\s < 2irn.

As for (4), note that K0(C(T2))+ = {(n,ra) : n > 0} U{ (0,0)}. Also,

when 9 = 0, we have r* o (p*(y) = n. In fact, note that the class [JE?o] may

be viewed as [Bo] - [1] ^ 0. n

Proposition 4.2.12. We toe ifo(C(T2))+ = Us>o#o(£s)+.

Sketch of Proof. Take (n,ra) G Ko(C(T2))+. We may assume that n > 0

and m > 0. Since (n,m) = (n - 1,0) + (l,ra) and (n - 1,0) G X0(£s)+, it

is enough to prove that (1, m) G Ko(£8)+ for some s > 0.

There exists e0 G (0,2] such that (1,1) G ifo(T2o)+, and then (l,ra) G

K0(T2)+ for e = £oA™- Hence, if s = 2arcsin(eo/2ra), then (l,m) G

Proposition 4.2.13. For any so > 0, there exists an increasing sequence of

positive real numbers (sj)jgn o,nd an increasing sequence of positive integers

such that Sj > 2?rnj, so that (rij,l) 0 Ko(CSj.)+, and (rij,l) G

x)+ where Sj-\ < 2rKUjy for all j G N.

Sketch of Proof. For any s > 0, the class [JB5] may be viewed as [B8] - [ln] 7^

0, where the Bott projection Bs is in Mfc(Cs) and ln is the n x n identity

matrix. Thus, (n, 1) G Ko(Cs)+. If s' > 2im > 5, then (n, 1) 0 #o(£s')+- D

Lemma 4.2.14. Assume that (n,m) G X0(£s)+ and s'm > 27rn7 50 that

(n,m) G /fo(Cs/)+, t^/iere s < sf. Then £s is not homotopically equivalent

to£s>.

Proof. Assume that there exists a homotopy equivalence 0 : £s —► £s/.

Then (/>* on i^o is an isomorphism such that x G Ko(Cs)+ if and only if

<£*(z) G Zfo(Cs/)+. Since ^* is v^wed as a matrix D G GL2(Z), we have

o ±1
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since <f>(l) = 1, where elements of Ko{£s) are viewed as (n, m) = n[l]+m[jBs]

with respect to the basis {[1], [B8]}.

If (n,?n) E ifo(£s)+, then ms < 2?rn. Therefore, we have msf < 2-k{u ±

km). It follows that ms1 < 2nn, which is contradiction. □

Consequently,

Theorem 4.2.15. Let so > 0. There exists an increasing sequence of pos

itive real numbers (sj)jeN such that the extended soft tori of the family

are not homotopically equivalent to each other.

Proposition 4.2.16. The unital traces of <£s form a separating family of

maps for Ko(£s), i.e., if x,y G Kq(i£s) with x ^ y, then there exists a trace

r of (£s such that r*(x) ^ T*(y).

Sketch of Proof. Let x = n[l] + m[Bs], y = r[l] + s[Bs] e Kq{£8). Let

9 e (0, s/2ir) irrational. Define the trace r of <£s to be the composite of

the unique trace of T^ with the canonical *-homomorphism from <£s to T^.

Then t*(x) = n + mO and r*(y) = r + s6. Therefore, t*(x) = r*(y) if and

only if n = r and m = s, that is, x — y. □

Notes. The first subsection of this section is based on the paper [13] of

Farsi. The second subsection of this section is based on the paper [4] of

Cerri. In [24] of the author, it is shown that the stable rank of the isometric

versions of the soft tori is equal to infinity.

5 Finite dimensional representations

5.1 Those of the soft torus

Remind that 25e is the universal C*-algebra generated by unitaries un for

n Eli such that \\un — un+i\\ < £ < 2 for all n.

Lemma 5.1.1. For e < 2, QS£ is isomorphic to the universal C5* -algebra

generated by a unitary vq and self-adjoint elements hn for n e Z such that

2 e
\\hn\\ < -arcsin(-),

denoted by
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Proof. Define a *-homomorphism tp : *Be —> 93^ by

{ n> 0,

t;0 n = 0,

Indeed, check that if n > 0,

= sup \l-ei7rX\
\€sp(hn+i)

by spectral theory, where sp(/in+i) is the spectrum of /in+i> so that |A| <

ll^n+ill- Since |1 — elx\ = |2sin(x/2)| as shown before, the supremum is

estimated by

Similarly, the norms in other cases can be estimated by e. The universal

property of *B£ ensures of tp being defined.

On the other hand, define a *-homomorphism ip : *B'£ —> 25e by

ip(v0) = uq and 1

for n > 0 and also

for n < 0 (This should be correct). Indeed, check that

</>(M* = (-"r)"1 log(«n_i<)

= HO"1 log((ufl<_1)'"1) =

by spectral theory, and also

where el° is in the spectrum of unu^l_1 and || -|| oo is the supremum norm

over the spectrum. Since

£ > ||1 — UnUn-i\\ = SUp |1 — e%6\
ei6

= sup|2sin(-)|
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where each 6 for e10 in the spectrum is in (—n,n). It follows that

|0| <2arcsin(-).

Therefore, ||^(^n)|| is estimated by the above upper bound divided by tt.

The universal property of 93^. ensures of ip being defined.

Clearly, (p and rj) are inverses each other. Indeed, check that for n > 0,

ih inhlv0)

) () = Un,

and also, for n > 0,

D

Remark. This characterization can be used to show that 55^ is homotopic to

C(T) as shown before. To see this, define *-homomorphisms p : 53^ —> C(T)

and A : C(T) -> 53^ by p(v0) = 2;, p(/in) = 0, and A(*) = vq. Clearly, po A is

the identity map on C(T). A homotopy from A o p to the identity map on

03^ is given by xt : 53^ -> 53^ defined by x*(vo) = ^0 and Xt(^) = thn.

Recall that a C*-algebra is residually finite dimensional (or RFD for

short) if it has a separating family of finite dimensional representations.

Proposition 5.1.2, For any e < 2, 53£ is RFD. In fact, for any nonzero b e

Q3£ there exists n G N, an automorphism (3 of Mn(C), and a representation

p : ©e —* Mn(C) snc/i tftat p(b) ^ 0 and /3 o p = po a, i.e., p is equivariant

for the actions (3 and a, where a{un) =

Proof. Use the isomorphism 53£ ^ 93^. Let ?r : Q3£ -+ M(H) be a faithful

non-degenerate representation, where B(if) is the C*-algebra of all bounded

operators on a separable Hilbert space.
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Let pm be projections with finite ranks m G N, converging strongly to

the unit of B(H). Set

Define

= M2m(C).

Since

1

It follows that

y

boyi

To show that

( T°*ro
\ yPm ~~ -M3}mrOr7

y* _ f Pm &o,m\
°'m \C0,m Pm/

ti y Pm ^0,m 0?771 0,?r

fro m = 0, observe that

~To,m

where

i y Pm -^O,tt

j'

ro^ro*m

which implies that

J— JPm ~

because it is the fact that for T a positive operator, its square root T1/2 is

defined to be a uniform limit of polynomials in the variables 1 and T, so that

the first commuting relation above implies the second, as desired. Similarly,

CQ-m = 0. Hence VOimV£m = 1 in M2m(C).

Quite similarly, V£mV^m = 1. Also, iJn,m = H*m with

< H^nll < \ arcsin(|).
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Therefore, we obtain by universality a representation 7rm : *Be —► M2m(C)

by setting 7rm(t>0) = V^m and 7rm(/in) = Hn,m.

Consider the direct product representation:

UmTTm I ®e - n~=1M2m(C)

defined by nm7rm(6) = (nm(b))^=l for b e <8e. To show that Um7rm is an

isometry, we need to check that ||IIm7rm(x)|| > ||x|| — 77 for any 77 > 0 and

any x in the (not necessarily closed) *-algebra X generated by vo, /i-jv, * * >

fiN. Now assume that x = F(vo, ft-at, • • • , ftw) is a finite linear combination

of finite words in the 2N + 2 variables and their adjoints. Since Vb,m and

i/o,m converge strongly to

(««) 0 \ /7T(/ln) 0

0 -irivoY) I 0 7r(/in)/

respectively, in the unit ball of M2(M(H)) as m —> 00, we have

limsup ||F(Vb,

> II lim
m—+00

, h-N, • • • , hN)) 0

0 *(F{-v5,h-N,---,hN))y

> \\*(x)\\ = ||x||.

Hence we can find n such that

||nm7rm(^)|| > ||7rn(x)|| = \\F(V0,n,H-N,n,--.tHN,n\\ > \\x\\-V.

It follows that Q3e is RFD. Indeed, {7vm} is a separating family of finite

dimensional representations of 53^, as wanted.

For the second claim, let b G 55e with ||b|| = 1. Take a finite dimensional

representation re : 53£ —> Mm(C) such that ||7r(6)|| > 3/4. There exists

c G iBe such that ||b — c\\ < 1/4 and c is in the *-algebra generated by

u-n,-— ,tijv- Choose M > 0 and unitaries i;^1,--- jf^1 6 Mm(C) such
that

llvn+l "vt\\ ^Si V0 = *(v>±n), V^ = l.
Then there is a representation tt' : 55e —> Mm(C) such that Tr'(un) —

M)-periodic) and

{vZN-n -M-N <n< -AT,

ttK) -N <n<N,N <n<N + M.
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Note that tt'(c) = 7r(c). In particular, ||7r'(c)|| > 1/2 because ||vr(6)-7r(c)|| <

1/4, so that 3/4 < ||7r(6)|| < 1/4+ ||7r(c)||.

Now let n = 2(7V + M)m. Define /3 to be the backward cyclic shift in

block form with period 2(N + M), and define a covariant representation p

of 53£ on Afn(C) by

\ 0

so that /3 o p = po a. We have

D

The commutative C*-algebra C(T2) is obviously RFD and has a sepa

rating family of 1-dimensional representations (characters). The highly (or

extremely !) noncommutative, group C*-algebra C*(ir2) of the free group

F2 on two generators has been shown to be RFD by Choi [5] (a surprise at

that time).

Theorem 5.1.3. The soft torus C(T2)e is RFD.

