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Abstract

In this paper we review, rebuild, and study the theory of the set
of all extremal points of the unit ball of a C*-algebra, consisting
of partial isometries with a certain condition, and also the theory
of extremally rich C*-algebras, and moreover, the theory of the -
function in operator algebras, as well. :
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Introduction

This paper is devoted to reviewing, rebuilding, and studying the theory
of the set of all extremal points of the unit ball of a C*-algebra, consisting of
partial isometries with a certain condition, and also the theory of extremally
rich C*-algebras, mainly, in the first section. The definition for C*-algebras
to be extremally rich is introduced by Brown and Pedersen [3]. With careful
reading the item and some efforts, revealing lines and secret, more detailed
full proofs are provided and could be useful for reference.
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In the middle of the first and third sections, we give a review on higher
extremal richness for C*-algebras, introduced by the author [21]

In the third section, with the same mind as above, we review, rebuild,
and study the A-function in operator algebras, studied by Pedersen [17].
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1 Geomerty for the unit ball of a C*-algebra

This section is taken from Brown and Pedersen [3].



1.1 Quasi-invertible elements

Let 2l be a unital C*-algebra and 2~! be the group of all invertible elements
of 2. Regard 2 as an operator algebra on a Hilbert space H. Let 2 be
the weak closure of 2 in B(H) of all bounded operators on H, called the
enveloping von Neumann algebra of 2, isomorphic to the second dual of 2
as a Banach space.

Definition 1.1.1. For each T € %, define
m(T) = inf{||T¢|| | € H,|I¢] =1}, m(|T]) = sup{e > 0|eI < [T},

where [ is the identity operator. We may call m(T) the spherical distance
of T (from zero).

It follows that m(T) = m(|T|). Indeed, note that
ITE|? = (T€, T¢) = (T*T¢, &) = ((T*T)"/%, (T*T)M%¢) = ||Te||?
and if for £ € H with 1 = ||¢]|2 = (£, £) (the inner product), we have

e = (e&,&) <(|T)g, ¢ ),

since (|T'1¢,£) < |||T)€]l, then € < m(T), so that m(|T|) < m(T). Con-
versely,

m(T)* < |TE| = |ITIE|? = (1T, &) = (T*T¢, £).

Hence 0 < m(T)%I < T*T. It follows by a fact of C*-algebra theory (see
[10]) (or Lowner-Heinz inequality (see [7])) that m(T)I < |T|, Therefore,
m(T) < m(|T)).

Thus, m(T') > 0 if and only if |T| is invertible. Since |T| = U*T where
T' = U|T| is the polar decomposition of T, that is equivalent to say that T
is left invertible in B(H) and also in .

Let 2; denote the closed unit ball of 2 and . the set of all extreme
points in the convex set 2;. Recall that elements of 2l consist of partial
isometries V' of 2 such that

(I-VVATI - V*V) =0

(see [13]). Thus, the defect projections I — VV* and I — V*V for V are
(said to be) centrally orthogonal. In particular, we have

(I=VVYI-V*V)=(I-VV*) = (I-VVIV*V =0
and I = VV* + V*V — V(V*)2V. Moreover, for any A, B € ¥,
(I - VVA*B(I - V*V) = (A(I - VV*))*(B(I - V*V)) =0,



Theorem 1.1.2. For an element T of a unital C*-algebra 2, the following
conditions are equivalent:

(i) Ted1u a1,

(i) There are orthogonal closed ideals J, & of A such that T + 7 is left
invertible in /T and T + R is right invertible in U/ R.

(ili) There is an & > 0 such that m(T + J) > ¢ and m(T* + R) >ein
2A/T and A/ R respectively.

(iv) There is an € > 0 such that max{m(n(T)), m(x(T*))} > € for any
irreducible representation m of .

(v) T and also T* have closed ranges, and the projections on the or-
thogonal complements. i.e., the kernel projections of T* and T are centrally
orthogonal in 2.

(Vi) There is an element V € A, withker V = ker T such that T = V|1,
and 0 is an isolated point in the spectrum sp(|T’|).

(vii) T € 23"

Proof. (i) = (ii). Let T = AVBfor A, Be A and V € A,. Let J and &
be the closed ideals of 2l generated by the defect projections I — V*V and
I—VV* of V, respectively. Since V € 2., we have JN & = {0}. Indeed, If
a € IN K, then a = lim,_,o Z}’zl ajn(I = V*V)bjn for some ajn, bjn € 2A
and a = limm 0 D peq Chom (T — VV*)d m for some g m,drm € A, so that

n m
a® = (lim 2; (I = V*V)bjn)( im > cim(I = VV*)dkm)
]:

n—00
k=1

n m
= lim (3 ajnl =V V)b 3 chom(I = VV*)dim)
j=1

n,M—00
k=1

n o m
- n,?lrlz.llzoo(z ;aja'n(l - V*V)bj,an’m(I — VV*)dk,m) =0.
J=1k=1

Since J& = J N &, we have J and & orthogonal.
Let p: A — 24/7 be the quotient map. Note that p(V) is an isometry
because

p(V)*p(V) = (V*+3)(V + N=VV+I=I+7=p().
Since A*A > el and B*B > &I for some £ > 0, we have

p(T*T) = p(B*V*A*AV B) > ep(B*V*V B)
=ep(B*B) > &%p(I).

— 22 —_—



It follows that p(|T')) is invertible in 2/J, whence p(T) is left invertible in
A/

Let 7 : 2 — 2/& be the quotient map. Then m(V*) is an isometry.
Since AA* > 61 and BB* > 61 for some § > 0,

m(TT*) = n(AVBB*V*A*) > r(AVV*A*)
= 6m(AA*) > 82n(1).

Hence 7(|T"|) is invertible. Since |T*| = TU* for T = U|T| the polar
decomposition of T, w(T') is right invertible in 2/ &.
(ii) <> (iii). This is evident from the definition of m(T') given above.
(iii) = (iv). If 7 is an irreducible representation of 2, then ker is a
prime ideal, i.e., if J; and Jy are closed ideals of 2 such that J132 C ker 7,
then J; C kerm or J9 C kernw. Since JN K& = 0, it follows that either
J Ckermor R C ker7. In the first case,

m(m(T)) >m(T+73) > ¢

because sp(7(|T'|)) C sp(|T| + J) since there is a *-homomorphism from
A/J to A/kerw. Indeed, first note that

m(T)* = n(T)*n(T) = n(T*T) = n(IT|*) = n(|T|)*.

Hence |7 (T)| = 7(|T)). Similarly, we have |+ 3| = |T'| + 3. Now suppose
that m(7(T)) < m(T + J3). Therefore,

m(n(|IT)) = m(|m(T)[) = m(n(T)) < m(T +3) = m(|T +3]) = m(|T| +3).

Thus, m(n(|T))I < m(|T| + 9)I < |T| + 3. It follows that m(n(|T))) &
sp(IT| + 3). On the other hand, since |T'| + J is invertible, m(|T) is also
invertible. Hence, m(n(|T])) > 0 and m(n(|T|))I < (|T|), and since the
set of all invertible elements of (%) is open in it, m(=(|T))) € sp(7(|T)).
This is the contradiction.

In the second case that & C kerm, we obtain m(n(T*)) > & similarly.

(iv) = (iii). Let Prim(%) denote the primitive ideal space of 2 equipped
with the Jacobson topology. Elements of Prim(2) are kernels of irreducible
representations of 2A. We have

m(n(T)) = m(r(IT])) = a — ||ln(al — |T)|
for any a > ||T||, because ||T'|| = |||T’||| since

1TV = IT*T) = NIT) = [l|)1%,



and 0 < A < ||A||I for A € A since

(A&, &) < | ACIIlIEN < ILAIIIEN? = (|1A]€, €),
and |T| < |||IT|||II < ol implies
0<al =n(|T) < [Im(ad — TN

so that (a—||mw(al —|T))||)I < n(|T]). Hence a—|lr(al—|T))|| < m(x(|T|)).
Conversely, for 0 < eI < 7(|T), it follows that af + eI < w(|T|) + ol for
a > ||T||. Therefore,

0<al —n(|T|) < (e —e€)I, which implies |jaf — T(|T)]| € a —e.

Thus, € < a —|w(al - |T))||. Hence, m(r(|T))) < & ~ ||r(al — |T})].
Also, the function A" : ker 7 ~ ||7(A)|| for each positive element A € 2
is lower semi-continuous on Prim(2). Indeed, we have for each a >0,

(AM)7([0,a]) = {kern € Prim(2) | sp(7(A)) C [0, o]}

is shown to be closed in Prim(2A) (see [13]). Therefore, the inverse image
(A")7!((e, 00)) is open there. It follows that both functions fr and fr« on
Prim(2A) defined by

fr(kerm) = m(n(T)) and fr«(kern) = m(m(T*))

are upper semi-continuous. Indeed, for 8 > m(n(T)) = m(w(|T)), take
a > max{f, ||T||} so that m(r(T)) = a — ||x(al — |T))||. Hence fr is upper
semi-continuous since f7!([8,00)) is closed so that 710, 8)) open, and
so is fr-. Since we have

sP(IT1) U {0} = v/sp(T*T) U {0} = /sp(TT*) U {0} = sp(|T*]) U {0},

we see that fr(L) = fr«(£) for every £ € Prim(21) if non-zero. Indeed, let
£ = kerm and m(n(|T|)) # 0. Then '
m(n(|T]) = min{X € sp(x(|T})) \ {0}}
= min{A € sp(r(|T*))) \ {0}} = m(x(|T*])).
Let P = {£ € Prim(2) | fr(£) < €} and Q = {£ € Prim(2) | fr+(£) < €},

which are open in Prim(2), and disjoint by the assumption (because if
PN @ #0, then the contradiction). Then the corresponding closed ideals

J = ker(Prim(2) \ P) = n{£ € Prim(2) \ P},
& = ker(Prim(2) \ Q) = N{£ € Prim(2A) \ Q}



are orthogonal. Indeed, if J& # {0}, there are a € J and b € & with ab # 0.
Then there is an irreducible representation 7 of 2 such that m(ab) # 0, so
that 7(J) # {0} and 7(R) # {0}. Hence 7 € P and 7 € Q. This is the
contradiction. Let p : % — 2/J be the quotient map. Then

m(p(T)) = inf{fr(L)| £ € Prim(A) \ P} > ¢.

Indeed, the first equality holds as follows. Since J C £ for £ € Prim(2) \
P with £ = kerm, there is the quotient map from 2/J to 2/£, so that
llo(a)ll = |lm(a)|| for a € Y. Therefore, for o > || T,

m(n(T)) = a —|lr(ad = |T)|| 2 a~ |lpa - |T|)|| = m(o(T))

where the last equlity for the *-homomorphism p is shown as the same
way exactly as above. Hence m(p(T")) < the infimum above. Furthermore,
now assume that m(p(T)) < the infimum above. There is an irreducible
representation y of /7 such that ||p(al — |T|)|| = ||u(e(al — |T|))|l, which
corresponds to the irreducible representation fi of 2 such that i(J) = 0
and g = po p. Hence i € Prim(A) \ P, which implies the contradiction.

Similarly, m(T™* + &) > € in A/A.

(iii) = (v). Since

sp(IT]+3) C[e,IT|l], and sp(IT*|+R) C [e, 1T,

it follows that
sp(IT*|+3) C [, ITNU {0}, and sp(|T|+ &) C [e, || T U {0}

using the spectrum identity for |T'| and |T*| checked above. Since I N & =
{0}, the canonical map from 2 to /I @ /R is an injection, i.e., there is
a *-homomorphism from the image of 2 to 2. Thus, we see that

sp(|T)) C [e, [ITNTU {0}, and sp(IT™|) C [e, |ITl] U {0}.

If |T| is invertible, then its range is closed clearly, and the range of T is
also closed via polar decomposition. By the inclusions above, in particular,
if [T'| is not invertible, 0 is an isolated point in sp(|T|). This is equivalent
with |T'| and also T having closed ranges. In fact, 0 is an eigenvalue for
|IT'|, and there is a projection p (given below) such that |T|+ p is invertible.
Hence the range of |T'| is closed. Conversely, if the range of |T is closed, we
assume that 0 is not an isolated point of sp(|T’|). Since |T| is normal and
has its range closed, the residue and continuous spectrums are empty, so
that there is a sequence ()\,) conversing to 0, each of which is in the point



spectrum of |T|. Anyway, spectral theory and functional calculus immply
that there is f,(|T|) invertible such that |||7'| — f.(|T])|| < &, where fu() is
an invertible continuous function on sp(|T’|) that approximtates unifomly
the coordinate function ¢ — ¢, for example, f,(t) = 1/n for t < 1 /m and
fa(t) =t for t > 1/n. Then |||T)¢ — fo(IT|)¢| < € for any £ € H. Let
§= fa(IT|)~'n for any n € H. Then |||T|¢ — || < e. Therefore, the closure
of the range of |T| is H, but the range of |T'| is not equal to H. This is the
contradiction.

The projections on the orthogonal complements of |T|(H ) and |T*|(H)
are given by A(|T|) and h(|T*|), where h is any continuous function on Ry
such that A(0) = 1 and A(t) = 0 for t > € via spectral theorem. It follows
by spectral theorem that

{0} = h(sp(IT] + 3)) = sp(h(|T| + 7)) = sp(h(|T}) + 7).
Therefore, A(|T|) € J. Similarly, h(|T*|) € &. Thus,
R(|ITNAR(IT*]) C TN & = {0}.

(v) = (vi). Since |T| and |T*| have closed ranges, 0 is an isolated
point in both sp(|T'|) and sp(|T*|). Thus we have a continuous function on
sp(|TY) defined by e(0) = 0 and e(t) = 1/t for t > ¢ > 0 (small enough). Let
V =Te(|T|) € A. Then V is a partial isometry in 2 with ker V = ker T,
and V|T| = T. Indeed,

V'V = e(ITT*Te(IT1) = e(|T|)|T|*e(|T])

is a projection since e(t)t?e(t) = 0 if t = 0 and = 1 if ¢t > . Also,
VIT|=Te(|T|)|IT| =T since e(t)t =0if t =0 and = 1 if ¢t > ¢.

From the polar decompositon above, the range projections of T' and T*
are VV* and V*V respectively. By the assumption, (I =VVIHA(I-V*V) =
{0}. Therefore, V € ..

(vi) = (vii). If T = V|T| for some V € %A, with kerV = ker T, then
I—-V™*V is the projection on the kernel of [T'|. Indeed, V*V is the projection
to the closure of the range of |T'|. Hence its complement is that one. Since
0 is an isolated point of sp(|T), it follows that A = |T| + I — V*V is an
invertible element of A, , and

VA=V|T|+V - VV*V = V|T|.
Hence T € 2[62111.
(vii) = (). T T =VAeAAT", then T = IVA € A~ 190,21, a



Remark. Let £ be a modular left ideal of an algebra %, i.e., AL C £, and
for some u € A, a — au, a —ua € £ for all a € 9, that is, A/L unital (see
[10]). The ideal of 2 defined by J = {a € % |a2 C £} for £ maximal is
called the primitive ideal of 2 associated to £. This ideal is just the kernel
of an irreducible representation of 2. An irreducible representation 7w of 2A
is unitarily equivalent to the GNS representaion m, accociated to a pure
(cyclic vector) state . A primitive ideal of a C*-algebra is always prime.
For this, note that kerm, = Ny + Ng as J, where N, as £ is a closed left
ideal of 2 defined by {a € 2| p(a*a) = 0}, and m,(a)(b+ Ny,) = ab+ N,
for a € A and b+ N, € H, the Hilbert space completion of A/N,, with
the inner product:
(a+ Np,b+ Ny) = p(5").

As we observed above,
m(T) = m(|T|) = min{X € sp(|T})},
so that we may call it the spectrum distance of |T'| from zero.

Proposition 1.1.3. If the primitive ideal space Prim(2A) of a unital C*-
algebra A is a Hausdorff space, then the conditions in the theorem above
are equivalent to the following condition:

(viil) For any irreducible representation m of A, n(T) is either left or
right invertible.

Proof. (iv) = (viii). If m(x(T)) > 0, then «(T) is left invertible since
|T'| = U*T via polar decompositon T' = U|T|, and if m(mw(T*)) > 0, then
n(T') is right invertible since |T*| = TU*.

(viii) = (iv). If Prim(2) is a Hausdorff space, the function

ker m — max{m(n(T)), m(x(T™*))}

is continuous, because all norm-valued functions on Prim(2l) such as ker 7
lw(IT[)|| are continuous, and we have m(n(T)) = o — ||m(cl — |T|)|| for any
a > ||T'|| as shown above. By assumption, the function is never zero. Since
Prim(2() is compact, the function has the minimum positive. Indeed, its
compactness can be proved by considering a family of closed subsets that
have finite intersections non-empty to show that the intersection of the
family is non-empty by using the property of hull-kernel topology. O

Example 1.1.4. There is a C*-algeba 2 with an element T that does
not satisfy the conditions in the theorem above; the image of T under any
irreducible representation of 2 is left or right invertible. Let H = ZQ(Z)



and B(H) ® ¢(N) the C*-algebra of all convergent sequences S = (Sp) with
each Sn € B(H). Let P denote the projection on the subspace 12 (N) of H.
Define

A= {5 =(S1) € B(H) ® c(N) | (I = P)SooP = PSoo(I — P) = 0},

where So = limy,_o Sy, € B(H). Then any irreducible representation of A
either passes through one of copies of B(H ) obtained by evaluating S — S,
for some n € N, or it passes through one of two copies at infinity obtained
by the evaluations S — S, P and S — Soo(I — P). Indeed, if it does
pass through more than one such copy, it does have non-trivial invariant
subspaces. This is the contradiction to its irreducibility.

Let (ex) be the standard basis for H. Let T, be the weighted bilateral
shift defined by Thex = eg41 for k # 0, and Trep = n~le;. Let Tooey, = ksl
for k # 0, but Teeeg = 0. Then T,, — T, in B(H). Indeed, it follows by
direct computation that :

ITné — Tkl = In" e || = ™ ap| < n~?

for § =372 arer € H with ||¢|| = 1. Hence | T}, — Tl < 1/n. More-
over, T e, = ex_1 for k # 1, but T3.e1 = 0. Indeed, for ¢ = 3 ages,
n= Z:Blel € H)

(Tooksm) = (D ckeryr, Y Brer) = (3 ap-rex, Y B

k0 kA1
=Y 1B = i
kAL k20
=& Be) = (& frerr) = (€, Thn).
1#0 1£1

Thus, Too and Tg, commute with P. Indeed,

(TooP&,m) = (P&, Ton) = (Y oner, > frer—1) = > anbirt,
k=1

k>1 1>2

(PToof,m) = (Tock, P) = (Y akeryr, y_ fFrer) = > ap—1f = > kBt
k=2 k=1

k>1 >1

Consequently, T = (T},) belongs to 2 to be non-empty.
For every n, T, is invertible. Moreover, Too P is left invertible in AP,
being the unilateral shift on 1?(N), whereas Tpo(I — P) is right invertible



in A(I — P), being the adjoint shift on {*(Z \ N). Indeed, P = T TooP =
T3, PTP and

(I = P) = TooT%(I — P) = Too(I — PYTZ (I — P).

It follows that the image of T’ under any irreducible representation of 2 is
either invertible, left invertible, or right invertible. Nevertheless, T' does
not satisfy the condition (vi) above, because sp(|T,,|) = {n~1,1}. Indeed,
direct computation shows that Tner = ex_y for k # 1 and Tjre; = n~le,
so that T;T,er = ey for k # 0 and T)*T,eq = n~2ey. Hence

sp(|Tnl) = Vsp(T3Tn) = v/{n"%,1} = {n™,1}.

Remark that a separable example can be constructed, as given by the C*-
subalgebra of 2 generated by T, together with all sequences of compact
operators tending to zero at infinity.

We denote by 22[;1 the set of all elements of a unital C*-algebra 2 sat-
isfying the equivalent conditions above, and the elements are called quasi-
invertible. It follows from the condition (iv) that ;! is open. In the
case where 2l is a prime C*-algebra, i.e., if the zero ideal of 2 is prime,
equivalently, if every pair of non-zero closed ideals of 2 has the intersection
non-zero, in particular if 2 is simple, then the elements of Ay ! are either
left or right invertible (by the condition (viii)).

Definition 1.1.5. For T € 2!, define

mg(T)) = max{e| (0,¢) Nsp(|T)) = 0}
= inf{max{m(n(T)), m(x(T*))} | = an irreducible representation of A}

where the second equality follows from the proof of the theorem above. If
T & A;', set mg(T) = 0, so that A1 = {T € %A|my(T) > 0}. For any
T € %A, define

ag(T) = dist(T, A; 1)

so that o vanishes on the closure of At

We may call my(T') the spectral distance (from zero) for T, and aq(T)
the distance of T' to 2 !.

Proposition 1.1.6. For any T € 2, we have

mq(T) = dist(T, 2%\ A;Y).



Proof. Since ;! is open, if T ¢ 2,1, both sides give zero to be equal.
Let T € A7 with T =V|T| and V € . Let

To = V(IT| = mqg(T)V*V)) = V|Tp|.
Indeed, we have
TsTo = (7| — m(T)V*V)V*V(|T| — my(T)V*V)
= |T|V*V|T| - mg(T)V*V|T| - mg|T|V*VV*V + mq(T)2V*VV*V
= [T = 2mq(T)|T| + mg(T)*V*V = (|T| — mg(T)V*V)2.

Clearly, ||T'— To|| = ||mq(T)V|| = mq(T). It follows from the condition (vi)
above that Tp ¢ A7 1 since spectral theory implies that 0 is not isolated
in the spectrum of |T'| — my(T)V*V via functional calculus, where V*V is
viewed as a function p defined as p(0) = 0 and p(t) = 1 for t € sp(|T)
nonzero. Therefore,

dist (T, A\ A1) < mg(T).

Conversely, if B € 2, then for any irreducible representation m of A we
have

m(n(T + B)) 2 m(n(T)) - ||x(B)|| 2 m(x(T)) - || B].

Indeed, note that for any ¢ € H; the representation space for 7 with norm
one,

Iw(T)EN < NIm(T + B)ENl + [Im(BY(=&)I| < |Iw(T + B)E|| + ||m(B)]!-
Similarly, we get m(n((T + B)*)) > m(«(T*)) — || B||. Thus,
m(n(T + B)) V m(n((T + B)*)) = m(x(T)) v m(x(T*)) - ||B||,

where V means maximum. From the condition (iv) in the theorem above,
if | B|| < mq(T), then T + B € ;. It follows that

mq(T') < dist(T, %\ 2, 1).
Indeed, if C =T + B ¢ ;! then mo(T) < ||B|| = ||IT - CJ|. O

Corollary 1.1.7. The spectral distance function mg(-) on A7 L and the
distance function aq(-) on A to A7 L satisfy the following: for S, T € A and
z€C,

mq(2T) = |2lmy(T) and  |mg(S) — my(T)| <[ S - T;
aq(2T) = |2|ag(T) and |og(S) — ag(T)| <[l S - T



Proof. Homogeneity follows from the fact that A7 ! is stable under multi-
plication with non-zero complex numbers. Note that |2T| = |2||T|, and

dist(2T, ;') = inf [|27 — B|| = || inf |7 — 271 B|| = |2|ay(T).
For the inequalities as continuity, note also that
ISEl < IS =TIl + IT¢ll; 1S~ Bl < |S~T|| +||T - B
forﬁeHandBEQl‘;l. a

Remark. The set 2, of extreme points is described as the inner core in
A1
q
R = (C\{0})2e = {T € A, | my(T) = ||T||}.
Indeed, if mg(T) = ||T|, then sp(|T]|) = {0, |T||}, so that |T'| = ||T||P with
P a projection via functional calculus. Thus, T = ||T||VP with V € 2,
since T € 2. Note also that

(VP)(VP)*=VPV*=VV* (VP)*(VP)=PV*VP=P=V*V.

Hence VP € 2 since (I — VV*)A(I — V*V) = {0}. Thus, T € Ry, C
(C\ {0})%. Conversely, let zV € (C\ {0})%e. Then m,(2V) = |z|mg(V).
Since V*V and also |V| are projections, we have sp(|V|) = {0,1}, so that
mg(V) =1 = ||V||. Hence my(2V) = ||zV|.

The two functions oy and mg measure the distance to the boundary
oA; Lof A7 ! from the outside of Ay ! and from the inside, respectively.

Proposition 1.1.8. Let T € A. If |T — A|| < B for some A € At
with A = WIA| and W € ,, then T + BW € A7* with my(T + W) >
BT — A|l. Moreover, W*T + BI € %4~! and TW* + BI € -1,

Proof. We have

TH+W=W+A+T—-A
=W(EW*W + |A|) + T — A.

The spectrum of SW*W + |A| is disjoint from the interval (0, ). Indeed,
let g be a continuous function defined by g(0) = 0 and g(t) = Bl +t

for ¢ € sp(|A|) \ {0}. Functional calculus and spectral theory imply that
BW*W + |A| = g(|A]) and

sp(9(lA1)) = g(sp(|A])) = {0} U{ B+ ¢| ¢ € sp(|A]) \ {0}}.



Therefore,

mg(T + W) > my(W(BW*W + |A|)) — ||IT - A||
= mqy(|W(BW*W + |A|)]) — ||IT — Al
>B—|T-A||l>0,

where note that
(BW*W + |A)W*W (BW*W + |A|) = (BW*W + | A|)?

and hence |W(BW*W + |A|)| = BW*W + |A|.
For the other statement, put B = W*(T — A). Then

W*T + BI = B + |A| + BI = (B(|A| + B) "1 + I)(|A] + BI).

We have
1Bl < IT - All < B < |I(JA| + D)~ 71

since 0 < BI < |A| + BI so that (JA| + BI)~' < B!, which implies
I(IA] + BI)~!|| < B~1. It then follows that B(|A|+ BI)~! + I € %A~! since
|B(|A] + BI)7!|| < 1, whence W*T + 8I € 2~!. Thus, -8 ¢ sp(W*T), so
—B & sp(TW*) either, since 3 # 0. O

Denote by (Ql;l)_ the norm closure of 2A; 1

Theorem 1.1.9. IfT € (A;1)~ \;t, there is an irreducible representation
7 of A such that w(T') is neither left nor right invertible in B(Hy).

