琉球大学学術リポジトリ

The cyclic cohomology theory for smooth algebra crossed products by the group of integers in C＾】－algebra crossed products ：a review

メタデータ	言語：
	出版者：Department of Mathematical Sciences，Faculty
	of Science，University of the Ryukyus
	公開日：2019－02－04
	キーワード（Ja）：
	キーワード（En）：C＊－algebra，Smooth algebra，
	Cohomology，Cyclic cohomology，Crossed product，
	K－theory
	作成者：Sudo，Takahiro
	メールアドレス：
	所属：
URL	http：／／hdl．handle．net／20．500．12000／43513

THE CYCLIC COHOMOLOGY THEORY FOR SMOOTH ALGEBRA CROSSED PRODUCTS BY THE GROUP OF INTEGERS IN C^{*}-ALGEBRA CROSSED PRODUCTS - A REVIEW

Takahiro Sudo

Dedicated to Professor Yoshiomi Nakagami on his seventieth birthday

Abstract

We review and study the cyclic cohomology theory for smooth algebra crossed products by the group of integers in C^{*}-algebra crossed products, which is studied by Ryszard Nest.

Primary 46-02, 46L05, 46L80.
Keywords: C*-algebra, Smooth algebra, Cohomology, Cyclic cohomology, Crossed product, K-theory.

Introduction

We begin to study the cyclic cohomology theory for smooth algebras like differential algebras in C^{*}-algebras, which is one of important and useful theories, such as K-theory and index theory, in noncommutative (differential or topological) geometry initiated by Alain Connes ([1]). For this, as the first step toward this program, we review and study the cyclic cohomology theory for smooth algebra crossed products by \mathbb{Z} the group of integers in C^{*}-algebra crossed products, which is studied by Ryszard Nest ([3]) following Connes.

[^0]As a plan, we intended to study the theory for smooth algebra crossed products by several other groups, obtained by several other authors, but we have limited time and effort to do this, so that this project to be postponed would be continued in elsewhere, probably.

This paper exactely based on Nest [3] is organized as in the contents below, and becomes more detailed in not few parts in each subsection by our certain effort, adding elementary computaions or helpful proofs for the readers, and be corrected (or interpreted) in some parts, possibly, from misprints. Several notaions are changed from origianl ones by our taste.

Contents

1 Cyclic cohomology for smooth algebra crossed products by \mathbb{Z}

1.1 Introduction

1.2 Smooth crossed product
1.3 Projective resolution of smooth crossed products
1.4 Preliminary computations
1.5 Hochschild cohomology of the smooth crossed product
1.6 The \mathbb{E}_{1}-term of the spectral sequence
1.7 Example by a diffeomorphism of a compact C^{∞}-manifold
1.8 Cyclic cohomology of the smooth crossed product: Computation outline
1.9 Construction of a map in cyclic cohomology
1.10 For the cochain map
1.11 The long exact sequence
1.12 Periodic cyclic cohomology of the smooth crossed product
1.13 Coupling with K-theory

References

1 Cyclic cohomology for smooth algebra crossed products by \mathbb{Z}

This one section of 13 subsections is taken from Ryszard Nest [3].

1.1 Introduction

Let A be a C^{*}-algebra. We say that a dense subalgebra \mathfrak{A} of A is smooth if \mathfrak{A} is a Fréchet algebra in some nuclear topology stronger than the norm topology from A.

Throughout this section, we assume that A is unital, \mathfrak{A} is a smooth subalgebra of A containing the unit, and α is an automorphism of A mapping \mathfrak{A} onto \mathfrak{A} such that the restrictions of α and α^{-1} to \mathfrak{A} are continuous with respect to each of the seminorms defining the topology of \mathfrak{A}.

In this situation, in the subsection 1.2 we give a construction of a smooth crossed product of \mathfrak{A} by α, denoted by $\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$, which is a smooth subalgebra of the C^{*}-crossed product $A \rtimes_{\alpha} \mathbb{Z}$ and contains the algebraic crossed product of \mathfrak{A} by α.

The rest of this section is devoted to the study of the cyclic cohomology of the smooth crossed product and the main results in the subsections 1.12 and 1.13 , as follows.

Theorem A. There is a linear map

$$
\#: H_{\lambda}^{n}(\mathfrak{A}) \rightarrow H_{\lambda}^{n+1}\left(\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}\right)
$$

compatible with the boundary map in the Pimsner-Voiculescu six-term exact sequence of the K-theory for the C^{*}-crossed product $A \rtimes_{\alpha} \mathbb{Z}$ by \mathbb{Z} and such that the following diagram is exact:

For the proof, given in the subsections 1.3 to 1.6 are the construction of a representation for the Hochschild cohomology of $\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ and an analysis of the \mathbb{E}_{1}-term of the spectral sequence associated to the exact couple:

On the other hand, it is obtained in the subsection 1.6 that
Proposition B. The periodic cyclic cohomology of $\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ can be computed using only the homogeneous cochains φ on $\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ such that for $a_{0}, \cdots, a_{n} \in$
\mathfrak{A},

$$
\varphi\left(u^{m_{0}} a_{0}, \cdots, u^{m_{n}} a_{n}\right)=\varphi\left(u^{m_{0}} a_{0}, \cdots, u^{m_{n}} a_{n}\right) \delta_{m_{0}+\cdots+m_{n}, 0}
$$

In the subsections 1.9 and 1.11 , given are a construction of the map \# and a direct proof for the following:

Theorem C. The following long cohomology sequence is exact:

$$
\cdots \rightarrow H_{\lambda}^{n-1}(\mathfrak{A}) \xrightarrow{1-\alpha} H_{\lambda}^{n-1}(\mathfrak{A}) \xrightarrow{\#} H_{\lambda}^{n}\left(\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}\right)_{\mathrm{hom}} \rightarrow H_{\lambda}^{n}(\mathfrak{A}) \xrightarrow{1-\alpha} \cdots,
$$

where the cohomology groups with the subscript hom are computed with the help of the homogeneous cochains above.

This result is applied to the construction of the six-term exact sequence for the periodic cyclic cohomology of the smooth crossed product in the subsection 1.12.

In the subsection 1.13, given are a construction of the pairing between cyclic cohomology of the smooth crossed product $\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ and the K-theory groups of the C^{*}-crossed product $A \rtimes_{\alpha} \mathbb{Z}$, under a condition that \mathfrak{A} is sufficiently large to detect all the K-theory classes of A, and the proof of the compatibility of the six-term exact sequence in cyclic cohomology of $\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ with the six-term exact sequence in the K-theory of $A \rtimes_{\alpha} \mathbb{Z}$.

1.2 Smooth crossed product

Let \mathfrak{A} be a unital topological algebra with a topology given by an increasing sequence of seminorms $\|\cdot\|_{k}$ for $k=1,2, \cdots$. Let α be an automorphism of \mathfrak{A}.

We assume that \mathfrak{A} is a complete, nuclear vector space and both α and α^{-1} are continuous with respect to each of the seminorms $\|\cdot\|_{k}$.

Define the sequence of functions $\rho_{k}: \mathbb{Z} \rightarrow \mathbb{R}^{+}, k \geq 1$, by

$$
\rho_{k}(n)=\sup _{1 \leq i \leq k}\left(\sum_{t=-n}^{n}\left\|\alpha^{t}\right\|_{i}\right)^{k}, \quad n \in \mathbb{Z}
$$

Remark. A seminorm p on a vector space V over \mathbb{C} is defined by satisfying $0 \leq p(x)<\infty$ for $x \in V, p(x+y) \leq p(x)+p(y)$ for $x, y \in V$, and $p(c x)=|c| p(x)$ for $x \in V$ and $c \in \mathbb{C}$. A $*$-seminorm p on a $*$-algebra \mathfrak{A} is a seminorm p on \mathfrak{A} as a vector space such that $p(a b) \leq p(a) p(b), p\left(a^{*}\right)=p(a)$, and $p\left(a^{*} a\right)=p(a)^{2}$ for $a, b \in \mathfrak{A}$. The topology given by seminorms $\left(\|\cdot\|_{k}\right)$ on \mathfrak{A} has a basic system of neighbourhoods of $0 \in \mathfrak{A}$ defined by

$$
\left\{a \in \mathfrak{A} \mid\|a\|_{k_{j}}<\varepsilon,(1 \leq j \leq n)\right\} .
$$

We now define a version of operator norm with respect to the seminorms:

$$
\left\|\alpha^{t}\right\|_{i}=\sup _{\|a\|_{i} \leq 1}\left\|\alpha^{t}(a)\right\|_{i}, \quad a \in \mathfrak{A}
$$

Note that $\|1\|_{i} \leq\|1\|_{i}^{2}$, so that $\|1\|_{i} \geq 1$. Hence $\left\|\alpha^{t}\right\|_{i} \geq 1$. Since $\|a\|_{i} \leq$ $\|a\|_{i+1}$ for $a \in \mathfrak{A}$, we have $\left\|\alpha^{t}\right\|_{i} \leq\left\|\alpha^{t}\right\|_{i+1}$.

Lemma 1.2.1. (1) : $|n| \rho_{k}(n) \leq \rho_{k+1}(n) ;(2):\left(\sum_{t=-n}^{n}\left\|\alpha^{t}\right\|_{k}\right) \rho_{k}(n) \leq$ $\rho_{k+1}(n) ;(3): \rho_{k}(m) \leq \rho_{k}(n) \rho_{k}(m-n) ;(4): \rho_{k}(n)^{m} \leq \rho_{k m}(n)$.

Proof. As for (1), check that for $n \geq 0$,

$$
\left(\sum_{t=-n}^{n}\left\|\alpha^{t}\right\|_{i}\right)^{k+1}=\left(\sum_{t=-n}^{n}\left\|\alpha^{t}\right\|_{i}\right)\left(\sum_{t=-n}^{n}\left\|\alpha^{t}\right\|_{i}\right)^{k} \geq(2 n+1)\left(\sum_{t=-n}^{n}\left\|\alpha^{t}\right\|_{i}\right)^{k}
$$

Thus, $\rho_{k+1}(n) \geq(2 n+1) \rho_{k}(n) \geq n \cdot \rho_{k}(n)$.
The first equality above implies the claim (2).
As for (3), note that $\left\|\alpha^{t+s}\right\|_{i} \leq\left\|\alpha^{t}\right\|_{i}\left\|\alpha^{s}\right\|_{i}$, because

$$
\left\|\alpha^{t+s}(a)\right\|_{i}=\left\|\alpha^{t}\left(\alpha^{s}(a)\right)\right\|_{i} \leq\left\|\alpha^{t}\right\|_{i}\left\|\alpha^{s}(a)\right\|_{i} \leq\left\|\alpha^{t}\right\|_{i}\left\|\alpha^{s}\right\|_{i}\|a\|_{i}
$$

It follows that

$$
\begin{aligned}
& \left(\sum_{t=-n}^{n}\left\|\alpha^{t}\right\|_{i}\right)\left(\sum_{t=-(m-n)}^{m-n}\left\|\alpha^{t}\right\|_{i}\right) \\
& \geq\left(\sum_{t=-n}^{n}\left\|\alpha^{t}\right\|_{i}\right)\left\|\alpha^{0}\right\|_{i}+\left(\sum_{t=-n}^{n}\left\|\alpha^{t}\right\|_{i}\right)\left(\sum_{t=-(m-n), \neq 0}^{m-n}\left\|\alpha^{t}\right\|_{i}\right) \\
& \geq \sum_{t=-(m-n)}^{m-n}\left\|\alpha^{t}\right\|_{i}+\sum_{t=n+1}^{m}\left\|\alpha^{t}\right\|_{i}+\sum_{t=-m}^{-n-1}\left\|\alpha^{t}\right\|_{i}=\sum_{t=-m}^{m}\left\|\alpha^{t}\right\|_{i}
\end{aligned}
$$

Therefore, we obtain the claim (3).
As for (4), since $\left(\sum_{-n}^{n}\left\|\alpha^{t}\right\|_{i}\right)^{k m} \leq \rho_{k m}(n)$, we have $\left(\sum_{-n}^{n}\left\|\alpha^{t}\right\|_{i}\right)^{k} \leq$ $\rho_{k m}(n)^{\frac{1}{m}}$. Thus, $\rho_{k}(n) \leq \rho_{k m}(n)^{\frac{1}{m}}$.

Let $\mathfrak{A} \rtimes_{\alpha}\left[u, u^{-1}\right]$ denote the algebraic crossed product of \mathfrak{A} by an action α of \mathbb{Z}, where elements of $\mathfrak{A} \rtimes_{\alpha}\left[u, u^{-1}\right]$ are given by finite sums: $\sum_{n} a_{n} u^{n}$ for $n \in \mathbb{Z}$ and $a_{n} \in \mathfrak{A}$, and the algebra has the covariance relation: $u a u^{-1}=$ $\alpha(a)$ for $a \in \mathfrak{A}$.

We now define an increasing sequence of seminorms on $\mathfrak{A} \rtimes_{\alpha}\left[u, u^{-1}\right]$ by

$$
\left\|\sum_{n} a_{n} u^{n}\right\|_{k}=\sup _{n} \rho_{k}(n)\left\|a_{n}\right\|_{k}
$$

Indeed, check that for $c \in \mathbb{C}$,

$$
\left\|c \sum_{n} a_{n} u^{n}\right\|_{k}=\sup _{n} \rho_{k}(n)\left\|c a_{n}\right\|_{k}=|c|\left\|\sum_{n} a_{n} u^{n}\right\|_{k}
$$

and

$$
\left\|\sum_{n} a_{n} u^{n}+\sum_{n} b_{n} u^{n}\right\|_{k}=\sup _{n} \rho_{k}(n)\left\|a_{n}+b_{n}\right\|_{k} \leq\left\|\sum_{n} a_{n} u^{n}\right\|_{k}+\left\|\sum_{n} b_{n} u^{n}\right\|_{k}
$$

and

$$
\left\|\left(\sum_{n} a_{n} u^{n}\right)^{*}\right\|_{k}=\sup _{n} \rho_{k}(-n)\left\|a_{n}^{*}\right\|_{k}=\sup _{n} \rho_{k}(n)\left\|a_{n}\right\|_{k}=\left\|\sum_{n} a_{n} u^{n}\right\|_{k}
$$

and

$$
\begin{aligned}
\left\|\sum_{n=-t}^{t} a_{n} u^{n} \sum_{m=-t}^{t} b_{m} u^{m}\right\|_{k} & =\left\|\sum_{n, m=-t}^{t} a_{n} u^{n} b_{m} u^{m}\right\|_{k}=\left\|\sum_{n, m=-t}^{t} a_{n} \alpha^{n}\left(b_{m}\right) u^{n+m}\right\|_{k} \\
& =\sup _{n, m} \rho_{k}(n+m)\left\|a_{n} \alpha^{n}\left(b_{m}\right)\right\|_{k} \\
& \leq \sup _{n, m} \rho_{k}(n) \rho_{k}(m)\left\|a_{n}\right\|_{k}\|u\|_{k}^{n}\left\|b_{m}\right\|_{k}\left\|u^{*}\right\|_{k}^{n} \\
& =\sup _{n} \rho_{k}(n)\left\|a_{n}\right\|_{k} \cdot \sup _{m} \rho_{k}(m)\left\|b_{m}\right\|_{k} \\
& =\left\|\sum_{n=-t}^{t} a_{n} u^{n}\right\|_{k} \cdot\left\|\sum_{m=-t}^{t} b_{m} u^{m}\right\|_{k}
\end{aligned}
$$

where $\|1\|_{k}=\|1\|_{k}^{2}$ so that $\|1\|_{k}=1$ and $\|1\|_{k}=\left\|u^{*} u\right\|_{k}=\|u\|_{k}^{2}$, and finally,

$$
\left\|\sum_{n} a_{n} u^{n}\right\|_{k}=\sup _{n} \rho_{k}(n)\left\|a_{n}\right\|_{k} \leq \sup _{n} \rho_{k+1}(n)\left\|a_{n}\right\|_{k+1}=\left\|\sum_{n} a_{n} u^{n}\right\|_{k+1}
$$

It is shown by the computations above that the algebraic operations in $\mathfrak{A} \rtimes_{\alpha}$ [u, u^{*}] are continuous in the topology defined by the sequence of seminorms $\|\cdot\|_{k}, k=1,2, \cdots$. Hence we can make the following:

Definition 1.2.2. Define the smooth crossed product $\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ to be the topological algebra obtained by the completion of $\mathfrak{A} \rtimes_{\alpha}\left[u, u^{*}\right]$ in the topology defined by the sequence of seminorms $\|\cdot\|_{k}$.

We note that the coefficient maps $c_{m}: \mathfrak{A} \rtimes_{\alpha}\left[u, u^{*}\right] \rightarrow \mathfrak{A}$ defined by $c_{m}\left(\sum_{n} a_{n} u^{n}\right)=a_{m}$ are continuous and hence extend to the completion $\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$. Indeed, note that

$$
\left\|\sum_{n} a_{n} u^{n}\right\|_{k} \geq \rho_{k}(m)\left\|a_{m}\right\|_{k} \geq\left(\sum_{t=-m}^{m}\left\|\alpha^{t}\right\|_{k}\right)^{k}\left\|a_{m}\right\|_{k} \geq(2 m+1)^{k}\left\|a_{m}\right\|_{k}
$$

Note also that each element x of the smooth crossed product has a unique representation: $x=\sum_{n} a_{n} u^{n}$ (an infinite sum), $a_{n} \in \mathfrak{A}$.

Define the pairing between elements $x=\sum_{n} a_{n} u^{n} \in \mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ and twosided sequences $\left\{\varphi_{n}\right\}_{n \in \mathbb{Z}}$ of $\varphi_{n} \in \mathfrak{A}^{*}$ the dual space of \mathfrak{A} by

$$
\left\langle\sum_{n} a_{n} u^{n},\left\{\varphi_{n}\right\}\right\rangle=\sum_{n} \varphi_{n}\left(a_{n}\right) .
$$

Proposition 1.2.3. The topological dual $\left(\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}\right)^{*}$ can be identified with the space of two-sided sequences $\left\{\varphi_{n}\right\}$ of $\varphi_{n} \in \mathfrak{A}^{*}$, satisfying the following condition $(*):$ that there exist constants $c, k \geq 0$ such that

$$
\sup _{n} \frac{\left\|\varphi_{n}\right\|_{k}}{\rho_{k}(n)} \leq c
$$

Proof. Suppose that $\left\{\varphi_{n}\right\}_{n \in \mathbb{Z}}$ defines a continuous linear functional on $\mathfrak{A} \rtimes_{\alpha}$ \mathbb{Z}. Then for some c, k, we have

$$
\left|\sum_{n} \varphi_{n}\left(a_{n}\right)\right| \leq c\left\|\sum_{n} a_{n} u^{n}\right\|_{k}=c \cdot \sup _{n} \rho_{k}(n)\left\|a_{n}\right\|_{k}
$$

for all $\sum_{n} a_{n} u^{n} \in \mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$. Choosing monomials $a u^{n}$ we get

$$
\left|\varphi_{n}(a)\right| \leq c \cdot \sup _{n} \rho_{k}(n)\|a\|_{k}
$$

Hence $\left\|\varphi_{n}\right\|_{k} \leq c \cdot \sup _{n} \rho_{k}(n)$. Thus,

$$
\frac{\left\|\varphi_{n}\right\|_{k}}{\rho_{k}(n)} \leq \frac{\left\|\varphi_{n}\right\|_{k}}{\sup _{n} \rho_{k}(n)}=c
$$

which implies the condition (*).
Conversely, suppose that the condition (*) holds. Then, by the lemma above,

$$
\begin{aligned}
\left|\sum_{n} \varphi_{n}\left(a_{n}\right)\right| & \leq \sum_{n}\left\|\varphi_{n}\right\|_{k}\left\|a_{n}\right\|_{k} \leq c \sum_{n} \rho_{k}(n)\left\|a_{n}\right\|_{k} \\
& \leq c \sum_{n} \frac{1}{n^{2}} \rho_{k+2}(n)\left\|a_{n}\right\|_{k+2} \\
& \leq c \sum_{n} \frac{1}{n^{2}} \sup _{m} \rho_{k+2}(m)\left\|a_{m}\right\|_{k+2} \\
& =\left(c \sum_{n} \frac{1}{n^{2}}\right)\left\|\sum_{n} a_{n} u^{n}\right\|_{k+2}
\end{aligned}
$$

where $\left\|\varphi_{n}\right\|_{k}$ is defined to be

$$
\sup _{\|a\|_{k} \leq 1}\left|\varphi_{n}(a)\right|, \quad a \in \mathfrak{A}
$$

Proposition 1.2.4. The smooth crossed product $\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ is nuclear as a topological vector space.

Proof. Given any vector space E and a seminorm $\|\cdot\|_{k}$ on E, we denote by $(E)_{k}^{-}$the Banach space given by completing the quotient space $E / \operatorname{ker}(\| \cdot$ $\|_{k}$) in the induced norm. Then the claim that $\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ is nuclear can be formulated as in the following.

For each i, we can find $\lambda_{k} \in \mathbb{C}, \varphi_{k} \in \mathfrak{A}^{*}$, and $b_{k} \in(\mathfrak{A})_{i}^{-}, k \in \mathbb{N}$, with $\sum_{k}\left|\lambda_{k}\right|<\infty, \sup _{k}\left\|b_{k}\right\|_{i}<\infty$, and $\sup _{k}\left\|\varphi_{k}\right\|_{j}<\infty$ for some j, such that the induced map π from \mathfrak{A} to $(\mathfrak{A})_{i}^{-}$has the representaion given by

$$
\pi(a)=\sum_{k} \lambda_{k} \varphi_{k}(a) b_{k}, \quad a \in \mathfrak{A}
$$

What we have to show is that the same holds for $\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$. Fix an index i. For each $x \in \mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$, we have

$$
\begin{aligned}
x=\sum_{n} a_{n} u^{n} & \mapsto \sum_{n, k} \lambda_{k} \frac{1}{n^{2}} \psi_{n, k}(x) y_{n, k} \\
& =\sum_{n, k} \lambda_{k} \varphi_{k}\left(a_{n}\right) b_{k} u^{n}=\sum_{n}\left(\sum_{k} \lambda_{k} \varphi_{k}\left(a_{n}\right) b_{k}\right) u^{n} \\
& =\sum_{n} \pi\left(a_{n}\right) u^{n} \in\left(\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}\right)_{i}^{-}
\end{aligned}
$$

where $y_{n, k}=\left(1 / \rho_{i}(n)\right) b_{k} u^{n}$ and $\psi_{n, k}(x)=n^{2} \rho_{i}(n) \varphi_{k}\left(a_{n}\right)$. Now we have

$$
\left\|y_{n, k}\right\|_{i}=\left(1 / \rho_{i}(n)\right)\left\|b_{k} u^{n}\right\|_{i} \leq\left(1 / \rho_{i}(n)\right)\left\|b_{k}\right\|_{i} \leq \sup _{k}\left\|b_{k}\right\|_{i}<\infty .
$$

Hence

$$
\begin{aligned}
& \sup _{n, k}\left\|y_{n, k}\right\|_{i} \leq \sup _{k}\left\|b_{k}\right\|_{i}<\infty, \quad \text { and also, } \\
& \sum_{n, k}\left|\lambda_{k} \frac{1}{n^{2}}\right|=\sum_{k}\left|\lambda_{k}\right| \sum_{n} \frac{1}{n^{2}}<\infty
\end{aligned}
$$

Moreover, we have

$$
\left\|b_{k}\right\|_{i}=\left\|\rho_{i}(n) y_{n, k} u^{-n}\right\|_{i} \leq \rho_{i}(n)\left\|y_{n, k}\right\|_{i} \leq \rho_{i}(n) \sup _{n, k}\left\|y_{n, k}\right\|_{i}
$$

In particular, as $\rho_{i}(0)=1$, it follows that $\sup _{k}\left\|b_{k}\right\|_{i} \leq \sup _{n, k}\left\|y_{n, k}\right\|_{i}$. Let $l=\max \{i, j\}$. Then we obtain

$$
\sup _{n, k}\left\|\psi_{n, k}\right\|_{l+2}=\sup _{n, k} \frac{n^{2} \rho_{i}(n)\left\|\varphi_{k}\right\|_{l+2}}{\rho_{l+2}(n)}<\infty
$$

Indeed, check that since

$$
\|x\|_{l+2}=\left\|\sum_{n} a_{n} u^{n}\right\|_{l+2}=\sup _{n} \rho_{l+2}(n)\left\|a_{n}\right\|_{l+2} \geq \rho_{l+2}(n)\|a\|_{l+2}
$$

we have

$$
\begin{aligned}
\left|\psi_{n, k}(x)\right| & =\left|n^{2} \rho_{i}(n) \varphi_{k}\left(a_{n}\right)\right| \leq n^{2} \rho_{i}(n)\left\|\varphi_{k}\right\|_{l+2}\left\|a_{n}\right\|_{l+2} \\
& \leq \frac{n^{2} \rho_{i}(n)\left\|\varphi_{k}\right\|_{l+2}}{\rho_{l+2}(n)}\|x\|_{l+2}
\end{aligned}
$$

which implies that $\left\|\psi_{n, k}\right\|_{l+2} \leq n^{2} \rho_{i}(n)\left\|\varphi_{k}\right\|_{l+2}\left(\rho_{l+2}(n)\right)^{-1}$. Hence

$$
\sup _{n, k}\left\|\psi_{n, k}\right\|_{l+2} \leq \sup _{n, k} \frac{n^{2} \rho_{i}(n)\left\|\varphi_{k}\right\|_{l+2}}{\rho_{l+2}(n)} \leq \sup _{k}\left\|\varphi_{k}\right\|_{l+2}<\infty
$$

because $\rho_{l+2}(n) \geq n^{2} \rho_{l}(n)$ by the lemma above. Conversely,

$$
\left|n^{2} \rho_{i}(n) \varphi_{k}\left(a_{n}\right)\right|=\left|\psi_{n, k}(x)\right| \leq\left\|\psi_{n, k}\right\|_{l+2}\|x\|_{l+2} \leq \sup _{n, k}\left\|\varphi_{n, k}\right\|_{l+2} \cdot\|x\|_{l+2}
$$

In particular, if we take $x=a_{n}$, then

$$
\left|\varphi_{k}\left(a_{n}\right)\right| \leq \frac{1}{n^{2} \rho_{i}(n)} \sup _{n, k}\left\|\varphi_{n, k}\right\|_{l+2} \cdot \rho_{l+2}(\dot{n})\left\|a_{n}\right\|_{l+2}
$$

Therefore, $\left\|\varphi_{k}\right\|_{l+2} \leq\left(n^{2} \rho_{i}(n)\right)^{-1} \sup _{n, k}\left\|\varphi_{n, k}\right\|_{l+2} \cdot \rho_{l+2}(n)$, which implies

$$
\sup _{n, k} \frac{n^{2} \rho_{i}(n)\left\|\varphi_{k}\right\|_{l+2}}{\rho_{l+2}(n)} \leq \sup _{n, k}\left\|\psi_{n, k}\right\|_{l+2}
$$

Example 1.2.5. Let $\mathfrak{A}=C^{\infty}(\mathbb{T})$ and suppose that α is the automorphism of \mathfrak{A} induced by a rotation on \mathbb{T}. The algebra \mathfrak{A} consists of functions $\sum_{n} a_{n} z^{n},\left\{a_{n}\right\} \in S(\mathbb{Z})$, where $S(\mathbb{Z})$ denotes the space of rapidly decreasing sequences, topologized by the norms:

$$
\left\|\left\{a_{n}\right\}\right\|_{k}=\sup _{n}\left(1+n^{2}\right)^{k / 2}\left|a_{n}\right|, \quad k=1,2, \cdots
$$

and also \mathfrak{A} by $\left\|\sum a_{n} z^{n}\right\|_{k}=\left\|\left\{a_{n}\right\}\right\|_{k}$. Since $\alpha(z)=e^{i \theta} z$, where θ is the rotation angle, we have $\left\|\alpha^{k}\right\|_{i}=\left\|\alpha^{-k}\right\|_{i}=1$ for all k, i, because

$$
\left\|\alpha\left(\sum a_{n} z^{n}\right)\right\|_{i}=\left\|\sum a_{n} e^{i n \theta} z^{n}\right\|_{i}=\left\|\sum a_{n} z^{n}\right\|_{i}
$$

and hence $\rho_{k}(n)=(2|n|+1)^{k}$. The smooth crossed product $\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ is the algebra of double two-sided sums:

$$
\sum_{n, m} a_{n, m} z^{n} u^{m}, \quad\left\{a_{n, m}\right\} \in S\left(\mathbb{Z}^{2}\right)
$$

where $u z u^{-1}=\alpha(z)$, topologized by the norms:

$$
\begin{aligned}
\left\|\sum_{n, m} a_{n, m} z^{n} u^{m}\right\|_{k} & =\sup _{m}(2|m|+1)^{k}\left\|\left\{a_{n, m}\right\}\right\|_{k} \\
& =\sup _{m}(2|m|+1)^{k} \sup _{n}\left(1+n^{2}\right)^{k / 2}\left|a_{n, m}\right| .
\end{aligned}
$$

This is the dense subalgebra of the rotation C^{*}-algebra, considered by Connes in Noncommutative differential geometry. In general, one cannot choose the functions ρ_{k} to be of polynomial growth.

Remark. The topology of $\mathfrak{A}=C^{\infty}\left(\mathbb{T}^{l}\right)$ may be given by the norms:

$$
p_{n}(f)=\sum_{|\alpha| \leq n} \sup _{z \in \mathbb{T}^{l}}\left|\partial^{\alpha} f(z)\right|, \quad f \in \mathfrak{A}
$$

1.3 Projective resolution of smooth crossed products

Let $\mathfrak{C}=\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$. Denote by $\mathfrak{A}^{\mathrm{p}}$ the opposite algebra of \mathfrak{A}, obtained by reversing multiplication in \mathfrak{A}. Let $\mathfrak{B}=\mathfrak{A} \otimes \mathfrak{A}^{\mathrm{op}}$ and $\mathfrak{D}=\mathfrak{C} \otimes \mathfrak{C}^{\mathrm{op}}$, where all the tensor products considered are the projective tensor products, check that, which are the completions of their algebraic tensor products under the greatest (or projective) cross (semi)norm(s):

$$
\|x\|_{\gamma, k}=\inf \left\{\sum_{j}\left\|x_{j}\right\|_{\gamma}\left\|y_{j}\right\|_{k} \mid x=\sum_{j} x_{j} \otimes y_{j}\right\}
$$

with $\left\|x_{j} \otimes y_{j}\right\|_{\gamma, k}=\left\|x_{j}\right\|_{\gamma}\left\|y_{j}\right\|_{k}$.
Recall the standard projective resolutions:

$$
\left(M_{n}, b\right) \rightarrow \mathfrak{A} \quad \text { and } \quad\left(L_{n}, b\right) \rightarrow \mathfrak{C},
$$

where $M_{n}=\mathfrak{B} \otimes\left(\otimes^{n} \mathfrak{A}\right)$ and $L_{n}=\mathfrak{D} \otimes\left(\otimes^{n} \mathfrak{C}\right)$, with the boundaray operators $b: M_{n} \rightarrow M_{n-1}$ and $b: L_{n} \rightarrow L_{n-1}$ defined by $b\left(x_{0} \otimes x_{1} \otimes \cdots \otimes x_{n}\right)=$

$$
\begin{aligned}
& \sum_{i=0}^{n-1}(-1)^{i} x_{0} \otimes x_{1} \otimes \cdots \otimes x_{i-1} \otimes x_{i} x_{i+1} \otimes x_{i+2} \otimes \cdots \otimes x_{n} \\
& +(-1)^{n} x_{0} x_{n}^{\circ} \otimes x_{1} \otimes \cdots \otimes x_{n-1}
\end{aligned}
$$

where $x^{\circ} \in \mathfrak{A}^{\mathrm{op}}$ for $x \in \mathfrak{A}$ and $x y^{\circ}=x \otimes y^{\circ} \in \mathfrak{B}$ (resp. for \mathfrak{C} and \mathfrak{D}).
Remark. Check that the map $b: M_{1}=\mathfrak{B} \otimes \mathfrak{A} \rightarrow \mathfrak{A}$ is defined by

$$
b\left(x_{0} \otimes x_{1}\right)=x_{0} x_{1}-x_{0} x_{1}^{\circ} \in \mathfrak{A}
$$

and the map $b: M_{2} \rightarrow M_{1}$ is defined by

$$
b\left(x_{0} \otimes x_{1} \otimes x_{2}\right)=x_{0} x_{1} \otimes x_{2}-x_{0} \otimes x_{1} x_{2}+x_{2} x_{2}^{\circ} \otimes x_{1}
$$

so that $b^{2}\left(x_{0} \otimes x_{1} \otimes x_{2}\right)=$

$$
\left(x_{0} x_{1} x_{2}-x_{0} x_{1} x_{2}^{\circ}\right)-\left(x_{0} x_{1} x_{2}-x_{0}\left(x_{1} x_{2}\right)^{\circ}\right)+\left(x_{0} x_{2}^{\circ} x_{1}-x_{0} x_{2}^{\circ} x_{1}^{\circ}\right)=0
$$

where $\left(x_{1} x_{2}\right)^{\circ}=x_{2}^{\circ} x_{1}^{\circ}$ and $x_{0} x_{1} x_{2}^{\circ}=x_{0} x_{2}^{\circ} x_{1}$ since $x_{0} \in \mathfrak{B}$.
Now denote $\mathfrak{D} \otimes\left(\otimes^{n} \mathfrak{A}\right)$ by $\mathfrak{D} M_{n}$. Note the following inclusions:

$$
\mathfrak{D} M_{n} \subset L_{n} \quad \text { and } \quad b\left(\mathfrak{D} M_{n}\right) \subset \mathfrak{D} M_{n-1} \subset L_{n-1}
$$

This says that $\left(\mathfrak{D} M_{n}, b\right)$ is a subcomplex of $\left(L_{n}, b\right)$ and thus we have an exact sequence of complexes:

$$
0 \longrightarrow\left(\mathfrak{D} M_{n}, b\right) \xrightarrow{i}\left(L_{n}, b\right) \xrightarrow{\pi}\left(L_{n} / \mathfrak{D} M_{n}, b\right) \longrightarrow 0 .
$$

Let us now define a subspace $Q_{n} \subset L_{n}$ by

$$
Q_{n}=\oplus_{i \neq 0} \operatorname{ker}\left(\mathrm{id} \otimes \cdots \otimes \mathrm{id} \otimes c_{0} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}\right)
$$

where the map c_{0} at each i-th position is the coefficient map from \mathfrak{C} to \mathfrak{A} at the constant terms.

