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Abstract

We review and study the cyclic cohomology theory for smooth al
gebra crossed products by the group of integers in C*-algebra crossed
products, which is studied by Ryszard Nest.
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Introduction

We begin to study the cyclic cohomology theory for smooth algebras
like differential algebras in C*-algebras, which is one of important and
useful theories, such as K-theory and index theory, in noncommutative
(differential or topological) geometry initiated by Alain Connes ([1]). For
this, as the first step toward this program, we review and study the cyclic
cohomology theory for smooth algebra crossed products by Z the group of
integers in C*-algebra crossed products, which is studied by Ryszard Nest
([3]) following Connes.
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As a plan, we intended to study the theory for smooth algebra crossed
products by several other groups, obtained by several other authors, but we
have limited time and effort to do this, so that this project to be postponed
would be continued in elsewhere, probably.

This paper exactely based on Nest [3] is organized as in the contents
below, and becomes more detailed in not few parts in each subsection by
our certain effort, adding elementary computaions or helpful proofs for the
readers, and be corrected (or interpreted) in some parts, possibly, from
misprints. Several notaions are changed from origianl ones by our taste.
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1 Cyclic cohonlology for smooth algebra crossed
products by Z

This one section of 13 subsections is taken from Ryszard Nest [3].
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1.1 Introduction

Let A be a C*-algebra. We say that a dense subalgebra 21 of A is smooth
if 21. is a Frechet algebra in some nuclear topology stronger than the norm
topology from A.

Throughout this section, we assume that A is unital, 21. is a smooth sub
algebra of A containing the unit, and a is an automorphism of A mapping
21. onto 21 such that the restrictions of a and a-I to 21. are continuous with
respect to each of the seminorms defining the topology of 2l.

In this situation, in the subsection 1.2 we give a construction of a smooth
crossed product of 21. by a, denoted by 21. ~ a Z, which is a smooth subalgebra
of the C*-crossed product A ~ aZ and contains the algebraic crossed product
of 21 by a.

The rest of this section is devoted to the study of the cyclic cohomology
of the smooth crossed product and the main results in the subsections 1.12
and 1.13, as follows.

Theorem A. There is a linear map

compatible with the boundary map in the Pimsner- Voiculescu six-term exact
sequence of the K-theory for the C*-crossed product A ~a Z by Z and such
that the following diagram is exact:

HCev (21)~ Hcodd (21 ~a Z)

I-ar
------+ Hcodd (21)

11- a

~ Hcodd (21).

For the proof, given in the subsections 1.3 to 1.6 are the construction of
a representation for the Hochschild cohomology of 2l )<] a Z and an analysis
of the IEI-term of the spectral sequence associated to the exact couple:

H(2t ~a Z, (21. ~o: Z)*) == H(21 )<]0: Z, (21 ~o: Z)*).

On the other hand, it is obtained in the"subsection 1.6 that

Proposition B. The periodic cyclic cohomology of 21. ~ a Z can be computed
using only the homogeneous cochains <p on 21. ~ 0: Z such that for ao, · · · ,an E
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2l,

In the subsections 1.9 and 1.11, given are a construction of the map #
and a direct proof for the following:

Theorem C. The following long cohomology sequence is exact:

••• ---* H~-l(21) ~ H~-l(21) ~ Hf(21 )<la Z)hom ---* Hf(21) ~ · .. ,

where the cohomology groups with the subscript hom are computed with the
help of the homogeneous cochains above.

This result is applied to the construction of the six-term exact sequence
for the periodic cyclic cohomology of the smooth crossed product in the
subsection 1.12.

In the subsection 1.13, given are a construction of the pairing between
cyclic cohomology of the smooth crossed product ~ ~o Z and the K-theory
groups of the C*-crossed product A ~o Z, under a condition that 21 is
sufficiently large to detect all the K-theory classes of A, and the proof of
the compatibility of the six-term exact sequence in cyclic cohomology of
21. )<30 Z with the six-term exact sequence in the K-theory of A )<30 z.

1.2 Smooth crossed product

Let 21. be a unital topological algebra with a topology given by an increasing
sequence of seminorms II ·11 k for k = 1,2,··· . Let a be an automorphism
of 21..

We assume that 21. is a complete, nuclear vector space and both a and
a-I are continuous with respect to each of the seminorms II ·11 k.

Define the sequence of functions Pk : Z ~ lR.+, k 2:: 1, by

n

Pk(n) = sup (L Ilcilli)k, n E Z.
l~i~k t=-n

Remark. A seminorm p on a vector space V over C is defined by satisfying
o ~ p(x) < 00 for x E V, p(x + y) ~ p(x) + p(y) for x,y E V, and
p(cx) = Iclp(x) for x E V and C E <C. A *-seminorm p on a *-algebra 2( is a
seminormp on 21 as a vector space such that p(ab) ~ p(a)p(b), p(a*) = p(a),
and p(a*a) = p(a)2 for a, b E 21. The topology given by seminorms (II ·11 k)
on 2( has a basic system of neighbourhoods of 0 E Ql defined by

{a E 2l1llallkj < C, (1 ~ j ~ n)}.
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We now define a version of operator norm with respect to the semi
norms:

lIat lli = sup Ilat (a)lIi' a E 2L
Ilalli::;l

Note that 1I111i ~ 11111;, so that 1I111i ~ 1. Hence lIat lli ~ 1. Since lIalli ~
Iialli+l for a ~ 2l, we have IIat lli ~ lIat lli+l.

Lemma 1.2.1. (1) : Inlpk(n) ~ Pk+l(n); (2) : (E~=-n Ilatllk)Pk(n) <
Pk+l(n); (3) : Pk(m) ::; Pk(n)Pk(m - n); (4) : Pk(n)m :s Pkm(n).

Proof. As for (1), check that for n ~ 0,

n n n n
(L lIatlli)k+1 = (L lIatlliH L lIatlli)k ~ (2n + 1)( L lIatlli)k.
t=-n t=-n t=-n t=-n

Thus, Pk+l(n) ~ (2n + l)Pk(n) ~ n· Pk(n).
The first equality above implies the claim (2).
As for (3), note that lIat+slli ~ Ilatllillaslli' because

lIat+S (a) Iii = Ilat(aS(a))lIi ~ IlatllillaS(a)lli ~ lIatllillaSllillalli.
It follows that

n m-n
(L lIatlliH L IIat IIi)
t=-n t=-(m-n)

n n m-n
~ (L lIatlli)llaOlli + (L lIatlli)( L IIat IIi)

t=-n t=-n t=-(m-n),:;t:O
m-n m -n-l m

> L Ilatlli + L lIatlli + L lIatlli = L lIatlli.
t=-(m-n) t=n+l t=-m t=-m

Therefore, we obtain the claim (3).
As for (4), since (E~n lIat lli)km ~ Pkm(n), we have (E~n lI at lli)k ~

1 1
Pkm(n)m. Thus, Pk(n) ~ Pkm(n)m. D

Let 21. ~o [u, u- 1] denote the algebraic crossed product of2l by an action
Q of Z, where elements of 21. )<10 [u, u- 1] are given by finite sums: En anun

for n E Z and an E ~, and the algebra has the covariance relation: uau- 1 =
a(a) for a E 2(,

We now define an increasing sequence of seminorms on 2l ~o [u, u- 1] by
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Indeed, check that for c E C,

lie Lanunllk = SUp Pk(n) IIcan Ilk = lelll Lanunllkl
n n n

and

II LanUn+ Lbnunllk = sUPPk(n)llan+bnllk :::; II L anun llk+1I Lbnunllk'
n n n n n

and

and
t t t t

II L anun L bmumllk = II L anunbmumllk = II L anan(bm)un+mllk
n=-t m=-t n,m=-t n,m=-t

= sUPPk(n + m)llanan(bm)llk
n,m

S sup Pk(n)Pk(m)llanllk lIullk Ilbmllkll u*Ilk
n,m

= sup Pk(n) lIan llk · sUPPk(m)lIbm llk
n m

t t

= II L anunllk ·11 L bmumllk
n=-t m=-t

where 1I11lk = Itlll~ so that 11111k = 1 and 1I111k = Ilu*ullk = Ilull~, and
finally,

II Lanunllk = sUPPk(n)llanllk ~ SUp Pk+l(n) lIan llk+l = II L anun llk+l.
n n n n

It is shown by the computations above that the algebraic operations in 2l~a

[u, u*] are continuous in the topology defined by the sequence of seminorms
11·11 k, k = 1,2,··· . Hence we can make the following:

Definition 1.2.2. Define the smooth crossed product 21 ~a Z to be the
topological algebra obtained by the completion of 2l ~a [u, u*] in the topol
ogy defined by the sequence of seminorms II ·11 k.

We note that the coefficient maps em : 21 ~a: [u, u*] ~ 21 defined by
em(En anun ) = am are continuous and hence extend to the completion
21 ~ a Z. Indeed, note that

m

II L anunllk ~ Pk(m) IIam Ilk ~ (L lIat llk)kllam llk ~ (2m + l)kllam llk'
n t=-m
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Note also that each element x of the smooth crossed product has a
unique representation: x = En anun (an infinite sum), an E 21..

Define the pairing between elements x = En anun E 21. Xlo: Z and two
sided sequences {<fJn}nEZ of <fJn E ~* the dual space of 21 by

n n

Proposition 1.2.3. The topological dual (21 ><30: Z)* can be identified with
the space of two-sided sequences {<fJn} of <fJn E 21.*, satisfying the following
condition (*) : that there exist constants c, k 2:: 0 such that

sup IICPnllk < c.
n Pk(n) -

Proof. Suppose that {<fJn}nEZ defines a continuous linear functional on 21. XI 0:

Z. Then for some c, k, we have

for all En anun E 2l Xlo: Z. Choosing monomials aun we get

l<fJn(a) I :::; c· sup Pk(n)lIallk.
n

Hence lI<fJnllk ~ c· sUPn Pk(n). Thus,

which implies the condition (*).
Conversely, suppose that the condition (*) holds. Then, by the lemma

above,

n n n
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where II 'Pn II k is defined to be

sup l'Pn(a)l, a E 2l.
Ilallk~l

D

Proposition 1.2.4. The smooth crossed product Q1 )<30 Z is nuclear as a
topological vector space.

Proof. Given any vector space E and a seminorm 11·11 k on E, we denote by
(E)T; the Banach space given by completing the quotient space Ejker(11 ·
Ilk) ih the induced norm. Then the claim that ~ )<30 Z is nuclear can be
formulated as in the following.

For each i, we can find Ak E C, 'Pk E m*, and bk E (21.)i, kEN, with
l:k IAkl < 00, sUPk Ilbklli < 00, and SUPk II'Pkllj < 00 for some j, such that
the induced map 1r from 2l to (2t.); has the representaion given by

7l"(a) = L Ak'Pk(a)bkl a E l!.
k

What we have to show is that the same holds for 21. )<30 Z. Fix an index
i. For each x E 2t. )<30 Z, we have

x = LanUn
I--t L Ak:2 1Pn,k(X)Yn,k

n n,k

= L Ak'Pk(an)bkUn = L(L Ak'Pk(an)bk)Un

n,k n k

n

where Yn,k = (1/pi(n))bkun and 1/Jn,k(X) = n2pi(n)<.pk(an). Now we have

IIYn,klli = (l/Pi(n))lI bkun lli :::; (l/pi(n))llbklli :s; sup IIbk ll i < 00.
k

Hence

sup IIYn,klli ~ sup Ilbklli < 00, and also,
n,k k

1 1
L IAk2 1 = L IAkl L "2 < 00..n nn,k k n

Moreover, we have

II bklli = IIPi(n)Yn,ku -
nlli ~ pi(n)IIYn,klli ~ pi(n) sup IIYn,klli.

n,k
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n

In particular, as Pi(O) ~ 1, it follows that sUPk II bklli ~ sUPn,k lIYn,klli. Let
l = max{i,j}. Then we obtain

Indeed, check that since

IIxlll+2 = II Lanun lll+2 = sup Pl+2(n) Ilan IIl+2 ~ Pl+2(n)lIal\l+2'
n

we have

which implies that IIVJn,klll+2 ~ n2pi(n)ll<pklll+2(Pl+2(n))-1. Hence

n
2
pi(n)II'Pklll+2 I I

sup lI'l/Jn,k 1Il+2 ~ sup () ~ sup l'Pk Il+2 < 00,
n,k n,k Pl+2 n k

because Pl+2 (n) ~ n2Pl (n) by the lemma above. Conversely,

In2pi(n)<pk(an)I = IVJn,k(X) I ~II VJn,klll+21I x lll+2 ~ sup lI'Pn,klll+2 ·llxlll+2.
n,k

In particular, if we take x = an, then

Therefore, II<pklll+2 ~ (n2pi(n))-1 sUPn,k lI<Pn,klll+2 . pl+2(n), which implies

sup n
2
pi(n)II'Pklll+2 ~ sup lI'l/Jn,klll+2'

n,k Pl+2 (n) n,k

D

Example 1.2.5. Let 2l = COO(T) and suppose that Q is the automorphism
of 2l induced by a rotation on T. The algebra 21. consists of functions
Ln anzn, {an} E S(Z), where S(Z) denotes the space of rapidly decreasing
sequences, topologized by the norms:

lI{an}llk = sup(l +n2)k/2Ian l, k= 1,2,···,
n
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and also 21 by l12:an zn llk = lI{an }lIk. Since a(z) = ei8z, where () is the
rotation angle, we have Ilaklli = Iia-klli = 1 for all k, i, because

and hence Pk(n) = (21nl + l)k. The smooth crossed product 2l )<]0 Z is the
algebra of double two-sided sums:

'""" n mL...-Jan,mz U ,

n,m

where uzu-1 = a(z), topologized by the norms:

II L an,mznumllk = sup(2lml + l)kll{an,m}lIk
n,m m

= sup(2lml + l)k sup(l + n2)k/2Ian,ml.
m n

This is the dense subalgebra of the rotation C*-algebra, considered by
Connes in Noncommutative differential geometry. In general, one cannot
choose the functions Pk to be of polynomial growth.

Remark. The topology of ~ = coo(1I'l) may be given by the norms:

Pn(J) = L sup 100 f(z)l, f E 2L
lal~n ZE'lr

l

1.3 Projective resolution of smooth crossed products

Let ~ = 21. )<] a Z. Denote by 2lop the opposite algebra of 2l, obtained by
reversing multiplication in 21. Let ~ = 21 ® 2lop and D = <t ® e;>P, where
all the tensor products considered are the projective tensor products, check
that, which are the completions of their algebraic tensor products under
the greatest (or projective) cross (semi)norm(s):

Ilxll'Y,k = inf{L IIXjIhllYjIlk Ix = LXj ® Yj},
j j

with II xj ® Yjll'Y,k = IIxjll'YIIYillk.
Recall the standard projective resolutions:
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where M n = 23®(®n21) and Ln = 1)®(®n<r), with the boundaray operators
b : Mn ~ Mn- l and b : Ln ~ Ln-l defined by b(xo 0 Xl 0 ···0 xn) =

n-l

.~.:)-l)ixo @ Xl @ ••. @ Xi-l @ Xi X i+1 @ Xi+2 @ ••• @ Xn
i=O

+ (-l)nxox~ ® Xl ® ... ® Xn-l,

where XO E 2lop for x E ~ and xyo = X ® yO E 23 (resp. for ~ and !:».

Remark. Check that the map b: M I = ~ ® 21. ~ 21 is defined by

b(xo ® Xl) = XOXI - XOXI E 21

and the map b: M2 ~ M I is defined by

so that b2 (xQ ® Xl ® X2) =

where (XIX2)O = x2xl and XOXlx2 = xox2XI since Xo E ~.

Now denote D ® (®n21) by DMn . Note the following inclusions:

This says that (XJMn , b) is a subcomplex of (Ln , b) and thus we have an
exact sequence of complexes:

Let us now define a subspace Qn C L n by

Qn = EBi#oker(id ® · .. ® id ® Co ® id ® .. · ® id),

where the map Co at each i-th position is the coefficient map from (t to 21
at the constant terms.

Lemma 1.3.1. The image Im(i) ofXJMn is closed in Ln and has Qn as a
closed complement. The short exact sequence above splits topologically.