Proof. Since T ¢ -, there is a universal net (%;) in Prim () such that
max{m(T + B;), m(T* + B;)} — 0,

where universality means that for any subset Y of Prim(2), the net is
either eventually in Y (i.e, B; € Y for any i > i some) or eventually
in Prim(®) \ Y. For each 4, choose pure states ¢; and 1; whose GNS
representations have kernel B;, such that

@i(|T)) <2m(T +B;) and  %;(|T*|) < 2m(T* + B;),
because via GNS (7, &,,) for o,
PillT1) = (moi (ITEpis €¢) < Il (IT)E il < 2m(my, (IT1)) = 2m(T +By),

and similarly for ;. Since the net is universal, there are states ¢ and ¥ of
2, such that ¢; — ¢ and 1; — 9 in weak* topology. Note that for a unital



C*-algebra 2, its state space is the weak* closed convex hull of pure states of
2. In particular, it follows from those estimates that o(|T]|) = ¥(|T*|) = 0.
Let § denote the closed set of limit points (= accumulation points) of
(B:) in Prim(2). Put J = ker § the intersection of elements of §. If A € J ,
then A € B for every B € §, so that ||A+ 8| = ||0 + B|| = 0, whence

€= {B € Prim() ||| 4 + B|| > ¢}

is a compact subset of Prim(%), disjoint from § for every ¢ > 0. If (B;)
were frequently in € it would have a limit point in € by compactness, which
is impossible. Thus (8;) belongs to Prim(2l) \ € eventually, and since this
happens for every & we conclude that ||A + B;|| — 0. It follows that

lp(A)] = lim lpi(A)| = lim |<7r¢’i (A)§<Pi|£‘Pi>|
< lim|jmy, (A)|| = lim ||4 + B4 = 0.

Similarly, 9(A) = 0. Since this holds for every A € J, the states @ and 9 are
viewed as those of 2/J. Since ¢(|T|) = ¥(|T*|) = 0 it follows that neither
|T|+3 nor |T*|+ 7 are invertible in 2/J. Indeed, if |T| +3J were invertible,
IT'|+3 > 6I for some § > 0. Then o(|T|+3) = o(|T|) = 0 > dp(I) = § > 0,
the contradiction. Therefore, there are irreducible representations of A/7
with kernels ©/J and fR/J such that

m(|T| + D) = m(|T"| + ) =0,

where (2/3)/(D/J) = A/D and (A/3)/(R/3F) = A/R. Indeed, if m(m(|T|+
J)) > 0 for any irreducible representation 7 of %/J, then ©(|T| + J) is
invertible, so that |T| + J is also invertible via universal representation.

Assume, to obtain a contradiction, that |T'| + % and |T*| + D are both
invertible in /R and /D, respectively, so that

m(T+R)>e and m(T*+D)>¢

for some € > 0. Now use the fact that T' € (2;1)" tofind S € At with
|S = T|| < 1/3¢. It follows by norm continuity that

m(S+D) <1/3¢ and m(S* +R) < 1/3¢;
m(S+R) >2/3¢ and m(S* +D) > 2/3¢,

where note that

e=m(S+R) <m(T+R) —m(S+R) < [m(T+R) —m(S+R)| < 1/3e.



However, since sp(|S|) and sp(|S*|) are the same, zero apart, we have m(S+
D) = m(S* + D), unless one of the values is zero. It is therefore concluded
that

m(S+ D) =0=m(S* +R).
For every § > 0, the set {8 € Prim()|m(S + B) < 6} is open and
a neighbourhood of D. Since B; — D because D € hull(ker ) = F the
closure of § in hull-kernel topology, equal to , it follows that m(S+9B;) —
0. The same argument, applied to S* and R, shows that also m(S*+%B;) —
0. But this is the contradiction, as S € Ay 1. Thus we obtain that either

m(T +R) = 0 or m(T* + D) = 0. Therefore, there is an irreducible
representation 7 with kernel © or R, such that

0=m(a(T)) = m(|m(T)]) = m(|n(T)*|) = m(n(T*)),
which says that neighther 7(T") nor 7(T*) is invertible in B(H;). O
Corollary 1.1.10. If ;! is dense in 2, then the condition (viil) above is
equivalent to those conditions (i) to (vii) above.

Proof. The implication (iv) = (viii) is checked before. We need to check
that (viil) = those equivalent conditions, ie., T € ;1. Suppose that
T ¢ 7', so that T''e @t~ \ 2,1, By the theorem above, there is an
irreducible representation 7 of 2 such that 7(T) is neither left nor right in-
vertible, which contradicts to (viii) that for each irreducible representation
7 of A, m(T) is either left or right invertible. O

Corollary 1.1.11. The element T = (T},) € B(1%(Z)) ® ¢(N) such that
(I = P)TeoP = PTo(I — P) = 0, where P is the projecttion to I2(N), in the
ezample above does not belong to the closure (& H-.

1.2 Extremal extensions of partial isometries

Proposition 1.2.1. Let Ey, Ey, Fy, F; be projections on a Hilbert space H
such that By + Ey = F; + Fy = I. Suppose that T € B(H) such that
FiTEy = 0 and FyTE; is a bijection of E1H onto F1H. If T is left or
right invertible in B(H), the same is true for any operator

S =RTE, + FoRE| + FoTE;, where R € B(H).

Proof. On the orthogonal decomposition H = FE1\H @ EyH = FyH @ FoH,
we have

T= (F1 + FQ)T(El + EQ) = ITFE, + FyTEq + FTE,
_(RTE 0 \_(4 0\ _( A o0
~ \FRTE; ETE,) — \C B)’ ~ \FRE, B)’



If T has a right inverse U in B(H), we have the equation:

(A O\ (K L\ _ (F 0
TU_(C’ B)(M N)_(O FQ),
where TU = (F1 + F3)T(E1 + E»)(E1 + Eo)U(Fy + F) viewed. Since A is

assumed to be invertible, K = A~!. Thus AL = 0 forces L = 0, whence N
becomes a right inverse for B. it follows that

A 0 K 0\ (F O
\F2RE;y B)\-NFRE1K N) \0 E)’
where NF,RE1K = NRK, so that S is right invertible in B(H).
If T has a left inverse V in B(H), we have the equation:

(K L A 0\ (EL O
=3 ) (6 5)-(% 5).
where VT = (Ey + E)V (Fy + Fy)(Fy + F2)T(E; + E3) viewed. Then N is
a left inverse for B. We then have

A1 0 A 0 _ E, 0
—~NF,RE|A™1 N F,RE, B) \0 Ey)’

where NFobRE;A™! = NRA™!, which shows that S is left invertible in
B(H). O

Let A be a unital C*-algebra and 2" the enveloping von Neumann
algebra for . If T € A, we have T = V|T| in ", but V ¢ 2 in general.
However, it follows from Stone-Weierstrass theorem that V £(|T|) € 2 for
every continuous function f on sp(|T’|) with f(0) = 0. Indeed, f can be
approximated closely (or uniformly) by polynomials without constant terms
and with variable |T'|. For every § > 0, let E5 and Fj denote the spectral
projections of |T| and |T*| = V|T'|V* in 2", respectively, corresponding to
the open inverval (4, 00).

Theorem 1.2.2. Let T € 2 a unital C*-algebra, with polar decomposition
T = VIT| in A". For each & > ag(T) = dist(T,2;?), there is an extreme,
partial isometry U in AU such that

UEs = FsU = VEs = FyV.
Namely,
Ux(,00)(IT]) = VX(5,00)(IT1)  and equal to  x(5,00) (IT*NU = X(s5,00) (I T*|) V-

For § < ay(T), there is no extremal extension of VEj in .



Proof. 1f § > 04(T) we can find A = W|A| in %2, so that W € e, with
. IT = Al < 6. Choose 8 and v such that ||T— A|| < 8 < v < 4. Define
continuous functions f and g on R, by

/v, 0<t<y, t/v?, 0<t<y,
fey={ e =10 i
1/t, y<t 1/t, v<¢
Now let B = (T + SW)(I + Bg(IT)V*W)~1f(|T|), where since ||8gco =
B/y <1and Vg(|T|) € % because g(0) = 0, we see that I+ Bg(|T|)V*W is
indeed invertible in 21, because ||Bg(|T|)V*W|| < |B9(IT))|| = ||8glloo < 1
via Gelfand transf(?rm, where the supremum norm is taken on the spectrum
of |T'|. Evidently, f(|T|) € A~1. Since T + BW € Ql(f_l’ it follows from 2!
being stable under multiplication by elements of %~ that B is also in Ag L
Calculate that
Ey(T + BW) = VV*"X ty,00) (IT*NVV*(V|T| + W)
= VX(,00) (VIT*[V)V*(VIT| + W)
=VE,|T|+ BVE,V*W
= VE,[T|(I + Bg(|T)V*W),
where X(v,00) () means the characteristic function corresponding to the open
interval (,00), and note that |T| = V*|T*|V and p(|T|) = p(V*|T*|V) =
V*p(|T*|)V for any polynomial p(-) with one variable, and X(y.00)(t) =
X(v,00)(t) - t - g(t) for t > . It follows that
EyB =VE,|T|f(|T|) = VE,,

where note that X(y,c0)(t) = X(y,00)(t) ¢+ f(¢) for t > 7. Also, VE,=F,V,
because
VX(v,oo)(lTl) = VX('y,oo)(lTl)V*V = X('y,oo)(VIT‘V*)V = X('y,oo)(IT*I)V'
Write B in the following matrix form:
B = (Fs + (Fy = Fs) + (I = Fy))B(Es + (Ey — Es) + (I — Ey))
FsBE;s FsB(E, — E,) FsB(I — E,)
= (F'y — F5)BEs (Fv - F5)B(E’Y - E’y) (Fv - Fé)B(I - E’y)
(I-F)BEs (I-F)B(Ey—E,) (I-FE)B(I-E,)
= (B'L])
Since we have
(Fs + (Fy — F5))B = Fy\B=FE)V = (Fs+ (Fy — F5))V
= VE, = V(Bs + (B, — E)),



it follows that

Fs5VE;s FsV(E, - E,) 0
B = (F'y ‘FJ)VEé (F7_F5)V(E’Y —E'y) 0
Bs; Bsy Bs3

and morebver,
FsV Es = X(5,00)(VITIV*)V Es = Vx(5,00)(IT|)V*V E; = V E,
F5V(Ey — Es) = X(500)(VIT|V*)V(Ey — E5) = VEsE, — VEs = 0;
(Fy = F5)VEs = (X(y,00) (VIT|V*) — X(5,00)(V|T|V*))V Es
=VE,Es—VE;=VE;—VE;=0,
(Ey — F5)V(Ey — Es) = V(Ey — Ej)* = V(E, — Ej)
so that B has the lower triangular form.

Choose decreasing continuous functions k; and hy from R4 to Ry such
that

hi(t) =1 (0<¢<9), hi(t)=0 (§<t); hi(t)ha(t) = hi(t) (V1)

where i = 1,2. For example, since k1 (t)(ha(t) — 1) = 0 for y < ¢ < 6, let
v < w < 6, define

hl(t)zﬁ(t—w), ha(t)=1 (y<t< o)

M) =0, ha(t)=——(t-3), (W<t<d).

Define C = B — hy(|T*|)B(I — hy(|T|)). Since we have

Fshi(IT*]) = (x(s,00) - Ba)(IT*]) = 0,

hi(lTI)E5 = (h;- X(J,oo))('TI) =0,

(I =F)(I = hi(IT*))) = (1 = X(1,00)) (1 = h))(IT*]) = 0,

(I = AT = Ey) = (1 = Bs)(1 = X(4.00))) (IT]) = 0,
it follows that
hi(IT*) B(I — ho(|IT))

= 0+~ (IT"|)(Fy — F5) + (I = F,))B(Es + (Ey — E5)(I — ho(|T])) + 0)

so that we have

0 0 0
h(IT*)B(I = ho(|T))) = ( 0 m(|T*)V(Ey - Es)(I — ho(|T)) 0)
B Bsay(I — ho(IT)) 0



where note that
hi(IT*))V(Ey - Es)(I — ho(|T)))
= (Fy — Fs)l(IT*)V (Ey — E5)(I — ho(|T|))(E, — Es),
Bso(I — ho(|T)) = Bsa(I — ho(|T)))(Ey — Es).

Moreover, observe that

h(IT* NV (Ey — Es)(I — ha(IT)))

= h(VITIV)V (X(,00) (IT]) = X(5,00) (ITN) (I = ha(ITY))
= VR (IT1) (Xr,00) (IT1) = X(8,00) (IT1)) (I = ho(IT1))

= V(X(1,00) (IT1) = X(5,00) (IT1)) (h1 (1 = ho))(IT]) = 0.

Therefore, the matrix form of C' becomes:

VE;s 0 0
C=B—h(|T*)B(I - hy(IT|)) = ( 0 V(Ey—-E;) 0 ) .
0  Bagho(|T]) Bass

If B is left or right invertible in B(H), then it follows from the proposi-
tion above that C also is left or right invertible, respectively, since V(Ej +
(Ey — Ej5)) is a bijection of (Ej5 + (E, — E5))H onto (Fs+(Fy— Fs))H. In-
deed, for £ € H, we have VE,%{ = F,\VE,§ € F,H, with |[VE,¢| = || E,£]|,
and for n € H,

Fyn = X(y,00) (IT*)1 = VX(y,00)(IT)V*n = VE,V*n € VE, H.
Note that with Baj = (Bs1, Bss), By, = (0, Basha(|T1)), and 05 = (0, 0)",
VE;s 0 0
B=<0 V(E, — Ej) 0)=(1;E7 1(3)2), C=<‘g}7 122)
Bs; Bsy Bss 2 33 2 P8

Such simultaneous left or right invertibility also holds for quotient im-
ages of the operators B and C. Therefore, it follows from B € Ay ! that
C € ;! also, by the condition (ii). '

Evidently, CEs; = F5C = VEs = F5V using the (first) matrix form for
C. Let C = U|C| be the polar decomposition of C in 2, with U Ae by
the condition (vi). We have

C*CEs = C*(CE5) = C*F3V = (F5C)'V = (F5V)*V
= V*E5V = V*X(5,00)(VIT|V*)V = E3,



whence |C|Es = Ej, because

Es = E5|C|E; = (IC|E5)*|C|Es = E},
so that |C|E; = Ej; because |C|E; is positive from |C|E; = E;|C|, i.e.,
(ICIEs¢, &) = (IC|Es, Es€) > 0. Therefore, UEs = U|C|Es = CEs =
V Es. Similarly, ‘

FsCC* = F5(F5;C)C* = F5(CEs)C* = (F5C)(CE;s)*
= FsV(E5V)" = X(5,00) IT* NV V"X (5,00 (IT*]) = F,
whence F5|C*| = F;5. Thus, F;U = F5|C*|U = FsU|C|U*U = F3C = FsV.
These relations also follow from the matrix form of C.
Now assume that V E5 = UE; for some U € 2, and some § > 0. Define

e € C(Ry) by e(t) = max{t — 6,0} for t € R;. For ¢ > 0,

T = U(e(|T)) + eI) = V(e(|T) + U,
since e = X(s,00) - €, 50 that e(|T|) = Ese(|T|). Evidently, T: € A A7 =
Ay 1, Moreover,

IT = Tell < NIT| - e(IT)Il +€ < 6+
Since € is arbitrary, we conclude that a,(T") = dist(T, A1) <6 O
Corollary 1.2.3. IfT = VT is the polar decomposition of an element of a
unital C*-algebra A, then each V f(|T|) in 2 has an extremal decomposition

UF(IT|) = VF(IT), with U € Y, provided that f is a continuous function
on sp(|T'|) vanishing on [0, 8] for some § > a,(T).

Proof. Since f = X(5,00) * [ we have
Uf(IT|) = UEsf(IT|) = VEs f(IT]) = V £(IT)).
a

Corollary 1.2.4. Every element T in A\ AL has a canonical approzimant
To in (A7Y)~, dce., |T - To| = aq(T) = dist(T, 2A;1).

Proof. Define eg(t) = max{t — aq(T),0}. Let T = V|T| be the polar
decomposition for T. Put Ty = Veo(|T|). Evidently, using the C*-norm
condition,

IT = To[l* = IV(T| = eo(TD)I* = (IT| = eo(IT)*]| = IIT| - ea(ITDI?,

so that ||T' = Tol| = [||T] — e(IT))|| = ||t — e(t)|loo = ag(T). It also follows
that To(2;1)~, because Ve (|T|) = Ue(|T|) for some U € ., where
ec(t) = max{t — e — 0g(T),0}. Set Tc = U(e(|T|) +€I), so that T, € %; 7,
converging uniformly to Tj. O




Proposition 1.2.5. For each T in U a unital C*-algebra, ande > 0,6 > 0,
there is S € A7 such that my(S) > € and ||S — T|| < ag(T) + € + 6.

Proof. Define e in C(R+.) by e(t) = max{t—a,(T)—6,0}. Let T = VIT| be
the polar decomposition of T. Choose an extreme partial isometry U € 2,
such that Ve(|T|) = Ue(|T]). Set

S=U(e(IT|) + eI) = Ve(V*IT*|V) + €U = (e(|T*|) + I)U.
We see that

IS =Tl = IV (e(IT]) - |T) + eU||
<lle—idlle +& < ag(T) +d +&.

Moreover, my(S) > € by the condition (iv). Indeed, check that

S*S = (e(|T|) + e)U*UU*U (e(|T]) + €I)
= (U(e(IT]) + eD))*UU* (e(|T*|) + e1)U
= ((e(IT")) + D)UY UU*(e(IT*|) + e)U = (U*(e(|T*|) + e1)U)2.

Hence |S| = U*(e(|T*|) + eI)U, and eU*U < |S|. Note that every irre-
ducible representation of U*UAU*U a, hereditary C*-subalgebra of 2 can
be extended to that of %, and its converse by restriction is also true. [

Proposition 1.2.6. If V is a partial isometry in a unital C*-algebra 2,
then either ag(V) = 1, or else ag(V) = 0, in which case V = UV*V =
VV*U for some U € ..

Proof. Put P =V*V = |V| since (V*V)2 = V*V. Let ag(V) <d <1, and
let e(t) = (1 — )~ max{t — 6,0}. Then there is U € 2, such that

V =VP=Ve(P)=Ue(P)=UP = UV*V,
because sp(P) = {0, 1} and id(1) = 1 = e(1). Moreover, note that
VV*UP=VV*VP=VV*V = V.

Hence VV*U(P¢) = VE for € € H. Since V is a partial isometry, VV*U is
a partial isometry from P(H) to V(H). Hence, VV*U = V. Note also that
T=U(P+el)=VP+eU € ;! for every € > 0, and that |T — V| <,
whence a4(V') = 0.

On the other hand, note that a4(0) = dist(0, A1) =0, because U(el) €
At for any U € %A, and € > 0. Therefore, ag(V) < |[V]|+e=1+¢, so
that ag(V) < 1, or using the estimate o, (V) < ||V|| shown above. O



1.3 Extremally rich C*-algebras

We say that a unital C*-algebra 2 is extremally rich if the set A7 1 of all
quasi-invertible elements is dense in 2.

If % is finite in the sense that every extreme point is unitary, then 2 is
extremally rich if it has stable rank one (of Rieffel [18]), i.e., if A~! of all
invertible elements is dense in 2. In particular, if 2 is commutative, i.e.,
2 = C(X) of all continuous functions on some compact Hausdorff space
X, then extremal richness of 2 is equivalent to that dim X < 1. However,
every von Neumann algebra is extremally rich, whereas the stable rank of
a von Neumann algebra is infinite unless the algebra is finite, in which case
that of is one. Thus the definition of being extremally rich, like the concept
of real rank zero (of Brown and Pedersen [2]), is viewed as generalization
of being stable rank one in a sense (or an infinite analogue of it). As we
shall see, the class of extremally rich C*-algebras includes stable rank one
algebras, von Neumann algebras (as well as AW*-algebras), and purely
infinite (simple) C*-algebras, and even Toeplitz algebras.

A non-unital C*-algebra 2 is said to be extremally rich if the unitization
A+ = A + CI is extremally rich.

Lemma 1.3.1. Let A and B be elements of a unital C*-algebra A such
that A*A+ B*B=1. IfA,B € Ql;l with polar decompositions A = U|A|
and B = V|B|, then UV* is a partial isometry in 2. Further, if W is
an extremal extension of UV*, i.e., W|UV*| = |VU*|W = UV*, then
W*A+ B € A, with mg(W*A + B) > 1.

Proof. Let P = U*U and Q = V*V. Since |A|? + |B|?> = I we have |B| =
(I —|A%)Y/2, so that |A| + |B| > I, because t + V1 — 2 > 1 for 0 < ¢ < 1.
Moreover, P and @ are the spectral projections of |A|, corresponding to
the intervals (0,1] and [0,1). Note that since |A|> < I, we have 1 >
IAPI = [l A*All = [|A|I?, and (x(o,y - id)(t) = t = id(t) for 0 < t < 1, and
X[o,1)(t)V1 =12 = V1 —1¢2 for 0 < ¢t < 1. In particular, PQ = QP and
I'= PV Q which corresponds to the union of P(H) and Q(H). Thus UV*
is a partial isometry with

(UVH*(UV*) = VU*UV* = VV*VPV* = VPQV* = (VPQV*)?,
(UVHUVH)* =UV*VU* = UU*UQU* = UPQU* = (UPQU*)2.

Therefore, note also that (UV*)((UV*)*¢) = UPQU*¢ for ¢ € H. Hence
UPQU™ is the range projection of UV*, so that WW* = UPQU™.
Assume now that W is an extremal extension of UV*, and consider the



element C = W*A + B. Note that we have
CPQ

(W*U|A| + V|B|)PQ = (W*WW*U|A| + V|B|)PQ
= (W (UPQU")U|A| + V|B|)PQ

= (W |VU**(UPQU*)U|A| + V|B|)PQ

= (VU*|VU*|(UPQU*)U|A| + V|B|)PQ

= (VU*(UPQU*)U|A| + V|B|)PQ

= (VQP|A| +VI|B|)PQ

= V(Al+|B)PQ

=VQP(|A| +|B|) = VP(|A] + |B]),

where note that (t+v'1 — £2)x(0,11()x0,1) () = X{0,1) ()X (0,1 (2) (t+ V1 = £2)
for0<t<1.

To show that mq(C) > 1, it suffices to verify this inequality in every
irreducible representation of 2. Passing to an irreducible representation of
2 without changing the notation, there are the following 4 cases:

(i): P=Q =1I. In this case C = V(|4| + | B|), whence

C*C = (Al +|B|)* = |AI” +4||B| + |BI|A| + |B]* > |AP + B = I,

where note that the sum of positive elements is also positive. Thus mq(C) >
1

(i) P=1,Q # I. Now VV* = T because V € Ae. Indeed, we
have (I — VV*)a(I — Q)¢ =0 for a € A and £ in the representation space
under an irreducible representation, so that I — VV* = 0, because there is
(I — Q)¢ # 0, which is always a cyclic vector by irreducibility. Thus, UV*
is an isometry, whence W = UV* since |UV*| = 1. Consequently,

C=W"U|A| + V|B| = VU*U|A| + V|B| = V(|4| + |B)),

so that CC* > I and my(C) > 1.

(i) P#1I,Q =I. Now UU* = I because U € Ae, so UV*(UV*)* =
UV*VU* = UQU* = I, ie., UV* a co-isometry, or VU* an isometry,
whence W = UV* since [VU*| = 1. The rest is the same as above.

(iv): P#1,Q # I. Consider

CQ=CPQ+C(I - P)Q
= VP(|A| + |B|) + V(I — P)|B|
=VP(JA| + |B|) + V(I — P)(|A| +|B|) = V(|A| + |B]),



where note that 1—x (0,1 (t) = xg(t)(= o(t)) for 0 < ¢ < 1. Since VV* =1,
CC* > CQC* =V (|A| + |B))>Vv* > I,
where I > Q = QQ* and (4| + |B))2> 1. a

Theorem 1.3.2. For a unital C*-algebra 2, the following conditions are
equivalent:

(i) & is extremally rich.

(ii) For any T € A ande > 0 there is a W € U, such that T+eW € At

(iii) For any T € 2 and € > 0 there is a W € 2, such that W*T-I—EI €
Ql_l

(iv) For every pair S,T € A with S*S +T*T € A~! there is a W € Ae
such that W*S + T € ;1. If S*S + T*T > 6%, we can assume also that
mg(W*S+T) > 6.

Proof. The implications (i) = (ii) and (i) = (iii) both follow as: As shown
before, if | T~ A|| < € for some A € At with A = W|A| and W € .,
then T+ eW € 2! and W*T+€I€Ql"

Clearly, (ii) => (). BT +eW e A7, |IT - (T +eW)| <e.

(iv) = (i). Let S =€l. Since T = W*S+T € A1, then |T-T'|| <e.

(iii) = (ii). f G = W*T 4+ ¢l € U™! for some W € A, ie.,, —€ ¢
sp(W*T), then —e & sp(TW*), so that H = TW* + eI € A~1. Tt follows
that m(H) > § and m(G*) > ¢ for some § > 0. Let 7 be an irreducible
representation of 2. If 7(W) is an isometry we have

m(m(T + eW)) = m(n((TW* + )W)
=m(r(HW)) > dm(n(W)) = 6.

Indeed, since 61 < |H|, we have 6°I < H*H, so that 627 (I) = 82x(W*W) <
m(W*H*HW) = |r(HW)|?, hence dn(I) < |r(HW)|. Note also that
|m(W)| = m(I). Similarly, if 7(W) is a co-isometry we have
m(m(T* + eW™)) = m(n(T*W + e)W*))
=m(m(G*W™)) > dm(r(W*)) = 6.
It follows from the condition (iv) (in the theorem above) that T+eW € A7 1

(i) = (iv). Put H = S*S+T*T > 62I and choose € > 0 (small enough)
so that we have m(H)Y/2(1 — 5¢) > 8. Now take A, B € 27! such that

ISH=Y2 — Al <e, |THY2-B|<e.



