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Abstract

We review and study the universal coefficient theorem (UCT) and
the Kiinneth theorem (KT) for Kasparov KK-theory groups, both of
which are obtained by Jonathan Rosenberg and Claude Schochet.
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-1 Introduction

This is nothing but a review on a paper by Jonathan Rosenberg and Claude
Schochet [8]. But we made some considerable effort to read the paper care-
fully to make some additional and helpful explanations for some proofs to
become more accessible to the readers for convenience. Some notations are
changed by our taste. The contents start from below almost along the story
of [8], but in this section we briefly recall several notations, definitions, and
basic properties without proofs and with possibly incomplete explanations.
The BDF theory of Brown, Douglas, and Fillmore classifies the C*-
algebra extensions of the form

0 K—-¢-2—-0

to classify essentially normal operators, where K is the C*-algebra of all
compact operators on an infinite dimensional Hilbert space

For a separable nuclear C*-algebra 2, the abelian extension group
Ext(2) consists of unitary equivalence classes of essential extensions € of
the form above, where the addition in Ext(?) comes from the correspond-
ing Busby invariant 7¢ : % —» @ = B/K a homomorphism from 2 to the
Calkin algebra @ and composing with an injection from Q & Q to Q.

Let S™A = Cp(R™) ® 2 be the n-th suspension of a C*-algebra 2. It is
shown by BDF that the Bott periodicity holds for Ext with definitions:

Ext(21) = Exto(21) = Ext(S2) = Ext(2)

and hence Ext,(x) = {Exto(*), Ext;(x)} with Ext;(x) = Ext(S«*) is a peri-
odic cohomology theory on separable nuclear C*-algebras (x) as variables.

When % = C(X) with X a compact metric space, then Ext,(C(x)) =
Ext,(x) with (x) spaces generates a Zj-graded Steenrod homology theory.
If X is finite dimensional, then by Kahn-Kaminker-Schochet,

Ext.(C(X)) & K*(F(X)) = K*(X),

where F(X) is the fundamental dual of the space X and K*(x) is the
(representable) topological K-theory for spaces (x) (and both of sides above
may as well be viewed as the K-homology theory K.(X) for X).

There is a natural index map

 : Ext(21) — Hom(K(2), Ko(K))

with Ko(K) 2 Z, where y(|€]) = O¢ the index map in the six-term exact
sequence of K-groups for the extension € of ¥ by K.



The Universal Coefficient Theorem (UCT) for unital commutative C*-
algebras C(X) of all continuous functions on compact Hausdorff spaces X,
proved by L. G. Brown, is the following natural short exact sequence:

0 — Ext}(K°(X),Z) -5 Ext(C(X)) -& Hom(K(X),Z) — 0,

where the map « preserves degrees and the map & reverses degrees, the first
term as well as the third one come from homology theory (and also K*(X)
is the topological K-theory for X).

As a generalization of the above UCT to non-commutative C*-algebras,
the Universal Coefficient Theorem (UCT) for inductive limits of type I C*-
algebras, obtained by L. G. Brown, is the following natural short exact
sequence:

0 — Ext}(Ko(%),Z) - Ext(%) - Hom(K; (%), Z) — 0.

In the meantime, M. Pimsner, S. Popa, and D. Voiculescu classify C*-
algebra extenstions of the form

0-CY)®K—-€¢—-2A—-0

with Y compact metric spaces, by the functors Ext,(Y;?). It is shown
by them that their functors are homotopy invariant, periodic, and satisfy
exactness properties in each variable. In the commutative case 2 = C(X),
it is calculated by Schochet as

Ext,(Y;C(X)) & K*(Y A F(X)).

This equation and the Kiinneth formula for toplogical K-theory imply a
Kiinneth formula of the form

0— K*(Y)® K:(X) — Ext,(Y;C(X)) — Tor2(K*(Y), K:(X)) — 0

with K(X) = K*(F(X)), provided that K*(Y) is finitely generated.

Let ®1 be a separable nuclear C*-algebra and B a C*-algebra with count-
able approximate units. We assume this throughout this paper if not
mentioned otherwise.

The Kasparov (K K;-)group K K;(2,B) consists of stable equivalence
classes of extensions of the form:

0 BRIK—-€¢E—-A—0,

the addition comes from the corresponding Busby invariant 7 : 24 —
Q(B) = M(BRK)/BRK the quotient of the multiplier algebra M (B QK)



(the outer multiplier algebra of B ® K) and the composition with an injec-
tion from Q(B)®Q(B) — Q(B), and the identity of the group corresponds
to those extensions 7 which are stably split, i.e. 7@ 7’ is split for some split
extension 7.

There are natural isomorphisms between Kasparov KK-theory groups
and Karoubi K-theory groups as well as BDF extension theory groups:

KK,(C,B)= K,(®B) and KK,(¥,C) = Ext,(2)

with 2 unital.
There is also the isomorphism obtained by Rosenberg and Schochet:

KK.(%,Co(Y)) = Ext, (Y™, +;2%),

where Y is a locally compact subset of the Euclidean space R” and Y is the
one-point compactification of Y, and the right hand side in the isomorphism
is the reduced Pimsner-Popa-Voiculescu group with 2+ the unitization of
a C*-algebra . See [7].