Proof. Assume that 0 < e < 2. Let 0 + a E C(T2)e. Then b = Ea(a*a) ^ 0,

for the conditional expectation Ea : Q5e xa Z —* 2$e is faithful. Choose n, p,

and /? as in the proposition above, and define

7T : C(T2)£ = ©£ xia Z -> Mn(C) XJ/5 Z

as the extension to the crossed product of the covariant *-homomorphism

p. Since p is equivariant with respect to the actions /? and a, we have

Ep(n(a*a)) - 7r(Ea(a*a)) - p(b) ^ 0,

where Ep : Mn(C) x^ Z —> Mn(C) is the conditional expectation. Hence

7r(a) 7^ 0. Since /? is inner, we have

Mn(C) xi/3 Z ^ Mn(C) >^id Z ^ Mn(C) ® C(T).

Composing n with an evaluation map of C(T) ® Mn(C) ^ C(T, Mn(C)) the

C*-algebra of all Mn(C)-valued continuous functions on T, we obtain a finite

dimensional representation of C(T2)e that does not vanish at a. □

Recall that the matrix algebra Mn(C) has a faithful tracial state and

has the property that every matrix x G Mn(C) which is hyponormal, i.e.,

x*x > xx* is in fact normal, that is, x*x = xx*. As shown in [5],
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Corollary 5.1.4. The soft torus C(T2)£ has a faithful tracial state, and any

hyponormal operator in it is normal.

Proof Those properties for Mn(C) pass to direct products ITn(ENMmn(C)

(and their sums), and also to their subalgebras.

Indeed, C(T2)£ can be embedded into a direct product of matrix algebras

Mmn(C) via a separating family of finite dimensional representations, i.e.,

be identified with a subalgebra of the direct product. Let rn be the faithful

tracial state of-Mmn(C), that is, the usual trace on it divided by mn. A

faithful tracial state r of C(T2)£ is defined by

2^(*n), X = (Xn) € C(T2)£.

If x = (xn) G C(T2)£ is hyponormal, then each xn is hyponormal in

Afmn(C), so that each xn is normal, hence x is normal, as shown. D

5.2 Those of free product C*-algebras

Let 21 be a C*-algebra and H a Hilbert space. Denote by Rep(2l, H) the

set of all (possibly degenerate) representation of 21 on if, equipped with the

coarsest topology for which the maps: Rep(2l, H) 3 ir *--> ?r(a)£ G H are

continuous for all a G 21 and £ G H.

A representation tt G Rep(2l, H) is finite dimensional if it just acts on a

finite dimensional subspace of H. We say that ir is residually finite dimen

sional (or RFD for short) if it is in the closure of the set of finite dimensional

representations of Rep(21, H).

A state is said to be finite dimensional if its GNS representation is finite

dimensional.

Theorem 5.2.1. Let 21 be a C*-algebra. The following are equivalent:

(1) : The set offinite dimensional states is dense in the state space o/2l.

(2) : Every cyclic representation of 21 is residually finite dimensional.

(3) : Every representation of 21 is residually finite dimensional.

(4) : 21 admits a faithful residually finite dimensional representation.

(5) : 21 is residually finite dimensional.

To prove this we need two lemmas as follows:

Lemma 5.2.2. Let H be a Hilbert space and {Hs}ses be a family of Hilbert

spaces indexed by a directed set S. Suppose that given £i, • • • ,£n G H, and

for each s G S there exist vectors £f, • • • , ££ G Hs such that
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Then there is s0 e S and, for each s > sq there is an isometry us from the

subspace Ho of H spanned by £1, • • • , £n into Hs such that

lim
s—>-oo

Proof Let t; : Cn —» JEZb be the linear map sending the canonical basis i-th

vector e» to 6- Since v is surjective, choose a right inverse wtov. For each

s G S, let vs : Cn -> ils be given by vs(ei) = £f for all i. Observe that v*vs

viewed as an element of Mn(C) converges to v*v since

j) = Jlim (

for all ij. Let v!8 : Ho -> Hs be defined by u8 = vsw. Then

lim (u's)*u's = lim w*v*vsw = w*v*vw = i

Therefore, we can find s0 such that, for 5 > s0, (^s)*^s is invertible. Set

us = ufs((ufs)*u's)~1/2 for such 5. We then have

lim \\u'8Zi - ff||2 = lim {
s—>oo s—»-oo

for i = 1, • • • , n, from which the conclusion follows, and indeed,

lim |K& - tf ||2 = lim

= lim {{usiuusii)

= lim {<e*,6> - 2Re((((u's)*u'sr1/%,w*v*svsei)) +
S—KX>

= (&>&) ~ 2(£uw*v*vei) + (ve^vei)

D

Lemma 5.2.3. Suppose that n is a cyclic representation of 21 on H with

cyclic vector £, and {tt5}s€5 25 a ne£ in Rep(2l, if). //

lim 7r5(a)£ = ?r(a)6 Va G 21,
s—*oo

then ns converges to n G Rep(21, if).
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Proof. For rj = 7r(b)£ G if for 6 € 21, we have

||7rs(a)r/ - 7r(a)i7|| <

which shows that 7rs(a) converges 7r(a) pointwise over the dense subset of

those vectors in H. The uniform boundedness of {7rs(a)|a G 21} implies that

?rs(a) converges strongly to ?r(a), for all a. □

Proof of the theorem above. (1) => (2). We first assume that 21 is unital.

Let 7T be a cyclic representation of 21 on H with cyclic vector £ and state

/. By assumption, there is a net (fs) of finite dimensional states converging

to / and let (ps,iJs,£s) be the corresponding GNS representations. Given

{ao = 1, ai, • • • , an} a finite subset of 21, observe that

lim (ps(ai)Zs,Ps(a>j)Zs) = <7r(ai)f,7r(ai)£)
s—*oo

for alH,j = 1, • • • ,n. There exists a net (us)s>SQ of isometries from Ho

spanned by 7r(ai)^ for i = 0,1, • • • »n into #s such that

lim |K7r(ai)f - p5(oi)6ll = °-
s—»oo

Let tts be the representation of 21 on iJ given by 7rs(a) = ulps{a)u$.

Claim that we have lims_>oo7rs(ai)£ = 7r(ai)^ for all i. Indeed, by taking

i = 0 in the equation obtained above, we obtain lims_>oo \\us^ — £s|| = 0.

Therefore,

< \\p8(ai)u8£ - us7r(ai

which goes to zero as s —> oo.

Set P = {ao, ai, • • • , an}. For each such )3 and for £ > 0, choose ns = tt£}/?

such that ||7rej/g(ai)^ — 7r(ai)^|| < s. We thus obtain a net {^e,p} of finite

dimensional representations such that Iim7rej^(a)^ = 7r(a)^ for all a G 21.

Hence, this net converges to tt in Rep(2l, #).

In the case that 21 is non-unital, let 2l~ be the unitization of 21. Since

the state space of 21 is included in that of 2l~, if (1) holds for 21, then it also

does for 2T. Hence, (2) holds for 2T so that it also for 21.

(2) =j> (3). Given an representation of 21 on a Hilbert space if, write

7T = ©agA^a where each tt^ is a cyclic sub-representation of 7T. For each
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finite subset F of A, let rep = ©agf^a? viewed as a degenerate representation

on H. Then the net so obtained converges to tt. Since each tt\ is RFD by

assumption, so is itf- Therefore, vr is RFD.

(3) =>» (4). This is obvious.

(4) => (5). Let 7T be a faithful RFD representation of 21, so that tt =

lim ?rs where each tts is finite dimensional. If a G 21 is nonzero, then ?r(a) ^ 0.

Since 7rs(a) converges strongly to 7r(a), some ns(a) must be nonzero.

(5) => (1). Assume that 21 is unital. Denote by F(2l) the set of all finite

dimensional states of 21. Note that F(2l) is convex. In fact, if f,g G F(2l),

then the GNS representation of a convex combination h = (1 — £)/ + tg is

equivalent to a sub-representation of the direct sum of the GNS representa

tions for / and g. Indeed, note that h = (1 - t)f + tg < f + g = Z, that is,

I — h is positive, so that we have

h(a) = (7rz(aKi,6) = <V7ri(a)6,6), a G 21,

where tt/ is the GNS representation for / with cyclic vector &, and v is in

the commutant of tt/(21), with 0 < v < 1 (see Murphy [16]). Also, note that

for a G 21,

where tt/, and -Kg are the GNS representations for / and g with cyclic vectors

€/ and ^, respectively, and 7T/ © tt5 is their product representation of 21.
Assume that there is a state g of 21 not contained in the weak*-closure of

F(2l). Identify the set 2lsa of self-adjoint elements of 21 with the correspond

ing elements of the dual of the set 2l'sa of self-adjoint continuous functional

on 21 with the weak* topology. Use the Hahn-Banach (or Mazur) theorem

to obtain an element a G 21^ and a real number r such that g(a) > r and

f(a) < r for all / G F(Ql). This implies that for any finite dimensional

representation ir of 21 and any unit vector £ in the representation space of

7T, one has (7r(a)£,£) < r. Therefore, n(a) < r. By hypothesis, the direct

sum of all finite dimensional representations of 21 is faithful, so that we have

a < r, which contradicts to that g(a) > r.

The non-unital case follows from the unital case. Note that the represen

tation theory of the unitization of 21 is the sum of that of 21 and the identity

representation. ^
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Lemma 5.2.4. Let tt be a non-degenerate representation of a C*-algebra 21

on a Hilbert space H. Suppose that ixs is a net in Rep(2l, H) that converges

to it. If ps is another net on the same directed set in Rep(2l,if) such that

the restriction of each ps(a) to the representation space Hs of tts coincides

with 7rs(a); then ps also converges to tt.

Proof Let p8 denote the orthogonal projection onto Hs. Claim that ps

converges strongly to the identity operator. In fact, for £ G H, a G 21, and

all s, we have

which shows that ps converges pointwise to the identity operator over the

dense set {?r(a)£|a G 21, £ G H}. Since {ps}3 is uniformly bounded, the claim

follows.

Since p8(a)p8 = 7rs(a) for all a G 21 and £ G if, we have

from which we see that ps(a)^ converges to 7r(a)£, that is, ps converges to

7T. D

Theorem 5.2.5. Let 2li and 2I2 6e C*-algebras. Then their free product

C* -algebra Sti * 2l2 w jRFZ? i/ and only if 2li and 2l2 are J?FD. // 6ot/i 2li

and 2I2 are unital, then their unital free product 2li *c 2l2 i5 i?F£) if and only

and 2l2 are

Proo/. Since the RFD property passes to subalgebras, both forward impli

cations are clear.