Using that
' 1 1
HYY(§*S+T*T\H"YV2 = —_ g~ _ ]
( G
we compute, with K = A*A + B*B, that
Il - K| =||H"YV2HH"2 — (4*A + B*B)||
< |N\HY2S*SHY? — A A|| + |H-VT*TH/2 — B*B|
and note that
e? > ||SH™Y2 - 4|2
= |HV2S*SHY2 — S*H-V2A — A*SH-Y/2 4 A*A||;
e8> |[TH™Y/2 - 4)?
— ”H—-I/QT*TH—I/? _ T*H—1/2A _ A*TH—I/Z + A*A”,
so that we estimate
”H—1/2S*SH—1/2 _ A*A”
<&+ ||S*H™V2A + A*SH™Y2 _ 24* 4|
<+ |(S*H™Y? - A A|l + || A*(SHY? - A
< e’ + 2| Al < e +2(1+¢) = 3¢ + 2,

where [|A|| < e + ||[SH=Y2||, and $*S < H, so that H-1/28*SH~1/2 < I,
so that |SH~Y/2||? < 1. Similarly, ||H~ 12 g-1/2 B*B|| < 32 + 2e.
Therefore, it is concluded that

IT - K| < 6€* + 4e,

(this should be correct).
Since AK~Y/2 BK—1/2 ¢ 2!, we find an W € 9, such that

me(W*A+ B)K~1/?) > 1.
Indeed, note that
(AK~V2)*AK ™2 4 (BK~Y?)*BK =12 = K=12(4*A + B*B)K~1/? = |

and it is shown above that every partial isometry in 20 has an extremal
extension. Assuming that € < 2/15 (corrected) we have

KY2 > \/1—4e — 62T > (1 — 3¢)I,



because I — K < ||[I — K||I < (4e + 6€2)I, so that (1—4e—6e?)I < K, and
1-4e—-66>>1-6e+92 & ¢(2—15¢) > 0.
It follows that mq(W*A + B) > 1 — 3. Note that for any w > 0,
|(W*A+ B)K™Y?? = K~V2(W*A+ B)*(W*A+ B)K~Y2 > (1 —w)I,
so that we have
(W*A+ B)*(W*A+ B) > (1 - w)K,

and hence [W*A + B| > (1 — w)/2K1/2 > (1 - w)2(1 - 3¢)1. Since w is
arbitrary, we obtain [W*A + B| > (1 — 3¢)I. Moreover,

IW*A+ B — (W*S + T)H~1/2|

< WA= SHT)||+ (1B~ TH?| < 2,

which implies that by continuity of My,
mg(W*A+ B) — my(W*S + T)H ™2 < 2¢,

so that mg((W*S + T)H~/2) > 1 — 5¢. Since H > m(H)I, we conclude
that
mg(W*S +T) > (1 — 5e)m(H)/% > 6.

Indeed, we have
HY2 WS + TPH-Y2 > (1 - 5¢)?],
so that [W*S + T2 > (1 — 5¢)2H > (1 — 5¢)?m(H)I > 8I. O

Remark. In general, we can not conclude that W*S + T € AL, even
though S*S+T*T € A~1. Take S=0and T a non-unitary isometry. The
weaker assumption that AS+ BT € A7 ! for some A, B € 2 dose not imply
W*S +T. To see this, take S = 0 and T = B*B for some non-unitary co-
isometry B. Then A0+ BB*B = B € Ql;l since I — BB* =0, so B € 2.,
but W*0+ B*B ¢ Q[q‘l for all W, because (B*B)B*B = B*B is a nonzero
projection & e, since 0 # I — B*B € (I — B*B)(I — B*B) # {0}.

Theorem 1.3.3. For extremally rich C*-algebras, their quotients, direct

sums, direct products, and hereditary C* -subalgebras are all extremally rich
again.



Proof. As for quotients, note that surjective *-homomorphisms map ex-
treme points to extreme points. Indeed, for V € e, (I-VV*)A(I -V*V) =
{0} implies that (w(I) —(V)m(V)* )7 (%) (n(I) —m(V)*n(V)) = {0} for any
quotient map  from a unital C*-algebra 2, so that 7(V) € 7().. For any
m(A) € m(A) and € > 0, there is B € 2, with |4 — B|| < €, which implies
that ||7(A) — 7(B)|| < ¢, with m(B) € n(2)..

Let {2 | € A} be a family of extremally rich C*-algebras. Let 2 =
I\ be their direct product C*-algebra. Assume first that all Ay are
unital. Let T'= (T) € % and ¢ > 0. As shown before, for every ), there is
Sx € (Ay);* such that my(S)) > £/2 and 1Ty — Sall < (e/2) + (e/2) = e.
With § = (S)), then ||S — T|| < & and my(S) > &/2. This shows that 2
is extremally rich. If some of 2/, are non-unital we consider Ql:\" and IT ,\Qlj
being extremally rich, which contains 2 as a closed ideal, in particular a
hereditary C*-subalgebra. It follows from the hereditary case shown below
that 2 is extremally rich. The same reasoning applies to the direct sum
Y52y of Ay, which is also a closed ideal of L.

Now let B be a hereditary C*-subalgebra of an extremally rich C*-
algebra 2. We may assume 2 to be unital. Let B+ = B +CI and I +Be
B+ with B € B. Given ¢ > 0 choose § > 0 such that 28 < 1, 46||B| < 1,
and 46||B||* < e. Since 2 is extremally rich, there'is I+ A € ;! such
that ||[A— B|| < 6. Put D=1~ (I + A— B)~!, which is permissible since
|A—B| < 1. Let

C=(I+A-B)"YI+A)(I-DB)™!
={I-D)((I+A-B)+B)(I-DB)™!
=+ (I -D)B)(I—-DB)!
=(I-DB)+B)I-DB)'=1+B(I-DB)™!,

where note that (I+A—B)™1 = "% (I—(I+A— B))k = S o(B— Ak
(Neumann series), so that

IDl =111 - (I+A-B)7"|

=12_(B-A <Y ot =5/(1-9),
k=1 k=1

which implies that

) 1 <
1—-6 46
where the last inequality is equivalent to that § < 3/4, and hence I — DB

17— (I -DB)||=|DBJ| < 1,



is invertible. Note also that

1Dl =B~ A4)) (B - A)¥|

k=0
<JA-BI1-[lA-Bl)™ <61 -6 <26

where the last inequality is equivalent to that §(26 — 1) < 0, ie., 0 <
0 < 1/2, so that, in par’ricular |IDB|| < ||D||||B|l < 26(1/46) = 1/2. By
construction, C € !2[ since I + A € A7 ! stable under multiplication by
elements of A1, Moreover

IC -+ B)|=|I+B(I-DB)™'~(I-B)|

=||B((I - DB)™ = D)l = |B(}_(DB)* - 1)

oo

= |IBDB() (DB)*|| < || BI*|D||(1 - | DB]))™*
k=0

< 2|B|*|ID|| < 48]|B|* < e.

Finally, C — I = B(I - DB)™* = 3" B(DB)* € B, because B is closed
and BAB C B. Thus C = I + By for some By € B.

Since scalar multiples of elements of the form I+ B, B € B are dense in
B+, we have now proved B+ NA; ! is dense in B+, But if T € B+ net,
and T' = V|T| with V e 2., then |T| € BT with a gap in its spectrum, so
that

1
V = lim T(|T|+ =I)"! € B,
n—00 n

where note that A\/(A + (1/n)) — 1 as n — oo, for A in the spectrum
of |T'|. Evidently, %, N Bt C B}. Indeed, for V € A, N BT, we have
{0} = (I -VVHAIT - V*V) D (I = VV*)BT(I - V*V). It follows that
BT is extremally rich. If B8 is non-unital, this means that 9B is extremally
rich. If B is unital, with a unit P # I, then B+ =8 + C(I — P), so B as
a quotient of B is again extremally rich. O

Corollary 1.3.4. Every hereditary C*-subalgebra of a C*-algebra with topo-
logical stable rank one has topological stable rank.

Proof. Replace the term quasi-invertible with invertible in the proof above.
O



1.4 Imprimitivity bimodules and matrices

Let 2 be a C*-algebra with two projections P, Q. As pointed out by Sakai,
an element U in P2, Q belongs to (PA;Q), = (PAQ)e if and only if U is
a partial isometry such that

(P - UUHAQ — U*U) =0.

Of course, (P2,Q). may be empty, even though 2 is unital, so we may
assume that (P2,Q)e # 0. With appropriate modifications, then, all the
results so far remain true.

For C*-algebras B and €, a B-¢ Hilbert bimodule is a B-¢ bimodule
X together with B-valued and €-valued inner products (-,-)s, (-,*)e, such
that several natural axioms are satisfied as:

L (z1+z2,91)m = (21, 11) + (T2, 91)m,
(zL01 +v2)e = (z1,41) + (T, y2)e, 21, 22,41, 70 € X,
2. (bz,y)m = b(z,y)m, ((z,by)p = (z,y)sb* implied), z,y€ X,be B,
(z,y0)e = (T, y)ec, ((z¢,9)e = c*(z,y)e implied), z,y € X,ceC,
3. (z4,y)m = 2(z,y)m, (z,20)c = 2(z,y)e, 3,y € %,z €C,
4. (may> = (y,x)*, z,y € X,
5 (2,2) >0, z€X% and (z,2)=0& z=0,

so that (-, ), conjugate linear in the second variable and (*,Ye conjugate
linear in the first variable. In particular, for X € ¥ we have

X, Xl = 14X, Xell = [|XI2

such that X is a Banach bimodule. If Bo and &y are the closed linear spans
of the sets (X, %) and (¥, %)¢, then By and ¢p are closed ideals of B
and €; and X is a B-€ imprimitivity bimodule precisely when By = B
and € = €. In the general case we have that ¥ is a Bo-Cp imprimitivity
bimodule. If B or € are non-unital, the bimodule action can be extended to
the multiplier algebras M (%) and M (€), so that ¥ becomes a unital M (B)-
M(€) Hilbert bimodule. Thus any Hilbert bimodule can be extended to
a unital Hilbert bimodule in such a way that the underlying imprimitivity
structure remains unchanged. In other ways, for example, we can use the
unitized algebras B+ and €* instead of M(B) and M ().

Recall that for a C*-algebra 21, M(2) consists of double centralisers
(L, R) that are bounded linear maps on 2 such that

L(ab) = L(a)b, R(ab) = aR(b), and R(a)b = aL(b)



for a,b € ™. For example, if c € A and (L., R.) defined by Lc(a) = ca
and Rc(a) = ac for a € U is a double centraliser on . Multiplication and
involution of M (2) are defined by

(L1, R1)(La, Ry) = (L1Lg, RBeRy), (L, R)* = (R*,L%),

where L*(a) = L(a*)* and R*(a) = R(a*)*.
If X is a unital B-¢ Hilbert bimodule, then ¥, B, and € can be embed-
ded in a unital C*-algebra 2 containing projections P and Q such that

B=PAP, C=QAQ, X= PAQ,
the bimodule action is given by multiplication in A, and
(X,Y)s = XY*, (X,Y)e=X*"Y.

Thus, XY*Z = (X,Y)nZ = X(Y,Z)¢. One such embedding, character-
ized by the relation P 4@ = I, is given by the linking algebra construction
for imprimitivity bimodules and generalized to Hilbert bimodules. Con-
versely, given any two projections P and Q in a C*-algebra A, PAQ be-
comes a PAP-QAQ Hilbert bimodule in such a way.

Note that for T'= V|T|, with § > 0(T) and U € 2, ,

UEs = FsU = VE;,
where Es = X (5,00) (|7]) and F5 = x(5,00)(|T*|), is equivalent to that
UITIF(IT]) = IT*I£(IT*)U = Tf(IT|)(= VIT|f(IT]))
for f € C(sp(|T)) vanishing on [0, ]. Indeed, note that

UITIf(IT]) = UF(ITDIT| = VF(IT)IT| = VIT|f(IT]) = T£(T));
IT*|F(IT*)U = |T*| f(IT*)FsU = |T*| (IT*|)V E;
=VITIVTVF(TNV*VEs = VIT|f(IT)Es = Tf(|T)).

Conversely, note also that E5 and Fj are respectively, weak limits of f (T
and f(|T*|) as f(t) — X(5,00)(t) pointwise.

As a convenient summary of the results shown in previous sections, and
as the definition for X to be extremally rich,

Theorem 1.4.1. Let X be either a C*-algebra, or a space PRUQ with P,Q
projections in the multiplier algebra of a C*-algebra A, or a Bo-Cy im-
primitivity bimodule, where Bo = span(X, X)m and €y = span(¥, X)¢ ; and



assume that the unit ball X, of X has an extreme point. Then the following
conditions are equivalent:

(1) The set X;1 of all quasi-invertible elements is dense in X.

(ii) For each T € X and every continuous function f on Ry vanishing
on a neighbourhood of zero, there is a W € ¥, the set of all extreme points
in the unit ball X1, such that

WIT|F(IT]) = T£(T)) = f(T*)T

with f(IT]) = f(T, T)?), ete
(iii) For every T € X and e > 0, there is a W € X, such that T+ eW €
Xt
q
(iv) For every T € X and € > 0, there is a W € X, such that W*T + ¢l
is invertible in €f, with W*T = (W, T)¢,.

As a note, the zero space is extremally rich.

Proposition 1.4.2. Let A be an extremally rich C*-algebra and P, Q pro-
Jections in & such that I — P ~ I — Q Murray-von Neumann equivalence in
At. Then PA,Q has an extreme point if PAAQ # 0 and PAQ is extremally
rich.

Proof. Assuming that PAQ # 0, we see that PATQ = P2Q (since PIQ =
PQ € 2); so we may also assume that 2 is unital. Choose V € I such that
V'V =I-Qand VV*=1— P. Then the set =V + P2,Q is a closed
face of /3. Actually, every closed face § of 21, arises in this manner for a
unique partial isometry V' € A" belonging locally to 2, which means that
V =TV*V for some T € ;.

Recall that a face § of a convex set € is a convex closed subset of ¢
such that for z,y € €, if tx + (1 —t)y € § for 0 < ¢ < 1, then z,y € 5.
Note that (V + P2uQ)(I — Q) =V and (V + P2;,Q)Q = PA,Q, so that
V+PUhQ CA. Forz,ye g, ifte+(1—t)yeFfor0<t< 1, so
that ¢tz + (1 — t)y = V + Pa;Q for some a; € Ay, then Pa;Q — PasQ =
(t — s)z + (s — t)y goes to zero as both ¢t and s — 0 or 1, i.e., Cauchy
sequence, and thus,

lim(tz + (1 - t)y) = im(V + Pa,Q) = V + P(lim Pa;Q)Q € V + PA1Q

where the limit means that ¢t — 0 or t — 1.
IfT € PA1Q then S =V +T € § with |S] = V*V + |T'|, because letting
T = PaQ for some a € U; we have
§*S = (V*4+ Qa*P)(V + PaQ)
=VV+T'T = (V*V +|T)(V*V + |T))



since V = VV*V = (I — P)V so that PV =0 = V*P, and we have
V*VIT|? = V*VQa*PaQ = 0
since V* = V*VV* = (I — Q)V* so thgt QV* =0=VQ, and hence
0=V*VIT|>=(I-Q)|T|> = V*V|TPV*V = (|T|V*V)*|T|V*V

so that V*V|T| = 0.

If f € C(R4) vanishing in a neighbourhood of zero and with f(1) =1,
since 2 is extremally rich, there is a W € %, such that W|S|f(|S|) =
Sf(IS]) (by the equivalent condition above in the theorem). Since we have

WIS|f(IS) = W(V*V + TN F(V*V + |T))
=W(V*VF(V*V +|T|) +|T|f(V*V +|T))
= W(V*V +|T|£(|T1))
because
VVEV*V + |T|) = VVVVF(VAV + |T)V*V
= V*VI(V*V(V*V + [T))V*V) = VXV A(V*V) = V*V
from that V*V commutes with V*V + |T| and f(1) = 1, and
ITIF(V*V +[T)) = [T £(V*V + |T])|T]/?
= F(TI2(VV +ITDIT?) = F(TIVV + 7))
= f(IT) = f(T1*T)|1T1/2)
= [T|"?f(ITDITIV? = |T|£(T)
from that |T'| commutes with V*V + |T|, and on the other hand, since
SF(US)) = (V+T)f(V*V +T))
=VFV*V+|T))+TFV*V +|T))
=VV*Vf(V*V +|T|) + R|T|f(V*V)
=VI(V*'V)+Rf(IT*) = V + Tf(|T)),

where R|T’| means the polar decomposition for T, it follows that
WV +IT|f(IT])) =V + Tf(T)),

whence, by orthogonality, WV*V = V (by multiplying the equation by
V*V from the right) and W|T|f(|T]) = Tf(|T]) (by multiplying the equa-
tion by () from the right). But then W € §, since W = V+W (I -V*V) =



V+WQ, and V*V = W*V so that V*V = V*W and hence V = VV*w,
and it follows that

PWQ=(I-VVYW(I -V*V) = (W =V)I - V*V) = WQ.

Thus, by the facial property, W € §. = V + (PA1Q)e = V + (PAQ)e. Note
that W is an extreme point in 2 i.e., a one-point face, so that soisin §. It
follows that W = V + U for some U € (P2AQ). and UIT|f(|IT|) = Tf(T))
since PV =0 and PU = U and PT = T, so that P2Q is extremally rich
by the theorem above. a

As shown in the C*-algebra case in the previous section,

Corollary 1.4.3. If X is an extremally rich, C*-algebra A, or space of the
form PAQ, or Hilbert bimodule, so that Xe # 0, then every isometry in ¥
has an extension in X,.

Proposition 1.4.4. If A is an extremally rich C*-algeba and U,V € .,
let P=1-UU* and Q = I — V*V be the defect projections. Then either
PAQ =0, or else (PAQ). # 0 and PAQ is extremally rich.

Proof. Assuming that PAQ # 0 we let J be the closed ideal of 2 generated
by Py =I-VV* and Qo = I—U*U, whereas £ is the closed ideal generated
by PAQ. Since PAQo = 0 and Py2Q = 0 from U,V € e, it follows
that 3N R = JR = 0. Indeed, for f = f(ajPobj,cjQod;) € J and g =
9(skPzrQty) € & with some aj, bj, ¢j, dj, sk, Tr, tx € A, where f(-,-) and
g(+) are polynomials with two variables and one variable respectively, we
have fg = 0, because

(ajPobj)(SkPCL‘thk) = ajPo(bjskPa:k)th =0,
(c;jQod;)(sk Pz Qty) = cj(Qo(djsk) P)zxQty, =0, and also
(s PzeQte)(a; Pobj) = sk Pz(Q(tkaj) Po)b; = 0,
(skPzrQt)(c;Qod;) = skP(zkQtic;)Qod; = 0.

Let 7 : & — 21/J be the quotient map. We see that m(UV) is a partial

isometry with support projection 7(V*V) = I — 7(Q) and range projection
m(UU*) = I — n(P). Indeed, check that

T(UV)*n(UV) = V*U*UV +3 = V*V = V*QoV + 3 = n(V*V),
T(UV)r(UV)* = UVV*U* +3 = UU* — URU* + 3 = n(UU*).

Since the quotient m(2) is extremally rich, it follows that m(PAQ) =
m(P)m(A)7(Q) is extremally rich. Since I N & = 0, the restriction of =



to R is an isometric isomorphism, so that P2Q, being isometrically iso-
morphic to 7(PAQ), is also extremally rich. Note that & = &/(J N &) =
(B+3)/3 = n(R). a

Theorem 1.4.5. If A is an extremally rich C*-algebra, then so is the
matriz algebra My () over A for any n.

Proof. We may assume that 2 is unital. Note that if % is non-unital, then
Mn () is a closed ideal (so a hereditary C*-subalgebra) of M,(%t). If
Mp (%) is extremally rich, then so is M, (2)*. Moreover, it suffices to
prove the theorem for n = 2 since by iteration this gives the result for all
2%, where note that My (%) = My(Mak-1(21)), and for a given n, My () is
a hereditary C*-subalgebra of My () for k large, with n < 2k,

Let T € My(2), with

A D
T—(O B) A,B,C,D e .

Since 2 is extremally rich, we can approximate A with UH € Ay 1. where
U e, and H € AL, Thus,

UH D\ (H' 0\ (U D —T
¢ B)\o 1) \c; BT
where C; = CH~! € . Furthermore, since U is a partial isometry,
I 0 T I -U*D\ _ U D\ (I -U*D
-au* 1)\ 1 )T \au-uvwv) B)\o I

~ U (I-UU*D\ _
= (01(1 — U B > =1,

where B; = B — C\U*D € 9. Now we approximate B; with an element
VK € %;1, where V € 2, and K € 2™, to obtain an element T} € My(2A).

Thus,
I o) _ U (I-UU*)Dy) _
T3 (0 K—l) = (01(1— U*U) % ) =T,

where D1 = DK~! € 2. Since U € U, and V is a partial isometry, we have

I —(I-UU"DV* I 0
0 I \—vaa-vw) 1

(Cl (I Y UrU) o UU*)?/I(I ) V*V)) (—V*Cl (f —U*T) (})

< U (I -UU*)Dy(I - V*V>) =T,

(I-VVHCLI - U*V) 1%



where —(I — UU*)D1\V*Cy(I — U*U) = 0 and V* = V*VV* If (I -
VVIUI - U*U) # 0 and (I — UU*)A(I — V*V) # 0, then these Hilbert
bimodules, denoted by X; and X, are extremally rich by the proposition
above. We can therefore approximate Ts with an element of the form:

U YN
(XM 174 ) , X € (Xl)an € ('%2)6)

and M and N are invertible in (I — U*U)A(I — U*U) and (I — V*V)A(I —
V*V') respectively. Thus,

(B ) (0 )¢ )

because U = UU*U =U(UU* + M), YN =Y(N+V*V), XM = X(M +
U*U), and V = VV*V = V(V*V + N). It follows that Z is an extreme
partial isometry in Mjy(®); with defect projections:

. (I-UU*-YY* 0 _
=22 _< 0 I—VV*—XX*>=P’
e, (I-UU-X*X 0 _

where Iy = I @ I the diagonal sum of I is the unit of M(2). Check that

gze_ (UU+YY* UX*+YV*\ _ (UU* +YY* 0
“\XU*+VvYr Xx*4vve) T 0 XX*+VV*

pig_ (UU+XX UY+XV\ _ (UU+X*X 0
T\YU+vX Y'Y +viv) T 0 YY +VV )

Also, PM()Q = {0} follows from that PKQ = 0 for any K € M(2() by
computing directly all the components in PKQ.

If one or both of the above mentioned Hilbert bimodules are ZEero, we
replace X or Y or both by zero in Z, which then again is an extreme partial
isometry.

We have shown that T' can be approximated by an element RZS , with
R and S invertible in M>(21). This shows that M () is extremally rich. [

1.5 Inductive limits and Morita equivalence

Definition 1.5.1. Let B be a C*-subalgebra of a unital C*-algebra 2,
such that I € B. We say that the embedding B C 2 is preserving extreme
points if B, € A.. If A is non-unital, we consider the unitized A+ and put



B+ = B+ CI. We then say that B is embedded preserving extreme points
if 87 is embedded in AT preserving extreme points. Note that if B has
a unit P, then (B%1), = B, + (I — P)T. Note further that if B is finite
or prime or these combinations like continuous functions over a space with
values in a prime algebra, then elements of (B7), are unitaries or isometries
or co-isometries; and then B is always embedded in A preserving extreme
points.

Let & = lim2; be an inductive limit of a net of C*-algebras (Aj)je-
We say that the limit is preserving extreme points if each 2, is embedded
in 2 preserving extreme points.

Remark. Let V 4 (I — P)z € B, + (I — P)T. Then
(V*+(I-P)z)(V + (I—-P))=V*V + (I-P)=1I
since V = PV and V* = V*P. Check that

(I = (V+ I = P)2)(V+ (I - P)2)*BH(I = (V + (I - P)2)*(V + (I - P)2)
= —{VV*+(I- P))BT(I - {V*V + (I - P)})

= (P = VV*)(B +CI)(P - V*V)

= (P - VV*)®B(P - V*V) + C(P - VV*)P(P - V*V) = 0.

Hence B + (I — P)T C (Bt)e. Note also that B+ = B+ C(I — P). If
W =V +u(I-P) € (B%)e, then (I -WW*)B+(I - W*W) = {0}, so that
it follows from the same computations above that V € B, and |p| = 1.

Remark. Note that if % is prime, so is B+. Let W € B and let B+ (I —
WW*)B* and B+(I — W*W)B+ be the closed ideals of B+ generated
by I — WW* and I — W*W respectively. If both of the closed ideals are
non-zero, we must have

BH(I - WW*)BTB(I - W*W)B+ £ {0}

since B is prime, but (I — WW*)B*(I — W*W) = {0}. Thus, we have
B[~ WW*)BT = {0} or BH(I — W*W)B+ = {0}. Tt follows that
WW* =1 or W*W = 1. '

Remark. As checked above, B} = B+ (I—P)Tandif W = V+(I—-P)z €
BF, then W*W = V*V 4 (I — P) and WW* = VV*+ (I - P). If B is
prime in the sense that every extreme point is unitary (or in the sense that
B contains no proper isometries), then V*V = P and VV* = P, so that
W*W =1 and WW* = [.



Proposition 1.5.2. If 2 = im2; is an inductive limit of extremally rich
C*-algebras AU; preserving extreme points, then 2 is extremally rich.

Proof. For the unital case, note that U(A5)g lc Ay ! by preserving extreme
points, and any element of 2l can be approximated arbitrary by elements
of UQ[]‘.