A homology theory is a sequence {H,} of covariant functors from an ad-
missible category C of C*-algebras to abelian groups satisfying the following
two axioms: .

e Homotopy Azom: If f,g : A — B are maps of C*-algebras in C and f
is homotopic to g, then

fo=9s: Hn(m) - Hn(‘B)-
o Ezactness Aziom: Let

0 N QLN . BN, . 0

be a short exact sequence of C*-algebras in C with i an inclusion map and
g a quotient map. Then there is a boundary map 0 : H,(B) — Hn—1(J)
and a long exact sequence:

.9 H,(3) i H,(®) -2 H,(B) _9 Ho 1(3) e .

The map 0 is natural with respect to morphisms of short exact sequences.
The homology theory is said to be additive if the following axiom holds:
e Additivity Aziom: Let U = &;2; a direct sum in C. Then the natural
maps Hp(%;) — H,(%) induce an isomorphism:

@i Hn(mz) i Hn(m)

where @; means the direct sum.



Similarly, a cohomology theory is a sequence {H"} of contravariant
functors from an admissible category of C*-algebras to abelian groups sat-
isfying the analogous homotopy and exactness axioms.

A cohomology theory is said to be additive if the natural maps H™*(2) —
H™(%2;) induce an isomorphism:

H™"(A) = H*(&:2;) — ILH™ ()

where II; means the direct product.
We now recall some about the basics of KK-theory groups.

Theorem 1.1. (Kasparov).
(1) For each 94, the functors KK;(%,x) (j = 0,1) with respect to the
second variables x form a homology theory.
(2) For each B, the functors KK;(x,B) form a cohomology theory.
(3) Bott periodicity is satisfied in each variable:

KK;(%,B) = KK;(%, S?8) = KK;(5%%,8),
where SA = Co(R) ® A and 52U = S(SA). In fact, we also have

KK (2,B) & KKo(2, SB) = KKo(S,B),
KKo(%,8) 2 KK, (2, $B) = KK,(S%,8).

(4) There is a natural Kasparov intersection product
KKi(%1,%8: D) ® KK;(D ® 2, B2) 22 KKiyj(% © Uz, B, @ Ba)
where i + j (mod 2). In particular, if By = C and A = C, then
KKi(%,D) ® KK;(D,B2) 22 KKy j(%h,B,).

(5) The inclusion maps 4 — AR K and B — B ® K induced by a
rank-one projection in K give rise to natural isomorphisms

KK;(A®K,B) = KK;(%,B)

and
KK;(%,8) 2 KK;(%, 3B ®K).

Theorem 1.2. (Rosenberg). For each B, KK;(x,B) form an additive
cohomology theory. That is, if I is a countable indez set, then the projec-
tions pj : DicsU; — AU; induce an isomorphism

K Ki(®ic1%i, B) = icr K Ki (s, B).



Proof. 1t suffices to deal with K Ky-groups. Indeed, if we have the isomor-
phism for K Kjp, then

KK;(®:2;,B) = KKo(®:%;, SB)
=~ ;K Ko(%;, $B) = ILK K, (A;,B).

The maps p; induce a homomorphism © : K Ko(®;:2;, B) — II; K Ko(;, B).

In fact, there are injections s; : %; — ®;%U;, so that there are induced
maps (s;)« : KK.(®:2;,8) — KK,(2;,B). Hence there is IT;(s;)« :
KK.(®:2;,8) — II;KK,(2;,B). This should be the reason for ©.

Surjectiviety of the map © is proved as follows. Given graded Hilbert
B-module E;, bounded operators T; € B(E;) of degree one, and repre-
sentations ¢; : A; — B(E;) of degree zero, so that the triple (E;, T, ¢;)
called Kasparov module defines an element of K Ko(%;,®). Then form
the direct sum (E,T,p) = (®:E;, ®:T;, ®ip;i). This defines an element of
K Ko(;2;,8) which is mapped to II;( E;, T;, ¢;) under ©, since the follow-
ing relations hold:

[p(a), T} € K(E), (a)(T*~1) €K(E), (a)(T-T")€K(E)

for a = (a;) € ®A;, where [z,y] = zy — yx the commutator for z,y.
Note that for a; € ;,

[pia:), T) € K(E:), wi(@)(T? - 1) €K(E:), wila)(T: - T7) € K(E)).

Also, the K Kg-group is defined to be set of homotopy equivalence classes of
Kasparov modules such as above, and to be an abelian group with respect
to direct sum. And also, for E a (right) Hilbert B-module, B(E) is the set
of all module homomorphisms 7" on E with adjoint T with respect to 8-
valued inner product (-,-) for E: (Tz,y) = (z,T*y) € B for z,y € E, and
K(FE) is defined to be the closure of linear space of rank one operators 8,
for z,y € E defined as 0;,(z) = z(y, z) for z € E, with adjoint 67 , = 0, ;.