To prove the reverse implication in the unital case, let tt be a faithful

non-degenerate representation of 2li *c 2l2 on a Hilbert space H. Let tt* be

the restriction of tt to 21* for i = 1,2. Take a net {tt*}s in Rep(2li,if) of

finite dimensional representations converging to 7^, on a common directed

set, if necessary, by replacing both directed sets by their product. Let H]

be the representation space for tt^.

For each 5, choose a finite dimensional subspace Ks of H containing

both Hi and H% with dimension a common multiple of dim H\ and dimf/^.

Let p\ be any representation of 21* on Ks as its representation space, whose

restriction on Hls is tt*. For example, one may take an appropriate multiple

0f7T*.
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Since each ixi is unital, and so nondegenerate, we obtain lims p\ = tt^.

For each s, let ps = p\ * p^, which is a well-defined, finite dimensional

representation of 211 *c 212 since p\{l) and Pg(l) are both equal to the or

thogonal projection onto Ks. It follows that lims ps = n which proves that

7T is RFD, so that 2li *c 2l2 is also RFD.

The proof of the non-unital case is similar. Take a faithful representation

of 5li * 2I2 on if. Let tt* be the restriction of tt to 21*. Write tt* = lims ix\ as

above. Set tts = tt* *7Tg. Then (7rs) converges to tt. D

Corollary 5.2.6. Suppose that C*-algebras 211 and 2I2 /iave Mn(C) as their

unital C*-subalgebras. //2ti and ^2 ore RFD, then the amalgam 2li

Mn(C) is

Proof, Let 25* = ei2lie.i, where ei is the canonical rank one projection for

Mn(C), with ei + e2 H h en = 1. Since

Sli *Mn(C) 212 = Mni^ *c 5S2)

and RFD property passes to subalgebras and matrix algebras, we are done

by the theorem above.

As for the isomorphism above, check that since ei+e2H hen = 1 G 21j,

for a G 2lj we have

a =

which is viewed as the following matrix:

• • • enaenj

in Mn(93j), where each e^-e/ is identified with 53j. Indeed, the product

ab = (]C/fc=i e^)a(Z)r=i e/)QCfc'=i e/c')fe(X)P=i e*') as wel1 as other operations
correspond to the product and those of the corresponding matrices as above.

Freeness and amalgamation over Mn(C) will imply the isomorphism. □

Notes. The first subsection of this section is based on the paper [7] of Eilers

and Exel. The second subsection of this section is based on the paper [11]

of Exel and Loring. In [25] of the author, it is shown that the isometric

versions of the soft tori are generalized RFD but not RFD.
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6 Beginning noncommutative shape theory

6.1 Universal C*-algebras

Let 0 = {xa} be a set of generators and SK be their relations of the form:

where p is a polynomial of 2n variables with complex coefficients, generators

^au'" ,xane 0, and 77 > 0.

A representation of (0,SK) is a set of bounded operators {ya} on a Hilbert

space H which satisfy the same relation as above by replacing {xa} with

{ya}- Such a representation extends uniquely to a representaion (i.e., *-

homomorphism) from the free *-algebra F(0) generated by 0 into M(H) of

all bounded operators on H.

A pair (0,1H) of generators and relations is admissible if there is a rep

resentation of (0,9t), and if for representaions {y%} of ((8,91) on H&, the

direct sum ®py% e M(®pH0) for each a, and {©/?y£} is a representation of
()(,W)

For any z G -F(<8), define a C*-seminorm on F(0) by

||*||5 = sup{||p(z)|| : p a representation of F(<8)}.

The universal C*-algebra of (<8,9t), denoted by C*(0,9cl), is defined to

be the completion of the quotient of F(0) by {z : ||^||5 = 0}.

Any representation of (0,9t) extends uniquely to a representation of

C*(0, JH), and any representaion of C*(0, JH) gives a representation of (0,5R).

Example 6.1.1. Let a be a C*-algebra. Set 0 = 21 and 9i the set of all

*-algebraic relations in 21. Then C*(0,9l) 9* 21.

Let 21 be a C*-algebra. Let 0 be a dense *-subalgebra of 21 over a dense

subfield of C, and 9i the set of all *-algebraic relations and the scalar mutiple

relations on 0. Then C*(0,9t) = 21. In particular, a separable C*-algebra

is the universal C*-algebra on a countable set of generators and relations.

Let 53 be a Banach *-algebra. Set 0 = © and £H the *-algebraic relations.

Then C*(<8,JK) is the enveloping C*-algebra of 05. In particular, set 05 =

Ll{G) for a locally compact group G. Then C*(0,9t) = C*(G) the full
group C*-algebra of G. If G is discrete, C*(G) = C*(G,9t).

Let <5 = {x} a,nd<R = {x = x*,\\x\\ < 1, ||l-z2|| < 1}. Then C*(0,1H) ^

Co((0,1]) the C*-algebra of all continuous functions on (0,1] vanishing at 0.
Let 0 = {x, 1} and

JR = {x = x*, ||x|| < 1, ||1 - x2|| < 1,1 = 1* = I2,*! = lx = x}.
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Then C*(<5,9V) = C([0,1]) the C*-algebra of all continuous functions on

[0,1]. These are the universal positive contraction C*-algebras.

Let 0 = {x} and W = {x*x = l,xx* = 1}. Then C*(«,SK) ^ C(T) ^

C*(Z), the universal unitary algebra, where T is the 1-torus.

Let 0 = {x} and 9t - {x*x = xx*, ||x|| < 1}. Then C*(<S,9\) ^ C0(A)),

where Do is the punctured unit disk. Let 0 = {x, 1} and

JR = {x*x = xx*, ||x|| < 1,1 = 1* = I2, xl = lx = x}.

Then C*(0,9V) = C(£>), where L> is the unit disk. These are the universal

normal contraction C*-algebras.

Let 0 = {x} and 9t = {x*x = 1}. Then C*(0,9t) ^ C*(S) the C*-

algebra generated by the unilateral shift S. This is the universal isometry

algebra, or the Toeplitz algebra T.

Let 0 = {x} and 9t = {||x|| < 1}, or let 0 = {x,l} and 9t = {||x|| <

1,1 = 1* = l,xl = lx = x}. Then C*(0,5H) are the universal non-unital

and unital contraction algebras respectively.

Let A = (a,ij) be an n x n matrix with components 0 or 1. Let 0 =

{sir- ,Sn} and

= {s*Si = (5*5i)2, 5*Si = ^ aiJ8Jsj> Sksi = ° for a11 * and

Then C*(0,9l) = OA the Cuntz-Krieger algebra for A.

Let 0 be an irrational number. Let 0 = {u, v} and

9t = {u*u = uu* = v*u = w* = 1, uv = e2ni0vu}.

Then C*(0,91) = i?^ the irrational rotation algebra.

Let 0 = {x^- : 1 < i, j < n} and

: 1 < i, j, fc, / < n}.

Then C*(0,9t) = Mn(C) the n x n matrix algebra over C.

Let 0 = {1, Xij : 1 < i,j < n} and

n

91 = {1 = 1* = I2,a:y = x^ = ^2xikXkj,Xijl = lxy = xy : 1 < *,j < n}.
fe=i

Then C*(<5,9<1) is said to be the noncommutative Grassmanian, denoted by

G™.
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Let 0 = {xij : 1 < i,j < n} and

= Sijl:l< ij < n}.

Then C*((9,9t) is said to be the noncommutative unitary group, denoted by

U™. Note that C/fc Q* C(T).

6.2 Projective C*-algebras

We denote by SC the category of separable C*-algebras as objects and their

*-homomorphisms as morphisms. Denote by SC\ the category of separa

ble unital C*-algebras and their unital *-homomorphisms. Let CC be the

category of separable commutative C*-algebras, that is equivalent to the

category of pointed compact metrizable spaces, and CC\ be the category of

separable commutative unital C*-algebras, which is equivalent to the cate

gory of compact metrizable spaces.

Now consider a subcategory SCq of SC which is closed under quotients.

Definition 6.2.1. A morphism ip : 21 —> 2$ in SCq is said to be projective

in SCq if for any <£ G SCq, closed ideal 3 of <£, and morphism a : 5B —

there is a morphism ip : 21 —> <£ such that 7r oifj = a o (p} where ?r : (£

is the quotient map, that is, the following diagram commutes:

o > a ► c —^-> c/a > o

A C*-algebra 21 is said to be projective in SCq if the identity map on 21 is

projective.

If either 21 or 05 is projective, then any morphism from 21 to 23 is pro

jective. A composition of a projective morphism with any other morphism

is projective.

Example 6.2.2. (1) : Co((0,1]) is projective in SC. Note that C0((0,l])

is the universal C*-algebra generated by a generator h such that 0 < h < 1

with h =fi 1. Note also that the relation 0 < h < 1 (i.e. h and 1 — /i are

positive in a quotient) is always liftable.

(2) : C is projective in SC\ but not in SC. Indeed, consider the short

exact sequence: 0 —> Cq((0, 1)) —> Co((0,1]) —> C —> 0. There is a morphism
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from C to the quotient, but no lift from C to the non-unital C0((0,1]).

However, in SC\ the unit in a quotient can be lifted to the unit of its

extension.

(3) : C([0,1]2) is projective in CC\ but not in SC\. Indeed, the real and

imaginary parts of the image of the unilateral shift S in the Calkin algebra

give a homomorphism of C([0,1]2) into C*(S)/K which cannot be lifted:

no lift il>\ \<P

C*(S) > C*(S)/K ^ C(T)

where <p sends the coordinate functions x and y on [0,1]2 to the real and

imaginary parts of the coordinate function z e C(T) respectively. Because

if there exists such </>, then there exists / G C([0,1]2) such that tp(f) = S,

which implies that S commutes with S*, but S is a proper isometry, that is,

the contradiction.

Recall that the cone C21 over a C*-algebra is defined to be Co((0,1]) <g>

21 ^ Co((0,1], 51) the C*-algebra of continuous 2t-valued functions over (0,1].

Proposition 6.2.3. If a C*-algebra is projective, then it is contractible, i.e.,

the identity map is homotopic to the zero map. In particular, a projective

C*-algebra in SC is nonunital.