For the non-unital case, note that if 2; is unital and extremally rich,
so is 2(;' = 2; + CI, which can be shown as checked before in showing the
invariance of being extremally rich for taking hereditary C*-subalgebas. [

Example 1.5.3. Let H = (?(Z) and P the projection of H onto I2(N). Let
An = (@"B(H)) @D, D =B(PH)e@B((I - P)H),

where elements of D are regarded as block diagonal operators on H. We
may consider each 2, as embedded in B(H) ® c;(N) the algebra of all con-
vergent sequences of B(H), writing every element T € 2, as an eventually
constant sequence: T = (T1,T3,---,T,, D, D, --) with T; € B(H) and
D € ®. Note that the embedding 2, — Up,41 obtained in this way is not
p. e. p., because the element:

V=(I,"',I,D,D,"~), D=S@T*€©

for S and T non-unitary isometries on PH and (I — P)H respectively,
is extremal in 2A,, but not in An+1, since D is not an extreme partial
isometry in B(H). Indeed, check that (I-SS*)B(PH)(I-S5*S) = {0} and
(I =TT*)B((I-P)H)(I-T*T) = {0}, from which D = S&T* is extremal
in B(PH) @ B((I — P)H), and also

(R D-( )
I= <% ’fl)’) (g 19> - (8 I—PO—TT*>’
(P _OSS* 8) ((I f é])DAP (I f }i()il(_i) P)) (8 I- PO— TT*>

_ (0 (P—SS*)A(I- P-TT*)

0 0 ), A e B(H).

Since there is a non-zero operator from (I — P — TT*)H to (P —SS*)H
in B((I — P)H, PH), the diagonal operator D = § @ T* is not extremal in
B(H).

The inductive limit A = lim R, of Ay, is just the C*-algebra considered
in the previous example, and it contains an element which does not belong



to the closure of 24 1 so that 2 is not extremally rich, even though each
2, certainly is, being a von Neumann algebra.

Proposition 1.5.4. If A = lim A; is an inudctive limit of extremally rich
C*-algebras such that each ; is a hereditary C*-subalgebra of 2, then 2 is
extremally rich.

Proof. Except in the trivial case, 2; does not contain the unit for . Thus
we consider At and Qlj =2%;,+CI.IfU € (Ql;')e of the form U = 01 + A,
with 6] = 1 and A € %}, then I — UU* € ¥; and I — U*U € 9. Indeed,
note that

CUU*=T+0A"+0A+ AA*, U'U=1I+06A+04* + A*A.
Since I — UU* and I — U*U are projections of 2;, we have

(I-UUHAI - U*U) = (I - UU**A(I — U*U)?
C (I-UU"™;I - U*U) = {0},

because ™A;A2A; C A; being hereditary. Thus U € 2, which shows that
the inductive limit is preserving extreme points. Hence 2 is extremally
rich. O

Corollary 1.5.5. Let K be the C*-algebra of all compact operators on 2.
If A is an extremally rich C*-algebra, then so is A @ K.

Proof. Assume that 2 is unital. Since 2 is extremally rich, so is every
My (). Note that My, (2) = 1@ p(AR®K)1 ® p a hereditary C*-subalgebra
of A ® K, where p is the canonical projection of rank k. It follows from
A QK = lim M, () that A® K is extremally rich. Even if 2 is non-unital,
we have (A® M, (C))(AQK)(A® M, (C)) C A® M, (C), which is equivalent
to say that Mp(2) = A ® M, (C) is hereditary in A ® K. O

Lemma 1.5.6. Let 2 and B be C*-algebras with separable C*-subalgebras
Ao and Bo. Let X be an A-B imprimitivity bimodule. If A is exstremally
rich, there are separable C*-subalgebras Aoy and Boo, with Ay C Yoo C A
and By C B C B and a separable subspace Xoo of X which is an Yoo -Boo
imprimitivity bimodule, such that Ao, is extremally rich and IBR = 0 for
any pari J, & of orthogonal ideals in B.

Proof. By convention we let At = 2 if I € 2, otherwise At = A + CI.
By a recursive construction, we are going to define increasing sequences



(%n), (Br), and (X,) of separable C*-subalgebras and submodules such
that, among other things,

2, C span(X,, Xn)a C Any1, Bp C Sp&ﬂ(%n, xn)&B C Bnt1,

and A, X, + X,Bp, C Xpyq for all n. As the first step, choose a separable
subspace X of X such that 2y C span(%,, Xo)a and By C span(Xy, Xo)s
We may assume that I € A, for all n. Recall that the imprimitivity for X
is that

span(X, X)g = A and span(X,X)p = B.

Since 2 is extremally rich and 24, is separable, we can choose a separable
C*-subalgebra %,+1 of 2 such that the norm closure of DIy N (2[*‘)
contains Ay,. Indeed, assume that {z4} is a countable dense subset of an
Define 2,11 to be the C*-algebra generated by the set {zx} and the set
{bkn |k € N,n € N}, where each by, € (@A), ! satisfies ||lzg — bxn| < 1/n
for every k, n.

Enlarging if necessary 2,.1 by a separable subset we may also assume
that (%n, %n)m - Q[n+1.

Since B, is separable, its primitive ideal space Prim(%8,) is second
countable, and we can choose a countable open basis () for Prim(%B,,).
For each disjoint pair (I',A) in (Qn) x () we let (I(T),I(A)) be the
corresponding pair of closed, orthogonal ideals of B,,. Indeed, as for their
complements, I'° U A® = Prim(B,). By the hull-kernel topology defini-
tion, hull(3(I')) = I'® and hull(J(A)) = A®, and therefore, J(I')I(A) =
ker(I'*)ker(A°) = ker(Prim(B,)) = {0}, i.e., being orthogonal.

Let (I') and R(A) denote the closed 1deals of B generated by J(I')
and J(A), respectively. If &(T') N &(A) # 0, choose Br, A€ B such that
J(I)Br,aJ(A) # 0. Indeed, note that

RITIR(A) = (BI(T)B)(BI(A)B) = B(I()BI(A))B,

and thus, if J(I')BJI(A) = 0, then so is KT)R(A) = 0. Let B4 be the

C*-subalgebra of B generated by B,, together with the (at most countable)

set of such new elements, and also a countable dense set from (%n, Xn)sm
Finally choose X, as a separable subspace of ¥ large enough so that

Ant1 C span(Xni1, Xnt1)a, Bry1 C span(Xn11, Xnt1)ss,

and A, X, + X,B, C Xpi1.

By induction, for every n: the norm closure of 21} +1N(AT);! contains
2+ and if J and R are orthogonal closed ideals of %n, such that IBR#0,
then 3B,41 R # 0.



Let Ao, Boo, and ¥ be the closures of the unions Un2p, UpBp,
and UpX,, respectively. It follows that Xoo is an Aeo-Boo imprimitivity
bimodule, with span(Xs, X¥co)a = Uso and span(Xeo, Xoo)m = Boo, and
that 23, N (A+);! is dense in A, which impies that Yo, is extremally
rich. Note that any irreducible representation of a C*-subalgebra 2, is
extended to that of %, so that using one of criterions obtained before for
an element to belong to (A*) ! we see that A, N (AT)7! C @&at)t

Finally, if J and £ are orthogonal ideals in B, then with I =3N%B,
and &, = ANB,, we have a pair of orthogonal ideals in B,,. If I BR, #0,
then we have J,418n41 = 7B,418 # 0, a contradiction. Thus J.BR, =0
for all n, whence JB 1K, as claimed. O

Theorem 1.5.7. If A and B are strongly Morita equivalent C*-algebras
and 2 is extremally rich, then so is B.

Proof. By assumption there is an -8 imprimitivity bimodule X. Given
B € B, let Bo = C*(B) the C*-algebra generated by B and put Ay =
0. Using the lemma just above we find oo, Boo, and X as described
there. Since X is an Aeo-Boo imprimitivity bimodule, ™o, and B, are
strongly Morita equivalent. It follows that A ® K and B ® K, both being
separable, are isomorphic, i.e., Ay, and B, are stably isomorphic. Since
oo is extremally rich, so is Y ® K, thus also Boo ® K. Since By, is a
hereditary C*-subalgebra of B, ®K, it follows that B, is extremally rich.
Thus I+ B can be approximated by elements from (BL,)7* Note now that
ifU € (BE)e, then U is a partial isometry satisfying (I-UU*®BL(I -
U*U) =0.
By construction of B, it follows that also

(I -UU*B*H(I - U*U) =0,

whence U € B7. Indeed, let J; = BE (I — UU*)BL, and Iy = BL(I -
U*U)BE,, and & = BH(I — UU*)B* and &, = B+(I — U*U)B*. Then
we have J,J; = 0. Now assume that (I — UU*)B*(I — U*U) # 0. Then
it follows that R1B*R; # 0, from which there must exist an element B €
B, with J1BJz # 0, as shown before, so that J,J5 # 0, a contradiction.
Consequently, (B%,);! C (B7*); " and thus I + B is in the norm closure of
(B7); ! Hence B is extremally rich. O

Corollary 1.5.8. If 2 and B are strongly Morita equivalent C*-algebras
and 2 has stable rank one, then so does ‘B.

Proof. Replace the term extremally rich by stable rank one in those lemma,
and theorem just above. Note that stable rank one is preserved under stable
isomorphism. O
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1.6 Extensions and extremal richness

Theorem 1.6.1. Let J be a closed ideal in a unital C*-algebra A. Assume
that both 3 and the quotient /3 are extremally rich. Then the following
conditions are equivalent:

(i) A is extremally rich.

(ii) Extreme partial isometries lift, i.e., (%/3)e = Ae/T, and PAQ is
extremally rich for each defect projection P from e and each defect pro-
Jjection Q from JF. Note that PAQ = P3Q, since Q € J.

(iii) For every E € (A/J)e there is a lift U € Ye, i.e., E=U +7, such
that (I — UU*)AQ, and PiA(I — U*U) are extremally rich for all defect
projections P; and Q1 from JF.

(iv) (A/T)e = Ae/T and A + T C cl(A; 1), where cl(-) means the norm
closure.

Proof. As for (ii), check that if Q = I — UU* for U = 0] + V € I} with
|| =1and V €73, then Q = —0V* — 0V — VV* € 7.

(i) = (ii). If A is extremally rich, then so is PRUQ for any choice of
defect projections P and Q. Let m : 2 — 2/J denote the quotient map
and consider 7' € 2 such that 7(T") € (A/J).. If T = V|T| is the polar
decomposition of T' in 2", and f is a continuous function on R vanishing
in a neighbourhood of zero, such that f(1) = 1, then

V(T =Uf(T)) = F(T*HU

for some U € 2. Since the defect projections of 7(T') are centrally orthog-
onal,

m(U) = n(U|T|) + =(U(I - |T1))

U F(TN) + =(IT*|UI - |T))
m(VF(ITN) + =(f(IT*NUI - |T))
m(VITI) + =(VIT|(I - |T1)) = =(T),

so that U is a lift of n(T). Check that 7(I — TT*)n(U)n(I — T*T) = 0
implies that

T(U(I =T*T)) = n(U(I - |T*)) = «(|T*PU(I - |T|?)),

and since I — |T|? = (I — |T|)(I + |T|) and I + |T) is invertible, we have
©(U(I — |T)) = #(|T*|?U(I — |T)), and moreover, since m(TT*) is a pro-
jection, we have 7(|T*|) = w(TT*)?, which implies 7(|T*|) = (TT*).

(ii) = (iii). This is immediate, because I —UU* and I — U*U are defect
projections from 2.



(i) = (iv). Given U € ¥, and K € J, we let P = I — UU* and
Q = I — U*U be the defect projections. Replacing if necessary K with
another element from J we may assume that P and Q have the properties
specified in the condition (iii). Now we have

U+K=I-P+P)U+K)(I-Q+Q)
=(I—P)U+K)U*U+ (I - P)(U + K)Q+ P(U + K)
=({I~-P)U+KU*'U)+ (I-P)UQ+ (I - P)KQ+ PU + PK
={I-P)I+KUNU+UQ+KQ-PKQ+ PU + PK
= (I - P)(I+KU*)(I - P)U + PK + KQ,
where U = (I — P)U, UQ =0, and PU =0, and PKQ = 0 since U € %,.
Since (I—P)J*(I—P) is extremally rich because J is so, we can approximate
the first term by an element of the form HWU, where H € ((I — P)J+ (I-
P));t and W € (I = P)3*(I — P)),. Thus
(H+P)"'(U+K) =~ (H™'+P)HWU + (H™' + P)PK + (H + P)"'KQ
=({I - P)WU+PK + (H+ P)"'KQ
=WU + PK + K Q,
with K1 = (H 4+ P)"'K in J, where (H 4+ P)~! = H-1 4+ P.

Since W + P € I+ 7, the defect projections of W are the same as those
for the extreme point W + P in J*, namely

P=I-P-WW* and Q|=I1-P-W*W.
Note that for some B € J and A € T,
W=(I-P)B+M)(I—-P)=(I-P)B(I-P)+\I- P),
so that AW € I — P+ 7, and we may replace W with AW, and also
(W+P)W+P)*=WW*+WP*+PW+P=WW*+P
since PW = 0 = W P*, and similarly, (W + P)*(W+ P) =W*W + P, and
PItQ =PI - P)J*(I - P)Q} + PLPItQ| + P3TPQ, = 0.

We define Q1 = U*QiU =1 - Q — (WU)*(WU), and note that it is a



defect projection of the extreme point Q + U*WU € JF. Check that

Q+UWU)(Q + U*WU)* = QQ* + QU*W*U
+U*WUQ* + U*WUU*W*U
= Q>+ U*W(I — P)W*U
=Q+ W UyW*U=1-Q"
Q+UWU)*(Q+U*WU) = Q*Q + U*W*UU*WU
=Q+(WU)'WU =1- @,

and

QT = QI - Q)T (I - Q)Q1 + Q1QIT Q1 + Q13 QQ;
= QU UITUUQ,
= (U*U + (W*U)*W*UU*U)TH(U*U + (WU)*WU)
= U*(I + WW*UUUTTU*UU*(I + W*W)U
=U*(I + WW*)(I - P)UT*U*(I — P)(I + W*W)U = {0},

where note that UJ*U* C 7+ C(I — P) C J* 4 CP for the last equality.
Note also that both P; and Q] belong to J, because (W + PY(W +

P)*,(W + P)*(W + P) € I +73, and also Q1 = U*Q,U € 7, so that

PQ1 = P(P1Q1)Q1 C PJQ,
=(I-P-WW"IU*I—-P-W*'W)U
C(I-P—-WW"I(I - P—WW)U = {0}

since W € ((I — P)J*(I — P))e.

Since PKU*W* € PA(I — P) and U*W*K1Q € (I — Q)AQ, with
U* = (I — Q)U*, and thus nilpotent (under the matrix decompositions
with respect to P+ (I — P) and Q+ (I — Q)), both elements I — PKU*W*

and I — U*W*K;(Q are invertible. We let

T =(I - PKU*W*)(WU + PK + K1Q)(I — U*W*K1Q)
= (WU + PK + K1Q — PK(I — Q — Q1))(I - U*W*K;1Q)
(with U*W*WU =1-Q — Q, U*W*PK =0, and
PKU'W*K1Q = (I - UU*)KU*W*K (I — U*U) = 0),
=WU+PK(Q+Q1)+K\Q—(I-P~P)K\Q
(with WUU*W*K\Q = WW*K1Q = (I — P — P,)K,Q,
K1 QU*W*K,Q = 0),
=WU+ PK(Q+ Q1)+ (P+ P)K,Q = WU 4+ PKQ; + P,K,Q.



To complete the argument that U + K € cl(Ql; 1), it suffices to show
that 7" can be approximated by quasi-invertible elements. However, both
PAQ, and PIAQ are extremally rich by assumption, since P; and Q; are
defect projections from J}, so T' can be approximated by an element of the
form S = WU + Ry + Ry, where R; € (PQlQl)(;l and Ry € (PﬂlQ);l. To
show that S € 2 1, consider the following matrix decomposition:

C(T-Q-Q WU 0 0
((I—P—P1)+P+P1)S( Q = o o RmRJ|.
: Q1 0 Ry 0

It is clear that S has closed range, because this holds for all three com-
ponents, since W and U are partial isometries and R; and Ry are quasi-
invertible. Moreover,

ker S* = ker R} + ker R}, ker S = ker Ry + ker R;

as a kernel projection of an operator, since (WU)*WU =1 — Q — Q1 and
I-P—P =WW*=W( - P)YW*=WU(WU)*. Therefore,

(ker S*)RU(ker S) = (ker R} + ker R%)%(ker Ry + ker Ry)
C (ker R}) PAQ1 (ker Ry) + (ker R3) Pi2AQ(ker Ry) + PAQ + P,2AQ; = 0,

as desired, where ker Ry < @1, ker Ry < Q, ker R} < P, and ker R} < P,.
It follows from the central orthogonality in %A by the kernel projections of
S and S* that S € A7t

(iv) = (i). Given A € A and e > 0, find B € A such that |[A-BJ < g/2
and 7(B) € m(A); 1, since 2/J = 7(2) is extremally rich. By assumption
we can find U € %A and H € A;' such that 7(UH) = n(B). Thus,
B —-UH € 3. Consequently BH™! = U + K for some K € J. Such
element belongs to cl(; ') by assumption. Thus there is C € qu—l with
IBH™'-C| < ¢/2||H||, so that |IB~CH| =||BH'H-CH| < |BH™'-
CllI[H|| < &/2. Therefore, |A—~CH|| < ¢ with CH € At e 2.1 is dense
in 2. O

Remark. Note that if an extreme partial isometry in (A/T3)e can be lifted
to a quasi-invertible element in 2, then it can also be lifted to an element
in 2le. Thus in the conditions (ii) and (iv) it suffices to demand that quasi-
invertibles lift, i.e. (%/7);! = A;'/3. Namely, we have (/7). = %./T <
®@&A/3);! = qu‘l/fi. Clear is =. As for < as mentioned, let 7(T) € (/7).
with 7(T) = m(A) for some A = U|A| € ;1 with U € 2. Tt follows
exactly by the same way as in (i) = (ii) that m(U) = = (T).



Corollary 1.6.2. LetJ be a closed ideal of a C*-algebra A, with stable rank
one st(J) = 1. Then 2 is extremally rich if and only if 2A/3 is extremally
rich and extreme partial isometries lift.

Proof. We may assume that 2l is unital. Since I+ has stable rank one, J} =
U(T*) of all unitaries of J*. So there are no non-zero defect projections
from JF. Thus the result is immediate from condition (ii) in the theorem
just above. [

Proposition 1.6.3. If J is a closed ideal of a C*-algebra A, then A has
stable rank one if and only if both J and /3 have stable rank one and
invertibles lift, i.e. (A1/3)~1 = (A*+)~1/37.

Proof. If st(A) = 1, then we have sr(2/3) = 1 = sr(J). Having stable rank
one implies being extremally rich. Note also that invertibles are quasi-
invertibles. Thus invertibles lift by the remark just above.

To prove the converse we may assume that 2 is unital. Assume that
sr(A/JF) = 1 = sr(J) and that invertibles lift, equivalently <, unitaries lift.
Clear is =. As for <, note that an invertible operator 7(A) € 2A/J has
the polar decompositon 7(A) = U|r(A)| with U unitary. Since unitaries as
well as positive invertibles lift, so does 7(A), because if |T(A)| > em(I) for
some € > (), then n(|A| — I) > 0, from which there is a positive B € 2
such that m(B) = m(|A| —&l), so that m(B+eI) = |r(A)| with B+¢eI > €.

It follows from the corollary just above that 2 is extremally rich, i.e.
cl(2A; 1) = 2, and we also know that for every V € 2, there is a unitary
U € A such that V —U € 3. Then U*V — I € J, so that U*V e J7F. Check
that

(I - UV)(V*U)It(I -VUUV) = U*(I-VVHUIHI-V*V) = {0}.
Since sr(J%) = 1, we have U*V unitary, hence V unitary. Thus 2, = 2, of
all unitaries of ¥, so that &y 1 =21 and hence sr(A) = 1. a
Remark. It is shown by Rgrdam [19] that

oT) = dist(T + 3,47 + 7)

for every T' € 2 if sr(J) = 1, where o(T) is the distance between T and
A~ The proposition above is an immediate consequence of this formula.
Indeed, if sr(2A) = 1, then a(T) = 0 for every T € 2, so that sr(A/3) =1
by the formula, but it seems that lifting invertibles does not follow directly
from this formula. However, as for the converse, for every T' € 2, we have
T + J approximated by invertibles in 2/3 which are lifted to 2, so that
a(T) = 0 by the formula.



Corollary 1.6.4. Every split extension of C*-algebras with stable rank one
has stable rank one.

Proof. If st(3) = 1 = sr(2/J), and if there is a C*-subalgebra B of 2l such
that BNJ = 0 and B + T = 2, then every invertible element of A+ /3 lifts
to an invertible element of B*. Since (B+)~! c (A*)~1, the result follows
from the previous result. O

Remark. Check that the (injective) lifting map ~y from 2/J to 2 is defined
by y(b+3J) =bfor be B. If by — by € J for b1,bs € B, then by = by. For
b1,b2 € B and ¢1,co € T, we have (b1+c1)(b2+c2) = bibo+cico. Fora € U,
consider a = (a — y o 7(a)) + v o 7(a), through which we have A = J @ 98,
where 7(a) = b+ J for some b € B.

Proposition 1.6.5. Let J be an extremally rich, closed ideal of a C*-
algebra 2, such that A/J has stable rank one. Then A is extremally rich if
wnwvertibles lift.

Proof. Since 2" /J has stable rank one, we have (A/3), = (%+/3),. By
assumption, every unitary of (At /J), lifts to A¥. Hence 2 is extremally
rich by condition (iii) in the theorem above. |

Remark. It has been mentioned that the condition that invertibles lift in
many cases is equivalent to surjectivity of the natural map from K; () to
K1(%1/3), equivalently, injectivity of the map from Koy(J) into Ko(2).

Corollary 1.6.6. If J is an extremally rich ideal of a C*-algebra A, and
B a C*-subalgebra of A with stable rank one, such that A = J + B, then A
15 extremally rich.

Proof. We may assume that 2 and B are both unital, with a common unit,
since adjoining CI to 2 and B does not change the assumption. Since
st(B) =1 and INB is a closed ideal of B, we have sr(JNB) = 1 and that
invertibles lift from B/(JNB) to B. As B~ C A~ and A/T = B/(BN7J),
we have that invertibles lift from 21/J to 2, whence 2 is extremally rich by
the proposition just above. O

Corollary 1.6.7. Let 2 be a C*-algebra of the form % =3 + B for some
closed ideal 3 with stable rank one and some extremally rich C*-subalgebra
B C A for which the inclusion is preserving extreme points. Then U is
extremally rich.



Proof. We pass to the unitized algebras A+ and B*. Since J N B+ has
stable rank one and B7 is extremally rich, it follows that every extreme
partial isometry of A /J = B+ /(3 N B+), being extremally rich, has the
form U + 7 for some extreme partial isometry U € B}r. Then U € A
by assumption. We have shown that all extreme partial isometies lift from
2A+/T to AT, whence At (and ) is extremally rich. a

Let ¥ denote the Toeplitz algebra on I2, i.e. the C *-algeba generated by
the unilateral shift S. It is known that ¥ is an extension of the C*-algebra K
of all compact operators by C(T) the C*-algebra of all continuous functions
on the 1-torus T:

0 K —— % 25 0T — 0.

Let 6 denote the *-automorphism of C(T) of order two given by 4 flt) =
f@ ) forteTand fe C(T). Define the extended Toeplitz algebra by

To={B®C T T|p(B) = 0(p(C))}.

It is shown by Pedersen that Ty is isomorphic to the C*-algebra on I2 @ I2
generated by S & S* (which may be identified with the weighted bilateral
shift 7" on [2(Z), for which Te,, = ent1 for all n # 0, but Tey = 0, where
{en} is the standard basis for I?(Z)), and that Ty is an extension of K&K by

C(T). Moreover, Ty is extremally rich, and every extreme partial isometry
W in (%)e has the form

W=U(S&S)"V, UV eUZ), nez,

where (S® S*)" = (§*®S5)™" if n < 0. In particular, every isometry of T,
is unitary, yet (%g). # U(Tp).
In the case of extremally rich C*-algebras %,

st =1 & A=A, <

2 is residually finite in the sense that no infinite projections in any primitive
quotients of 2. Note that sr(T) = 2 = sr(%y).

Proposition 1.6.8. The universal C*-algebra generated by a partial isom-
etry U, such that (I — UU*)f(U,U*)(I — U*U) = 0 for any polynomial f
in two variables, is isomorphic to the extended Toeplitz algebra Ty.

Proof. Let U be any partial isometry on a Hilbert space H satisfying the
condition (I — UU*)f(U,U*)(I — U*U) = 0. Let 2 be the C*-algebra
generated by U, and also by f(U,U*). Assume that I — UU* # 0 and



I —U*U # 0. Then the closed ideals J and £ of 2 generated by these two
projections are nonzero and orthogonal. Check that

IR =A(I - UUMA(I — U V)% = A(I — UU*)C*(U, U*)(I - U*U)A =0

since A = C* (U, U*) is the closure of all linear spans of f(U,U*).

Let P denote the projection on the closure cl(JH). Then P € 2 the
commutant of % and 0 # P # I. Indeed, APH and A*PH are contained
in PH for any A € 2, so that PAP = AP and PA*P = A*P, and hence
AP = PA. .

Moreover, (I-UU*)(I—P) =0 and (I-U*U)P = 0, because note that
(I-UU*)P=P(I—-UU*)=1-UU* and (I - U*U)J = 0. Thus PU is
a non-unitary isometry on PH and (I — P)U is a non-unitary co-isometry
on (I — P)H. Check that

(PU)*(PU) = U*PU = U*UP = P,
(PU)(PU)* = PUU*P = P(I - (I - UU*))
=P—(I-UU*) # P,
(I -PYU)((I-PU)=U*I—-PU=UUI-P)=0#1-P,
(- P)U)(I - PYU)* = (I - P)UU*(I-P)=1-P.