Injectivity of the map © is proved as follows. Suppose that one is given
an element of K Ko(®;2;,B) which is trivial in each KKo(%;,B). There
is the following split short exact sequence:

0— & - A - co(I) =0

where co() is the C*-algebra of all sequences of C on I vanishing at in-
finity. Thus we may suppose that we have an element of K Ko(GBin;", B)
which is trivial in each KKo(2;,®), say (E,T,¢) a corresponding Kas-
parov module. Let e; be the unit element of A}. Then the image of the
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KK-element in K Ko(2],B) is defined by the B-module ¢;E together with
the compression of T and ¢, say T'|¢,z and the compression of ¢ restricted
to 2;, say v;. Then we may assume that T, g is homotopic to some T; on
e; F satisfying the following relations:

[ia:), T:) =0, i(a:)(T?—1)=0, o(a:)(Ti—T7)=0

for a; € U, realized in B(e;E). It follows that the homotopies can be
added to obtain a homotopy from T to @;T; which defines the zero element
in KKjy. Thus the kernel of © is trivial. O

Theorem 1.3. (1) Any (countable) additive homology theory commutes
with (countably) inductive limits of C*-algebras. )

(2) If H* is a (countably) additive cohomology theory and lim®; is
a direct sequence of C*-algebras 2;, then there is a natural Milnor lim?
sequence of the form:

0 — i’ H™(2) — H™(lim2) — lim H™(2%;) — 0.
Let
K.(*) = Ko(*) ® K1(*) and KK,(x,+") = KKo(*,%') ® KK1(x,*')

denote the direct sums of K-theory groups and KK-theory groups respec-
tively, but these notations in the left sides are also used to mean respective
unions of K-groups and KK-groups to mean the respective theories.

Let Kot1(*) = Ko41(x)® K141 (*) = K;(*)®Kp(*). Let KK,41 (*,*') =
KK;(x,%") @ KKg(*,%'). These notations are used to match up to the
degree of maps between K-theory or KK-theory groups.

Note that

KK,(C,B) = K,.(B)

and also
KK.(2%,C) = K*(2) = Ext.(2),

where Ext, (%) = Exto()®Ext,; (%), with Ext; () = Ext(2) and Exto(2) =
Ext(S2).
There are two natural maps via the Kasparov product:

a: K*(2) ® K.(B)
=~ KK,(%,C) ® KK.(C,B) —» KK.(%,B)

with degree zero, and

v : KK.(2,8) — Hom(K, (%), K.(8))
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with degree zero, which comes from the pairing:
KK, (C,A%)® KK,.(U,8) - KK,.(C,B) = K.(B).

Moreover, the map - has the following interpretation as well. Let 7 €
KK, (%, 8B) be represented by an extension

0 BRIK—-E—-UA—0.

The associated six-term exact sequence of K-groups has the form
Ko(B) —— Ko(€) — Ko(%)
o] |
Ki(%) «—— Ki(€) —— Ki(B)
with 8, & index maps and then we have

() = (8,8") € Hom(K:1(2), Ko(B)) ® Hom(Ko(21), K1('B))
C Hom(K.,(2), K.(*B)).

Furthermore, if p € KKy(2,8) = KK1(S%,B), then similarly,

v(p) = (85, 8%) € Hom(K;(S9), Ko(8)) © Hom(Ko(SD), K1 (B))
= Hom(Ko(2), Ko(B)) ® Hom(K; (), K1(B))
C Hom(K*(m), K*(%))’

where 95 : K1(S%) — Ko(B), 95 : Ko(SS) - K(8) are corresponding
index maps. Therefore, the map < is determined by the index maps as

'Y(p' T) = ('Y(P), 'Y(T)) = (aS’ 6.15'1 0, a’)

Suppose that y(7) = 0, i.e., the index maps & and & vanish, so that
the six-term exact sequence splits into two short exact sequences

0 — K;(%B) — K;(€) - K;(2) — 0
for 7 =0, 1, which determine an element
x(7) € Extz(Ko(2), Ko(B))®Ext (K1 (%), K1(B)) C Ext}(K.(2), K.(B))

with degree zero, while 7 has degree one. Similarly, if 7(p) = 0, then we
have two short exact sequences

0— K;(B) - K;(€) — K;(S%) — 0
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for 7 = 0,1, which determine an element
x(p) € Exty(K1(2), Ko(B))®Exty(Ko(%), K1(B)) C Extz(K.(2), K.(B))

with degree one, while p has degree zero.

Let N be the smallest full subcategory of separable nuclear C*-algebras
which contains separable type 1 C*-algebras and is closed under strong
Morita equivalence (that is the same as stable isomorphism), inductive
limits, extensions (and if two terms of an extension are in N, then so is the
other), and crossed products by R and by Z.

We are going to check the following two theorems UCT and KT of
Rosenberg-Schochet:

Universal Coefficient Theorem (UCT). (Rosenberg-Schochet). Let
A € N. Then there is a short ezact sequence (denoted as a diagram) :

Ext} (K. (%), Ku31(B)) —— KK.(%,%B) —— Hom(K, (), K.(8))

I |

0 0
which is natural in each variable. The map v has degree 0 and the map &
has degree 1.

The UCT sequence splits unnaturally.
Taking C as B, we have

Corollary 1.4. Suppose that 2 € N. Then there is a short exact sequence

0 — Ext}(Ko(%),Z) —— K'(2) —— Hom(K:(%),Z) — 0,
which is a generalization of the UCT of Brown for inductive limits of type
I C*-algebras, where K'(2) = KK;(%,C) = Ext(21).

In particular, taking C(X) as A we get the UCT of Brown:
0 — Ext}(K°(X),Z) —— Ext(C(X)) —— Hom(K*(X),Z) — 0.
Separable C*-algebras ?1 and B are said to be KK-equivalent if there
exist A € KKo(2,B) and A~} € KK('B,2) such that A®p A~! = idy and
A~1 @y A = idg the KK-theory classes corresponding to the identity maps
on 2 and B respectively.