Proof. Since the coefficient maps em : <r ~ 21 are continuous, the maps:
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are continuous as well, where em is at the j-th position (1 ~ j ~ n). We
can write

Im(i) = nm¥o,j¥oker(id ® · .. ® id ® Cm ® id ® . · · ® id)

because we have

(id ® ... ~ id ® em ® id @ ... ® id)(xo ® (®k=IXk))

= Xo ® (Xl ® ... ® Xj-l ® em(Xj) ® Xj+l ® ... ® Xn ),

so that '1)Mn = '1) ® (0n 21) C ker(id ® · · · ® id ® em ® id 0 · . · 0 id) for any
m =I 0 and j =I O. Thus Im(i) is contained in the intersection above. The
converse is also clear. It follows from the continuity of the maps em that
Im(i) and Qn also are closed in Ln. We have the following decompositon:

L n 3 Xo ® (®k=IXk)

= XQ 0 (®~=lCQ(Xk)) + ( + XQ ® (®~=1 L em(Xk)Um)) E Im(i) EEl Qn
m¥O

since each Xk = 2: Cm(Xk)Um = CO(Xk) + 2:m¥OCm (Xk)Um
, from which the

splitting of the exact sequence above follows as well. D

Applying the functor (.)hom = HOffi1)(·, <t*) to the exact sequence above
we get

Proposition 1.3.2. There is a long exact cohomology sequence:

with Hq((!, <t*) the q-th Hochschild cohomology group of <t with coefficients
in <t*.

Proof. Using the lemma above we obtain the following splitting exact se
quence:

Applying the functor (. )hom we get

i
---+

equivalently, for convenience,

o ---+ HOffif>((Qn, b), <t*) ---+ HOffi1) ((Ln , b), <t*) ---+ HOffi1) (('1)Mn , b), <t*) ---+ 0,
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where for simplicity we use the same symbols as b, 7r, i to denote their trans
poses. The long exact cohomology sequence corresponding to the exact
sequence obtained above:

...~ Hq-l(('DMn, b), <t*)

~ Hq((Qn, b), <t*)~ Hq((Ln , b), <t*)~ Hq(('DMn,b), <t*)

~ Hq+l((Qn, b), (t*)~ ... ,

where Hq(·, <t*) = ker(bq (.)hom)/Im(bq_l(·)hom), and for short,

...~ Hq-l('DM, <t*)

~ Hq(Q, <t*)~ Hq(L, <t*) ~ Hq('DM, <t*)~ Hq+l(Q, <t*)~ ... ,

gives the desired result, where Hq(L, <t*) is just the q-th Hochschild coho
mology group Hq (<t, <t*) of <t with coefficients in <t*. D

Remark. Following [1], we may define the Hochschild cohomology of ~
with coefficients in a bimodule M to be the cohomology Hn (21, M) of the
complex (Cn (21,M), b), where Cn (21,M) is the space of all n-linear maps
from 2l to M, and for T E cn(21, M), bT E Cn+1 (21, M) is defined by

n

+ I)-l)iT(aI,'" ,aiai+l,'" ,an+!)
i=l

+ (_1)n+lT(al'··· ,an )an+l.

The space ~* of all linear functionals on 21 is a bimodule over 2l by the
equality (acpb)(c) = cp(bca) for a, b, c E ~ and cp E ~*.

1.4 Preliminary computations

Now set (to be corrected as)

Then (f)k,zMn,k,l is a dense subspaceof'DMn = 'D0(0n21), with'D = <to<tOP

and <t = 2l ><In: Z. We represent the ele~eIits of ((f)k,zMn,k,l)* as sequences
{cpk,Z}k,lEZ, cpk,l E M~,k,l· We have the following slightly corrected:
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Lemma 1.4.1. A sequence {'Pk,l}k,lEZ, 'Pk,l E M~,k,l extends to an el
ement of (1">Mn)* if and only if, given y, Xl, ... ,xn E 2(., we can find
i,jO,jl,··· ,jn E N and constants C and C' such that

and

where each variable in the functionals corresponds to each variable in tensor
factors.

Proof. This follows from the characterization of the dual space <t* as in the
proposition in the previous section. 0

Definition 1.4.2. A sequence {'Pk,l}k,lEZ, 'Pk,l E M~,k,l is called tempered
if it satisfies the inequalities above. Denote by EB~IM~ k 1 the vector space
of all such sequences. ' "

Note that the decomposition

(1">Mn)* ~ EB~ IM~ k I, "

is preserved by b. Indeed, this means that for 'P E (1">Mn)* decomposed to
{'Pk,l} by restriction, the image b'P E (1">Mn +I)* under b is decomposed to
{b'Pk,l} equal to b{'Pk,l} E E9~,IM~+I,k,l· We let bk,l = bIM~,k,l the restriction,

H%,I(21, 21*) = Hq(M~,k,I' bk,l),

EB~,IH%,I(2t, 2t*) the vector space of all sequences {~k,l}k,IEZ, ~k,l E H%,I(21, 21*),
represented by a tempered sequence {'Pk,l} E tB~,IM;,k,I' and H7es the quo
tient of the vector space of all sequences {'Pk,l} EtB ~,IM;,k,I' 'Pk,l E Im(bk,l) ,
by the image Im(b). Note that b(EB~,IM;,k,l) :1 b{'Pk,l} = {bk,I'Pk,I}.

Lemma 1.4.3. We have

HQ((1">Mn)*, b) = (EB~,IH%,I(2t, Qt*)) EB Hies.

Proof. Since the map by restriction

(f>Mn)* -+ tB~,IM~,k,I' 'P ~ 'P1Ef1k,lMn ,k,l

is an isomorphism commuting with the coboundary operator b, the result
follows from the definitions of the vector spaces in the statement. Note
that each 'Pk,l = bk,l1Pk,1 of {'Pk,l} for certain {1Pk,I}, in the preimage of
H7es corresponds to the zero class of HZ 1(21, Qt*), but the class of 'P in
HQ((1">Mn)*, b) may live.' 0

- 32 -



Next tackle the complex (Qn, b). Define a 1)-module map h : 1)Mn ~
Qn+l c Ln+l = 1) 0 (0n +1 Q:) by

n

= 'L)_l)i-lu-l 0 a(xl) 0 .. · 0 a(xi-l) 0 u 0 Xi 0 ... 0 Xn ,

i=l

where the i-th term is mapped to zero under id Q9 •• • Q9 Co Q9 • • • ® id with Co
at the i-th position, so that the sum belongs to Qn+l.

A straightforward computation in L n gives

bh(l ® Xl 0 · · · 0 xn ) = hb(l ® Xl ® · · . ® Xn )

+ (-l)n(l ® Xl 0 ... ® Xn - uou-1 0 a(xl) 0 ... 0 a(xn )).

Remark. This is not clear for us. For example, we compute

bh(10 Xl 0 X2) = b(u- l ® (u 0 Xl 0 X2) - u- l 0 (a(xI) 0 u 0 X2))

= u-1u 0 (Xl 0 X2) - u- l ® (UXI 0 X2) + U- IX2 0 (u 0 Xl)

- u-Ia(xI) 0 (u 0 X2) + u- l 0 (a(xI)u 0 X2) - U- IX2 0 (a(xI) 0 u)

= u-Iu 0 (Xl 0 X2) - u- l 0 (UXI 0 X2) + U-IX2 0 (u 0 Xl)

- XIU- l 0 (u 0 X2) + u- l 0 (UXI 0 X2) - U- IX2 0 (a(xI) 0 u)

while

hb(10 Xl 0 X2) = h(XI ® (X2) - 10 (XIX2) + x2 0 (Xl))

= U-IXI 0 (u 0 X2) - u-~ 0 (u 0 XIX2) + U-IX20 (u 0 Xl),

where we view h as a right ~-modulemap. Hence

bh(l ® Xl ® X2) - hb(l ® Xl 0 X2)

= 1 ® (Xl 0 X2) - XIU- l 0 (u 0 X2) - U-1X2 ® (a(xl) 0 u)

- U-1XI ® (u 0 X2) + u- l 0 (u 0 XIX2).

Lemma 1.4.4. The map h : (':DMn , b) ~ (Qn+l, b) is a morphism of com
plexes.
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Proof. Note that b acts on Qn+l modulo 11Mn +1 via the isomorphism from
Qn+l to Ln+I/11Mn+l, given as above, and bh = hb mod 'IJMn = 'IJ 0
((8)n21), where

(whose commutativity is not yet checked.) D

Note that both (DMn , b) and (Qn, b) are acyclic. In fact, define an
2(0P-module map p : 11Mn ~ 11Mn +1 by

(ukxQ 01) 0 Xl 0··· 0 Xn J---t (uk 01) 0 XQ Q9 Xl ® ... (8) Xn.

Check that pb+ bp = id, so that (11Mn, b) is acyclic. In particular, bpb = b:

For example, we compute

bp((ukxQ 0 1) ® Xl) = b((Uk 0 1) 0 XQ 0 Xl)

= (Uk 01)xQ 0 Xl - (Uk 0 1) 0 XOXI + (Uk ® 1)x10 xo,

while

pb((ukxQ 01) 0 Xl)

= p((ukxQ 01)XI - (ukxo 01)x~)

= (uk (1) 0 XOXI - (uk ® 1)x1 0 XQ.

Hence (bp + pb)((UkXQ 0 1) 0 Xl) = (UkXO (1) 0 Xl sure.
As for (Qn, b), take x E Ln with bx E 1JMn- 1 • Thus, [bx] = 0 in

Qn-l ~ Ln -I/1JMn- l . Then bx = (pb + bp)bx, Le., b(x - pbx) = O. Since
(Ln, b) is acyclic~ we can find x' E Ln+l with X - pbx = bx'. But then
X = bx' + pbx == bx' mod 11Mn since pbx E 'IJMn . Thus [x] = [bx'] in
Qn ~ Ln/'I:JMn, and hence (Qn, b) is acyclic as well.
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Now define a (right) D-module map k : Qm ~ DMm - 1 for m ~ 1 by

(_1)m 0 UnlXI @ ... @ unmxm ~

{
L:~~l unl+ooo+nmuio:nl-i(Xl) @ .•. 0 anl+ooo+nm-l(xm) for nl > 0,

o for nl = 0,
~o nl +ooo+nm i n1-i( ) 10.. 10.. nl+ooo+nm-i( ) £or nl < O.- L-d=nl +1 'U U a Xl '0' ••• '0' a Xm

It holds that kb = bk. This can be established by a direct computation
using the identity

k(10 UnlXl @ ••• @ unmxm) = pkb(l @ UniXI ® ... @ unmxm)
ni

- b(L ui(uOtl+···nm-i Q9 o:n1-i(Xl) Q9 ••• Q9 o:n1+··.nm-i(Xm))

i=l

and induction together with the contracting homotopy property of p.
Check the above by: when m = 2, nl = 2, n2 = 1 we compute

k((-1) ® u2XI ® UX2) = U4O:(XI) ® o:2(X2) + u5XI ® a(x2),

while

pkb((-1) Q9 U2Xl Q9 UX2)

= pk((-1)u2xl @ UX2 + 1 ® u2XlUX2 + (-1)(UX2)O) 0 u2Xl)

= pk((-1)u2xl @ UX2 + 1 @ u3o:- l (XI)X2 + (-1)X2UO ® u2Xl)

= p(u2(UX2)(-1)u2xl

+ u4o:2(a- l (xl)X2) + u5a(a-l (xl)X2) + u6(a- l (xl)X2)

+ U3O:(XI)( -1)X2UO + u4Xl(-1)X2uO)

= p(u5o:-2(-X2)Xl

+ U4O:(XI)o:2(X2) + u5xla(x2) + u6(o:-1(Xl)X2)

+ u3a(xI)( -1)x2uO + u4XI(-1)X2UO)

= u5
@ a-2(-X2)XI

+ u4 0 a(xl)o:2(X2) + u5 ® xla(x2) + u6 0 a- l
(xl)X2

+ u3(-1)x2uO0 O:(Xl) + u4(-1)x2uO) @ Xl.

Therefore, we get

pkb((-1) ® u2XI 0 UX2) - k((-1) 0 u2XI ~)UX2)

= u5 0 o:-2( -X2)XI + u4 0 o:(xI)a2(x2) + u5 0 xla(x2) + u6 ® a- l
(xl)X2

+ u3(-1)X2uO ® O:(XI) + u4(-1)X2UO ® Xl - u4a(Xl) ® o:2(X2) - U5XI ® a(X2),
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while

b(U(uo)2 ® a(XI) ® a 2(X2) + U2Uo Q9 Xl ® a(X2))

= U(Uo)2 a (XI) ® a2(X2) - u(uo)2 0 a(xI)a2(x2) + u(uo)2(a2(x2))O 0 a(xI)

+ u2uoXI 0 a(x2) - u2uo Q9 xla(x2) + u2uo(a(x2))O ® Xl

= U(Uo)2O:(Xl) ® a 2(X2) - U(Uo)2 ® a(Xl)a2(X2) + U(uo)2(a2(X2))O ® a(Xl)

+ u2uoXI 0 a(x2) - u2uo 0 xla(x2) + u2uo(a(x2))O ® Xl

(so that it probably fails to have the identity).
We have Im(b)I3:lMl = Im(kb)IQ2' but since bkb = kb2 = 0 and (XJMn , b)

is acyclic, it is enough to show the inclusion b(XJM1) C kb(Q2) (c XJMo).
In fact, b(Im(kb)IQ2) = 0 implies that Im(kb)IQ2 C Im(b)I11M l (C XJMo).
But the left-hand side is generated by elements of the form X - xo, x E 21.,
and note that X - XO = kb(u- l ® u ® x). Check this by:

b(l®x)=x-xo,

but

kb(u- l ® u ® x)

= k(u-Iu ® X - u- l 0 UX + u-Ixo ® u)

= 0 - u- I u2x + u- I xou2

= -ux + xOu = -u(x - XC),

where k(10 x) = 0 since 1 0 X ¢ QI.

Lemma 1.4.5. We have Hq(Qhom) = Hq-I(XJMhom ).

Proof. We have the following diagram:

with both rows free acyclic.
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1.5 Hochschild cohomology of the smooth crossed product

Theorem 1.5.1. The Hochschild cohomology Hq(e:, e:*) of the smooth crossed
product e: = ~ ~a Z fits into the long exact sequence as:

~ (EEl~,lHk,l(2l, 2l*)) EEl Hles ~ Hq+l(<!, <!*)

~ (EEl~,lHktl(2l, 2l*)) EEl Hl~l

~ (EB~ lH%tl(~, ~*)) EB H~e-+;'l ~ HQ+2(<t, <t*)~, ,

where 8 is defined by 8cp = cp - cp 0 o.

Proof Recall the long exact cohomology sequence obtained above:

~ Hq(Qhom) ~ Hq(e:,e:*)

~ Hq(1)Mhom)~ Hq+I(Qhom)

Using the lemmas above we have the space identifications:

Hq+l(Qhom) ~ Hq ('IJMhom ) ~ (EB~HZ (2l, 2l*)) fB Hies,

and hence obtain the exact sequence in the statement. To compute 8 recall
the definition of the connecting homomorphism as follows.

First, start with {<'ok}kEZ representing a class eE Hq(1)Mhom ).

Second, pull it back to an element of L~om, say

cp;;;'o(xoumo , ... , xqumq ) = cpmo(XOumo ,Xl,··· ,xq)8m l,o··· 8mq ,o.

Third, now bcprv = 1r'l/J for some 'l/J E Q~+l' and

8~ = ['l/J] E Hq+I(Qhom) ~ Hq('IJMhom ).

Indeed, use the diagram:

Qhom
q+l

bl

Lhom
q+l

bl
Q~om ~ L~om ~ 1'M;om O.

But since the isomorphism Hq+I(Qhom) ~ Hq('IJMhom) is obtained by
composing cocycles on Qq+l with hand (1r'l/J) 0 h = cP (possibly, we may
identify this cP with 'l/J as in the text), we then have

cP = (1r'l/J) 0 h = (bcprv) 0 it = cprv 0 bh

= cprv 0 (hb + (-l)n(id - a)
= (_l)n(cprv_cprv oa)
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since cpf'V 0 h = O. Hence it follows that

(-1)n8[cp] = <5[cpf'V - cpf'V 0 a].