Then P, being generated by PU (and PU*), is isomorphic to the Toeplitz
algebra ¥, and the isomorphism m; : T — P2 can be chosen such that
m1(S) = PU. Note that m(S?) = PU%? = PUPU = m(5)m(S) and
m1(8*) = PU* = (PU)* = m(S)*. Similarly, we can find an isomorphism
my : ¥ — (I — P)2 such that mo(S) = (I — P)U*. Since %y is a C*-
subalgebra of ¥ @ ¥, this gives an injective homomorphism: 7 : ¥, —
PA® (I — P)2 given by 7(B @& C) = m1(B) @ m2(C). Note now that
T(S®S*)=PU @ (I — P)U =U. Since Ty is generated by S & S* and A
is by U, it follows that 7 is an isomorphism, so that Ty = 2.

If I -UU*=0but I — U*U # 0, then A = T, which is the quotient of
Ty by the map 7(S@® §*) = S*, and if  —U*U =0 but I — UU* # 0, we
similarly get & = 7(%y) by the map n(S® S*) = S. Finally, if U is unitary,
then 2 = (C(T)), where ¢ is the transposed map of the inclusion map
sp(U) C T, so A = 7(Ty), where  is the composition of the quotient map
Tp — Tp/ B? K with .

We have shown that for any choice of U satisfying the condition, there
is a homomorphism 7 : Ty — A such that 7(S & S*) = U, which proves
that Ty is the universal C*-algebra for partial isometries satisfying the
condition. (|



Corollary 1.6.9. Let A be a unital C*-algebra generated by a closed ideal
with stable rank one and an extreme partial isometry W. Then 9 is ex-
tremally rich.

Proof. The C*-subalgebra B of A generated by W is a quotient Ty being
extremally rich, since (I — WW*)(I — W*W) = 0. Thus B is extremally
rich. Moreover, every Wy € B, has the form Wy = UW™V for some
U,V € By and n € Z, where W™ = (W*)™™ if n < 0, because extreme
partial isometries lift from every quotient of §5. Thus the embedding of
B in 2 is preserving extreme points, whence 2 is extremally rich by the
corollary above. O

Example 1.6.10. Let 2y be an infinite matroid C*-algebra, eg. g =
§QK, where § = ®°M;(C) is the Fermion algebra. Choose two isometries
U,V € M (%), such that the defect projections P = I — UU* and Q =
I —VV*satisfy P € 2o, Q € o, and tr(P) = 1 = tr(Q), where tr(-) refers
to the unique trace on 2y, extended to M (o). Define Ay = C*(2g, U) and
Ay = C*(Ao, V). Let 2 be the C*-subalgebra of M () ® My(C) consisting
of matrices of the form:

A C .
(Bl Az)’ Aie?; (i=1,2), B,C ec,.

Consider the partial isometry W € 2, together with its defect projections:

U 0 . (PO ey (0 0
W—-<O V) I-Ww _(0 0), I—WW~(0 Q).

If 2 were extremally rich, W would have an extremal extension, and this,
as we see, would imply the existence of an extreme point Wy in the unit
ball of P2(yQ, because note that

P 0\ (A C\ /0 0\ _ (0 PCQ
(005 56 -6 %)

so that (I — WW*)A(I — W*W) = P2Q, being extremally rich. Since
%o is prime (even simple) the equation (P — WoWg)2Ao(Q — WiWs) =0
implies P = WoW§ or Q@ = WiWy. Note that it follows from that equation
that the (o(P — WoWg)2o)(Ao(Q — WEWo)o) = 0, which implies that
Ao(P — WoWg§ )2 = 0 or Ae(Q — WgWo)2o = 0 by primeness of 2o,
where P — WoW§ € 2 since Wy € PUQ C A, and note that the C*-
algebra generated by g and Q — WyWo is also prime. The last possibility
Q = W§Wp is ruled out, since Q & Ug. This means, in particular, that

tr(WoWg) = tr(WgWo) < t1(Q) = 1 = tr(P),



from which we see that the first possibility P = WoW{ also is impossible.
We conclude that no Wy exists, so 2 is not extremally rich.

If E = I®e;; in U, then we have EAE = 2; and (I-E)YUI—-E) = A,.
Both of these C*-algebras are extremally rich by the corollary above, yet
2 is not. This behaviour contrasts with the positive results for stable rank
one and real rank zero.

If 3 and & denote the closed ideals in 2 generated by 2; and %Ay, then
these algebras are extremally rich, being stably isomorphic to 2; and s.
Now 24/& = J/(RN J), which is extremally rich; and quasi-invertibles lift
from 3% /(RN J) to I*, hence to A, because J is hereditary in 2 (even an
ideal). Note that 2l = J + & by direct matrix computation. It follows that
we can not relax the condition that J having stable rank one, to that J being
extremally rich, in the statement that if sr(J) = 1, then 2 is extremally
rich if and only if /7 is extremally rich and extreme partial isometries lift,
in the corollary above.

Note that 2o is simple and 2y 2 A ® M>(C) 23N K. It follows that

A/R=T/(INK) = A /Ao = C(T),

which has stable rank one; and every unitary in 2/R lifts to an isometry
or a co-isometry in 2. Therefore, we can not relax the condition lifting in-
vertibles to lifting quasi-invertibles, in the statement that for an extremally
rich ideal J in 2, with sr(2/J) = 1, if invertibles lift, then 2 is extremally
rich, in the proposition above. Moreover,

A/T RI(ANT) 2 Ax/Ag = C*(V + ).

Now both V' and V + 2y are proper isometries, so that C*(V) and C*(V +
2o) are both isomorphic to the Toeplitz algebra. Consequently, C*(V)NJ =
0 and C*(V)) + 7 = 4, so that we have a split extension. This shows that
we can not relax the conditions that 2/J or B have stable rank one to just
being extremally rich, in the statement that if % = 7+ % for an extremally
rich ideal J and a C*-subalgebra B with sr(B) = 1, then 2 is extremally
rich, in the corollary above.

2 Higher extremal richness for C*-algebras

Abstract. We introduce a notion generalizing the extremal richness of
Brown and Pedersen for C*-algebras, and consider its basic properties.

This section is taken from the author [21], and is slightly modified.



2.1 Introduction

The extremal richness for C*-algebras is introduced by Brown and Pedersen
[3] as an infinite analogue of the (topological) stable rank of Rieffel (18]
for C*-algebras (especially for finite ones). More precisely, the extremal
richness (especially for infinite C*-algebras) is an infinite analogue of stable
rank 1. Our starting point is to consider an infinite analogue of higher
stable rank. To do this, we need to generalize the extremal richness again
in the general setting for the higher stable rank as considered by Rieffel
[18]. Namely, we introduce higher extremal richness for C*-algebras, and
consider its basic properties by borrowing some methods for extremally rich
C*-algebras from [3].

2.2 Higher extremal richness for C*-algebras
Recall from Brown and Pedersen (3] the following:

Definition 2.2.1. Let A be a unital C*-algebra. Denote by 2; the closed
unit ball of &, ie., A; = {a € A||la|| < 1}. Denote by 92 the set of
extreme points of the convex set ;. Let 2A~! be the set of all invertible
elements of 2. We say that 2 is extremally rich (or has extremal richness)
if the set A~19A;2~! of all quasi-invertible elements of A is dense in 2.
For a nonunital C*-algebra A, we say that 2 is extremally rich if so is its
unitization A+ by C.

Remark. It is known that elements of 921, are partial isometries v of A
such that (1 —vv*)A(1 — v*v) = 0. '

We give the following:

Definition 2.2.2. Let 2 be a unital C*-algebra. Denote by L, () the set
of all elements (a;)?_; € A" (n-direct sum) such that for each (a)71,
there exists an element (bj)7_1 € A™ such that > j=1bja; is invertible
in &, and by R,(2) the set of all elements (xj)?=1 € A" such that for
each (z;)7_;, there exists an element (9)7=1 € ™™ such that Y7, z;y;
is invertible in 2. We say that 21 has extremal richness n (denoted by
exr(%A) = n) if there exists the smallest positive integer n such that the set
Ln(2A)(0%%1)™ R () is dense in ™. If no such integer, let exr(2A) = oo. Set
Xn(A) = Ln(A)(8A1)" Ry (A). For a nonunital C*-algebra 2, we say that

2l has extremal richness n if so does its unitization A+ by C.
To confirm the above definition for higher extremal richness,

Lemma 2.2.3. Let A be a unital C*-algebra. For an integer n > 1, if
Xn () is dense in A", then Xpy () is dense in A1,



Proof. Let (aj)"+1 € A"t Since (a)]—1 € A", by assumption, for
€ > 0 there exists (b;)7_; € X, () such that |la; —b;|| < e/2 (1 < j <
n). Since (b))%, € Xn(Ql) let (b;)7_; = (cjd;f;)}-;, where (¢j)7=1
n(m) (f])] =1 € R,—,,(Ql) and (d ) i=1 € (3?2[1)"’ Since (b27 e n,an+1) E
A", there exists (z;)7_, € X. (Ql) such that ||b; — z;|| < /2 (2 <j<mn)
and |lant1 — @a| < £/2. Since (z;)7_; € Xn (), let (®5)7=1 = (c5d; )31
where (c;)7_; € Ln(), (f1)7-, € Rn(A) and ()71 € (02A1)™. Note that
(c1,¢q, - ,cn) € Ln+1(Ql) (fl,fl, . ,fn) € Rn+1(§2t) Indeed, there exist

(r3), (s J) € A" such that Y7 =17 iCj» 2g=1 f18} are invertible in A We

take (0,71,---,75,), (0,8}, ,s) for (cl,cl, o), (f1, fl, 0 5 fL) to be
in Lpy1(2A), Rpy1(A) respectively. Thus, we obtain that (b1, 21, ,2n) €
Xn+1(2A) such that ||a; — b1|| < € and ||aj+1 —zjll<e (1<j<n). O

Corollary 2.2.4. Let 2 be a C*-algebra. If A is extremally rich, then 2
has extremal richness 1.

If 2 has stable rank one, then A is extremally rich if and only if A has
extremal richness 1.

Proof. Note that A~10;A~1 C Li(A)02; Ry (). Also, if 2 has stable
rank one, we in fact have ™! = L1 () = Ry (). ]

Remark. This is a subtle point. It is desirable that we have such an
equivalence without stable rank one, or we may expect the similar theory
as for extremal richness 1, by replacing extremally richness with it.

Now recall from Rieffel [18] the following:

Definition 2.2.5. Let 2 be & unital C*-algebra. We say that 2 has stable
rank n (denoted by sr(2) = n) if there exists the smallest positive integer n
such that Ln(2A) (or R,()) is dense in A™. If no such integer, let sr(2A) =
co. For a nonunital C*-algebra 2, we say that 2 has stable rank n if so
does AT,

It is easy to see that
Proposition 2.2.6. Let A be a C*-algebra. Then
exr(2A) < sr(2A).

Proof. Note that Ln(2) C X,(2) (and R, () C X, (2A)), because of 1 €
O%y. Thus, if L,(2) is dense in A, then so is X, (). O

Remark. This says that higher extremal richness can be estimated by higher
stable rank. Also, the stable rank for many C*-algebras has been calculated
in the literature (after Rieffel [18] but we will not mention about this here).



Example 2.2.7. If 2 has stable rank 1, then it has extremal richness 1. For
example, the n x n matrix algebras My (C) over C and the C*-algebra K of
all compact operators on a Hilbert space have stable rank 1. Let C (X) be
the C*-algebra of all continuous functions on a compact Hausdorff space
X. IfdimX < 1, then sr(C(X)) = 1. Let B be either an infinite von
Neumann algebra or a purely infinite C*-algebra. Then sr(B) = oo but
exr(B) = 1. See [3] and [18].

Proposition 2.2.8. Let A be a C*-algebra and D its quotient C*-algebra.
Then exr(D) < exr().

Proof. Let m be a surjective *-homomorphism from 2 to ®. It is clear that
T(Ln(A)) C Ln(D) and m(Rp(A)) C Ra(D). Note that m(0%1) C 09:. In
fact, if (1 —vv*)A(1 - v*v) = 0, then (1 — 7(v)7(v)*)D(1 — 7(v)*n(v)) = 0.
Therefore, m(X,(%A)) is contained in X,(D). Hence if exr(2A) < n, then
exr(D) < n. a

Proposition 2.2.9. Let A be a finite or infinite direct product of C*-
algebras A;. Then exr(2) = max; exr(%;) or sup; exr(2A;) (respectively).

Proposition 2.2.10. Let 2 be a C*-algebra and B its hereditary C*-
subalgebra (in particular, its closed ideal). Then exr(B) < exr(2A).

Proof. We can use the similar argument as given in the proof of [3, Theo-
rem 3.5], where we consider n-tuples (a1, ,an) € Aor B instead of single
elements a € 2 or B. Note that L, () and R, (%) are invariant under the
left or right multiplication by elements of GL,, () respectively, in particu-
lar, by diagonal matrices with invertible elements on the diagonal. a

Proposition 2.2.11. Let A be a C*-algebra and My, () the n x n matriz
algebra over A. Then exr(A) = exr(M,(2A)).

Proof. To show exr(2A) > exr(M,(2)), we can modify the proof of 3,
Theorem 4.5] in the same way, where we consider n-tuples instead of single
elements. Since 2l can be viewed as a hereditary C*-sublagebra of M, ()
by a standard rank 1 projection, we have exr(2) < exr(Mp(2)) by the
above proposition. O

Proposition 2.2.12. Let U be an inductive limit of C*-algebras ;, where
we assume that euch O(U;): is embedded in O(N;11)1. Then exr(2A) <
sup; exr(4;). ‘

If in addition ; are hereditary C*-subalgebras of A, then exr(A) =
sup; exr(4;). :

In particular, we obtain exr(%A) = exr(A ® K).



Proof. Note that the union of Xn(%;) is contained in X,(2). For the
second, use one of the propositions above. For the third, note that A ® K
is an inductive limit of My(2) (n > 1) satisfying the above assumptions.
O

Remark. More properties concerning higher extremal richness would be
deduced somewhere else in the future.

3 The A-function in operator algebras
"This section is taken from Pedersen [17].

3.1 Introduction

Let B be a normed space and B the closed unit ball in 8. Denote by B,
the set of all extreme points of the convex set B;. Aron and Lohman 1]
investigate the A-function, defined on elements T € B1 to be the supremum
A(T) of numbers X € [0, 1] for which there exists a. pair (V, B) € B, x B,
such that T'= AV + (1 — \) B. They show that when B has the A-property
that A(T") > 0 for any T € B, then every closed face of B 1 contains extreme
points, so that any convex function on B8 that attains its maximum must
do so on B.. Moreover, if B has the uniform A-property that A(T') > e > 0
for any T € B, then B has the Krein-Milman-like property that the
closure of the convex hull of B, N §: cl(conv(B. NF)) = F for every closed
face § of B;. Refer also to Lohman [9]. A larger class of C*-algebras
(AW*-algebras of Kaplansky) have the same property, where recall that a
C*-algebra 2 is said to be monotone complete if each bounded incresing
net of self-adjoint elements in 2 has a self-adjoint, least upper bound, and
2 is an AW*-algebra if each maximal commutative C*-subalgebra of 2 is
monotone complete.

3.2 Notation and Preliminaries

Let 2 denote a *-algebra of bounded operators on a Hilbert space H, closed
in the norm topology on B(H). Abstractly this means that 2 is a C*-
algebra. i.e. a Banach algebra with involution and with the norm condition
IT*T| = ||T||? for T € 2A. If we further assume that 2 is closed in the weak
operator topology on B(H), in which case 2 is a von Neumann algebra.
Abstractly this means that 2/ is a dual space. In a von Neumann algebra
the unit ball is weakly compact, so that the Krein-Milman theorem applies,
and also 2 is generated by its projections, in the strong sense that the
spectral resolution of every normal operator in 2 belongs to 2, and the set



of all projections in 2 forms a complete lattice: a sublattice of the set of
closed subspaces of H.

Let 2 be a C*-algebra and 2; the closed unit ball of U and Ae the set
of all extreme points of 2;. Assume throughout that 2 is unital, i.e. T € ,
otherwise 2, = . It is shown by Kadison in 1951 [8] (cf. [13]) that

e ={V €U |(I - VVAI = V*V) = 0}.

If 2 is prime, or in particular simple, then V' € %A, are either isometries or
co-isometries, i.e. V*V =T or VV* = T.

Denote by 2, the subgroup of all unitary elements of 2 in the group
A1 of all invertible elements of 2 under multiplication. Then 2, C 2.

A C*-algebra 2 is finite, if T*T = I implies TT* = I for T € A, ie. if
every isometry is unitary. If 2 is a von Neumann algebra, then this implies
that ™A = . For if V € ., there is a central projection Z € U such that
ZV is an isometry in Z%, and (I — Z)V is a co-isometry in (I — Z)2 (see
the subsection 3.4 below); and finiteness of 2 implies that ZV + ([I-2z)v+
is unitary, whence V € 9,,. The same argument will work if 2 is a finite
AW™*-algebra.

The stable rank one sr(2) = 1, i.e. density of 2~ in %, implies that
Ae = Ay, and thus A is finite.

The fact that the convex hull of 20,: conv A, is dense in A; is the
Russo-Dye theorem [20]. It is proved by Rgrdam [19] that

Theorem 3.2.1. If T is a non-invertible element of Ay with o(T)
dist(T,%4~1) < 1, there is for every 8 > 2/(1-=a(T)) unitaries Uy, --- , U,
Ay, where n — 1 < B < n, such that

m

_ 13y Btlon
T = ﬁ(; UJ) + TUn.

When 2, = 2, this allows us to determine the A-function (see the
subsection 3.5 below).

3.3 Polar decompositions

As von Neumann showed, every operator T’ € B(H) has a polar decomposi-
tion T' = V|T|, where |T'| = (T*T)'/? and V is a (unique) partial isometry
such that ker V' = ker T. The construction: V = lim T(n~YI+|T|)~1, where
the limit is taken in the strong operator topology, shows that if T € 2 a
von Neumann algebra, then |T| € A and V € . If A is a C*-algebra, we
can not be certain that V € 2, rather, V belongs to the von Neumann



algebra generated by 2, equal to the double commutant %" of 2. But if
T €A™, then T = U|T| for U = T|T|™! a unitary of 2.

For 6 > 0, denote by Ej; the spectral projection of |T| corresponding
to the open interval (§,00), i.e. E5 = X(6,00) (IT]), where x(500)(-) is the
characteristic function on the open interval.

Theorem 3.3.1. ([15] or [19].) If T is an element of a C*-algebra A, with
polar decomposition V|T|, then for each § > dist(T,%~1) there is a unitary
U € 2, such that UEs; = V E;.

For § < dist(T, A1) there is no unitary eztension of VEjs in 2.

Corollary 3.3.2. Each element of the form V f(|T|), where f is a continu-
ous function on sp(|T|) such that f(t) =0 for t <6, and § > dist(T, A1),
has a unitary polar decomposition Uf(|T|) = V£(|T|) in A.

Proposition 8.3.3. If V € 2, with dist(V,%™1) < 1, then V € 2,,.

Proof. Let P = V*V and Q = VV* be the support and range projections
of V, respectively. Then V = VP is the polar decomposition of V, so that
P = E; for any § € (0,1). By the theorem above there is a unitary U € 24,
such that UP = VP = V. Consequently, Q = VV* = UPU*.

By assumption, (I — Q)2(I — P) = 0, hence

0= -QUUI~-P)=U(I-P)U*U{I - P)=U(I - P).
It follows that U =UP =V,so0 V € ,,. O
Corollary 3.3.4. If 2! is dense in A, then A, = 2Ay,.
Proposition 3.8.5. ([15] or [19].) If T & A1, then
dist(T, 2Ay) = max{||T|| — 1, dist(T, A1) + 1}.

Sketch of Proof from [19]. Clearly ||T — U|| > ||T|| — 1 for every U € 2,,,
with U]l = 1. Since T is non-invertible, |T — U| > 1. Set S = ||T —
U|I"™(T —U)+U. Then Sy is in cl(&~1) since ||So — U|| = 1. Thus

a(T) = dist(T,A™") < |T = Sol| = |T - U +U - S|
=|T-U-|T-U|" (T -0v)|
=A-|T-U|™IT-Ul=|T-U|-1,

which implies that dist(T, 2,) > max{a(T) + 1, ||T|| — 1}.



Let S € 2A~!, with polar decomposition S = U [S| with U € . Since
—I <|S| =TI < (||S]| — 1)1, we have

dist(5, ) < S = Ul = |IIS] - I|| < max{1, ||S]| - 1}.

By continuity, this also holds for elements in cl(A~1). Since there is S €
cl(A71), with ||T — So|| = &(T) and ||So|| = |IT|| — a(T), we have
dist (T, ™Ay) < ||T — Sol| + dist(So, 2y,
< a(T) + max{1, [|So|| — 1} = max{e(T) + 1, T — 1}

O

Proposition 3.3.6. If A is a von Neumann algebra and T € 2, there is
an eztreme point W € e such that T = W|T|.

Proof. The set € = {W € %, |T = W|T|} is a non-empty, convex, weakly
closed subset of the weakly compact unit ball in B(H). Note that if
W1, W, € €, then for 0 <t < 1, (¢(W1 + (1 — £)Wa)|T| = tT + 1-9)T=T;
and if Wy, € € with W, — W weakly, then (WIT|¢,n) = limg (W, |T|&, n) =
(T¢,n) for &,n € H.

By Krein-Milman’s theorem we can find an extreme point W € €. Since
W]l =1 we have W*W|T| = |T|, because

IT|(I = W*W)IT| = |T|> = T*T = T*T — T*T = 0,

and W*W < ||W*W||I =1, s0 [ — W*W > 0, and hence vVI-W*W|T| =
0, which implies (I — W*W)|T| = 0.
Both W|W/| and W (2 — |W|) belongs to 21, where note that

IWIW1? = ||[W W W |W]|| = |(W*W)2| = [W]* =1,
and we have
IWE - WDI?= @2 W)W*W@— W) = |||W[* - AW + 4 w2,

where we consider the real-valued function fz)=xt—4a3+4z2forz € R,

with f'(z) = 4z(z — 1)(z + 1), it follows from which, by functional calculus
that [|[W(2 — [W])||* = 1 since £([0,1]) = [0, 1].
We also have

T=Ww|W|[T|, T=w(2-|W|)T),
1
W=sWIW|+W(2-—|w)),



it follows from the third equality easily checked that

T — WiT| = %(W|W||TI +W (2~ |W))T)),

so that if the first equality holds, the second equality is deduced. Check
that T'= WI|T| = W|W ?|T| = W|W||T), because

(WITD*(AWIT]) = |TIIW|T| = |T|W*WI|T| = |T|?

and |T'| commutes with W*W, so that |W| and |W|Y/2 also commute with
|T|, and therefore,

(WIITl¢,€) = (ITI|W|H2%¢, |W (%) > 0, ¢eH,

ie. |[W||T| >0, and hence |W||T| = [|WI|T|| = |T]|.

We conclude from the third equality (a convex combination) above and
extremality of W that W = W|W]|, i.e. |W]| is a projection and W is a
partial isometry. Indeed, it follows that W*W = W*W|W |, which implies
[W|? = |W[® = |W4, hence |W| = [W|? = W*W a projection.

IfAe (I-WWH*)A(I-W*W), then A|T| = 0. Thus T = (W A)|T|.
Then ||W 4+ A|| < 1. Indeed, let A = PBQ for some B € 2y, with P =
I—-WW* and Q =1- W*W, and we have

W+ A" = |(I - PYW(I - Q) + PBQ|?
= (I - QW*(I - P) £ QB*P)H{(I - PW(I - Q) + PBQ}|
=l - QW*(I - P)W(I - Q) + QB*PBQ)|
= max{|[W*(I - P)W|,||B*PB||} < 1.

Therefore, W+ A € €, with W = 271(W + A) + (W — A)). It follows from
the extremality of W that W = W + A, hence A = 0, whence W € 2,. O

Remark. Another proof is as follows. Let T = VI|T| be the polar decom-
position of T. Note that the set ® = V + (I — VV*A(I - V*V) is a
weakly closed face of ;. In fact, as shown by Edwards and Riittimann,
every weakly closed face in 2; has this form. An extreme point W of ©
therefore belongs to €, and let W = V 4 (I — VV*)B(I - V*V). It follows
that W|T'| = V|T| = T since V*V|T| = |T).



3.4 Von Neumann algebras

For an operator T' € B(H), define
m(T) = inf{|Tz|| |z € H, ||| = 1}.

Since we have ||Tz||> = (T*Tz,z) = (|T|z, |T|z) = T |z||? for z € H, it
follows that m(T") = m(|T|), and moreover, if |T| € %A1, then

m(T) = minfe > 0|e € sp(|T|)} = my(T),
m(T) = max{e > 0|l < |T|},

and m(T) = |||T|~||=!, where m,(T) is defined in the subsection 1.1. As
for the second equality, see the subsection 1.1.

As for the equivalence between the first left value N and the second
value M, note that for any 0 < e<M , we have |T| — el > (M - e)l,
so that |T| — (M — €)I > eI, which implies M — ¢ ¢ sp(|T|). Hence
M —¢e < N, so that M < N. Conversely, for any N > € > 0, we have
N —€ ¢ sp(|T|). Then |T| — (N —€)I is invertible, and is positive since
sp(|T| — (N — e)I) = sp(|T|) — (N — €). Thus, there is § > 0 such that
|T|—(N —¢€)I > 4I. Hence |T| > (N —e+6)I. Therefore, M > (N—g+9),
so that M > N. ’

As for the third equality, we check that m(|T)) - 11T~ = 1. Since

L=zl = 717! Tlell < NTI~H Tl
we have 1 < [||T|71| - m(|T|). Conversely,

L=l = NT|T|| = S, NTNT| |
l|l=

_ _ T| 'z _
> ||ITNT | el = ||| 7| e - |||Tlm|| > |71 2| - m(ITY),

|T

so that m(|T])~! > |||T'|~*«||. Therefore, 1 > m(|T)) - |1T]~Y.

By the open mapping theorem the condition m(T) > 0 is equivalent to
T being injective with closed range. In this case T = U|T| with U = T|T|~*
a unique isometry.