Lemma 1.3.1. The image $\operatorname{Im}(i)$ of $\mathfrak{D} M_{n}$ is closed in L_{n} and has Q_{n} as a closed complement. The short exact sequence above splits topologically.

Proof. Since the coefficient maps $c_{m}: \mathfrak{C} \rightarrow \mathfrak{A}$ are continuous, the maps:

$$
\mathrm{id} \otimes \cdots \otimes \mathrm{id} \otimes c_{m} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}: L_{n} \rightarrow L_{n}=\mathfrak{D} \otimes\left(\otimes^{n} \mathfrak{C}\right)
$$

are continuous as well, where c_{m} is at the j-th position $(1 \leq j \leq n)$. We can write

$$
\operatorname{Im}(i)=\cap_{m \neq 0, j \neq 0} \operatorname{ker}\left(\mathrm{id} \otimes \cdots \otimes \mathrm{id} \otimes c_{m} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}\right)
$$

because we have

$$
\begin{aligned}
& \left(\mathrm{id} \otimes \cdots \otimes \mathrm{id} \otimes c_{m} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}\right)\left(x_{0} \otimes\left(\otimes_{k=1}^{n} x_{k}\right)\right) \\
& \quad=x_{0} \otimes\left(x_{1} \otimes \cdots \otimes x_{j-1} \otimes c_{m}\left(x_{j}\right) \otimes x_{j+1} \otimes \cdots \otimes x_{n}\right)
\end{aligned}
$$

so that $\mathfrak{D} M_{n}=\mathfrak{D} \otimes\left(\otimes^{n} \mathfrak{A}\right) \subset \operatorname{ker}\left(\mathrm{id} \otimes \cdots \otimes \mathrm{id} \otimes c_{m} \otimes \mathrm{id} \otimes \cdots \otimes \mathrm{id}\right)$ for any $m \neq 0$ and $j \neq 0$. Thus $\operatorname{Im}(i)$ is contained in the intersection above. The converse is also clear. It follows from the continuity of the maps c_{m} that $\operatorname{Im}(i)$ and Q_{n} also are closed in L_{n}. We have the following decompositon:

$$
\begin{aligned}
& L_{n} \ni x_{0} \otimes\left(\otimes_{k=1}^{n} x_{k}\right) \\
& =x_{0} \otimes\left(\otimes_{k=1}^{n} c_{0}\left(x_{k}\right)\right)+\left(\cdots \cdots+x_{0} \otimes\left(\otimes_{k=1}^{n} \sum_{m \neq 0} c_{m}\left(x_{k}\right) u^{m}\right)\right) \in \operatorname{Im}(i) \oplus Q_{n}
\end{aligned}
$$

since each $x_{k}=\sum c_{m}\left(x_{k}\right) u^{m}=c_{0}\left(x_{k}\right)+\sum_{m \neq 0} c_{m}\left(x_{k}\right) u^{m}$, from which the splitting of the exact sequence above follows as well.

Applying the functor $(\cdot)^{\text {hom }}=\operatorname{Hom}_{\mathfrak{D}}\left(\cdot, \mathfrak{C}^{*}\right)$ to the exact sequence above we get

Proposition 1.3.2. There is a long exact cohomology sequence:
$\cdots \xrightarrow{\delta} H^{q}\left(Q^{\mathrm{hom}}\right) \xrightarrow{\pi} H^{q}\left(\mathfrak{C}, \mathfrak{C}^{*}\right) \xrightarrow{i} H^{q}\left(\mathfrak{D} M^{\mathrm{hom}}\right) \xrightarrow{\delta} H^{q+1}\left(Q^{\mathrm{hom}}\right) \xrightarrow{\pi} \cdots$,
with $H^{q}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)$ the q-th Hochschild cohomology group of \mathfrak{C} with coefficients in \mathfrak{C}^{*}.

Proof. Using the lemma above we obtain the following splitting exact sequence:

$$
0 \longrightarrow\left(\mathfrak{D} M_{n}, b\right) \xrightarrow{i}\left(L_{n}, b\right) \xrightarrow{\pi}\left(Q_{n}, b\right) \longrightarrow
$$

Applying the functor $(\cdot)^{\text {hom }}$ we get

$$
0 \longrightarrow\left(Q_{n}^{\mathrm{hom}}, b\right) \xrightarrow{\pi}\left(L_{n}^{\mathrm{hom}}, b\right) \xrightarrow{i}\left(\mathfrak{D} M_{n}^{\mathrm{hom}}, b\right) \longrightarrow 0
$$

equivalently, for convenience,
$0 \rightarrow \operatorname{Hom}_{\mathfrak{D}}\left(\left(Q_{n}, b\right), \mathfrak{C}^{*}\right) \rightarrow \operatorname{Hom}_{\mathfrak{D}}\left(\left(L_{n}, b\right), \mathfrak{C}^{*}\right) \rightarrow \operatorname{Hom}_{\mathfrak{D}}\left(\left(\mathfrak{D} M_{n}, b\right), \mathfrak{C}^{*}\right) \rightarrow 0$,
where for simplicity we use the same symbols as b, π, i to denote their transposes. The long exact cohomology sequence corresponding to the exact sequence obtained above:

$$
\begin{aligned}
\cdots & \xrightarrow{i} H^{q-1}\left(\left(\mathfrak{D} M_{n}, b\right), \mathfrak{C}^{*}\right) \\
& \xrightarrow{\delta} H^{q}\left(\left(Q_{n}, b\right), \mathfrak{C}^{*}\right) \xrightarrow{\pi} H^{q}\left(\left(L_{n}, b\right), \mathfrak{C}^{*}\right) \xrightarrow{i} H^{q}\left(\left(\mathfrak{D} M_{n}, b\right), \mathfrak{C}^{*}\right) \\
& \xrightarrow{\delta} H^{q+1}\left(\left(Q_{n}, b\right), \mathfrak{C}^{*}\right) \xrightarrow{\pi} \cdots,
\end{aligned}
$$

where $H^{q}\left(\cdot, \mathfrak{C}^{*}\right)=\operatorname{ker}\left(b_{q}(\cdot)^{\text {hom }}\right) / \operatorname{Im}\left(b_{q-1}(\cdot)^{\text {hom }}\right)$, and for short,

$$
\begin{aligned}
\cdots & \xrightarrow{i} H^{q-1}\left(\mathfrak{D} M, \mathfrak{C}^{*}\right) \\
& \xrightarrow{\delta} H^{q}\left(Q, \mathfrak{C}^{*}\right) \xrightarrow{\pi} H^{q}\left(L, \mathfrak{C}^{*}\right) \xrightarrow{i} H^{q}\left(\mathfrak{D} M, \mathfrak{C}^{*}\right) \xrightarrow{\delta} H^{q+1}\left(Q, \mathfrak{C}^{*}\right) \xrightarrow{\pi} \cdots,
\end{aligned}
$$

gives the desired result, where $H^{q}\left(L, \mathfrak{C}^{*}\right)$ is just the q-th Hochschild cohomology group $H^{q}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)$ of \mathfrak{C} with coefficients in \mathfrak{C}^{*}.

Remark. Following [1], we may define the Hochschild cohomology of \mathfrak{A} with coefficients in a bimodule M to be the cohomology $H^{n}(\mathfrak{A}, M)$ of the complex $\left(C^{n}(\mathfrak{A}, M), b\right)$, where $C^{n}(\mathfrak{A}, M)$ is the space of all n-linear maps from \mathfrak{A} to M, and for $T \in C^{n}(\mathfrak{A}, M), b T \in C^{n+1}(\mathfrak{A}, M)$ is defined by

$$
\begin{aligned}
(b T)\left(a_{1}, \cdots, a_{n+1}\right) & =a_{1} T\left(a_{2}, \cdots, a_{n+1}\right) \\
& +\sum_{i=1}^{n}(-1)^{i} T\left(a_{1}, \cdots, a_{i} a_{i+1}, \cdots, a_{n+1}\right) \\
& +(-1)^{n+1} T\left(a_{1}, \cdots, a_{n}\right) a_{n+1} .
\end{aligned}
$$

The space \mathfrak{A}^{*} of all linear functionals on \mathfrak{A} is a bimodule over \mathfrak{A} by the equality $(a \varphi b)(c)=\varphi(b c a)$ for $a, b, c \in \mathfrak{A}$ and $\varphi \in \mathfrak{A}^{*}$.

1.4 Preliminary computations

Now set (to be corrected as)

$$
M_{n, k, l}=\left(\mathfrak{A} u^{k} \otimes \mathfrak{A}^{\mathrm{op}} u^{l}\right) \otimes\left(\otimes^{n} \mathfrak{A}\right)
$$

Then $\oplus_{k, l} M_{n, k, l}$ is a dense subspace of $\mathfrak{D} M_{n}=\mathfrak{D} \otimes\left(\otimes^{n} \mathfrak{A}\right)$, with $\mathfrak{D}=\mathfrak{C} \otimes \mathfrak{C}^{\text {op }}$ and $\mathfrak{C}=\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$. We represent the elements of $\left(\oplus_{k, l} M_{n, k, l}\right)^{*}$ as sequences $\left\{\varphi_{k, l}\right\}_{k, l \in \mathbb{Z}}, \varphi_{k, l} \in M_{n, k, l}^{*}$. We have the following slightly corrected:

Lemma 1.4.1. A sequence $\left\{\varphi_{k, l}\right\}_{k, l \in \mathbb{Z}}, \varphi_{k, l} \in M_{n, k, l}^{*}$ extends to an element of $\left(\mathfrak{D} M_{n}\right)^{*}$ if and only if, given $y, x_{1}, \cdots, x_{n} \in \mathfrak{A}$, we can find $i, j_{0}, j_{1}, \cdots, j_{n} \in \mathbb{N}$ and constants C and C^{\prime} such that
$\left\|\varphi_{k, l}\left(\cdot, y, x_{1}, \cdots, x_{n}\right)\right\|_{i} \leq C \rho_{i}(k) \rho_{i}(l)\|y\|_{j_{0}}\left\|x_{1}\right\|_{j_{1}} \cdots\left\|x_{n}\right\|_{j_{n}}, \quad k=1,2, \cdots$, and
$\left\|\varphi_{k, l}\left(y, \cdot, x_{1}, \cdots, x_{n}\right)\right\|_{i} \leq C^{\prime} \rho_{i}(k)\|y\|_{j_{0}} \rho_{i}(l)\left\|x_{1}\right\|_{j_{1}} \cdots\left\|x_{n}\right\|_{j_{n}}, \quad l=1,2, \cdots$,
where each variable in the functionals corresponds to each variable in tensor factors.

Proof. This follows from the characterization of the dual space \mathfrak{C}^{*} as in the proposition in the previous section.

Definition 1.4.2. A sequence $\left\{\varphi_{k, l}\right\}_{k, l \in \mathbb{Z}}, \varphi_{k, l} \in M_{n, k, l}^{*}$ is called tempered if it satisfies the inequalities above. Denote by $\oplus_{k, l}^{\wedge} M_{n, k, l}^{*}$ the vector space of all such sequences.

Note that the decomposition

$$
\left(\mathfrak{D} M_{n}\right)^{*} \rightarrow \oplus_{k, l}^{\wedge} M_{n, k, l}^{*}
$$

is preserved by b. Indeed, this means that for $\varphi \in\left(\mathfrak{D} M_{n}\right)^{*}$ decomposed to $\left\{\varphi_{k, l}\right\}$ by restriction, the image $b \varphi \in\left(\mathfrak{D} M_{n+1}\right)^{*}$ under b is decomposed to $\left\{b \varphi_{k, l}\right\}$ equal to $b\left\{\varphi_{k, l}\right\} \in \oplus_{k, l}^{\wedge} M_{n+1, k, l}^{*}$. We let $b_{k, l}=\left.b\right|_{M_{n, k, l}^{*}}$ the restriction,

$$
H_{k, l}^{q}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)=H^{q}\left(M_{n, k, l}^{*}, b_{k, l}\right)
$$

$\oplus_{k, l}^{\wedge} H_{k, l}^{q}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)$ the vector space of all sequences $\left\{\xi_{k, l}\right\}_{k, l \in \mathbb{Z}}, \xi_{k, l} \in H_{k, l}^{q}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)$, represented by a tempered sequence $\left\{\varphi_{k, l}\right\} \in \oplus_{k, l}^{\wedge} M_{q, k, l}^{*}$, and $H_{\text {res }}^{q}$ the quotient of the vector space of all sequences $\left\{\varphi_{k, l}\right\} \in \oplus \hat{k, l}^{\wedge_{k, l}} M_{q, k, l}^{*}, \varphi_{k, l} \in \operatorname{Im}\left(b_{k, l}\right)$, by the image $\operatorname{Im}(b)$. Note that $b\left(\oplus_{k, l}^{\wedge} M_{q, k, l}^{*}\right) \ni b\left\{\varphi_{k, l}\right\}=\left\{b_{k, l} \varphi_{k, l}\right\}$.
Lemma 1.4.3. We have

$$
H^{q}\left(\left(\mathfrak{D} M_{n}\right)^{*}, b\right)=\left(\oplus_{k, l}^{\wedge} H_{k, l}^{q}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)\right) \oplus H_{\mathrm{res}}^{q}
$$

Proof. Since the map by restriction

$$
\left(\mathfrak{D} M_{n}\right)^{*} \rightarrow \oplus_{k, l}^{\hat{1}} M_{n, k, l}^{*},\left.\quad \varphi \mapsto \varphi\right|_{\oplus_{k, l} M_{n, k, l}}
$$

is an isomorphism commuting with the coboundary operator b, the result follows from the definitions of the vector spaces in the statement. Note that each $\varphi_{k, l}=b_{k, l} \psi_{k, l}$ of $\left\{\varphi_{k, l}\right\}$ for certain $\left\{\psi_{k, l}\right\}$, in the preimage of $H_{\text {res }}^{q}$ corresponds to the zero class of $H_{k, l}^{q}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)$, but the class of φ in $H^{q}\left(\left(\mathfrak{D} M_{n}\right)^{*}, b\right)$ may live.

Next tackle the complex $\left(Q_{n}, b\right)$. Define a \mathfrak{D}-module map $h: \mathfrak{D} M_{n} \rightarrow$ $Q_{n+1} \subset L_{n+1}=\mathfrak{D} \otimes\left(\otimes^{n+1} \mathfrak{C}\right)$ by

$$
\begin{aligned}
& h\left((-1)^{n} \otimes x_{1} \otimes \cdots \otimes x_{x}\right) \\
& =\sum_{i=1}^{n}(-1)^{i-1} u^{-1} \otimes \alpha\left(x_{1}\right) \otimes \cdots \otimes \alpha\left(x_{i-1}\right) \otimes u \otimes x_{i} \otimes \cdots \otimes x_{n},
\end{aligned}
$$

where the i-th term is mapped to zero under id $\otimes \cdots \otimes c_{0} \otimes \cdots \otimes \mathrm{id}$ with c_{0} at the i-th position, so that the sum belongs to Q_{n+1}.

A straightforward computation in L_{n} gives

$$
\begin{aligned}
& b h\left(1 \otimes x_{1} \otimes \cdots \otimes x_{n}\right)=h b\left(1 \otimes x_{1} \otimes \cdots \otimes x_{n}\right) \\
& +(-1)^{n}\left(1 \otimes x_{1} \otimes \cdots \otimes x_{n}-u^{\circ} u^{-1} \otimes \alpha\left(x_{1}\right) \otimes \cdots \otimes \alpha\left(x_{n}\right)\right) .
\end{aligned}
$$

Remark. This is not clear for us. For example, we compute

$$
\begin{aligned}
& b h\left(1 \otimes x_{1} \otimes x_{2}\right)=b\left(u^{-1} \otimes\left(u \otimes x_{1} \otimes x_{2}\right)-u^{-1} \otimes\left(\alpha\left(x_{1}\right) \otimes u \otimes x_{2}\right)\right) \\
& =u^{-1} u \otimes\left(x_{1} \otimes x_{2}\right)-u^{-1} \otimes\left(u x_{1} \otimes x_{2}\right)+u^{-1} x_{2}^{\circ} \otimes\left(u \otimes x_{1}\right) \\
& -u^{-1} \alpha\left(x_{1}\right) \otimes\left(u \otimes x_{2}\right)+u^{-1} \otimes\left(\alpha\left(x_{1}\right) u \otimes x_{2}\right)-u^{-1} x_{2}^{\circ} \otimes\left(\alpha\left(x_{1}\right) \otimes u\right) \\
& =u^{-1} u \otimes\left(x_{1} \otimes x_{2}\right)-u^{-1} \otimes\left(u x_{1} \otimes x_{2}\right)+u^{-1} x_{2}^{\circ} \otimes\left(u \otimes x_{1}\right) \\
& -x_{1} u^{-1} \otimes\left(u \otimes x_{2}\right)+u^{-1} \otimes\left(u x_{1} \otimes x_{2}\right)-u^{-1} x_{2}^{\circ} \otimes\left(\alpha\left(x_{1}\right) \otimes u\right)
\end{aligned}
$$

while

$$
\begin{aligned}
& h b\left(1 \otimes x_{1} \otimes x_{2}\right)=h\left(x_{1} \otimes\left(x_{2}\right)-1 \otimes\left(x_{1} x_{2}\right)+x_{2}^{\circ} \otimes\left(x_{1}\right)\right) \\
& \quad=u^{-1} x_{1} \otimes\left(u \otimes x_{2}\right)-u^{-1} \otimes\left(u \otimes x_{1} x_{2}\right)+u^{-1} x_{2}^{\circ} \otimes\left(u \otimes x_{1}\right),
\end{aligned}
$$

where we view h as a right \mathfrak{D}-module map. Hence

$$
\begin{aligned}
& b h\left(1 \otimes x_{1} \otimes x_{2}\right)-h b\left(1 \otimes x_{1} \otimes x_{2}\right) \\
& =1 \otimes\left(x_{1} \otimes x_{2}\right)-x_{1} u^{-1} \otimes\left(u \otimes x_{2}\right)-u^{-1} x_{2}^{\circ} \otimes\left(\alpha\left(x_{1}\right) \otimes u\right) \\
& -u^{-1} x_{1} \otimes\left(u \otimes x_{2}\right)+u^{-1} \otimes\left(u \otimes x_{1} x_{2}\right) .
\end{aligned}
$$

Lemma 1.4.4. The map $h:\left(\mathfrak{D} M_{n}, b\right) \rightarrow\left(Q_{n+1}, b\right)$ is a morphism of complexes.

Proof. Note that b acts on Q_{n+1} modulo $\mathfrak{D} M_{n+1}$ via the isomorphism from Q_{n+1} to $L_{n+1} / \mathfrak{D} M_{n+1}$, given as above, and $b h=h b \bmod \mathfrak{D} M_{n}=\mathfrak{D} \otimes$ $\left(\otimes^{n} \mathfrak{A}\right)$, where

(whose commutativity is not yet checked.)
Note that both $\left(\mathfrak{D} M_{n}, b\right)$ and $\left(Q_{n}, b\right)$ are acyclic. In fact, define an $\mathfrak{A}^{\mathbf{o p}}$-module map $\rho: \mathfrak{D} M_{n} \rightarrow \mathfrak{D} M_{n+1}$ by

$$
\left(u^{k} x_{0} \otimes 1\right) \otimes x_{1} \otimes \cdots \otimes x_{n} \mapsto\left(u^{k} \otimes 1\right) \otimes x_{0} \otimes x_{1} \otimes \cdots \otimes x_{n}
$$

Check that $\rho b+b \rho=\mathrm{id}$, so that $\left(\mathfrak{D} M_{n}, b\right)$ is acyclic. In particular, $b \rho b=b$:

For example, we compute

$$
\begin{aligned}
& b \rho\left(\left(u^{k} x_{0} \otimes 1\right) \otimes x_{1}\right)=b\left(\left(u_{k} \otimes 1\right) \otimes x_{0} \otimes x_{1}\right) \\
& \quad=\left(u_{k} \otimes 1\right) x_{0} \otimes x_{1}-\left(u_{k} \otimes 1\right) \otimes x_{0} x_{1}+\left(u_{k} \otimes 1\right) x_{1}^{\circ} \otimes x_{0}
\end{aligned}
$$

while

$$
\begin{aligned}
& \rho b\left(\left(u^{k} x_{0} \otimes 1\right) \otimes x_{1}\right) \\
& =\rho\left(\left(u^{k} x_{0} \otimes 1\right) x_{1}-\left(u^{k} x_{0} \otimes 1\right) x_{1}^{\circ}\right) \\
& =\left(u^{k} \otimes 1\right) \otimes x_{0} x_{1}-\left(u^{k} \otimes 1\right) x_{1}^{\circ} \otimes x_{0}
\end{aligned}
$$

Hence $(b \rho+\rho b)\left(\left(u_{k} x_{0} \otimes 1\right) \otimes x_{1}\right)=\left(u_{k} x_{0} \otimes 1\right) \otimes x_{1}$ sure.
As for $\left(Q_{n}, b\right)$, take $x \in L_{n}$ with $b x \in \mathfrak{D} M_{n-1}$. Thus, $[b x]=0$ in $Q_{n-1} \cong L_{n-1} / \mathfrak{D} M_{n-1}$. Then $b x=(\rho b+b \rho) b x$, i.e., $b(x-\rho b x)=0$. Since $\left(L_{n}, b\right)$ is acyclic, we can find $x^{\prime} \in L_{n+1}$ with $x-\rho b x=b x^{\prime}$. But then $x=b x^{\prime}+\rho b x \equiv b x^{\prime} \bmod \mathfrak{D} M_{n}$ since $\rho b x \in \mathfrak{D} M_{n}$. Thus $[x]=\left[b x^{\prime}\right]$ in $Q_{n} \cong L_{n} / \mathfrak{D} M_{n}$, and hence $\left(Q_{n}, b\right)$ is acyclic as well.

Now define a (right) \mathfrak{D}-module map $k: Q_{m} \rightarrow \mathfrak{D} M_{m-1}$ for $m \geq 1$ by $(-1)^{m} \otimes u^{n_{1}} x_{1} \otimes \cdots \otimes u^{n_{m}} x_{m} \mapsto$

$$
\begin{cases}\sum_{i=1}^{n_{1}} u^{n_{1}+\cdots+n_{m}} u^{i} \alpha^{n_{1}-i}\left(x_{1}\right) \otimes \cdots \otimes \alpha^{n_{1}+\cdots+n_{m}-1}\left(x_{m}\right) & \text { for } n_{1}>0 \\ 0 & \text { for } n_{1}=0 \\ -\sum_{i=n_{1}+1}^{0} u^{n_{1}+\cdots+n_{m}} u^{i} \alpha^{n_{1}-i}\left(x_{1}\right) \otimes \cdots \otimes \alpha^{n_{1}+\cdots+n_{m}-i}\left(x_{m}\right) & \text { for } n_{1}<0\end{cases}
$$

It holds that $k b=b k$. This can be established by a direct computation using the identity

$$
\begin{aligned}
& k\left(1 \otimes u^{n_{1}} x_{1} \otimes \cdots \otimes u^{n_{m}} x_{m}\right)=\rho k b\left(1 \otimes u^{n_{1}} x_{1} \otimes \cdots \otimes u^{n_{m}} x_{m}\right) \\
& -b\left(\sum_{i=1}^{n_{1}} u^{i}\left(u^{\circ}\right)^{n_{1}+\cdots n_{m}-i} \otimes \alpha^{n_{1}-i}\left(x_{1}\right) \otimes \cdots \otimes \alpha^{n_{1}+\cdots n_{m}-i}\left(x_{m}\right)\right)
\end{aligned}
$$

and induction together with the contracting homotopy property of ρ.
Check the above by: when $m=2, n_{1}=2, n_{2}=1$ we compute

$$
k\left((-1) \otimes u^{2} x_{1} \otimes u x_{2}\right)=u^{4} \alpha\left(x_{1}\right) \otimes \alpha^{2}\left(x_{2}\right)+u^{5} x_{1} \otimes \alpha\left(x_{2}\right)
$$

while

$$
\begin{aligned}
& \rho k b\left((-1) \otimes u^{2} x_{1} \otimes u x_{2}\right) \\
& \left.=\rho k\left((-1) u^{2} x_{1} \otimes u x_{2}+1 \otimes u^{2} x_{1} u x_{2}+(-1)\left(u x_{2}\right)^{\circ}\right) \otimes u^{2} x_{1}\right) \\
& =\rho k\left((-1) u^{2} x_{1} \otimes u x_{2}+1 \otimes u^{3} \alpha^{-1}\left(x_{1}\right) x_{2}+(-1) x_{2}^{\circ} u^{\circ} \otimes u^{2} x_{1}\right) \\
& =\rho\left(u^{2}\left(u x_{2}\right)(-1) u^{2} x_{1}\right. \\
& +u^{4} \alpha^{2}\left(\alpha^{-1}\left(x_{1}\right) x_{2}\right)+u^{5} \alpha\left(\alpha^{-1}\left(x_{1}\right) x_{2}\right)+u^{6}\left(\alpha^{-1}\left(x_{1}\right) x_{2}\right) \\
& \left.+u^{3} \alpha\left(x_{1}\right)(-1) x_{2}^{\circ} u^{\circ}+u^{4} x_{1}(-1) x_{2}^{\circ} u^{\circ}\right) \\
& =\rho\left(u^{5} \alpha^{-2}\left(-x_{2}\right) x_{1}\right. \\
& +u^{4} \alpha\left(x_{1}\right) \alpha^{2}\left(x_{2}\right)+u^{5} x_{1} \alpha\left(x_{2}\right)+u^{6}\left(\alpha^{-1}\left(x_{1}\right) x_{2}\right) \\
& \left.+u^{3} \alpha\left(x_{1}\right)(-1) x_{2}^{\circ} u^{\circ}+u^{4} x_{1}(-1) x_{2}^{\circ} u^{\circ}\right) \\
& =u^{5} \otimes \alpha^{-2}\left(-x_{2}\right) x_{1} \\
& +u^{4} \otimes \alpha\left(x_{1}\right) \alpha^{2}\left(x_{2}\right)+u^{5} \otimes x_{1} \alpha\left(x_{2}\right)+u^{6} \otimes \alpha^{-1}\left(x_{1}\right) x_{2} \\
& \left.+u^{3}(-1) x_{2}^{\circ} u^{\circ} \otimes \alpha\left(x_{1}\right)+u^{4}(-1) x_{2}^{\circ} u^{\circ}\right) \otimes x_{1} .
\end{aligned}
$$

Therefore, we get

$$
\begin{aligned}
& \rho k b\left((-1) \otimes u^{2} x_{1} \otimes u x_{2}\right)-k\left((-1) \otimes u^{2} x_{1} \otimes u x_{2}\right) \\
& =u^{5} \otimes \alpha^{-2}\left(-x_{2}\right) x_{1}+u^{4} \otimes \alpha\left(x_{1}\right) \alpha^{2}\left(x_{2}\right)+u^{5} \otimes x_{1} \alpha\left(x_{2}\right)+u^{6} \otimes \alpha^{-1}\left(x_{1}\right) x_{2} \\
& +u^{3}(-1) x_{2}^{\circ} u^{\circ} \otimes \alpha\left(x_{1}\right)+u^{4}(-1) x_{2}^{\circ} u^{\circ} \otimes x_{1}-u^{4} \alpha\left(x_{1}\right) \otimes \alpha^{2}\left(x_{2}\right)-u^{5} x_{1} \otimes \alpha\left(x_{2}\right)
\end{aligned}
$$

while

$$
\begin{aligned}
& b\left(u\left(u^{\circ}\right)^{2} \otimes \alpha\left(x_{1}\right) \otimes \alpha^{2}\left(x_{2}\right)+u^{2} u^{\circ} \otimes x_{1} \otimes \alpha\left(x_{2}\right)\right) \\
& =u\left(u^{\circ}\right)^{2} \alpha\left(x_{1}\right) \otimes \alpha^{2}\left(x_{2}\right)-u\left(u^{\circ}\right)^{2} \otimes \alpha\left(x_{1}\right) \alpha^{2}\left(x_{2}\right)+u\left(u^{\circ}\right)^{2}\left(\alpha^{2}\left(x_{2}\right)\right)^{\circ} \otimes \alpha\left(x_{1}\right) \\
& +u^{2} u^{\circ} x_{1} \otimes \alpha\left(x_{2}\right)-u^{2} u^{\circ} \otimes x_{1} \alpha\left(x_{2}\right)+u^{2} u^{\circ}\left(\alpha\left(x_{2}\right)\right)^{\circ} \otimes x_{1} \\
& =u\left(u^{\circ}\right)^{2} \alpha\left(x_{1}\right) \otimes \alpha^{2}\left(x_{2}\right)-u\left(u^{\circ}\right)^{2} \otimes \alpha\left(x_{1}\right) \alpha^{2}\left(x_{2}\right)+u\left(u^{\circ}\right)^{2}\left(\alpha^{2}\left(x_{2}\right)\right)^{\circ} \otimes \alpha\left(x_{1}\right) \\
& +u^{2} u^{\circ} x_{1} \otimes \alpha\left(x_{2}\right)-u^{2} u^{\circ} \otimes x_{1} \alpha\left(x_{2}\right)+u^{2} u^{\circ}\left(\alpha\left(x_{2}\right)\right)^{\circ} \otimes x_{1}
\end{aligned}
$$

(so that it probably fails to have the identity).
We have $\left.\operatorname{Im}(b)\right|_{\mathfrak{D} M_{1}}=\left.\operatorname{Im}(k b)\right|_{Q_{2}}$, but since $b k b=k b^{2}=0$ and $\left(\mathfrak{D} M_{n}, b\right)$ is acyclic, it is enough to show the inclusion $b\left(\mathfrak{D} M_{1}\right) \subset k b\left(Q_{2}\right)\left(\subset \mathfrak{D} M_{0}\right)$. In fact, $b\left(\left.\operatorname{Im}(k b)\right|_{Q_{2}}\right)=0$ implies that $\left.\left.\operatorname{Im}(k b)\right|_{Q_{2}} \subset \operatorname{Im}(b)\right|_{\mathfrak{D} M_{1}}\left(\subset \mathfrak{D} M_{0}\right)$. But the left-hand side is generated by elements of the form $x-x^{\circ}, x \in \mathfrak{A}$, and note that $x-x^{\circ}=k b\left(u^{-1} \otimes u \otimes x\right)$. Check this by:

$$
b(1 \otimes x)=x-x^{\circ}
$$

but

$$
\begin{aligned}
& k b\left(u^{-1} \otimes u \otimes x\right) \\
& =k\left(u^{-1} u \otimes x-u^{-1} \otimes u x+u^{-1} x^{\circ} \otimes u\right) \\
& =0-u^{-1} u^{2} x+u^{-1} x^{\circ} u^{2} \\
& =-u x+x^{\circ} u=-u\left(x-x^{\circ}\right),
\end{aligned}
$$

where $k(1 \otimes x)=0$ since $1 \otimes x \notin Q_{1}$.
Lemma 1.4.5. We have $H^{q}\left(Q^{\text {hom }}\right)=H^{q-1}\left(\mathfrak{D} M^{\text {hom }}\right)$.
Proof. We have the following diagram:

with both rows free acyclic.

1.5 Hochschild cohomology of the smooth crossed product

Theorem 1.5.1. The Hochschild cohomology $H^{q}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)$ of the smooth crossed product $\mathfrak{C}=\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ fits into the long exact sequence as:

$$
\begin{aligned}
\cdots & \xrightarrow{\delta}\left(\oplus_{k, l}^{\wedge} H_{k, l}^{q}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)\right) \oplus H_{\mathrm{res}}^{q} \xrightarrow{\pi} H^{q+1}\left(\mathfrak{C}, \mathfrak{C}^{*}\right) \\
& \xrightarrow{\boldsymbol{\delta}}\left(\oplus_{k, l}^{\wedge} H_{k, l}^{q+1}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)\right) \oplus H_{\mathrm{res}}^{q+1} \\
& \left(\oplus_{\hat{k}, l}^{\wedge} H_{k, l}^{q+1}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)\right) \oplus H_{\mathrm{res}}^{q+1} \xrightarrow{\pi} H^{q+2}\left(\mathfrak{C}, \mathfrak{C}^{*}\right) \xrightarrow{i} \cdots,
\end{aligned}
$$

where δ is defined by $\delta \varphi=\varphi-\varphi \circ \alpha$.
Proof. Recall the long exact cohomology sequence obtained above:

$$
\begin{aligned}
\cdots & \begin{array}{l}
\delta \\
\end{array} H^{q}\left(Q^{\mathrm{hom}}\right) \xrightarrow{\pi} H^{q}\left(\mathfrak{C}, \mathfrak{C}^{*}\right) \\
& \xrightarrow{i} H^{q}\left(\mathfrak{D} M^{\mathrm{hom}}\right) \xrightarrow{\delta} H^{q+1}\left(Q^{\mathrm{hom}}\right) \xrightarrow{\pi} \cdots .
\end{aligned}
$$

Using the lemmas above we have the space identifications:

$$
H^{q+1}\left(Q^{\mathrm{hom}}\right) \cong H^{q}\left(\mathfrak{D} M^{\mathrm{hom}}\right) \cong\left(\oplus_{k}^{\wedge} H_{k}^{q}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)\right) \oplus H_{\mathrm{res}}^{q}
$$

and hence obtain the exact sequence in the statement. To compute δ recall the definition of the connecting homomorphism as follows.