Possibly, (-1 )n<5-1 ['ljJ] = [<pf'V - cpf'V 0 a] as in the text. D

~ H~(<t) = HC*(<t)

II

1.6 The lEI-term of the spectral sequence

Let <t = 21 )<J Q Z as before. Consider the following diagram in Connes [1]:

HA(<t) = HC*(<t)

BI
H*( <t, <t*)

with the long exact sequence:

... HCn(<t)~ Hn(<t, <t*)~ HCn-I(<t) ~ HCn+I(<t) ...

where HCn(<t) is the n-th cyclic (or Connes) cohomology group of the
subcomplex (Cf ((t), b) of all cyclic cochains in the Hochschild complex
(Cn(<t, <t*), b), and

o -------? C~(l!) ~ Cn(l!, l!*) -------? cn/c~ -------? 0

implies Hcn(<t) = Hf(<t) ~ Hn(<t, <t*), with Hn(C/C>..) = Hn-I(C)..),
and B : Cn+l ~ C~ defined by B<p(xo, Xl,··· ,Xn )

= cyclic antisymmetrization of <p(1, Xo,· .. ,xn) + (-l)ncp(xo, Xl, ... ,Xn, 1)

implies B : Hn+l(<t, <t*) ~ Hcn(<t.), and S : C~(<t) ~ C~+2(<t) defined by
Scp

= cyclic antisymmetrization of the cup product of cp with

the 2-cocycle as a generator of HC2(<c), implies S : HCn(<t) ~ HCn+2(<t).
The lEI-term is given by the homology of the complex (Hn(<t, !*), do)

with do = I B : Hn(~, ~*) ~ Hn-l(~, ~*).

Lemma 1.6.1. Given any n-cochain cp, let

cp(k) (xo, Xl,··· ,Xn-l) = cp(xo, Xl,··· ,xk-l, 1, Xk,··· ,Xn-l),

cp(k,k+l) (xo, Xl,··· ,Xn-2) = cp(xo, Xl,··· ,Xk-l, 1,1, Xk,··· ,Xn-2).

Denote by N the cyclic antisymmetrization operator. Then

2)b<p)Ck,k+l) = b(Z':= <PCk,k+l)) +2)-l)k-l<pCk),
k>O k>O k>O

N((b<P)(n,n+I)) = bN('PCn-l,n)) + (_l)n-1N(CP(n)).
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Proof. Check that the case where n == 2 as follows.

(bc.p)(Xo, Xl, X2, X3) == c.p(b(xo, Xl, X2, X3) )

== c.p(XOXI, X2, X3) - c.p(XO, Xl X2, X3) + c.p(XO, Xl, X2 X3) - c.p(XOX3, Xl, X2),

so that

(bc.p)(l,2) ( x0, XI) == (bc.p) (x0, 1, 1, Xl)

== <p(xo, 1, Xl) - <p(xo, 1, Xl) + c.p(xo, 1, Xl) - c.p(xoxl, 1, 1),

(b<p )(2,3) (xo, Xl) == (b<p) (xo, Xl, 1, 1)

== c.p(XOXl, 1,1) - c.p(xo, Xl, 1) + <p(xo, Xl, 1) - <p(xo, Xl, 1)

and hence,

L(bcp)(k,k+l) (xo, xI) = (bCP)cI,2) (xo, Xl) + (bcp) (2,3) (xo, Xl)
k>O

== <p(xo, 1, Xl) - <p(xox~, 1, 1) + <p(XOXI' 1, 1) - <p(xo, Xl, 1).

On the other hand,

so that

(b(L CP(k,k+l)) + L(-l)k-Icp(k))(XO' xI)
k>O k>O

== b(<P(1,2))(XO, Xl) + <P(l) (xo, Xl) - <P(2) (xo, Xl)

== <P(1,2) (b(xo, Xl)) + <p(xo, 1, Xl) - ep(xo, Xl, 1)

and

ep(I,2) (b(xo, Xl)) == <P(1,2)(XO,XI - XOXl)

== <p(XOXI' 1,1) - cp(xox~, 1, 1).

As for the second equality, we compute

N((bc.p)(2,3)(XO, Xl) == (b<p) (2,3) (xo, Xl) - (b<p) (2,3) (Xl, Xo)

== (b<p) (X0, XI, 1, 1) - (b<p) (XI, X0, 1; 1)

== <p(XOXI' 1,1) - <p(XO, Xl, 1) - c.p(XlXO' 1, 1) + c.p(XI' Xo, 1),
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and on the other hand,

bN(<p(1,2))(XO, Xl) - N<p(2)(XO,Xl)

= N(<P(1,2))(b(xo, Xl)) - <P(2) (XO' Xl) + Y'(2)(XI, XO)

= N<p(1,2) (XOXI - XOX~) - <p(XO' Xl, 1) + cp(XI' Xo, 1)

and N<p(1,2)(XOXI - xox1) = <p(XOXI' 1,1) - <p(xox1,1, 1) (from which the
second identity seems to slightly fail). D

Recall that

i
-----+

i
-----+ (EB" Hn-l(~ ~*)) EB H n- 1

k,l k,l' res

and note that the map i is just the restriction map from Hn(et., et.*) =
Hn(Lhoffi ) to HnCDMhoffi ) , while the map 1r is given by the composition of
cochains with the map k : Qn ---t 1)Mn-l. Consider the following decom
position:

(EB~lHk(~,21*)) EBH~s,

= Ho(~, 21*) EB [(EB~k,l)#(O,o)Hk,lU~(, 21*)) EB H~]

with Hlf(21, 21*) = Hn(21, ~*) called the homogeneous part and the second
direct summand [... ] the non-homogeneous part.

(A) First consider the map do at the non-homogeneous part.
Consider the map ido1r = i 0 do 0 1r : coker(8) ---t ker(8), where

coker(8n - 2 ) = (EB~,lH~ll(m, ~*) EB H~l /8n-2((EB~,lH~,ll(21, 21*) EB H~;l)

---t ker(8n - l ) C (EB~,lHr,ll(21, ~*) EB H~;l

is well defined by the long exact sequence in the previous section. Let

cp = {<pk,l} E EB~,lM~,k,l· Set tpk = 'Pk,O·

Lemma 1.6.2. i od01r[{<Pk}kEZ] = [{L:7=1 Y'k oak-i}kEZ], where the sum is
the summation with zero at zero and positive and negative signs as before.

Proof. We compute

(i 0 d01rtp) l (1, XI ul , X2, · .. ,Xn ) = (ifB ('P 0 k)) l (1, Xlul , X2, . .. ,Xn )

= N((tp(k(1,XIUl ,X2,··· ,Xn ))))
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where

k(l, XlUl , X2, · • · ,Xn ) = k(l, ula-l(XI), X2, · .. ,Xn )

l

= L ul+ial-i(a-l(xl)) 0 a l- i (x2) 0 '" al-i(xn )

i=l

l

= L ulXIUi 0 a l- i (x2) ® ... al-i(xn )

i=l

l

= L al-i(uixIUl, X2,··· ,xn )

i=l

(probably, something in the definition is necessary to be changed). D

Corollary 1.6.3. (I) b[{<Pl}lEZ] = 0 ~ i 0 d07I"[{<Pl}lEZ] = [{l<pl}lEZ].
(II) d07I"[{<Pl}lEZ] = 0 = <Po ~ [{<Pl}lEZ] E Im(b).
(III) i 0 do7I" is onto ker(b) e H1)(2l, 21*).
(IV) (i 0 d07I"<p)o = 0 for any cocycle <po

Proof. (I) b[{<Pk}] = 0 means that <Pk - <Pk 0 a = bwk for k E Z, for some
tempered sequence {Wk}kEZ. Note that the diagram:

Hn-I(DMhom) ~ Hn(DMhom )~ Hn+I(Qhom)

with Hn-I(DMhom ) = (EB/\ Hn- I(2l 2l*)) EB Hn- 1 Then for l > 0k,l k,l' res · ,

l l l-i
L <Pl 0 a l- i = l<Pl - L L(<Pl - <Pl 0 a) 0 al- i- t

i=l i=l t=l

l l-i
= l<Pl - b(L L Wl 0 a l- i- t

).

i=l t=l

Indeed, check that

l l l l

"""' l-i """'( l-i) """' l """'( l-i)~ <Pl 0 a = - ~ <Pl - <Pl 0 a +~ <Pl = <Pl - ~ <Pl - 'Pl 0 a
i=l i=l i=l i=l

and
l-i
L(<Pl - <Pl 0 a) 0 a l- i- t =
t=l

( ) l-i-l ( ) . l-i-2 + + ( )<Pl - <Pl 0 a 0 a + <Pl - <Pl 0 Q 0 a·· · <Pl - <Pl 0 a

= (<Pl - <Pl 0 a) + (<Pl - 'Pl 0 a) 0 a + ... + (<Pl - <Pl 0 a) 0 a l- i - 1

l-i
= <Pl - 'Pl 0 a ·
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Since the term {2:i=1 2:~:i Wl 0 al-i-t}lEZ defines a tempered sequence, we
get

1

. [{lCPt}] = [(Lcpt oo/- i
}] =iodon[{cpt}].

i=l

(II) It follows from the first equation above that

i 0 d01r[{<Pl}] == [{l<pl}] + 8[{VJl}],

where VJl == - 2:~=1 2:~:i <Pl 0 al- i - t , because 8[{VJl}] == [{'l/Jl - '¢l 0 a}]. If
<Po == 0, then also '¢o == 0, and {'ljJk} is a tempered sequence. Thus we can
write l<Pl + 8VJl == bWl for some tempered sequence {Wl}lEZ with wo == 0,
since the equation above is zero from the assumption. But then

1 1
{cpt} = b{ yWt} - 8{ y'I/Jt},

and both {(l/l)wz} and {(l/l)'¢z} are tempered. Hence [{ 'Pl}] == 8[{ (-l/l)'ljJz}]
as a cohomology class.

(III) This follows immediately from (I) and the fact that given a tem
pered cochain {<Pi} with <Po == 0, {(l/l)CPl} is also tempered, so that if
8[{(1/l)<pl}] == 0, then i 0 d01r[{(l/l)<Pl}] == [{<Pl}], indeed.

(IV) This follows from the lemma just above, because the zero-th term
of the sum is zero. D

(B) Second consider the map do at the homogeneous part Hn(Ql, 21*).
Note that the definition of do on H n U.2l,21*) is viewed as the derivative

of the spectral sequence, relating Hochschild and cyclic cohomology of 21.

Lemma 1.6.4. (1) Given a cocycle <P on (t, we have do(icp)o == (iodo<p)o.
(II) Given a cocycle <P on 21, we have d01r{ <P · 8k,O} == 1r{docp · 8k,O}.

Proof. (I) This follows immediately from the fact that i is the restriction
map. Note that the left hand side is the O-th term of the cyclic anti
symmetrization of i'P(l,·, ... ,.) + (-l)nicp(·, ... , ·,1), and the right hand
side is the O-th term of the restriction of the cyclic antisymmetrization of
<p(1,·, .. . ,.) + (-l)n<p(., ... ,·,1).

(II) Since i od07r{<p·8k ,o} == 0 by (IV) of the corollary above, we can write
d01r{<p·8k ,o} == 1r{7/J·8k,o} for some cocycle VJ on 2(., using the exactness of the
long cohomology sequence. Since the composition with h : 1'Mn- 1 ~ Qn
inverts 7f, I.e. (7f'lj;) 0 h == 'ljJ (under the identification as before), we have
'ljJ == (do7fcp) 0 h. This is given by

VJ(XO, Xl,· .. ,Xn ) == <p(k(l ® Nh(xo 0 .. · x n )))
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since (do7r<p) 0 h = N(<p 0 k 0 h) = <p 0 k 0 (Nh). Look at a typical term

k(l ® Xi ® ... Xn ® xou- l ® a(Xl) ® .. · ® a(Xk) ® u ® Xk+l ® ... ® Xi-I).

It can be non-zero only if we have either

k(l ®.xou-1 &> O:(Xl) &> •• · &> a(Xk) &> U ® Xk+l ® ... @ Xn)

= -Xo Q9 Xl ® · · . ® Xk ® 1 ® Xk+l ® · · · Q9 Xn, or

k(l ® u Q9 Xk+l ® ... ® Xn ® xou- 1 ® a(xl) ® ... 0 a(xk))

= 1 ® Xk+1 ® . · · ® Xn ® XQ ® Xl Q9 • • • Q9 Xk·

Check that the first equality can be computed by definition

- u-1+1a-1(uxQu- 1) ® a-1a(X1) ® ... &>o:-la(Xk)

&>0:-1+ 1(1) Q9 a-1+ l (Xk+l) &> .•. &> a-1+l (xn )

= -xQ ® Xl ® · . · ® Xk ® 1 ® Xk+l Q9 •• • ® Xn

and the second equatlity should be

1-1 0(1) -l( -1) -1 () to. -1 ( ))u ua ® xk+l ® · · ! ® xn ® a uXQu &> a 0: Xl Q9 ••• "0' a a xk

= U ® Xk+l &> • • · ® xn &> xQ &> Xl ® · .. ® Xk.

Combining the signs from cyclic permutation and from the position of u in
h(xQ ® Xl 0 · .. ® Xn) we get 'l/J(xo, Xl,·· · ,Xn) =

[cyclic anti-symm of cp(l, Xo,'" ,xn )] +~)-l)jcp(j) (xo, Xl,'" ,xn ).

j>O

Then the first lemma in this subsection gives that 'l/J = do<p + coboundary,
and hence the proof is completed. D

(C) Computation of the lEI-term.
Consider a similar decomposition of Hn(e:, e:*) as the above decompo

sition into homogeneous and non-homogeneous parts:

where <Phom(XOUmo , ... ,xnumn ) = <p(xoumo , .. · ,xnumn ).8mo+ooo+mn ,O. Since
the operator dQ preserves this splitting, we ·can write
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Check that dOCPhom(XOUmO,X1Uml, ... ,XnUmn ) = cyclic anti-symm of

(1 mo mn ) + (l)n ( mo ml mn 1)CPhom ,xou , ,Xnu - CPhom XoU ,X1U , ... ,XnU ,

= cp(l, xoumo , ,xnumn ) · <50+mo+...+mn,O

+ (-l)ncp(xoumo , . .. ,xnumn , 1) · <5mo+...+mn+O,O

= [cp(l,xoumo , ... ,xnumn ) + (-l)ncp(xoumo , ... ,xnumn , 1)]· 8mo+"'+mn 'O.

Theorem 1.6.5. We have E1((t)e = Ei((t)e = EBnlEY((t)e = o.
Proof. Let ker(<5)~ and coker(<5)~ be the kernel and cokernel of the restric
tion of <5 to (ffiJ#oHj(f!, 2l*)) EB H~es respectively. Look at the diagram:

o~ coker(<5)~
1r H:+1((t, (t*)~ ker(<5)~+1 ~ 0-------t

ldo
o ---+ coker(8)~-1 1r

H~((t, (t*) i
ker(<5)~ ---+ 0-------t -------t

ldo
o---+ coker(8)~-2 1r

H~-1((t, (t*) i ker(<5)~-1 ---+ 0,-------t -------t

where the exact.ness of the rows follows from the long exact cohomology
sequence obtained in the previous section. Suppose that we are given r.p E

H~((t, (t*) such that docp = O. It follows from (III) in the above corollary
that there is 1/;1 E coker(<5)~ such that icp = iod01r1/;1. Since the middle row is
exact, we can find an element 1/;2 E coker(<5)~-1 such that cp = d01r1/;1 +1r'l/J2,
because i(cp - d01r'l/J1) = O. But then

and hence, from (II) in the corollary above, Im(<5) 31/;2 = 0 in coker(<5)~-1.

Thus, cp = d01r1/;1. Hence Ey((t)e = ker(doIHr(~,~))/doH~+1((t, (t*) = 0,
and E1((t)e = lEi((t)e = EBnlEY((t)e = o. D

Note that the decomposition of cocycles given above works equally well
in the cyclic case, so that we can write

Therefore, we obtain

Corollary 1.6.6. H'f((t)e C ker(S).
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Proof. Since S preserves the above decomposition of cyclic cocycles and
since for a cyclic cocycle we have

<p E Im(do) {=} <p E Im(S) + ker(S),

so that S<p E Im(S2), and we can conclude from the theorem above that

SHf(<!)e C S2 H~-2(<!)e.

Indeed, recall that S<p = N(a#<p), where the cup product a#<p with [a] E
HC2(C) is defined by o'#<p = (a ® cp) 0 11", where 11" : nn+2(c ® <!) ---+

n 2(C) ® nn(<!) is a natural homomorphism of differential graded algebras.
Recall that do = I B and suppose that <p = do1/; = I B1/; for some 1/;, and
if IB'l/J # 0, then <p is viewed in Im(B) = ker(S), and if IB1/; = 0, then
B1/; E ker(I) = Im(S), identified with <p. Note also that the non-exact
sequence is:

••• ---+ HCn- 2(<!)e~ HCn(<!)e~ HCn+2 (<!)e ---+ •• • •

Conversely, if Scp = 0, then <p = B1/; for some 1/;, and if <p = Sp for some p,
then docp = IBSp = 0, hence <p E Im(do), as checked.