Kiinneth Theorem (KT). (Rosenberg-Schochet). Let 2 € N and
suppose that K,(B) is finitely generated. Then there is a short ezact se-
quence (denoted as a diagram) :

K* () ® K, (B) —2— KK,(%,B) —2— TorZ(K*(2), Kvi1(B))

I !

0 0
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which is natural in each variable. The map a has degree 0 and the map B
has degree 1.

The KT holds if either K,(?) or K,(B) is finitely generated. The KT
sequence splits unnaturally.

If neither K. (2) nor K.(B) is finitely generated, then there are coun-
terexamples to the KT as noted by George Elliott.

2 Special cases of the UCT

This section is devoted to prove the following:

Theorem 2.1. Let A € N and let B be a C*-algebra with countable ap-
prozimate units such that K.(B) is an injective (i.e., divisible) Z-module.
Then the map

~(2A,8) : KK.(A,B) - Hom(K.(2A), K.(B))
18 an isomorphism.

This is equivalent to the assertion that the UCT holds for all pair (2, ‘B)
with 21 € N and with K,(*B) injective.

Remark. Recall a fact from ([5]) in the following. An additive abelian
group is viewed as a Z-module. A Z-module G is said to be divisible (or
complete) if for any ¢ € G and any n € Z, there is z, € G such that
g = NTp, = Tp + -+ + T, (n — 1-times sum). A torsion free, divisible
Z-module coinsides with a direct product of additive Q of all rationals.

Proposition 2.2, Assume that K.(B) is an injective Z-module. Then
KK, (*,B) and Hom(K.(*), K.(B)) are additive cohomology theories on
the category of separable nuclear C*-algebras *, and v(*,B) is a natural
transformation of cohomology theories.

Proof. The assertion to K K,(x,®) is always true without any hypothesis
on B by Theorem 1.2.

The Karoubi K-theory K, (*) is an additive homology theory. If K, (*8)
is injective, then Hom(*, K.(B)) becomes an exact functor, and hence
Hom(K, (%), K.(*B)) satisfies the exactness axiom and so is a cohomology
theory. It is additive since Hom(x,*) transforms direct sums in the first
variable into direct products, that is,

Hom(®;X;, *) = I Hom(X;, *).
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Finally, the naturality of y(x,'B) follows from that of the Kasparov
product. Indeed, there is the following commutative diagram:

KK,®,8) 222, Hom(K.(%), K.(B))

[@ars [@arny:
) ¥, B) 1)
via A € KKo(2, '), where the map (®qA)* is defined to be the composite
of the maps in the clock-wise, with v(2', B) replaced with its inverse. O

Proposition 2.3. Suppose that K.(B) is injective. Let J be a closed ideal
of a separable nuclear C*-algebra . If two of the following maps:

v(3,B) : KK, (3,8) — Hom(K.(J), K.(B)),
v(™,B) : KK, (A,B) — Hom(X.(2), K.(B)),
v(™/3,B) : KK.(2/3,8) — Hom(K,(2/7), K.(B))

are isomorphisms, then so is the third map.

Proof. We have the following commutative diagram:

KKo10,8) 222 Hom(K..1(3), K.(B))

¥(%,B)
_—

KKy (%,8) Hom(K.+1(20), K.(B))

KKou1(2/3,8) 2229, gom(K, 11(2/3), K.(B))

KK,(3,8) 222, Hom(K.(3),K.(B))
KK.@8) 222 Hom(K.(2), K.(B))
KK.(@/3,8) 222, Hom(K.(2/3), K.(%8))

Apply the Five-Lemma to the diagram above. O
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Proposition 2.4. Suppose that K.(B) is injective. Let lim?; be an in-
ductive limit of countable separable nuclear C*-algebras ;. If each map:

v(2;,B) : KK, (%;,B) — Hom(K,.(2;), K.(B))
is an isomorphism, then
y(lim 245, %B) : K K., (lim 2;, %) — Hom(K. (lim 24;), K.(B))
18 an isomorphism.
Proof. We have the following commutative diagram:
0 —_— 0

I

lim KK,(%,%8) — limHom(K.(%), K.(8))

4

KK,(lim%;,%8) —— Hom(K,(lim2;), K.(%B))

—

lim! KK,_1(%;,%8) —— lim' Hom(K.—1(%;), K+(B))

0 E= 0

where ll_x_n means projective limit and !iill means Milnor limit, and the

vertical sequences are Milnor lim!-sequences. Apply the Five-Lemma to
the diagram above. O

Proposition 2.5. If2 is strongly Morita equivalent to a commutative C*-
algebra and if K.(B) is injective, then v(U,B) is an isomorphism.

Proof. First note that both K, (%, 8) and Hom(K, (%), K, (8)) are invariant
under strong Morita equvalence. Thus we may assume that % = Cp(X) the
C*-algebra of all continuous functions on a locally compact Hausdorff space
X vanishing at infinity. If X = R* with k even, then by Bott periodicity,

KK.(Co(RF),®B) ~ KK,(C,B) & K.('B),
Hom(K, (Co(R¥)), K,(B)) = Hom(K., (C), K.(B))
= Hom(Z, K.(B)) & K, (B)
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and if k is odd, then by Bott periodicity,

KK.(Co(RF),®B) = KK.(SC,B)
S KK...;.](C,%) = K*"I-l(%) = K*(%)i
Hom(K,(Co(R¥)), K.(B)) = Hom(K.(SC), K.(B))
& Hom(K,41(C), K.(B))
=~ Hom(Z, K,(B)) = K.(B).