First, start with $\left\{\varphi_{k}\right\}_{k \in \mathbb{Z}}$ representing a class $\xi \in H^{q}\left(\mathfrak{D} M^{\text {hom }}\right)$.
Second, pull it back to an element of $L_{q}^{\text {hom }}$, say
$\varphi_{m_{0}}^{\sim}\left(x_{0} u^{m_{0}}, \cdots, x_{q} u^{m_{q}}\right)=\varphi_{m_{0}}\left(x_{0} u^{m_{0}}, x_{1}, \cdots, x_{q}\right) \delta_{m_{1}, 0} \cdots \delta_{m_{q}, 0}$.
Third, now $b \varphi^{\sim}=\pi \psi$ for some $\psi \in Q_{q+1}^{\text {hom }}$, and
$\delta \xi=[\psi] \in H^{q+1}\left(Q^{\mathrm{hom}}\right) \cong H^{q}\left(\mathfrak{D} M^{\text {hom }}\right)$.
Indeed, use the diagram:

But since the isomorphism $H^{q+1}\left(Q^{\text {hom }}\right) \cong H^{q}\left(\mathfrak{D} M^{\text {hom }}\right)$ is obtained by composing cocycles on Q_{q+1} with h and $(\pi \psi) \circ h=\varphi$ (possibly, we may identify this φ with ψ as in the text), we then have

$$
\begin{aligned}
\varphi & =(\pi \psi) \circ h=\left(b \varphi^{\sim}\right) \circ h=\varphi^{\sim} \circ b h \\
& =\varphi^{\sim} \circ\left(h b+(-1)^{n}(\mathrm{id}-\alpha)\right. \\
& =(-1)^{n}\left(\varphi^{\sim}-\varphi^{\sim} \circ \alpha\right)
\end{aligned}
$$

since $\varphi^{\sim} \circ h=0$. Hence it follows that

$$
(-1)^{n} \delta[\varphi]=\delta\left[\varphi^{\sim}-\varphi^{\sim} \circ \alpha\right]
$$

Possibly, $(-1)^{n} \delta^{-1}[\psi]=\left[\varphi^{\sim}-\varphi^{\sim} \circ \alpha\right]$ as in the text.

1.6 The \mathbb{E}_{1}-term of the spectral sequence

Let $\mathfrak{C}=\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ as before. Consider the following diagram in Connes [1]:

with the long exact sequence:

$$
\cdots H C^{n}(\mathfrak{C}) \xrightarrow{I} H^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right) \xrightarrow{B} H C^{n-1}(\mathfrak{C}) \xrightarrow{S} H C^{n+1}(\mathfrak{C}) \cdots
$$

where $H C^{n}(\mathfrak{C})$ is the n-th cyclic (or Connes) cohomology group of the subcomplex $\left(C_{\lambda}^{n}(\mathfrak{C}), b\right)$ of all cyclic cochains in the Hochschild complex $\left(C^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right), b\right)$, and

$$
0 \longrightarrow C_{\lambda}^{n}(\mathfrak{C}) \xrightarrow{I} C^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right) \longrightarrow C^{n} / C_{\lambda}^{n} \longrightarrow 0
$$

implies $H C^{n}(\mathfrak{C})=H_{\lambda}^{n}(\mathfrak{C}) \xrightarrow{I} H^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)$, with $H^{n}\left(C / C_{\lambda}\right)=H^{n-1}\left(C_{\lambda}\right)$, and $B: C^{n+1} \rightarrow C_{\lambda}^{n}$ defined by $B \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)$
$=$ cyclic antisymmetrization of $\varphi\left(1, x_{0}, \cdots, x_{n}\right)+(-1)^{n} \varphi\left(x_{0}, x_{1}, \cdots, x_{n}, 1\right)$ implies $B: H^{n+1}\left(\mathfrak{C}, \mathfrak{C}^{*}\right) \rightarrow H C^{n}(\mathfrak{C})$, and $S: C_{\lambda}^{n}(\mathfrak{C}) \rightarrow C_{\lambda}^{n+2}(\mathfrak{C})$ defined by $S \varphi$

$$
=\text { cyclic antisymmetrization of the cup product of } \varphi \text { with }
$$ the 2-cocycle as a generator of $H C^{2}(\mathbb{C})$, implies $S: H C^{n}(\mathfrak{C}) \rightarrow H C^{n+2}(\mathfrak{C})$.

The \mathbb{E}_{1}-term is given by the homology of the complex $\left(H^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right), d_{0}\right)$ with $d_{0}=I B: H^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right) \rightarrow H^{n-1}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)$.
Lemma 1.6.1. Given any n-cochain φ, let

$$
\begin{aligned}
\varphi_{(k)}\left(x_{0}, x_{1}, \cdots, x_{n-1}\right) & =\varphi\left(x_{0}, x_{1}, \cdots, x_{k-1}, 1, x_{k}, \cdots, x_{n-1}\right), \\
\varphi_{(k, k+1)}\left(x_{0}, x_{1}, \cdots, x_{n-2}\right) & =\varphi\left(x_{0}, x_{1}, \cdots, x_{k-1}, 1,1, x_{k}, \cdots, x_{n-2}\right) .
\end{aligned}
$$

Denote by N the cyclic antisymmetrization operator. Then

$$
\begin{aligned}
& \sum_{k>0}(b \varphi)_{(k, k+1)}=b\left(\sum_{k>0} \varphi_{(k, k+1)}\right)+\sum_{k>0}(-1)^{k-1} \varphi_{(k)}, \\
& N\left((b \varphi)_{(n, n+1)}\right)=b N\left(\varphi_{(n-1, n)}\right)+(-1)^{n-1} N\left(\varphi_{(n)}\right) .
\end{aligned}
$$

Proof. Check that the case where $n=2$ as follows.

$$
\begin{aligned}
& (b \varphi)\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\varphi\left(b\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right) \\
& =\varphi\left(x_{0} x_{1}, x_{2}, x_{3}\right)-\varphi\left(x_{0}, x_{1} x_{2}, x_{3}\right)+\varphi\left(x_{0}, x_{1}, x_{2} x_{3}\right)-\varphi\left(x_{0} x_{3}^{\circ}, x_{1}, x_{2}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
& (b \varphi)_{(1,2)}\left(x_{0}, x_{1}\right)=(b \varphi)\left(x_{0}, 1,1, x_{1}\right) \\
& =\varphi\left(x_{0}, 1, x_{1}\right)-\varphi\left(x_{0}, 1, x_{1}\right)+\varphi\left(x_{0}, 1, x_{1}\right)-\varphi\left(x_{0} x_{1}^{\circ}, 1,1\right) \\
& (b \varphi)_{(2,3)}\left(x_{0}, x_{1}\right)=(b \varphi)\left(x_{0}, x_{1}, 1,1\right) \\
& =\varphi\left(x_{0} x_{1}, 1,1\right)-\varphi\left(x_{0}, x_{1}, 1\right)+\varphi\left(x_{0}, x_{1}, 1\right)-\varphi\left(x_{0}, x_{1}, 1\right)
\end{aligned}
$$

and hence,

$$
\begin{aligned}
& \sum_{k>0}(b \varphi)_{(k, k+1)}\left(x_{0}, x_{1}\right)=(b \varphi)_{(1,2)}\left(x_{0}, x_{1}\right)+(b \varphi)_{(2,3)}\left(x_{0}, x_{1}\right) \\
& =\varphi\left(x_{0}, 1, x_{1}\right)-\varphi\left(x_{0} x_{1}^{\circ}, 1,1\right)+\varphi\left(x_{0} x_{1}, 1,1\right)-\varphi\left(x_{0}, x_{1}, 1\right) .
\end{aligned}
$$

On the other hand,
$\varphi_{(1)}\left(x_{0}, x_{1}\right)=\varphi\left(x_{0}, 1, x_{1}\right), \quad \varphi_{(2)}\left(x_{0}, x_{1}\right)=\varphi\left(x_{0}, x_{1}, 1\right), \quad \varphi_{(1,2)}\left(x_{0}\right)=\varphi\left(x_{0}, 1,1\right)$, so that

$$
\begin{aligned}
& \left(b\left(\sum_{k>0} \varphi_{(k, k+1)}\right)+\sum_{k>0}(-1)^{k-1} \varphi_{(k)}\right)\left(x_{0}, x_{1}\right) \\
& =b\left(\varphi_{(1,2)}\right)\left(x_{0}, x_{1}\right)+\varphi_{(1)}\left(x_{0}, x_{1}\right)-\varphi_{(2)}\left(x_{0}, x_{1}\right) \\
& =\varphi_{(1,2)}\left(b\left(x_{0}, x_{1}\right)\right)+\varphi\left(x_{0}, 1, x_{1}\right)-\varphi\left(x_{0}, x_{1}, 1\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi_{(1,2)}\left(b\left(x_{0}, x_{1}\right)\right) & =\varphi_{(1,2)}\left(x_{0}, x_{1}-x_{0} x_{1}^{\circ}\right) \\
& =\varphi\left(x_{0} x_{1}, 1,1\right)-\varphi\left(x_{0} x_{1}^{\circ}, 1,1\right)
\end{aligned}
$$

As for the second equality, we compute

$$
\begin{aligned}
& N\left((b \varphi)_{(2,3}\right)\left(x_{0}, x_{1}\right)=(b \varphi)_{(2,3)}\left(x_{0}, x_{1}\right)-(b \varphi)_{(2,3)}\left(x_{1}, x_{0}\right) \\
& =(b \varphi)\left(x_{0}, x_{1}, 1,1\right)-(b \varphi)\left(x_{1}, x_{0}, 1,1\right) \\
& =\varphi\left(x_{0} x_{1}, 1,1\right)-\varphi\left(x_{0}, x_{1}, 1\right)-\varphi\left(x_{1} x_{0}, 1,1\right)+\varphi\left(x_{1}, x_{0}, 1\right)
\end{aligned}
$$

and on the other hand,

$$
\begin{aligned}
& b N\left(\varphi_{(1,2)}\right)\left(x_{0}, x_{1}\right)-N \varphi_{(2)}\left(x_{0}, x_{1}\right) \\
& =N\left(\varphi_{(1,2)}\right)\left(b\left(x_{0}, x_{1}\right)\right)-\varphi_{(2)}\left(x_{0}, x_{1}\right)+\varphi_{(2)}\left(x_{1}, x_{0}\right) \\
& =N \varphi_{(1,2)}\left(x_{0} x_{1}-x_{0} x_{1}^{\circ}\right)-\varphi\left(x_{0}, x_{1}, 1\right)+\varphi\left(x_{1}, x_{0}, 1\right)
\end{aligned}
$$

and $N \varphi_{(1,2)}\left(x_{0} x_{1}-x_{0} x_{1}^{\circ}\right)=\varphi\left(x_{0} x_{1}, 1,1\right)-\varphi\left(x_{0} x_{1}^{\circ}, 1,1\right)$ (from which the second identity seems to slightly fail).

Recall that

$$
\begin{aligned}
& \xrightarrow{\delta}\left(\oplus_{k, l}^{\wedge} H_{k, l}^{n-1}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)\right) \oplus H_{\mathrm{res}}^{n-1} \xrightarrow{\pi} H^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right) \xrightarrow{i}\left(\oplus_{k, l}^{\wedge} H_{k, l}^{n}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)\right) \oplus H_{\mathrm{res}}^{n} \\
& \stackrel{d_{0}}{ } \downarrow \\
& \stackrel{\delta}{\longrightarrow}\left(\oplus_{k, l}^{\wedge} H_{k, l}^{n-2}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)\right) \oplus H_{\mathrm{res}}^{n-2} \xrightarrow{\pi} H^{n-1}\left(\mathfrak{C}, \mathfrak{C}^{*}\right) \xrightarrow{i}\left(\oplus_{k, l}^{\wedge} H_{k, l}^{n-1}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)\right) \oplus H_{\mathrm{res}}^{n-1}
\end{aligned}
$$

and note that the map i is just the restriction map from $H^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)=$ $H^{n}\left(L^{\mathrm{hom}}\right)$ to $H^{n}\left(\mathfrak{D} M^{\text {hom }}\right)$, while the map π is given by the composition of cochains with the map $k: Q_{n} \rightarrow \mathfrak{D} M_{n-1}$. Consider the following decomposition:

$$
\begin{aligned}
& \left(\oplus_{k, l}^{\wedge} H_{k}^{n}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)\right) \oplus H_{\mathrm{res}}^{n} \\
& =H_{0}^{n}\left(\mathfrak{A}, \mathfrak{A}^{*}\right) \oplus\left[\left(\oplus_{(k, l) \neq(0,0)}^{\wedge} H_{k, l}^{n}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)\right) \oplus H_{\mathrm{res}}^{n}\right]
\end{aligned}
$$

with $H_{0}^{n}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)=H^{n}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)$ called the homogeneous part and the second direct summand $[\cdots]$ the non-homogeneous part.
(A) First consider the map d_{0} at the non-homogeneous part.

Consider the map $i d_{0} \pi=i \circ d_{0} \circ \pi: \operatorname{coker}(\delta) \rightarrow \operatorname{ker}(\delta)$, where
$\operatorname{coker}\left(\delta_{n-2}\right)=\left(\oplus_{k, l}^{\wedge} H_{k, l}^{n-1}\left(\mathfrak{A}, \mathfrak{A}^{*}\right) \oplus H_{\text {res }}^{n-1} / \delta_{n-2}\left(\left(\oplus_{k, l}^{\wedge} H_{k, l}^{n-1}\left(\mathfrak{A}, \mathfrak{A}^{*}\right) \oplus H_{\mathrm{res}}^{n-1}\right)\right.\right.$
$\rightarrow \operatorname{ker}\left(\delta_{n-1}\right) \subset\left(\oplus_{k, l}^{\wedge} H_{k, l}^{n-1}\left(\mathfrak{A}, \mathfrak{A}^{*}\right) \oplus H_{\mathrm{res}}^{n-1}\right.$
is well defined by the long exact sequence in the previous section. Let $\varphi=\left\{\varphi_{k, l}\right\} \in \oplus_{k, l}^{\wedge} M_{n, k, l}^{*}$. Set $\varphi_{k}=\varphi_{k, 0}$.

Lemma 1.6.2. $i \circ d_{0} \pi\left[\left\{\varphi_{k}\right\}_{k \in \mathbb{Z}}\right]=\left[\left\{\sum_{i=1}^{k} \varphi_{k} \circ \alpha^{k-i}\right\}_{k \in \mathbb{Z}}\right]$, where the sum is the summation with zero at zero and positive and negative signs as before.

Proof. We compute

$$
\begin{aligned}
& \left(i \circ d_{0} \pi \varphi\right)_{l}\left(1, x_{1} u^{l}, x_{2}, \cdots, x_{n}\right)=(i I B(\varphi \circ k))_{l}\left(1, x_{1} u^{l}, x_{2}, \cdots, x_{n}\right) \\
& =N\left(\left(\varphi\left(k\left(1, x_{1} u^{l}, x_{2}, \cdots, x_{n}\right)\right)\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& k\left(1, x_{1} u^{l}, x_{2}, \cdots, x_{n}\right)=k\left(1, u^{l} \alpha^{-l}\left(x_{1}\right), x_{2}, \cdots, x_{n}\right) \\
& =\sum_{i=1}^{l} u^{l+i} \alpha^{l-i}\left(\alpha^{-l}\left(x_{1}\right)\right) \otimes \alpha^{l-i}\left(x_{2}\right) \otimes \cdots \alpha^{l-i}\left(x_{n}\right) \\
& =\sum_{i=1}^{l} u^{l} x_{1} u^{i} \otimes \alpha^{l-i}\left(x_{2}\right) \otimes \cdots \alpha^{l-i}\left(x_{n}\right) \\
& =\sum_{i=1}^{l} \alpha^{l-i}\left(u^{i} x_{1} u^{l}, x_{2}, \cdots, x_{n}\right)
\end{aligned}
$$

(probably, something in the definition is necessary to be changed).
Corollary 1.6.3. (I) $\delta\left[\left\{\varphi_{l}\right\}_{l \in \mathbb{Z}}\right]=0 \Rightarrow i \circ d_{0} \pi\left[\left\{\varphi_{l}\right\}_{l \in \mathbb{Z}}\right]=\left[\left\{l \varphi_{l}\right\}_{l \in \mathbb{Z}}\right]$.
(II) $d_{0} \pi\left[\left\{\varphi_{l}\right\}_{l \in \mathbb{Z}}\right]=0=\varphi_{0} \Rightarrow\left[\left\{\varphi_{l}\right\}_{l \in \mathbb{Z}}\right] \in \operatorname{Im}(\delta)$.
(III) $i \circ d_{0} \pi$ is onto $\operatorname{ker}(\delta) \ominus H_{0}^{n}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)$.
(IV) $\left(i \circ d_{0} \pi \varphi\right)_{0}=0$ for any cocycle φ.

Proof. (I) $\delta\left[\left\{\varphi_{k}\right\}\right]=0$ means that $\varphi_{k}-\varphi_{k} \circ \alpha=b \omega_{k}$ for $k \in \mathbb{Z}$, for some tempered sequence $\left\{\omega_{k}\right\}_{k \in \mathbb{Z}}$. Note that the diagram:

$$
H^{n-1}\left(\mathfrak{D} M^{\mathrm{hom}}\right) \xrightarrow{b} H^{n}\left(\mathfrak{D} M^{\mathrm{hom}}\right) \xrightarrow{\delta} H^{n+1}\left(Q^{\mathrm{hom}}\right)
$$

with $H^{n-1}\left(\mathfrak{D} M^{\text {hom }}\right)=\left(\oplus_{k, l}^{\wedge} H_{k, l}^{n-1}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)\right) \oplus H_{\text {res }}^{n-1}$. Then for $l>0$,

$$
\begin{aligned}
\sum_{i=1}^{l} \varphi_{l} \circ \alpha^{l-i} & =l \varphi_{l}-\sum_{i=1}^{l} \sum_{t=1}^{l-i}\left(\varphi_{l}-\varphi_{l} \circ \alpha\right) \circ \alpha^{l-i-t} \\
& =l \varphi_{l}-b\left(\sum_{i=1}^{l} \sum_{t=1}^{l-i} \omega_{l} \circ \alpha^{l-i-t}\right)
\end{aligned}
$$

Indeed, check that

$$
\sum_{i=1}^{l} \varphi_{l} \circ \alpha^{l-i}=-\sum_{i=1}^{l}\left(\varphi_{l}-\varphi_{l} \circ \alpha^{l-i}\right)+\sum_{i=1}^{l} \varphi_{l}=l \varphi_{l}-\sum_{i=1}^{l}\left(\varphi_{l}-\varphi_{l} \circ \alpha^{l-i}\right)
$$

and

$$
\begin{aligned}
& \sum_{t=1}^{l-i}\left(\varphi_{l}-\varphi_{l} \circ \alpha\right) \circ \alpha^{l-i-t}= \\
& \left(\varphi_{l}-\varphi_{l} \circ \alpha\right) \circ \alpha^{l-i-1}+\left(\varphi_{l}-\varphi_{l} \circ \alpha\right) \circ \alpha^{l-i-2}+\cdots+\left(\varphi_{l}-\varphi_{l} \circ \alpha\right) \\
& =\left(\varphi_{l}-\varphi_{l} \circ \alpha\right)+\left(\varphi_{l}-\varphi_{l} \circ \alpha\right) \circ \alpha+\cdots+\left(\varphi_{l}-\varphi_{l} \circ \alpha\right) \circ \alpha^{l-i-1} \\
& =\varphi_{l}-\varphi_{l} \circ \alpha^{l-i}
\end{aligned}
$$

Since the term $\left\{\sum_{i=1}^{l} \sum_{t=1}^{l-i} \omega_{l} \circ \alpha^{l-i-t}\right\}_{l \in \mathbb{Z}}$ defines a tempered sequence, we get

$$
\left[\left\{l \varphi_{l}\right\}\right]=\left[\left\{\sum_{i=1}^{l} \varphi_{l} \circ \alpha^{l-i}\right\}\right]=i \circ d_{0} \pi\left[\left\{\varphi_{l}\right\}\right]
$$

(II) It follows from the first equation above that

$$
i \circ d_{0} \pi\left[\left\{\varphi_{l}\right\}\right]=\left[\left\{l \varphi_{l}\right\}\right]+\delta\left[\left\{\psi_{l}\right\}\right]
$$

where $\psi_{l}=-\sum_{i=1}^{l} \sum_{t=1}^{l-i} \varphi_{l} \circ \alpha^{l-i-t}$, because $\delta\left[\left\{\psi_{l}\right\}\right]=\left[\left\{\psi_{l}-\psi_{l} \circ \alpha\right\}\right]$. If $\varphi_{0}=0$, then also $\psi_{0}=0$, and $\left\{\psi_{k}\right\}$ is a tempered sequence. Thus we can write $l \varphi_{l}+\delta \psi_{l}=b \omega_{l}$ for some tempered sequence $\left\{\omega_{l}\right\}_{l \in \mathbb{Z}}$ with $\omega_{0}=0$, since the equation above is zero from the assumption. But then

$$
\left\{\varphi_{l}\right\}=b\left\{\frac{1}{l} \omega_{l}\right\}-\delta\left\{\frac{1}{l} \psi_{l}\right\}
$$

and both $\left\{(1 / l) \omega_{l}\right\}$ and $\left\{(1 / l) \psi_{l}\right\}$ are tempered. Hence $\left[\left\{\varphi_{l}\right\}\right]=\delta\left[\left\{(-1 / l) \psi_{l}\right\}\right]$ as a cohomology class.
(III) This follows immediately from (I) and the fact that given a tempered cochain $\left\{\varphi_{l}\right\}$ with $\varphi_{0}=0,\left\{(1 / l) \varphi_{l}\right\}$ is also tempered, so that if $\delta\left[\left\{(1 / l) \varphi_{l}\right\}\right]=0$, then $i \circ d_{0} \pi\left[\left\{(1 / l) \varphi_{l}\right\}\right]=\left[\left\{\varphi_{l}\right\}\right]$, indeed.
(IV) This follows from the lemma just above, because the zero-th term of the sum is zero.
(B) Second consider the map d_{0} at the homogeneous part $H^{n}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)$.

Note that the definition of d_{0} on $H^{n}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)$ is viewed as the derivative of the spectral sequence, relating Hochschild and cyclic cohomology of \mathfrak{A}.

Lemma 1.6.4. (I) Given a cocycle φ on \mathfrak{C}, we have $d_{0}(i \varphi)_{0}=\left(i \circ d_{0} \varphi\right)_{0}$.
(II) Given a cocycle φ on \mathfrak{A}, we have $d_{0} \pi\left\{\varphi \cdot \delta_{k, 0}\right\}=\pi\left\{d_{0} \varphi \cdot \delta_{k, 0}\right\}$.

Proof. (I) This follows immediately from the fact that i is the restriction map. Note that the left hand side is the 0 -th term of the cyclic antisymmetrization of $i \varphi(1, \cdot, \ldots, \cdot)+(-1)^{n} i \varphi(\cdot, \ldots, \cdot, 1)$, and the right hand side is the 0 -th term of the restriction of the cyclic antisymmetrization of $\varphi(1, \cdot, \ldots, \cdot)+(-1)^{n} \varphi(\cdot, \ldots, \cdot, 1)$.
(II) Since $i \circ d_{0} \pi\left\{\varphi \cdot \delta_{k, 0}\right\}=0$ by (IV) of the corollary above, we can write $d_{0} \pi\left\{\varphi \cdot \delta_{k, 0}\right\}=\pi\left\{\psi \cdot \delta_{k, 0}\right\}$ for some cocycle ψ on \mathfrak{A}, using the exactness of the long cohomology sequence. Since the composition with $h: \mathfrak{D} M_{n-1} \rightarrow Q_{n}$ inverts π, i.e. $(\pi \psi) \circ h=\psi$ (under the identification as before), we have $\psi=\left(d_{0} \pi \varphi\right) \circ h$. This is given by

$$
\psi\left(x_{0}, x_{1}, \cdots, x_{n}\right)=\varphi\left(k\left(1 \otimes N h\left(x_{0} \otimes \cdots x_{n}\right)\right)\right)
$$

since $\left(d_{0} \pi \varphi\right) \circ h=N(\varphi \circ k \circ h)=\varphi \circ k \circ(N h)$. Look at a typical term $k\left(1 \otimes x_{i} \otimes \cdots x_{n} \otimes x_{0} u^{-1} \otimes \alpha\left(x_{1}\right) \otimes \cdots \otimes \alpha\left(x_{k}\right) \otimes u \otimes x_{k+1} \otimes \cdots \otimes x_{i-1}\right)$.

It can be non-zero only if we have either

$$
\begin{aligned}
& k\left(1 \otimes x_{0} u^{-1} \otimes \alpha\left(x_{1}\right) \otimes \cdots \otimes \alpha\left(x_{k}\right) \otimes u \otimes x_{k+1} \otimes \cdots \otimes x_{n}\right) \\
& =-x_{0} \otimes x_{1} \otimes \cdots \otimes x_{k} \otimes 1 \otimes x_{k+1} \otimes \cdots \otimes x_{n}, \quad \text { or } \\
& k\left(1 \otimes u \otimes x_{k+1} \otimes \cdots \otimes x_{n} \otimes x_{0} u^{-1} \otimes \alpha\left(x_{1}\right) \otimes \cdots \otimes \alpha\left(x_{k}\right)\right) \\
& =1 \otimes x_{k+1} \otimes \cdots \otimes x_{n} \otimes x_{0} \otimes x_{1} \otimes \cdots \otimes x_{k}
\end{aligned}
$$

Check that the first equality can be computed by definition

$$
\begin{aligned}
& -u^{-1+1} \alpha^{-1}\left(u x_{0} u^{-1}\right) \otimes \alpha^{-1} \alpha\left(x_{1}\right) \otimes \cdots \otimes \alpha^{-1} \alpha\left(x_{k}\right) \\
& \otimes \alpha^{-1+1}(1) \otimes \alpha^{-1+1}\left(x_{k+1}\right) \otimes \cdots \otimes \alpha^{-1+1}\left(x_{n}\right) \\
& =-x_{0} \otimes x_{1} \otimes \cdots \otimes x_{k} \otimes 1 \otimes x_{k+1} \otimes \cdots \otimes x_{n}
\end{aligned}
$$

and the second equatlity should be

$$
\left.u^{1-1} u \alpha^{0}(1) \otimes x_{k+1} \otimes \cdots \otimes x_{n} \otimes \alpha^{-1}\left(u x_{0} u^{-1}\right) \otimes \alpha^{-1} \alpha\left(x_{1}\right) \otimes \cdots \otimes \alpha^{-1} \alpha\left(x_{k}\right)\right)
$$

$$
=u \otimes x_{k+1} \otimes \cdots \otimes x_{n} \otimes x_{0} \otimes x_{1} \otimes \cdots \otimes x_{k}
$$

Combining the signs from cyclic permutation and from the position of u in $h\left(x_{0} \otimes x_{1} \otimes \cdots \otimes x_{n}\right)$ we get $\psi\left(x_{0}, x_{1}, \cdots, x_{n}\right)=$ [cyclic anti-symm of $\left.\varphi\left(1, x_{0}, \cdots, x_{n}\right)\right]+\sum_{j>0}(-1)^{j} \varphi_{(j)}\left(x_{0}, x_{1}, \cdots, x_{n}\right)$.

Then the first lemma in this subsection gives that $\psi=d_{0} \varphi+$ coboundary, and hence the proof is completed.
(C) Computation of the \mathbb{E}_{1}-term.

Consider a similar decomposition of $H^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)$ as the above decomposition into homogeneous and non-homogeneous parts:

$$
H^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)=H_{\mathrm{hom}}^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right) \oplus H_{e}^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right), \quad \varphi=\varphi_{\mathrm{hom}}+\varphi_{e}
$$

where $\varphi_{\text {hom }}\left(x_{0} u^{m_{0}}, \cdots, x_{n} u^{m_{n}}\right)=\varphi\left(x_{0} u^{m_{0}}, \cdots, x_{n} u^{m_{n}}\right) \cdot \delta_{m_{0}+\cdots+m_{n}, 0}$. Since the operator d_{0} preserves this splitting, we can write

$$
\mathbb{E}_{1}(\mathfrak{C})=\mathbb{E}_{1}(\mathfrak{C})_{\text {hom }} \oplus \mathbb{E}_{1}(\mathfrak{C})_{e}
$$

Check that $d_{0} \varphi_{\text {hom }}\left(x_{0} u^{m_{0}}, x_{1} u^{m_{1}}, \cdots, x_{n} u^{m_{n}}\right)=$ cyclic anti-symm of
$\varphi_{\text {hom }}\left(1, x_{0} u^{m_{0}}, \cdots, x_{n} u^{m_{n}}\right)+(-1)^{n} \varphi_{\text {hom }}\left(x_{0} u^{m_{0}}, x_{1} u^{m_{1}}, \cdots, x_{n} u^{m_{n}}, 1\right)$
$=\varphi\left(1, x_{0} u^{m_{0}}, \cdots, x_{n} u^{m_{n}}\right) \cdot \delta_{0+m_{0}+\cdots+m_{n}, 0}$
$+(-1)^{n} \varphi\left(x_{0} u^{m_{0}}, \cdots, x_{n} u^{m_{n}}, 1\right) \cdot \delta_{m_{0}+\cdots+m_{n}+0,0}$
$=\left[\varphi\left(1, x_{0} u^{m_{0}}, \cdots, x_{n} u^{m_{n}}\right)+(-1)^{n} \varphi\left(x_{0} u^{m_{0}}, \cdots, x_{n} u^{m_{n}}, 1\right)\right] \cdot \delta_{m_{0}+\cdots+m_{n}, 0}$.
Theorem 1.6.5. We have $\mathbb{E}_{1}(\mathfrak{C})_{e}=\mathbb{E}_{1}^{*}(\mathfrak{C})_{e}=\oplus_{n} \mathbb{E}_{1}^{n}(\mathfrak{C})_{e}=0$.
Proof. Let $\operatorname{ker}(\delta)_{e}^{n}$ and $\operatorname{coker}(\delta)_{e}^{n}$ be the kernel and cokernel of the restriction of δ to $\left(\oplus_{j \neq 0}^{\wedge} H_{j}^{n}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)\right) \oplus H_{\text {res }}^{n}$ respectively. Look at the diagram:

$$
\begin{aligned}
& 0 \rightarrow \operatorname{coker}(\delta)_{e}^{n} \xrightarrow{\pi} H_{e}^{n+1}\left(\mathfrak{C}, \mathfrak{C}^{*}\right) \xrightarrow{i} \operatorname{ker}(\delta)_{e}^{n+1} \rightarrow 0 \\
& \downarrow d_{0} \\
& 0 \rightarrow \operatorname{coker}(\delta)_{e}^{n-1} \xrightarrow{\pi} H_{e}^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right) \xrightarrow{i} \operatorname{ker}(\delta)_{e}^{n} \rightarrow 0 \\
& \downarrow d_{0} \\
& 0 \rightarrow \operatorname{coker}(\delta)_{e}^{n-2} \xrightarrow{\pi} H_{e}^{n-1}\left(\mathfrak{C}, \mathfrak{C}^{*}\right) \xrightarrow{i} \operatorname{ker}(\delta)_{e}^{n-1} \rightarrow 0,
\end{aligned}
$$

where the exactness of the rows follows from the long exact cohomology sequence obtained in the previous section. Suppose that we are given $\varphi \in$ $H_{e}^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)$ such that $d_{0} \varphi=0$. It follows from (III) in the above corollary that there is $\psi_{1} \in \operatorname{coker}(\delta)_{e}^{n}$ such that $i \varphi=i o d_{0} \pi \psi_{1}$. Since the middle row is exact, we can find an element $\psi_{2} \in \operatorname{coker}(\delta)_{e}^{n-1}$ such that $\varphi=d_{0} \pi \psi_{1}+\pi \psi_{2}$, because $i\left(\varphi-d_{0} \pi \psi_{1}\right)=0$. But then

$$
d_{0} \pi \psi_{2}=d_{0}\left(\varphi-d_{0} \pi \psi_{1}\right)=0-0=0
$$

and hence, from (II) in the corollary above, $\operatorname{Im}(\delta) \ni \psi_{2}=0$ in $\operatorname{coker}(\delta)_{e}^{n-1}$. Thus, $\varphi=d_{0} \pi \psi_{1}$. Hence $\mathbb{E}_{1}^{n}(\mathfrak{C})_{e}=\operatorname{ker}\left(\left.d_{0}\right|_{H_{e}^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)}\right) / d_{0} H_{e}^{n+1}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)=0$, and $\mathbb{E}_{1}(\mathfrak{C})_{e}=\mathbb{E}_{1}^{*}(\mathfrak{C})_{e}=\oplus_{n} \mathbb{E}_{1}^{n}(\mathbb{C})_{e}=0$.

Note that the decomposition of cocycles given above works equally well in the cyclic case, so that we can write

$$
H C^{n}(\mathfrak{C})=H C_{\lambda}^{n}(\mathfrak{C})=H_{\lambda}^{n}(\mathfrak{C})_{\mathrm{hom}} \oplus H_{\lambda}^{n}(\mathfrak{C})_{e}
$$

Therefore, we obtain
Corollary 1.6.6. $H_{\lambda}^{n}(\mathfrak{C})_{e} \subset \operatorname{ker}(S)$.