Proof. Consider the following commutative diagram:

0

where the suspension 521 over 21 is isomorphic to Co((0, l),2l), and 5\ is

the evaluation map at 1. Since idcsi is homotopic to the zero map, the

composition 5\ o idcsi ° ip — id^ is also homotopic to the zero map.

Let 21 be a unital C*-algebra and tp : 21 —> 55 be a *-homomorphism. Note

that 11^(1)11 = ||^(1)^(1)|| < Ml)||2, so that ||V(1)|| > 1 if ^(1) 96 0. Note

also that the C*-norm condition implies that ||<p(l)|| = ||^(1)2|| = ||^(1)\\2,
so that ||^(1)|| = 1 if ip(l) 7^ 0. Hence, no unital homomorphisms connecting

the identity map on 21 and the zero map continuously. Thus, 21 is not

contractible. ^
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Remark. This fact implies that C*-algebra invariants such as K-theory

groups are always vanishing on projective C*-algebras. Thus, it is rare

that a C*-algebra is projective.

Proposition 6.2.4. Let 21 be a projective C*-algebra and (p,ip : 21 —> 55

*-homomorphisms. Then (p and i\) are homotopic, and write (p ~ ij).

Proof. Consider the following commutative diagram:

21 —^ 21

0 > 525 > C([0,l],Q5) -^i> <B©05 > 0

where (<p © ip)~ is a lift of <p © if). Then a homotopy between cp and ^ is

given by {(<p © <0)r}tG[o,i]? where *-homomorphisms (cp © -0)^ : 21 —•> 05 are

defined by ((/? © 1^)^(0) = <St((v> © V0~(a))> where 5* is the evaluation map

at £€[0,1]. □

Proposition 6.2.5. A C* algebra is projective in SC if and only if its

unitization is projective in SC\.

Proof. Given a : 21+ —> <£/3, consider its restriction a : 21 —> C/J. Let

^ : 21 —* <£ be its lift. Since <£ is unital, we have a lift -0"1" • 2l+ —> € for a.

Conversely, given a : 21 —► C/X If C/3 is nonunital, there is a lift

</;+ : 21+ -> C+ for cr+ : 21+ -+ (C/a)+ ^ £+/J. Its restriction to 21 gives a

lift of a. If <£/3 is unital, there is a lift ip+ : 2l+ -^ £ for cr+ : 2l+ -> C/3 the

extension from a. Its restriction to 21 gives a lift of a. □

Proposition 6.2.6. //2ln are projective C*-algebras in SC (resp. SCi),

then their free product *2ln (resp. unital free product *c2ln ) is projective in

there.

Proof. Let a : *2ln —> C/3 be a *-homomorphism. For each 2ln, we have the

following commutative diagram:

where an is the restriction of a to 2ln, and (/?n is a lift of an since each 2ln

is projective. Then the map *</?n extended from y?n for all n to *2ln gives a

lift of a. Similarly, the case for the unital free product *c2ln is proved. □
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Recall that a subspace A of a topological space Y is said to be a retract

of Y if for the identity map id^ on A there exists a continuous map / from

Y to A such that the restriction map f\A to A is icU, and / is called a

retraction:

A -^U A.

This is equivalent to say that any continuous map g from A to a topological

space X can be extended to a continuous map / from Y to X:

The extension problem is whether or not such an extension exists, for a not

necessarily retract space.

A metric space X is said to be an absolute retract (or AR) if its image

as a closed subset K of a metrix space Y is a retract of Y.

Proposition 6.2.7. A C*-algebra$L is projective inCC (resp. CC\) if and

only i/2l = Co(X) for a locally compact (resp. compact) absolute retract X.

Proof Since 21 is a commutative C*-algebra, 21 = C0(X) for a locally

compact Hausdorff space X. Suppose that X is an absolute retract. We

need to show that for any closed subspace K of a locally compact Hausdorff

space Y and a *-homomorphism a : C0(X) —► Co(K), there exits its lift

(p : C0(X) -> Cb00 such that

C0(X) -^— C0(X)

0 > C0(Y\K) > CoOO > C0(K) > 0.

Then there exists a continuous map crA : K —> X such that / o aA =

a(f) for / G Co(-X"). In fact, by Gelfand representation the spaces K and

X are identified with the spaces of maximal ideals of Co (if) and Co(-X")

respectively, that consist of the kernels ker(x) and ker(V>) for characters x

and V of Cq(K) and C0(X). Thus, the map aA is given by aA(ker(x)) =

ker(x ° o). Since (or if) if is a retract of V, there exists an extension
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pA : Y -> X from <rA. Define ^ : C0(X) -> C0(Y) by </>(/) = / o pA for

/ G Cb(-X"). Since pA|# = <jA, the diagram commutes.

Conversely, the commutative diagram, Gelfand representation, and the

reverse argument imply that X is an absolute retract. □

Remark. It seems that our proof is natural but perhaps be wrong since

we need to assume the if part, or it might be that the statement itself is

wrong. Or the category should be replaced with the category with AR

quotient spaces, or the definition of projectivity may be modified. Anyway,

a : C$(X) -> Co(K) would not imply a continuous map from X to K. But

note that we may replace Cq(K) with the image of Co{X) under a, so that

we may assume that a is surjective. Then K is viewed as a closed subset of

X.

Let 21 be a C*-algebra. Denote by [21,21] the commutator ideal of 21

generated by elements xy — yx for x,y G 21. Then the quotient 21/[21,21]

is a commutative C*-algebra and is called the abelianization of 21. Any *-

homomorphism <p from 21 into a commutative C*-algebra (£ factors through

l]:

21 -^U £

a/[a, a]

where the map i/j is defined by ip([a]) = (p(a) for [a] G 21/[21,21]. Any

*-homomorphism ip : 21 —* 05 induces its abelianization <£>a : 21/[21,21] —♦

Proposition 6.2.8. //</?• 21 —> 03 is projective in SC (or SCi), then tpa

is projective in CC (or CC\ respectively). So it 21 is projective in SC (or

SC\), then 21/[21,21] is projective in CC (or CC\ respectively).

Proof. Consider the following diagram:

21 —'■

1

i

2l/[2l,2l] -2

1
0

-^ 23

1
1 ''05

1

^ 23/(53,03]

1
• o

I
0
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where £ is a separable commutative C*-algebra. By projectivety, there is a

lift u : 21 -> £ of o o 7T53 o if : 21 -» £/X Since £ is commutative, a; factors

through 21/[21,21] to give ^ : 21/[21,21] -> £. D

6.3 Semiprojective C*-algebras

Definition 6.3.1. A morphism <p : 21 -> 53 in SC^ is said to be semiprojec

tive in SCq if for any £ € SCg and increasing sequences 3n of closed ideals

of £ with 3 the closure of the union Un3n, and any morphism a : 53 -> C/3,
there is a morphism ^ : SI -> £/3n for some n with tt o ip = a o <p, where

7T : (t/3n —* C/3 is the quotient map:

A C*-algebra 21 is said to be semiprojective in SCq if the identity map on

21 is semiprojective.

If 21 or 53. is semiprojective, then any morphism from 21 to 53 is semipro

jective. A composition of a semiprojective morphism with any other mor

phism is semiprojective. Any projective morphism and any projective C*-

algebra are semiprojective.

Recall that a subspace A of a topological space Y is said to be a neigh

bourhood retract of Y if A is a retract of some open subspace U of Y:

Y < U ===== U

Y < A -^-> A

for some extension / :U —> A from icU, or equivalently,

Y < U U

II -4 I'
Y < A -2-k X

for any g : A —> X and its lift / : U —> X.

A metric space X is said to be an absolute neighbourhood retract (or

ANR) if its image as closed subset K of a metric space Y is necessarily a

neighbourhood retract of Y.
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Proposition 6.3.2. A commutative C* -algebra Cq(X) is semiprojective in

CC if and only if X is an ANR.

A unital commutative C*-algebra C(X) is semiprojective in CC\ if and

only if X is a compact ANR.

Proof Suppose that X is an ANR. We need to show that for any closed

subspace K of a locally compact Hausdorff space Y and a *-homomorphism

a : C0(X) -» C0(K)j there exits its lift <p : C0(X) -> C0(U) for some open

subspace U of Y containing K such that

C0(X) -^ C0(X)

C0(U) > C0(K) > 0.

Then there exists a continuous map aA : K —> X such that / o aA = a(f)

for / G Co(X), given by aA(ker(x)) = ker(x o a). Since (or if) K is a

neighbourhood retract of Yy there exists an open subset U of Y containing

K and an extension pA : U -> X from aA. Define tp : C0(X) -* C0{U) by

¥>(/) = f ° pA fox f e Co(X). Since pA|^ = crA, the diagram commutes.

Furthermore, since E7n (F \if) is open in Y and does not contain K and

does be contained in Y \ K, in the diagram above w;e may replace Co(U)

with:

co(Y)/Co(u n (y \ K)) <* co(Y \(un(Y\ K)))

= C0((Y\U)UK)

wThich has Co(K) as a quotient and just fits to the definition of semiprojec-

tivity.

Conversely, the commutative diagram, Gelfand representation, and the

reverse argument imply that X is an absolute retract. □

Remark. It seems that the our proof is natural but perhaps be wrong since

we need to assume the if part, or it might be that the statement itself is

wrong. Or the category should be replaced with the category with ANR

quotient spaces, or the definition of semiprojectivity may be modified.

There exist contractible spaces which are not ANR, like the cone over

the Cantor set.

Proposition 6.3.3. If ip : 21 —> 55 is semiprojective in SC (or SC\), then

ifa from21/[21,21] to 95/[95,95] is semiprojective in CC (or CC\ respectively).

So it 21 is semiprojective in SC (or SC\), then 21/[21,21] is semiprojective in

CC (or CC\ respectively).
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Proof Consider the following diagram:

21

7T21

I
ooo

where £ is a separable commutative C*-algebra. By semiprojectivety, there

is a lift uj : 21 -> £/3n of cr o tt® o tp : 21 -> £/X Since e/3n is commutative,

u; factors through 21/[21,21] to give V : 21/[21,21] -> €/3fn. D

Lemma 6.3.4. Let £ fee a C*-algebra and {3n} an increasing sequences of

closed ideals of £ with 3 the closure of the union I0n. Let 7rn : <£.—> £/3n

ancj 7T : C -> C/3 fee i/ie quotient maps. Then we have \\w(x)\\ = infn ||7rn(x)||

for any xGt

Proof Indeed, from the definition of the quotient norm we have

\\n(x)\\ = inf ||z + fe|| < inf ||z + fe|| = ||7rn(x)||.