For X a finite cell complex, we use induction on the number of cells and
the above Proposition 2.3 for short exact sequences of C*-algebras such
as 0 — Co(U) — Co(V) — Co(W) — 0, where U is an open subset of a
locally compact Hausdorff space V and W is closed in V, repeatedly. If X
is compact and metrizable, then X is a countable inverse (or projective)
limit lim X; of finite complexes Xj, so that C(X) = lim C(X;) an inductive
limit of C(X;) of all continuous functions on X; and thus y(C(X), ) is
an isomorphism for the above Proposition 2.4 for inductive limits. Finally,
if A = Cp(X) with X non-compact, we use the result for the unitization
At = C(X), where X is the one-point compactification and the short
exact sequence: 0 — Co(X) —» C(X*) = C —0. O

Proposition 2.6. If K,(B) is injective and % is a separable type I C*-
algebra, then y(2,B) is an isomorphism.

Proof. We prove this as follows, not omitted as in [8].

Since 2 is separable and of type I, it has a countable composition series
of closed ideals J; such that the union of J; is dense in 2 and subquotients
3,/3;-1 have continuous trace.

(1) If such a subquotient is finite homogeneous, with respect to dimen-
sion of irreducible representation, then it can be obtained by taking finitely
extensions by tensor products of commutative C*-algebras with matrix al-
gebras over C.

(2) If such a subquotient has a composition series of finite homogeneous
C*-algebras, then we use the case of (1) and the Propositions 2.3 and 2.4
for extensions and inductive limits.

(3) If such a subquotient is infinite homogeneous, with respect to di-
mension of irreducible representation, and if its spectrum has dimension
finite, then by local triviality, it has a composition series of closed ideals
such that subquotients are tensor products of commutative C*-algebra with
K. If the spectrum has dimension infinite, we decompose the spectrum into
an inverse limit of spaces with dimension finite and the subquotient can be
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an inductive limit of infinite homogeneous C*-algebras with spectrums of
dimension finite.

(4) The general case can be treated by taking a composition series of
closed ideals such that subquotients are contained in those three cases. 0O

Proposition 2.7. If K.(B) is injective and if v(A,B) is an isomorphism,
then 7(A xq R, V) is an isomorphism for A x, R the crossed product of AU
by an action « of the real group R on .

Proof. The Thom isomorphisms of Connes and of Fack-Skandalis for K-
theory and KK-theory respectively yield the natural isomorphisms:

Hom(K;(A %o ]R), KJ(%)) = Hom(Ki+1(Ql), KJ(%))
and
KKt(Ql Ay R,QB) = KK,'.H (Ql, %)
Hence, we have
KK, x,R,B) = KK.1(%,B)
= Hom(K.41(21), K.(B))
2 Hom(K, (2 x4 R), K.(B)).
a

Proposition 2.8. If K,.(*B) is injective and if y(2, B) is an isomorphism,
then v(A x4 Z,B) is an isomorphism for A x, Z the crossed product of A
by an action a of the integer group Z on .

Proof. Consider the following diagram:

KKo®@,%8) 222 Hom(K..1(2), K.(B))
(id—a)* l | Hom((id-a). id.)
KKoi(@,8) 222 Hom(K,.1(2), K.(B))
81 | Hom(@id.)
KK.(2 %6 Z,8) X220, gom(K. (2 q Z), K. (B))
i l Hom(ia,id.)
KK.@,38) 222 Hom(K,(2), K.(B))
(id—a)* l | Hom((id—a).id.)
KK,@,%8) 222 Hom(K,(2), K.(B))

— 108 —



where i : 2 — 2 x4 Z is the inclusion map, and the left column is exact by
Fack-Skandalis, and the right column is exact by Pimsner-Voiculescu and
the fact that K, () is injective. The diagram commutes and hence the map
¥(2 x4 Z,B) in the middle is an isomorphism by the Five-Lemma. O

Proof of Theorem 2.1. The propositons proved so far in this section com-
plete the proof of Theorem 2.1. O

3 Geometric injective resolutions

This section is devoted to show the construction of a geometric injective
resolution for a C*-algebra.
Recall that an injective resolution of an abelian group G is a short exact
sequence of abelian groups:
0-G—-Iy—-11 -0

such that Iy and I are injective (i.e., divisible) groups. For instance, the
following short exact sequence:

0-Z-Q—-Q/Z—-0

is an injective resolution of Z.

Every abelian group G has an injective resolution. We may construct
such a resolution as follows. Let f : Fp — G be a homomorphism from a
free abelian group Fy onto G, and let F; = ker(f) the kernel. Then F} is
free and Fy/F) = G. Let g : G — I be the composition of homomorphisms:

G- R/ - (FReQ)/FA=l

and then g is a monomorphism, and I is injective as it is a quotient of
Fp ® Q injective. Then the short exact sequence:

0-G-Iy-Lh)y/G=I -0

is an injective resolution of G.
Let f: 9% — B be a homomorphism of C*-algebras. The mapping cone
Cf for f is defined by

Cf= {({,a) € I%@mlf(o) = 0’6(1) = f(a)}a

where I'B = C(I,B) the C*-algebra of all B-valued, continuous functions
on the interval I = [0,1]. There is a natural map Cf — 2 given by sending
(¢, a) to a, and the resulting short exact sequence:

0-8SB-Cf-oU—-0
called the mapping cone sequence for f, which splits.
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Theorem 3.1. Let B be a C*-algebra. Then there exists a C*-algebra ©
whose K-theory groups K.(D) are injective and a homomorphism f : SB —
D such that the induced map

K.41(B) = K.(SB) —— K.(D)
is a monomorphism.