Proof. Since S preserves the above decomposition of cyclic cocycles and since for a cyclic cocycle we have

$$
\varphi \in \operatorname{Im}\left(d_{0}\right) \Leftrightarrow \varphi \in \operatorname{Im}(S)+\operatorname{ker}(S)
$$

so that $S \varphi \in \operatorname{Im}\left(S^{2}\right)$, and we can conclude from the theorem above that

$$
S H_{\lambda}^{n}(\mathfrak{C})_{e} \subset S^{2} H_{\lambda}^{n-2}(\mathfrak{C})_{e}
$$

Indeed, recall that $S \varphi=N(\sigma \# \varphi)$, where the cup product $\sigma \# \varphi$ with $[\sigma] \in$ $H C^{2}(\mathbb{C})$ is defined by $\sigma \# \varphi=(\sigma \otimes \varphi) \circ \pi$, where $\pi: \Omega^{n+2}(\mathbb{C} \otimes \mathbb{C}) \rightarrow$ $\Omega^{2}(\mathbb{C}) \otimes \Omega^{n}(\mathfrak{C})$ is a natural homomorphism of differential graded algebras. Recall that $d_{0}=I B$ and suppose that $\varphi=d_{0} \psi=I B \psi$ for some ψ, and if $I B \psi \neq 0$, then φ is viewed in $\operatorname{Im}(B)=\operatorname{ker}(S)$, and if $I B \psi=0$, then $B \psi \in \operatorname{ker}(I)=\operatorname{Im}(S)$, identified with φ. Note also that the non-exact sequence is:

$$
\cdots \rightarrow H C^{n-2}(\mathfrak{C})_{e} \xrightarrow{S} H C^{n}(\mathfrak{C})_{e} \xrightarrow{S} H C^{n+2}(\mathfrak{C})_{e} \rightarrow \cdots
$$

Conversely, if $S \varphi=0$, then $\varphi=B \psi$ for some ψ, and if $\varphi=S \rho$ for some ρ, then $d_{0} \varphi=I B S \rho=0$, hence $\varphi \in \operatorname{Im}\left(d_{0}\right)$, as checked.

Iterating the inclusion above we get $S H_{\lambda}^{n}(\mathfrak{C})_{e} \subset S^{k} H_{\lambda}^{n-2 k}(\mathfrak{C})_{e}$ for $k=$ $1,2, \cdots$, and choosing $k>n / 2$ we get the result desired.

To describe $\mathbb{E}_{1}(\mathfrak{C})_{\text {hom }}$ we set

$$
\begin{aligned}
H_{\mathrm{eq}}^{n}(\mathfrak{A}) & =\text { homology of }\left(\operatorname{ker}\left(\left.\delta\right|_{H(\mathfrak{A}, \mathfrak{A})}\right), d_{0}\right) \\
H_{\text {coeq }}^{n}(\mathfrak{A}) & =\text { homology of }\left(\operatorname{coker}\left(\left.\delta\right|_{H(\mathfrak{A}, \mathfrak{A} *}\right), d_{0}\right) .
\end{aligned}
$$

Then the following holds:
Theorem 1.6.7. The \mathbb{E}_{1}-term of the spectral sequence of the smooth crossed product $\mathfrak{C}=\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ fits into a long exact sequence:

$$
\cdots \xrightarrow{\Delta} H_{\text {coep }}^{n-1}(\mathfrak{A}) \xrightarrow{\pi} \mathbb{E}_{1}^{n}(\mathfrak{C}) \xrightarrow{i} H_{\text {eq }}^{n}(\mathfrak{A}) \xrightarrow{\Delta} H_{\text {coeq }}^{n-2}(\mathfrak{A}) \xrightarrow{\pi} \cdots
$$

Proof. It follows from the homogeneous part of the long exact sequence in the previous subsection that the rows of the following diagram are exact:

The diagram is commutative by the lemma above, and according to the theorem above, the homology of the middle column is equal to $\mathbb{E}_{1}(\mathfrak{C})$. Applying the long exact homology sequence to the short exact sequence of complexes given by this diagram, we obtain

$$
0 \rightarrow\left(\operatorname{coker}(\delta), d_{0}\right) \rightarrow\left(H^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)_{\mathrm{hom}}, d_{0}\right) \rightarrow\left(\operatorname{ker}(\delta), d_{0}\right) \rightarrow 0
$$

Note that the connecting homomorphism Δ is defined as a map:

$$
\begin{aligned}
& H_{\mathrm{eq}}^{n}(\mathfrak{A})=\operatorname{ker}\left(\left.d_{0}\right|_{\operatorname{ker}\left(\left.\delta\right|_{H^{n}}\right)}\right) / d_{0}\left(\operatorname{ker}\left(\left.\delta\right|_{H^{n+1}}\right)\right) \xrightarrow{\Delta} \\
& H_{\mathrm{coeq}}^{n-2}(\mathfrak{A})=\operatorname{ker}\left(\left.d_{0}\right|_{\text {coker }\left(\left.\delta\right|_{H^{n-2}}\right)}\right) / d_{0}\left(\operatorname{coker}\left(\left.\delta\right|_{H^{n-1}}\right)\right),
\end{aligned}
$$

where $H^{k}=H^{k}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)$, and see the lemma (corrected) below for its definition.

Lemma 1.6.8. The connecting homomorphism of the theorem above is given as follows. For a class $[\varphi] \in H_{\mathrm{eq}}^{n}(\mathfrak{A})$, if φ^{\sim} is the lifting of the cochain φ to the cochain on \mathfrak{C} as described in the previous subsection, then we have $\varphi^{\sim}=\pi \rho$ and $d_{0} \varphi^{\sim}=\pi \gamma$ for some cochains ρ and γ on \mathfrak{A}, and then

$$
\Delta[\varphi]=[\gamma]=\left[d_{0}\left(\varphi^{\sim}-\pi \rho\right) \circ h\right] .
$$

Proof. Since $[\varphi] \in H_{\mathrm{eq}}^{n}(\mathfrak{A})$ with $\varphi \in H^{n}$, we have $d_{0} \varphi=0$. The commutative diagram in the theorem above implies that

for some ρ and γ. Therefore, we get

$$
\begin{aligned}
{[\gamma] } & =d_{0}[\rho] \\
& =d_{0}\left[\varphi^{\sim} \circ h\right]=\left[d_{0} \varphi^{\sim} \circ h\right] \\
& =\left[d_{0}\left(\varphi^{\sim}-\pi \rho\right) \circ h\right]
\end{aligned}
$$

and hence the conclusion should be $\Delta[\varphi]=[\gamma]$.

1.7 Example by a diffeomorphism of a compact C^{∞}-manifold

We refer to [3] and also [1]. Suppose that $\mathfrak{A}=C^{\infty}(X)$, where X is a compact C^{∞}-manifold. Then any automorphism α of \mathfrak{A} is induced by a diffeomorphism of X. Give \mathfrak{A} the C^{∞}-topology of uniform convergence of derivatives, where the (semi)norms p_{n} on \mathfrak{A} are given by $p_{n}(f)=$ $\sum_{|\alpha| \leq n} \sup _{x \in X}\left|\partial^{\alpha} f(x)\right|$ for $f \in \mathfrak{A}$. Then the assumption in the subsection 1.2 (for \mathfrak{A} to be nuclear) is satisfied. Apply the preceding results to the smooth crossed product $\mathfrak{C}=C^{\infty}(X) \rtimes_{\alpha} \mathbb{Z}$.

Denote by $\mathfrak{D}_{n}^{\prime}(X)$ the space of the de Rham n-currents on X. Recall that $M_{n}=\mathfrak{B} \otimes\left(\otimes^{n} \mathfrak{A}\right)$ with $\mathfrak{B}=\mathfrak{A} \otimes \mathfrak{A}^{\mathrm{pp}}$. In this case $\mathfrak{B} \cong C^{\infty}(X \times$ X) and $\otimes^{n} \mathfrak{A} \cong C^{\infty}\left(X^{n}\right)$. Note that the map from M_{n}^{*} to $\mathfrak{D}_{n}^{\prime}(X)$ by antisymmetrization A_{S} induces an isomorphism $A_{S}: H^{n}\left(\mathfrak{A}, \mathfrak{A}^{*}\right) \rightarrow \mathfrak{D}_{n}^{\prime}(X)$. Indeed as in [1, p. 207],

$$
\frac{1}{n!} \sum_{\sigma \in S_{n}} \varepsilon(\sigma) \varphi\left(f_{0}, f_{\sigma(1)}, \cdots, f_{\sigma(n)}\right)=\left\langle C_{\varphi}, f_{0} d f_{1} \wedge \cdots \wedge d f_{n}\right\rangle
$$

for $f_{j} \in \mathfrak{A}(0 \leq j \leq n)$ with $A_{S}(\varphi)=C_{\varphi}$.
The operator $d_{0}=I B: H^{n}\left(\mathfrak{A}, \mathfrak{A}^{*}\right) \rightarrow H^{n-1}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)$ is just the standard de Rham boundary operator $d_{0}: \mathfrak{D}_{n}^{\prime}(X) \rightarrow \mathfrak{D}_{n-1}^{\prime}(X)$ for currents, that is induced by exterior differentiation for differential forms.

The complexes defining $H_{\text {eq }}^{*}(\mathfrak{A})$ and $H_{\text {coep }}^{*}(\mathfrak{A})$ become, respectively,

$$
\begin{aligned}
& 0 \rightarrow \mathfrak{D}_{N}^{\prime}(X)^{\alpha} \xrightarrow{d_{0}} \cdots \xrightarrow{d_{0}} \mathfrak{D}_{1}^{\prime}(X)^{\alpha} \xrightarrow{d_{0}} \mathfrak{D}_{0}^{\prime}(X)^{\alpha} \rightarrow 0, \\
& 0 \rightarrow \operatorname{coker}\left(\left.\delta\right|_{\mathfrak{D}_{N}^{\prime}(X)^{\alpha}}\right) \xrightarrow{d_{0}} \cdots \xrightarrow{d_{0}} \operatorname{coker}\left(\left.\delta\right|_{\mathfrak{D}_{0}^{\prime}(X)^{\alpha}}\right) \rightarrow 0,
\end{aligned}
$$

where $N=\operatorname{dim} X$ and $\delta=\mathrm{id}-\alpha$ acts on n-currents in the sense that $\delta\left(C_{\varphi}\right)=C_{\delta \varphi}=C_{\varphi-\varphi \circ \alpha}$ (or in other one), and $\mathfrak{D}_{n}^{\prime}(X)^{\alpha}=\operatorname{ker}\left(\left.\delta\right|_{\mathfrak{D}_{n}^{\prime}(X)}\right)$, and $\mathfrak{D}_{n}^{\prime}(X)=0$ for $n \geq N+1$ since $\mathfrak{D}_{n}(X)=0$.

Lemma 1.7.1. The connecting homomorphism $\Delta: H_{\mathrm{eq}}^{n}(\mathfrak{A}) \rightarrow H_{\mathrm{coeq}}^{n-2}(\mathfrak{A})$ is zero, with $\mathfrak{A}=C^{\infty}(X)$.

Proof. Given a cochain φ on \mathfrak{A} representing a class in $H_{\text {eq }}^{n}(\mathfrak{A})$, we may suppose that φ is an α-invariant n-current on X. Set

$$
\begin{aligned}
& \varphi^{\sim}\left(u^{m_{0}} x_{0}, \cdots, u^{m_{n}} x_{n}\right) \\
& = \begin{cases}\varphi\left(\alpha^{m_{0}}\left(x_{0}\right), \alpha^{m_{0}+m_{1}}\left(x_{1}\right), \cdots, \alpha^{m_{0}+\cdots+m_{n}}\left(x_{n}\right)\right) & m_{0}+\cdots+m_{n}=0 \\
0 & m_{0}+\cdots+m_{n} \neq 0\end{cases}
\end{aligned}
$$

Then φ^{\sim} is a cyclic cocycle on \mathfrak{C}, and hence

$$
\Delta[\varphi]=\left[\left(d_{0} \varphi^{\sim}\right) \circ h\right]=0
$$

because $\left[d_{0} \varphi^{\sim}\right]=I B\left[\varphi^{\sim}\right]=[0]$ by exactness of cyclic cohomology long exact sequence. Check also that

$$
\begin{aligned}
& \left(\varphi^{\sim}\right)^{\sigma}\left(u^{m_{0}} x_{0}, \cdots, u^{m_{n}} x_{n}\right) \\
& =\varphi^{\sim}\left(u^{m_{\sigma(0)}} x_{\sigma(0)}, \cdots, u^{m_{\sigma(n)}} x_{\sigma(n)}\right) \\
& =\varphi\left(\alpha^{m_{\sigma(0)}}\left(x_{\sigma(0)}\right), \cdots, \alpha^{m_{\sigma(0)}+\cdots+m_{\sigma(n)}}\left(x_{\sigma(n)}\right)\right) \\
& =\varphi\left(x_{\sigma(0)}, \cdots, x_{\sigma(n)}\right) \\
& =\varepsilon(\sigma) \varphi^{\sim}\left(u^{m_{0}} x_{0}, \cdots, u^{m_{n}} x_{n}\right),
\end{aligned}
$$

so that $[\varphi] \in H C^{n}(\mathfrak{C})$.
Lemma 1.7.2. It holds that for $\mathfrak{C}=\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$,

$$
\mathbb{E}_{1}^{n}(\mathfrak{C}) \cong H_{\mathrm{coep}}^{n-1}(\mathfrak{A}) \oplus H_{\mathrm{eq}}^{n}(\mathfrak{A})
$$

where the splitting is given by $\varphi=\varphi_{1}+\varphi_{2}$ with $\varphi_{2}=A_{S}\left(\left.\varphi\right|_{\mathfrak{A}}\right)$ and $\varphi_{1}=$ $A_{S}\left(\left(\varphi-\varphi_{2}^{\sim}\right) \circ h\right)$.

Proof. It follows from the lemma that

$$
0 \longrightarrow H_{\mathrm{coeq}}^{n-1}(\mathfrak{A}) \xrightarrow{\pi} \mathbb{E}_{1}^{n}(\mathfrak{C}) \xrightarrow{i} H_{\mathrm{eq}}^{n}(\mathfrak{A}) \xrightarrow{\Delta} 0
$$

Check that $\pi\left(\left(\varphi-\varphi_{2}^{\sim}\right) \circ h\right)=\varphi-\varphi_{2}^{\sim}$ and $i\left(\varphi-\varphi_{2}^{\sim}\right)=\varphi_{2}-\varphi_{2}=0$, and also $\varphi=\left(\varphi-\varphi_{2}^{\sim}\right)+\varphi_{2}^{\sim}$. For any $[\psi] \in H_{\text {eq }}^{n}(\mathfrak{A})$, there is a class $[\varphi] \in \mathbb{E}_{1}^{n}(\mathfrak{C})$ such that $i[\varphi]=[\psi]$. Define the splitting morphism c by $c[\psi]=\left[\varphi-\pi\left(\varphi_{1}\right)\right]$. Then $i \circ c[\psi]=\left[\varphi_{2}\right]=[\psi]$.

Before going on, for φ an n-cochain on \mathfrak{C}, we set

$$
\begin{aligned}
& T \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)=(-1)^{n} \varphi\left(x_{n}, x_{0}, \cdots, x_{n-1}\right) \\
& R \varphi=\frac{1}{n+1}\left(n+1+n T+(n-1) T^{2}+\cdots+2 T^{n-1}+T^{n}\right) \varphi \\
& N \varphi=\frac{1}{n+1}\left(1+T+\cdots+T^{n}\right) \varphi \\
& b^{\prime} \varphi\left(x_{0}, x_{1}, \cdots, x_{n+1}\right)=\sum_{i=0}^{n}(-1)^{i} \varphi\left(x_{0}, \cdots, x_{i} x_{i+1}, \cdots, x_{n+1}\right) .
\end{aligned}
$$

The operators T, R, and N map L_{n}^{*} to L_{n}^{*} and M_{n}^{*} to M_{n}^{*}, while b^{\prime} maps L_{n}^{*} to L_{n+1}^{*} and M_{n}^{*} to M_{n+1}^{*}, respectively, where $L_{n}=\mathfrak{D} \otimes\left(\otimes^{n} \mathfrak{C}\right)$. Define a map $\bar{\pi}$ from M_{n}^{*} to $\left(L_{n}^{*}\right)_{\text {hom }}$ by

$$
\bar{\pi} \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)=\varphi\left(k\left(1 \otimes x_{0} \otimes \cdots \otimes x_{n}\right)\right), \quad x_{j} \in \mathfrak{C}
$$

with $k\left((-1)^{m} \otimes u^{n_{1}} x_{1} \otimes \cdots \otimes u^{n_{m}} x_{m}\right)=\sum_{i=1}^{n_{1}} u^{n_{1}+\cdots+n_{m}} u^{i} \alpha^{n_{1}-i}\left(x_{1}\right) \otimes \cdots \otimes$ $\alpha^{n_{1}+\cdots n_{m}-i}\left(x_{m}\right)$ if $n_{1}>0$, which is zero if $n_{1}=0$, and is the negative sum $-\sum_{i=n_{1}+1}^{0}$ if $n_{1}<0$. (Possibly, as before, multiplying by $\delta_{n_{1}+\cdots+n_{m}, 0}$ with that functional $\bar{\pi} \varphi$ is necessary to have it in $\left(L_{n}^{*}\right)_{\text {hom }}$.)

Considering π as a map from M_{n-1}^{*} to $\left(L_{n}^{*}\right)_{\text {hom }}$, we set for $\varphi \in M_{n-1}^{*}$,

$$
\#^{\sim}(\varphi)=\pi \varphi-b R \bar{\pi} \varphi-R \bar{\pi} b \varphi \in\left(L_{n}^{*}\right)_{\mathrm{hom}}
$$

Note that

Proposition 1.7.3. (I) $b N \varphi=N b^{\prime} \varphi$ and $(1-T) b \varphi=b^{\prime}(1-T) \varphi$.
(II) $(1-T) \varphi=b^{\prime}\left(\left.\varphi\right|_{0}\right)+\left.(b \varphi)\right|_{0}$ and $(1-T) R=1-N$.
(III) $N \bar{\pi} N \varphi=0$.
(IV) The map \#~ maps cyclic cocycles to cyclic cocycles, cyclic coboundaries to cyclic coboundaries, and commutes with b.

Proof. (I) Check that for instance, for φ an 1-cochain on \mathfrak{C},

$$
\begin{aligned}
& b N \varphi\left(x_{0}, x_{1}, x_{2}\right)=b\left(\frac{1}{2}(1+T) \varphi\right)\left(x_{0}, x_{1}, x_{2}\right) \\
& =2^{-1}(1+T) \varphi\left(b\left(x_{0}, x_{1}, x_{2}\right)\right) \\
& =2^{-1}(1+T) \varphi\left(x_{0} x_{1}, x_{2}\right)-2^{-1}(1+T) \varphi\left(x_{0}, x_{1} x_{2}\right)+2^{-1}(1+T) \varphi\left(x_{0} x_{2}^{\circ}, x_{1}\right) \\
& =2^{-1}\left[\left(\varphi\left(x_{0} x_{1}, x_{2}\right)-\varphi\left(x_{2}, x_{0} x_{1}\right)\right)-\left(\varphi\left(x_{0}, x_{1} x_{2}\right)-\varphi\left(x_{1} x_{2}, x_{0}\right)\right)\right. \\
& +\left(\varphi\left(x_{0} x_{2}^{\circ}, x_{1}\right)-\varphi\left(x_{1}, x_{0} x_{2}^{\circ}\right)\right]
\end{aligned}
$$

while we have

$$
\begin{aligned}
& N\left(b^{\prime} \varphi\right)\left(x_{0}, x_{1}, x_{2}\right)=\frac{1}{3}\left(1+T+T^{2}\right)\left(b^{\prime} \varphi\right)\left(x_{0}, x_{1}, x_{2}\right) \\
& =3^{-1}\left[\left(b^{\prime} \varphi\right)\left(x_{0}, x_{1}, x_{2}\right)+\left(b^{\prime} \varphi\right)\left(x_{2}, x_{0}, x_{1}\right)+\left(b^{\prime} \varphi\right)\left(x_{1}, x_{2}, x_{0}\right)\right] \\
& =3^{-1}\left[\left(\varphi\left(x_{0} x_{1}, x_{2}\right)-\varphi\left(x_{0}, x_{1} x_{2}\right)\right)+\left(\varphi\left(x_{2} x_{0}, x_{1}\right)-\varphi\left(x_{2}, x_{0} x_{1}\right)\right)\right. \\
& \left.+\left(\varphi\left(x_{1} x_{2}, x_{0}\right)-\varphi\left(x_{1}, x_{2} x_{0}\right)\right)\right]
\end{aligned}
$$

(Possbily, the scalar multiple in the definition of N need to be changed to have the equality, or the equality should be changed as $(n+1) b N \varphi=$ $(n+2) N b^{\prime} \varphi$ for φ an n-cochain, where we need to have $x_{0} x_{2}^{\circ}=x_{2} x_{0}$.)

Check also that for φ an 1-cochain on \mathfrak{C},

$$
\begin{aligned}
& (1-T) b \varphi\left(x_{0}, x_{1}, x_{2}\right)=(b \varphi)\left(x_{0}, x_{1}, x_{2}\right)-(b \varphi)\left(x_{2}, x_{0}, x_{1}\right) \\
& =\left(\varphi\left(x_{0} x_{1}, x_{2}\right)-\varphi\left(x_{0}, x_{1} x_{2}\right)+\varphi\left(x_{0} x_{2}^{\circ}, x_{1}\right)\right) \\
& -\left(\varphi\left(x_{2} x_{0}, x_{1}\right)-\varphi\left(x_{2}, x_{0} x_{1}\right)+\varphi\left(x_{2} x_{1}^{\circ}, x_{0}\right)\right)
\end{aligned}
$$

while we have

$$
\begin{aligned}
& b^{\prime}(1-T) \varphi\left(x_{0}, x_{1}, x_{2}\right)=b^{\prime} \varphi\left(x_{0}, x_{1}, x_{2}\right)-b^{\prime}(T \varphi)\left(x_{0}, x_{1}, x_{2}\right) \\
& =\left(\varphi\left(x_{0} x_{1}, x_{2}\right)-\varphi\left(x_{0}, x_{1} x_{2}\right)\right) \\
& -\left[(T \varphi)\left(x_{0} x_{1}, x_{2}\right)-(T \varphi)\left(x_{0}, x_{1} x_{2}\right)\right] \\
& =\varphi\left(x_{0} x_{1}, x_{2}\right)-\varphi\left(x_{0}, x_{1} x_{2}\right)+\varphi\left(x_{2}, x_{0} x_{1}\right)-\varphi\left(x_{1} x_{2}, x_{0}\right)
\end{aligned}
$$

Hence $(1-T) b \varphi\left(x_{0}, x_{1}, x_{2}\right)-b^{\prime}(1-T) \varphi\left(x_{0}, x_{1}, x_{2}\right)$ should be

$$
\varphi\left(x_{0} x_{2}^{\circ}, x_{1}\right)-\varphi\left(x_{2} x_{0}, x_{1}\right)-\varphi\left(x_{2} x_{1}^{\circ}, x_{0}\right)+\varphi\left(x_{1} x_{2}, x_{0}\right)
$$

which can be zero if $x_{0} x_{2}^{\circ}=x_{2} x_{0}$ and $x_{2} x_{1}^{\circ}=x_{1} x_{2}$.)
(II) Compute that $(1-T) \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)=$

$$
\begin{aligned}
& \quad \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)-(-1)^{n} \varphi\left(x_{n}, x_{0}, \cdots, x_{n-1}\right), \quad \text { and } \\
& b^{\prime}\left(\left.\varphi\right|_{0}\right)\left(x_{0}, x_{1}, \cdots, x_{n}\right)+\left.(b \varphi)\right|_{0}\left(x_{0}, \cdots, x_{n}\right) \\
& =\sum_{i=0}^{n-1}(-1)^{i}\left(\left.\varphi\right|_{0}\right)\left(x_{0}, \cdots, x_{i} x_{i+1}, \cdots, x_{n}\right)+(b \varphi)\left(1, x_{0}, \cdots, x_{n}\right) \\
& =\sum_{i=0}^{n-1}(-1)^{i} \varphi\left(1, x_{0}, \cdots, x_{i} x_{i+1}, \cdots, x_{n}\right)+\varphi\left(1 x_{0}, \cdots, x_{n}\right) \\
& +\sum_{i=1}^{n}(-1)^{i} \varphi\left(1, x_{0}, \cdots, x_{i-1} x_{i}, \cdots x_{n}\right)+(-1)^{n+1} \varphi\left(x_{n}^{\circ}, x_{0}, \cdots, x_{n-1}\right) \\
& =\varphi\left(x_{0}, \cdots, x_{n}\right)+(-1)^{n+1} \varphi\left(x_{n}^{\circ}, x_{0}, \cdots, x_{n-1}\right),
\end{aligned}
$$

so that we need to have $x_{n}=x_{n}^{\circ}$ to have the identity.

Complute also that $(1-T) R \varphi\left(x_{0}, x_{1}, \cdots x_{n}\right)=(R \varphi-T R \varphi)\left(x_{0}, x_{1}, \cdots, x_{n}\right)=$

$$
\begin{aligned}
& \frac{1}{n+1}\left(n+1+\sum_{j=1}^{n}(n+1-j) T^{j}\right) \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right) \\
& -(-1)^{n}(R \varphi)\left(x_{n}, x_{0}, \cdots, x_{n-1}\right) \\
& =\varphi\left(x_{0}, \cdots, x_{n}\right)+\sum_{j=1}^{n}\left(1-\frac{j}{n+1}\right)(-1)^{n j} \varphi\left(x_{n-j+1}, \cdots, x_{n}, x_{0}, \cdots, x_{n-j}\right) \\
& -(-1)^{n} \varphi\left(x_{n}, x_{0} \cdots, x_{n-1}\right) \\
& -\sum_{j=1}^{n}\left(1-\frac{j}{n+1}\right)(-1)^{n(j+1)} \varphi\left(x_{n-j}, \cdots, x_{n}, x_{0}, \cdots, x_{n-j-1}\right) \\
& =\varphi\left(x_{0}, \cdots, x_{n}\right)-\frac{(-1)^{n+1}}{n+1} \varphi\left(x_{n}, x_{0} \cdots, x_{n-1}\right) \\
& -\sum_{j=2}^{n}\left(\frac{(-1)^{n j}}{n+1}\right) \varphi\left(x_{n-j+1}, \cdots, x_{n}, x_{0}, \cdots, x_{n-j}\right)-\frac{(-1)^{n(n+1)}}{n+1} \varphi\left(x_{0}, \cdots, x_{n}\right)
\end{aligned}
$$

which can be $=(1-N) \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)$ if we define N to have the last identity.
(III) First note the following identity:

$$
\sum_{i=1}^{n_{1}} \varphi \circ \alpha^{-i}+\sum_{i=1}^{m} \varphi \circ \alpha_{\cdot}^{-i-n}=\sum_{i=1}^{n+m} \varphi \circ \alpha^{-i}
$$

Suppose that φ is a cyclic n-cochain on \mathfrak{A}, so that $\varphi=N \psi$ for some ψ, and set $x_{i}=u^{m_{i}} a_{i}$ for $a_{i} \in \mathfrak{A}(i=1, \cdots, n)$ and $a_{i}^{\sim}=\alpha^{m_{0}+m_{1}+\cdots+m_{i}}\left(x_{i}\right)$ (corrected), where $m_{0}+m_{1}+\cdots+m_{n}=0$. We have

$$
\begin{aligned}
& T^{-i} \bar{\pi} \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right) \\
& =(-1)^{n i} \varphi\left(k\left(1, x_{i}, x_{i+1}, \cdots, x_{n}, x_{0}, x_{1}, \cdots, x_{i-1}\right)\right) \\
& =(-1)^{n i} \sum_{j=1}^{m_{i}} \varphi\left(u^{j} \alpha^{-j}\left(\alpha^{m_{i}}\left(x_{i}\right), \alpha^{m_{i}+m_{i+1}}\left(x_{i+1}\right), \cdots, \alpha^{m_{i}+m_{i+1}+\cdots+m_{i-1}}\left(x_{i-1}\right)\right)\right) \\
& =(-1)^{n i} \sum_{j=1}^{m_{i}} \varphi\left(u^{j} \alpha^{-j-m_{0}-m_{1}-\cdots-m_{i-1}}\left(a_{i}^{\sim}, a_{i+1}^{\sim}, \cdots, a_{n}^{\sim}, a_{1}^{\sim}, \cdots, a_{i-1}^{\sim}\right)\right) \\
& =(-1)^{n i} \sum_{j=1}^{m_{i}}(-1)^{i(n-i+1)} \varphi\left(u^{j} \alpha^{-j-m_{0}-m_{1}-\cdots-m_{i-1}}\left(a_{0}^{\sim}, a_{1}^{\sim}, \cdots, a_{n}^{\sim}\right)\right) \\
& =\sum_{j=1}^{m_{i}} \varphi\left(u^{j} \alpha^{-j-m_{0}-m_{1}-\cdots-m_{i-1}}\left(a_{0}^{\sim}, a_{1}^{\sim}, \cdots, a_{n}^{\sim}\right)\right) .
\end{aligned}
$$

But then

$$
\begin{aligned}
& (n+1) N \bar{\pi} \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right) \\
& =\sum_{i=0}^{n}\left(T^{-i} \bar{\pi} \varphi\right)\left(x_{0}, x_{1}, \cdots, x_{n}\right) \\
& =\left(\sum_{i=0}^{n} \sum_{l=1}^{m_{i}} \varphi \circ \alpha^{-l-m_{0}-\cdots-m_{i-1}}\right)\left(a_{0}^{\sim}, a_{1}^{\sim}, \cdots, a_{n}^{\sim}\right)
\end{aligned}
$$

where u^{j} should probably be dropped in the definition of k, and the double sum gives zero by the first equation and by $m_{0}+\cdots+m_{n}=0$. Indeed, note that

$$
\begin{aligned}
& \sum_{i=0}^{n} \sum_{l=1}^{m_{i}} \varphi \circ \alpha^{-l-m_{0}-\cdots-m_{i-1}}=\sum_{l=1}^{m_{0}} \varphi \circ \alpha^{-l}+\sum_{l=1}^{m_{1}} \varphi \circ \alpha^{-l-m_{0}} \\
& +\sum_{l=1}^{m_{2}} \varphi \circ \alpha^{-l-m_{0}-m_{1}}+\cdots+\sum_{l=1}^{m_{n}} \varphi \circ \alpha^{-l-m_{0}-\cdots-m_{n-1}} \\
& =\sum_{l=1}^{m_{0}+m_{1}} \varphi \circ \alpha^{-l}+\sum_{l=1}^{m_{2}} \varphi \circ \alpha^{-l-m_{0}-m_{1}}+\cdots+\sum_{l=1}^{m_{n}} \varphi \circ \alpha^{-l-m_{0}-\cdots-m_{n-1}} \\
& =\cdots=\sum_{l=1}^{m_{0}+m_{1}+\cdots+m_{n}} \varphi \circ \alpha^{-l}
\end{aligned}
$$

which is nothing but zero (sum).
(IV) Note that $\pi b \varphi=b \pi \varphi$ and, moreover, $\bar{\pi} \varphi=\left.(\pi \varphi)\right|_{0}$ since π is given by the compositon with k, so that $\left.(\pi \varphi)\right|_{0}\left(x_{0}, x_{1}, \cdots, x_{n}\right)=\pi \varphi\left(1, x_{0}, \cdots, x_{n}\right)=$ $\varphi \circ k\left(1, x_{0}, \cdots, x_{n}\right)=\bar{\pi} \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)$. Hence (II) gives an identity as a consequence:

$$
\begin{aligned}
(1-T) \pi \varphi & =b^{\prime}\left(\left.(\pi \varphi)\right|_{0}\right)+\left.(b \pi \varphi)\right|_{0} \\
& =b^{\prime}\left(\left.(\pi \varphi)\right|_{0}\right)+\left.(\pi b \varphi)\right|_{0}=b^{\prime} \bar{\pi} \varphi+\bar{\pi} b \varphi
\end{aligned}
$$

Check also the identities as a consequence, using the above identities and (I), (II), and (III):

$$
\begin{aligned}
(1-T) \#^{\sim} \varphi & =(1-T)(\pi \varphi-b R \bar{\pi} \varphi-R \bar{\pi} b \varphi) \\
& =b^{\prime} \bar{\pi} \varphi+\bar{\pi} b \varphi-b^{\prime}(1-T) R \bar{\pi} \varphi-(1-N) \bar{\pi} b \varphi \\
& =b^{\prime} \bar{\pi} \varphi-b^{\prime}(1-N) \bar{\pi} \varphi+N \bar{\pi} b \varphi \\
& =b^{\prime} N \bar{\pi} \varphi+N \bar{\pi} b \varphi, \quad \text { and }
\end{aligned}
$$

$$
\begin{aligned}
\#^{\sim} b N \varphi & =\pi b N \varphi-b R \bar{\pi} b N \varphi-R \bar{\pi} b^{2} N \varphi=\pi b N \varphi \quad \text { while } \\
b N \#^{\sim} N \varphi & =b N(\pi N \varphi-b R \bar{\pi} N \varphi-R \bar{\pi} b N \varphi) \\
& =b \pi N \varphi-b N b R \bar{\pi} N \varphi-b R N \bar{\pi} N b^{\prime} \varphi=\pi b N \varphi
\end{aligned}
$$

where note that $N R=R N$ by definition and $b(\cdot) b=0$, and we have

$$
\begin{aligned}
\#^{\sim} b \varphi & =\pi b \varphi-b R \bar{\pi} b \varphi-R \bar{\pi} b^{2} \varphi
\end{aligned}=\pi b \varphi, \quad \text { while } \quad \text {. }
$$

Those equations show that the map $\#^{\sim}$ has the desired properties. Note that the first equation implies that

$$
(1-T) \#^{\sim} N \varphi=b^{\prime} N \bar{\pi} N \varphi+N \bar{\pi} N b^{\prime} \varphi=0
$$

so that we get $\#^{\sim} N \varphi=T \#^{\sim} N \varphi$, which implies that $\#^{\sim} N \varphi$ is cyclic, i.e. $N \#^{\sim} N \varphi=\#^{\sim} N \varphi$.