Iterating the inclusion above we get SH~(<!)e C SkH~-2k((,)e for k =
1,2,··· , and choosing k > n/2 we get the result desired. 0

To describe lEI (<!)hom we set

H:q (2l)= homology of (ker(8IH(21,21*»), do),

H~oeq(2l)= homology of (coker(81H (2l,2(*»), do).

Then the following holds:

Theorem 1.6.7. The lEI -term of the spectral sequence of the smooth crossed
product <! = 2l )q 0: Z fits into a long exact sequence:

...~ H~o~~(21)~ lEi(l!)~ H~(21) ~ H~o~(21) ~ ... ·

Proof. It follows from the homogeneous part of the long exact sequence in
the previous subsection that the rows of the following diagram are exact:

°---+ coker(8IHn-l(21,21*»)

Ido

ker(8IHn(21,21*») ---+ °
Ida

o ----t coker(8IHn-2(2l,21*))~ Hn-l(l!, l!)hom~ ker(8IHn-l(21,21*)) ----t 0

Ida Ida Ida
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The diagram is commutative by the lemma above, and according to the
theorem above, the homology of the middle COltlmn is equal to IE! (e:). Ap
plying the long exact homology sequence to the short exact sequence of
complexes given by this diagram, we obtain

o---7 (coker(6), do) ---7 (Hn(<t, <t*)hom, do) ---7 (ker(6), do) ---7 o.

Note that the connecting homomorphism ~ is defined as a map:

H:q(~) = ker(dolker(tSIHn))jdo(ker(15IHn+l))~

H~o-;~(21) == ker(do Icoker(~IHn-2)) / do(coker(6IHn-l)),

where H k == H k (21,21*), and see the lemma (corrected) below for its defi
nition. D

Lemma 1.6.8. The connecting homomorphism of the theorem above is
given as follows. For a class [ep] E H:q (21) , if 1Jf"V is the lifting of the
cochain cp to the cochain on <t as described in the previous subsection, then
we have <pf"V == trp and docpf"V == 7r"'/ for some cochains p and"'/ on 21, and
then

Ll[ep] == [",/] == [do(epf"V - 7rp) 0 h].

Proof. Since [ep] E H:q (21) with ep E Hn, we have doep == O. The commuta
tive diagram in the theorem above implies that

7r cpf"V i
p~ ~ ep

ldo 1do 1do

7r d rv i
do<p'Y~ oep ~

ldo 1do 1do

O~ 0 i 0~

for some p and 'Y. Therefore, we get

['Y] = do[p]

== do[epf"V 0 h] == [doepf"V 0 h]
== [do(eprv - 7rp) 0 h]

and hence the conclusion should be ~[ep] == [",/].
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1.7 Exa-mple by a diffeomorphism of a compact Coo-manifold

We refer to [3] and also [1]. Suppose that 2(. = Coo (X), where X is
a compact Coo-manifold. Then any automorphism a of 21. is induced
by a diffeomorphism of X. Give 2(. the COO-topology of uniform conver
gence of derivatives, where the (semi)norms Pn on 2l are given by Pn(f) =
Elol~n SUPxEX lao f(x)1 for f E 21.. Then the assumption in the subsection
1.2 (for 2l to be nuclear) is satisfied. Apply the preceding results to the
smooth crossed product Q: = COO(X) ~a z.

Denote by 1)~(X) the space of the de Rham n-currents on X. Recall
that M n = ~ 0 (0n 2l) with ~ = 210 2(.°P. In this case 23 ~ Coo(X x
X) and 0 n 2l ~ COO(Xn ). Note that the map from M~ to 1)~(X) by
antisymmetrization As induces an isomorphism As : Hn(2l, 2(.*) ~ 1)~(X).

Indeed as in [1, p. 207],

1, L c(a)<p(fol fU(l) , · " ,fu(n)) = (Ccp, fodh /\ ... /\ dfn)
n.

aESn

for fj E 21 (0 s j s n) with As('P) = Cep.
The operator do = I B : H n(2l, 2(.*) ~ Hn- l (2l, 2l*) is just the standard

de Rham boundary operator do : 1)~(X) ~ 1)~_I(X) for currents, that is
induced by exterior differentiation for differential forms.

The complexes defining H;q(2l) and H;oep(21) become, respectively,

o~ 1)~(X)O ~ · · ·~ 1)~ (X)O~ 1)~(X)O ~ 0,

o- coker(81:DN(x)Q)~ " ·~ coker(81:DiJ(x)Q) - 0,

where N = dim X and 8 = id - a acts on n-currents in the sense that
8(Cep) = Cdep = Cep-epoo (or in other one), and 1)~(X)O = ker(811)~(x)), and
1)~(X) = 0 for n ~ N + 1 since 1)n(X) = 0.·

Lemma 1.7.1. The connecting homomorphism ~ : H~q(21) ~ H~;-~U!) is
zero, with 2l = Coo(X).

Proof. Given a cochain 'P on 2l representing a class in H~(21), we may
suppose that 'P is an a-invariant n-current on X. Set

'Pf'V(umoxo,··· ,umnxn )

= {o'P(amo(xo), a mo+m1 (Xl),·· · ,o:mo+'''+1nn(xn )) mo + .. · + mn = 0,

mo + ···+ m n =1= o.
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Then cpr-..! is a cyclic cocycle on lr, and hence

d[cp] = [(docp~) 0 h] = 0

because [do cpr-..!] = I B[cpr-..!] = [0] by exactness of cyclic cohomology long
exact sequence. Check also that

(cpr-..!) a(umoxo, ... ,umnxn)

= ep~ (umq(O) Xa(O), · .. ,umq(n) Xa(n))

= ep(amq(O) (xa(O)), ... ,amq(O)+···+mq(n) (xa(n)))

= ep(xa(O) ' · .. ,Xa(n))

= E(a) cpr-..! (umoxo, ... ,umnxn ),

so that [cp] E HCn(lr).

Lemma 1.7.2. It holds that for <t = 21. )<10: Z,

o

IE~(lr) ~ H~o-;~(~) EB H~(21),

where the splitting is given by <P = <PI + <P2 with ep2 = As(<p12t) and <PI =
As((cp - 'P2') 0 h).

Proof. It follows from the lemma that

o - H~~U~) ~ IEr(lt)~ H~U~) ~ O.

Check that 7r((cp - <P2') 0 h) = <P - CP2' and i(<p - ep2') = CP2 - <P2 = 0, and
also <P = (cp- CP'i) + CP'i· For any [1/J] E H~q(21), there is a class [<p] E lE1(<t)
such that i[cp] = [1/J]. Define the splitting morphism c by c['l/J] = [cp-1r(CPl)].
Then i 0 c[1jJ] = [CP2] = ['l/J]. 0

Before going on, for cp an n-cochain on lr, we set

Tep(xo, Xl,··· , Xn) = (-l)ncp(xn, Xo,' .. ,Xn-l),

1 2-1Rep = --(n + 1 + nT + (n -l)T + ... + 2m + m)cp
n+l '

1
Ncp = n + 1 (1 + T + ... + m)cp,

n
I ~ .

b<p(XO,Xl,··· ,Xn+l) = LJ(-l)~<p(xo,··· ,XiXi+l,··· ,Xn+l).
i=O
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The operators T, R, and N map L~ to L~ and M~ to M~, while b' maps
L~ to L~+l and M~ to M~+l' respectively, where Ln = ~ ® (®ne:). Define
a map 7f from M~ to (L~)hom by

7f<p(XO, Xl,' .. ,Xn ) = <p(k(1 @ Xo @ ... ® xn )), Xj E ~

with k(( -l)m 0un1x10··· 0unm x m ) = L:~~l unl+···+nmuianl-i(Xl) 0· .. 0
anI+...nm-i(xm ) if nl > 0, which is zero if n1 = 0, and is the negative sum
- L:~=nl+1 if nl < O. (Possibly, as before, multiplying by 8nI +...+nm,O with
that functional 7f<p is necessary to have it in (L~)hom.)

Considering 1r as a map from M~_l to (L~)hom, we set for <p E M~_l'

#rv(<p) = 1r<p - bR7f<p - R7fb<p E (L~)hom.

Note that

M~-l
1f

(L~-l)hom
R

(L~-l)hom----+ ----+

bl lb
M*

1f
(L~)hom

R
(L~)hom'----+ ----+n

Proposition 1.7.3. (I) bN<p = Nb'<p and (1- T)b<p = b'(I- T)ep.
(II) (1 - T)<p = b'(<plo) + (b<p)lo and (1 - T)R = 1 - N.
(III) N7fN <p = o.
(IV) The map #rv maps cyclic cocycles to cyclic cocycles, cyclic cobound

aries to cyclic coboundaries, and commutes with b.

Proof. (I) Check that for instance, for <p an l-cochain on (t,

1
bN({J(xo, Xl, X2) = b("2(l + T)({J) (xo, Xl, X2)

= 2-1 (1 + T)<p(b(xo, Xl, X2))

= 2-1 (1 + T)<p(XOXl' X2) - 2-1(1 + T)<p(xo, X1X2) + 2-1 (1 + T)ep(XOX2' Xl)

= 2-1 [(<p(XOX1' X2) - ep(X2' XOX1)) - (ep(xo, X1 X2) - <p(X1X2, XO))

+ (<P(XOX2' Xl) - ep(Xl' XOX2)]

while we have

N(b' ({J)(Xo, Xl, X2) = ~(l +T +T2)(b'({J)(Xo, Xl, X2)

= 3-1 [(b'ep) (XO, Xl, X2) + (b'ep) (X2, Xo, Xl) + (b'ep) (Xl, X2, XO)]

= 3-l [(<p(XOX1' X2) - ep(XO, XlX2)) + (<p(X2 XO' Xl) - ep(X2, XOX1))

+ (<p(XlX2,XO) - <p(Xl,X2XO))].
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(Possbily, the scalar multiple in the definition of N need to be changed
to have the equality, or the equality should be changed as (n + l)bN({J =
(n + 2)Nb'({J for ({J an n-cochain, where we need to have xox2= X2XO.)

Check also' that for 'P an I-cochain on <t,

(1 - T)bcp(xo, Xl, X2) = (b({J) (XO, Xl, X2) - (b'P) (X2' Xo, Xl)

= ('P(XOXI, X2) - 'P(Xo, XIX2) + 'P(XOX2' Xl))

- ('P(X2XO, Xl) - 'P(X2, XOXI) + 'P(X2X~, Xo)),

while we have

b' (1 - T)({J(xo, Xl, X2) = b'cp(xo, Xl, X2) - b' (Tcp) (xo, Xl, X2)

= ('P(XOXI, X2) - 'f?(Xo, XIX2))

- [(T'P)(XOXI , X2) - (T'P) (XO, XIX2)]

= 'P(XOXI, X2) - cp(xo, XIX2) + 'P(X2, XOXI) - 'P(XIX2, Xo).

Hence (1 - T)b'P(xo, Xl, X2) - b'(l - T)({J(Xo, Xl, X2) should be

which can be zero if xOx2 = X2XO and x2xl = XIX2.)
(II) Compute that (1 - T)'P(xo, Xl,'" ,Xn) =

n-l

= 2)-l)i(cplo)(xo,'" ,XiXi+l,' .. , Xn) + (bcp)(l, xo, ... , Xn)
i=O

n-l

= I)-l)icp(l,xo,'" ,XiXi+l,'" ,xn)+cp(lxo,'" ,Xn)
i=O
n

+ L(-l)i'P(l, Xo,'" ,Xi-lXi," . Xn) + (_l)n+l'P(X~, Xo,'" ,Xn-l)
i=l

= 'P(Xo,'" ,Xn ) + (_l)n+l'P(X~, XO,'" ,Xn-l),

so that we need to have X n = x~ to have the identity.
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Complute also that (l-T)R<p(xo, Xl,··· Xn) = (Rcp-TR<p) (xo, Xl,··· ,Xn) =

1 n .

n--t(n + 1 +~)n + 1 - j)TJ)<p(xo, Xl,'" , Xn)
+ . 1J=

- (-l)n(R<p)(xn,xo,··· ,Xn-l)

n .

- L(1- _J_) (-l)n(j+l)cp(Xn_j,··· ,Xn, Xo,·· · ,Xn-j-l)
j=l n + 1

(_l)n+l
=<p(xo, · .. ,xn) - 1 <p(xn, Xo' .. , xn-d

n+
n (-l)nj (_I)n(n+l)

- L( + 1 )<P(xn-HI,'" ,Xn,Xo,'" ,Xn-j) - n+ 1 <p(xo,'" ,xn),
. 2 n
J=

which can be = (1 - N)rp(xo, Xl, · · · ,xn) if we define N to have the last
identity.

(III) First note the following identity:

nl m n+m
L <p 0 a -i +L <p 0 a -i~n = L <p 0 a -i.
i=l i=l i=l

Suppose that <p is a cyclic n-cochain on 21, so that <p = N'l/J for some 'l/J,
and set Xi = umiai for ai E 21 (i = 1,··· ,n) and a'( = amo+ml+···+mi(Xi)

(corrected), where rno + rnl + ... + m n = O. We have

T- i 7f<p(xo, Xl,··· ,Xn )

= (_I)ni<p(k(l,Xi,Xi+l,··· ,Xn,XO,Xl,··· ,Xi-I))
mi

= (-ltiL <p(uj a- j (ami (Xi), ami+mi+l (Xi+l),' .. , ami+mi+l+'+mi-l (Xi-I)))
j=l

mi
_ ( l)ni ~( l)i(n-i+l) ( j -j-mo-ml-···-mi-l (rv rv rv))- - L...J - <p u a . ao , al , · · · ,an

j=l
mi

_ ~ (j -j-mo-ml-···-mi-l (rv rv rv))- L...J <p u a ao , al , · .. ,an ·
j=l
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But then

where uj should probably be dropped in the definition of k, and the double
sum gives zero by the first equation and by rno + ... + mn = O. Indeed,
note that

n mi rna mlL L <P 0 a-l-mo-···-mi-l = L <P 0 a-I +L <P 0 a-l-mo

i=O l=l l=l l=l
m2 m n

+~ -l-rna-ml + +~ -l-ma-···-mn-lLJVJoa ... LJ((J°a
l=l 1=1

mO+ml m2 mn
~ -l +~ -l-rna-ml + +~ -l-ma-···-mn-lLJ <poa LJ<Poa ... LJ((J°Q
1=1 [=1 [=1

ma+ml+···+mn

= ... = L <po a-I

l=l

which is nothing but zero (sum).
(IV) Note that 1rbc.p = b1r<p and, moreover, fr((J = (1r<p) 10 since 1r is given

by the compositon with k, so that (1r((J)lo(xo, Xl,··· ,Xn ) = 1r<p(1, Xo,·· · ,Xn ) =
((J ° k(l, Xo,· · · ,Xn ) = fr((J(Xo, Xl,··· ,xn ). Hence (II) gives an identity as a
consequence:

(1 - T)1r((J = b' ((1rc.p) 10) + (b1rep) 10

= b' ((1r((J) 10) + (1rbep) 10 = b' fr ((J + frb((J.

Check also the identities as a consequence, using the above identities and
(I), (II), and (III):

(1 - T)#rvc.p = (1-- T)(1r«J - bRfrcp - Rfrb<p)

= b'fr((J + frb<p - b' (l - T)Rfr<p - (1 - N)frb<p

= b' frc.p - b' (1 - N)fr<p + Nfrbep

= b' Nfrc.p + Nfrbc.p, and
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#rvbNcp = 1rbNcp - bRfrbNcp - Rfrb2N cp = 1rbN<p while

bN#rvNcp = bN(1rNcp - bRfrNcp - RfrbNcp)

= b1rN cp - bNbRfrN <p - bRNfrNb'cp = 1rbN<p

where note that N R = RN by definition and b(·)b = 0, and we have

#rv b<p = 1rb<p - bR1fb<p - Rfrb2 <p = 7rbep, while

b#rvcp = b(1rcp - bRfrcp - R7fb<p) = 1rb<p.

Those equations show that the map #rv has the desired properties. Note
that the first equation implies that

(1 - T)#rv Ncp = b'N7fNcp + N7fNb'cp = 0,

so that we get #rvN cp = T#rv N <p, which implies that #rvN cp is cyclic, Le.
N#rvNcp = #rvNcp. D

Theorem 1.7.4. When 21 = COO(X) and (t = COO(X) ~a Z, we have

lE~((t) ~ H~-;~U~l) EB H~(21).