Now consider T as an element of some von Neumann algebra 2 in B(H)
with center 3 = 2A NA'. Denote by 3p the set of projections in 3. Define

mp(T) = sup{m(ZT + (I - Z)T*)| Z € 3,}.
If we decompose T' = H + iK in real and imaginary parts, then

mp(T) = sup{m(H + iSK)| S € 3,},



where 35 denotes the set of symmetries S € 3 of the form S = 27 — I for
some Z € 3,. Check that

al £3 — %
T=H+iK="2 J;T +is. = iT
=I—;§-T+<I—I—+2—S>T*=ZT+(I—Z)T*.

If A = B(H) (in particular), then we have
mp(T) = max{m(T), m(T™*)}.

Indeed, If Z = I, then m(T) < mp(T). If Z = 0, then m(T*) < myp(T).

Conversely, for z € H with ||z| =1,

m(ZT + (I - 2)T*) < (2T + (I - 2)T")a|]? = | 2T<|]? + ||( - 2)T* =
1ZT¢1?, r=£(00€ ZH® (I - Z)H,
(I -2)T*n|?, z=0@neZHa (I - 2Z)H.

- [ITepe,
L IT*n)2.

It follows that m(ZT+(I-Z)T*) < m(T) and m(ZT+ (I-2)T*) < m(T™).
Hence m,(T') < max{m(T), m(T*)}.

Lemma 3.4.1. If % is a von Neumann algebra and T € %A, there is a
central projection Z € A such that my(T) = m(ZT + (I — Z)T™).

Proof. If Y and Z both belong to 3,, and
el <Y|T|+ I -Y)IT*, el <Z|T|+(I-2)T*

then by spectral theory, eX < X|T| and e(I — X) < (I — X)|T*| for
X =YV Z and also for X =Y A Z, because these statements only involve
Y, Z and |T'| commutaing, respectively Y, Z and |T*|. Note that it follows
from multiplying the inequalities by Y, I — Y, and Z, I — Z respectively that
eY <YI|T|, e(I-Y) < (I-Y)|T*|,and eZ < Z|T|, e(I— Z) < I-2)|T™|.
Moreover, eYZ < YZ|T| and e(I - Y)(I - Z) < (I - Y)(I — Z)|T*|, with
YZ=YANZad(I-Y)I-2)=1-(Y+Z-YZ)=1-(YV2).
Furthermore, we have £(Z — ZY) < (Z — ZY)|T*|, to which by adding
eI =2) < (I-2)|T* wegete(I-YZ) < (I - YZ)|T*|. Also, we
have £(Z —~ ZY') < (Z — ZY)|T|, to which by adding €Y < Y|T| we get
e(Y+Z~-2Y)< (Y +Z— ZY)|T|, as completed. Therefore, we obtain

eX < X|T| + (I - X)|T*.



We have

m(ZT + (I - Z)T*) = max{e | el < |ZT + (I - Z)T*|}
= max{e|el < Z|T|+ (I — Z)|T*|},

because

(ZT + (I - Z)T*)*(2T + (I — Z)T*) = ZT*T + (I — Z)TT*
=ZITI* + (I - 2)|T** = (Z|T| + (I — Z)|T*|)>

and therefore, |ZT + (I — Z)T*| = Z|T'| + (I — Z)|T*|. This means that if
(Zn) is a sequence of 3, such that the sequence {en = m(Z,T+(I-2,)T*)}
increases to my(7'), then with Y}, = Vn>kZn € 3p we have e, < m(Y,T +
(I =Y%)T*) for every k > m. Indeed, for m € Z fixed and for any n > m we
have em < m(ZyT + (I — Z,)|T*|), so that e < Z,|T| + (I — Zy,)|T*| for
n 2 m. Thus, for every k > m, we deduce that en, < Y|T|+ (I — Yi)|T*|
by using the estimate for X obtained above inductively and taking weak
limit.

Arguing in the same way on the decreasing sequence (Y%) in 3p, we see
that if Z = AY} € 3, then ey < m(ZT+ (I — Z)T*) for every k. Indeed, we
have el = m(ZyT + (I — Z)|T*)I < Zp|T| + (I — Zx)|T*|, which implies
ek < Z|T| + (I — Z)|T*|. Tt follows that myp(T) <m(ZT + (I — Z)T*). By
definition, my(T) > m(ZT + (I — Z)T*). O

Recall that the A-function for T' € 21 of an operator algebra 2 in B(H)
is defined by

MT)=sup{A € [0,1]|T=AV+(1-NB, Ve,Bc 2}

Theorem 3.4.2. If A is a von Neumann algebra, and T € A, then
1
AT) = 5(1 + my(T)).

Moreover, if % <A XNT), there are extreme points V,W € Ay, such that
T=ANV4+(1-\NW.

Proof. If T = AV + (1 — M\)B for some V € 9, and B € A1, put P =
V*V and @ = VV*. We can find a central projection Z € 3, such that
I'-Q < Z < P. To see this, note that T — P and I — Q are centrally
orthogonal since V' € 2., so for every unitary U € #,, I —Q is orthogonal to
U(I-P)U* = I-UPU*, that is, [-Q = (I-Q)UPU*ie. I-Q <UPU*.
Take Z = AUPU*, the infimum being taken over U € 2, so that [—-Q < Z



and Z < P. Evidently uZu* = Z for every u € Ay, ie. uZ = Zu.
Indeed, uZu* = w(AUPU*)u* < wUPU*u*, and replacing U with u*U
yields uZu* < UPU*, thus uZu* < Z, and conversely, Z < UPU* for
U € 9y, and in particular, Z < wUPU*u*, which implies u*Zu < UPU*,
and hence u*Zu < Z, and thus Z < uZu*. Also 2 = span(%,) (in fact,
every element is a linear combination of 4 (even 3) unitaries). It follows
that Z € 3.

Since Z < P and I — Z < Q, we have

(ZV)*(ZV)=V*2V = ZP = Z,
(=2 I-2)WV*=VI-2)V*=(I-2)Q=1~2Z.

It follows that W = ZV +(I—Z)V* is an isometry in 2. Let Tp = ZT+(I-
Z)T* and By = ZB+ (I — Z)B*. Rewrite the equation T = AV + (1-\)B
8s Ty = AW + (1 — A)By. Check that

To=ZT + (I - Z)T*
=AZV+ I -2)V*)+ (1 =N (ZB+ (I - Z)B*) = \W + (1 — \) By,

Since By € 1, indeed, || Bo|| = max{||ZB|, ||(I - Z)B*||} < 1, we compute

mp(T) > m(To) = m(AW + (1 — \)By)
= inf{||AW + (1 = X)Bo)a|| ||| z|| = 1}
2 inf{A|Wz|| - (1= N)||Boll| |lz]| = 1} =21 -1,

This inequality holds for any decomposition T = \V + (1=X)B. Therefore,
we conclude that m,(T) > 2. \(T) — 1.

To prove the reverse inequality, as shown in the lemma above we take
a projection Z € 3p such that my(T) = m(ZT + (I — Z)T*), and set
mp(T) =€. Set A= |ZT+ (I - Z)T* = Z|T| + (I - Z)|T*|. Thenel < A.
It is shown that this implies that for any \ € [3,5(1 + €)] we can find
unitaries Uy, Uz € 2y, such that A = AU; + (1 — A\)U,. This fact is verified
by writing Uy = B+i(1 — A\)D and Uy = C — iAD, where B, C, and D are
self-adjoint elements of 2 given by

1 _
B= ﬁ(fu (2A=1)A7D),
C = 5(].——)\)(A - (2/\ - l)A_l),
1 11 1
D=1—(U-B"i= I - C)3.



Here (2X —1)A~! should be interpreted as 0 when )\ = £ (if mp(T) = 0 this
may be the only choice), and if A = 1 (so that A = I) the formulae for C
and D should be interpreted as 0. Note that

Ur=B+iIl-B)'?, Upy=C—iI-CH2.

so that direct computation implies U;U; = UyUf = I and UsU; = UpUy =
I, and

AUL+ (1= XUz = AB + (1 = \)C +i(MI — BHY2 — (1 - \)(I — C2)1/?)

with AB+ (1 -\)C =271 A+ 22 - 1A ) +27 (A~ (2A-1)A ) = 4
and

)

I-B>=]- 4LAZ(A + (2 -1)A71)?

1 —_
=1 (A + 22— 1)1+ 21 - 1)2(47))?)

- &((4/\2 — A+ 2)] - A2 — (2X - 1)} (471)?);

4(1—_1_)\)—2(14 -(2x-1471)?

- ﬁ(ﬂ — 2020 DI + (21— 1)2(A71)?)

_ 4(1#1»2((@2 — A+ 2)T — A — (20 — 1)X(A-1)?),

I-C?2=71-

=1

so that A(I — B%)M2 = (1 — A\)(I - C?)!/2, where since 0 < 2\ — 1 < ¢, we
have for 1 > ¢ >2)\ -1,

I A+ (22— 1)2 4+ 12 — (21 — 1)2
—t2+(2)\—-1)2+1—(2/\—1)2t—2= (( )t2) ( )

—(#2— (22 - 1)) - 1)
so that T — B2 > (0 and I — C2 > 0 by functional calculus.
Therefore, for 3 < X < 5(1 + my(T)) we obtain
ZIT|+(I-2)T* | =A=)\U1 + (1 - A)Us.
As shown in the proposition above, we can choose extreme points W;
and W3 in % such that T' = W,|T| and T* = W,|T|. Then
T=zZT+(I-2)T*)=W1Z|T|+ (I - 2)|T* Wy
=WiZ(Z|T|+ (I - Z)IT*)) + (I - 2)(Z|T| + (I - 2)|T*)W3
=WiZ(\WU1 + (1 - NUs) + (I — Z)(\U:1 + (1= NU)W5
= A(ZWlUl + (I — Z)U1W2*) + (1 - )\)(ZWlUQ -+ (I - Z)UQWQ*).

20,



Evidently, V = ZW\U1 + (I — Z)U;W} and W = ZW4Us + (I - Z)U, Wy
are extreme points. Indeed, check that
I-VV*=1-2ZW\W} -~ - ZY LWy WoUy
= (I - Z)U(I - WaWo)Uf + Z(I - WiWw?);
[-V*V =1-ZUWiW U, — (I — Z2YWaWy
= (I - Z)(I - WQWQ*) + ZUf‘(I - Wle)Ul,
it follows from which that (I — VV*)U(I — V*V). Similarly, done for W.

Thus we have T' = AV + (1 — A)W, as desired. Choosing \ = (1 +my(T)),
we get A(T) > 2(1 + my(T)). O

3.5 (*-algebras and the unitary A-function
For each T' € 2; the unit ball in a C*-algebra 2, define
M(T) =sup{A € [0,1]|T = A\U + (1 - \)B, U €%y, B e N}

We call it the unitary A-function. Clearly Ay (T) < A(T), since 2, C Ae.
The A-function and the unitary A-function agree when UAe = 2Ay. Set a(T) =
dist(T,2~1).

Theorem 3.5.1. If2 is a C*-algebra and T is a non-invertible element of
Ay, then

1
M(T) = 5(1 —a(T)).
If T is invertible, then \y(T) = 3(1 + | T2|-1).

Proof. Assume that T ¢ A™1. If T = \U + (1 — \) B for some U € 2, and
B € 2, then A < %, since otherwise T'= AU(I + A~1(1 — AU*B) € 271,
because [A"1(1 — \)U*B|| < 1,if 1 — A <), ie. £ < \. Now,

IT =AU+ B)| = ll(1 - 20)B|| < 1-2x.

Since U + sB = U(I 4+ sU*B) € A" for every s < 1, we see that U + B €
cl(A~1), whence a(T) < 1 — 2X. Since this holds for all decompositions as
above, we conclude that a(T) < 1 — 2\, (T).

Another argument estimating

IT=Ul = 1I(1= 2B - (1 - AU|| <201 - })

is also available, since dist(T,2,) > dist(T, A1) + 1 as given before.



When «(T') = 1 the result above shows that A, (T") = 0, so in order to
prove the reverse inequality we may assume that a(T) < 1. Then there is
for every 8> 2(1 — a(T))~! a convex combination

. 1 +1—n
.1_’ = E(Ul + ce + Un—l) + ﬁ_ﬂ—U'r“
with U; € 2, and n — 1 < 3 < n, by the theorem in 3.1. Taking
1
B=ﬁ_1(U2+~-+Un_1+(ﬁ+1—n)Un),

we have T' = 3U1 + (1 — 3)B, with B € 2, so that A, (T) > 5- It follows
that A\, (T') > %(1 — a(T)), giving the desired equation.

I T € %! we have T = U|T| with U € ,. Thus T~} = |T|-1p*
and [T = |[|7[7'U*|| = |||T|™}||. Thus we see that m(T) = |T~Y~%
Since |T'| > m(T)I there are unitaries U; and U, € 2, such that with
Ao = 3(1 4+ m(T)) we have

IT| = MU + (1 = Xo)Us.
Multiplying this equation with U we see A (T) > 114+ m(T)).
Conversely, if T'= AU + (1 — \)B with U € %, and B € 2; we get
m(T) = inf{|]AUz + (1 - X) Ba|| ||| z|| = 1}
2 mf{AU]| - (1= NIB] llz] = 1} = 22 - 1.

This holds for any decomposition for T, so that m(T) > 22,(T) - 1.
Combined with, we obtain Ay(T) = 3(1+m(T)) = LA+ T4, O

Remark. When T is invertible the number m(T) in the formulas serves
as a measure of the negative distance from T to AL, If T € 2A~! with
T =UIT|, then U is an approximant to T in 2, and

dist(T, %) = |IT — Ul = 7] = I|| = max{|T]| - 1,1  m(T)}.
Indeed, the last equality follows from functional calculus, and for the first
equality, we have [|T' — V|| > max{||T|| — 1,1 — m(T)} for any V € 2,
because [T~V|| > |T||—||V|| = ||T|| -1, and we have IT-V| >m(T-V),
so that for any € > 0, we have |T — V|| + & > ||(T — V)z| for some z € H
with ||z = 1, and ||[(V — T)z|| > |Vz| - |Tz|| = 1 - |ITz||, therefore,
ITz||+e>1—||T -V

which implies m(T) + ¢ > 1 — ||T — V||, hence |T — V|| +¢ > 1 — m(T)
thus, we obtain ||T — V|| > 1 — m(T).

’
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Proposition 3.5.2. If T is an invertible element of the unit ball A, of a
C*-algebra 2, then A\ (T) = X\(T).

Proof. We have Ay(T) = 3(1 + |77Y71) > 3. If we had \,(T) < \(T),
there would be V' € 2, and B € ; such that 7 = AV + (1 — A)B with
A>X(T) > 4. With A = \71T we have 4 € A~! and

VAl =" -DBl<x!-1<1

Then V' € 2y, so A < A\y(T), a contradiction. Consequently A\(T') < Ay (T),
whence A\(T") = \,(T). O

Theorem 3.5.3. Let 2 be a C*-algebra. The following conditions are
equivalent:

(i) For every T €U} and 0 < e < % there are unitaries Uy, Uy, Us € 2,
such that

T = %(1 —e)Uy + %(1 — &)Uy + eUs.

(ii) Mu(T) > 3 for every T € ;.

(iii) A has the uniform \y-property, i.e. \y(T) > & > 0 for any T € ;.
(iv) 2 has the Ay-property, i.e. \y(T) > 0 for any T € ;.

(v) dist(T,271) < 1 for every T € ;.

(vi) 2 has stable rank one, sr(2) =1, i.e. AL is dense in .

Proof. (i) = (ii). Note that .
" L 1.7 . -1 -1
T=¢eUs+(1—¢) §U1+§U2 ,  with |27 U7 + 2 Uyl < 1.

(i) = (iii) = (iv) are trivial.
(iv) = (v). Because if T = AU + (1 — AB) with A > 0, U € 2, and
B e 2, then \U € A7, so

dist(T, 2™ Y) < |T- XU <1-A< 1.

The implications (v) = (vi) and (vi) = (i) are due to Rgrdam ([19]).

(v) = (vi). Suppose that sr() # 1. If T € 2 such that o =
dist(7,2~") > 0, define S = V f(|T]), where T = V|T| is the polar de-
composition of T' in B(H) and f(t) = min{1,a~*t}. Since f(0) = 0 and f
is continuous it follows that S € 2 and S € ;. But if dist(S, A7) < 1,
then with Ej; the spectral projection of |S | corresponding to the interval
(0,00) there is a unitary U € 9, such that VEs = UEs for some § < 1.
Now, since S = Vf(|T|) = Uf(|T|) and T = V|T), it follows that Ej is



also a spectral projection of |T|, but corresponding to the interval (ad, co).
Check that

|SI? = 5*S = F(IT)U*U£(IT)) = f2(T)),
so that |S| = f(|T'|), hence, since £ = § implies ¢t = o,

Es = X(5,00)(IS]) = (X(8,00) © F)T]) = X(as,00) (IT])-

Since ad < a = dist(T,2A~!), this is a contradiction to not being of such
unitary extension U for T as proved before. Thus, dist(S, A1) > 1, as
desired.

(vi) = (i). By assumption, dist(T,A~!) =0 forevery T € A. If T € 2;
is non-invertible, then for every 8 > 2 there are unitaries Uy, Uy, Us € 2y,
where 2 < 8 < 3, such that

= 0= (- D)+ + (- s

T= %(U1+U2)+

W1th0<1—%<§smce2<,6<3
Rgrdam [19] also concluded as a corollary of h1s main result that if

st(A) = 1, then for each T € 2; and each e € (0,1], there are unitaries
Ui, Us, Uz € 2y, such that

T= ——(U1 + Uz + €Us)

€
2+¢

= —2—(1 —8)(Ur+Uz) +6Us, with0< 6= <

Ll

d

Remark. Note that if 2 is a von Neumann algebra, then T € 2 is invertible
if and only if T = J(Uy + Us,) with Uy, U, € 2, (see Olsen and Pedersen
[12]). Indeed, let T' = U|T| be the polar decomposmon of T with U € 2y,
Let W = |T'|+4(I — |T|*)!/2. Then |T| = (W + W*) with W € %,. Hence
T = 3(UW + UW*) with UW,UW* € QLu Conversely,

1 x
T=§(U1(I+U1U2))= §U1U0|I+U1U2] U|T|
with U = U1Up, where I + U}U, = UolI + Uy U2| with a certain Uy € 2,,.

Note that T*T = z|I 4+ UfUs|?, so that |T| = 3|1 + UtUs).



Corollary 3.5.4. Let X be a compact Hausdorff space and C(X) be the
C*-algebra of all continuous functions on X. Then C (X) has the A-property
if and only if the covering dimension of X s at most one, in which case
C(X) has the uniform \-property for A = 3

Proof. Note that sr(C(X)) = 1 if and only if dim X < 1. O

3.6 Attaining the \-function values

Proposition 3.6.1. It T is an invertible element of the unit ball A1 of a
C*-algebra 2, then there exist V and W in U, such that

T=XT)V + (1 - XT))W.
Proof. We have constructed a decomposition:
T=U|T| = MNUU;, + (1= 20)UU,

with U,U1,Us € 2y and Ao = 1(1 + m(T)). We further showed that
Ao = )\u(T) for T € AL, Since A\y(T) = A(T) for T € A1, we are
done. O

Remark. We have shown in the subsection 3.4 that if 2 is a von Neumann
algebra, then the A-function values are attained.

Prop081t10n 3.6.2. If X is a compact metric space, such that for every
f € C(X), the number A(f) is attained in a decomposition for f, then X
is finite. :

Proof. If X is infinite, there is a convergent sequence () in X with z, #
Tm for n # m. Passmg if necessary to a subsequence we may assume that
dist(zn, o) < 7= for all n, where zg = limz,, where dist(-,-) denotes the
metric on X. Put Y = {zn|n > 0} and define h € C(Y) by h(zg) = 0
and h(z,) = 2 > for n > 1. By Tietze’s extension theorem, the function h
extends to an element of C(X), again denoted by h, with 0 < h < 1. We
may assume that h(z) > 0 for all z # z, replacing otherwise h with

min{1, max{h(z), dist(z, o) } }

which does not change h on Y. Now define f € C(X) by

f(®) = h(@)e™D, z€X\{zo}, and f(zo)=0.



By construction, f(z,) = n—z,rin for all n, with ¢ = v/—1. We claim that f
can be approximated by invertible functions. Indeed, with

fn(z) = h(x)ei(mi“{ﬁrlﬁ’n})

we have elements f, € C(X) with dist(f,,C(X)™!) = 0, because f, is a
product of a positive function with an invertible function. Also f(z) =
f(z) if h(z) > 1, and

|[fn(z) = f(z)] < 2h(z) <

, otherwise.

SEE N

It follows that Ay (f) = £(1— (7)) = 1. Thus, if we have a decomposition
f = %(u+b) with u € C(X), a circle-valued function and b € C(X) with
norm < 1, then

2Re(u” f) = Re(1 + u*b) > 0.

Consequently, we have Re(ii(zy)i") > 0 for all n, which is impossible since
(u(zn)) converges to u(zo). O

A sub-Stonean space is a compact Hausdorff space X such that any two
disjoint open o-compact subsets of X have disjoint closures.

If Y is an open subset of a compact Hausdorff space X , there is a
continuous map @ : 3(Y) — Y from the Stone-Cech compactification 3 (V)
of Y onto the closure Y of Y in X, extending the embedding map of Y into
X.

Lemma 3.6.3. The map ® : B(Y) — Y is a homeomorphism for every
open o-compact subset Y of X if and only if X is a sub-Stonean space.

Proof. 1t is shown by Grove and Pedersen [5] that if X is a sub-Stonean,
then the map ® for each Y is a homeomorphism. Since ® is continuous
and surjective, it is shown that ® is injective, using C(8(Y)) = Cb(Y), by
reductio ad absurdum.

Conversely, take open o-compact disjoint subsets Y and Z in X. Then
BYUZ) = B(Y)® B(Z) (topological direct sum) and since @ : BY)e®
B(Z) — YUZ is a homeomorphism. it follows that ¥ and Z are disjoint. O

Remark. For any Tychonoff (or completely regular) space X, which is a
Hausforff space such that for any 2 € X and any open neighbourhood U
of = there is a continuous function f : X — [0,1] such that flz) =1
and f =0 on X \ U, there is a Hausdorff compactification B(X) with the
property that every continuous function f : X — Y, where Y is a compact
Hausdorff space, extends to a continuous function from B(X) to Y. Note



that C(8(X)) = C%(X) the C*-algebra of all bounded continuous functions
on X, and thus,

CB(Yu2z)) = C'(YuZz)=Ch(Y) e C(2) = C(B(Y)) ® C(B(2)),

and hence Y& Z~ (YU Z)~YUZ=YUZ.

Proposition 3.6.4. If X is a compact Hausdorff space, the following are
equivalent:

(i) X is sub-Stonean and dim X < 1.

(ii) Every element f of C(X) has a unitary polar decomposition f = u|f|
with u € C(X)y.

(ii)) C(X)1 = $(CX0)u + C(X)a).

Proof. (i) = (ii). Given f € C(X),let Y = {z € X | f(z) # 0}. Define
w(z) = %ﬁ—;[ for z € Y. Since Y is open and o-compact, ¥ is homeo-
morphic to 3(Y), and as w € C®(Y) = C(B(Y)), the function w extends

by continuity to a unitary function on Y. Since dim X < 1, every unitary
function w (extended) on a closed subset extends to an element v € C (X)u,
and f = ulf|.

(i) = (ii). If f € C(X) with ||f|]| < 1, we have f = ulf| for some
u € C(X)y. Define v = |f| +i1/1 — |f]2, which is unitary, and

%(uv +w*) =ulf| = f with uwv,wv* € C(X)..
(i) = (i). If f = L(u+v) with u,v € C(X) unitaries, then for € > 0,

g= %(1 +e)u+ %(1 —ewe C(X)™?

because for any z € X,

l+e)—3(1-¢e)=e>0, if0<e<],
l+e)—2(e-1)=1>0, ife>1,

lo(z)] > { g

D= D=

and also ||f — g|| < e. It follows that invertible elements of C' (X) is dense
in C(X), whence dim(X) < 1.

Now let Y and Z be disjoint open o-compact subsets of X. Choose
positive f,g € C(X) with norm < 1 and Y and Z as the complements of
their zero sets, respectively. By assumption we have unitary functions u
and v, such that f —ig = %(u +v). If z is a point on the boundary of Z,
it follows that u(z) equal +1. Indeed, let z, € Z such that lim Ty =z, for



which we have ~ig(z,) = (u(zn) +v(2,)) and ig(zy) = 2 (u(zn) +v(zn)).
"Thus, Re(u(zn)) +Re(v(zs)) = 0 and Im(u(zy)) + Im(v(zy)) = —2g(zn) <
0. It follows from plane geometry that u(z) = +1 and v(z) = F1 as
n — oo. Similarly, if we take y, € Y such that lim Yn = Y a point on
the boundary of Y, then we have Re(u(ys)) + Re(v(ys)) = 2f(yn) > 0
and Im(u(yn)) + Im(v(yn)) = 0. It follows that u(y) = +4 and v(y) = Fi.
Consequently we must have Y N Z = 0, so that X is sub-Stonean. O

We say that a compact Hausdorff space X is sub-Stonean at most of
order 2 if for each open o-compact subset Y of X ,themap ®: B(Y) - Y is
at most of order 2 at any point, which means that a point on the boundary
of Y can be reached as a limit of at most two distinct universal nets in Y.

Lemma 3.6.5. A compact Hausdorff space X is sub-Stonean at most of

order 2 if and only if given any pairwise disjoint, open o-compact subsets
Y1,Y2,Y3 of X we have Y1 NY,NY3 = 0.