Note that this theorem implies the existence of a geometric injective
resolution for K,(8). Indeed, the mapping cone sequence for f has the
form:

08D —->Cf—-SB—0.

It follows from the associated six-term exact K-theory group sequence and
the theorem above that

0 — K;(S8) L~ K;®)

I el =

0 — K;(SB) —2— K;_1(SD) —— K;_1(Cf) —— 0

where the last right zero also means the kernel of the map 8. Therefore,
K;(Cf) become quotients of injective K;;1(D), and hence be injective.
Thus, the last short exact sequence on the bottom line is a geometric in-
jective resolution for K.(B).

Proof. 1t suffices to assume that B is unital, for the non-unital case follows
from the unital case and the fact that the map from B to its unitization
B+ induces an inclusion from K,(®B) to K,(®B*). Namely, the maps f+ :
S(®B*) —» D and f. : Ki(S(B")) = Kut1(B1) — K, (D) as in the last
theorem above induce the same maps for B by restriction.

Let B be a unital C*-algebra. Let 7 : § — B ® K be a geometric
projective resolution for B obtained by Schochet. That is, § is a C*-algebra
with K, (J) a free abelian group and the map

« Ko (F) — Ko(B QK) = K, (B)
is onto. The resulting mapping cone sequence for the map r:

0—>SEB®K—i>Cr——s—>S—>O

yields the following K-theory group sequence:

0 = K.(Cr) —=— K.(§) —— K.(B®K)=K.(B)—0
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since 7, is onto, and via the part of the six-term K-theory group diagram:

Ki(§) —2— K;.1(SBoK) = K;j_i(Cr) —— K;_1(3)

|| ||
K3 —— K;j(B®K) —— 0

from which, i. is the zero map, and hence, s, is injective by the exactness
of the diagram. Then K,(Cr) is a subgroup of K,.(J) free, and is hence
free.

Let N be a unital UHF or AF-algebra with K(M) = Q. For instance,
let 9 be an inductive limit of tensor products of matrix algebras over C:

N = lim M>(C) ® M3(C) ® - - - ® Mp(C)
with the canonical inclusion maps, for instance,
A 0y 0
My(C)3 A |02 A 03) € My(C) @ M3(C) = Mg(C)
02 0 A
with Oz the 2 x 2 zero matrix in Mp(C)..
Defineamapt: § — @M by t(z) = z®1 for z € F. Then the induced
map
L Ku(§) - K.(FOM)
is a monomorphism, and

K.(F®M) = K.(F) K.M= K.(F)®Q

via the Kiinneth theorem for K-theory groups by Schochet since K1 () =0
and (additive) Q torsion free, and also, as a note, K,(F) ® Q is injective
since Q is divisible.

The mapping cone sequence for tos: Cr — FQ MN:

0> SFRMN —-2Ctos—Cr—0

implies the following K-theory group sequence:

0— K.(Cr) £, K (F®N) —— K.(Ctos)—0

since (o 8)« = t. 0 84 is injective, and via the part of the six-term K-theory
group exact sequence:

0 —— K;(Cr) £ K (o)

0 — K;j(Cr) =2 K;-1(S§®M) —— K;_1(Ctor) —— 0
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where the last right zero comes from being zero of the kernel of the map 9
which is the image of K;_;(Ctor) by exactness of the diagram. It follows
that K,.(Ct o s) is divisible since it is a quotient of a divisible Z-module
by a free one. Possibly, if the free module is finitely generated, then the
quotient is certainly divisible, and if the free module is (countably) infinitely
generated, the quotient is still divisible or may be zero, but divisible.

The naturality of the cone construction by Schochet implies that there
is a map of mapping cone sequences:

SCr —— 8§ —— Cs » Cr —— §
| | [ | |t
SCr —— SF®MN —— Ctos » Cr — FON

where note that the mapping cone sequence for s : Cr — § is
0-SF—-Cs—>Cr—20
and the mapping cone sequence for tos: Cr - F®MNis
0—=SFOIN—-Ctos—Cr —0.
Hence, there is the following commuting diagram:

0 — K,(Cr) = K.F) —— K.a(Cs) — 0

ll || L [ II

0 — K.,(Cr) — K,F®N) — K,4+1(Ctos) —— 0

with ¢, injective. The Snake Lemma implies that the map u, : K.(Cs) —
K,.(Cto s) is a monomorphism.

Indeed, check that u, is mono. Suppose that z is in the kernel of ..
Then there is y € K.(§) which is mapped to z from the left by exactness
of the diagram. Then ¢,(y) is mapped to zero from the left by commuta-
tiveness of the diagram. And hence there is z € K,(Cr) which is mapped
to t.«(y) from the left by exactness of the diagram, and z is also mapped to
y under s, by commutativeness of the diagram. Therefore, z is mapped to
z under the composition with s,., and hence z is zero by exactness of the
diagram, which shows the claim.