Proof Using the splitting of lEI((t) as shown in the lemma above:

lE~((t) ~ H~o~(21) EB H:p (21), cp = CPI + CP2,

the fact that #rv is homotopic to 1T, and the equality (1Tcp) 0 h = <p, we
can write <p = #rv<pI + cpr;; in lEi((t) for any cocycle cp representing an
element of lEI ((t). Since both CPI and CP2 are cyclic, so are #rv 'PI ((IV) in
the proposition above) and 'Pr;;. This means that every element of IEI (lr)
can be represented by a cyclic cocycle. Since all the boundary operators
d l , d2, ... kill cyclic cocycles, we get the isomorphisms:

lE~((t) ~ lE2((t) ~ .. · ~ lE~((t).

D

Remark. Review quickly from a text book [2] of Hattori that for an exact
couple of modules:

E === E,
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set d = 9 0 h : E -+ E. Then d2 = 0 since hog = O. Then the homology
group H(E) with respect to (E, d) is defined by H(E) = Z(E)jB(E),
where Z(E) = ker(d) and B(E) = Im(d). Note that x E Z(E) ¢:} d(x) =
g(h(x)) = 0 ¢:}' h(x) E ker(g) = Im(f) {::} x E h-I(Im(f)), and y = d(x) =
g(h(x)) E B(E) {::> y E g(Im(h)) = g(ker(f)). The derived (exact) couple
is then defined by

Al = Im(J)~ Al = Im(J)

h
1r 1gl

E I = H(E)~ E I = H(E),

where check by definition that f(x) E ker(fl) {::} f(f(x)) = 0 {::> f(x) E

Im(h) {::> f(x) = h(z) = hl[z] with [z] E E I , and gl(f(x)) = [g(f-I(f(x))] =

[g(x - f(y))] = 0 for some yEA {::} g(x - f(y)) E Im(d) = g(h(E)) {::>

x - f(y) E h(E) = ker(f) {::> f(x) = f(f(y)), and hI [z] = h(z) = 0 {::> z E

ker(h) = Im(g) {::} z = g(x) for some x E A ¢:} [z] = [g(x)] = [g(f-I(f{x))].
The homology spectral sequence En with EO = E is then defined by
deriving inductively as En = H(En- l ) with respect to (En-I, d(n-I) =
g(n-I) 0 h(n-1)), with g(l) = gl and h(l) = hI. Furthermore,

E oo = Zoo / BOO = (nnZ(n))/(UnB(n)),

where E r = z(r) / B(r), with z(r) = h-I(Im(fr)) and B(r) = g(ker(fr)).
If dT = 0 for every r ~ n (~ 2), then the spectral sequence (E r , dr ) is

said to be collapsed, and then En ~ En+1 ~ ... ~ E oo .

In the case of the theorem above,

8 1

Im(S) ---7 Im(S)

B1r 1[1

E I = H(H(!, <t*))~ 'E1 = H(H(<t, <t*)),

E2 = H(H(H))~ E2 = H(H(H)),
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with d2 == d(2) == 1(2) 0 B(2), and so on. Note also that

dj ET}- dj En- 1 dj
----t ----+ . ----t

J J

II II
dj+l En dj+l En- 1 d j +l

----t j+1 ----+ j+1 ----+

provided that dj = 0 since Ej+l = ker(djIEj)/dj(Ej+l).

Corollary 1.7.5. Suppose that X == 1r and a preserves orientation. Then

dim HCev(e:) == dim Hcodd(e:) == 2,

where e: == 2l ~o Z with 2l == Coo(X).

Proof. Denote by Hn(X) the homology groups of a compact Coo-manifold
X computed as

( )
_ ker(dolx>~(x))

Hn X - ·
Im(doI x>' (X))n+l

Since the groups Hn(X), H~(2l), H~oeq(2l) are all computed by complexes
of n-currents on X, it is easy to see that the identity map tp ~ tp on the
cochain level in cohomology descends to the maps

an : H~(2l) ~ Hn(X)O and (3n: Hn(X)/8Hn(X) ~ H~oep(2l)·

Note that f)~(X)O == ker(81x>~(x)), which corresponds· to ker(8IHn(21,21*)),
as checked before, so that if [tp] E H~(2l) ~ ker(dolx>~(x)Q)/do(f)~+1(X)O),

then 8(tp) == 0, which implies that tp - tp 0 a == 0, so that [tp] == [tp 0 a]
in Hn(X), which means that [ep] E Hn(X)o. Note also that H~oeq(2l) is
identifed with the homology of the complex (coker(81x>~(x)),do) and that

f)~(X) 1)~(X)

coker(8!1):'(x)) = ker(811):'(x)) = ~~(x)a'

and there is a quotient map from f)~(X) to f)~(X)/1)~(x)a, which in
duces a map from Hn(X) to H~oeq(2l), and if [ep] E 8Hn(X), then the class
8[tp] == [8ep] is mapped to zero, and hence the map from Hn(X)/8Hn(X) to
H~eq(2l) is deduced.

Define the following maps:

coker(an-1)~ coker(,Bn)~ .ker(an-2)~ ker({3n-1),

where the maps S1, 82, and S3 are given as follows.
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(1) Starting with [<p] E Hn-1(X)O, we have 8<p = dow for some w with
[w] E Hn(X)O since do<p = 0, do(ep 0 a) = 0 and thus do(8ep) = 0, because
[cp] = [<p 0 a], and we set 81(<p) = the class of w in coker(,8n). Note that

coker(an-l) = H~-1(21)jker(an_1) ~ Hn- 1(X)O,

and also cokerCBn ) = (Hn(X)/~Hn(X))/ker(,8n) ~ Hci>eq(Q{) and ~[w] =

[<5(w)] = [w - w 0 a] = O.
(2) Given [<p] E Hci>ep(21), then docp = 8w for some w E Hn- 1, because

do'P E H~-;~ (21) = ker(dolcoker(~Hn-l))j doecoker(8IHn)) with coker(8Hn-l) =

Hn- 1 jker(8) ~ 6(Hn-l). Then 8(dow) = dow - (dow 0 0:) = do.(8w) =
do(doep) = O. Hence dow E ker(8IHn-2). This says that [dow] E H~q-2(2()

and we set 82(<p) = the class of dow in ker(an-2) since 0 = 8[dow] =
[dow] - [dow 0 0] with [dow] = 0 in Hn -2(X).

(3) Given rep] E ker(On-2) C H~-2(21) = ker(dolker(~IHn_2))jdo(ker(8IHn-l)),
then doep = 8ep = 0 and <p = dow for some n - 1 current w. Then 8w gives
an n - 1 current on X and moreover do8w = 8dow = 8<p =.0, and hence
[<5w] E Hn-1(X) and E 8Hn- 1(X), which is mapped to zero under /3n-2.
We set 83(ep) = the class of 8w in ker(/3n-l).

The above short sequence obtained in that way is exact and furthermore,
81 is injective and 83 is surjective. In fact, the injectiveness of 81: if 81 ([<p]) =
[w] = 0, then w = do(p) for some p, and hence 8ep = do(dop) = 0, and thus
ep E ker(8) and then rep] E H~-l(21). Also, if ker(/3n) = 8Hn(X), then
[w] = [8p] for some p, and thus [8cp] = [dow] = [<5dop] , which may imply
[ep] = [dop] if 8 is injective at the class, and thus rep] = 0 E coker(O:n-l).
The surjectiveness of 83 follows ifker(/3n-l) = 8Hn -l(X). The exactness at
coker(/3n): if 82([<p]) = [dow] = 0 for some n - 1 current w, then do<p = 6w
and hence [<p] = SI([W]). The exactness at ker(an -2): if 83([ep]) = [8w] = 0
with <p = dow, then do(8w) = 0 so that 8w = do('lj;) for some 'l/;, and thus
82([1/;]) = [dow] = rep]·

When X = 1r we get the following:
(4) As n = 0, ,80 : Ho(1r)j8Ho(1r) ~ Hgoeq (21) is surjective, i.e.,

Hgoeq (21) ~ Ho(1r) = C. Also, ao : Hgq(21) ~ Ho(1r) is surjective since
Ho(1r) = C and the generator can be represented by any a-invariant mea
sure on the circle.

(5) As n = 1, /31 : H1(1r)j8H1(1r) --+ Htoeq(2l) is surjective. Also
01 : Hiq (2l) ~ HI (1r) is surjective, in fact a preserves orientation of 'Jr.

It follows that
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and
o~ coker(o:o)~ coker(,61)

II II
Ho(1r) H;oeq(21)·

Let /-L denote an a-invariant probability measure on the unit circle and
let 7 be the fundamental class of 1r: 7(f, g) = J fdg. We can write Ho(1r) =
Hgoeq(~) = CJ-L and H1(1f) = H~q(2() = C7. There are two possibilities as
follows.

If 7 is non-zero in H;oeq(2() , then H~q(2() = Ho(1r) = CJ.L, because
ker(,Bl) =O,sothatker(o:o) =0. ThisgivesthatdimlE~(et)=dimH~(2l)=
1 and dimlE~(et) = dimH;oep(21) = 1.

If 7 = 8w for a I-current w on 1r, then H~oeq(21) = 0, H~(21) = C/-L EB
Cdow, and dimlE~(et) = dimH2q(21) = 2 and dimlE~(et) = dimH~oeq(2l) =
o.

In both cases,

dimlE~(et) = dimH~oeq(21) + dimH~U2l) = 2.

Since lE~(21) are the graded groups of the filtration of HC(et) by di
mension, the result now follows from the last theorem in the subsection 1.6
and the fact that H~q(1r) = 0 and H~oeq(1r) = 0 for n ~ 2. D

Remark. A filtration of a chain complex C* is a sequence {FnC*}nEZ of
subcomlexes of C* such that FnC* C Fn+1C* for nEZ, UnFnC* = C*,
and nnFnC* = {O} (see [2]). According to [1], for the double complex
(cn,m = cn-m(21, 2l*), (b, B)), the lE2 term of the spectral sequence as
sociated to the first filtration FpC = L:n~p cn,m is zero, and the second
filtration with Fq = L:m~q cn,m yields the same filtration of H*(21) as
the filtration by dimensions of cycles, and that HP(FqC) = HCn(21) for
n = p - 2q, and Hn(C*,*) = H ev (21) if n is even and = Hodd (21) if n is odd,
and the associated spectral sequence converges to the associated graded
L: FqH*(21)/Fq+lH*(21).

1.8 Cyclic cohomology of the smooth crossed product:
Computation outline

As the first step, we consider the following diagram: for et = 2l ~ a Z,
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~ Hn-l(2l, 2l*) 1r Hn(<t, <t*)hom
i H n(21, 21*) ~~ ~

11 11 11

~ w:.-I(Q{) #0
H~(<!:)hom

i
H~(2t) ~~ ~

1s 1s 1s

~ H~-3(Q{) #0
H~-2(<t)hom

i H~-2(Q{) ~~ ~

where the map #0 will be constructed so as to make the above diagram
commutative and then be proved that the middle row is exact.

The main ingredient of the proof is a cochain map 1] : cn+1 (<!, <!*)hom -7

Cn(<!:, C!:*), which satisfies b1] = 'fib + 8 and N'fIN = 1]N. Such a map 'fI in
duces two maps as follows by passing to quotients and restriction to 21: from
the quotient of cocycles vanishing on 21 by coboundaries to H(21, 21.*), and
from the quotient of cyclic cocycles vanishing on 21 by cyclic coboundaries
to HA(fX). Both of these maps are defined on ker(i) in cohomology:

Hn (<!, <!*)hom :) ker(i) ~ Hn - 1 (21, 2l*),

HA(<t)hom :) ker(i)~ H~-l(21).

Next it will be shown that 'fI1r = id in Hochshild cohomology. This,
together with the commutativity of the diagram above allow to conclude
that ker(i) c Im(#o) in HA(<t)hom. It will be shown that the sequence is
exact:

...~ H~-I(21) ~ Hf(e:hom~ Hf(21) ~ ....

As the final step, using this we construct a six-term exact sequence of
the periodic cyclic cohomology of (t.

1.9 Construction of a map in cyclic cohomology

Start with a differential graded algebra (E, d) defined as E = Eo EB E 1,

where

n

E 1 = (~=an,mun(du)um: n,m E Z,an,m E C},
n,m
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where the sums are finite sums, and the product structure is given by
'uo = 1, uiui = ui+i , ui(ui(du)uk)ul = ui+i(du)uk+l , and (du)ui(du) = 0,
and where the graded differential d is defined by dun = 2:~=1 ui(u- 1du)un- i

if n positive, and if n is negative, the sum is changed to - 2:?=n+l' and
d1 = 0, and diE! = O.

The fact that (E, d) becomes a .differential graded algebra with the
above definitions follows from its representation as a quotient of the uni
versal differential graded algebra O(C[u, u- 1]) by the graded ideal generated
by EBi>20i together with d1 E 0 1 and 1 E no the unit of C[u, u-1

]. Recall
that the algebra O(<C[u, u-1]) is generated by finite linear combinations of
symbols: godg1dg2 · · · dgn E On with gi = uki for some ki E Z, and has
product and diff€rential given by

n

= 2)-1)n-jgOdgl ... d(gjgj+l) ... dgndgn+l .. · dgm

i=l
and d(godg1··· dgn) = dgodg1 ... dgn.

Now suppose that we are given a cycle (0, dr-..J, c.p) (such as c.p(gOdg1 · · . dgn) =
o unless n = k and gOgl · · · gn = 1 and c.p(godg1 • • • dgk) = C(gl,··· ,gk)
for some k-dimensional cycle c) and an action a of Z on 0, Le., an au
tomorphism of n commuting with dr-..J. Define a crossed product cycle
(E 0 a 0, d, #ac.p) as follows.

(1) E 0 a 0 = E 0 n as "an algebraic tensor product of graded vector
spaces;

(2) the product structure is induced by the,relations: (10 w)(u 0 1) =
u 0 a-1(w) and (10 w)(du 01) = (-1)degwdu 0 a-1(w);

(3) the differential d is given by d(WI0 w2)dw1 0 w2+(-1 )degwwI0dr-..JW2;
(4) the closed graded trace #ac.p is given by #ac.p(ui (u- 1du)ui 0 w) =

c.p(ai (w) )8i+i ,0 and #ac.pIEo®n = O.
Let us check that #ac.p is indeed a closed graded trace as: for n positive,

n

#Qc.p(d(un 0 w)) = #Qc.p(L ui(u-1du)un- i 0 w + un 0 d"'w)
i=l

n

=L c.p(o:n-i(w))8n,o + c.p(un ® d"'w) = 0 + 0 = 0,
i=1

#acp(d(ui (u- 1du)ui 0 w)) = #aCP(O 0 w - ui(u- 1du)u j 0 dr-..Jw)

= -cp(aj (d"'w))8i+i ,0 = -c.p(d"'ai (w))8i+i ,O = °
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where the sum Z=~=l is zero if n = 0 and it is replaced with - Z=~=n+l
if n is negative, and 'P is closed, which implies the last equality. Hence
(#aCP) 0 d = 0, Le., #a'P is closed.

To check the graded trace property it is sufficient to show that

#acp(u-n-m-1(du)un 0 w)(um ® w'))

= #a'P(u-n-m-l(du)un+m ® a-m(w)w') = cp(an(w)an+m(w'))80 ,o;

#acp((um ® w')(u-n-m-1(du)un ® w))

= (_l)degw'#acp(u-n-1(du)un ® am(w')w) = (_l)degw' cp(an+m(w')an(w))l5o,o,

and since <p is a graded trace on n, we get

cp(an(w)an+m(w')) = (_l)(degwHdegw')cp(an+m(w')an(w))

= (_l)(deg w+I)(deg w')[( _l)degw' cp(an+m(w')an(w))].

Since deg(u-n-m-l(du)un ® w) = 1 + degw, the equality co~bined 'and
obtained shows that #aCP is a graded trace.

Now let <p be a cyclic cocycle on ~ and consider the cycle (O(2l), d, cp/\),
with the action Q of Z defined by a(xodxl · · · dxn) = a(xo)da(xl) · · · da(xn),
and where cp/\ denotes the associated graded trace defined by cp/\(XOdXI · · . dxn ) =

<p(Xo, Xl,·· · ,xn). Then #aCP is a closed graded trace on E ®a 0(21).
Define a homomorphism p: 21 ~a [u,u- l ]~ E®a 0(21)0 by p(umx) =

um ® X for X E 2l. Check that

p(umxuny) = p(um+na-n(x)y) = um+n ® a-n(x)y,

p(umx)p(uny) = (um 0 x)(un 0 y) = um+n 0 a-n(x)y.