Theorem 1.7.4. When $\mathfrak{A}=C^{\infty}(X)$ and $\mathfrak{C}=C^{\infty}(X) \rtimes_{\alpha} \mathbb{Z}$, we have

$$
\mathbb{E}_{\infty}^{n}(\mathfrak{C}) \cong H_{\mathrm{coeq}}^{n-1}(\mathfrak{A}) \oplus H_{\mathrm{eq}}^{n}(\mathfrak{A})
$$

Proof. Using the splitting of $\mathbb{E}_{1}^{n}(\mathfrak{C})$ as shown in the lemma above:

$$
\mathbb{E}_{1}^{n}(\mathfrak{C}) \cong H_{\mathrm{coeq}}^{n-1}(\mathfrak{A}) \oplus H_{\mathrm{ep}}^{n}(\mathfrak{A}), \quad \varphi=\varphi_{1}+\varphi_{2},
$$

the fact that $\#^{\sim}$ is homotopic to π, and the equality $(\pi \varphi) \circ h=\varphi$, we can write $\varphi=\#^{\sim} \varphi_{1}+\varphi_{2}^{\sim}$ in $\mathbb{E}_{1}^{n}(\mathfrak{C})$ for any cocycle φ representing an element of $\mathbb{E}_{1}^{n}(\mathfrak{C})$. Since both φ_{1} and φ_{2} are cyclic, so are $\#^{\sim} \varphi_{1}((\mathrm{IV})$ in the proposition above) and φ_{2}^{\sim}. This means that every element of $\mathbb{E}_{1}^{n}(\mathbb{C})$ can be represented by a cyclic cocycle. Since all the boundary operators d_{1}, d_{2}, \cdots kill cyclic cocycles, we get the isomorphisms:

$$
\mathbb{E}_{1}^{n}(\mathfrak{C}) \cong \mathbb{E}_{2}^{n}(\mathfrak{C}) \cong \cdots \cong \mathbb{E}_{\infty}^{n}(\mathfrak{C})
$$

Remark. Review quickly from a text book [2] of Hattori that for an exact couple of modules:

set $d=g \circ h: E \rightarrow E$. Then $d^{2}=0$ since $h \circ g=0$. Then the homology group $H(E)$ with respect to (E, d) is defined by $H(E)=Z(E) / B(E)$, where $Z(E)=\operatorname{ker}(d)$ and $B(E)=\operatorname{Im}(d)$. Note that $x \in Z(E) \Leftrightarrow d(x)=$ $g(h(x))=0 \Leftrightarrow h(x) \in \operatorname{ker}(g)=\operatorname{Im}(f) \Leftrightarrow x \in h^{-1}(\operatorname{Im}(f))$, and $y=d(x)=$ $g(h(x)) \in B(E) \Leftrightarrow y \in g(\operatorname{Im}(h))=g(\operatorname{ker}(f))$. The derived (exact) couple is then defined by

where check by definition that $f(x) \in \operatorname{ker}\left(f^{1}\right) \Leftrightarrow f(f(x))=0 \Leftrightarrow f(x) \in$ $\operatorname{Im}(h) \Leftrightarrow f(x)=h(z)=h^{1}[z]$ with $[z] \in E^{1}$, and $g^{1}(f(x))=\left[g\left(f^{-1}(f(x))\right]=\right.$ $[g(x-f(y))]=0$ for some $y \in A \Leftrightarrow g(x-f(y)) \in \operatorname{Im}(d)=g(h(E)) \Leftrightarrow$ $x-f(y) \in h(E)=\operatorname{ker}(f) \Leftrightarrow f(x)=f(f(y))$, and $h^{1}[z]=h(z)=0 \Leftrightarrow z \in$ $\operatorname{ker}(h)=\operatorname{Im}(g) \Leftrightarrow z=g(x)$ for some $x \in A \Leftrightarrow[z]=[g(x)]=\left[g\left(f^{-1}(f(x))\right]\right.$. The homology spectral sequence E^{n} with $E^{0}=E$ is then defined by deriving inductively as $E^{n}=H\left(E^{n-1}\right)$ with respect to $\left(E^{n-1}, d^{(n-1)}=\right.$ $g^{(n-1)} \circ h^{(n-1)}$, with $g^{(1)}=g^{1}$ and $h^{(1)}=h^{1}$. Furthermore,

$$
E^{\infty}=Z^{\infty} / B^{\infty}=\left(\cap_{n} Z^{(n)}\right) /\left(\cup_{n} B^{(n)}\right)
$$

where $E^{r}=Z^{(r)} / B^{(r)}$, with $Z^{(r)}=h^{-1}\left(\operatorname{Im}\left(f^{r}\right)\right)$ and $B^{(r)}=g\left(\operatorname{ker}\left(f^{r}\right)\right)$.
If $d^{r}=0$ for every $r \geq n(\geq 2)$, then the spectral sequence $\left(E^{r}, d^{r}\right)$ is said to be collapsed, and then $E^{n} \cong E^{n+1} \cong \ldots \cong E^{\infty}$.

In the case of the theorem above,

with $d_{1}=d^{1}=I^{1} \circ B^{1}$, and

with $d_{2}=d^{(2)}=I^{(2)} \circ B^{(2)}$, and so on. Note also that

provided that $d_{j}=0$ since $E_{j+1}^{n}=\operatorname{ker}\left(\left.d_{j}\right|_{E_{j}^{n}}\right) / d_{j}\left(E_{j}^{n+1}\right)$.
Corollary 1.7.5. Suppose that $X=\mathbb{T}$ and α preserves orientation. Then

$$
\operatorname{dim} H C^{\mathrm{ev}}(\mathfrak{C})=\operatorname{dim} H C^{\text {odd }}(\mathfrak{C})=2
$$

where $\mathfrak{C}=\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ with $\mathfrak{A}=C^{\infty}(X)$.
Proof. Denote by $H_{n}(X)$ the homology groups of a compact C^{∞}-manifold X computed as

$$
H_{n}(X)=\frac{\operatorname{ker}\left(\left.d_{0}\right|_{\mathfrak{D}_{n}^{\prime}(X)}\right)}{\operatorname{Im}\left(\left.d_{0}\right|_{\mathfrak{D}_{n+1}} ^{\prime}(X)\right)}
$$

Since the groups $H_{n}(X), H_{\text {eq }}^{n}(\mathfrak{A}), H_{\text {coeq }}^{n}(\mathfrak{A})$ are all computed by complexes of n-currents on X, it is easy to see that the identity $\operatorname{map} \varphi \mapsto \varphi$ on the cochain level in cohomology descends to the maps

$$
\alpha_{n}: H_{\mathrm{eq}}^{n}(\mathfrak{A}) \rightarrow H_{n}(X)^{\alpha} \quad \text { and } \quad \beta_{n}: H_{n}(X) / \delta H_{n}(X) \rightarrow H_{\mathrm{coep}}^{n}(\mathfrak{A})
$$

Note that $\mathfrak{D}_{n}^{\prime}(X)^{\alpha}=\operatorname{ker}\left(\left.\delta\right|_{\mathfrak{D}_{n}^{\prime}(X)}\right)$, which corresponds to $\operatorname{ker}\left(\left.\delta\right|_{H^{n}\left(\mathfrak{A}, \mathfrak{Q} \mathfrak{A}^{*}\right)}\right)$, as checked before, so that if $[\varphi] \in H_{\mathrm{eq}}^{n}(\mathfrak{A}) \cong \operatorname{ker}\left(\left.d_{0}\right|_{\mathfrak{D}_{n}^{\prime}(X)^{\alpha}}\right) / d_{0}\left(\mathfrak{D}_{n+1}^{\prime}(X)^{\alpha}\right)$, then $\delta(\varphi)=0$, which implies that $\varphi-\varphi \circ \alpha=0$, so that $[\varphi]=[\varphi \circ \alpha]$ in $H_{n}(X)$, which means that $[\varphi] \in H_{n}(X)^{\alpha}$. Note also that $H_{\text {coeq }}^{n}(\mathfrak{A})$ is identifed with the homology of the complex $\left(\operatorname{coker}\left(\left.\delta\right|_{\mathfrak{D}_{n}^{\prime}(X)}\right), d_{0}\right)$ and that

$$
\operatorname{coker}\left(\left.\delta\right|_{\mathfrak{D}_{n}^{\prime}(X)}\right)=\frac{\mathfrak{D}_{n}^{\prime}(X)}{\operatorname{ker}\left(\left.\delta\right|_{\mathfrak{D}_{n}^{\prime}(X)}\right)}=\frac{\mathfrak{D}_{n}^{\prime}(X)}{\mathfrak{D}_{n}^{\prime}(X)^{\alpha}}
$$

and there is a quotient map from $\mathfrak{D}_{n}^{\prime}(X)$ to $\mathfrak{D}_{n}^{\prime}(X) / \mathfrak{D}_{n}^{\prime}(X)^{\alpha}$, which induces a map from $H_{n}(X)$ to $H_{\text {coeq }}^{n}(\mathfrak{A})$, and if $[\varphi] \in \delta H_{n}(X)$, then the class $\delta[\varphi]=[\delta \varphi]$ is mapped to zero, and hence the map from $H_{n}(X) / \delta H_{n}(X)$ to $H_{\text {coeq }}^{n}(\mathfrak{A})$ is deduced.

Define the following maps:

$$
\operatorname{coker}\left(\alpha_{n-1}\right) \xrightarrow{s_{1}} \operatorname{coker}\left(\beta_{n}\right) \xrightarrow{s_{2}} \cdot \operatorname{ker}\left(\alpha_{n-2}\right) \xrightarrow{s_{3}} \operatorname{ker}\left(\beta_{n-1}\right),
$$

where the maps s_{1}, s_{2}, and s_{3} are given as follows.
(1) Starting with $[\varphi] \in H_{n-1}(X)^{\alpha}$, we have $\delta \varphi=d_{0} \omega$ for some ω with $[\omega] \in H_{n}(X)^{\alpha}$ since $d_{0} \varphi=0, d_{0}(\varphi \circ \alpha)=0$ and thus $d_{0}(\delta \varphi)=0$, because $[\varphi]=[\varphi \circ \alpha]$, and we set $s_{1}(\varphi)=$ the class of ω in $\operatorname{coker}\left(\beta_{n}\right)$. Note that

$$
\operatorname{coker}\left(\alpha_{n-1}\right)=H_{\mathrm{eq}}^{n-1}(\mathfrak{A}) / \operatorname{ker}\left(\alpha_{n-1}\right) \cong H_{n-1}(X)^{\alpha}
$$

and also $\operatorname{coker}\left(\beta_{n}\right)=\left(H_{n}(X) / \delta H_{n}(X)\right) / \operatorname{ker}\left(\beta_{n}\right) \cong H_{\text {coeq }}^{n}(\mathfrak{A})$ and $\delta[\omega]=$ $[\delta(\omega)]=[\omega-\omega \circ \alpha]=0$.
(2) Given $[\varphi] \in H_{\text {coep }}^{n}(\mathfrak{A})$, then $d_{0} \varphi=\delta \omega$ for some $\omega \in H^{n-1}$, because $d_{0} \varphi \in H_{\text {coeq }}^{n-1}(\mathfrak{A})=\operatorname{ker}\left(\left.d_{0}\right|_{\text {coker }\left(\delta_{H^{n-1}}\right)}\right) / d_{0}\left(\operatorname{coker}\left(\left.\delta\right|_{H^{n}}\right)\right)$ with $\operatorname{coker}\left(\delta_{H^{n-1}}\right)=$ $H^{n-1} / \operatorname{ker}(\delta) \cong \delta\left(H^{n-1}\right)$. Then $\delta\left(d_{0} \omega\right)=d_{0} \omega-\left(d_{0} \omega \circ \alpha\right)=d_{0}(\delta \omega)=$ $d_{0}\left(d_{0} \varphi\right)=0$. Hence $d_{0} \omega \in \operatorname{ker}\left(\left.\delta\right|_{H^{n-2}}\right)$. This says that $\left[d_{0} \omega\right] \in H_{\mathrm{eq}}^{n-2}(\mathfrak{A})$ and we set $s_{2}(\varphi)=$ the class of $d_{0} \omega$ in $\operatorname{ker}\left(\alpha_{n-2}\right)$ since $0=\delta\left[d_{0} \omega\right]=$ $\left[d_{0} \omega\right]-\left[d_{0} \omega \circ \alpha\right]$ with $\left[d_{0} \omega\right]=0$ in $H_{n-2}(X)$.
(3) Given $[\varphi] \in \operatorname{ker}\left(\alpha_{n-2}\right) \subset H_{\mathrm{eq}}^{n-2}(\mathfrak{A})=\operatorname{ker}\left(\left.d_{0}\right|_{\operatorname{ker}\left(\left.\delta\right|_{H^{n-2}}\right)}\right) / d_{0}\left(\operatorname{ker}\left(\left.\delta\right|_{H^{n-1}}\right)\right)$, then $d_{0} \varphi=\delta \varphi=0$ and $\varphi=d_{0} \omega$ for some $n-1$ current ω. Then $\delta \omega$ gives an $n-1$ current on X and moreover $d_{0} \delta \omega=\delta d_{0} \omega=\delta \varphi=0$, and hence $[\delta \omega] \in H_{n-1}(X)$ and $\in \delta H_{n-1}(X)$, which is mapped to zero under β_{n-2}. We set $s_{3}(\varphi)=$ the class of $\delta \omega$ in $\operatorname{ker}\left(\beta_{n-1}\right)$.

The above short sequence obtained in that way is exact and furthermore, s_{1} is injective and s_{3} is surjective. In fact, the injectiveness of $s_{1}:$ if $s_{1}([\varphi])=$ $[\omega]=0$, then $w=d_{0}(\rho)$ for some ρ, and hence $\delta \varphi=d_{0}\left(d_{0} \rho\right)=0$, and thus $\varphi \in \operatorname{ker}(\delta)$ and then $[\varphi] \in H_{\mathrm{eq}}^{n-1}(\mathfrak{A})$. Also, if $\operatorname{ker}\left(\beta_{n}\right)=\delta H_{n}(X)$, then $[\omega]=[\delta \rho]$ for some ρ, and thus $[\delta \varphi]=\left[d_{0} \omega\right]=\left[\delta d_{0} \rho\right]$, which may imply $[\varphi]=\left[d_{0} \rho\right]$ if δ is injective at the class, and thus $[\varphi]=0 \in \operatorname{coker}\left(\alpha_{n-1}\right)$. The surjectiveness of s_{3} follows if $\operatorname{ker}\left(\beta_{n-1}\right)=\delta H_{n-1}(X)$. The exactness at $\operatorname{coker}\left(\beta_{n}\right)$: if $s_{2}([\varphi])=\left[d_{0} \omega\right]=0$ for some $n-1$ current ω, then $d_{0} \varphi=\delta \omega$ and hence $[\varphi]=s_{1}([\omega])$. The exactness at $\operatorname{ker}\left(\alpha_{n-2}\right)$: if $s_{3}([\varphi])=[\delta \omega]=0$ with $\varphi=d_{0} \omega$, then $d_{0}(\delta \omega)=0$ so that $\delta \omega=d_{0}(\psi)$ for some ψ, and thus $s_{2}([\psi])=\left[d_{0} \omega\right]=[\varphi]$.

When $X=\mathbb{T}$ we get the following:
(4) As $n=0, \beta_{0}: H_{0}(\mathbb{T}) / \delta H_{0}(\mathbb{T}) \rightarrow H_{\text {coeq }}^{0}(\mathfrak{A})$ is surjective, i.e., $H_{\text {coeq }}^{0}(\mathfrak{A}) \cong H_{0}(\mathbb{T})=\mathbb{C}$. Also, $\alpha_{0}: H_{\text {eq }}^{0}(\mathfrak{A}) \rightarrow H_{0}(\mathbb{T})$ is surjective since $H_{0}(\mathbb{T})=\mathbb{C}$ and the generator can be represented by any α-invariant measure on the circle.
(5) As $n=1, \beta_{1}: H_{1}(\mathbb{T}) / \delta H_{1}(\mathbb{T}) \rightarrow H_{\text {coeq }}^{1}(\mathfrak{A})$ is surjective. Also $\alpha_{1}: H_{\mathrm{eq}}^{1}(\mathfrak{A}) \rightarrow H_{1}(\mathbb{T})$ is surjective, in fact α preserves orientation of \mathbb{T}.

It follows that

$$
0 \rightarrow \operatorname{coker}\left(\alpha_{1}\right) \xrightarrow{s_{1}} \operatorname{coker}\left(\beta_{2}\right)=0 \xrightarrow{s_{2}} \operatorname{ker}\left(\alpha_{0}\right) \xrightarrow{s_{3}} \operatorname{ker}\left(\beta_{1}\right) \rightarrow 0
$$

and

Let μ denote an α-invariant probability measure on the unit circle and let τ be the fundamental class of $\mathbb{T}: \tau(f, g)=\int f d g$. We can write $H_{0}(\mathbb{T})=$ $H_{\text {coeq }}^{0}(\mathfrak{A})=\mathbb{C} \mu$ and $H_{1}(\mathbb{T})=H_{\text {eq }}^{1}(\mathfrak{A})=\mathbb{C} \tau$. There are two possibilities as follows.

If τ is non-zero in $H_{\text {coeq }}^{1}(\mathfrak{A})$, then $H_{\text {eq }}^{0}(\mathfrak{A})=H_{0}(\mathbb{T})=\mathbb{C} \mu$, because $\operatorname{ker}\left(\beta_{1}\right)=0$, so that $\operatorname{ker}\left(\alpha_{0}\right)=0$. This gives that $\operatorname{dim} \mathbb{E}_{\infty}^{0}(\mathfrak{C})=\operatorname{dim} H_{\text {eq }}^{0}(\mathfrak{A})=$ 1 and $\operatorname{dim} \mathbb{E}_{\infty}^{2}(\mathfrak{C})=\operatorname{dim} H_{\text {coep }}^{1}(\mathfrak{A})=1$.

If $\tau=\delta \omega$ for a 1-current ω on \mathbb{T}, then $H_{\text {coeq }}^{1}(\mathfrak{A})=0, H_{\mathrm{eq}}^{0}(\mathfrak{A})=\mathbb{C} \mu \oplus$ $\mathbb{C} d_{0} \omega$, and $\operatorname{dim} \mathbb{E}_{\infty}^{0}(\mathfrak{C})=\operatorname{dim} H_{\text {eq }}^{0}(\mathfrak{A})=2$ and $\operatorname{dim} \mathbb{E}_{\infty}^{2}(\mathfrak{C})=\operatorname{dim} H_{\text {coeq }}^{1}(\mathfrak{A})=$ 0 .

In both cases,

$$
\operatorname{dim} \mathbb{E}_{\infty}^{1}(\mathfrak{C})=\operatorname{dim} H_{\text {coeq }}^{0}(\mathfrak{A})+\operatorname{dim} H_{\mathrm{eq}}^{1}(\mathfrak{A})=2
$$

Since $\mathbb{E}_{\infty}^{n}(\mathfrak{A})$ are the graded groups of the filtration of $H C(\mathfrak{C})$ by dimension, the result now follows from the last theorem in the subsection 1.6 and the fact that $H_{\mathrm{eq}}^{n}(\mathbb{T})=0$ and $H_{\mathrm{coeq}}^{n}(\mathbb{T})=0$ for $n \geq 2$.

Remark. A filtration of a chain complex C_{*} is a sequence $\left\{F_{n} C_{*}\right\}_{n \in \mathbb{Z}}$ of subcomlexes of C_{*} such that $F_{n} C_{*} \subset F_{n+1} C_{*}$ for $n \in \mathbb{Z}, \cup_{n} F_{n} C_{*}=C_{*}$, and $\cap_{n} F_{n} C_{*}=\{0\}$ (see [2]). According to [1], for the double complex $\left(C^{n, m}=C^{n-m}\left(\mathfrak{A}, \mathfrak{A}^{*}\right),(b, B)\right)$, the \mathbb{E}_{2} term of the spectral sequence associated to the first filtration $F_{p} C=\sum_{n \geq p} C^{n, m}$ is zero, and the second filtration with $F^{q}=\sum_{m \geq q} C^{n, m}$ yields the same filtration of $H^{*}(\mathfrak{A})$ as the filtration by dimensions of cycles, and that $H^{p}\left(F^{q} C\right)=H C^{n}(\mathfrak{A})$ for $n=p-2 q$, and $H^{n}\left(C^{*, *}\right)=H^{\text {ev }}(\mathfrak{A})$ if n is even and $=H^{\text {odd }}(\mathfrak{A})$ if n is odd, and the associated spectral sequence converges to the associated graded $\sum F^{q} H^{*}(\mathfrak{A}) / F^{q+1} H^{*}(\mathfrak{A})$.

1.8 Cyclic cohomology of the smooth crossed product: Computation outline

As the first step, we consider the following diagram: for $\mathfrak{C}=\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$,

where the map $\#_{\alpha}$ will be constructed so as to make the above diagram commutative and then be proved that the middle row is exact.

The main ingredient of the proof is a cochain map $\eta: C^{n+1}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)_{\text {hom }} \rightarrow$ $C^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)$, which satisfies $b \eta=\eta b+\delta$ and $N \eta N=\eta N$. Such a map η induces two maps as follows by passing to quotients and restriction to \mathfrak{A} : from the quotient of cocycles vanishing on \mathfrak{A} by coboundaries to $H\left(\mathfrak{A}, \mathfrak{A}^{*}\right)$, and from the quotient of cyclic cocycles vanishing on \mathfrak{A} by cyclic coboundaries to $H_{\lambda}(\mathfrak{A})$. Both of these maps are defined on $\operatorname{ker}(i)$ in cohomology:

$$
\begin{aligned}
& H^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)_{\text {hom }} \supset \operatorname{ker}(i) \xrightarrow{\eta} H^{n-1}\left(\mathfrak{A}, \mathfrak{A}^{*}\right), \\
& H_{\lambda}^{n}(\mathfrak{C})_{\text {hom }} \supset \operatorname{ker}(i) \xrightarrow{\eta} H_{\lambda}^{n-1}(\mathfrak{A}) .
\end{aligned}
$$

Next it will be shown that $\eta \pi=$ id in Hochshild cohomology. This, together with the commutativity of the diagram above allow to conclude that $\operatorname{ker}(i) \subset \operatorname{Im}(\# \alpha)$ in $H_{\lambda}(\mathfrak{C})_{\text {hom }}$. It will be shown that the sequence is exact:

$$
\cdots \xrightarrow{\delta} H_{\lambda}^{n-1}(\mathfrak{A}) \xrightarrow{\#_{\alpha}} H_{\lambda}^{n}(\mathfrak{C})_{\mathrm{hom}} \xrightarrow{i} H_{\lambda}^{n}(\mathfrak{A}) \xrightarrow{\delta} \cdots .
$$

As the final step, using this we construct a six-term exact sequence of the periodic cyclic cohomology of \mathfrak{C}.

1.9 Construction of a map in cyclic cohomology

Start with a differential graded algebra (E, d) defined as $E=E_{0} \oplus E_{1}$, where

$$
\begin{aligned}
& E_{0}=\left\{\sum_{n} a_{n} u^{n}: n \in \mathbb{Z}, a_{n} \in \mathbb{C}\right\} \text { and } \\
& E_{1}=\left\{\sum_{n, m} a_{n, m} u^{n}(d u) u^{m}: n, m \in \mathbb{Z}, a_{n, m} \in \mathbb{C}\right\},
\end{aligned}
$$

where the sums are finite sums, and the product structure is given by $u^{0}=1, u^{i} u^{j}=u^{i+j}, u^{i}\left(u^{j}(d u) u^{k}\right) u^{l}=u^{i+j}(d u) u^{k+l}$, and $(d u) u^{i}(d u)=0$, and where the graded differential d is defined by $d u^{n}=\sum_{i=1}^{n} u^{i}\left(u^{-1} d u\right) u^{n-i}$ if n positive, and if n is negative, the sum is changed to $-\sum_{i=n+1}^{0}$, and $d 1=0$, and $\left.d\right|_{E_{1}}=0$.

The fact that (E, d) becomes a differential graded algebra with the above definitions follows from its representation as a quotient of the universal differential graded algebra $\Omega\left(\mathbb{C}\left[u, u^{-1}\right]\right)$ by the graded ideal generated by $\oplus_{i \geq 2} \Omega_{i}$ together with $d 1 \in \Omega_{1}$ and $1 \in \Omega_{0}$ the unit of $\mathbb{C}\left[u, u^{-1}\right]$. Recall that the algebra $\Omega\left(\mathbb{C}\left[u, u^{-1}\right]\right)$ is generated by finite linear combinations of symbols: $g_{0} d g_{1} d g_{2} \cdots d g_{n} \in \Omega_{n}$ with $g_{i}=u^{k_{i}}$ for some $k_{i} \in \mathbb{Z}$, and has product and differential given by

$$
\begin{aligned}
& \left(g_{0} d g_{1} \cdots d g_{n}\right)\left(g_{n+1} d g_{n+2} \cdots d g_{m}\right) \\
& =\sum_{j=1}^{n}(-1)^{n-j} g_{0} d g_{1} \cdots d\left(g_{j} g_{j+1}\right) \cdots d g_{n} d g_{n+1} \cdots d g_{m} \\
& \text { and } \quad d\left(g_{0} d g_{1} \cdots d g_{n}\right)=d g_{0} d g_{1} \cdots d g_{n}
\end{aligned}
$$

Now suppose that we are given a cycle $\left(\Omega, d^{\sim}, \varphi\right)$ (such as $\varphi\left(g_{0} d g_{1} \cdots d g_{n}\right)=$ 0 unless $n=k$ and $g_{0} g_{1} \cdots g_{n}=1$ and $\varphi\left(g_{0} d g_{1} \cdots d g_{k}\right)=c\left(g_{1}, \cdots, g_{k}\right)$ for some k-dimensional cycle c) and an action α of \mathbb{Z} on Ω, i.e., an automorphism of Ω commuting with d^{\sim}. Define a crossed product cycle ($E \otimes_{\alpha} \Omega, d, \#_{\alpha} \varphi$) as follows.
(1) $E \otimes_{\alpha} \Omega=E \otimes \Omega$ as an algebraic tensor product of graded vector spaces;
(2) the product structure is induced by the relations: $(1 \otimes \omega)(u \otimes 1)=$ $u \otimes \alpha^{-1}(\omega)$ and $(1 \otimes w)(d u \otimes 1)=(-1)^{\operatorname{deg} \omega} d u \otimes \alpha^{-1}(\omega)$;
(3) the differential d is given by $d\left(\omega_{1} \otimes \omega_{2}\right) d \omega_{1} \otimes \omega_{2}+(-1)^{\operatorname{deg}} \omega^{\omega} \omega_{1} \otimes d^{\sim} \omega_{2}$;
(4) the closed graded trace $\#_{\alpha} \varphi$ is given by $\#{ }_{\alpha} \varphi\left(u^{i}\left(u^{-1} d u\right) u^{j} \otimes \omega\right)=$ $\varphi\left(\alpha^{j}(\omega)\right) \delta_{i+j, 0}$ and $\left.\# \alpha \varphi\right|_{E_{0} \otimes \Omega}=0$.

Let us check that $\# \alpha \varphi$ is indeed a closed graded trace as: for n positive,

$$
\begin{aligned}
\#{ }_{\alpha} \varphi\left(d\left(u^{n} \otimes \omega\right)\right) & =\#_{\alpha} \varphi\left(\sum_{i=1}^{n} u^{i}\left(u^{-1} d u\right) u^{n-i} \otimes \omega+u^{n} \otimes d^{\sim} \omega\right) \\
& =\sum_{i=1}^{n} \varphi\left(\alpha^{n-i}(\omega)\right) \delta_{n, 0}+\varphi\left(u^{n} \otimes d^{\sim} \omega\right)=0+0=0 \\
\#_{\alpha} \varphi\left(d\left(u^{i}\left(u^{-1} d u\right) u^{j} \otimes \omega\right)\right) & =\#_{\alpha} \varphi\left(0 \otimes \omega-u^{i}\left(u^{-1} d u\right) u^{j} \otimes d^{\sim} \omega\right) \\
& =-\varphi\left(\alpha^{j}\left(d^{\sim} \omega\right)\right) \delta_{i+j, 0}=-\varphi\left(d^{\sim} \alpha^{j}(\omega)\right) \delta_{i+j, 0}=0
\end{aligned}
$$

where the sum $\sum_{i=1}^{n}$ is zero if $n=0$ and it is replaced with $-\sum_{i=n+1}^{0}$ if n is negative, and φ is closed, which implies the last equality. Hence $\left(\#{ }_{\alpha} \varphi\right) \circ d=0$, i.e., $\# \alpha \varphi$ is closed.

To check the graded trace property it is sufficient to show that

$$
\begin{aligned}
& \left.\#_{\alpha} \varphi\left(u^{-n-m-1}(d u) u^{n} \otimes \omega\right)\left(u^{m} \otimes \omega^{\prime}\right)\right) \\
& =\#{ }_{\alpha} \varphi\left(u^{-n-m-1}(d u) u^{n+m} \otimes \alpha^{-m}(\omega) \omega^{\prime}\right)=\varphi\left(\alpha^{n}(\omega) \alpha^{n+m}\left(\omega^{\prime}\right)\right) \delta_{0,0} \\
& \# \alpha_{\alpha} \varphi\left(\left(u^{m} \otimes \omega^{\prime}\right)\left(u^{-n-m-1}(d u) u^{n} \otimes \omega\right)\right) \\
& =(-1)^{\operatorname{deg} \omega^{\prime}} \#{ }_{\alpha} \varphi\left(u^{-n-1}(d u) u^{n} \otimes \alpha^{m}\left(\omega^{\prime}\right) \omega\right)=(-1)^{\operatorname{deg} \omega^{\prime}} \varphi\left(\alpha^{n+m}\left(\omega^{\prime}\right) \alpha^{n}(\omega)\right) \delta_{0,0}
\end{aligned}
$$

and since φ is a graded trace on Ω, we get

$$
\begin{aligned}
\varphi\left(\alpha^{n}(\omega) \alpha^{n+m}\left(\omega^{\prime}\right)\right) & =(-1)^{(\operatorname{deg} \omega)\left(\operatorname{deg} \omega^{\prime}\right)} \varphi\left(\alpha^{n+m}\left(\omega^{\prime}\right) \alpha^{n}(\omega)\right) \\
& =(-1)^{(\operatorname{deg} \omega+1)\left(\operatorname{deg} \omega^{\prime}\right)}\left[(-1)^{\operatorname{deg} \omega^{\prime}} \varphi\left(\alpha^{n+m}\left(\omega^{\prime}\right) \alpha^{n}(\omega)\right)\right]
\end{aligned}
$$

Since $\operatorname{deg}\left(u^{-n-m-1}(d u) u^{n} \otimes \omega\right)=1+\operatorname{deg} \omega$, the equality combined and obtained shows that $\#_{\alpha} \varphi$ is a graded trace.

Now let φ be a cyclic cocycle on \mathfrak{A} and consider the cycle $\left(\Omega(\mathfrak{A}), d, \varphi^{\wedge}\right)$, with the action α of \mathbb{Z} defined by $\alpha\left(x_{0} d x_{1} \cdots d x_{n}\right)=\alpha\left(x_{0}\right) d \alpha\left(x_{1}\right) \cdots d \alpha\left(x_{n}\right)$, and where φ^{\wedge} denotes the associated graded trace defined by $\varphi^{\wedge}\left(x_{0} d x_{1} \cdots d x_{n}\right)=$ $\varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)$. Then $\#{ }_{\alpha} \varphi$ is a closed graded trace on $E \otimes_{\alpha} \Omega(\mathfrak{A})$.

Define a homomorphism $\rho: \mathfrak{A} \rtimes_{\alpha}\left[u, u^{-1}\right] \rightarrow E \otimes_{\alpha} \Omega(\mathfrak{A})_{0}$ by $\rho\left(u^{m} x\right)=$ $u^{m} \otimes x$ for $x \in \mathfrak{A}$. Check that

$$
\begin{aligned}
\rho\left(u^{m} x u^{n} y\right) & =\rho\left(u^{m+n} \alpha^{-n}(x) y\right)=u^{m+n} \otimes \alpha^{-n}(x) y \\
\rho\left(u^{m} x\right) \rho\left(u^{n} y\right) & =\left(u^{m} \otimes x\right)\left(u^{n} \otimes y\right)=u^{m+n} \otimes \alpha^{-n}(x) y
\end{aligned}
$$

Then $\#{ }_{\alpha} \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)=\#{ }_{\alpha} \varphi\left(\rho\left(x_{0}\right) d \rho\left(x_{1}\right) \cdots d \rho\left(x_{n}\right)\right)$, where note that for $x_{i} \in \mathfrak{A}$, we have $\rho\left(x_{i}\right)=1 \otimes x_{i}$ and $d \rho\left(x_{i}\right)=d 1 \otimes x_{i}+1 \otimes d x_{i}=$ $1 \otimes d x_{i}$ and $d \rho\left(u^{m_{i}} x_{i}\right)=d\left(u^{m_{i}} \otimes x_{i}\right)=d u^{m_{i}} \otimes x_{i}+u^{m_{i}} \otimes d x_{i}$ with $d u^{m_{i}}=\sum_{j=1}^{m_{i}} u^{j}\left(u^{-1} d u\right) u^{m_{i}-j}$ if m_{i} positive. Note that we use the same symbol $\#_{\alpha} \varphi$ to denote both the closed graded trace on $E \otimes_{\alpha} \Omega(\mathfrak{A})$ and the corresponding cyclic cocycle on \mathfrak{C}.