Finally, since S8 ® K is the kernel of the map s : Cr — §, a homotopy
argument of Schochet yields the short exact sequence:

0-SBRK —2— Cs —2— C§—0.
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where, indeed, without looking at the another item of Schochet we check
that

Cs ={(§,a) € IF® Cr|£(0) = 0,£(1) = s(a)}

and thus the quotient map g is defined by (£,a) — £ € CF and if £ = 0,
then £(1) = 0 = s(a), and hence (0,a) = a is in the kernel of the map s.
Thus ker(g) C ker(s). Consider the following diagram:

0 — SBRK » Cr —— § > 0
|| I |
0 —— ker(q) 4 Cs —2— C§ » 0.

If s(a) = 0, then there is (§,a) € Cs with £(1) = 0. And this £ can be
deformed to zero, and hence a = (0, a) is in the kernel of g.

Note that C'F means the cone over 2, that is, it is the C*-algebra of all
$-valued continuous functions on the closed interval [0, 1] vanishing at zero.
Since CF is contractible, so that Ko(Cg) = 0, and then the suspention SCF
is contractible, so that K;(C¥) = Ko(SCF) = 0.

It follows that v, : K, (S8 ® K) — K,(Cs) is an isomorphism.

Let w : SB — S8 ® K be the inclusion map induced by the choice
of a rank-one projection in K, which induces an isomorphism Ko(SB) =
Ko(SBRZ), so that also K1(SB) = Ko(S2B) = Ko(S?BRK) = K1(SB®
K), and hence, w, : K.(SB) — K.(SB ® K) is an isomorphism.

Define f to be the following composite:

S8 —— SBRK —— Cs —— Ctos
and set D = Ctos. Then f, = u, o v, 0w, : Ku(SB) — Ku(D) is a

monomorphism with K, (D) injective, as desired. (]

4 The general UCT

Theorem 4.1. Let A,B be C*-algebras. Suppose that the UCT holds for
all pairs (A,B) with K.(B) injective. Then the UCT holds for all pairs
(A,B) (with K.(B) arbitrary).

Proof. Let f : SB — Do be a geometric injective resolution such that
K.(Do) is injective and f, : K.(SB) — K,(Do) is mono. Let D; be the
. mapping cone Cf:

0—SDy —2— Cf=D;— SB —0.
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This mapping cone sequence yields the following K-theory sequence:
0 — K;(58) —2— K;_1(SD¢) —2— K;_1(D1) =0

which gives a geometric injective resolution of K,(S9B), where note that
the boundary map(s) 9 is mono because f, is mono.

The long exact sequence for the KK-theory groups associated to the
mapping cone sequence above has the form

— KK;(%,5D0) "2 KK;(2,91) » KK;(%, $B)

(ld:-?) KKj_l(Ql, S@O) (id,gi'l)‘ KKj—l(m,Bl) -

with g; = g = g;—1, from which it follows that
' 0 — coker(id, g;)» = KK;(,D1)/im(id, g;)«
— KK;j1(2,B) = KK;(2, SB)
4 ker(id,gj_l). — 0.

Since the following diagram:

KK, (%1, 590) fid)., KK, (%,D;)

|50 [EREN

Hom (K, (2), K.(SDo)) —2209), Hom(K.(21), K.(D1))

commutes and the vertical maps are isomorphism by the assumption, we
see that

ker(id, g)« = ker[Hom(id, g).],
coker(id, g). = coker[Hom(id, g).].
And also, similarly, the following diagram:

0 ——  KK.p1(%,58) 4.9, KK.(%, SDo)

|| |rans®) | 520

0 — Hom(K.(2), Kup1(SB)) 122090, Hom(K. (), K. (SDo))

commutes and the vertical maps are isomorphism by the assumption, we
get

Hom(K.(2), K.+1(SB)) = ker[Hom(id, g).],
Hom(K,(2), K.(SDo))/Hom (K. (), Kx+1(SB)) = im[Hom(id, g).]
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and hence, we obtain

coker[Hom(id, g).]

~ Hom(K,(2), K.(D1))

" Hom(K.(2), K.(590))/Hom(K.(%), K.41(SB))
=~ Ext) (K. (), K\1(SB)).

Indeed, we have the following exact sequence as a fact of homology theory:

0 — Hom(K,(2), K.+1(SB))
— Hom(K.(2), K.(SDq))
— Hom(K, (%), K.(D1))

— Ext} (K. (), K.11(SB))
— Ext%(K.(Ql),K;(SDo))

20— .-

since
0 — K,41(SB) — K.(SDpo) — K.(D1) — 0

is exact, and since K,(SDy) is injective.
We have verified that

0 — coker(id, g)« & Ext} (K. (), K.y1(SB))
— KK,(2,S5%B)

Y25B) ver(id, g). 2 Hom(K, (%), K.(SB)) — 0
so that we obtain the UCT for the pair (2, B):

0 — Ext (K. (), Kvy1(B)) — KK, (21,B)
"®%) Hom(K.(21), K.(B)) — 0
with the injection of degree one and the quotient map of degree zero. [

Proof for the UCT except naturality. Theorem 4.1 and Theorem 2.1 prove
the UCT in the introduction. The naturality of the UCT follows from the
next theorem. O

Theorem 4.2. The UCT is natural in both variables. More precisely, if A,
A in N, B and B’ are C*-algebras with countable approzimate units, and
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A€ KKo(2,%'), p € KKo(*B,B’), then the following diagrams commute:

0

Ext} (K. ('), Kot1(B))
]
KK.(%,B)

Y

Hom(K. (%), K.(%B))

where

(A\®qr)*

A
Ry

(A®yr)*
_—

0

Extz (K. (%), K.11(B))

)

KK.(2,B)

Y

Hom(K. (%), K. (%8))

KKo(@,2) ® KK.(,B) —2, KK,(%,8),

and also

Extz(K.(2), Kv11(B))
é
KK.(2,B)

Y

Hom(K‘(m), K*(%))

where

®Oqp

(®BH).
_—

~

(Gsb)e, Bxtl(K. (), Koy1(B))

)
KK.(%,%8')

)
L

Hom(K. (m)) K* (%I))

KKo(%,8) ® KK.(8,8) 22 KK,.(%,8").