Then #a<P(XO' Xl,· .. ,xn) = #acp(p(xO)dp(Xl) .. · dp(xn)), where note that
for Xi E Qt., we have p(Xi) = 1 ® Xi and dp(Xi) = d1 0 Xi + 1 ® dXi =
1 0 dXi and dp(UmiXi) = d(umi ® Xi) = dumi ® Xi + umi 0 dXi with
dumi = L/j~l ui(u-Idu)umi-i if mi positive. Note that we use the same
symbol #a'P to denote both the closed graded trace on E ®a O(2l) and the
corresponding cyclic cocycle on <t.

Now let us fix the notation as: Xi = Umiai (i = 1,· .. ,n, mi E Z, ai E 21.),
D(e®w) = de®w for e E E and w E 0(21), and, = u- Idu01 E E0a O(21).
Note that, is closed and D is a derivation of E ®a O(2l) anticommuting
with d. Check that

d, = d(u-1du ® 1) = d(u-Idu) ® 1 + u-1du ® d1

= (du-Idu - u- Id2u) ® 1 = -u-~(du)u-ldu 01 = 0
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since 0 = d1 = d(U-IU) = (du-l)u + u-Idu, and also that

D« e 0 w)(u 0 Jj)) = D(eu 0 Q-I(w)Jj)

= d(eu) 0 a-I (W)JL = (de)u ® a-l(w)JL + edu ® a-l(w)JL

= D(e 0 w)(u ® JL) + (_l)deg w(e 0 w)D(u 0 JL),

D(e 0 w)(du 0 Jj)) = (_l)degwD(edu 0 Q-I(w)JL)

= (-l)degwd(edu) 0 a-I (W)JL = (-l)degw(de)du Q9 a-I (W)JL

= D(e 0 w)(du ® Jj) + (_l)deg w(e 0 w)D(du 0 Jj),

and further that

(Do d)(e 0 w) = D(de 0 w + (_l)degee ® dw) = (-l)degede ® dw,

(d 0 D)(e ® w) = d(de 0 w) = d2e ® w + (_l)degdede 0 dw

= (-l)(D 0 d)(e ® w).

Let us set that

1T"i'P(XO, Xl, · .. ,Xn) = #a<P(XOdXI · · · dXi-IDxidxi+ldxn) ,

7fi'P(XO, Xl,··· ,Xn-l) = 1T"i+I'P(l, XO, Xl,· .. ,Xn-l)~

Pi<P(XO, Xl,··· ,Xn-l) = #a<P(XOdXI ... dXi-l~dxi .. · dXn-I).

Lemma 1.9.1. Suppose that'P is a cyclic cocycle on~. Then the following
identities hold: (1) #a<P = E~=l 7ri<{J, (2) b7fi<{J = 1T"i+I'P - 1T"i<P for i > 0,
and b7fo<{J = 7r1'P - 1T"n'P,

(3) bpi'P(XO,XI,··· ,xn) = (-l)i#a<P(XOdxI·· ·dXi-l[Xi,~]dxi+I··· dxn),

and (4) TPi<P = -Pi-I<{J.

Proof. (1) From the definition of the product in E®ao' we get XOdXldx2··· dXn

= xod(u ml 0 al)dx2 .. · dXn
= xo(duml · al)dx2·· · dXn + xo(Umldal)dx2··· dXn
= xo(duml · al)(dum2 . a2 + um2da2)dx3· .. dXn
+ xo(Umldal)(dum2 · a2 + um2da2)dx3··· dXn
= xo(duml · al)(um2da2)dx3··· dXn + xo(umldal)(dum2 · a2)dx3 ... dXn
+ xo(Umldal) (um2da2)dx3 dXn = .

n

= L xo(umldal) ... (umi-ldlli_l)(dumi · ai)(umi+ldai+l)··· (umndan )

i=l

+ xo(umldal)(um2da2)··· (umndan),
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which is also equal to

n

L XOdXI .. :dXi-IDxidxHI ... dXn + xo(umldal)(Um2d2)··· (umndan)
i=l

by the same computation, and #o:'P is zero on the last term because
#a:'PIEo®Qn = O. Hence the first identity (1) holds.

(2) and (3). By a straightforward computation we check that

b(*ocp) (xo, Xl,··· ,Xn)
n-l

= L(-l)i7focp(xo, Xl, ... ,XiXHI,· .. ,Xn) + (-lt7focp(xox~, Xl,··· ,Xn-l)
i=O
n-l

=L(-l)i7l"lcp(l, Xo, Xl,·· · ,XiXHI,·· · ,Xn) + (-lt7l"ICP(l, XOX~, XI,··· ,Xn-l)
i=O
n-l

= L(-l)i#a:cp(lDxodxl·· ·d(XiXHI)·· ·dxn)
i=O

+ (-l)n#acp(lD(xox~)dxI · · . dXn-I),

while we have

( 7rICP - 7fn CP) (Xo, Xl, ... ,Xn)

= #a:CP(XO DXldx2 • • • dxn) - #a:<P(XOdXl · · · dxn-1Dxn).

To get the equality between those we use the facts that both D and dare
derivations of E ®a n and that #o.CP is a graded trace.

Check also that

b(PkCP) (xo, Xl,· .. ,Xn)
n-l

= L(-l)iPkCP(XO,XI,··· ,XiXHI,··· ,Xn)+(-ltPkCP(XOX~,XI,···,xn-d
i=O

n-l

= L(-l)i#a:cp(XOdxI·· ·dXk-I'Ydxk·· ·d(XiXi+l)·· ·dxn)
i=O

+ (-l)n#o:cp(xox~dxI .. ·dXk-l~dxk· .. dXn-I),

and in particular, note that d(Xk-IXk)~= ((dXk-I)Xk+( _l)degxk-lxk_ldxk)~
and ~d(XkXk+l) = ~((dXk)Xk+1 + (_l)degxkxkdxk+l).
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(4) We have

TPi<P(XO, Xl, ... ,Xn-l) = (_l)n-I pi<P(Xn_l, XO,· .. ,Xn-2)

= (_l)n-l#o:<p(Xn_IdXO··· dXi-2'Ydxi-1 ... dXn-2)

= (-1 )n-l#a<P(dxo . · · dXi-2'Ydxi-1 · · · dXn-2Xn-l)

= (_l)n-l( -l)n#a<P(XOdxI ... dXi-2'Ydxi-1 ... dXn-2dxn-l)

= -Pi-lCP(XO, Xl,··· ,Xn-l),

where we use the identity d(xO(dxl · · ·dXi-2'Ydxi-l · · · dXn-2)Xn-l) =

(dxOdxI ... dXi-2'Ydxi-1 ... dXn-2)Xn -1 +(_l)n-Ixodxl ... dXi-2'Ydxi-l ... dXn-l,

together with the closedness of #a<p. D

Recall now the map #r'V : M~-l --t (L~)hom defined by #r'V(<p) = 1r<p 
bR7f<p - Rfrb<p in the subsection 1.7.

Proposition 1.9.2. (1) #0: = (-l)nn#r'V on H~-I(21).

(2) #a commutes with S.
(3) #a8 = 0 in cyclic cohomology.

Proof. (1) Let 'P be a cyclic cocycle on 2l. Using the trace property of
#0:'P we note that the identity Tfri'P = fri-l'P (i mod n (from i = 1 to n)).
Indeed,

T1ri'P(XO, Xl,· .. ,Xn-l) = (_l)n-l 1ri<P(Xn_l, Xo, Xl, ... ,Xn-2)

= (_l)n-l1ri+I 'P(l, Xn-l, Xo,··· Xn-2)

= (_l)n-l#a'P(ldxn_IdxO··· DXi-1 ... dXn-2), while

7fi-1 'P(Xo, Xl, · · · ,Xn-l) = 7ri'P(l, Xo, Xl, · .. ,Xn-l)

= #o:'P(ldxodxl · · . DXi-l · · ·dXn-I).

Hence we have

1
nbR1to'P = nb-(nfro'P + (n - l)Tfro'P + .. ·Tn-l1ro<P)

n
= b(n1to'P + (n - l)1rn -I'P + .. ·1rI<P)

= n(1rI'P - 1rn'P) + (n - 1) (7rn'P - 1rn-l<P) + · .. + (1r2'P - 7r1'P)
n

=n7fl<P - L 7fi<P = n7fl<p - #o:<P.
i=l
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Therefore

#o:CP = n(1rlcp - bR7fo'P)

= (-1)nn((-1)n1r1cp - bR(-l)n1to<p)

= (-l)nn(1rcp - bR1tcp - R7fbcp) = (-l)n#r-.J(cp),

where 1r = (-l)n1r1 and 1r = (-l)n1to on (n - l)-cochains (and probably,
using b'P is zero as a cohomology class).

(2) Let us consider the following diagram:

0(21 ~o: [u,u- l ])

1~
0(210 C ~o: [u, u- 1])

1
E 00: 0(2l0 C)

1
E 00: (O(2l) 00(C))

0(2l ~o: [u, u- l ])

1~
O(2l )<Jo: [u, u-1] ® C)

1
O(2l ~o: [u, u- 1]) 00(C)

1
(E 00: O(Ql)) 0 !1(C) ,

where the vertical arrows are given by the universality of the !1(.)-construction,
and the obvious isomorphism at the bottom gives #o:(cp#w) = (#o:<p)#w
for any closed graded trace w on O(C) and # the cup product. If we take
w as the generator of H~(C) given by w(ldldl) = 27ri, then we compute
#0:8cp = #o:(w#cp) = #o:('P#w) in the left-hand column, while we com
pute 8#o:'P = w#(#o:'P) = (#o.'P)#w in the right-hand column, i.e., we get
8#0. = #0.8 .

(3) Let us compute #o:8cp for a cyclic cocycle cp. We have

1ri(8cp) (xo, Xl,· .. ,Xn) = #o:(cp - CP 0 0:) (XOdXI , ... ,dXi-lDxidxi+1 ... dXn)

= #o:CP(XOdXl'··· ,dXi-l(dumi)aidxi+l···dxn)

- #o.<P(XOdXl . · . dXi-1u-1(dumi )uaidxi+l · · ·dXn).

Note that #0:(cpoo:)(ui-1(du)uj 0w) = #o:'P(ui-1(du)uj 0o:(w)). We also
have (dumi)ai - u-l(dumi)uai

mi

= L(ui-l(du)umi-i - ui-2(du)umi-i+l)ai = (umiu-Idu - u-l(du)umi)ai
i=l

= [umi ,u-1du]ai = [Xi, ,],
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where note that u-Iduai = u-Idua-l(a(ai)) = u-Ia(ai)du = aiu-Idu,
and hence we get

n n n
#o8'P = L 1ri8'P = L(-l)ibpi'P = b(L(-l)ipi'P) ,

i=l i=l i=l

with 2:~=1(-l)ipi'P is a cyclic cochain on e:, since TPi'P = -Pi-I'P obtained
above. This completes the proof. D

Proposition 1.9.3. All the cochains (defined on the algebraic part) such
as 1ri'P constructed in this subsection extend by continuity to all of e:.
Proof. Consider the case of 1rl ',0. All the other cases follow by the same
way.

Suppose that xo, Xl,·· · ,Xn E e: are the monomials Xi = Umiai with
ai E 21 and mo + ... + mn = 0, and set aj = amo+ml+···+mj(aj). Then

ml

1rl'P(XO,Xl,'" ,xn) = L'P0a-i(aoal,a2','" ,a;;,).
j=l

But our computation shows that for ml positive, 1r1'P(XO, Xl,··· ,Xn )

ml

= L #o'P(XOui(u-ldu)uml-ialdx2'" dXn)
i=l
ml

= L #o'P(umoaoui(u-ldu)uml-ialum2da2'" uTnndan)
i=l
ml

= L#O'P(umoaoui(u-ldu)uml-ialUm2+m3+"+Tnna-m3-...-mn(da2)

i=l

... a-mn-l-mn (dan_2)a-mn (dXn-l)dan)
ml

= L #0 'P(umoaoui(u-ldu)uml+m2+··+mn-ia-m2-m3+..·-mn (al)a-m3- ...-mn(da2)

i=l

... a-mn-l-mn (dan _2)a-mn (dan-l)dan )

ml
= L #o'P(umo+i(u-ldu)uml+m2+···+Tnn-ia-ml-· .. -mn(ao)a-m2-m3+··.-mn(al)

i=l

a -mg-···-mn (da2) · .. a -mn-l-mn(dan-2)a-mn(dan-l )dan)

ml
'"" m1+m2+···+mn-i( -m1-···-mn ( ) -m2-m3+···-mn ( )= L...J ',0 0 a a ao a al

i=l
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mI

= 2: cp 0 a-i(aoam1 (al)
i=l .

amI+m2 (da2) ... amI +···+mn -2 (dan_2)amI+···+mn-l (dan_l)am1+···+mn (dan)).

Given that <p satisfies an estimate of the form:

mt

~ c2: lIa-illkllamlllkllam211~-I .. ·lIamnllkliaollk/llalllk/llda21Ik·· · II dan Ilk
i=l

(corrected partly, but possibly, we can write IIdajllk ::; Ilajllk+I), where
we use a fact that Ilabllk ::; lIallk,lIbllk' for some k' E N. Choosing k" =
max{k + 1, k/} + n + 1, then we have 11rlcp(xo, Xl,··· ,xn)1

::; CPk" (mO)Pk" (ml) ... Pk"(mn)llaollk,,lIalllk"·· ·llanllk'"

where Pk(m) = maxl~i~k(E~_m Ilatlli)k. If now Xi are given as finite
sums of monomials: Xi = Emi Umiai,mi' then we get 11rlcp(XO' Xl,··· ,xn)1

1 1
~ c 2: .. ·2: -2 ... -2Pk"+2(mo) · .. Pk"+2(mn)lI ao,mo Ilk" .. ·llan,mn Ilk"

mo mn rno m n

::; C· 2
n (1 + 2: ~2)n Ilxollk"+2" ·llxn llk"+21

m>O

where Inlpk(n) ::; Pk+l(n) and Inlpk+l(n) ::; pk+2(n), and the multiple 2 in
2n corresponds to the subsums of Em. for mj positive or negative, and 1+

J

corresponds to mj = 0, since Pk(O) = 1. Hence the continuity of 1rlcp is
established. D

Definition 1.9.4. Define the cochain map # : cn-l(~, ~*) ~ cn(~, ~*)hom

by #cp = (-I)nn#rvcp.

1.10 For the cochain map

(A) Given cp E L~ with Ln = 1) ® (0n~) and XO,Xl,··· ,Xn-l,a E ~, we
set

n-l

hacp(xo, Xl, ... ,Xn-l) = 2:(_1)n-i-Icp(xo,'" 1 Xi, a, Xi+l, ... ,Xn-l).
i=O
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We have bhacp(xo, Xl,· .. , Xn) = hacp 0 b(xo, Xl,·· · , Xn)

n-l

= L(-l)jhacp(xo, Xl, ... , XjXj+I,··· ,Xn) + (-l)nhaCP(xox~, Xl,· .. , Xn-l)
j=O
n-In-l

=LL(-l)n+j-i-I<p(XO,XI,'" ,Xi,a,Xi+l,"'XjXj+l,'" ,Xn)
j=Oi=O
n-l

~( 1)2n-i-l ( ° )+ L.J - cp XOXn, Xl, · .. ,Xi, a, Xi+l, . · · ,Xn-l ,
i=O

n-l

=L(-It-i-Ib<p(xo,''' , Xi, a, Xi+l,'" , Xn)
i=O
n-In-l

= LL(-l)n-i-l+j<p(Xo,'" ,XjXj+I,'" ,Xi,a,Xi+I,'" ,Xn)
i=O j=o
n-l

~( 1)2n-i-1 ( ° )+ L.J - cp XOXn, · .. ,Xi, a, Xi+l, · .. ,Xn-l
i=O

where in the first term there are the cases where XjXj+1 = xja or aXj+1
when j = i or j = i + 1 respectively, and other cases in the first and
second terms are the same as the first computation result, so that we get
bhacp(xO,XI'··· ,xn)

n

= hab<p(xo, Xl, · · · , Xn) + (_l)n-1 L <p(Xo, · " , [a, Xi),' .. , xn).
i=O

Check indeed that bhacp(xo, Xl, X2) = hacp 0 b(xo, Xl, X2)

= hacp(XOXI, X2) - hacp(xo, XIX2) + haCP(XOX2, Xl)

= (-cp(xoXI,a,X2) + cp(XOXI,X2,a)) - (-cp(xo,a,XIX2) + cp(XO'XIX2,a))

+ (-CP(XOX2' a, Xl) + CP(XOX2, Xl, a))

while we have habcp(xo, Xl, X2)

= bcp(xo, a, Xl, X2) - bcp(xo, Xl, a, X2) + bcp(xo, Xl, X2, a)

= (cp(xoa, Xl, X2) - cp(xo, aXI, X2) + cp(X~, a, XIX2) - CP(XOX2' a, Xl))

- (cp(XQXI' a, X2) - cp(XO, Xla, X2) + cp(XO, Xl, aX2) - CP(XOX2' Xl, a))

+ (cp(XQXI' X2, a) - cp(xo, XIX2, a) + cp(XO, Xl, X2a) - cp(xoaO, Xl, X2))
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Hence we obtain bhacp(xO,XI,X2) - habcp(xO,XI,X2) =

- {cp(xoa, Xl, X2) - <p(xoaO, Xl, X2)) + cp(xo, xla - aXI, X2) + cp(xo, X2, X2a - aX2)}

= -{cp(xoa,XI,X2) - cp(xoaO,XI,X2)) + cp(xo, [XI,a],X2) + <p(XO,X2, [X2,a])},

= -{<p([a, XO], Xl, X2) + cp(xo, [a, Xl], X2) + cp(Xo, Xl, [a, X2])}.