Now let us fix the notation as: $x_{i}=u^{m_{i}} a_{i}\left(i=1, \cdots, n, m_{i} \in \mathbb{Z}, a_{i} \in \mathfrak{A}\right)$, $D(e \otimes \omega)=d e \otimes \omega$ for $e \in E$ and $\omega \in \Omega(\mathfrak{A})$, and $\gamma=u^{-1} d u \otimes 1 \in E \otimes_{\alpha} \Omega(\mathfrak{A})$. Note that γ is closed and D is a derivation of $E \otimes_{\alpha} \Omega(\mathfrak{A})$ anticommuting with d. Check that

$$
\begin{aligned}
d \gamma & =d\left(u^{-1} d u \otimes 1\right)=d\left(u^{-1} d u\right) \otimes 1+u^{-1} d u \otimes d 1 \\
& =\left(d u^{-1} d u-u^{-1} d^{2} u\right) \otimes 1=-u^{-1}(d u) u^{-1} d u \otimes 1=0
\end{aligned}
$$

since $0=d 1=d\left(u^{-1} u\right)=\left(d u^{-1}\right) u+u^{-1} d u$, and also that

$$
\begin{aligned}
& D((e \otimes \omega)(u \otimes \mu))=D\left(e u \otimes \alpha^{-1}(\omega) \mu\right) \\
& =d(e u) \otimes \alpha^{-1}(\omega) \mu=(d e) u \otimes \alpha^{-1}(\omega) \mu+e d u \otimes \alpha^{-1}(\omega) \mu \\
& =D(e \otimes \omega)(u \otimes \mu)+(-1)^{\operatorname{deg} \omega}(e \otimes \omega) D(u \otimes \mu) \\
& D((e \otimes \omega)(d u \otimes \mu))=(-1)^{\operatorname{deg} \omega} D\left(e d u \otimes \alpha^{-1}(\omega) \mu\right) \\
& =(-1)^{\operatorname{deg} \omega} d(e d u) \otimes \alpha^{-1}(\omega) \mu=(-1)^{\operatorname{deg} \omega}(d e) d u \otimes \alpha^{-1}(\omega) \mu \\
& =D(e \otimes \omega)(d u \otimes \mu)+(-1)^{\operatorname{deg} \omega}(e \otimes \omega) D(d u \otimes \mu)
\end{aligned}
$$

and further that

$$
\begin{aligned}
(D \circ d)(e \otimes \omega) & =D\left(d e \otimes \omega+(-1)^{\operatorname{deg} e} e \otimes d \omega\right)=(-1)^{\operatorname{deg} e} d e \otimes d \omega \\
(d \circ D)(e \otimes \omega) & =d(d e \otimes \omega)=d^{2} e \otimes \omega+(-1)^{\operatorname{deg} d e} d e \otimes d \omega \\
& =(-1)(D \circ d)(e \otimes \omega)
\end{aligned}
$$

Let us set that

$$
\begin{aligned}
\pi_{i} \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right) & =\#{ }_{\alpha} \varphi\left(x_{0} d x_{1} \cdots d x_{i-1} D x_{i} d x_{i+1} d x_{n}\right) \\
\bar{\pi}_{i} \varphi\left(x_{0}, x_{1}, \cdots, x_{n-1}\right) & =\pi_{i+1} \varphi\left(1, x_{0}, x_{1}, \cdots, x_{n-1}\right) \\
\rho_{i} \varphi\left(x_{0}, x_{1}, \cdots, x_{n-1}\right) & =\#{ }_{\alpha} \varphi\left(x_{0} d x_{1} \cdots d x_{i-1} \gamma d x_{i} \cdots d x_{n-1}\right)
\end{aligned}
$$

Lemma 1.9.1. Suppose that φ is a cyclic cocycle on \mathfrak{A}. Then the following identities hold: (1) $\#{ }_{\alpha} \varphi=\sum_{i=1}^{n} \pi_{i} \varphi$, (2) $b \bar{\pi}_{i} \varphi=\pi_{i+1} \varphi-\pi_{i} \varphi$ for $i>0$, and $b \bar{\pi}_{0} \varphi=\pi_{1} \varphi-\pi_{n} \varphi$,
(3) $b \rho_{i} \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)=(-1)^{i} \#{ }_{\alpha} \varphi\left(x_{0} d x_{1} \cdots d x_{i-1}\left[x_{i}, \gamma\right] d x_{i+1} \cdots d x_{n}\right)$,
and (4) $T \rho_{i} \varphi=-\rho_{i-1} \varphi$.
Proof. (1) From the definition of the product in $E \otimes_{\alpha} \Omega$ we get $x_{0} d x_{1} d x_{2} \cdots d x_{n}$

$$
\begin{aligned}
& =x_{0} d\left(u^{m_{1}} \otimes a_{1}\right) d x_{2} \cdots d x_{n} \\
& =x_{0}\left(d u^{m_{1}} \cdot a_{1}\right) d x_{2} \cdots d x_{n}+x_{0}\left(u^{m_{1}} d a_{1}\right) d x_{2} \cdots d x_{n} \\
& =x_{0}\left(d u^{m_{1}} \cdot a_{1}\right)\left(d u^{m_{2}} \cdot a_{2}+u^{m_{2}} d a_{2}\right) d x_{3} \cdots d x_{n} \\
& +x_{0}\left(u^{m_{1}} d a_{1}\right)\left(d u^{m_{2}} \cdot a_{2}+u^{m_{2}} d a_{2}\right) d x_{3} \cdots d x_{n} \\
& =x_{0}\left(d u^{m_{1}} \cdot a_{1}\right)\left(u^{m_{2}} d a_{2}\right) d x_{3} \cdots d x_{n}+x_{0}\left(u^{m_{1}} d a_{1}\right)\left(d u^{m_{2}} \cdot a_{2}\right) d x_{3} \cdots d x_{n} \\
& +x_{0}\left(u^{m_{1}} d a_{1}\right)\left(u^{m_{2}} d a_{2}\right) d x_{3} \cdots d x_{n}=\cdots \cdots \\
& =\sum_{i=1}^{n} x_{0}\left(u^{m_{1}} d a_{1}\right) \cdots\left(u^{m_{i-1}} d a_{i-1}\right)\left(d u^{m_{i}} \cdot a_{i}\right)\left(u^{m_{i+1}} d a_{i+1}\right) \cdots\left(u^{m_{n}} d a_{n}\right) \\
& +x_{0}\left(u^{m_{1}} d a_{1}\right)\left(u^{m_{2}} d a_{2}\right) \cdots\left(u^{m_{n}} d a_{n}\right)
\end{aligned}
$$

which is also equal to

$$
\sum_{i=1}^{n} x_{0} d x_{1} \cdots d x_{i-1} D x_{i} d x_{i+1} \cdots d x_{n}+x_{0}\left(u^{m_{1}} d a_{1}\right)\left(u^{m_{2}} d_{2}\right) \cdots\left(u^{m_{n}} d a_{n}\right)
$$

by the same computation, and $\#_{\alpha} \varphi$ is zero on the last term because $\left.\#{ }_{\alpha} \varphi\right|_{E_{0} \otimes_{\alpha} \Omega}=0$. Hence the first identity (1) holds.
(2) and (3). By a straightforward computation we check that

$$
\begin{aligned}
& b\left(\bar{\pi}_{0} \varphi\right)\left(x_{0}, x_{1}, \cdots, x_{n}\right) \\
& =\sum_{i=0}^{n-1}(-1)^{i} \bar{\pi}_{0} \varphi\left(x_{0}, x_{1}, \cdots, x_{i} x_{i+1}, \cdots, x_{n}\right)+(-1)^{n} \bar{\pi}_{0} \varphi\left(x_{0} x_{n}^{\circ}, x_{1}, \cdots, x_{n-1}\right) \\
& =\sum_{i=0}^{n-1}(-1)^{i} \pi_{1} \varphi\left(1, x_{0}, x_{1}, \cdots, x_{i} x_{i+1}, \cdots, x_{n}\right)+(-1)^{n} \pi_{1} \varphi\left(1, x_{0} x_{n}^{\circ}, x_{1}, \cdots, x_{n-1}\right) \\
& =\sum_{i=0}^{n-1}(-1)^{i} \#{ }_{\alpha} \varphi\left(1 D x_{0} d x_{1} \cdots d\left(x_{i} x_{i+1}\right) \cdots d x_{n}\right) \\
& +(-1)^{n} \#_{\alpha} \varphi\left(1 D\left(x_{0} x_{n}^{\circ}\right) d x_{1} \cdots d x_{n-1}\right)
\end{aligned}
$$

while we have

$$
\begin{aligned}
& \left(\pi_{1} \varphi-\pi_{n} \varphi\right)\left(x_{0}, x_{1}, \cdots, x_{n}\right) \\
& =\#_{\alpha} \varphi\left(x_{0} D x_{1} d x_{2} \cdots d x_{n}\right)-\#{ }_{\alpha} \varphi\left(x_{0} d x_{1} \cdots d x_{n-1} D x_{n}\right)
\end{aligned}
$$

To get the equality between those we use the facts that both D and d are derivations of $E \otimes_{\alpha} \Omega$ and that $\#_{\alpha} \varphi$ is a graded trace.

Check also that

$$
\begin{aligned}
& b\left(\rho_{k} \varphi\right)\left(x_{0}, x_{1}, \cdots, x_{n}\right) \\
& =\sum_{i=0}^{n-1}(-1)^{i} \rho_{k} \varphi\left(x_{0}, x_{1}, \cdots, x_{i} x_{i+1}, \cdots, x_{n}\right)+(-1)^{n} \rho_{k} \varphi\left(x_{0} x_{n}^{\circ}, x_{1}, \cdots, x_{n-1}\right) \\
& =\sum_{i=0}^{n-1}(-1)^{i} \#{ }_{\alpha} \varphi\left(x_{0} d x_{1} \cdots d x_{k-1} \gamma d x_{k} \cdots d\left(x_{i} x_{i+1}\right) \cdots d x_{n}\right) \\
& +(-1)^{n} \#{ }_{\alpha} \varphi\left(x_{0} x_{n}^{\circ} d x_{1} \cdots d x_{k-1} \gamma d x_{k} \cdots d x_{n-1}\right)
\end{aligned}
$$

and in particular, note that $d\left(x_{k-1} x_{k}\right) \gamma=\left(\left(d x_{k-1}\right) x_{k}+(-1)^{\operatorname{deg} x_{k-1}} x_{k-1} d x_{k}\right) \gamma$ and $\gamma d\left(x_{k} x_{k+1}\right)=\gamma\left(\left(d x_{k}\right) x_{k+1}+(-1)^{\operatorname{deg} x_{k}} x_{k} d x_{k+1}\right)$.
(4) We have

$$
\begin{aligned}
& T \rho_{i} \varphi\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)=(-1)^{n-1} \rho_{i} \varphi\left(x_{n-1}, x_{0}, \cdots, x_{n-2}\right) \\
& =(-1)^{n-1} \#{ }_{\alpha} \varphi\left(x_{n-1} d x_{0} \cdots d x_{i-2} \gamma d x_{i-1} \cdots d x_{n-2}\right) \\
& =(-1)^{n-1} \#{ }_{\alpha} \varphi\left(d x_{0} \cdots d x_{i-2} \gamma d x_{i-1} \cdots d x_{n-2} x_{n-1}\right) \\
& =(-1)^{n-1}(-1)^{n} \#{ }_{\alpha} \varphi\left(x_{0} d x_{1} \cdots d x_{i-2} \gamma d x_{i-1} \cdots d x_{n-2} d x_{n-1}\right) \\
& =-\rho_{i-1} \varphi\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)
\end{aligned}
$$

where we use the identity $d\left(x_{0}\left(d x_{1} \cdots d x_{i-2} \gamma d x_{i-1} \cdots d x_{n-2}\right) x_{n-1}\right)=$ $\left(d x_{0} d x_{1} \cdots d x_{i-2} \gamma d x_{i-1} \cdots d x_{n-2}\right) x_{n-1}+(-1)^{n-1} x_{0} d x_{1} \cdots d x_{i-2} \gamma d x_{i-1} \cdots d x_{n-1}$, together with the closedness of $\#{ }_{\alpha} \varphi$.

Recall now the map $\#^{\sim}: M_{n-1}^{*} \rightarrow\left(L_{n}^{*}\right)_{\text {hom }}$ defined by $\#^{\sim}(\varphi)=\pi \varphi-$ $b R \bar{\pi} \varphi-R \bar{\pi} b \varphi$ in the subsection 1.7.

Proposition 1.9.2. (1) $\#_{\alpha}=(-1)^{n} n \#^{\sim}$ on $H_{\lambda}^{n-1}(\mathfrak{A})$.
(2) $\#_{\alpha}$ commutes with S.
(3) $\#_{\alpha} \delta=0$ in cyclic cohomology.

Proof. (1) Let φ be a cyclic cocycle on \mathfrak{A}. Using the trace property of $\#_{\alpha} \varphi$ we note that the identity $T \bar{\pi}_{i} \varphi=\bar{\pi}_{i-1} \varphi(i \bmod n($ from $i=1$ to $n))$. Indeed,

$$
\begin{aligned}
& T \bar{\pi}_{i} \varphi\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)=(-1)^{n-1} \bar{\pi}_{i} \varphi\left(x_{n-1}, x_{0}, x_{1}, \cdots, x_{n-2}\right) \\
& =(-1)^{n-1} \pi_{i+1} \varphi\left(1, x_{n-1}, x_{0}, \cdots x_{n-2}\right) \\
& =(-1)^{n-1} \# \alpha \varphi\left(1 d x_{n-1} d x_{0} \cdots D x_{i-1} \cdots d x_{n-2}\right), \quad \text { while } \\
& \bar{\pi}_{i-1} \varphi\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)=\pi_{i} \varphi\left(1, x_{0}, x_{1}, \cdots, x_{n-1}\right) \\
& =\#{ }_{\alpha} \varphi\left(1 d x_{0} d x_{1} \cdots D x_{i-1} \cdots d x_{n-1}\right) .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
n b R \bar{\pi}_{0} \varphi & =n b \frac{1}{n}\left(n \bar{\pi}_{0} \varphi+(n-1) T \bar{\pi}_{0} \varphi+\cdots T^{n-1} \bar{\pi}_{0} \varphi\right) \\
& =b\left(n \bar{\pi}_{0} \varphi+(n-1) \bar{\pi}_{n-1} \varphi+\cdots \bar{\pi}_{1} \varphi\right) \\
& =n\left(\pi_{1} \varphi-\pi_{n} \varphi\right)+(n-1)\left(\pi_{n} \varphi-\pi_{n-1} \varphi\right)+\cdots+\left(\pi_{2} \varphi-\pi_{1} \varphi\right) \\
& =n \pi_{1} \varphi-\sum_{i=1}^{n} \pi_{i} \varphi=n \pi_{1} \varphi-\# \alpha \varphi .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\#_{\alpha} \varphi & =n\left(\pi_{1} \varphi-b R \bar{\pi}_{0} \varphi\right) \\
& =(-1)^{n} n\left((-1)^{n} \pi_{1} \varphi-b R(-1)^{n} \bar{\pi}_{0} \varphi\right) \\
& =(-1)^{n} n(\pi \varphi-b R \bar{\pi} \varphi-R \bar{\pi} b \varphi)=(-1) n \#^{\sim}(\varphi),
\end{aligned}
$$

where $\pi=(-1)^{n} \pi_{1}$ and $\bar{\pi}=(-1)^{n} \bar{\pi}_{0}$ on (n-1)-cochains (and probably, using $b \varphi$ is zero as a cohomology class).
(2) Let us consider the following diagram:

where the vertical arrows are given by the universality of the $\Omega(\cdot)$-construction, and the obvious isomorphism at the bottom gives $\# \alpha(\varphi \# \omega)=(\# \alpha \varphi) \# \omega$ for any closed graded trace ω on $\Omega(\mathbb{C})$ and \# the cup product. If we take ω as the generator of $H_{\lambda}^{2}(\mathbb{C})$ given by $\omega(1 d 1 d 1)=2 \pi i$, then we compute $\#_{\alpha} S \varphi=\#_{\alpha}(\omega \# \varphi)=\#_{\alpha}(\varphi \# \omega)$ in the left-hand column, while we compute $S \#{ }_{\alpha} \varphi=\omega \#\left(\#{ }_{\alpha} \varphi\right)=\left(\#{ }_{\alpha} \varphi\right) \# \omega$ in the right-hand column, i.e., we get $S \#{ }_{\alpha}=\#{ }_{\alpha} S$.
(3) Let us compute $\#_{\alpha} \delta \varphi$ for a cyclic cocycle φ. We have

$$
\begin{aligned}
\pi_{i}(\delta \varphi)\left(x_{0}, x_{1}, \cdots, x_{n}\right) & =\# \alpha(\varphi-\varphi \circ \alpha)\left(x_{0} d x_{1}, \cdots, d x_{i-1} D x_{i} d x_{i+1} \cdots d x_{n}\right) \\
& =\# \alpha \varphi\left(x_{0} d x_{1}, \cdots, d x_{i-1}\left(d u^{m_{i}}\right) a_{i} d x_{i+1} \cdots d x_{n}\right) \\
& -\not{ }_{\alpha} \varphi\left(x_{0} d x_{1} \cdots d x_{i-1} u^{-1}\left(d u^{m_{i}}\right) u a_{i} d x_{i+1} \cdots d x_{n}\right) .
\end{aligned}
$$

Note that $\# \alpha(\varphi \circ \alpha)\left(u^{i-1}(d u) u^{j} \otimes \omega\right)=\#{ }_{\alpha} \varphi\left(u^{i-1}(d u) u^{j} \otimes \alpha(\omega)\right)$. We also have $\left(d u^{m_{i}}\right) a_{i}-u^{-1}\left(d u^{m_{i}}\right) u a_{i}$

$$
\begin{aligned}
& =\sum_{i=1}^{m_{i}}\left(u^{i-1}(d u) u^{m_{i}-i}-u^{i-2}(d u) u^{m_{i}-i+1}\right) a_{i}=\left(u^{m_{i}} u^{-1} d u-u^{-1}(d u) u^{m_{i}}\right) a_{i} \\
& =\left[u^{m_{i}}, u^{-1} d u\right] a_{i}=\left[x_{i}, \gamma\right]
\end{aligned}
$$

where note that $u^{-1} d u a_{i}=u^{-1} d u \alpha^{-1}\left(\alpha\left(a_{i}\right)\right)=u^{-1} \alpha\left(a_{i}\right) d u=a_{i} u^{-1} d u$, and hence we get

$$
\#{ }_{\alpha} \delta \varphi=\sum_{i=1}^{n} \pi_{i} \delta \varphi=\sum_{i=1}^{n}(-1)^{i} b \rho_{i} \varphi=b\left(\sum_{i=1}^{n}(-1)^{i} \rho_{i} \varphi\right)
$$

with $\sum_{i=1}^{n}(-1)^{i} \rho_{i} \varphi$ is a cyclic cochain on \mathfrak{C}, since $T \rho_{i} \varphi=-\rho_{i-1} \varphi$ obtained above. This completes the proof.

Proposition 1.9.3. All the cochains (defined on the algebraic part) such as $\pi_{i} \varphi$ constructed in this subsection extend by continuity to all of \mathfrak{C}.

Proof. Consider the case of $\pi_{1} \varphi$. All the other cases follow by the same way.

Suppose that $x_{0}, x_{1}, \cdots, x_{n} \in \mathfrak{C}$ are the monomials $x_{i}=u^{m_{i}} a_{i}$ with $a_{i} \in \mathfrak{A}$ and $m_{0}+\cdots+m_{n}=0$, and set $a_{j}^{\sim}=\alpha^{m_{0}+m_{1}+\cdots+m_{j}}\left(a_{j}\right)$. Then

$$
\pi_{1} \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)=\sum_{j=1}^{m_{1}} \varphi \circ \alpha^{-j}\left(a_{0}^{\sim} a_{1}^{\sim}, a_{2}^{\sim}, \cdots, a_{n}^{\sim}\right)
$$

But our computation shows that for m_{1} positive, $\pi_{1} \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)$

$$
\begin{aligned}
& =\#{ }_{\alpha} \varphi\left(x_{0} D x_{1} d x_{2} \cdots d x_{n}\right)=\#_{\alpha} \varphi\left(x_{0}\left(d u^{m_{1}}\right) a_{1} d x_{2} \cdots d x_{n}\right) \\
& =\sum_{i=1}^{m_{1}} \#{ }_{\alpha} \varphi\left(x_{0} u^{i}\left(u^{-1} d u\right) u^{m_{1}-i} a_{1} d x_{2} \cdots d x_{n}\right) \\
& =\sum_{i=1}^{m_{1}} \#{ }_{\alpha} \varphi\left(u^{m_{0}} a_{0} u^{i}\left(u^{-1} d u\right) u^{m_{1}-i} a_{1} u^{m_{2}} d a_{2} \cdots u^{m_{n}} d a_{n}\right) \\
& =\sum_{i=1}^{m_{1}} \#{ }_{\alpha} \varphi\left(u^{m_{0}} a_{0} u^{i}\left(u^{-1} d u\right) u^{m_{1}-i} a_{1} u^{m_{2}+m_{3}+\cdots+m_{n}} \alpha^{-m_{3}-\cdots-m_{n}}\left(d a_{2}\right)\right. \\
& \left.\cdots \alpha^{-m_{n-1}-m_{n}}\left(d a_{n-2}\right) \alpha^{-m_{n}}\left(d x_{n-1}\right) d a_{n}\right) \\
& =\sum_{i=1}^{m_{1}} \#{ }_{\alpha} \varphi\left(u^{m_{0}} a_{0} u^{i}\left(u^{-1} d u\right) u^{m_{1}+m_{2}+\cdots+m_{n}-i} \alpha^{-m_{2}-m_{3}+\cdots-m_{n}}\left(a_{1}\right) \alpha^{-m_{3}-\cdots-m_{n}}\left(d a_{2}\right)\right. \\
& \left.\cdots \alpha^{-m_{n-1}-m_{n}}\left(d a_{n-2}\right) \alpha^{-m_{n}}\left(d a_{n-1}\right) d a_{n}\right) \\
& =\sum_{i=1}^{m_{1}} \#{ }_{\alpha} \varphi\left(u^{m_{0}+i}\left(u^{-1} d u\right) u^{m_{1}+m_{2}+\cdots+m_{n}-i} \alpha^{-m_{1}-\cdots-m_{n}}\left(a_{0}\right) \alpha^{-m_{2}-m_{3}+\cdots-m_{n}}\left(a_{1}\right)\right. \\
& \left.\alpha^{-m_{3}-\cdots-m_{n}}\left(d a_{2}\right) \cdots \alpha^{-m_{n-1}-m_{n}}\left(d a_{n-2}\right) \alpha^{-m_{n}}\left(d a_{n-1}\right) d a_{n}\right) \\
& =\sum_{i=1}^{m_{1}} \varphi \circ \alpha^{m_{1}+m_{2}+\cdots+m_{n}-i}\left(\alpha^{-m_{1}-\cdots-m_{n}}\left(a_{0}\right) \alpha^{-m_{2}-m_{3}+\cdots-m_{n}}\left(a_{1}\right)\right.
\end{aligned}
$$

$\left.\alpha^{-m_{3}-\cdots-m_{n}}\left(d a_{2}\right) \cdots \alpha^{-m_{n-1}-m_{n}}\left(d a_{n-2}\right) \alpha^{-m_{n}}\left(d a_{n-1}\right) d a_{n}\right)$
$=\sum_{i=1}^{m_{1}} \varphi \circ \alpha^{-i}\left(a_{0} \alpha^{m_{1}}\left(a_{1}\right)\right.$
$\left.\alpha^{m_{1}+m_{2}}\left(d a_{2}\right) \cdots \alpha^{m_{1}+\cdots+m_{n-2}}\left(d a_{n-2}\right) \alpha^{m_{1}+\cdots+m_{n-1}}\left(d a_{n-1}\right) \alpha^{m_{1}+\cdots+m_{n}}\left(d a_{n}\right)\right)$.
Given that φ satisfies an estimate of the form:

$$
\varphi\left(a_{0}, a_{1}, \cdots, a_{n-1}\right) \leq c\left\|a_{0}\right\|_{k}\left\|a_{1}\right\|_{k} \cdots\left\|a_{n-1}\right\|_{k}
$$

we get $\left|\pi_{1} \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)\right|$
$\leq c \sum_{i=1}^{m_{1}}\left\|\alpha^{-i}\right\|_{k}\left\|\alpha^{m_{1}}\right\|_{k}^{n}\left\|\alpha^{m_{2}}\right\|_{k}^{n-1} \cdots\left\|\alpha^{m_{n}}\right\|_{k}\left\|a_{0}\right\|_{k^{\prime}}\left\|a_{1}\right\|_{k^{\prime}}\left\|d a_{2}\right\|_{k} \cdots\left\|d a_{n}\right\|_{k}$
(corrected partly, but possibly, we can write $\left\|d a_{j}\right\|_{k} \leq\left\|a_{j}\right\|_{k+1}$), where we use a fact that $\|a b\|_{k} \leq\|a\|_{k^{\prime}}\|b\|_{k^{\prime}}$ for some $k^{\prime} \in \mathbb{N}$. Choosing $k^{\prime \prime}=$ $\max \left\{k+1, k^{\prime}\right\}+n+1$, then we have $\left|\pi_{1} \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)\right|$

$$
\leq c \rho_{k^{\prime \prime}}\left(m_{0}\right) \rho_{k^{\prime \prime}}\left(m_{1}\right) \cdots \rho_{k^{\prime \prime}}\left(m_{n}\right)\left\|a_{0}\right\|_{k^{\prime \prime}}\left\|a_{1}\right\|_{k^{\prime \prime}} \cdots\left\|a_{n}\right\|_{k^{\prime \prime}}
$$

where $\rho_{k}(m)=\max _{1 \leq i \leq k}\left(\sum_{t=-m}^{m}\left\|\alpha^{t}\right\|_{i}\right)^{k}$. If now x_{i} are given as finite sums of monomials: $x_{i}=\sum_{m_{i}} u^{m_{i}} a_{i, m_{i}}$, then we get $\left|\pi_{1} \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)\right|$

$$
\begin{aligned}
& \leq C \sum_{m_{0}} \cdots \sum_{m_{n}} \frac{1}{m_{0}^{2}} \cdots \frac{1}{m_{n}^{2}} \rho_{k^{\prime \prime}+2}\left(m_{0}\right) \cdots \rho_{k^{\prime \prime}+2}\left(m_{n}\right)\left\|a_{0, m_{0}}\right\|_{k^{\prime \prime}} \cdots\left\|a_{n, m_{n}}\right\|_{k^{\prime \prime}} \\
& \leq C \cdot 2^{n}\left(1+\sum_{m>0} \frac{1}{m^{2}}\right)^{n}\left\|x_{0}\right\|_{k^{\prime \prime}+2} \cdots\left\|x_{n}\right\|_{k^{\prime \prime}+2}
\end{aligned}
$$

where $|n| \rho_{k}(n) \leq \rho_{k+1}(n)$ and $|n| \rho_{k+1}(n) \leq \rho_{k+2}(n)$, and the multiple 2 in 2^{n} corresponds to the subsums of $\sum_{m_{j}}$ for m_{j} positive or negative, and $1+$ corresponds to $m_{j}=0$, since $\rho_{k}(0)=1$. Hence the continuity of $\pi_{1} \varphi$ is established.

Definition 1.9.4. Define the cochain map \# : $C^{n-1}\left(\mathfrak{A}, \mathfrak{A}^{*}\right) \rightarrow C^{n}\left(\mathfrak{C}, \mathfrak{C}^{*}\right)_{\text {hom }}$ by $\# \varphi=(-1)^{n} n \#^{\sim} \varphi$.

1.10 For the cochain map

(A) Given $\varphi \in L_{n}^{*}$ with $L_{n}=\mathfrak{D} \otimes\left(\otimes^{n} \mathfrak{C}\right)$ and $x_{0}, x_{1}, \cdots, x_{n-1}, a \in \mathfrak{C}$, we set

$$
h_{a} \varphi\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)=\sum_{i=0}^{n-1}(-1)^{n-i-1} \varphi\left(x_{0}, \cdots, x_{i}, a, x_{i+1}, \cdots, x_{n-1}\right)
$$

We have $b h_{a} \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)=h_{a} \varphi \circ b\left(x_{0}, x_{1}, \cdots, x_{n}\right)$

$$
\begin{aligned}
& =\sum_{j=0}^{n-1}(-1)^{j} h_{a} \varphi\left(x_{0}, x_{1}, \cdots, x_{j} x_{j+1}, \cdots, x_{n}\right)+(-1)^{n} h_{a} \varphi\left(x_{0} x_{n}^{\circ}, x_{1}, \cdots, x_{n-1}\right) \\
& =\sum_{j=0}^{n-1} \sum_{i=0}^{n-1}(-1)^{n+j-i-1} \varphi\left(x_{0}, x_{1}, \cdots, x_{i}, a, x_{i+1}, \cdots x_{j} x_{j+1}, \cdots, x_{n}\right) \\
& +\sum_{i=0}^{n-1}(-1)^{2 n-i-1} \varphi\left(x_{0} x_{n}^{\circ}, x_{1}, \cdots, x_{i}, a, x_{i+1}, \cdots, x_{n-1}\right),
\end{aligned}
$$

while we have $h_{a} b \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)$

$$
\begin{aligned}
& =\sum_{i=0}^{n-1}(-1)^{n-i-1} b \varphi\left(x_{0}, \cdots, x_{i}, a, x_{i+1}, \cdots, x_{n}\right) \\
& =\sum_{i=0}^{n-1} \sum_{j=0}^{n-1}(-1)^{n-i-1+j} \varphi\left(x_{0}, \cdots, x_{j} x_{j+1}, \cdots, x_{i}, a, x_{i+1}, \cdots, x_{n}\right) \\
& +\sum_{i=0}^{n-1}(-1)^{2 n-i-1} \varphi\left(x_{0} x_{n}^{\circ}, \cdots, x_{i}, a, x_{i+1}, \cdots, x_{n-1}\right)
\end{aligned}
$$

where in the first term there are the cases where $x_{j} x_{j+1}=x_{j} a$ or $a x_{j+1}$ when $j=i$ or $j=i+1$ respectively, and other cases in the first and second terms are the same as the first computation result, so that we get $b h_{a} \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)$

$$
=h_{a} b \varphi\left(x_{0}, x_{1}, \cdots, x_{n}\right)+(-1)^{n-1} \sum_{i=0}^{n} \varphi\left(x_{0}, \cdots,\left[a, x_{i}\right], \cdots, x_{n}\right)
$$

Check indeed that $b h_{a} \varphi\left(x_{0}, x_{1}, x_{2}\right)=h_{a} \varphi \circ b\left(x_{0}, x_{1}, x_{2}\right)$

$$
\begin{aligned}
& =h_{a} \varphi\left(x_{0} x_{1}, x_{2}\right)-h_{a} \varphi\left(x_{0}, x_{1} x_{2}\right)+h_{a} \varphi\left(x_{0} x_{2}^{\circ}, x_{1}\right) \\
& =\left(-\varphi\left(x_{0} x_{1}, a, x_{2}\right)+\varphi\left(x_{0} x_{1}, x_{2}, a\right)\right)-\left(-\varphi\left(x_{0}, a, x_{1} x_{2}\right)+\varphi\left(x_{0}, x_{1} x_{2}, a\right)\right) \\
& +\left(-\varphi\left(x_{0} x_{2}^{\circ}, a, x_{1}\right)+\varphi\left(x_{0} x_{2}^{\circ}, x_{1}, a\right)\right)
\end{aligned}
$$

while we have $h_{a} b \varphi\left(x_{0}, x_{1}, x_{2}\right)$

$$
\begin{aligned}
& =b \varphi\left(x_{0}, a, x_{1}, x_{2}\right)-b \varphi\left(x_{0}, x_{1}, a, x_{2}\right)+b \varphi\left(x_{0}, x_{1}, x_{2}, a\right) \\
& =\left(\varphi\left(x_{0} a, x_{1}, x_{2}\right)-\varphi\left(x_{0}, a x_{1}, x_{2}\right)+\varphi\left(x_{0}, a, x_{1} x_{2}\right)-\varphi\left(x_{0} x_{2}^{\circ}, a, x_{1}\right)\right) \\
& -\left(\varphi\left(x_{0} x_{1}, a, x_{2}\right)-\varphi\left(x_{0}, x_{1} a, x_{2}\right)+\varphi\left(x_{0}, x_{1}, a x_{2}\right)-\varphi\left(x_{0} x_{2}^{\circ}, x_{1}, a\right)\right) \\
& +\left(\varphi\left(x_{0} x_{1}, x_{2}, a\right)-\varphi\left(x_{0}, x_{1} x_{2}, a\right)+\varphi\left(x_{0}, x_{1}, x_{2} a\right)-\varphi\left(x_{0} a^{\circ}, x_{1}, x_{2}\right)\right)
\end{aligned}
$$