Proof. If z € YiNY>,NY3 put Y = Y3 UYs UYs. Then the map @ :
B(Y) — Y have order 3 at the point z, i.e., ®~1(z) consists of at least 3
points, because

BY) = B(Y1) ® B(Y2) & B(Y3):

since C(B(Y)) = C*(Y1 UY2 UYs) = C(B(Y1)) @ C(B(Yz)) ® C(B(Y3)).
Conversely, assume that X is not sub-Stonean at most of order 2. Thus
for some open o-compact subset Y of X we have distinct points 71, ¥2,7v3 €
B(Y), such that ®(v;) = z (i = 1,2,3) for some ¢ € Y. Choose fe
C*(Y) = C(B(Y)) such that f (%) (i = 1,2, 3) are three distinct points in C.
Let U; be pairwise disjoint, open neighbourhoods of f(w) (:=1,2,3). Put
Y; = f~Y(U;), as subsets of Y, which are pairwise disjoint, open o-compact
subsets of X. Since 8(Y;) is the closure of Y; in B(Y) and Y; C B(Y3), it
follows that v; € B(Y;), whence « € ®(8(Y;)) = Y; for i = 1,2,3. Note the
following inclusions: Co(V;) € Cb(Y;) = C(B(Y7)) «— C(B(Y)) = Cb(Y),
where Cy(Y;) the C*-algebra of all continuous functions on Y; vanishing at
infinity and the quotient map is the restriction to Yi, so that 5(Y;) C B(Y)
as a closed subset. a

Theorem 3.6.6. If A = C(X) is a unital commutative C*-algebra, then

() (= (0 = (0 +2)(= 2O, +C(x))

if X is a sub-Stonean space with dim X < 1. Conwversely, if the condition
(*) is satisfied, then X is sub-Stonean at most of order 2, with dim X < 1.



Proof. 1t is shown by the propositon above that X is sub-Stonean and
dimX < 1if and only if C(X); = (%, + 2). This implies that 2, =
(A + A1),

To prove the second, note first that if u € 2, and b € B, then (1 +
€)u + (1 — €)b is invertible for every € > 0 and close to u + b. Check that
for any z € X,

(I+e)—(1-¢e)=2>0 if0<e<],

|(1+ €)u(z) + (1 — €)b(z)| > {(1+€)_(8_1) =2>0 ife>1.

It follows that the condition () implies that 2! is dense in (i.e. sr(2A) =
1), so that dim X < 1. Note that sr(C(X)) = |4mX | 11, where || means
the maximum integer < z € R.

To prove that X is sub-Stonean at most of order 2, using the lemma
above, let Y1,Y3,Y3 be pairwise disjoint, open o-compact subsets of X,
choose positive functions fi, fo, fa € C (X) with norm less than 2 and with
complements of their zero sets Y1, Ys,Ys respectively. Let § = exp(%m'),
and define f = 0f) + 62f, + f3. If the condition (%) is satisfied, we have
f = u+b for some u € Y, and b € ;. For any z € Y; we have u(z)+b(z) =
fs(z) > 0, and it follows from plane geometry that Re(u(z)) > 1fs().
Indeed, we have Re(u(z)) + Re(b(z)) = f3(z) and Im(u(z)) + Im(b(z)) =
0. Since f3(z) > 0, we have —Re(u(z)) < Re(b(z)) < Re(u(z)), so that
2Re(u(x)) > f3(z). Therefore, if x belongs to the boundary of Y3 we see
from the continuity of u that Re(u(z)) > 0.

Similar arguments show that if z belongs to the boundary of Y7, then
we have Re(6%u(z)) > 0, and if z belongs to the boundary of Y,, then
Re(6u(z)) > 0. Indeed, note that for any z € Y7, we have 6%u(z)+62b(z) =
fi(z) > 0, and for any z € Ys, we have fu(z) + 0b(z) = fo(z) > 0.

Ifnow z € Y1 NY,NY3, then u(z) should belong to the 3 half spaces
C,, 6C4, and 6°C, where C4 = {z € C|Re(z) > 0}, whose intersection
~is {0}. But |u(z)| = 1, and we have reached a contradiction. Therefore,
the intersection Y1 NY,NY3 is empty. This shows that X is sub-Stonean
at most of order 2. ‘ d

Proposition 3.6.7. There exists a compact Hausdorff space X, which is
not sub-Stonean but only sub-Stonean at most of order 2, such that the
condition (x) : C(X)1 = 1(C(X)y + C(X)1) holds.

Proof. Let X1 = B(Ry) \ Ry. It follows from [5] that X; is a connected
sub-Stonean space of dimension 1. Choose any non-trivial open o-compact
subset ¥ of X1, and let xo be a point in Y \ Y. (If none existed, ¥ would
be closed as well as open, contradicting the fact that X 1 is connected.) Let



X2 = Xj. Define X to be the topological union of X; and X2, glued to-
gether at zo. Then X is a compact connected Hausdorff space of dimension
1, but it is not sub-Stonean, because the two copies of Y in X; and X3 are
disjoint open o-compact subsets of X with a common boundary point zg.

We wish to prove that A-function values are attained for any element
of C(X);. Note that

C(X) = {(f1, f2) € C(X1) ® C(Xa2) | fi(z0) = fa(zo)},

and take f = (f1, f2) € C(X)1. If f is invertible, its A-function value is
attained with A(f) = Au(f), as shown before. We may therefore assume
that f is not invertible, whence A, (f) < % Indeed, suppose that A, (f) > %
Then there is 1 > X > 1 such that T = AU + (1 — A)B for some U € C(X),
and B € C(X)1, so that

1
IT =20l = 1= NIBl <1-2< )

and hence |A\71T7 - U|| < 3 < 1, which implies that IA-tU*T - I|| < 1,
which implies that T is invertible.

However, since dimX = 1, we have sr(C(X)) = 1, so that A(f) >
Au(f) > 4 for every f € C(X);. Thus, M(f) =1

If f(z0) # 0, we choose unitaries u;,us in C(X1)y and C(X3), respec-
tively such that f; = w;|f; (i = 1,2), where each f; is the restriction of f to

X;. Then f1(zo) fo(ao)
1(Zo 2(Zo

o)l ~ Tfalag)] ~ 20
so that u = (uj,up) is a unitary in C(X) with f = u|f|. With v =
|[fl +iy/1 — | f]2, we obtain f = L (wv + wv*), with wv, wv* € C(X)u.

We are left with the case where f(z0) = 0. Find wy; € C(X}), such
that fi = w,|fi|, and extend it from the closed subset X 1 to a continuous,
circle-valued function w on the 1-dimensional space X. Replacing f with
w* f we see that it suffices to consider the case where [ =(f1, f2), fi(zo) =
fo(zo) = 0 and f; > 0. Find elements v1,v2 € C(X2), such that f =
%(vl + v2). The remaining task is to find suitable continuous extensions
of these functions on X;. Without loss of generality, we may assume that
Re(vi(z0)) > 0. Indeed, v (o) + va(zo) = 0 and v1 (o) + va(x) = 0, so
that Re(v1(zo)) + Re(va(wo)) = 0, and also Im(v;(z0)) + Im(vg(z0)) = 0.
Furthermore we may assume that Im(v;(zg)) > 0, since the argument for
Im(vi(z0)) < 0 is quite symmetric.

Let Z = {z € X1]fi(z) < Re(v1(x0))}. This is a closed subset of
X1 containing zo. For each z € Z, define v(z) = v1(zo) and b(z) =

u1(o)




2f1(z) — vi(xo). Then fi = £(v +b) on Z, and |b(z)| < 1. Check that
0 < 2fi(z) < fi(z) + Re(vi(20)), so that 2f1(z) — Re(vi(zo)) < fi(z) <
Re(vi(z0)), and note that

Re(2f1(z)—v1(20)) = 2f1(z)~Re(vi(20)), Im(2f1(z)—v1(z0)) = Im(v1 (o)),

and hence |b(z)| <| vi(zo)| = 1.

Moreover, v and b are continuous extensions of v; and vy from the union
X2 Uy, Z glued at zo, because b(zg) = —v1(z0) = va(zo).

For each « € X; \ Z we define

v(z) = fil@) +ivV1-[Ai(@)?, b(z) = filz) —ivV1- [fuz)]2

These functions are unitary and continuous on X; \ Z, with f; = %(U +b).
To see that v and b are continuous on X, consider any point z on the
boundary of Z. By definition of Z we must have fi(x) = Re(v;(z)), which

implies that
v(z) = vi(zo) = f1(z) +4iv/1 —|fi(z)]%.

Moreover, b(z) = 2f1(z) — vi(z0) = fi(z) — iy/1— |fi(z)[2. We see that
v and b on the boundary of Z agree with the definitions of v and b given
on X1\ Z, and thus v and b are continuous on X;. Put w = (v,v1) and
¢ = (b,v2). Then w and ¢ belong to C(X), and w is unitary and llell < 1,
and f = 3(w +c) as:

S0 +0) = (2 (0 +b), £ (o1 +2)) = (i, 1)
O

Remark. For C*-algebras 2l that are o-finite in the sense that any family of
non-zero pairwise orthogonal elements is countable, Haagerup and Rgrdam
(6] showed that the condition 2; = %(Q[u + 20,) implies that 2 is a finite
AW*-algebra. It had been known from Pedersen [16] that the condition
implies that A; = 2,2, so their aim was to provide a unitary polar
decomposition for every self-adjoint element in 2. .
A C*-algebra 2l is an SAW*-algebra (sub-AW*) if for any two elements
S,T € A with ST = 0, there is an E € 2 with 0 < E < I, such that
SE =0= (I-E)T. Asshown by Pedersen [14], a commutative C*-algebra
2 = C(X) is an SAW*-algebra if and only if X is a sub-Stonean space.
If every element in a C*-algebra 2 has a unitary polar decomposition, i.e.,
A =2, 2, then A is an SAW*-algebra with sr(21) = 1. The converse holds
under the additional hypothesis that also M() is an SAW *-algebra.



Conjecture. (This might be still open.) For a unital C*-algebra A the
following conditions are equivalent:

(i) A = %(Qlu + Q[u)

(if) A = A2, .

(iii) A s an SAW*-algebra with stable rank one.
Moreover, if A acts on a separable Hilbert space, the condition (iv) 2; =
%(Qlu + 21) implies that A is a von Neumann algebra.

3.7 Left invertible elements

For a C*-algebra 2, we have the following inclusions:
1 1
ATt Cc ALY, C 5 (% +2%) C 5@ +2) C c(@rh),

where 27! = 2, NY~! and 21,4+ = 2 NA, by definition. Check (again)
that if T = U|T is the polar decomposition of 7' € A, then U € 2, and
L > [IT|| = |||IT|||l. The second inclusion is equivalent to another 24+ C
(2 + 2y,). This is true by the decomposition

171 = (1 + /T TTP) + (T - i/ T TT)).

For the last one, note that 1((1 + )2, + (1 — e)A1) C AT! for every
O0<e<1.

Define 2" = {A € %|AA = A} to be the multiplicative semigroup
of left invertible elements. Thus A € Qll_l if BA =1 for some B € 2. It
follows from the open mapping theorem that A iZ[l_lif and only if A is
injective with closed range, so that

A = (A eAm(A) > 0}

(which is checked before). Indeed, if BA = I, then we have that if A€ =

An, then ¢ = BA{ = BAn = 5 € H, and also if A&, — m € H, then

én = BA&, — B, so that A¢, — ABn, and thus n = ABn € AH.

Conversely, if A4 is injective with closed range, the open mapping theorem

implies the existence of a bounded left inverse to A, and also A € 2[1_1.
Using BA = I we have

I = A*B*BA < | B|?A*A = || B||2|A]?

and that |A| is invertible. Moreover, V = A|A|"! is an isometry since
V*V = I. Consequently, A €A Lifand only if it has a polar decomposition



A = VI|A| with V an isometry and |A| invertible. In symbols, 2! =
QlisQl_T_l, where 2;; denotes the set of all isometries in 2, so that ;s C Ae.
Setting Qll_ll =N Qll"l we have the following inclusions:

- 1 1 -
Wit C Wishag C 5 (i + i) C 5(Ris + 1) C cl(2A7}).

For the second, since ; 4 C %(Qlu+9Lu) C (A5 +A;5), we have Wiy 4 C
L5 + 2As,). For the last, observe that if V € ;s and B € A1, then for
; 1
t<1,

V+iB=(I+tBV*)V e A7V c Y,
with [|1(V +tB)|| <1fort <1, or

m(V +tB)>1— |tB||>1—t> 0,
where note that for £ € H with ||¢]| =1,
IZ+tBVVE| 2 [VE| — [tBV*VE| > i€l - 1Bl = 1 — ||¢B]).

Denote by 2! the set of all right invertible elements in 2. Note that
Ql;l — (Q[l—l)*

If % is a finite C*-algebra, then ;' = A~1. Indeed, if A € AL
then A = U|A| with |A] € ™! and U*U = I, because U = A|A|"! and
U*U = |A|"1A*A|A|™' = I. By finiteness, UU* = I, so U is unitary
and A € 271, On the other hand, if Q[l_l is dense in A, then 2 is finite.
For if A € Qll"l and BA = I, we can find C € 2[[1 close to B such that
[ — CA|| < 1. Then CA € AL, and if DC = I we have

A=DCAe DA e,

whence A € Qll_l NA-L = AL, Thus, if A*A =1 in 2, then A* = A~
ie., A€y As shown before, if A~! is dense in A, then ™A = A, so that
if A*A=1Tin %A, then A € YA, = A,,.

By contrast, consider 20 = B(H) and let S be the unilateral shift on
I? = H. Then S € %! since §*S = I, but ||S — Al > 1 for every
A €A Ny Indeed, if |S— A|| < 1 for A € A1 N2y with AB = I, then

ISB =TI < ]IS - AlllB| < 1,

so that SB € 21, and thus S € 2A~1, a contradiction. Yet Qll_l Ut is
dense in 2 (for any factorial von Neumann algebra, ), because for any A €
2, there is an extreme point W € 2, such that A = W|A|. Since 2 is prime,
L.e., the zero ideal of 2 is prime, i.e., if IR = {0} for closed ideals J and &



of &, then J = {0} or & = {0}, we have that every element V of 2, is either
an isometry or a co-isometry. Indeed, since (I — VV*)(I — V*V) = {0},
the closed ideals J and & generated by I — VV* and I — V*V respectively
satisfy J& = {0}, so that J = {0} or & = {0}, equivalently, I — VV* = 0 or
I-V*V =0. Thus, if W*W = I, then |A| is closely approximated by an
invertible element S in 2, such that ||[A — WS|| < ¢, with WS € 27!, and
if WW* = I, then the same estimate holds, with WS e 21.
For any element T in a C*-algebra 2 we define

oy (T) = dist(T, 24;71).

Let T' = V|T'| be the polar decomposition of T in B(H), and denote by Ej
the spectral projection of |T'| corresponding to the interval (6, 00) for § > 0,
Le., Bs = X(5,00)(IT)-

Theorem 3.7.1. For each § > oy(T) there is an wsometry U € s, such
that UEs = V E;. For § < oy(T) there is no isometric extension of VEj in
A

Proof. If 6 > oy(T) there is an A € A" such that ||T — A|| < 6. Write
A= W|A|, where W € ;5 and |A| € A~1. Then

[TW?* — AW™|| < |IT - A|| < 6,

and since AW™* € cl(2A!) because AW* + eI = W|A|W* + eI € A1 for
every g > 0, it follows that a(TW*) = dist(TW*,2A~!) < 6.
Note now that TW* has the polar decomposition VW*(W|T|W*). Check
that
(TW*)(TW?*) = W|T|PW* = (W|T|W*)?,

and thus |TW*| = W|T|W*, and
(VW VW VWV = (VW) VV VI = (VW) VI*,

and ker(TW*) = ker(VW*), because if VIW*¢ = 0, then we have TW*¢ =
VIT|V*VW*¢ = 0, and conversely, if TW*¢ = 0, then VW* = VV*VIW*¢ =
0 since W*¢ € ker(T) and V*V is the orthogonal projection to ker(T)* that
is the orthogonal complement of ker(T).

Moreover, if f is a polynomial without constant term, then f (W|T\W™*) =
WF(IT|)W* since [T| = |T|W*W. The relation therefore holds when f
is a Borel function wiht f(0) = 0, so if E5 = X(5,00)(IT']) with 6 > 0,
then WEsW™ is the corresponding spectral projection for WI|T|W*, ie.,
X (6,00) (W [T|W™).



For TW* = VW*(W|T|W*), we find a unitary U’ € 2, (as obtained
before) such that

U'X (5,00) WIT|W*) = VIW*X(5,00)(W|T|W*),

so that
UWE;W* = VW*(WEsW*) = VE;W*.

Therefore, U = U'W € ;5 and UE;5 = V Ej, as desired.

Conversely, if U € 2;; such that UE; = VEj for some § > 0, define
f(t) = max{t — §,0}. Then S = Vf(|T|) € . In fact, since f(t) = 0 for
t < 6, we have

§ = V(T Es = UEsf(IT]) = US(IT)) € cl("),
because K. = f(|T|) + eI € A~! for every € > 0, with UK, € ;1. Since
17 = Sl = T = FATDI < 6,
it follows that oy(T") < 4. Note that
IT = SI? = I(1T] = F(TN)V*V(TI = F(THI = IIT| = F(T]I
and t — f(¢t) <6 for t > 0. O

Corollary 3.7.2. Each element of the form V f(|T|) with T = V|T| € %,
where f is a continuous function on sp(|T|) such that f(t) =0 for t < 6,
for some § > o(T), has a polar decomposition U f(|T|) = V f(|T|), where
U s an isometry in 2.

Proof. Since f = x(5,00)f, the functional calculus implies that
UF(IT]) = Uxoo)(ITNF(IT]) = UEsf(IT|) = VEs f(IT|) = V £(|T)).
O

Proposition 3.7.3. If a C*-algebra 2 contains an element T with oy (T) >
0, then there is an S € 2y with oy(S) = 1. If, moreover, ay(T*) > oy(T)
we may assume that also a;(S*) = 1.

Proof. We regard 21 as a C*-subalgebra of B(H) and let T = V|T| be the
polar decomposition of T. Assuming, as we may, that ||T| = 1 we let
§ =V f(|T]), where f(t) = min{l, ﬁﬂ} for0 <t <1. ,

If 0;(S) < 1, then with Es = X(5,00)(|S]), there is an isometry U € 2;,
such that UEs = V Ej; for some ¢;(S) < 6 < 1. Since S = V f(|T|) and T =



VI|T|, it follows that Ej is also a spectral projection for |T’|, corresponding
to the interval (6c;(T’),00). Indeed, check that since f(0) = 0, we have
5*S = f(ITNV*VF(T]) = f(IT])? so that |S| = £(|T]), and

Es = X(5,00)(I5]) = X(5,00) (f(IT])) = X($0(7),00) |T]) = Eisay (1),

where X(5,00) © f(t) = X(sa4(T),00)(t) for 0 < t < 1, by solving ﬁﬁ = 4.
Since doy(T") < oy(T), this contradicts with U Esay(1) = V Esq (7). Thus
o(S) = 1. In fact, note also that ||S|| = |F(IT)I| = ||fllc = 1, and for
every € > 0, we have [|S — eI|| < 1+ ¢, so that oy(S) < 1+ ¢, and hence
o(S) < 1.

If oy(T*) > au(T) and y(S*) < 1, then since S* = V*(V|S|V*), with

SS* = VF(IT)*V* = (VF(IT)V*)? = (V|S|[V*)?,

so that [S*| = V|S|V*, and ker(S*) = ker(V*), because if $*¢ = 0, then
V*¢ = V*VV*¢ = 0 since VV* is the orthogonal projection to ker(S*)*,
and if V*{ = 0, then S*¢ = f(|T|)V*¢ = 0, therefore, we can find an
isometry U € ;s such that

U(VEsV*) = V*(VEsV*)

with some 0;(S*) < 8 < 1, where X(5,0)(V|S|V*) = VE;V* since this also
holds for polynomials without constant term. Since VEsV* is the spectral
projection of |T™*| = V|T'|V* corresponding to the interval (0cu(T), 00),
indeed,

VEV" = VX(6,00) (FITNV" = VX(601(T),00) ITDV* = X(500(7),00) IT*])s

we conclude that o;(T™) < 6y (T) < oy(T). We have reached a contradic-
tion with oy (T™) > oy(T). Thus o;(S*) = 1. O

Lemma 3.7.4. (cf. [11]). For every element T in a C*-algebra 2 and any
isometry U in A, the spectrum of TU* contains the disc with center 0 and
radius oy(T).

Proof. If A € C with [A| < oy(T'), but A & sp(TU*), then TU* — M\ = A €
2A~1. Then
1T = AU|| = IAU|| = [A] < au(T),

a contradiction, since AU & Qll—l. O



Theorem 3.7.5. Let A be a C*-algebra and T € Y. If T & Qll_l, then
dist (T, Ass) = max{||T|| — 1,4 (T) + 1}.
Otherwise we have an approzimant V in Ais with
dist(T, %is) = [|T — V]| = max{|IT|| — 1,1 — m(T)}.
Proof. If T & Q(l_l, then for any U € s,
IT=Ul 2 |UNT = U)|| = [U*T —I| > r(U*T — I) > 1 + (T,

because the spectral radius r(U*T —I) of U*T'— I must be at least 1+oy(T)
by the lemma above, and note that sp(U*T — I) = sp(U*T) — 1. Clearly
we also have ||T'— U|| > ||T|| — 1, so we have established the following
inequality:

dist(T, 2;s) > max{[|T|| - 1, (T) + 1}.

To prove the reverse inequality, consider § > oy(T). Then there is an
isometry W € 2;, such that a(TW*) < 4, as in the proof of the theorem
above. There is for any € > 0, a unitary U € 2, such that

ITW* —U|| < max{||TW*|| =1 +¢,6 + 1}.
because if T' ¢ A, then dist(T,2Ay) = max{||T|| — 1, dist(T, %~1) + 1}, as
shown before, and note that if TW* € %=, then WT* ¢ AL, so that W

must be in 2, and thus T* and also T are in AL a contradiction.
It follows that UW € ;, with

1T = UW| = |(TW" - U)W|| < |TW* - U|| < max{|[T]| — 1 +¢,8 + 1}.
Since € and § are arbitrary we get
dist(T, ;) < max{||T|| — 1,q(T) + 1}.

IfT e Qll“l, we have a polar decomposition T= V|T| with V € ;5 and
IT| € A~1. Thus, we have m(T) = IIITll“ll as obtained before, and evidently

IT = VI = 1T = Il = max{||T|| - 1,1 — m(T)}
by functional calculus, and note that using the C*-norm condition,
IT = VI = IV(T| - DI = |(1T] - D?|| = |IT| - I||.

Therefore, we get dist(T, 2;s) < [T — V|| = max{||T|| - 1,1 — m(T)}.



Conversely, if U € 5, then || T'— U| > ||T|| — 1, and moreover,
U =1l = sup | U = Tl 2 sup (U] — 1T

=sup(l—||Tz|)=1- igf |ITz|| =1 —m(T),
X
where z ranges over the set of unit vectors in H. In fact, check that since
L—||T¢|| < 1—inf, ||Tz|| for ¢ € H with ||¢|| = 1, we have supe (1 —[|T¢|]) <

1 —inf; [|Tz||, and conversely, for any € > 0, there is £ € H with norm 1
such that inf; ||Tz|| + & > ||T¢||, so that

sup(l — [|T¢|l) + & > 1 - |T¢]| + & > 1 - inf | Tz,
¢

from which, the reverse inequality holds. It follows from the first and second
inequalities obtained above that

dist(T, A5) > max{||T|| — 1,1 — m(T)}.

3.8 Prime C*-algebras

For an element T in a C*-algebra 2, we define

ap(T) = dist(T, 24,1 UATY) = min{ey(T), a;)(T*)}.

Note that a C*-algebra 2 is prime, if and only if for any S, T € ¥, SAT = 0
implies S = 0 or 7' = 0. Indeed, if SAT = 0, then (ASA)(ATA) = 0, so
that primeness implies 2ASA = 0 or ATA = 0, so that S = 0 or T = 0.
Conversely, if two closed ideals J and £ of U satisfy J& = 0, then for any
S € J and T € &, we have SAT = 0, which implies S = 0 or T = 0. Thus
if T'#0, then =0, and if S # 0, then & = 0. In a prime C*-algebra 2,
extreme points of the convex set 2l; are either isometries or co-isometries:
Ae = Ass U Q[;lks‘

Theorem 3.8.1. If A is a prime C*-algebra and T € U, then
1
NT) = 5(1~ ap(1))
if T €A VAL Otherwise, with mp(T) = max{m(T), m(T*)},

AT) = 51+ my(T).
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Proof. If a > ap(T), there is an element A € 2, U with |T— A|| < o
We may assume that A = V|A| with V € 2 and |A] € A~!, passing
otherwise to T*. Consequently, we have

a(TV*) = dist(TV*,A7Y) < |TV* = VIAIV¥|| = (T — A)V*|| < o

because AV* = V|A|V* is in the norm closure cl(%~!), as checked before, so
that for any € > 0, there is A, € A™!, with ||TV*— A.|| < e+||TV*—AV*|.
There are U € 2, and B € U; such that

TV* = %(1 —a)U+ %(1 +a)B
since if § ¢ A™! with norm < 1, then )\, (S) = 1(1 — «(8)), as obtained
before, and note that if TV* € A1, then VIT™* € A1, so that V € 2y,
and thus T* and also T are in A~ = Qll"l N AL, a contradiction, with
ITV*|| <1, and note also that Ay (TV*) = (1 — a(T)) > (1 - a) (and
see the remark below).

Since V*V = I, we have

1

=3

(1- @)UV + (1 +a)BV

with UV € 2 and BV € 2;. Hence A(T) > 1(1 — a) for any a > ap(T).
If 1(1 — 0pp(T)) > A(T), then we have a contradiction, so that

AT) > 5(1 - o (T)).

Conversely, if T' = AV + (1 — \) B for some V € 2, and B € 2;, we may
assume that V*V = I (passing otherwise to T*). Assume for the moment
that A < 1 and ||B|| < 1. Then

V+B=(I+BV"V e,
because I + BV* € 2! since | BV*|| < 1, so that
V*Q1+ BV V+B)=1.