We also have (1 - T)hacp(xo, Xl, ... , Xn-l)

= hacp(xo, Xl, .. · , Xn-l) - (-l)n-lhacp(Xn_l, XO, ... ,Xn-2)
n-l

= 2:(_l)n-i-l<p(XO,'" ,Xi,a,ai+l,'" ,Xn-l)
i=O

n-l
~( 1)2n-i-1 ( )+ L....tJ - cp Xn-l, XO,·· · , Xi-I, a, Xi,··· , Xn-2 ,
i=O

while we have (ha(l - T)'P) (xo, Xl, ... , Xn-l)

n-l

= 2:(_l)n-i-l(l - T)<p(xo,'" ,Xi, a, Xi+b" · , Xn-l)
i=O

n-l

= 2:(_l)n-i-l<p(Xo,'" ,Xi, a, Xi+l," · , xn-t}
i=O

n-l

+ L(-1)2n-i'P(Xn_I,XO,··· ,Xi,a,Xi+I,··· ,Xn-2),
i=O

where in the last term, Xn-l is replaced by a when i = n-1, and that Xo can
not be replaced bya. Hence we get {(1-T)hacp-ha(1-T)cp }(xo, Xl, · .. , Xn-l)

= (_1)2n-Icp(Xn_I' a, xo,··· ,Xn-2) - (_1)n-lcp(a, xo,··· , Xn-l)

= (-1)n- IT<p(a, Xo,··· , Xn-l) + (-l)ncp(a, Xo,··· ,Xn-l)

= (-l)n(l - T)<p(a, Xo, Xl,··· , Xn-l)

(where the index of (-1) is corrected).
(B) Consider ~ @ Mn(C) and replace 'P by cp#Tr. Set

u = (0 1)
u 0 '

R = (cos () - sin ())
(J sin () cos () ,

and a(J = Ad(URo) E Aut(~ 0 M 2(C)). Then we have

d
dO a(J(x) = a(J([J, xl).
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Check this equation as follows: for

x = (~ :) E M 2 (Q:),

it follows by direct matrix computation that

Q9(X) = Ad(UR9)X = UR9XReU* =

(
asin20+bsin29 +csin29 +dcos20

2 2
u(aSi~20 + bcos20 - csin2 0 - dSin220)

where

(asi~29 - bsin2 0 + ccos2 0 - dSin229)u* )

u(acos2 0 - bsin229 - csin220 + dsin2 O)u*

R* = (co~O SinO) and J* = (0 u*)
9 - SIn 0 COS 0 1 0 '

and it is shown that the element-wise derivative of Q9(X) with respect to 0,
Le., d~Q9(X) is equal to

ae([J,X]) =ae(Jx-xJ) =ae (~b_-dC ~~:) =

(
(a-d)sin20+ (b+c)cos20 ((a-d)cos20- (b+C)Sin20)u*)

u((a - d) cos 20 - (b + c) sin 20) u( (d - a) sin 20 - (b + c) cos 20)u* •

We thus have, for any n-cochain 'l/J on (t 0 M2(C),

'l/J 0 Q7f/2(XO, Xl, ... ,Xn ) - 'l/J 0 QO(Xo, Xl, · · · ,Xn )

{7f2 d
= Jo dO 'If; 0 ae(xo, xl, · .. ,xn)dO

n (7f/2
= L In 'If; 0 ae(xo, Xl,'" , [J, Xi],'" ,xn)dO

i=O 0

by the fundamental theorem of calculus, where note that

'd d
dOae(xo, Xl, ... ,Xn) = dO(ae(xo),ae(XI),'" ,ae(xn))

n d
= L(ae(xo), ae(XI), .. · , dOae(Xi),'" ,ae(xn))

i=O
n

= L ae(xo, Xl,'" , [1, Xi],'" ,xn).
i=O

(C) Define, given <p E (L~)hom,
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where eij is the matrix unit of M2(C). Applying (A) and (B) above we get

where note that ao = Ad(U) and a1r/2 = Ad(UJ), and

We also have (1 - T)fj<p(xo, Xl,·· . ,Xn-l)

where Xi = Xi 0 ell.

(D) If we define ",<p = 1}<PI21' then it follows from those identities in (C)
that

<P121 = 0 => br]<p = ",b<p and (1 - T)<p = 0 => (1 - T)",<p = O.

Thus we can consider", as the map 1] : (Q~)hom -t (Mn- l )*, which com
mutes with the coboundary operator b and sends cyclic cochains to cyclic
cochains, since Ln = 1)Mn E9 Qn as obtained before.

(E) Note that, given any cochain <p on 2l, the formula <p((A+ao)dal ... dan) =

<p(ao, al,··· ,an) defines a linear functional on 0(21) (by ignoring the scalar
A). Moreover, the construction of #0<P extends to this more general case
and gives us the map #0; M~-l ~ (L~)hom
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Lemma 1.10.1. Let WO,WI,W2 E n(2t), a E 2t, and suppose that'P is a
cochain on 2L Set

Then the following identities hold:

Proof. (1) Set sin 0 == s and cos 0 == c. We compute the integrand 10

= ((#a'P)#Tr) (ao (~o ~) D(ao(J))ao (~1 ~))

= ((#a'P)#Tr) ((:::c :(;:)s~) (-~u D;*) (:;:c :(~l*)S~))
== ((#o'P)#Tr)

((
wo(-u*(Du) + (DU*)U)WIS3C wo(-u*(DU)WIU* + (Du*)a(wI))s2c2 ))

(-a(wo)(Du) + uwo(DU*)U)WIS2c2 (-a(wo)(DU)WIU* + uwo(Du*)a(wl))sC3

== #ocp(wo(-u*(Du) + (DU*)U)WIS3
C + (-a(wo)(DU)WI u* + uwo(Du*)a(wI))sC3)

== #ocp(( _1)degwo(-u*(Du) + (Du*)U)WOWIS3C

+ (_1)deg
wo(-(Du)u*a(wo)a(wl) + u(Du*)a(wo)a(wl))sC3)

== #0'P(( _1)degwo(-2u- Idu)wOWIS3C + (_1)deg wo(_2u(u- 1Du)u- Ia(wowl))SC3)

== 2(-1)degWo+1 (cp(WOWI)s3c + 'P(a-I (a(WOWI)) )sc3)

== 2(-1)degwo+I'P(wOWI) sin 0 cos 0 == (-1)degwo+lcp(wOWI) sin 20

where we used the graded trace property of #0 and note that Du == du
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and Du* = du- 1 = -(u-1du)u-1 by definition. Therefore, we get

{~/2 {~/2
10 IodO =. (_l)degwo+l<p(WOWl) 10 sin20dO

= (-l)degwo+l<p(wowd [_ CO~20]:/2 = (-l)degwO+l<p(Wowd.

The other integrals are computed in the same way. As for (2), check
that

(possibly, this computation is allowed), where note that d1 = d(l . 1) =

(d1)1 + 1(d1), and hence d1 = O. D

Proposition 1.10.2. (1) For a cochain ¢ E M~-l' we have

(2) For a cyclic cocycle 'P E C~-1(21, 21*), we have

'fJ#a'P = (-l)nncp.

Proof. (1) Since 1rVJ = (-1 )n7r1¢, and
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according to the lemma above, and moreover,

1
= (-I)[-'l/J(aodal ... dan-I) - "2'l/J((aoal )dlda2'" dan-I)]

1
= 'l/J(ao, aI, · .. ,an-I) + "2'l/J(aoal ' 1, a2,' .. ,an-I).

On the other hand, check the following:

n-2
+~) -1)i'l/Jh(ao, al," · ,aiai+I,'" ,an-I) + (-It-I'l/JII(aoa~_I' al,'" ,an-2)

i=O

= 'l/J(ao,al,··· ,an-I) - 'l/J(ao,al,··· ,an-I)
n-2
~) -1)HI'l/J(ao, 1, al,'" ,ajaj+1,'" ,an-I) + (-I)n'l/J(aoa~_I' 1, al,'" ,an-2)
j=1

+'l/J(aoal,1,a2,··· ,an-I)
n-2

+~) -1)i'l/J(ao, 1, al,'" ,aiai+l,'" ,an-I) + (_I)n-I'l/J(aoa~_I' 1, aI,'" ,an-2)
i=1

= 'l/J(aoal, 1, a2,··· , an-I).

(2) Since (#oc.p)#Tr is a cyclic cocycle on <r ® M2(C), we have the
equality

where we denote by Na the cyclic antisymmetrization operator in the vari
ables aj and J. Using (1) and (5) of the lemma above, we get

(1r/2
10 d()((#a<p)#Tr) 0 ae(aodal ... dan-IDJ + aOdal ... diin-2Dan-IdJ)

= (-I)n<p(aoda l ... dan-I) + ~(-lt-2<p((aodal ... dan-2)an- Idl).

= c.p(aodal .. · dan-2d(an-I1)) - c.p(aodal .. · dan-II) = 0
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since d(an -ll) == dan-II + an-ldl, with d(an-ll) == d(an-l) == d(an-l)l.
(But the second term in the first expression could be unnecessary.) Hence

D

1.11 The long exact sequence

We have the four (induced) cochain maps: k : M~-l ~ (Q~)hom and
h : (Q~)hom ~ M~-l' where defined in the subsection 1.4 are h : 1)Mn ~

Qn+l and k : Qm ~ fJMm- 1 (not 7f), and #~ : M~-l ~ (L~)hom and
1] : (Q~)hom ~ M~-l' which are defined in the subsections 1.7 and 1.10,
respectively, and 7f : M~-l ~ (L~)hom as in the subsection 1.7. Moreover,
in cohomology, the induced maps satisfy h7f == 1]7f == id and 7f == #rv, while
h7r == id on the cochain level.

Now let us look at

which holds on the cohomology level. Since tfh is the identity on the coho
mology level, and all maps considered commute with b as cochain maps, we
can find a cochain homotopy p : (Q~)hom ~ (Q~-l)hom, (n > 1) such that
#~1] == id-bp-pb. Define 13 : (Q~)hom ~ (Q~-l)hom by Bep == 27rin(n+l)Bep.

Lemma 1.11.1. Suppose that ep is a homogeneous cyclic cocycle on 1)
which is zero when restricted to 2l. Then 'P == ~f=o Sk #~1](Bp)i ep on the
cochain level.

Proof. We have <p == (#rv1] + bp + pb)ep == #rv1]ep + bpep. In particular,
bpep is cyclic, and hence, bpep == SBpep and 'P == #~1]ep + SEpep (where
SB == n(n + l)b by Connes [1, Lemma 23 at p. 201]' so that SE == 2;'ib).
Note that Bpep again is a homogeneous cyclic cocycle vanishing on 2l. By
induction on j we get

Indeed, check that

(Bp)j+lep == (Bp)j(Epep) == #~1](Ep)j(Bpep) + S(Bp)j+l(Bpcp)

== #~(Ep)j+lep + S(Ep)j+2ep.

Acting on both sides by sj and summing over j 2: 0 we get

LSi(BP)i<p = L Si#~TJ(Bp)irp + L SHl(Bp)Hlrp,
j?O i?O j?O
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where the sums are finite for dimensional reasons, and hence we obtain
ep = Ej~o sj#~TJ(Bp)kep. D

Theorem 1.11.2. The following long cohomology sequence is exact:

· ..~ H~-l(Q() L HA(e:)hom~ HA(Q()~ ....

Proof. Step 1: i 0 # = O. This follows directly from the definition of #,
because # = (-1)nn#~, and #~ = 1r in cohomology, and i 0 1r = O. Hence
we get Im(#) C ker(i).

Step 2. ker(i) C Im(#). Suppose that ep is a homogeneous cyclic
n-cocycle on nand i[ep] = 0 in H~(Ql). Then there is a cyclic (n - 1)
cochain .x on 2l such that epl2l = b.x. Set .x~(aoumo, ....,an_lUmn- 1 ) =

..\(ao,·· · ,an -l)<5mo,O··· <5mn- 1 ,o for ai E 2L Then.x~ defines a cyclic element
of (Q~-l)hom and (ep - b.x~)I2l = O. By the lemma above, we get

<p - b>..rv = L Sk#rvry(Bp)k<p.
k~O

But Im(Sk#~) = Im(Sk#) C Im(#) for k ~ O. Indeed, by definition,
#'lfJ = (-I)nn#~'lfJ for an (n -l)-cochain 'lfJ, and (-l)nn#~ = #0: in cyclic
cohomology level and #0: commutes with S, as obtained before. Thus we
obtain ep - b.x~ E Im(# ). Hence the class of ep is contained in the image
under # in cyclic cohomology.

Step 3. We have #<5 = 0, because #<5 = (-1)nn#~<5 = #0:<5 = 0 in
cyclic cohomology.

Step 4. ker(#) C Im(<5). Suppose that ep is a cyclic cocycle on 2( such
that #ep = b.x for .x a cyclic cochain. Since #ep is homogeneous, we can
assume that .x is homogeneous as well. But then we have

ep = TJ#ep = TJb.x = brJ.x ± <5(.xI21).

Step 5. <5i = O. This can be deduced from the fact that inner automor
phisms act trivially on the level of cyclic cohomology, by Connes. Alterna
tively, given a cyclic cocycle ep on n, we have the equality <5(eph21) = ±brJep.

Step 6. ker(<5) C Im(i). Suppose that ep is a cyclic cocycle on 2( such
that <5ep = b.x for ..\ a cyclic cochain on 2(. Set ep~ = ~(Ei(-1)ipiep - #..\).
Then <p~ is cyclic on 2(, ep~l2l = ep, and

nb<prv = b(L(-l)ipi<P) - b#>"
i

= #0:<5<p - #b.x = 0,

where note that # = #0: on cyclic cocycles and the identity b(Ei(-l)ipiep) =
#o:bep is obtained in the subsection 1.9. D
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1.12 Periodic cyclic cohomology
of the smooth crossed product

Theorem 1.12.1. The following sequence is exact:

HCev (21) --L Hcodd (21 ~o Z)~ Hcodd (21)

l-oT· 11- 0

i
+--- HCev (1:')

where HCev (.) and Hcodd (.) are the even and odd parts of HC(·) respec
tively, with HC(·) = Hcev(.) E9 Hcodd (.) = ~HC2n(.) EB~HC2n+l(.).

Proof. We have

HCev (1:') or Hcodd (1)) = lim SkHr:(1:') = lim SkH~(1:')hom,
~ 1'\ ~

n=n(k) n=n(k)

since Hf('D)e C ker(S) as shown before. Hence it suffices to look at the
homogeneous cyclic cohomology of the crossed product 'D. Let us look at
the diagram:

~ H~-l+2k(2l) # H~+2k('1))hom
i

H~+2k(21)
fJ

~ ~ ~

SkT SkT SkT
d

H~-l(21) #
H~(1))hom

i
Hf(21)

d
~ ~ ~ ~

where this is commutative because S commutes with #, and the rows are
exact by the long exact sequence in the last subsection, and 8 = 1 - Q

in cohomology. Now a straightforward diagram chase proves the desired
result. D

1.13 Coupling with K-theory

Let 21 be a Frechet algebra, nuclear as a topological vector space. Denote
by 21+ the unitization of 21..