Hence ||7r(a;)|| < infn lkn(a?)||- Conversely, for any b e 3 and e > 0, there

exists bn G 3n for some n such that ||6 - 6n|| < e, so that

= \\x &n - 6 + 6|| < ||x + fe|| + e.

It follows that infn ||7rn(x)|| < ||x + 6|| + e. Thus, infn ||7rn(x)|| < ||7r(a;)|| + e.

Since e is arbitrary, it is proved. a

Proposition 6.3.5. With the same notation as in the lemma above, let p'

be a projection in £/X Then there is a projection p E £/3n for some n such

that tt(p) = p1, where this tt is- the quotient map it : £/Jn —> C/3f.

Proof Take a positive element xGf with ?r(x) = p;. Then tt(x - x2) = 0.
Thus ||7rn(rc - x2)|| < 1/4 for some n. Hence the spectrum sp(7rn(x)) of

7rn(x) is disconnected at 1/2, and p is constructed from 7rn(x) by functional

calculus. Indeed, the spectral mapping theorem implies that the spectrum

of 7rn(x - x2) is {A - A2 I A e sp(7rn(x))}. Since |A(1 - A)| < 1/4, if A < 1,

then we have (A - 1/2)2 > 0. By functional calculus, there is a projection

p(X) e C(sp(7rn(x))) such that vr(p(A)) = p(ir(x)) = p'. D
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Corollary 6.3.6. If (p '. 21 —► 95 is semiprojective in SC\ (resp. CC\), then

it is semiprojective in SC {resp. CC). So if 21 is semiprojective in SC\, it is

semiprojective in SC. Conversely, if a morphism or a C* -algebra is unital

and semiprojective in SC, then it is semiprojective in SC\..

Proof Given a : 93 -» C/3, let pf = ct(1<b). Lift p1 to p G £/3n. Replace

£ by p(C/3n)p, 3fc by p(3k/3n)p for fc > n, and 3 by p(3/3n)p. By the

assumption,

'y =

has a lift:

</> : 21 - p(tpn)p/p@kPn)p = P"(£pk)p" C

where p" = 7rn?fc(p) and 7rnjfc :

Conversely, if y? is semiprojective in 5C, <£ is unital, and a : 93 —> <£/3 is

unital, let -0 • 21 —► C/3^ be a lift. Set q = ^(Isi)- Since 7r(l^/^fc — g) = 0, we

have ||7rn(l£/3fc — q)\\ < 1 for some n, where vrn = 7Tfejn in the sense above.

But 7rn(l<£/3fc — g) is a projection, so 7rn(g) = l^/an, that is, KnOip is a unital

lift. ' , D

Remark. It follows that C is semiprojective in SC.

Corollary 6.3.7. A C* -algebra is semiprojective in SC if and only if its

unitization is semiprojective in SC\.

Proposition 6.3.8. The noncommutative Grassmanian G™ defined in the

subsection 6.1 is semiprojective.

Proof. We may work in SC\. If a : G™c —> C/3 is given, it has the canonical

extension to the maitrix algebra over them: an : Mn(G^c) —>■ Mn((£/3) =

Afn(C)/Mn(3). If x = (rcy) G Mn(G£c) where rcy are generators for G£c,

then x is a projection, that is, x = x* = x2 since Xij = x^ = X^fc=i xik%kj-

Thus, cr(x) = p' is a projection in Mn(£)/Mn(3). Lift p' to a projection

P = (Pij) e Mn(<£)/Mn(3k) ^ Mn(d:/3k) for some fc. Then the map xy ^ py

gives a lift of a to €/3k. a

Proposition 6.3.9. Suppose thatp'v — - ,p'T are orthogonal projections in

Then for some n, there are orthogonal projections pi, • • • ,£V ^ ^/3n

t(pj) = p'a for all j.

If € is unital and p[ + • • • + p'r = 1, then we can choose pj to have

Pl H hPr = 1.
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Proof. As before, lift p[ to pi € £fini. Replace £ by (1 -pi)(€/3ni){l -pi),

% by (1 -piXSnAnXl -Pi), and 3 by (1 -pi)(3/3m)(l -Pi)- Note that

which contains p'2. Now lift p'2 to P2 in

for some n2 > ni, where p" = 7rni,n2(pi) and 7rnijn2 : C/3ni —> £/3n2. Tfren

pi7 and p2 are orthogonal projections lifting p[ and p'2 respectively. So replace

py with pi by the same symbol. Continueing this process inductively, we

obtain the projections lifted as desired.

If £ is unital and p[ + • • • +j/r = 1, then p(. = 1 -p[ p'r-V In this

case, stop the induction after r - 1 steps and set pr = 1 — pi Pr-i- D

Corollary 6.3.10. // ^ : 2lj -> 55j are morphisms in SCq, then their

direct sum ®rj=1Vj : ©J=i2lj -♦ ©j=i®i i5 semiprojective if and only if each

<Pj is semiprojective. So if % are unital, then the direct sum ©5=1^' is

semiprojective if and only if each % is semiprojective.

toProof First lift p'j = <t{Iv&5) to pj G £/3fc, and then lift

for some nj > k. Let n = maxn^. It follows that ©5=1^ is semiprojective.

The converse is trivial. Indeed, given a : 55/ -> C/3, use semiprojectivity

for a o pn : ©5=i»j -> C/3, where pr/ : ©5=i»j -> 55/ is the canonical

projection map. D

Remark. It might be still not known that a direct sum of nonunital semipro

jective C*-algebras is always semiprojective.

Proposition 6.3.11. If s' is an isometry in £/3, then there is an isometry

s e <r/jn for some n such that tt(s) = s', where ir : £/3n -» C/3 is the

quotient map.

If s' is unitary, then s can be chosen to be unitary.

Proof. Let x G € with ir(x) = s', where n : £ -> C/3 is the quotient map.

Then the norm ||7rn(x)*7rn(x) - 1|| converges to zero, so that 7rn(x*x) is

invertible for some n. Set sn = 7rn(x)[7rn(x*x)]"1/2. Then sn is an isometry

with 7r(sn) = sf for the ir in the statement.

If s' is unitary, we also have that the norm ||7rn(x)7rn(x)* — 1|| converges

to zero, so that 7rn(x) is invertible for some n large, and hence sn is unitary

for some n large. ^
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Corollary 6.3.12. The Toeplitz algebra % C{Sl), and the noncommutative

unitary group U%c defined in the subsection 6.1 are semiprojective.

Proof It is because X is generated by an isometry, which is mapped to an

isometry by an morphism to a quotient, which can be lifted as above, and

similarly note that C(SX) is generated by an unitary.

Let a : U%c -> £/3 be given. Let {xij : 1 < i, j < n} be generators of

U™. Then x*x = ln and xx* = ln, where x = (x^) G Mn(U%c). Thus the

matrix x is mapped to a unitary v! under the map Mn(U£c) —> Mn(£/3)

extended from cr. Lift w' to a unitary u = (wy) G Mn((t/3k) for some fc.

Then the map x^ i—► u^ gives a lift of a to £/Jfc. D

Proposition 6.3.13. Let p' and q' be projections of <£/3 and v! a partial

isometry of <£/3 such that (u')*u = p' and u'(v!)* = g;. Let p and q be

projections of £ with ir(p) = p' and ir(q) = q'. Then there is a partial

isometry u E C/3n for some n such that 7r(u) = v! and u*u = 7rn{p) and

uu* = irn(q).

Proof Let x G C with tt(z) = u'. Then we have

||7rn(z)*7Tn(:z) - 7rTO(p)|| and ||7rn(x)7rn(x)* - 7rn(g)||

are small for some n. Let / be a continuous function which is identically

zero near 0 and /(A) = A"1/2 for A near 1. Then w = 7rn(x)/(7rn(x*x)) is

a partial isometry in <£/3n with \\w*w - nn(p)\\ and \\ww* - 7rn(q)\\ small.

Indeed, we have

w*w = f(7vn(x*x))irn(x*x)f(>jrn(x*x)),

ruw* = 7rn(x)f(7rn(x*x))f(irn(x*x))7rn(x*)

and note that A^^AA"1^ = i and A-i/2A-i/2 = A-i (and for w to be

a partial isometry it is enough to check that w*w is a projection). Set

Vj = Zj{z*Zj)~1/2 for j = 1,2, where

Zl = (2w*w - l)(27rn(p) - 1) + 1, z2 = (27rn(Q) - l)(2i£;it;* - 1) + 1.

Then ^ are unitaries in (£/3n)+ which conjugate 7rn(p) and ww* to ^*^

and nn(q) respectively, and ir(vj) = 1 G (C/J)+. Thus, -u = f2wi;i is the

desired partial isometry. □

Corollary 6.3.14. The Cuntz-Krieger algebra Oa for any matrix A with

components 0 or 1 is semiprojective.
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Proof. Recall that generators si, • • • sn of Oa are partial isometries such that

h A ()^s*si = and s*ksi = for a11 *»fc withsksi
where A =i ]C£=i ^j^ ki »^ (y)^1

which are mapped to partial isometries by a morphism to a quotient, which

are lifted as above. D

Proposition 6.3.15. The matrix algebra M2(C) is semiprojective.

Proof. Let en, ei2, e2i, e22 be matrix units in <£/3, i.e., ey = e^ and e^e^ =

(Jjfcei/ for 1 < i,j,M < 2. Lift en to a projection p in C/3fc, and ei2

to a partial isometry s in £/3n for some n > k with ix*u = 7rn(p) and

wu* = 1 - 7rn(p). Then {7rn(p),ix,tt*, 1 - 7rn(p)} is a system of matrix units

in <L/3n which lift the ey. n

Proposition 6.3.16. // y? : 21 —* 03 is semiprojective in SC\} then cf2 :

M2(2l) —> M2(53) w semiprojective in SC\. So if$l is unital and semipro

jective, then M2(2l) is semiprojective.