Hence we obtain $b h_{a} \varphi\left(x_{0}, x_{1}, x_{2}\right)-h_{a} b \varphi\left(x_{0}, x_{1}, x_{2}\right)=$
$\left.-\left\{\varphi\left(x_{0} a, x_{1}, x_{2}\right)-\varphi\left(x_{0} a^{\circ}, x_{1}, x_{2}\right)\right)+\varphi\left(x_{0}, x_{1} a-a x_{1}, x_{2}\right)+\varphi\left(x_{0}, x_{2}, x_{2} a-a x_{2}\right)\right\}$
$\left.=-\left\{\varphi\left(x_{0} a, x_{1}, x_{2}\right)-\varphi\left(x_{0} a^{\circ}, x_{1}, x_{2}\right)\right)+\varphi\left(x_{0},\left[x_{1}, a\right], x_{2}\right)+\varphi\left(x_{0}, x_{2},\left[x_{2}, a\right]\right)\right\}$,
$=-\left\{\varphi\left(\left[a, x_{0}\right], x_{1}, x_{2}\right)+\varphi\left(x_{0},\left[a, x_{1}\right], x_{2}\right)+\varphi\left(x_{0}, x_{1},\left[a, x_{2}\right]\right)\right\}$.
We also have $(1-T) h_{a} \varphi\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)$

$$
\begin{aligned}
& =h_{a} \varphi\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)-(-1)^{n-1} h_{a} \varphi\left(x_{n-1}, x_{0}, \cdots, x_{n-2}\right) \\
& =\sum_{i=0}^{n-1}(-1)^{n-i-1} \varphi\left(x_{0}, \cdots, x_{i}, a, a_{i+1}, \cdots, x_{n-1}\right) \\
& +\sum_{i=0}^{n-1}(-1)^{2 n-i-1} \varphi\left(x_{n-1}, x_{0}, \cdots, x_{i-1}, a, x_{i}, \cdots, x_{n-2}\right)
\end{aligned}
$$

while we have $\left(h_{a}(1-T) \varphi\right)\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)$

$$
\begin{aligned}
& =\sum_{i=0}^{n-1}(-1)^{n-i-1}(1-T) \varphi\left(x_{0}, \cdots, x_{i}, a, x_{i+1}, \cdots, x_{n-1}\right) \\
& =\sum_{i=0}^{n-1}(-1)^{n-i-1} \varphi\left(x_{0}, \cdots, x_{i}, a, x_{i+1}, \cdots, x_{n-1}\right) \\
& +\sum_{i=0}^{n-1}(-1)^{2 n-i} \varphi\left(x_{n-1}, x_{0}, \cdots, x_{i}, a, x_{i+1}, \cdots, x_{n-2}\right)
\end{aligned}
$$

where in the last term, x_{n-1} is replaced by a when $i=n-1$, and that x_{0} can not be replaced by a. Hence we get $\left\{(1-T) h_{a} \varphi-h_{a}(1-T) \varphi\right\}\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)$

$$
\begin{aligned}
& =(-1)^{2 n-1} \varphi\left(x_{n-1}, a, x_{0}, \cdots, x_{n-2}\right)-(-1)^{n-1} \varphi\left(a, x_{0}, \cdots, x_{n-1}\right) \\
& =(-1)^{n-1} T \varphi\left(a, x_{0}, \cdots, x_{n-1}\right)+(-1)^{n} \varphi\left(a, x_{0}, \cdots, x_{n-1}\right) \\
& =(-1)^{n}(1-T) \varphi\left(a, x_{0}, x_{1}, \cdots, x_{n-1}\right)
\end{aligned}
$$

(where the index of (-1) is corrected).
(B) Consider $\mathfrak{C} \otimes M_{n}(\mathbb{C})$ and replace φ by $\varphi \# \operatorname{Tr}$. Set

$$
U=\left(\begin{array}{ll}
0 & 1 \\
u & 0
\end{array}\right), \quad R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right), \quad J=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

and $\alpha_{\theta}=\operatorname{Ad}\left(U R_{\theta}\right) \in \operatorname{Aut}\left(\mathbb{C} \otimes M_{2}(\mathbb{C})\right)$. Then we have

$$
\frac{d}{d \theta} \alpha_{\theta}(x)=\alpha_{\theta}([J, x])
$$

Check this equation as follows: for

$$
x=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}(\mathfrak{C})
$$

it follows by direct matrix computation that

$$
\begin{aligned}
& \alpha_{\theta}(x)=\operatorname{Ad}\left(U R_{\theta}\right) x=U R_{\theta} x R_{\theta}^{*} U^{*}= \\
& \left(\begin{array}{cc}
a \sin ^{2} \theta+b \frac{\sin 2 \theta}{2}+c \frac{\sin 2 \theta}{2}+d \cos ^{2} \theta & \left(a \frac{\sin 2 \theta}{2}-b \sin ^{2} \theta+c \cos ^{2} \theta-d \frac{\sin 2 \theta}{2}\right) u^{*} \\
u\left(a \frac{\sin 2 \theta}{2}+b \cos ^{2} \theta-c \sin ^{2} \theta-d \frac{\sin 2 \theta}{2}\right) & u\left(a \cos ^{2} \theta-b \frac{\sin 2 \theta}{2}-c \frac{\sin 2 \theta}{2}+d \sin ^{2} \theta\right) u^{*}
\end{array}\right)
\end{aligned}
$$

where

$$
R_{\theta}^{*}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \quad \text { and } \quad J^{*}=\left(\begin{array}{cc}
0 & u^{*} \\
1 & 0
\end{array}\right)
$$

and it is shown that the element-wise derivative of $\alpha_{\theta}(x)$ with respect to θ, i.e., $\frac{d}{d \theta} \alpha_{\theta}(x)$ is equal to

$$
\begin{aligned}
& \alpha_{\theta}([J, x])=\alpha_{\theta}(J x-x J)=\alpha_{\theta}\left(\begin{array}{cc}
-b-c & a-d \\
a-d & b+c
\end{array}\right)= \\
& \left(\begin{array}{cc}
(a-d) \sin 2 \theta+(b+c) \cos 2 \theta & ((a-d) \cos 2 \theta-(b+c) \sin 2 \theta) u^{*} \\
u((a-d) \cos 2 \theta-(b+c) \sin 2 \theta) & u((d-a) \sin 2 \theta-(b+c) \cos 2 \theta) u^{*}
\end{array}\right) .
\end{aligned}
$$

We thus have, for any n-cochain ψ on $\mathfrak{C} \otimes M_{2}(\mathbb{C})$,

$$
\begin{aligned}
& \psi \circ \alpha_{\pi / 2}\left(x_{0}, x_{1}, \cdots, x_{n}\right)-\psi \circ \alpha_{0}\left(x_{0}, x_{1}, \cdots, x_{n}\right) \\
& =\int_{0}^{\pi_{2}} \frac{d}{d \theta} \psi \circ \alpha_{\theta}\left(x_{0}, x_{1}, \cdots, x_{n}\right) d \theta \\
& =\sum_{i=0}^{n} \int_{0}^{\pi / 2} \psi \circ \alpha_{\theta}\left(x_{0}, x_{1}, \cdots,\left[J, x_{i}\right], \cdots, x_{n}\right) d \theta
\end{aligned}
$$

by the fundamental theorem of calculus, where note that

$$
\begin{aligned}
& \frac{d}{d \theta} \alpha_{\theta}\left(x_{0}, x_{1}, \cdots, x_{n}\right)=\frac{d}{d \theta}\left(\alpha_{\theta}\left(x_{0}\right), \alpha_{\theta}\left(x_{1}\right), \cdots, \alpha_{\theta}\left(x_{n}\right)\right) \\
& =\sum_{i=0}^{n}\left(\alpha_{\theta}\left(x_{0}\right), \alpha_{\theta}\left(x_{1}\right), \cdots, \frac{d}{d \theta} \alpha_{\theta}\left(x_{i}\right), \cdots, \alpha_{\theta}\left(x_{n}\right)\right) \\
& =\sum_{i=0}^{n} \alpha_{\theta}\left(x_{0}, x_{1}, \cdots,\left[J, x_{i}\right], \cdots, x_{n}\right)
\end{aligned}
$$

(C) Define, given $\varphi \in\left(L_{n}^{*}\right)_{\text {hom }}$,

$$
\bar{\eta} \varphi=\left.\int_{0}^{\pi / 2} h_{J}\left((\varphi \# \operatorname{Tr}) \circ \alpha_{\theta}\right) d \theta\right|_{\mathbb{C} \otimes e_{11}}
$$

where $e_{i j}$ is the matrix unit of $M_{2}(\mathbb{C})$. Applying (A) and (B) above we get

$$
\begin{aligned}
& b \bar{\eta} \varphi\left(x_{0}, \cdots, x_{n}\right)=\left.\int_{0}^{\pi / 2} b h_{J}\left((\varphi \# \operatorname{Tr}) \circ \alpha_{\theta}\right) d \theta\right|_{\mathfrak{C} \otimes e_{11}}\left(x_{0}, \cdots, x_{n}\right) \\
& =\left.\int_{0}^{\pi / 2} h_{J} b\left((\varphi \# \operatorname{Tr}) \circ \alpha_{\theta}\right) d \theta\right|_{\mathfrak{C} \otimes e_{11}}\left(x_{0}, \cdots, x_{n}\right) \\
& +\left.(-1)^{n-1} \sum_{i=0}^{n} \int_{0}^{\pi / 2}\left((\varphi \# \operatorname{Tr}) \circ \alpha_{\theta}\right) d \theta\right|_{\mathfrak{C} \otimes e_{11}}\left(x_{0}, \cdots,\left[J, x_{i}\right], \cdots, x_{n}\right) \\
& =\bar{\eta} b \varphi+(-1)^{n-1} \delta \varphi
\end{aligned}
$$

where note that $\alpha_{0}=\operatorname{Ad}(U)$ and $\alpha_{\pi / 2}=\operatorname{Ad}(U J)$, and

$$
\operatorname{Ad}(U)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
d & c u^{*} \\
u b & u a u^{*}
\end{array}\right), \quad \operatorname{Ad}(U J)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a & -b u^{*} \\
-u c & u d u^{*}
\end{array}\right)
$$

We also have $(1-T) \bar{\eta} \varphi\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)$

$$
\begin{aligned}
& =\left.\int_{0}^{\pi / 2}(1-T) h_{J}\left((\varphi \# \operatorname{Tr}) \circ \alpha_{\theta}\right) d \theta\right|_{\mathfrak{C} \otimes e_{11}}\left(x_{0}, x_{1}, \cdots, x_{n-1}\right) \\
& =\left.\int_{0}^{\pi / 2} h_{J}(1-T)\left((\varphi \# \operatorname{Tr}) \circ \alpha_{\theta}\right) d \theta\right|_{\mathfrak{C} \otimes e_{11}}\left(x_{0}, x_{1}, \cdots, x_{n-1}\right) \\
& +\left.\int_{0}^{\pi / 2}(-1)^{n}(1-T)\left((\varphi \# \operatorname{Tr}) \circ \alpha_{\theta}\right) d \theta\right|_{\mathfrak{c} \otimes e_{11}}\left(J, x_{0}, x_{1}, \cdots, x_{n-1}\right) \\
& =\bar{\eta}(1-T) \varphi\left(x_{0}, x_{1}, \cdots, x_{n-1}\right) \\
& +\int_{0}^{\pi / 2}(-1)^{n}(1-T)\left((\varphi \# \operatorname{Tr}) \circ \alpha_{\theta}\right) d \theta\left(J, \bar{x}_{0}, \bar{x}_{1}, \cdots, \bar{x}_{n-1}\right)
\end{aligned}
$$

where $\bar{x}_{i}=x_{i} \otimes e_{11}$.
(D) If we define $\eta \varphi=\left.\bar{\eta} \varphi\right|_{\mathfrak{A}}$, then it follows from those identities in (C) that

$$
\left.\varphi\right|_{\mathfrak{A}}=0 \Rightarrow b \eta \varphi=\eta b \varphi \quad \text { and } \quad(1-T) \varphi=0 \Rightarrow(1-T) \eta \varphi=0
$$

Thus we can consider η as the map $\eta:\left(Q_{n}^{*}\right)_{\text {hom }} \rightarrow\left(M_{n-1}\right)^{*}$, which commutes with the coboundary operator b and sends cyclic cochains to cyclic cochains, since $L_{n}=\mathfrak{D} M_{n} \oplus Q_{n}$ as obtained before.
(E) Note that, given any cochain φ on \mathfrak{A}, the formula $\varphi\left(\left(\lambda+a_{0}\right) d a_{1} \cdots d a_{n}\right)=$ $\varphi\left(a_{0}, a_{1}, \cdots, a_{n}\right)$ defines a linear functional on $\Omega(\mathfrak{A})$ (by ignoring the scalar $\lambda)$. Moreover, the construction of $\# \alpha \varphi$ extends to this more general case and gives us the $\operatorname{map} \#_{\alpha} ; M_{n-1}^{*} \rightarrow\left(L_{n}^{*}\right)_{\text {hom }}$

Lemma 1.10.1. Let $\omega_{0}, \omega_{1}, \omega_{2} \in \Omega(\mathfrak{A}), a \in \mathfrak{A}$, and suppose that φ is a cochain on \mathfrak{A}. Set
$\bar{\omega}_{i}=\omega_{i} \otimes e_{11} \in \Omega(\mathfrak{A}) \otimes \Omega\left(M_{2}(\mathbb{C})\right) \quad$ and $\quad \bar{a}=a \otimes e_{11} \in \Omega(\mathfrak{A}) \otimes \Omega\left(M_{2}(\mathbb{C})\right)$.
Then the following identities hold:
(1) $\int_{0}^{\pi / 2} d \theta((\# \alpha \varphi) \# \operatorname{Tr}) \circ \alpha_{\theta}\left(\bar{\omega}_{0}(D J) \bar{\omega}_{1}\right)=(-1)^{\operatorname{deg} \omega_{0}+1} \varphi\left(\omega_{0} \omega_{1}\right)$,
(2) $\int_{0}^{\pi / 2} d \theta\left(\left(\#{ }_{\alpha} \varphi\right) \# \operatorname{Tr}\right) \circ \alpha_{\theta}\left(\bar{\omega}_{0}(d J) \bar{\omega}_{1}(D \bar{a}) \bar{\omega}_{2}\right)=0$,
(3) $\int_{0}^{\pi / 2} d \theta\left(\left(\#{ }_{\alpha} \varphi\right) \# \operatorname{Tr}\right) \circ \alpha_{\theta}\left(\bar{\omega}_{0}(D \bar{a}) \bar{\omega}_{1}(d J) \bar{\omega}_{2}\right)=0$,
(4) $\int_{0}^{\pi / 2} d \theta((\# \alpha \varphi) \# \operatorname{Tr}) \circ \alpha_{\theta}\left(\bar{\omega}_{0}(d J)(D \bar{a}) \bar{\omega}_{1}\right)=\frac{(-1)^{\operatorname{deg} \omega_{0}+1}}{2} \varphi\left(\omega_{0}(d 1) a \omega_{1}\right)$,
(5) $\quad \int_{0}^{\pi / 2} d \theta\left(\left(\#{ }_{\alpha} \varphi\right) \# \operatorname{Tr}\right) \circ \alpha_{\theta}\left(\bar{\omega}_{0}(D \bar{a})(d J) \bar{\omega}_{1}\right)=\frac{(-1)^{\operatorname{deg} \omega_{0}}}{2} \varphi\left(\omega_{0} a(d 1) \omega_{1}\right)$

Proof. (1) Set $\sin \theta=s$ and $\cos \theta=c$. We compute the integrand I_{θ}
$=\left(\left(\#{ }_{\alpha} \varphi\right) \# \operatorname{Tr}\right)\left(\alpha_{\theta}\left(\begin{array}{cc}\omega_{0} & 0 \\ 0 & 0\end{array}\right) D\left(\alpha_{\theta}(J)\right) \alpha_{\theta}\left(\begin{array}{cc}\omega_{1} & 0 \\ 0 & 0\end{array}\right)\right)$
$=\left(\left(\#{ }_{\alpha} \varphi\right) \# \operatorname{Tr}\right)\left(\left(\begin{array}{cc}\omega_{0} s^{2} & \omega_{0} u^{*} s c \\ u \omega_{0} s c & \alpha\left(\omega_{0}\right) c^{2}\end{array}\right)\left(\begin{array}{cc}0 & D u^{*} \\ -D u & 0\end{array}\right)\left(\begin{array}{cc}\omega_{1} s^{2} & \omega_{1} u^{*} s c \\ u \omega_{1} s c & \alpha\left(\omega_{1}\right) c^{2}\end{array}\right)\right)$
$=\left(\left(\#{ }_{\alpha} \varphi\right) \# \operatorname{Tr}\right)$
$\left(\left(\begin{array}{cc}\omega_{0}\left(-u^{*}(D u)+\left(D u^{*}\right) u\right) \omega_{1} s^{3} c & \omega_{0}\left(-u^{*}(D u) \omega_{1} u^{*}+\left(D u^{*}\right) \alpha\left(\omega_{1}\right)\right) s^{2} c^{2} \\ \left(-\alpha\left(\omega_{0}\right)(D u)+u \omega_{0}\left(D u^{*}\right) u\right) \omega_{1} s^{2} c^{2} & \left.\left(-\alpha\left(\omega_{0}\right)(D u) \omega_{1} u^{*}+u \omega_{0}\left(D u^{*}\right) \alpha\left(\omega_{1}\right)\right) s c^{3}\right)\end{array}\right)\right.$
$=\#{ }_{\alpha} \varphi\left(\omega_{0}\left(-u^{*}(D u)+\left(D u^{*}\right) u\right) \omega_{1} s^{3} c+\left(-\alpha\left(\omega_{0}\right)(D u) \omega_{1} u^{*}+u \omega_{0}\left(D u^{*}\right) \alpha\left(\omega_{1}\right)\right) s c^{3}\right)$
$=\#{ }_{\alpha} \varphi\left((-1)^{\operatorname{deg} \omega_{0}}\left(-u^{*}(D u)+\left(D u^{*}\right) u\right) \omega_{0} \omega_{1} s^{3} c\right.$
$\left.+(-1)^{\operatorname{deg} \omega_{0}}\left(-(D u) u^{*} \alpha\left(\omega_{0}\right) \alpha\left(\omega_{1}\right)+u\left(D u^{*}\right) \alpha\left(\omega_{0}\right) \alpha\left(\omega_{1}\right)\right) s c^{3}\right)$
$=\#{ }_{\alpha} \varphi\left((-1)^{\operatorname{deg} \omega_{0}}\left(-2 u^{-1} d u\right) \omega_{0} \omega_{1} s^{3} c+(-1)^{\operatorname{deg} \omega_{0}}\left(-2 u\left(u^{-1} D u\right) u^{-1} \alpha\left(\omega_{0} \omega_{1}\right)\right) s c^{3}\right)$
$=2(-1)^{\operatorname{deg} \omega_{0}+1}\left(\varphi\left(\omega_{0} \omega_{1}\right) s^{3} c+\varphi\left(\alpha^{-1}\left(\alpha\left(\omega_{0} \omega_{1}\right)\right)\right) s c^{3}\right)$
$=2(-1)^{\operatorname{deg} \omega_{0}+1} \varphi\left(\omega_{0} \omega_{1}\right) \sin \theta \cos \theta=(-1)^{\operatorname{deg} \omega_{0}+1} \varphi\left(\omega_{0} \omega_{1}\right) \sin 2 \theta$
where we used the graded trace property of $\# \alpha$ and note that $D u=d u$
and $D u^{*}=d u^{-1}=-\left(u^{-1} d u\right) u^{-1}$ by definition. Therefore, we get

$$
\begin{aligned}
\int_{0}^{\pi / 2} I_{\theta} d \theta & =(-1)^{\operatorname{deg} \omega_{0}+1} \varphi\left(\omega_{0} \omega_{1}\right) \int_{0}^{\pi / 2} \sin 2 \theta d \theta \\
& =(-1)^{\operatorname{deg} \omega_{0}+1} \varphi\left(\omega_{0} \omega_{1}\right)\left[-\frac{\cos 2 \theta}{2}\right]_{0}^{\pi / 2}=(-1)^{\operatorname{deg} \omega_{0}+1} \varphi\left(\omega_{0} \omega_{1}\right)
\end{aligned}
$$

The other integrals are computed in the same way. As for (2), check that

$$
\begin{aligned}
& \alpha_{\theta}\left(\bar{\omega}_{0}\right) \alpha_{\theta}\left(\begin{array}{cc}
0 & -d 1 \\
d 1 & 0
\end{array}\right) \alpha_{\theta}\left(\bar{\omega}_{1}\right) D \alpha_{\theta}\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right) \alpha_{\theta}\left(\bar{\omega}_{2}\right) \\
& =\alpha_{\theta}\left(\bar{\omega}_{0}\right) \alpha_{\theta}\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \alpha_{\theta}\left(\bar{\omega}_{1}\right) D \alpha_{\theta}\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right) \alpha_{\theta}\left(\bar{\omega}_{2}\right)=0
\end{aligned}
$$

(possibly, this computation is allowed), where note that $d 1=d(1 \cdot 1)=$ $(d 1) 1+1(d 1)$, and hence $d 1=0$.

Proposition 1.10.2. (1) For a cochain $\psi \in M_{n-1}^{*}$, we have

$$
\eta \pi \psi=\psi+\frac{1}{2} b\left(\left.\psi\right|_{1}\right)+\left.\frac{1}{2}(b \psi)\right|_{1} .
$$

(2) For a cyclic cocycle $\varphi \in C_{\lambda}^{n-1}\left(\mathfrak{A}, \mathfrak{A}^{*}\right)$, we have

$$
\eta \#{ }_{\alpha} \varphi=(-1)^{n} n \varphi
$$

Proof. (1) Since $\pi \psi=(-1)^{n} \pi_{1} \psi$, and

$$
\pi_{1} \psi\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)=\#_{\alpha} \psi\left(a_{0} D a_{1} d a_{2} \cdots d a_{n-1}\right)
$$

we have $\eta \pi \psi\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$

$$
\begin{aligned}
& =\left.\int_{0}^{\pi / 2} h_{J}\left(\left(\pi_{1} \psi\right) \# \operatorname{Tr}\right) \circ \alpha_{\theta} d \theta\right|_{\mathfrak{A} \otimes e_{11}}\left(a_{0}, a_{1}, \cdots, a_{n-1}\right) \\
& =\left.\int_{0}^{\pi / 2} \sum_{i=0}^{n-i-1}\left(\left(\pi_{1} \psi\right) \# \operatorname{Tr}\right) \circ \alpha_{\theta} d \theta\right|_{\mathfrak{A} \otimes e_{11}}\left(a_{0}, a_{1}, \cdots, a_{i}, J, a_{i+1}, \cdots, a_{n-1}\right) \\
& =(-1)^{n}(-1)^{n-1}\left[\int_{0}^{\pi / 2} d \theta\left(\left(\#{ }_{\alpha} \psi\right) \# \operatorname{Tr}\right) \circ \alpha_{\theta}\left(\bar{a}_{0} D J d \bar{a}_{1}, \cdots d \bar{a}_{n-1}\right)\right. \\
& \left.-\int_{0}^{\pi / 2} d \theta\left(\left(\#{ }_{\alpha} \psi\right) \# \operatorname{Tr}\right) \circ \alpha_{\theta}\left(\bar{a}_{0} D \bar{a}_{1} d J d \bar{a}_{2} \cdots d \bar{a}_{n-1}\right)\right]
\end{aligned}
$$

according to the lemma above, and moreover,

$$
\begin{aligned}
& =(-1)\left[-\psi\left(a_{0} d a_{1} \cdots d a_{n-1}\right)-\frac{1}{2} \psi\left(\left(a_{0} a_{1}\right) d 1 d a_{2} \cdots d a_{n-1}\right)\right] \\
& =\psi\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)+\frac{1}{2} \psi\left(a_{0} a_{1}, 1, a_{2}, \cdots, a_{n-1}\right)
\end{aligned}
$$

On the other hand, check the following:

$$
\begin{aligned}
& \left(\left.(b \psi)\right|_{1}+b\left(\left.\psi\right|_{1}\right)\right)\left(a_{0}, \cdots, a_{n-1}\right)=b \psi\left(a_{0}, 1, a_{1}, \cdots, a_{n-1}\right) \\
& +\left.\sum_{i=0}^{n-2}(-1)^{i} \psi\right|_{1}\left(a_{0}, a_{1}, \cdots, a_{i} a_{i+1}, \cdots, a_{n-1}\right)+\left.(-1)^{n-1} \psi\right|_{1}\left(a_{0} a_{n-1}^{\circ}, a_{1}, \cdots, a_{n-2}\right) \\
& =\psi\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)-\psi\left(a_{0}, a_{1}, \cdots, a_{n-1}\right) \\
& \sum_{j=1}^{n-2}(-1)^{j+1} \psi\left(a_{0}, 1, a_{1}, \cdots, a_{j} a_{j+1}, \cdots, a_{n-1}\right)+(-1)^{n} \psi\left(a_{0} a_{n-1}^{\circ}, 1, a_{1}, \cdots, a_{n-2}\right) \\
& +\psi\left(a_{0} a_{1}, 1, a_{2}, \cdots, a_{n-1}\right) \\
& +\sum_{i=1}^{n-2}(-1)^{i} \psi\left(a_{0}, 1, a_{1}, \cdots, a_{i} a_{i+1}, \cdots, a_{n-1}\right)+(-1)^{n-1} \psi\left(a_{0} a_{n-1}^{\circ}, 1, a_{1}, \cdots, a_{n-2}\right) \\
& =\psi\left(a_{0} a_{1}, 1, a_{2}, \cdots, a_{n-1}\right)
\end{aligned}
$$

(2) Since $\left(\#{ }_{\alpha} \varphi\right) \# \operatorname{Tr}$ is a cyclic cocycle on $\mathfrak{C} \otimes M_{2}(\mathbb{C})$, we have the equality

$$
\begin{aligned}
\eta \#{ }_{\alpha} \varphi\left(a_{0}, a_{1}, \cdots, a_{n-1}\right) & \left.=\int_{0}^{\pi / 2} h_{J}((\# \alpha \varphi) \# \operatorname{Tr}) \circ \alpha_{\theta}\right)\left.d \theta\right|_{c \otimes e_{11}}\left(a_{0}, a_{1}, \cdots, a_{n-1}\right) \\
& =n N_{a} \int_{0}^{\pi / 2} d \theta((\# \alpha \varphi) \# \operatorname{Tr}) \circ \alpha_{\theta}\left(\bar{a}_{0}, \cdots, \bar{a}_{n-1}, J\right)
\end{aligned}
$$

where we denote by N_{a} the cyclic antisymmetrization operator in the variables a_{j} and J. Using (1) and (5) of the lemma above, we get

$$
\begin{aligned}
& \int_{0}^{\pi / 2} d \theta((\# \alpha \varphi) \# \operatorname{Tr}) \circ \alpha_{\theta}\left(\bar{a}_{0} d \bar{a}_{1} \cdots d \bar{a}_{n-1} D J+\bar{a}_{0} d \bar{a}_{1} \cdots d \bar{a}_{n-2} D \bar{a}_{n-1} d J\right) \\
& =(-1)^{n} \varphi\left(a_{0} d a_{1} \cdots d a_{n-1}\right)+\frac{1}{2}(-1)^{n-2} \varphi\left(\left(a_{0} d a_{1} \cdots d a_{n-2}\right) a_{n-1} d 1\right)
\end{aligned}
$$

But we have $\left.\varphi\left(a_{0} d a_{1} \cdots d a_{n-2}\right) a_{n-1} d 1\right)$

$$
=\varphi\left(a_{0} d a_{1} \cdots d a_{n-2} d\left(a_{n-1} 1\right)\right)-\varphi\left(a_{0} d a_{1} \cdots d a_{n-1} 1\right)=0
$$

since $d\left(a_{n-1} 1\right)=d a_{n-1} 1+a_{n-1} d 1$, with $d\left(a_{n-1} 1\right)=d\left(a_{n-1}\right)=d\left(a_{n-1}\right) 1$. (But the second term in the first expression could be unnecessary.) Hence

$$
\eta \#{ }_{\alpha} \varphi=(-1)^{n} N \varphi=(-1)^{n} n \varphi
$$

1.11 The long exact sequence

We have the four (induced) cochain maps: $k: M_{n-1}^{*} \rightarrow\left(Q_{n}^{*}\right)_{\text {hom }}$ and $h:\left(Q_{n}^{*}\right)_{\text {hom }} \rightarrow M_{n-1}^{*}$, where defined in the subsection 1.4 are $h: \mathfrak{D} M_{n} \rightarrow$ Q_{n+1} and $k: Q_{m} \rightarrow \mathfrak{D} M_{m-1}($ not $\pi)$, and $\#^{\sim}: M_{n-1}^{*} \rightarrow\left(L_{n}^{*}\right)_{\text {hom }}$ and $\eta:\left(Q_{n}^{*}\right)_{\text {hom }} \rightarrow M_{n-1}^{*}$, which are defined in the subsections 1.7 and 1.10, respectively, and $\pi: M_{n-1}^{*} \rightarrow\left(L_{n}^{*}\right)_{\text {hom }}$ as in the subsection 1.7. Moreover, in cohomology, the induced maps satisfy $h \pi=\eta \pi=\mathrm{id}$ and $\pi=\#^{\sim}$, while $h \pi=$ id on the cochain level.

Now let us look at

$$
(\pi h) \#^{\sim} \eta(\pi h)=\pi\left(h \#^{\sim}\right)(\eta \pi) h=\pi h
$$

which holds on the cohomology level. Since πh is the identity on the cohomology level, and all maps considered commute with b as cochain maps, we can find a cochain homotopy $\bar{\rho}:\left(Q_{n}^{*}\right)_{\text {hom }} \rightarrow\left(Q_{n-1}^{*}\right)_{\text {hom }},(n>1)$ such that $\#^{\sim} \eta=\mathrm{id}-b \bar{\rho}-\bar{\rho} b$. Define $\bar{B}:\left(Q_{n}^{*}\right)_{\text {hom }} \rightarrow\left(Q_{n-1}^{*}\right)_{\text {hom }}$ by $\bar{B} \varphi=\frac{1}{2 \pi i n(n+1)} B \varphi$.

Lemma 1.11.1. Suppose that φ is a homogeneous cyclic cocycle on \mathfrak{D} which is zero when restricted to \mathfrak{A}. Then $\varphi=\sum_{j=0}^{\infty} S^{k} \#^{\sim} \eta(\bar{B} \bar{\rho})^{j} \varphi$ on the cochain level.

Proof. We have $\varphi=\left(\#^{\sim} \eta+b \bar{\rho}+\bar{\rho} b\right) \varphi=\#^{\sim} \eta \varphi+b \bar{\rho} \varphi$. In particular, $b \bar{\rho} \varphi$ is cyclic, and hence, $b \bar{\rho} \varphi=S \bar{B} \bar{\rho} \varphi$ and $\varphi=\#^{\sim} \eta \varphi+S \bar{B} \bar{\rho} \varphi$ (where $S B=n(n+1) b$ by Connes [1, Lemma 23 at p. 201], so that $S \bar{B}=\frac{1}{2 \pi i} b$. Note that $\bar{B} \bar{\rho} \varphi$ again is a homogeneous cyclic cocycle vanishing on \mathfrak{A}. By induction on j we get

$$
(\bar{B} \bar{\rho})^{j} \varphi=\#^{\sim} \eta(\bar{B} \bar{\rho})^{j} \varphi+S(\bar{B} \bar{\rho})^{j+1} \varphi
$$

Indeed, check that

$$
\begin{aligned}
(\bar{B} \bar{\rho})^{j+1} \varphi & =(\bar{B} \bar{\rho})^{j}(\bar{B} \bar{\rho} \varphi)=\#^{\sim} \eta(\bar{B} \bar{\rho})^{j}(\bar{B} \bar{\rho} \varphi)+S(\bar{B} \bar{\rho})^{j+1}(\bar{B} \bar{\rho} \varphi) \\
& =\#^{\sim}(\bar{B} \bar{\rho})^{j+1} \varphi+S(\bar{B} \bar{\rho})^{j+2} \varphi
\end{aligned}
$$

Acting on both sides by S^{j} and summing over $j \geq 0$ we get

$$
\sum_{j \geq 0} S^{j}(\bar{B} \bar{\rho})^{j} \varphi=\sum_{j \geq 0} S^{j} \#^{\sim} \eta(\bar{B} \bar{\rho})^{j} \varphi+\sum_{j \geq 0} S^{j+1}(\bar{B} \bar{\rho})^{j+1} \varphi
$$

where the sums are finite for dimensional reasons, and hence we obtain $\varphi=\sum_{j \geq 0} S^{j} \#^{\sim} \eta(\bar{B} \bar{\rho})^{k} \varphi$.

Theorem 1.11.2. The following long cohomology sequence is exact:

$$
\cdots \xrightarrow{\delta} H_{\lambda}^{n-1}(\mathfrak{A}) \xrightarrow{\#} H_{\lambda}^{n}(\mathfrak{C})_{\text {hom }} \xrightarrow{i} H_{\lambda}^{n}(\mathfrak{A}) \xrightarrow{\delta} \cdots .
$$

Proof. Step 1: $i \circ \#=0$. This follows directly from the definition of \#, because $\#=(-1)^{n} n \#^{\sim}$, and $\#^{\sim}=\pi$ in cohomology, and $i \circ \pi=0$. Hence we get $\operatorname{Im}(\#) \subset \operatorname{ker}(i)$.