Since T'— A(V + B) = (1 — 2)\)B, we conclude that o;(T) < 1 — 2], with
ASAT) and 1 —2X > 1 —2X\(T). If 1 — 2X\(T) < o(T), then we have a
contradiction (where by continuity, the condition || B|| < 1 can be removed),
so that

1—=2XNT) > au(T) > opp(T)
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provided that A(T) < 3. But if A > %, the same argument shows that

T=XV+ il%513) =TI+ 1—;531/*)1/ P/

with 132 < 1. Thus if T & 2% UL, it follows that
1
NT) = 5(1 - ay(T)).
Now if T € A we have T = V|T| with V € 2; and |T| € AL, Thus
m(T) = TI"I—T[ 'Ihls implies that
ITI = MU + (1 - )\Q)B

for some U € 2, and B € 2 (in fact, we can choose B € 2,), where
Xo = 5(1+m(T)) = M\ (|T|), as shown before. It follows that T = AVU +
(1= X0)V B, so that A(T) > 1(1+ m(T)).

Conversely, if T'= AV + (1 — A\)B with V € 2, and B € %, then

1Tzl 2 MVa|| - (1= A)|Bz|| 2 22~ 1

for any z € H with ||z|| = 1. Therefore, m(T) > 2\ — 1, so that m(T) >
2\(T)—1. If T = AV*+(1— )\) B since 2 is prime, then m(T*) > 2X(T) -
similarly, Therefore, we always have

mp(T) > 2X(T) - 1.
Similarly, if T* € Qll_l, ie., T €21, then we have
T = \VU; + (1- A1)V Uy,

where \; = 1(1 + m(T™)). Therefore, T = \UFV* + (1 — \)U3V* with
UyV* € U and U3V* € ;. Hence AT) = (1 +m(T*)).

It follows that if T € 21 U}, then

1
NT) 2 5(1+my(T)),

so that consequently, we get

La +m@y.

AT =
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Remark. If 0 < p <. Ay(T) = X < 1, then there are U € 2, and B € 2
such that T'= AU + (1 — A\) B, so that

T=(u+A—wU+(1—\B

_ A—u 1—X

with [|2£U + 122 B < A=4El=d

Corollary 3.8.2. If T is a left or right invertible element of a prime C*-
algebra A, then T = A(T)V + (1 — A(T))W for some V,W € ..

Proof. The reason for this is in the proof above. O
Theorem 3.8.3. A prime C*-algebra 2 has the \-property if and only if
A=cl(TUAY)  (norm closure),

in which case it has the uniform \-property for \ = 5

Proof. By the theorem above, we have \NT) > % 5 if and only if ap(T) = 0
for all T' € 23, i.e., if and only if 22[1 UL is dense in A. Moreover, 2 has
the A-property, i.e., A(T') > 0 for every T € 21, if and only if 0;p(S) < 1 for
every S € ;. But if ap(T) = min{ey(T), ey (T*)} > 0 for some T € B, we
may assume that o;(T™*) > a;(T) > 0, whence a,(S) = 1 for some S € 23
as shown before. O

3.9 Examples of infinite C*-algebras

On a separable Hilbert space H (= [2), we let K denote the C*-algebra of
all compact operators on H, and § denote the set of Fredholm operators
in B(H) whose images in the Calkin algebra B(H)/K are invertible.

Theorem 3.9.1. Let A be a C*-subalgebra of B(H) containing K, such
that N A is dense in A. Then X\(T) > 1 for every T € 2;.

Proof. Since K is a minimal ideal of 2I, we have 2 is prime. In fact, if J and
R are nonzero closed ideals of 2/, then J& is nonzero, because it contains K.
Thus, by the theorem above, it suffices to show that left or right invertible
elements of 2 are dense in .

Given T € 2; and € > 0, by assumptlon we can find F' € §N2A such
that || — F|| < e. Since A(T) = A(T™) we may assume, without loss of
generality, that the index n of F'is <0 :

index(F) = dimker F' — dimker F* = n < 0,
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considering otherwise T* and F*. Note that if V € 2, i.e., (I —VV*)2(I -
V*V) =0, then (I - V*V)A*(I - VV*) = 0 with 2 = %*, namely V* € 2.

Since K C 2, we can choose a partial isometry A of finite rank from
ker F' to ker F*. As ker F* = F(H)", the operator F + A is an injection
of H onto a closed subspace F(H) @& A(H) of co-dimension —n. Indeed,
if (F+ A)¢ =0, then F§ = 0 and A¢ = 0. Thus, £ = 0. By the open
mapping theorem (F + A)*(F'+ A) is invertible, so that F + A = V|F + A|
for some isometry V(= (F + A)|F + A|™!) in 2. Since F*A = FA* =0, it
follows that F' = V|F|. In fact, note that

|F+ AP = (F* + A")(F + A) = F*F + A*A = |F|* 1 |A]%,
and on the domain of F, we have
F=F+A=V|F+ Al =V|F|.

Likewise, F'+eA = V|F +¢A|, where |[F +cA| € %~!. Thus F+eA € %7,
and ||T — (F + €A)| < 2e. Since ¢ is arbitray, it follows that ap(T) =0,
whence A\(T) > % by the theorem above. O

Let S denote the unilateral shift on 12, i.e. S(a1,ay, - ) =(0,01,c2,-- ).
Thus S is an isometry in § with index —1. Since S™(1 — §5*) is the rank
one projection that takes the first basis vector to the n-th, it follows that
the C*-algebra ¥ generated by S, called the Toeplitz algebra, contains the
C*-algebra K of compact operators. Since the image of S in the Calkin
algebra is a unitary with full spectrum, we have a short exact sequence:

0 K —— % —% ¢(T) —— 0.

The identification of T/K with C(T) is given by q(T}) = f for f € C(T),
where T} is the Toeplitz operator on the Hardy space H 2 identified with
12, so that Ty = PMyP, where P is the projection of L%(T) onto H?, and
My is the multiplication operator on L?(T).

Corollary 3.9.2. The Toeplitz algebra T has the uniform \-property for

A= 1.

Proof. Since K C ¥ and invertible elements are dense in §/K = C(T),
we have that § N T is dense in T. Thus, the theorem above implies the
conclusion. In fact, if T € %, then ¢(T) is approximated closely by an
invertible element U = ¢(u) € T/K, with u € §. Then the norm of T —u+v
for some v € K is small and, still « — v € § by the invariance of Fredholm
index for compact perturbation. O
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Define the *-automorphism 6 of C(T) of order two, by 8f(t) = f(¢t™1)
for t € T.

Proposition 3.9.3. If A is the C*-algebra generated by T = S & S* on
the Hilbert space H = 12 @ 12, where S is the unilateral shift on 12, then
2 consists of all elements in B(H) of the form B® C in T ® %, such that
q(B) = 0(q(C)).

Proof. Define
Ao ={BOCecTOT|q(B)=0(¢(0))},

which is a normclosed *-subalgebra of B(H), i.e. a C*-algebra. Indeed, if
B; @ C; € Ay with B;®C; — B® C, then

q(B; + Bi) = 0(q(Cy)) + 6(q(Cr)) = 6(q(C; + Ci)),
q(B;Bx) = 0(q(C}))8(a(Cr)) = 6(q(C;Ck)),

q(Bj) = 6(¢(Cj))* = 6(q(C5)), and

q(B) = lim q(Bj) = liJr.n 0(q(Cj)) = 0(¢(C)).

Since ¢(S) = id and ¢(S*) = id = id™!, where id(z) = z € T, we see that
T=8®S5* €y, whence A C Ug.
"To prove the converse inclusion, note that

" —-TT* =1 SS*-SS*a I
={lol)-(0ohP)-(Iel)—-(PL®0) =P &-P,

where Pi = I — SS* is the rank one projection on the first basis vector.
Since (T*T — TT*)? = P, @ Py, it follows that P, &0 € A and 0@ P, € 2.
Moreover, as T™(P, @ 0) = S™P; @0 is the rank one projection on the n-th
basis vector, we see that 2 contains K @ 0. Similarly, 0 ® K C 2. The
projection Z = I ®0 in B(H) commutes with 2 because it commutes with
T, so the map & > A+ AZ is a *-homomorphism of 2. Since TZ = S&0,
we see that AZ = T ® 0. Now take any element B @ C € 2. There is an
element A € 2 such that AZ = B. Since 2 C 2lo, we know that A = B@D,
where 0(q(D)) = ¢(B). Also, 6(¢(C)) = q(B), so that ¢(D) = ¢(0), i.e.,
C-D=KeK. As0pK C 4,

BoC=Bo(D+K)=A+ (0@ K) e,

whence g C 2. O
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Proposition 3.9.4. Let A = C*(T') be the C*-algebra generated by T =
S®S*. Then
Qle = UneZQluTnQ[u,

where T™™ means (T*)" and T° = I. In particular, A, contains no non-
unitary isometries, so 2 is Murray-von Neumann finite.

Proof. If V € e, then V = U & W for some partial isometries U, W € %.
In fact, since we have AZ =T ®0 and A(I — Z) =00 T, where Z =10
and I = I @ I is the unit of 2, both U and W must be extreme in ¥.
Indeed, since (I — VV*)A(I — V*V) = 0, we have

0=I-VVUAI -V*V)Z = (I -UU*ZI - U*V),

O0=T-VVNAT -V*V)I - 2Z)= (I - WW"II - W*W).
Therefore, U and W are either isometries or co-isometries, and in particular
they belong to §, because ¢(U) and q(W) are invertible in C(T) = T/K.

Since the winding number of the function q(U) € C(T) is —index U, and
since 0 reverses the direction of its path, by ¢(U) = 8(q(W)) we see that

—indexU = —(—index W) = index W.

Assume now that index U = n > 0. Thus W is an isometry, U a co-isometry,
and S™U and (S*)"W are partial isometries of index zero, because

index(S™U) = index(S™) + index(U) = —n +n = 0.

We choose partial isometries A and B of finite rank from ker(S™U) to
ker(U*(S*)™) and from ker((S*)"W) to ker(W*S™), respectively. Then

U =(S"U+A)@((S*)"W + B) € Ay
because both summands are unitaries in T, and
0(¢(S™U + A)) = 0(q(5™)0(q(U)) = ¢((S*)")a(W) = q((S*)"W + B).
We have
(T*)"Uy = (S")™(S™U + A) & S™((S*)"W + B)
= U+ (S")"A) & (S™(S*)"W + S"B)
=U®S5"((§*)"W + B),

because A(I1?) = ker(U*(S*)*) = ker((S*)") since U* is an isometry, and
hence (S*)"A = 0. Both W and S™((S*)"W + B) are isometries in T with
index —n, so

Vo =W(W*S" + B*)(S*)"+C € T,
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for a partial isometry C of finite rank. Since
ker C = S™((S*)"W + B)I? = S™i2,
it follows that CS™ = 0, so

V28"((S*)"W + B)
= (W(W*S™ + B*)(S*)" + C)S((S*)"W + B)
= W(W*S™ + B*)((S*)"W + B) = W.

Finally, WW* =1 — Q@ and S™(S*)" = I — P for some projections P and
Q of rank n, so

Va=(I-Q(I-P)+WB*S*"+C=I+K

where K = QP—-P—-Q+WB*(5*)"+C € K. Consequently, Uy = @V, =
(I®I)+ (0® K) is a unitary in 2, and as desired,

Us(T*)"Ur = (1@ Va)(U @ S™((S*)"W + B)) =U @ W.
The case where indexU < 0 follows by considering V* =U*@ W*. O

Proposition 3.9.5. The C*-algebra A = C*(T) with T = S & S* has the
uniform A-property with A\ = %

Proof. We see that there is the following short exact sequence:

0 — KoK —— 2 —% ¢o(T) —— 0,

where q(B @ C) = q(B) for every B&@ C € 2, and ¢ : T — C(T) — 0 as
above. Therefore, we can use almost the same arguments as in the theorem
above.

If A= B® C €2 (and may assume A € 2;) and € > 0, we can find
E = F ® G € A such that p(E) = ¢(F) = 0(¢(G)) is invertible in C(T),
and

max{[|B - F|,|C- G|} =(B-F)&(C-G)ll=|A-E| <e.

Regarding F' and G as elements in ¥ N § we may assume that index F =
—indexG = n < 0 (considering otherwise A* and E*). As shown above,
this implies that F' = V|F| and G = W*|G|, where V and W are isometries
in ¥. In fact, G* = W|G*|, so G = |G*|W* = W*(W|G*|W*) = W*¥|G]|.
Since

8(a(V)) = 8(a(F)q(F*F)~%) = q(G)q(G*G)™7 = q(W*),
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where 62 = idg, it follows that V*@® W and V & W* are elements of 2. For
each element X @ Y in 2, define

PXBY)=XV*eWY, and o(X®Y)=XVeoWY.

Since we have 0(¢(XV*)) = q(Y)q(W) = q(W)q(Y) = g(WY) and sim-
ilarly, 6(¢(XV)) = q(W*Y), it follows that p and o are norm-decreasing
linear maps of 2 into itself. Check that

lp(X & Y)|| = max{| XV*|, WY} < | X @ Y|,
P(X1+Xo) ® (Y14 Y2)) = (X1 + X2)V* @ W(Y; + Ya)
=p(X1 @ Y1)+ p(X2 @ Ys).

Moreover, o o p = idg. Now

lp(4) = (IF*| @ |GD]| = I(BV* @ WC) - (FV* @ WG)||
=|(B-F)V*aeW(C-G)|
= [lo(A - E)|| <&,
and since g(|F*|) = q(V|F|V*) = q(|F|) we see that |F*| ®| G| = p(E) €

2. Since |F*| ®| G| (positive) is in cl(A~1), we have dist(p(A), A1) < e.
Therefore,

Mp(4) > (1 —¢)

since Au(p(A4)) = 4(1 — a(p(A))), as shown before, if p(A4) € A \ AL So
there are some U € 2, and D € 2, such that

p(A) = %(1 — U+ %(1 +6)D.

Consequently,
A=0(p(4)) = 51 = )o(U) + 2(1 +£)o(D)

with o(U) € 2y, whereas, if U = U; @ Us, we have o(U) = U1}V @ W*U, €
2le. It follows that A(A) > 1(1 — ¢), and since ¢ is arbitrary we obtain
MA4) > 4.

When p(A4) € 2% NA™L, we have A\, (p(A)) = 11+ m) > 1, as
shown before. It follows from the same argument above that A(A) > % O
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Remark. The six-term exact sequence in K-theory for the short exact se-
quence for 2 is given by

KoK —= Ko@) 2+ 7z

o] !

Z < K@) <= 0

which implies that K (%) = 0 and Ko(2) = Z ® Z, one copy of Z for finite
projections and one copy for the co-finite projections, where §(n) = (n,n),
on the Ko-level, i,(n,m) = (n —m,0) and g.(n,m) = m.

3.10 Purely infinite C*-algebras

Recall that a C*-algebra 2 has real rank zero if for every S, T € 2 such that
ST = 0 and every € > 0, there is a projection P € 2 such that SP = 0 and
(I — P)T|| < e. This condition has a number of equivalent formulations.
One is that A1 N, is dense in Ay,. Another is that the set of self-adjoint
elements of 2 with finite spectra is dense in 2g,.

A simple C*-algebra 2 is said to be purely infinite if it has real rank zero
and every non-zero projection of 2 is infinite, i.e., Murray-von Neumann
equivalent to a proper subprojection. This implies that for any P, Q of non-
zero projections of 2, there is a partial isometry V' € 2 such that V*V = P
and VV* < @ (a famous non-trivial fact by Cuntz [4]).

Theorem 3.10.1. If 2 is a purely infinite, simple C*-algebra, the set of
elements T of the form T = V|T|, where V is an isometry or a co-isometry
in 2, is dense in A. Thus, cl(AA4) = . :

Proof. If T € 2, then it has a polar decomposition T' = V|T|, with V € ".
It follows from the Stone-Weierstrass theorem that V f(|T'|) € % whenever
[ is a continuous function on sp(|T’|) vanishing at zero. Note also that
T™ = V*|T™*| is the polar decomposition of T*, with |T*| = V|T|V*.

If |T'| € A7, then V = T|T|™! is an isometry in . Similarly, if
|T*| € A1, then V* is an isometry, so V is a co-isometry in 2.

If 0 is an isolated point both in sp(|T'|) and sp(|T™|), let e(t) = 1 if t €
sp(|T'|)\{0} and e(0) = 0. Then P = ¢(|T|) and Q = e(|T*|) are projections
in®, and V=VP = QV. In fact, |T|(I — P) =id(|T|)(1 — e)(|T]) = 0, so
that (I —P)V*V (I —P) = 0 and hence V(I — P) = 0. Also, (I-Q)|T*| = 0.
Thus, (I — Q)VV*(I — Q) = 0 and hence (I — Q)V =0. As I — P and
I — @ are non-zero projections in 2, and A is purely infinite, there is a
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partial isometry W € 2 such that W*W = I — P and WW* < I — Q. Then
U=W +V is an isometry in 2, and T = U|T|. Check that

U'U=W"+V ) (W+V)=(I-P)+W*V+V*W+V*V = [—-P+V*V
since V*WW*V < V*(I - Q)V =0 so that W*V =0, and
UlT|=(W+V)|T|=WP|T|+ VP|T|=V|T| =T.

We are left with the case where 0 is an accumulation point both in
sp(|T'|) and in sp(|T*|). Given € > 0 we define

fi(t) = max{t —£,0}, fo(t) = max{t — 2¢,0},
t t
gl(t) = max{l - 270}? g2(t) = max{l - '2_670}’
for t > 0. Assuming, as we may, that ||T|| = 1, we see that

AT Ng(1T*) = f2(ITg2(IT1) =0,

because fig; = 0 for 1 < i < 2. Since U has real rank zero we can find
nonzero projections P and Q in A such that

(I=P)g(IT) =0, [|PAL(ITNI<e,
I =@ (IT*Nl <&, QA(T) =0,

since g1(0) = 1 and g2(0) = 1 and 0 € sp(|T|) Nsp(|T*|). Since A is purely
infinite, we can find a partial isometry W € 2 such that W*W = P and
WW* < Q. Now define S = eW + V f1(|T|). Then S € U with

17 =Sl < e+ IVAT| = AIT)I < &+ llid — filloo = 2¢.
On the other hand,
§*S =P+ fL(IT)) +e(W*V A(T)) + H(IT)V*W)

=P+ fL(|T]) + 2eRe(W*(I — Q + Q) f1(|T*|)V)
=e’P + fL(IT]) > e%ga(IT)) + f2(|T)),

where note that (I — QQWW*(I — Q) < (I — Q)Q(I — Q@) = 0. Since
€2ga(t) + f2(t) > 0 for 0 < t < 1, we see that |S| is invertible, whence
S =1U|S| for U = S|S|™! an isometry in . Thus, T € cl(A2A, ). O

Corollary 3.10.2. Every purely infinite, simple C*-algebra has the uni-
form A-property for A = %
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Proof. Since 4 C cl(A~1), it follows from the theorem above that
A = cl(AeA™Y) = el u ),

Note that % is prime. Indeed, if two closed ideals J and & of 2, i.e. both
0 or &, satisfy J& =0, then 3 =0 or & = 0. Thus, 2, = ;5 U A%, Hence
AL =7 Ut

Therefore, ap(T) = 0 for every T € 2, whence \(T) > 1 as obtained
before. a

Conjecture. (This might be still open.) For a unital C*-algebra U, the
following conditions are equivalent:

(i) % = 3(2, + ).

(i) A = A2

(iii) 2A is an SAW*-algebra with something?.

Moreover, if A C B(H), with H separable, then already the condition

(iV) A = %(Qle + Q[l)

implies that A is a von Neumann algebra.

Brief. (ii) = (i). Obvious. Because if A € 2; with A = V|A| a polar
decomposition with V' € 2, by condition (ii), then

1 1
A G Qlegll,-}- C Q[eé(mu + Qlu) C '2_(2[3 + Q[e),

where the first inclusion is checked before.

The job will be to show (i) = (ii). For condition (iii), note that any sort
of weak polar decomposition implies that 2 is an SAW*-algebra. Indeed,
if ST = 0 in 2, we may assume that S, T € 2, replacing them otherwise
with §*S and TT™, still S*STT* = 0. Now let R = S — T, and assume
that we have a decomposition R = V|R| for some V € 2 with ||V|| < 1.
Then

|R|(I - V*V)|R| = |R]> - R*R =0,

whence (I — V*V)|R| = 0 because V*V < |[V*V|I < I.

We have |R| = S + T because |R|? = (S +T)*(S +T) = (S + T)? with
S+T €2y. Thus, S—T = V(S+T), iee., (I=V)S = (I +V)T. Tt follows
that

SI-VI-V)S=SI+V*V -V -V*S =
T+ V) I+ V)T =TI +V*V+V + VT,

which equals zero, since both of the right sides are orthogonal. Hence
I -=V|S=0=|I+V|T,and also [I - V|2S =0 = |I + V|*T.
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Note also that (I — V*V)(S + T) = 0 implies (I — V*V)T? = 0. Thus,
(I -V*V)T*(I-V*V) = 0. Hence T(I — V*V) =0, so that V*VT =T.
Therefore, also V*VS = S.

It follows that

@I -V -VHS=0= (20 +V + V*)T.

Let B = 51 — (V + V*). Then we have 0 < E < I since 2(V + V*) <
HV +VHI < iland I - E = I+ LYV +ve> A7 —1I'=0, and we
have

ES=0=(I- E)T.

Therefore, 2 is an SAW*-algebra.
We see that condition (ii) is much stronger than that 2 is an SAW*-
algebra. 0

Recall from (2] that a unital C*-algebra 2 has real rank n (in symbols
RR(2) = n), if there is a non-negative least integer n > 0, such that
for any n + 1 self-adjoint elements Ay, --, A,q) of % and € > 0, there
are By,---, Bni1 € s such that |A; — Bj|| < e (1 <j<n+1)and

?:11 B? € %71 If 2 is commutative, i.e., 2 = C(X), then RR(C(X)) =
dim X. Moreover, we always have RR(2) < 2sr(2) — 1. Thus, if the stable
rank of & is 1, then the real rank of 2 is 0 or 1. The converse is definitely
false, since every von Neumann algebra has real rank zero, but stable rank
infinite, unless it is finite.

Theorem 3.10.3. If 2 is a C*-algebra with the uniform A-property for
A= %, then the real rank of A is at most one.

Proof. Given A, Ay € Usq and € > 0, we let T = A1+ 1Az. By scaling the
elements we may assume that | 7'|| < 1. By assumption we can find V € 2,
and B € 2; such that

1 € 1 €
T=(1—2\Va4c= i
( 2) + 2(l-l- 2)B, and let

2
1 € 1 €
To==-(1+= -(1-2)B.
b= 3L+ V+501-5)8
Then ||[To — T|| = |§(V — B)|| < &, so if we write Ty = B; + 1By, with

By, By € gy, then ||Bj — Aj|| < ¢ for j =1,2. Moreover,

1 1 | . | |
E(T;TO + ToTO) = 5((31 — 'I,BQ)(Bl + 'LBQ) -+ (Bl + 'LBQ)(Bl - ZBQ))
= B} + BZ.
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To show that the element above is invertible, consider the following
multiple S of Tp:

-1
S = <%(1+§)> Ty =V +1B,

where t = (14 £)7!(1 — §) < 1. Realizing 2l as an operator algebra on
some Hilbert space H, we let Z denote the projection onto the closure of
the subspace A(I — V*V)H. Since (I — VV*)A(I — V*V) = 0, it follows
that Z belongs to the center of 2A” the von Neumann algebra generated by
2l, and that
(I-VVNZ=0=I-V*V)I- 2).

Note that I — V*V < Z implies that (I — Z)(I — V*V)(I — Z) = 0, so
that (I — V*V)(I — Z) = 0. Note also that for any A € 2, we have
ZA(I-V*V) = A(I-V*V) and AI-V*V) = AZ(I — V*V), so that
ZA=AZ on (I —V*V)H, and on the other hand, Z = 0 on V*V H since
(I-V*V)V*V =0, so that AZ = 0 and A*Z = 0, and thus also AZ = ZA
on V*VH. This centerness also extends to 2" by weak continuity.

Thus V(I — Z) is an isometry on (I — Z)H, and V Z is a co-isometry
on ZH. Note that I — Z = (I — Z)V*V(I — Z) and Z = ZVV*Z by the
equation above. Therefore,

S§*S(I—-Z)= (V*+tB*)(V +tB)(I — Z)
=V*V(V*+tB*)(V + tB)V*V(I - Z)
= (V*V +tV*BV*V +tV*VB*V + 2V*VB*BV*V)(I - 2)
=V*(I+tBV* +tVB*+t*VB*BV*)V(I — Z)
=V*I+tVB*(I +tBV*V(I - 2)
>VH(1-t)2V(I-2)=(1-t)?% - 2).

Similarly,

SS*Z = (V +tB)(V*+tB*)Z
=VV*(V +tB)(V*+tB)VV*Z
=V(I+tV*B)(I +tB*V)V*Z
>V(1-t)V*Z =(1-1)°22.

Consequently, $*S 4 SS* > S*S(I — Z) + SS*Z > (1 — t)2I, which proves
that B? + B? is invertible. d
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Remark. Note that what we have is

V*(I +t(BV* + VB*) +t*VB*BV*)V(I - Z)

> (V*V —t||V*BV* + VB*V|[V*V + 2V*VB*BV*V)(I — Z)

> ((1—=2t)I+t*B*B)(I - Z)

=((1=t)’ I —t*(I - B*B))(I - 2)

=(1-t)*I-2)-t*I-B*B-Z+2)

=(1-t)*I-2)-t*I-B*B),
with B*B < I, where this estimate is not sufficient to prove the estimates
in the proof above, that is only the part we can not recover at this moment.
Probably, other reasons to deduce those estimates in the proof would be hid-
den. A reason might be that the estimate |I +tBV*| > I —t|| BV*||I holds,
with I —¢t||BV*||I > (1 — t)I, where the plausible estimate certainly holds

if VB*BV* —||BV*||?I > 0, but we always have VB*BV* — || BV*||?I < 0.
Finally, we certainly have ||I +tBV*||?2 > (1 —t)2.
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