Proof. Let {/y} be the matrix units of M2(C) C M2(2t) and {ey} their

image in <£/3 under a o ip2. Lift {ey} to the matrix units {ey} in <£/3fc for

some fc. Replace £ by en(C/3/b)en, 3n by en(3n/3fe)eii for n > fc, and 3

by eii(3/3fc)en. Since the restriction of (/?2 to /nM2(2l)/ii is viewed as </?,

the restriction o£ a o (p2 to /nM2(2t)/n lifts to a homomorphism:

^ : /iiM2(2l)/n

for some n.

If x e M2(2l), write x = S , where xy G /iiM2(2l)/n. Set

Then ^2 is a lift of a o tp2. D

Proposition 6.3.17. Let 21 fce a imi£a/ and semiprojective C*-algebra and

p a full projection in 21. Then pQLp is semiprojective.

Proof. Since p is full, we can find projections p1 and q and a partial isometry v

in Mr(p2lp) for some r such that qMr(p$lp)q = 21, p' < g, v*v = p0O0- • -00

(diagonal sum), and vv* = j/. Indeed, since p is a full projection, there exist

Xj E 21 such that 1 = Y%=i xjVx*j f°r some r? so that P = Y7j
which is viewed as:

p = pxrp)

fpx\py

\J>xrP)

= v*v
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where the row and column matrices v* and v can be viewed as the corre

sponding matrices in Mr(p2lp), and p — p©0©- • -00 in this sense. Moreover,

we have

p' = w* = (p © ... © p)vv*(p © • • • © p) < p © • • • © p = g

since vv* < 1 © • • • © 1.

Let a : p2lp -> C/X Extend it to crr : Mr(p2lp) -> Mr(<£/3). Let

g' = ar(q). Lift qf to a projection g" G Mr(£/3k). Let it; be a lift of

the restriction ar|gMr(p2lp)g to the image 'Kn(q')Mr(£/3n)'Kn(q') for some

n > k. Set u; = oy^v). We find a partial isometry u G Mr(£/3n) which lifts

i/, for which u*u = 1 © 0 © • • • © 0 and uu* = w(pf). Identify p2lp and £ftn
with the upper left-hand corners in Mr(p2lp) and Mr(£/3n) respectively.

Let if>(x) = u*w(vxv*)u. Then ^ is a lift of a to C/3n. □

Corollary 6.3.18. If %l is a unital and semiprojective C*-algebra, then

Mn(2t) is semiprojective for all n. In particular, Mn(C) is semiprojective

for all n.

Proof Since M2(2l) is semiprojective, it follows by induction that M2fc(2l) =

M2(M2fc-i(2l)) is semiprojective for all k. Note that Mn(2t) is a full corner

in M2fc(2t) for some k. D

Corollary 6.3.19. Suppose that unital C*-algebras 21 and 05 are strongly

Morita equivalent Then 21 is semiprojective if and only if 53 is semiprojec

tive.

Proof Note that 21 and 53 are each isomorphic to full corners in matrix

algebras over the other. D

Remark. This can be false if 21 or 53 is nonunital.

Corollary. 6.3.20. If 21 is a unital semiprojective C*-algebra and F is a

finite dimensional C*-algebra, then their tensor product 21 ® F is semipro

jective.

In particular, F and C(Sl) <8> jP are semiprojective.

Proposition 6.3.21. //2tj (1 < j < r) are semiprojective C*-algebras in

SC {resp. SC\), then their free product *2lj is semiprojective in SC (resp.

their unital free product *c2lj is semiprojective in SC\.

Proof. This can be proved similarly as in the projective case above. □
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Proposition 6.3.22. lf% (1 < j < r) are semiprojective C*-algebras and

F is a finite dimensional C*-subalgebra o/2lj for all j, then their amalga

mated free product */?2lj over F is semiprojective.

Note that an infinite free product of semiprojective C*-algebras will not

in general be semiprojective.

Example 6.3.23. The commutative C*-algebra C([0,1]2) is semiprojective

(in fact projective) in CCi, but not semiprojective in SC\. For let u be the

unilateral shift, £ the C*-algebra of all sequences in C*(u) converging to a

scalar multiple of the identity,

3n = {(Xj) iXjeKG C*{u) for all j, and Xj = 0 for j > n}, and

3 = {(xj) : Xj e K for all j, and Xj -> 0}.

Then 3 is the closure of the union LOn, and C/3 is isomorphic to the

C*-algebra of all sequences in tt(C*(u)) converging to a scalar multiple of

the identity, where n : C*(u) -^ C*(u)/K ^ C(Sl). Let x = (xj) and

y = (yj) with xn = Re(7r(^))/n and yn = lm(ir(u))/n. Then x and y are

commuting self-adjoint contractions in <£/3, so there is a *-homomorphism

a : C([0,1]2) -> C*(x, y) C C/X But a cannot be lifted to C/Jn for any n.

Also, one can define a *-homomorphism from CiS1 x S1) into C/3 which

cannot be lifted, by sending two unitary generators to elx and ety'. Thus

C(Sfl x 51) is not semiprojective in 5Ci. Similarly, it is shown that the

rotation algebras are not semiprojective.

Remark. This shows that a universal C*-algebra on a finite set of genera

tors and relations need not be semiprojective. For such a C*-algebra to be

semiprojective, the relations must be partially liftable in the sense that if

xi, — ,xn G C/3 satisfy the relations, then suitable preimages in £/3k for

some k also satisfy the same ones. It follows from the propositions above and

elementary C*-algebra theory that the relations such as ||xj|| < 7?, Xj = x^

Xj = x* = x?, x*Xj = 1, x*Xj = Xjx* = 1, and their matrix versions

are partially liftable. But commutation relations among generators are not

partially liftable.

Proposition 6.3.24. Let 21 = C*(0,!R), where (S = {xu - - - ,xn} and9\ =

{||Pi(OII < Vu ' • * , l|Pfc(OII < Vk} ™th rij > 0 for all j = 1, • • • , k. If V : 21 -+
*8 satisfies

\\Pj(<p(xi), ■■■ , <p(xn), ip{x\), ■■■ , y«))|| < Vj

for each j, then <p is semiprojective.
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Proof. It follows from considering the quotient norm definition as before. □

It is known from topology that a compact retract of an open set in an

ANR is an ANR.

Definition 6.3.25. A unital C*-algebra 21 is said to be a retract of a C*-

algebra 93 if there is a unital homomorphism u : 21 —► M(93) the multiplier

algebra of 25 and a surjective homomorphism p : 23 —► 21 such that p~ o u =

id^t, where p~ is the canonical extension of p to a homomorphism from

M(») to 21:

M(Q3)

21

0 0.

Theorem 6.3.26. Let 2) be a semiprojective C*-algebra in SC, A a closed

ideal of 2), and 21 a unital C*-algebra which is a retract of &. Then 21 is

semiprojective.

Proof Let u : 21 -> M(£) and p : £ -> 21 -> 0 be as above. Let £ be

a unital C*-algebra and a : 21 —> <£/3 unital. There is a homomorphism

0 : 2) —► M(^) which is the identity on ^. Set a = a o p~ o Q:

M(St)

Then a lifts to a map /3 : 2) -> C/Jfc for some /c. Since tt o (3{R) = a(21)

contains the identity of £/3, the image 53n = ?rn o /?(£) for some n contains

the identity of <£/3n. For n such, irno f3 extends to a unital homomorphism

7 : M{R) —» 53n C £/3n which lifts cr o p^, and so -0 = 7 ° w gives a lift of

<7 O p^ O U == CT. D

Remark. It is known that every compact ANR is a retract of an open set in

a compact AR. In fact, a metrizable compact ANR is a retract of an open

set in the Hilbert cube.

From now on, we require that the category 5 be closed under quotients

and countable inductive limits, and taking tensor product with C([0,1]).

Consider inductive limits:

© = lim(J)n,7n,n+l)
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where 7n,n+i • ©n —> 2)n+i is a not necessarily injective *-homomorphism.

For defining 2), set 3n,m = ker(7n,m) C 2)n, where 7n,m : 2)n -> 2)m for m >

n, constructed by composing from 7n,n+i» 7n+i,n+2> • • •, to 7m-i,m- We have

^n,m C 3n,m+i for all m > n. Let 3n be the closure of the union Um3n,m.

Then 7n,n+i drops to an injective *-homomorphism 7^>n+1 : ^n/^n —>

2)n+i/3n+i> an<i ® is defined as the inductive limit lim(S)n/3fn,7^n+1) where

the connected maps are injective. Note that the C*-algebra C/3 considered

above is an inductive limit lim(£/3n,7rn)Tl+i), where the connecting maps

are surjective. An inductive limit with injective connecting maps is said to

be a faithful inductive limit. Denote by jn the canonical homomorphism

from 2)n into 2) = lim(2)n,7n>n+i). If 2) is unital, then 33n is unital for n

sufficiently large.

Theorem 6.3.27. Let (p : 21 -> 53 be semiprojective inS,® = l_im(2)n) 7n,n+i),

and /3 : 53 —» 2) a morphism. Then for sufficiently large n, there are homo-

morphisms an : 21 —> Sn suc/i ^/ia^ 7n o an ~ j9 o <p and 7n o an -> ^ o (/?

and -> 21 ^^-> 53 ^^ 2).

Proof. Let £ be the C*-subalgebra of-IInC([n,n + l],2)n) consisting of all

sequences (/n) for which

/n+i(n + 1) = 7n,n+i(/n(n + 1)), Vn,

and

lim ||/n(t) -7mfn(/m(5))|| = 0, m < s < m +l,n <t < n + l,m < n.
t>s—>oc

(£ is said to be Brown's mapping telescope.) Let

Then J is the closure of the union U3fe, and <£/9 = 3). Let a be /3, regarded

as a morphism from <8 to C/3. Lift a o if : a -> C/J to V : 21 -» C/3fe-

Let an be the composition of ^ with the evaluation map at n > k. The

homotopy is given by composing ip with the evaluation map at t > n and

then with yr (r < t < r + 1). D
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Theorem 6.3.28. Lettp : 21 —> 53 6e setniprojective in S, 2) = lim(©w,7n.n+i),

and Ze£ /3o, A : 23 —> ©& /or some k with 7k ° Po ~ Ik ° A :

33 -^-+ 2)* -^-> 2) - 03 —^-> 2)* -^-» 2).

Then for sufficiently large n > k, we have 7^ °j8o°^~ 7fc,n °A°^'

21 _J^ 55 _J[U ©fc -^ 2)n ~ -Yinofaotp.