Step 2. $\operatorname{ker}(i) \subset \operatorname{Im}(\#)$. Suppose that φ is a homogeneous cyclic n-cocycle on \mathfrak{D} and $i[\varphi]=0$ in $H_{\lambda}^{n}(\mathfrak{A})$. Then there is a cyclic $(n-1)$ cochain λ on \mathfrak{A} such that $\left.\varphi\right|_{\mathfrak{A}}=b \lambda$. Set $\lambda^{\sim}\left(a_{0} u^{m_{0}}, \cdots, a_{n-1} u^{m_{n-1}}\right)=$ $\lambda\left(a_{0}, \cdots, a_{n-1}\right) \delta_{m_{0}, 0} \cdots \delta_{m_{n-1}, 0}$ for $a_{i} \in \mathfrak{A}$. Then λ^{\sim} defines a cyclic element of $\left(Q_{n-1}^{*}\right)_{\text {hom }}$ and $\left.\left(\varphi-b \lambda^{\sim}\right)\right|_{\mathfrak{A}}=0$. By the lemma above, we get

$$
\varphi-b \lambda^{\sim}=\sum_{k \geq 0} S^{k} \#^{\sim} \eta(\bar{B} \bar{\rho})^{k} \varphi
$$

But $\operatorname{Im}\left(S^{k} \#^{\sim}\right)=\operatorname{Im}\left(S^{k} \#\right) \subset \operatorname{Im}(\#)$ for $k \geq 0$. Indeed, by definition, $\# \psi=(-1)^{n} n \#^{\sim} \psi$ for an $(n-1)$-cochain ψ, and $(-1)^{n} n \#^{\sim}=\#_{\alpha}$ in cyclic cohomology level and $\# \alpha$ commutes with S, as obtained before. Thus we obtain $\varphi-b \lambda^{\sim} \in \operatorname{Im}(\#)$. Hence the class of φ is contained in the image under \# in cyclic cohomology.

Step 3. We have $\# \delta=0$, because $\# \delta=(-1)^{n} n \#^{\sim} \delta=\#_{\alpha} \delta=0$ in cyclic cohomology.

Step 4. $\operatorname{ker}(\#) \subset \operatorname{Im}(\delta)$. Suppose that φ is a cyclic cocycle on \mathfrak{A} such that $\# \varphi=b \lambda$ for λ a cyclic cochain. Since $\# \varphi$ is homogeneous, we can assume that λ is homogeneous as well. But then we have

$$
\varphi=\eta \# \varphi=\eta b \lambda=b \eta \lambda \pm \delta\left(\left.\lambda\right|_{\mathfrak{A}}\right) .
$$

Step 5. $\delta i=0$. This can be deduced from the fact that inner automorphisms act trivially on the level of cyclic cohomology, by Connes. Alternatively, given a cyclic cocycle φ on \mathfrak{D}, we have the equality $\delta\left(\left.\varphi\right|_{\mathfrak{A}}\right)= \pm b \eta \varphi$.

Step 6. $\operatorname{ker}(\delta) \subset \operatorname{Im}(i)$. Suppose that φ is a cyclic cocycle on \mathfrak{A} such that $\delta \varphi=b \lambda$ for λ a cyclic cochain on \mathfrak{A}. Set $\varphi^{\sim}=\frac{1}{n}\left(\sum_{i}(-1)^{i} \rho_{i} \varphi-\# \lambda\right)$. Then φ^{\sim} is cyclic on $\mathfrak{A},\left.\varphi^{\sim}\right|_{\mathfrak{A}}=\varphi$, and

$$
\begin{aligned}
n b \varphi^{\sim} & =b\left(\sum_{i}(-1)^{i} \rho_{i} \varphi\right)-b \# \lambda \\
& =\# \alpha \delta \varphi-\# b \lambda=0
\end{aligned}
$$

where note that $\#=\# \alpha$ on cyclic cocycles and the identity $b\left(\sum_{i}(-1)^{i} \rho_{i} \varphi\right)=$ $\#{ }_{\alpha} \delta \varphi$ is obtained in the subsection 1.9.

1.12 Periodic cyclic cohomology of the smooth crossed product

Theorem 1.12.1. The following sequence is exact:

where $H C^{\mathrm{ev}}(\cdot)$ and $H C^{\text {odd }}(\cdot)$ are the even and odd parts of $H C(\cdot)$ respectively, with $H C(\cdot)=H C^{\text {ev }}(\cdot) \oplus H C^{\text {odd }}(\cdot)=\underline{\varliminf} H C^{2 n}(\cdot) \oplus \underline{\lim } H C^{2 n+1}(\cdot)$.

Proof. We have

$$
H C^{\mathrm{ev}}(\mathfrak{D}) \text { or } H C^{\text {odd }}(\mathfrak{D})=\underset{n=n(k)}{\lim _{\vec{n}}} S^{k} H_{\lambda}^{n}(\mathfrak{D})=\underset{n=n(k)}{\lim _{n}} S^{k} H_{\lambda}^{n}(\mathfrak{D})_{\mathrm{hom}},
$$

since $H_{\lambda}^{n}(\mathfrak{D})_{e} \subset \operatorname{ker}(S)$ as shown before. Hence it suffices to look at the homogeneous cyclic cohomology of the crossed product \mathfrak{D}. Let us look at the diagram:

where this is commutative because S commutes with \#, and the rows are exact by the long exact sequence in the last subsection, and $\delta=1-\alpha$ in cohomology. Now a straightforward diagram chase proves the desired result.

1.13 Coupling with K-theory

Let \mathfrak{A} be a Fréchet algebra, nuclear as a topological vector space. Denote by \mathfrak{A}^{+}the unitization of \mathfrak{A}.

When \mathfrak{A} has no unit, its K_{0}-group $K_{0}(\mathfrak{A})$ is defined to be the Grothendieck group of stable equivalence classes of projections in matrix algebras over \mathfrak{A}^{+}. When \mathfrak{A} has the unit, we take $K_{0}(\mathfrak{A})$ as the kernel of the K-theory homomorphism induced by the injection from \mathfrak{A} to \mathfrak{A}^{+}.

We define $K_{1}(\mathfrak{A})$ as a quotient of

$$
G L_{\infty}(\mathfrak{A})=\left\{v \in G L_{\infty}\left(\mathfrak{A}^{+}\right)=\cup_{n} G L_{n}\left(\mathfrak{A}^{+}\right) \mid v \equiv 1 \bmod \mathfrak{A}\right\}
$$

by the continuous, piecewise C^{1} equivalence relation $\sim_{C^{1}}$, given by that $w_{1} \sim_{C^{1}} w_{2}$ if and only if there is a continuous, piecewise C^{1} path $[0,1] \ni$ $t \mapsto p_{t} \in G L_{\infty}(\mathfrak{A})$ such that $p_{0}=w_{1}$ and $p_{1}=w_{2}$.

Denote by $\langle\cdot, \cdot\rangle$ the pairing between $K_{0}(\mathfrak{A})$ and $H C^{\mathrm{ev}}(\mathfrak{A})$ and between $G L_{\infty}(\mathfrak{A})$ and $H C^{\text {odd }}(\mathfrak{A})$ constructed by Connes, where we extend cocycles on \mathfrak{A} to those on \mathfrak{A}^{+}by setting $\varphi\left(1, a_{1}, \cdots, a_{n}\right)=0$.

Lemma 1.13.1. That pairing $\langle\cdot, \cdot\rangle$ desends to a pairing between $K_{1}(\mathfrak{A})$ and $H C^{\text {odd }}(\mathfrak{A})$.

Proof. Suppose that φ is an odd-dimensional cyclic cocycle on \mathfrak{A} and that $t \mapsto v_{t}$ is a continuous piecewise C^{1} path of elements of $G L_{\infty}(\mathfrak{A})$. By passing to a matrix algebra over \mathfrak{A}^{+}we can assume that $v_{t} \in \mathfrak{A}^{+}$. It is enough to show the equality: $\frac{d}{d t} \varphi\left(v_{t}^{-1}, v_{t}, v_{t}^{-1}, \ldots, v_{t}\right)=0$. Let φ^{\wedge} denote the closed graded trace on $\Omega\left(\mathfrak{A}^{+}\right)$corresponding to φ. Then the left-hand side is equal to

$$
\begin{aligned}
& \frac{d}{d t} \varphi^{\wedge}\left(v_{t}^{-1} d v_{t} d\left(v_{t}^{-1}\right) \cdots d v_{t}\right)=\varphi^{\wedge}\left(\left(v_{t}^{-1}\right) d v_{t} d\left(v_{t}^{-1}\right) \cdots d v_{t}\right) \\
& +\varphi^{\wedge}\left(v_{t}^{-1} d \dot{v}_{t} d\left(v_{t}^{-1}\right) \cdots d v_{t}\right)+\cdots+\varphi^{\wedge}\left(v_{t}^{-1} d v_{t} d\left(v_{t}^{-1}\right) \cdots d \dot{v}_{t}\right)
\end{aligned}
$$

Since φ is cyclic, it is enough to show that the sum of the first two terms is zero. Indeed, check that

$$
\begin{aligned}
& \varphi^{\wedge}\left(\left(v_{t}^{-1}\right) d v_{t} \cdots d v_{t}\right)+\varphi^{\wedge}\left(v_{t}^{-1} d \dot{v}_{t} \cdots d v_{t}\right) \\
& =-\varphi^{\wedge}\left(v_{t}^{-1} \dot{v}_{t} v_{t}^{-1} d v_{t} \cdots d v_{t}\right) \\
& -\varphi^{\wedge}\left(\left(d\left(v_{t}^{-1}\right) v_{t}+\left(v_{t}^{-1}\right) d v_{t}+d\left(v_{t}^{-1}\right) \dot{v}_{t}\right) d\left(v_{t}^{-1}\right) \cdots d v_{t}\right) \\
& \left.=-\varphi^{\wedge}\left(d\left(v_{t}^{-1}\right) v_{t} d\left(v_{t}^{-1}\right) \cdots d v_{t}\right)-\varphi^{\wedge}\left(d\left(v_{t}^{-1}\right) \dot{v}_{t}\right) d\left(v_{t}^{-1}\right) \cdots d v_{t}\right)=0
\end{aligned}
$$

where $1=v_{t} v_{t}^{-1}$ implies $0=\dot{v}_{t} v_{t}^{-1}+v_{t}\left(\dot{v}_{t}^{-1}\right)$, so that $\left(v_{t}^{-1}\right)=-v_{t}^{-1} \dot{v}_{t} v_{t}^{-1}$, and also $1=v_{t}^{-1} v_{t}$ implies $0=\left(v_{t}^{-1}\right) v_{t}+v_{t}^{-1} \dot{v}_{t}$, so that

$$
v_{t} d \dot{v}_{t}=-d\left(\dot{v}_{t}^{-1}\right) v_{t}-\left(\dot{v}_{t}^{-1}\right) d v_{t}-d\left(v_{t}^{-1}\right) \dot{v}_{t}
$$

and we use of φ^{\wedge} being a trace.
Hence $\varphi\left(v_{t}^{-1}, v_{t}, v_{t}^{-1}, \cdots, v_{t}\right)$ is a constant with respect to t, and one can also check that $b \varphi\left(v_{t}^{-1}, v_{t}, v_{t}^{-1}, \cdots, v_{t}\right)=0$, so that the bilinear map is defined by such a constant for a pair of classes in K_{1} and $H C^{\text {odd }}$.

Lemma 1.13.2. Let φ be a cyclic cocycle on \mathfrak{A} and ω a cyclic cocycle on \mathfrak{B} either a matrix algebra over \mathbb{C} or $C(\mathbb{T})$. Then $\#{ }_{\alpha \otimes \mathrm{id}}(\varphi \# \omega)=\left(\#{ }_{\alpha} \varphi\right) \# \omega$.

Proof. It is enough to note that both sides of the equality stated are computed by columns of the commutative diagram:

where the bottom arrow is an isomorphism. The extension of both sides of the equality to continuous cocycles on respective algebras is handled as in Proposition 1.9.3.

Let us now introduce the Bott map $B t$ as follows: For a projection $p \in M_{k}\left(\mathfrak{A}^{+}\right)$, define $B t(p)=e^{2 \pi i t} p+(1-p)$ an invertible-matrix valued, smooth function on \mathbb{T} in $G L_{k}\left(\mathfrak{A}^{+} \otimes C_{0}^{\infty}(\mathbb{T})\right)$, where $C_{0}^{\infty}(\mathbb{T})$ is the ideal of $C^{\infty}(\mathbb{T})$ of smooth functions on \mathbb{T} vanishing at zero, and for an element $v \in G L_{k}\left(\mathfrak{A}^{+}\right)$, define

$$
B t(v)=v_{t}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) v_{t}^{-1}-\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

a projection-valued smooth function on \mathbb{T} in $M_{2 k}\left(\mathfrak{A}^{+} \otimes C_{0}^{\infty}(\mathbb{T})\right)$, where the map $t \mapsto v_{t}$ is any continuous piecewise C^{∞} path inside $M_{2}\left(\mathbb{C}\left[v, v^{-1}\right]\right)$ connecting the diagonal matrix $v \oplus v^{-1}$ to the 2×2 identity matrix $1 \oplus 1$. Note that the Bott map $B t$ descends to K-theory homomorphisms: $B t$: $K_{j}(\mathfrak{A}) \rightarrow K_{j+1}\left(S^{\infty} \mathfrak{A}\right)$ for $j=0,1$, where $S^{\infty} \mathfrak{A}=\mathfrak{A} \otimes C_{0}^{\infty}(\mathbb{T})$, which we may call the smooth suspension of \mathfrak{A}. Set $\left(S^{\infty}\right)^{k+1} \mathfrak{A}=S^{\infty}\left(\left(S^{\infty}\right)^{k} \mathfrak{A}\right)$ inductively.
Definition 1.13.3. Define K^{p}-groups of \mathfrak{A} by $K_{j}^{p}(\mathfrak{A})=\underset{\longrightarrow}{\lim } K_{j}\left(\left(S^{\infty}\right)^{2 n} \mathfrak{A}\right)$ $(n \rightarrow \infty)$ for an inductive system $\left\{K_{j}\left(\left(S^{\infty}\right)^{2 n}(\mathfrak{A})\right)\right\}_{n \in \mathbb{N}}$ of abelian groups connected by even powers of $B t$.

Proposition 1.13.4. The pairing $\langle\cdot, \cdot\rangle$ extends to a bilinear pairing between K^{p}-groups of \mathfrak{A} and $H C(\mathfrak{A})$.

Proof. Applying the six-term exact sequence of $H C$ for the smooth crossed product of \mathfrak{A} by an action α of \mathbb{Z} in the subsection 1.12 to $\mathfrak{A}^{+} \rtimes_{\text {id }} \mathbb{Z} \cong$ $\mathfrak{A}^{+} \otimes C^{\infty}(\mathbb{T})$, we get short exact sequences:

$$
0 \rightarrow H C^{i}\left(\mathfrak{A}^{+}\right) \xrightarrow{\#} H C^{i+1}\left(\mathfrak{A}^{+} \otimes C_{0}^{\infty}(\mathbb{T})\right) \xrightarrow{i} H C^{i+1}\left(\mathfrak{A}^{+}\right) \rightarrow 0 .
$$

These give us the maps $\#_{\text {id }}: H C^{i}(\mathfrak{A}) \rightarrow H C^{i+1}\left(S^{\infty} \mathfrak{A}\right)$. It is easily seen that \#id is given by the shuffle product with a generator of $H_{\lambda}^{1}\left(C_{0}^{\infty}(\mathbb{T})\right)$, and we have the equality $\langle\varphi, x\rangle=\left\langle \#_{\mathrm{id}} \varphi, B t(x)\right\rangle$ by Pimsner. Now an application of the lemmas above gives the desired result, where we have $\#_{\mathrm{id}}^{2}(\varphi \# \operatorname{Tr})=\left(\#_{\mathrm{id}}^{2} \varphi\right) \# \operatorname{Tr}$ and hence that $\#_{\mathrm{id}}^{2}$ is compatible with the identifications involved in the construction of $G L_{\infty}(\mathfrak{A})$ and $M_{\infty}(\mathfrak{A})$.

As before, \mathfrak{A} is a dense unital subalgebra of unital C^{*}-algeba A, α is an automorphism of \mathfrak{A} with $\alpha(\mathfrak{A})=\mathfrak{A}$, and the imbedding $\mathfrak{A} \rightarrow A$ is continuous.

Note that the map $B t^{2}: K_{i}(A) \rightarrow K_{i}\left(\left(S^{\infty}\right)^{2} A\right)$ is an isomorhism since $K_{i}(A) \cong K_{i}\left(S^{2} A\right)$ the Bott periodisity in the category of C^{*}-algebras, where $S A=C_{0}(\mathbb{R}) \otimes A$ is the usual suspension of A. Hence we have the natural maps:

$$
\begin{aligned}
K_{i}^{p}(\mathfrak{A}) & =\underset{\longrightarrow}{\lim } K_{i}\left(\left(S^{\infty}\right)^{2 n} \mathfrak{A}\right) \rightarrow \underset{\longrightarrow}{\lim } K_{i}\left(\left(S^{\infty}\right)^{2 n} A\right)=K_{i}(A), \\
K_{i}^{p}\left(\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}\right) & =\underset{\longrightarrow}{\lim } K_{i}\left(\left(S^{\infty}\right)^{2 n}\left(\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}\right)\right) \rightarrow K_{i}\left(A \rtimes_{\alpha} \mathbb{Z}\right) .
\end{aligned}
$$

Theorem 1.13.5. Suppose that the maps $K_{j}^{p}(\mathfrak{A}) \rightarrow K_{j}(A)(j=0,1)$ are isomorphisms. Then the above maps $I_{p, j}: K_{j}^{p}\left(\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}\right) \rightarrow K_{j}\left(A \rtimes_{\alpha} \mathbb{Z}\right)$ $(j=0,1)$ are surjective and the pairing $\langle\cdot, \cdot\rangle$ between K^{p} and $H C$ of \mathfrak{A} descends to a pairing between the K-groups of the C^{*}-crossed product $A \rtimes_{\alpha} \mathbb{Z}$ and $H C\left(\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}\right)$.

Proof. Start with the following diagram:

where the bottom sequence, being a part of the six-term exact sequence of Pimsner-Voiculescu for C^{*}-crossed products by \mathbb{Z}, is exact. Apply the following result of G. Elliott and T. Natsume: the map f from the set of pairs (e, v) with e a projection of A and v a unitary of A such that $v e v^{-1}=$ $\alpha(e)$ to the unitary group of $A \rtimes_{\alpha} \mathbb{Z}$, defined by $f(e, v)=u e+v(1-e)$ is a right inverse for the boundary map ∂ and its range, after passing to matrix algebras over A, generates $K_{1}\left(A \rtimes_{\alpha} \mathbb{Z}\right)$ as an abelian group. Check that

$$
\begin{aligned}
(u e+v(1-e))^{*}(u e+v(1-e)) & =\left(e u^{*}+(1-e) v^{*}\right)(u e+v(1-e)) \\
& =e+e u^{*} v(1-e)+(1-e) v^{*} u e+(1-e) \\
& =1+\left((1-e) v^{*} u e\right)^{*}+(1-e) v^{*} u e
\end{aligned}
$$

and moreover, since $e v^{*}=v^{*} \alpha(e)$ we have

$$
\begin{aligned}
(1-e) v^{*} u e & =v^{*} u e-e v^{*} u e \\
& =v^{*} u e-v^{*} \alpha(e) u e \\
& =v^{*} \alpha(1-e) u e \\
& =v^{*} u(1-e) u^{*} u e=v^{*} u(1-e) e=0 .
\end{aligned}
$$

Since we can choose e, v in a matrix algebra over $\left(S^{\infty}\right)^{2 n} \mathfrak{A}$ for some n by the assumption, the surjectivity of the maps $I_{p, j}$ follows.

Suppose now that φ is an odd-dimensional cyclic cocycle on $\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ and that pairs $(e, v),(\bar{e}, \bar{v})$ of projections and unitaries of \mathfrak{A} are such that $f(e, v) \sim f(\bar{e}, \bar{v})$ in $A \rtimes_{\alpha} \mathbb{Z}$. Since then $[e]=\partial[f(e, v)]=\partial[f(\bar{e}, \bar{v})]=[\bar{e}]$ in $K_{0}(A)$, we can, after passing to a matrix algebra over some smooth suspension $\left(S^{\infty}\right)^{2 n} \mathfrak{A}$, suppose that there exists an invertible element $w \in \mathfrak{A}$ such that $w e w^{-1}=\bar{e}$. We set

$$
X=\alpha(e)+\alpha\left(w^{-1}\right) \bar{v} w v^{-1}(1-\alpha(e))
$$

then a straightforward calculation gives

$$
f(\bar{e}, \bar{v})=\alpha(w) X f(e, v) w^{-1}
$$

where in the both equations above, $\alpha\left(w^{-1}\right)$ and $\alpha(w)$ are corrected from $\alpha^{-1}\left(w^{-1}\right)$ and $\alpha^{-1}(w)$ in the text, respectively. Indeed, we check that $\alpha(w) X f(e, v) w^{-1}$

$$
\begin{aligned}
& =\alpha(w)\left(\alpha(e)+\alpha\left(w^{-1}\right) \bar{v} w v^{-1}(1-\alpha(e))(u e+v(1-e)) w^{-1}\right. \\
& =\alpha(w) \alpha(e) u e w^{-1}+\alpha(w) \alpha(e) v(1-e) w^{-1} \\
& +\bar{v} w v^{-1}(1-\alpha(e)) u e w^{-1}+\bar{v} w v^{-1}(1-\alpha(e)) v(1-e) w^{-1} \\
& =\left(u w u^{*}\right) u e u^{*} u e w^{-1}+\alpha(w) v e v^{*} v(1-e) w^{-1} \\
& +\bar{v} w v^{-1}\left(1-u e u^{*}\right) u e w^{-1}+\bar{v} w v^{-1}\left(1-v e v^{*}\right) v(1-e) w^{-1} \\
& =u w e w^{-1}+\alpha(w) v e(1-e) w^{-1} \\
& +\bar{v} w v^{-1} u(1-e) e w^{-1}+\bar{v} w v^{-1} v(1-e)(1-e) w^{-1} \\
& =u \bar{e}+\bar{v}(1-\bar{e})=f(\bar{e}, \bar{v}) .
\end{aligned}
$$

Moreover, $X \sim 1$ in (matrix algebras over, corrected) $A \rtimes_{\alpha} \mathbb{Z}$, because

$$
\begin{aligned}
f(e, v) & \sim f(\bar{e}, \bar{v})=\alpha(w) X f(e, v) w^{-1} \\
& \sim w X f(e, v) w^{-1} \sim X f(e, v)
\end{aligned}
$$

so that there is a unitary y such that $y f(e, v) y^{*}=X f(e, v)$, and thus $X=y f(e, v) y^{*} f(e, v)^{*} \sim f(e, v) f(e, v)^{*}=1$ in the corrected case, where we use a fact that unitary equivalence is equivalent to homotopy equivalence in matrix algebras over $A \rtimes_{\alpha} \mathbb{Z}$ (but is not equivalent in general in $A \rtimes_{\alpha} \mathbb{Z}$) and we need to assume that w is a unitary in this case. If we use unitary equivalence only, we just get

$$
\begin{aligned}
f(e, v) & \sim f(\bar{e}, \bar{v})=\alpha(w) X f(e, v) w^{-1} \\
& =u w u^{*} X f(e, v) w^{-1} \sim w u^{*} X f(e, v) w^{-1} u
\end{aligned}
$$

so that there is a unitary y such that $y f(e, v) y^{*}=w u^{*} X f(e, v) w^{-1} u$, and thus $X=u w^{-1} y f(e, v) y^{*} u^{*} w f(e, v)^{*} \sim 1$ (not yet checked).

And hence $\left.[X] \in \operatorname{Im}(1-\alpha)\right|_{K_{1}(A)}=\left.\operatorname{Im}(1-\alpha)\right|_{K_{1}^{p}(\mathfrak{A})}$, because check that

$$
\begin{aligned}
X & =\alpha^{-1}(w) f(\bar{e}, \bar{v}) w s(e, v) \sim \alpha^{-1}(w) f(\bar{e}, \bar{v}) w f(\bar{e}, \bar{v}) \\
& \sim \alpha^{-1}(w) w
\end{aligned}
$$

so that we have $[X]=\left[\alpha^{-1}(w) w\right]=\left[w \alpha^{-1}(w)\right]=[w]\left[(\alpha(w))^{-1}\right]=(1-$ $\alpha)[w]$. Since $\left.\varphi\right|_{\mathfrak{A}}$ is α-invariant in cyclic cohomology, we get the equality $\langle\varphi, f(e, v)\rangle=\langle\varphi, f(\bar{e}, \bar{v})\rangle$. This implies that $\langle\cdot, \cdot\rangle$ descends to $K_{1}\left(A \rtimes_{\alpha}\right.$ $\mathbb{Z})$. Note that $f(\bar{e}, \bar{v})=\alpha(w) X f(e, v) w^{-1} \sim \alpha(w) \alpha(w)^{-1} w f(e, v) w^{-1}=$ $w f(e, v) w^{-1} \sim f(e, v)$.

To deal with the K_{0}-case, note that the K^{p}-groups satisfy the Bott isomorphism $B t: K_{j}^{p}(\mathfrak{A}) \xrightarrow{\cong} K_{j+1}^{p}\left(S^{\infty} \mathfrak{A}\right)$, and hence it suffices to apply the K_{1}-case dealt with above to $S^{\infty} \mathfrak{A}$ in the diagram

and note that the pairing $\langle\cdot, \cdot\rangle$ commutes with the Bott map and that $\langle\varphi, p\rangle=\left\langle \#_{\text {id }} \varphi, B t(p)\right\rangle$.

Proposition 1.13.6. Suppose that the maps $K_{j}^{p}(\mathfrak{A}) \rightarrow K_{j}(A)(j=0,1)$ are isomorphisms. Then the maps $\partial: K_{j}\left(A \rtimes_{\alpha} \mathbb{Z}\right) \rightarrow K_{j+1}(A)(i=0,1)$ and \# : $H C^{j}(\mathfrak{A}) \rightarrow H C^{j+1}\left(\mathfrak{A} \rtimes_{\alpha} \mathbb{Z}\right)$ are dual to each other.

Proof. Since the pairing $\langle\cdot, \cdot\rangle$ is compatible with the maps $B t$ and \#id and since \#\#id $=\#_{\text {id }} \#$, which means that $\#_{\alpha}$ is a shuffle product, it is enough to show that

$$
\frac{1}{2 \pi i}\langle \# \varphi,[f(e, v)]\rangle=\langle\varphi,[e]\rangle
$$

holds for $\varphi \in H_{\lambda}^{2 n+1}(\mathfrak{A})$ and e a projection of A and v a unitary of A.
Suppose first that $v=1$, i.e., $u e u^{*}=e$, because

$$
1=f(e, v) f(e, v)^{*}=(u e+(1-e))(u e+(1-e))^{*}=u e u^{*}+(1-e) .
$$

Set $Y=u e+1-e$. Then we have $\# \varphi\left(Y^{-1}-1, Y-1, Y^{-1}-1, \cdots, Y-1\right)=$ $\sum_{k=0}^{n-1} \#_{\alpha} \varphi\left(\left(u^{*}-1\right)^{k+1}(u-1)^{k}(d u)\left(u^{*}-1\right)^{n-k}(u-1)^{n-k} e(d e)^{2 k} e(d e)^{2(n-k)}\right)+$ $\sum_{k=1}^{n} \#_{\alpha} \varphi\left(\left(u^{*}-1\right)^{k}(u-1)^{k+1}\left(d u^{-1}\right)(u-1)^{n-k}(u-1)^{n-k} e(d e)^{2 k-1} e(d e)^{2(n-k)+1}\right)$
where note that $\# \varphi=\#{ }_{\alpha} \varphi$ and also $Y^{-1}-1=e(u-1)$ and $Y-1=(u-1) e$. Check indeed that when $n=0$, we have

$$
\begin{aligned}
& \# \varphi\left(Y^{-1}-1, Y-1\right)=\#_{\alpha} \varphi\left(\left(u^{*}-1\right) e(d u) e\right) \\
& =\# \varphi_{\alpha}\left(\left(u^{*}-1\right)(u-1)^{0}(d u)\left(u^{*}-1\right)^{0}(u-1)^{0} e(d e)^{0} e(d e)^{0}\right),
\end{aligned}
$$

where $e(d u)=(d u) u^{*} e u=(d u) e$, and when $n=1$ consider the first term of $\#{ }_{\alpha} \varphi\left(Y^{-1}-1, Y-1, Y^{-1}-1, Y-1\right)$ as follows:

$$
\begin{aligned}
& \#_{\alpha} \varphi\left(\left(u^{*}-1\right) e(d u) e d\left(\left(u^{*}-1\right) e\right) d((u-1) e)\right) \\
& =\#_{\alpha} \varphi\left(\left(u^{*}-1\right) e(d u) e\left(\left(d u^{*}\right) e-\left(u^{*}-1\right) d e\right)((d u) e-(u-1) d e)\right) \\
& =\#_{\alpha} \varphi\left(\left(u^{*}-1\right) e(d u) e\left(u^{*}-1\right)(d e)(u-1)(d e)\right) \\
& =\#_{\alpha} \varphi\left(\left(u^{*}-1\right)(d u)\left(u^{*}-1\right)(u-1) e(d e)(d e)\right) \\
& =\#_{\alpha} \varphi\left(\left(u^{*}-1\right)^{0+1}(u-1)^{0}(d u)\left(u^{*}-1\right)^{1-0}(u-1)^{1-0} e(d e)^{0} e(d e)^{2-0}\right) .
\end{aligned}
$$

Using the identities $e(d e)^{2 k} e=e(d e)^{2 k}$ and $e(d e)^{2 k+1} e=0$ and the $\alpha-$ invariance of α we get $\# \varphi\left(Y^{-1}-1, Y-1, \cdots, Y-1\right)$

$$
=(n+1) \not \#_{\alpha} \varphi\left(\left(u^{*}-1\right)^{n+1}(u-1)^{n}(d u) e(d e)^{2 n}\right)=(n+1)\binom{2 n+1}{n} \varphi(e, \cdots, e),
$$

and the result follows in this case.
Note that since $e=e^{2}$, we have $d e=(d e) e+e(d e)$, which implies $e(d e) e=0$. Also,

$$
\begin{aligned}
(d e)^{2} & =((d e) e+e(d e))^{2} \\
& =(d e) e(d e) e+(d e) e(d e)+e(d e)^{2} e+e(d e) e(d e) \\
& =(d e) e(d e)+e(d e)^{2} e,
\end{aligned}
$$

and hence $e(d e)^{2}=e(d e)^{2} e$. Moreover, if we assume that $e(d e)^{2 k} e=$ $e(d e)^{2 k}$, then

$$
\begin{aligned}
e(d e)^{2 k+2} e & =e(d e)^{2 k}(d e)^{2} e \\
& =e(d e)^{2 k} e(d e)^{2} e=e(d e)^{2 k} e(d e)^{2} \\
& =e(d e)^{2 k}(d e)^{2}=e(d e)^{2 k+2}
\end{aligned}
$$

Thus, $e(d e)^{2 k+1} e=e(d e)^{2 k}(d e) e=e(d e)^{2 k} e(d e) e=0$. And the combination corresponds to the number of the terms with $u^{-1}(d u) e(d e)^{2 n}$, since the other terms are mapped to zero by $\#_{\alpha} \varphi$ by its definition. For instance, if $n=1$, then $\binom{3}{1}=3$ and we have

$$
\left(u^{-1}-1\right)^{2}(u-1)=\left(u^{-2}-2 u^{-1}+1\right)(u-1)=-u^{-2}+3 u^{-1}-3+u
$$

In general, since $\left.\# \varphi\right|_{\mathfrak{A}}=0$ as a cochain, we can suppose that Y has the form $Y=u w e+1-e$ with $u w e=e u w$ and that there is a $C^{\infty}{ }^{\infty}$ path of invertibles $w_{t} \in \mathfrak{A}$ such that $w_{0}=w$ and $w_{1}=1$. Note that $u e+v(1-e) \sim v^{*}(u e+v(1-e))=v^{*} u e+(1-e)$ since $v^{*} \sim 1$, and we may exchange the roles of u and v^{*}. Applying the homotopy invariance of cyclic cohomology proved by Connes to the family of homomorphisms $\rho_{t}: \mathfrak{A} \rtimes_{\alpha}\left[u, u^{*}\right] \rightarrow \mathfrak{A} \rtimes_{\alpha} \mathbb{Z}$ defined by $\rho_{t}(u)=u w_{t}$ and $\rho_{t}(a)=w_{t}^{-1} a w_{t}$, we get, by the above case, that

$$
\frac{1}{2 \pi i}\langle \# \varphi, Y\rangle=\frac{1}{2 \pi i}\left\langle \# \varphi,\left[w^{-1} e w\right]\right\rangle=\langle\varphi,[e]\rangle
$$

as well. Check that

$$
\begin{aligned}
u e+(1-e) & =u w_{1} w_{1}^{-1} e w_{1}+1-w_{1}^{-1} e w_{1} \\
& \sim u w_{t}\left(w_{t}^{-1} e w_{t}\right)+1-w_{t}^{-1} e w_{t}=\rho_{t}(u) \rho_{t}(e)+\rho_{t}(1-e) \\
& \sim \rho_{0}(u) \rho_{0}(e)+\rho_{0}(1-e)=u w\left(w^{-1} e w\right)+1-\left(w^{-1} e w\right)
\end{aligned}
$$

and the unitary equivalence class is the same as the homotopy equivalence class in K-theory.

References

[1] Alain Connes, Noncommutative Geometry, Academic Press, (1994).
[2] Akio Hattori, Algebraic topology, (Isou Kikagaku) Iwanami (1990) (in Japanese).
[3] Ryszard Nest, Cyclic cohomology of crossed products with \mathbb{Z}, J. Funct. Anal. 80 (1988) 235-283.

Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan

Email: sudo@math.u-ryukyu.ac.jp
(Site: www.math.u-ryukyu.ac.jp/~sudo)

[^0]: Received November 30, 2011.