When 21 has no unit, its Ko-group Ko(21) is defined to be the Grothendieck
group of stable equivalence classes of projections in matrix algebras over
21+. When 21 has the unit, we take Ko(21) as the kernel of the K-theory
homomorphism induced by the injection from 21 to 21+ .

We define Kl (21.) as a quotient of
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by the continuous, piecewise 0 1 equivalence relation ('Vel, given by that
WI ('Vel W2 if and only if there is a continuous, piecewise C 1 path [0, 1] 3

t ~ Pt E GLoo (21) such that Po = WI and PI = W2.

Denote by (.,.) the pairing between Ko(21) and HCev (21) and between
GLoo (21) and Hcodd (21) constructed by Connes, where we extend cocycles
on 21 to those on 21+ by setting ',0(1, aI, · .. ,an) = O.

Lemma 1.13.1. That pairing (-,.) desends to a pairing between K 1(21) and
Hcodd (21).

Proof Suppose that '1' is an odd-dimensional cyclic cocycle on 21 and that
t ~ Vt is a continuous piecewise C1 path of elements of GLoo (21). By
passing to a matrix algebra over 2(+ we can assume that Vt E 2(+. It is
enough to show the equality: tt'P(vt

1,Vt, vt
1, ... ,Vt) = O. Let ',0/\ denote

the closed graded trace on 0(2(.+) corresponding to ',0. Then the left-hand
side is equal to

d ·
dt cpA (VtldVtd(Vtl ) ... dVt) = cpA((Vtl)dVtd(Vtl) ... dVt)

+ '1'/\ (VtldVtd(Vtl) .. ·dVt) + ... + '1'/\ (VtldVtd(Vtl) .. ·dVt).

Since '1' is cyclic, it is enough to show that the sum of the first two terms
is zero. Indeed, check that

cpA((V~l)dVt···dVt) + cpA(vt1dVt" .dVt)

= -'1'/\ (Vt 1VtVt
1dVt .. ·dVt)

- cpA((d(v~l)Vt + (v~l)dVt + d(vt1)Vt)d(vt
1) .. ·dVt)

= -cpA(d(v~l)Vtd(Vtl) .. ·dVt) - cpA (d(Vt1)Vt)d(vt1) " ·dVt) = 0,

h 1 -1· I· 0 · -1 + (-=-1) th t ( -=-1) -1·-1were = VtVt Imp les = VtVt Vt Vt ,so a Vt = -Vt VtVt ,

and also 1 = Vt1Vt implies 0 = (v~l)Vt + vt1Vt, so that

and we use of '1'/\ being a trace.
Hence 'P(vt

1,Vt,Vt
1, ... ,Vt) is a constant with respect to t, and one

can also check that b'P(vt 1
, Vt, vt 1

, · •. ,Vt) = 0, so that the bilinear map is
defined by such a constant for a pair of classes in K 1 and H codd . 0

Lemma 1.13.2. Let'P be a cyclic cocycle on 21 and W a cyclic cocycle on 23
either a matrix algebra over <C or C(1r). Then #a®id('P#W) = (#aCP)#w.
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Proof. It is enough to note that both sides of the equality stated are com
puted by columns of the commutative diagram:

O((210 23) ~a~id [u, u-1]) ======

1
E 00:®id 0(2l0 ~)

1
E 0a~id (0(21) 0 0(23)) ~

0((21 ~Q [u, u-1]) 0 23)

1
O(21 ~o: [u, u-I ]) 0 O(~)

1
(E 00: O(2l)) @ 0(23),

where the bottom arrow is an isomorphism. The extension of both sides of
the equality to continuous cocycles on respective algebras is handled as in
Proposition 1.9.3. 0

Let us now introduce the Bott map Bt as follows: For a projection
p E Mk(21+), define Bt(p) = e21ritp + (1 - p) an invertible-matrix valued,
smooth function on T in GLk(21+ 0 COO(1r)), where COO(1r) is the ideal of
Coo (T) of smooth functions on 'If vanishing at zero, and for an element
v E GLk(Ql+), define

Bt(v) = Vt (~ ~) vt 1
- (~ ~)

a projection-valued smooth function on 1r in M 2k(2l+ 0 COO(T)), where
the map t ~ Vt is any continuous piecewise Coo path inside M2(C[V, v-I])
connecting the diagonal matrix v EB v-I to the 2 x 2 identity matrix 1 EB 1.
Note that the Bott map Ht descends to K-theory homomorphisms: Bt :
Kj (2l) ---7 K j +1(soo21) for j = 0,1, where soo2l = 2l ® COO (T), which
we may call the smooth suspension of 2l. Set (soo)k+l21 = soo((soo)k2l)
inductively.

Definition 1.13.3. Define KP-groups of 2l by Kj(2l) = ~Kj((SOO)2n2l)

(n ---7 (0) for an inductive system {Kj ((soo)2n(2l))}nEN of abelian groups
connected by even powers of Bt.

Proposition 1.13.4. The pairing (.,.) extends to a bilinear pairing between
KP-groups of21 and HC(Qi).

Proof. Applying the six-term exact sequence of He for the smooth crossed
product of 2l by an action Q of Z in the subsection 1.12 to Qi+ ~id Z ~

~+ 0 Coo(T) , we get short exact sequences:
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These give us the maps #id : HCi(21) ~ HCi+1(SOO21). It is easily seen
that #id is given by the shuffle product with a generator of Hl(Ccf(1r)),
and we have the equality (<.p, x) = (#id<.p, Bt(x)) by Pimsner. Now an
application of the lemmas above gives the desired result, where we have
#rd(<.p#Tr) = (#rd<.p)#Tr and hence that #fd is compatible with the iden
tifications involved in the construction of GLoo (21) and Moo(~). D

As before, 2l is a dense unital subalgebra of unital C*-algeba A, a is
an automorphism of 21 with a(21) = 21, and the imbedding 2l ~ A is
continuous.

Note that the map Bt2 : Ki(A) ~ Ki((soo)2A) is an isomorhism since
Ki(A) ~ Ki(S2A) the Batt periodisity in the category of C*-algebras,
where SA = Co(lR) 0 A is the usual suspension of A. Hence we have the
natural maps:

Kf(21) = ~Ki((soo)2n21) ~ ~Ki((SOO)2nA) = Ki(A),

Kf(21 ~a Z) = ~Ki((SOO)2n(21 ~a Z)) ~ Ki(A ~a Z).

Theorem 1.13.5. Suppose that the maps Kj(21) --+ Kj(A) (j = 0,1) are
isomorphisms. Then the above maps Ip,j : Kj(21 ~a Z) ~ Kj(A ~a Z)
(j = 0,1) are surjective and the pairing (.,.) between KP and HC of 21.
descends to a pairing between the K -groups of the C* -crossed product A ~ aZ
and HC(21 ~a Z).

Proof. Start with the following diagram:

Kf(21)
1-a

Ki(21) Kf(21 ~a Z) ----t Kg(21)~ Kg(21)----t ----t

1 1 1 1 1
K 1(A) 1-a K 1(A) K1(A ~a Z) ----t Ko(A)

1-a
Ko(A)----t ----t ----t

where the bottom sequence, being a part of the six-term exact sequence
of Pimsner-Voiculescu for C*-crossed products by Z, is exact. Apply the
following result of G. Elliott and T. Natsume: the map f from the set of
pairs (e, v) with e a projection of A and v a unitary of A such that vev- 1 =
a(e) to the unitary group of A ~a Z, defined by f(e, v) = ue +v(l- e) is a
right inverse for the boundary map {) and its range, after passing to matrix
algebras over A, generates K1 (A ~a Z) as an abelian group. Check that

(ue + v(l - e))*(ue + v(1 - e)) = (eu* + (1 - e)v*)(ue + v(1 - e))

= e + eu*v(1 - e) + (1 - e)v*ue + (1 - e)

= 1 + ((1 - e)v*ue)* + (1 - e)v*ue
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and moreover, since ev* = v*a(e) we have

(1 - e)v*ue = v*ue - ev*ue

= v*ue - v*a(e)ue

= v*a(1 - e)ue
= v*u(l - e)u*ue = v*u(l - e)e = O.

Since we can choose e, v in a matrix algebra over (SOO) 2n21 for some n by
the assumption, the surjectivity of the maps Ip,j follows.

Suppose now that <p is an odd-dimensional cyclic cocycle on Ql )<Ja Z
and that pairs (e, v), (e, v) of projections and unitaries of Ql are such that
f(e, v) rv f(e, v) in A )<Ja Z. Since then [e] = 8[f(e, v)] = 8[f(e, v)] = [e]
in Ko(A), we can, after passing to a matrix algebra over some smooth
suspension (SOO) 2n21, suppose that there exists an invertible element w E 2t.
such that wew- I = e. We set

then a straightforward calculation gives

f(e, v) = o(w)X f(e, v)w-1
,

where in the both equations above, a(w-1 ) and 0:(w) are corrected from
0:- 1(w- 1 ) and a-I (w) in the text, respectively. Indeed, we check that
o(w)Xf(e,v)w-1

=a(w)(a(e) + a(w- l )vwv-1(1 - a(e))(ue + v(l - e))w-1

= a(w)a(e)uew-1+ a(w)a(e)v(l - e)w- 1

+ vwv-I(l - a(e))uew- 1 + vwv-1(1 - a(e))v(l - e)w-1

= (uwu*)ueu*uew- 1 + a(w)vev*v(l - e)w-1

+ vwv-I(l - ueu*)uew-1+ vwv-1(1 - vev*)v(l - e)w- 1

= uwew-1+ a(w)ve(l - e)w- 1

+ vwv-Iu(l - e)ew- 1 + vwv-1v(1 - e)(l - e)w-I

=ue + v(l - e) = f(e, v).

Moreover, X rv 1 in (matrix algebras over, corrected) A )<Ja Z, because

f(e,v) rv f(e, v) = a(w)Xf(e,v)w-1

rv wXf(e,v)w-1
rv Xf(e,v)
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so that there is a unitary y such that yf (e, v)y* = X f (e, v), and thus
X = yf(e, v)y* f(e, v)* rv f(e, v)f(e, v)* = 1 in the corrected case, where
we use a fact that unitary equivalence is equivalent to homotopy equivalence
in matrix algebras over A ~a Z (but is not equivalent in general in A ~a Z)
and we need to assume that w is a unitary in this case. If we use unitary
equivalence only, we just get

f(e, v) rv f(e, v) = a(w)X f(e, v)w- 1

= uwu*Xf(e,v)w-1 rv wu*Xf(e,v)w-1u

so that there is a unitary y such that yf(e,v)y* = wu*Xf(e,v)w-1u, and
thus X = uw-1yf(e, v)y*u*wf(e, v)* rv 1 (not yet checked).

And hence [X] E Im(l- a) IK l(A) = Im(l- a) IKf(2!) , because check that

X = a-1(w)f(e, v)ws(e, v) rv a-1(w)f(e, v)wf(e, v)

rv a-1(w)w

so that we have [X] = [a-1(w)w] = [wa-1(w)] = [w][(a(w))-l] = (1 
a)[w]. Since cpl2! is a-invariant in cyclic cohomology, we get the equality
(cp, f(e, v)) = (cp, f(e, v)). This implies that (.,.) descends to Kl(A ~a

Z). Note that f(e, v) = a(w)Xf(e,v)w-1 rv a(w)a(w)-lwf(e,v)w-1 =
wf(e, v)w- 1

rv f(e, v).
To deal with the Ko-case, note that the KP-groups satisfy the Bott

isomorphism Bt : Kf(2{) ~ Kf+1(sooQl), and hence it suffices to apply
the K1-case dealt with above to Soo~ in the diagram

Ki(SOO(2l ~a Z))~ Kg(2l ~a Z)~ Kf(SOO(2l ~a Z))

1 1 1
and note that the pairing (.,.) commutes with the Bott map and that
(cp,p) = (#idcp, Bt(p)). 0

Proposition 1.13.6. Suppose that the maps Kj(21) ---+ Kj(A) (j = 0,1)
are isomorphisms. Then the maps a : Kj(A ~a Z) ---+ Kj+1(A) (i = 0,1)
and # : HCj (21) ---+ HC j +1 (21 ~a Z) are dual to each other.

Proof. Since the pairing (.,.) is compatible 'with the maps Bt and #id and
since ##id = #id#, which means that #a is a shufHe product, it is enough
to show that

1
-2. (#cp, [f(e, v)]) = (cp, [e])
1r~
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holds for cp E H~n+l (21) and e a projection of A and v a unitary of A.
Suppose first that v == 1, Le., ueu* == e, because

1 == f(e, v)f(e, v)* == (ue + (1 - e))(ue + (1 - e))* == ueu* + (1 - e).

Set Y == ue+ I-e. Then we have #cp(y-l-I, Y -1, y-1-I,··· ,Y -1) ==

n-l

L #o<p((u* - l)k+l(u - l)k(du)(u* - l)n-k(u _l)n-ke(de)2ke(de)2(n-k))+
k=O

nL #o<p((u* - l)k(u - 1)k+l(du- 1)(u _1)n-k(u _l)n-ke(defk- 1e(de)2(n-k)+l)
k=l

where note that #cp == #0'1' and also y-l-I == e(u-I) and Y -1 == (u-1)e.
Check indeed that when n == 0, we have

#'P(y-l - 1, Y - 1) == #o<p((u* - l)e(du)e)

== #'Po((u* - l)(u - l)o(du)(u* - I)o(u - l)oe(de)oe(de)o),

where e(du) == (du)u*eu == (du)e, and when n == 1 consider the first term
of #ocp(y- 1 - 1, Y - 1, y-l - 1, Y - 1) as follows:

#o'P((u* - l)e(du)ed((u* - I)e)d((u - l)e))

== #ocp((u* - l)e(du)e((du*)e - (u* - I)de)((du)e - (u - l)de))

== #ocp((u* - l)e(du)e(u* - I)(de)(u - l)(de))

== #ocp((u* - l)(du)(u* - l)(u - I)e(de)(de))

== #ocp((u* - l)O+l(u - I)o(du)(u* - l)l-O(u - 1)1-Oe(de)oe(de)2-0).

Using the identities e(de)2ke == e(de)2k and e(de)2k+l e == 0 and the Q

invariance of Q we get #cp(y-l - 1, Y - 1, ... ,y - 1)

and the result follows in this case.
Note that since e == e2, we have de == (de)e +.e(de), which implies

e(de)e == O. Also,

(de)2 == ((de)e + e(de))2

== (de )e(de)e + (de )e(de) + e(de )2e + e(de )e(de)

== (de)e(de) + e(de)2e,
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and hence e(de)2 == e(de)2e. Moreover, if we assume that e(de)2ke
e(de)2k, then

e(de)2k+2e == e(de)2k (de)2 e

== e(de)2ke(de)2e == e(de)2ke(de)2

== e(de )2k(de)2 == e(de)2k+2.

Thus, e(de)2k+le == e(de)2k(de)e == e(de)2ke(de)e == O. And the combina
tion corresponds to the number of the terms with u-1(du)e(de)2n, since the
other terms are mapped to zero by #a'P by its definition. For instance, if
n == 1, then (~) == 3 and we have

(u- 1 - 1)2(u - 1) == (u-2 - 2u-1+ 1)(u - 1) == -u-2 + 3u-1 - 3 + u.

In general, since #<pI2i == 0 as a cochain, we can suppose that Y has
the form Y == uwe + 1 - e with uwe == euw and that there is a Coo_
path of invertibles Wt E 2l such that Wo == wand WI == 1. Note that
ue + v(1 - e) rv v*(ue + v(1 - e)) == v*ue + (1 - e) since v* rv 1, and we
may exchange the roles of u and v*. Applying the homotopy invariance
of cyclic cohomology proved by Connes to the family of homomorphisms
Pt : ~ ~a [u, u*] --t 2l ~a Z defined by Pt(u) == UWt and pt(a) == wt1awt, we
get, by the above case, that

1 1_1-2. (#<p, Y) == -2. (#'P, [w ew]) == ('P, [e])
7r~ 7r~

as well. Check that

ue + (1 - e) == uWIwlIew1 + 1 - wl1ew1

rv UWt(wt1ewt) + 1 - wt1ewt == Pt(u)pt(e) + pt(1 - e)

rv po(u)po(e) + po(l - e) == uw(w-Iew) + 1 - (w- 1ew),

and the unitary equivalence class is the same as the homotopy equivalence
class in K-theory. 0
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