Proof. Let

^ = {(x, /, y) G 5>fc e C([0,1], 2)) © ©fc | /(0) = 7*0*), /(I) =

and for n > k let

En = {(*, /,y) e ©fc © C([o, i],©n) e ©fc | /(0) = 7fc|B(4 /(i)

Then E = lun(JS?n,^n|n+i), where 5n,n+i(a:,/,y) = (x,7n,n+i ° /,y) for

(x,f,y) e En. Indeed,

(7n,n+l ° /)(0) = 7n,n+l(/(0)) = 7n,n+l(7fc,n(»)) = 7fc,n+l(^).

Similarly, (7n,n+i ° /)(1) = 7ib,n+i(j/)- By the assumption, if pt is a path of

homomorphisms from 53 to 2) with pt = Jk ° Pt for 0,1, define cr : 03 —» i?

by a(x) — (/3o(x)}f, /?i(x)), where /(£) = p*(x). Lift a to a map a : 21 —> J5n

with 6 o a ~ a o ip:

21 ^U ^n -A-> ^ ^ 21 —^ 03 —^—> E.

Thus, if 7r^ and tt0 are the projections of En and J5 respectively onto their

first coordinates ©&, we have

^0 = TTn ° ®n ° CK ~ 7T° ° & O (^ = /?o O y?.

Similarly, if -k\ and tt1 are the projections of En and jE respectively onto

their third coordinates, we have Si ~ /3\ o y?. The map a gives a homotopy

from 7fc,n o <Jo : 21 —> ©n to 7A:)n o 5lt Thus,

7fc,n ° A) P V ~ lk,n °5o~ 7fc,n ° &\ ~ 7/c,n °AO(^

as maps from 21 to 2)n. □
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Remark. In CC\, semiprojective ANR's are locally projective. As a result,

if X is a compact ANR, there is a finite open cover of X such that when

ever continuous functions from X are close with respect to the cover, they

are homotopic. Since there are simple semiprojective C*-algebras which

are not projective, the local projectivity result does not carry over to the

commutative case.

Theorem 6.3.29. If ip : 21 -> 93 is semiprojective in S, and finy(3 : 93 —> 2)

with /3n —► P pointwise, then for sufficiently large n, we have PnO(P ~ P°¥>-

Proof LetC=C([0,l],2>),

3k = {/ e £ | /(1/n) = 0 for all n, / = 0 on [0,1/fc]},

Then 3 is the closure of the union UJfc, and <£/3 is isomorphic to the C*-

algebra of all convergent sequences of elements of 2), denoted by C(N,£>).

Indeed, define a *-homomorphism </? from C/J onto C(N,©) by </?([#]) =

(g(l/n))™=l for [<?] e C/3 since ($(l/n) + /(l/n))£sl = (p(l/n))~=1 for any

/ G 3, and limn_oo5(l/n) = g(0) G 3D. Moreover, for / € 3,

||p +/Hoc- sup
te[o,i]

Hence, ||[g]|| > ||(5(l/n))^=1||oo = ||^(b])lloo, so that ip is continuous. Fur

thermore, for g,h G C, suppose that ^(1/n) = /i(l/n) for all n. Then

g- h e3,so that [#] = [/i]. Hence (^ is injective. It follows from C*-algebra

theory that ip is an isomorphism.

Let a : 03 -> C/3 be defined by a(x) = (^(x)). Lift ao^to C/3*. D

6.4 Noncommutative shape theory

Definition 6.4.1. Let 21 be a C*-algebra in S as before. A shape system

for 21 in 5 is an inductive system (2ln, 7n,n+i) in 5 with 21 = lim(2ln,7n,n-f i)

and 7n,n-f-i : 2ln -> 2ln+i semiprojective in 5. A strong shape system for 21

is a shape system in which each 2ln is semiprojective. A faithful shape (resp.

strong shape) system is a shape (resp. strong shape) system for which each

7n>n4-i is injective.

Proposition 6.4.2. Let (2ln,7n,n+i) be a shape (resp. strong shape) system

for a C*-algebra 21 in SC (resp. SCi). Then (21^/^,21^, [7n,n+i]) is a

shape (resp. strong shape) system for the abelianization 21/[21,21] in CC

(resp. CCi), where ^n+i] : ^n/[Kn,%i] — 2ln+]./[2ln+i,2ln-l-i].
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Proof. This follows as shown in the similar case of semiprojectivity. □

Theorem 6.4.3. Every separable C*-algebra has a shape system in SC. A

unital C*-algebra has a shape system in SC\.

Proof. Write a C*-algebra 21 = C*(<8,9t), where 0 = {xi,x2, • • •} is a

countable set of generators and 1H = {||pi(-)|| < *7i, ||P2(-)II ^ %»"•} as
before. Set <$n = {xi, • • • , xn) and

l < Vi + 1/n, INI < llxiHa + 1/n (1 < % < n)},

where each pi here involves only xi, • • • ,xn. Set 2ln = C*(<8n,lHn). There

is a natural map 7n,n+i : %i —> SU+i since <8n C <8n+i and the rela

tions in 9tn+i include stronger forms of all of the relations in fRn. In

deed, this follows from universality of 2ln since the stronger relations of

2ln+i implies the weaker relations of 2ln. Then 7n,n+i is semiprojective, and

( . ' □

Remark. It is not clear whether every separable C*-algebra has a strong

shape system in SC. This is true in CC\: every compact Hausdorff space

is a projective limit of ANR's (in fact of polyhedra). It appears highly

unlikely that a general separable C*-algebra has a faithful shape system in

SC. Probably, C([0,1]2) is a counterexample, and it is seen that C([0,1]2)

has no faithful strong shape system in SC.

AF algebras, inductive limits of algebras of the form C(S1) (8) F for F

a finite dimensional C*-algebra, and the Cuntz algebra Oqo have natural

faithful strong shape systems.

Question: does every separable nuclear C*-algebra have a shape (or

strongl shape) system in SC of nuclear C*-algebras?

It is not even clear that commutative C*-algebras have nuclear shape

systems.

Definition 6.4.4. Two inductive systems (2tn,7njn+i) and (95n>^n,n+i) of

C*-algebras in S are equivalent, and write (2ln,7n,n+i) ~s (93n»0n,n+i)j if

there are sequences of *-homomorphisms a» : 21/^ —> 25ni and $ : QS

a*i+1 with ki <rii< fei+i, such that A°«i- 7**,**+! and

for each i :

Sni

If we have such a» and pi only with fiioai~ 7fc»,fct+i, write (2ln,7n,n+i)

( (subequivalence).
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Remark In fact, ~s is an equivalence relation and ^ is transitive. The

equivalence ~s for two inductive systems implies that each system is sube-

quivalent to the other. But its converse is not true.

Proposition 6.4.5. // two inductive systems of C*-algebras in SC are

equivalent (resp. subequivalent), then two inductive systems of their abelian-

izations in CC are equivalent (resp, subequivalent).

The same also holds for SC\ and CC\.

Proof. Abelianize the maps a% and # and their homotopies. □

Theorem 6.4.6. Let 21 and 93 be C*-algebras in S with shape systems

(2ln,7n,n+i) and (93n>0n,n+i) respectively. If there exist inductive systems

(<tn,a;n>n+i) and CDn,5n,n+i) in S which are equivalent in S and

21 ^ Km(€n, wn,n+i) and S3 * Hm(5)n, 5

subequivalence for such two inductive systems implies subequiva-

lence for such two shape systems.

Proof. Suppose that we have pj : ^ —> 1Dqj and trj : /Dqj —> £pj+i with

Pj < Qj < Pj+i and dj o Pj ~ ujPjiPj+1, pj+ioaj ~ ^.^+1. We use induction.

Suppose that ai, /?i, • • • , ar_i, and ^r_i have been chosen, so that (1) /3r_i :
satisfies (3r-i = P~ o 6»nr_1>nr.1+2 for some /T : 53nr_x+2 -^

(2) there are numbers qj-\ and pj with nr_i + 2 < g^_i < pj < kr; (3)

identifying 21 with Iim2tn and with lim£n, there is a map £ : 95nr_!+2 —^

S)f/j_i such that 7fcr o (3~ ~ u)p. o cr?_i o £ as maps from 25nr_i+2 to 21:

and 5^_l o £ ~ ^nr_i+2 as maps from 53nr_i to 05 = Iim2$n = Iim3)w:
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We construct ar with analogous properties (1) to (3) such that ar o

The construction can then be repeated inductively to yield the equivalence.

First, regarding

7fcr+3 = 7fcr+4 ° 7fcr+3,Av+4 : 2t/cr+3 -> 2l/cr+4 —► 21

as a map into 21 = limCn, by semiprojectivity of 7fcr+3,/cr+4 there is a map

ip : 21^+3 —> £ps for sufficiently large s with o;Ps o i\)

or or 7fer-f3 or
21 - 2ifcr+3 r 2t.

i o (jj-i o ^ = o;p3 o u;Pj.)Pa o cr^.i o

as maps from 55nr_!+2 to 21 = Hm (£„. So, the semiprojectivity of 0nr_i+i,nr_i+2

implies that by increasing s we obtain

4.3 o /? o 0nr^1+i,nr-i+2 ^ ^pj5ps ° CTj-i 0^0 ^nr_1+i,nr_1+2 = g.

Now regard

h = 5qsopsoipo 7^+2,^+3 : 2lfcr+2 -^ 2lfcr+3 -> ® = limS)n.

By semiprojectivity of 7^+2,^+3 there is a map a~ : 2l^r+2 -* ^S/ for

sufficiently large I > qs with 61 o a^ ~ /i. Thus we have

OiOoT o Jkr,kri-2 o /?" o ^nr_!+l,nr_i+2

= 6qs opso^o 7fcrjfcr+3 o /?~ o ^-1+1,^-1+2 = ^s ° Ps °

^ ^s °psog = 6qsopso u)VhVs o aj-i o £ o 6>nr_1+i,nr-i+2

since 5gs op5o u;^.^ ° cr^-i ~ 5gj_1 by assumption. Again we can increase /

so that ar o j3r_x ^ ^nr_i,nr? where fcr = / and ar = a~ o 7^,^+2- For the

next stage in the induction, the analog of £ is if) o 7fcr+2,fcr+3- D
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Corollary 6.4*7. Any two shape systems for a C*-algebra in S are equiva

lent

Proof. Note that for a C*-algebra 21, the trivial system (%n = % ida) with

: 21 -> a the identity map and itself are equivalent. □

Definition 6.4.8. We say that two C*-algebras 21 and 53 have the same

shape (in S), or are shape equivalent in 5, written Sh(2l) = Sh(53), if

(2ln,7n,n+i) ~s (®n, 0n,n+i) for some (hence any) shape systems for 21 and
53 in S. The shape of 53 dominates the shape of 21, written Sh(2l) < Sh(53),

if (2ln,7n,n+l) ~S (®n

Remark We have Sh(2t) = Sh(53) if and only if 21 and 53 have equivalent

inductive systems in S. If we have Sh(2l) = Sh(53) in 5, then so does

in S" D S. This definition agrees with the topological definition: if X

and Y are compact metrizable spaces, then Sh(X) = Sh(F) if and only

if Sh(C(X)) = Sh(C(y)) in CCU and also Sh(X) < Sh(r) if and only

if Sh(C(X)) < Sh(C(Y)) in CCi. There are spaces X and Y for which

Sh(X) < Sh(y) and Sh(Y) < Sh(X) but Sh(X) ^ Sh(y).

Corollary 6.4.9. //2l and 53 are homotopy equivalent in S, then Sh(2l) =

Sh(53). //53 homotopy dominates % then Sh(2l) < Sh(53).

Proof. A homotopy equivalence between 21 and 53 induces an equivalence

between the systems (21, id^i) and (53, id®). □

Remark. The converse is not generally true, as given by the circle and War

saw circle. So shape equivalence is a strictly weaker notion than homotopy

equivalence.

Corollary 6.4.10. Let X and Y be locally compact metrizable spaces. Then

Sh(C0(X)) = Sh(C0(Y)) in SC if and only if Sh(X) = Sh(Y).

Corollary 6.4.11. Let 21, 53, C, and D be separable C*-algebras such that

Sh(2l) = Sh(C) and Sh(53) = Sh(©) both inS. Then

Sh(2l ®max 53) - Sh(£ (g

Sh(2l <g>min 53) = Sh(C ®

m 5, and if they are unital, then in S,
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Proof. Let (2ln,7n,n+1), (®n, 0n,n+i), (Cn^n+i), and (33n, <Jn,n+i) be shape

systems for 21, 93, <£, and 2) respectively. Then (2ln ® 53n,7n,n+i ® 0n,n+i)

and (<£n <8>3)n5^n,n-H ® £n,n+i) are equivalent systems for 21® 53 and C® 2),

where <g> means any C*-tensor product. Moreover, the tensor product op

eration ® can be replaced with the free product operation * and with the

unital free product operation *c in the unital case. □

Remark. If 21 and 55 are AF algebras, then Sh(2l) = Sh(55) in SC if and

only if 21 ^ 55.

Let 21 be a C*-algebra. Denote by P(2l®K) the semigroup of equivalence

classes of projections in 21 ® K, with orthogonal addition. Let Ko($t) and

Ki(f&) be the K-groups of 21. Recall that if 21 is unital, Ko(%L) is defined

to be the Grothendieck group of stably equivalence classes of projections in

21 <g> K. There is a canonical homomorphism from P(2l ® K) into Ko(QL).

Denote by -K"o(2t)+ the image under this map. If we have

(1): Ko(%)+ - KQ(%)+ = Ko(&), (2): #<,(»)+ n (-K0@L)+) = {0},

then (i(To(2l), i^o(2l)+) is called an ordered group, and in other words, i£o(2l)

is identified with the Grotendieck group of P(2l ® K). If 21 ® IK has an ap

proximate identity of projections, i.e., 21 is stably unital, then the condition

(1) holds. In addition, if 21 ® K contains no infinite projections, i.e., 21 is

stably finite, then the condition (2) holds.

Denote by P(2l) the subset of P(2l ® IK) (or its image in Kq(%)) corre

sponding to projections of 21, and called the scale of 21. Even if 21 is simple,

stably unital, and stably finite, we can have P(2l) = {0}. Even if 21 is sim

ple, unital, and stably finite, P(2l) does not in general generate Kq^H). It is

said to be that (P(2l<8> IK),P(2l)) is the scaled semigroup for a C*-algebra

21, and (Kq(21), ifo(2l)+, P(%)) is the scaled pre-ordered ifcrgroup for 21.

Proposition 6.4.12. Let 21 = lim(2ln,7n?n+i) as before and 3n the ker

nel o/7n,n+i- Then (P(2l ® K),P(2l)) is the algebraic inductive limit of

((P((2ln/3n)®K),P(2ln/3n)), [7n,n+i]*) with [7n,n+i]* the induced map from

[7n,n+i] : %n/X -> Qln+iMi+i. Similarly, for K0{2i) and ^(21). That is:

(P(2l ® K), P(2l)) ^ lim((P((2ln/an) (8) K), P(2tn/2fn)), [7n,n+i]*),

^(2l)^lim(^(2ln/Jn),[7n,n+i]*) /or j =0,1.

Proof. This follows in a way similar to the case of faithful inductive lim

its, i.e., with injective connecting maps, but one needs to handle non-

injective connecting maps as considered in lifting projections and their equiv

alence. Indeed, note that 21 = lim(2ln/3n, [7n,n+i]) with the connecting maps

[7n,n+i] injective. □
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Remark. This is not the same as in [1] and should be the right statement.

Proposition 6.4.13. //Sh(2l) = Sh(<8) in SC, then

(P(2l <g> K), P(2t)) <* (P(*8 ® K),

as scaled semigroups and scaled pre-ordered Ko-groups respectively, and also

J/Sh(2l) < Sh(*8) in SC, then P(2l® K), fC0(Sl), and Ki(&) are direct

summands of P(<B <g>K), Ko(55), a"d i^i(3S) respectively, with the induced

order and scale.

Proof. Let (2ln,7n,n+i) and (<8nA,n+i) be shape systems for C*-algebras

21 and *B. An equivalence between the systems gives the following diagram:

\o2

where the triangles commute up to homotopy. This diagram induces the

following diagram:

® K) -> ► P(2lfc2 <g> K)

P(»ni <2> K) -♦ ► P(©n2 ® K) —♦ •• P(® <8> X)

and similarly, P(- ® K) can be replaced with Ko(-) and Ki(-). The induced

diagram commutes, so we obtain an isomorphism between the inductive

limits P(a ® K) and P(53 <8> X). Since all the induced homomorphisms

preserve order and scale, the order and scale of the inductive limits are the

inductive limit order and scale respectively.

In the case that Sh(2l) < Sh(93), only the odd triangles commute, we

obtain scaled homomorphisms a* : P(2l ® X) -»• P(® ® X) and 0 : P(<8 ®

X) -»■ P(a®X) with /?*oa* = idP(a®K). Similarly, P(-®X) can be replaced

with Ko(-) and Ki(-). □

Corollary 6.4.14. //Sh(2l) = Sh(C) and Sh(55) = Sh(3)) both in SC, then

) S K.(€ ®,nax ©),

>min «) = lf*(C ®min
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as scaled preordered groups.

IfC*-algebras 21 and 03 are stably shape equivalent, i.e., Sh(2l <g> K) =

Sh(03 ® K), then K0(2l) = JSTo(©) a* preordered groups.

Proof. As shown above, the shape equivalences induce the shape equiva

lences for the maximal and minimal C*-tensor products and free products

of those C*-algebras 21, 03 and <£, £).

Note that K0(X) = K0(2l ® K) for a C*-algebra. D

Remark. The assumption is not the same as in [1] and should be the right

one.

Proposition 6.4.15. Let 21 and 03 be stably unital C*-algebras. If we have

Sh(2l(g>K) < Sh(03<g>K) in SC, and*B is stably finite, then^is stably finite.

Proof. Let (2ln,7n,n+i) and (®nj 0n,n+i) be shape systems for 21 ® K and
03 ® K respectively. We may assume that 2tn and 03n are unital for each n

although the connecting maps are not unital in general. Then

with unital connecting maps between the unitizations of 2ln (and those of

©n), and (9^,7n,n+i) 3 (®ni^n,n+i) in ^^i- % assumption, 03 ®K con
tains no infinite projections. Hence 6n{*&n) contains no infinite projections.

The same is true for ^+(03+) ^ 0n(©n) © c^ ^d also for (03 ® K)1 2*
lim^(03+)/ker(^+). Thus (03 ®IK)+ contains no non-unitary isometries.

Note that a unital inductive limit 2) = lim(2)n, 5n)n+i) contains no non-

unitary isometries if and only if, for any k and any isometry sGSfe, there

is an n > k such that 5k^n(s) is unitary in S)n. If s is an isometry in 21+,

choose i with ki > m, then a* o 7+ fc. (5) is an isometry v in ©+ . Thus, for

sufficiently large j} we have 0+.n.(v) unitary in 03+.. Then /3j o ^ijfl (v) is

a unitary in 2t^+i, which is connected by a path of unitaries to 7+^. ^s).

It follows that 7^fy+1(s) is unitary. Hence (21 ® K)+ can not contain non-

unitary isometries. □

Remark. It follows that if C*-algebras 21 and 03 are stably shape equivalent

and if they have shape systems in a suitably nice class of C*-algebras, then

we have the Kasparov's KK-group isomorphisms:

£,2)) ^

, 21 ® 2)) ^ Xiir(£, 03 ® 2))
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for all suitably nice C*-algebras £ and 2). However, it is difficult to write

down an explicit invertible element of KK(%L,*B), even when 21 and 53 are

AF algebras, or when 21 = C(WSl) and 53 = COS1), where WS1 means the

Warsaw circle.

Note that Kasparov equivalence, i.e., existence of an invertible element

in KK(QL, 53) is much weaker than stable shape equivalence. For example,

if 21 and 53 are AF algebras, then

and the Kasparov (or intersection) product corresponds to composition of

homomorphisms, so 21 and 53 are Kasparov equivalent if and only if Ko(QL) =

Ko(53) as groups, ignoring the order structure completely. But 21 and 53 are

stably shape equivalent if and only if they are stably isomorphic.

Notes. This section of four subsections is based on the paper [1] of Black-

adar. This is just the beginning of the story of the noncommutative shape

theory. More investigation about the theory would be continued in some

where else in the future. It is hoped that our effort here will not be in vain.
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