Proof. The naturality of v follows from functoriality of the Kasparov prod-

— 116 —



uct. Note that, for p € KK, (%',B) we have

p  —I v(p)

lr\®w lu@w)-
A®uw p —— ¥(A®w p) = M®u)*1(p)

where the equation in the lower right corner is the definition for the map
(A®g¢)*, so that the resulting diagram

KK,(%,8) —— Hom(K.,(2), K.(8))
lA@gl l(z\@gl)‘
KK,(2,8) —— Hom(K.(2), K.(B))

commutes.
We show naturality of the map

6 : Ext} (K. (), Ku31(B)) — KK.(2,B)
as in the foliowing 4 steps, which is equivalent to the following map:
8 : Ext}(K.(2), K.(B)) — KK..1(%,B).

Step 1. We show that the map 4 is independent of the choice of the geo-
metric injective resolution. Indeed, given two such resolutions f : S8 — Dy
and f' : SB — Dj with K.(Dg), K.(Dp) injective and f., f, monomor-
phisms, such that

058D 2> D=Cf —2 §8-0

0 — S LN D =Cf —2— §B -0
(corrected), where p is the canonical projection (to the second coordinate).
Let

D1 = {(z,y) € D10 D1 |p(z) = p(y)}-

Then we obtain another geometric injective resolution: f/ = f@ f' : S8 —
0 = Do ® Dy, such that

0- 5oy 2B, pr_cp 2, 580

Indeed, an element (£1,a) ® (£2,a) € D] with £§(0) = 0,£2(0) = 0 and
&(1) = f(a), &(1) = f'(a) corresponds to the element (§,a) = (§&1 @
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£2,a) € Cf" with £(0) = £1(0) ® £2(0) =06 0 and f"(a) = f(a) ® f'(a) =
£1(1) & &o(1).

The projection to the first coordinate: D] — D; gives the following
commutative diagram:

0 —— SD8 2B, 0 P om0
| | ||
0 — 599 24— 9, 2 58 > 0.

It follows from the induced maps in K-theory and KK-theory that we obtain
the following commutative diagram:

H(K.(%), K.(5DF)) —— H(K.(),K.(D])) —— Extz(K.(%), K.41(SB))

KK.@, 508 0N ppa,on 42k KK.,(%,58)
- (id,g). - (id‘p).
KK,(®,8D) 29,  gkg.@,) 2P KK, (%, 5%)

H(K. (%), K.(5D0)) —— H(K.(¥), K.(D1)) —— Extz(K.(%), K.41(SB))

where H(*, x) = Hom(*, *) just for short. It follows from the diagram above
that

0 0

Ext(K.(2), K.11(SB)) ExtL (K. (%), K\ 11(SB))

KK,(,97)/(d, gze h).KK.(2,SDg) KK,(, D])/(id:’g),KK‘ (A, Do)
KK.(2%,DY)/ker(id, p). KK, (%,D;)/ker(id, p).
(id, p). K K. (%, D)) —— (dphKK.(D)
KK.(%,5%8) — KK.(2, 58)
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and both of the composites give the same map:
8 : Extd (K. (), Ku(B)) —» KK,p1(%,B).

Replacing ®; with D) from the beginning, one can show exactly in the

same way that the resulting map is the same as the above §, as wanted.
Step 2. We prove naturality with respect to A € KKo(,2’). Functo-

riality of the Kasparov product gives the following commutative diagram:

H(K, ('), K.(SDo)) —— H(K.(A), K+(D))) —— Exty(K,(2'), Kvy1(SB))

KK, (®,5D) 9, gr, ) 190, KK.(2',$B)
A@ml A@gl 1A®gl
KK.(®,5D,) 49 kg, S92, KK, (%, 5%)

H(K.(2), Ki«(SDp)) —— H(K.(A), K.(D1)) —— Ext}(K. (), K.s1(SB))

where H(*,*) = Hom(*,*) just for short. It follows that the following
diagram commutes:

0 — 0
l |
Ext(K. (%), Kos1(58)) 2220 Extl(K.(2), K.s1(SB))
KK.(,D1)/(id, 9). KK. (2, $Do) KK.(%,D1) /(id,l 9)+ KK, (%, $Dy)
KK, (%,D;)/ker(id, p)« KK,‘(Ql,’DJ)l/ker(id,p).
| |
(id, p) K K. (%', D) N (id, p). K K. (%, D1)
| |
KK.(%, SB) B, KK, (%, SB)

where the map (A®gy)* is defined to be the composite of the two down
arrows in the left with the map A®g in the line up from the bottom line
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and with the reverses of the two down arrows in the right, so that

Extl (K. ('), Kur1(58)) 222, Byl (K, (21), Ko yr(SB))

L s
KK, (%, 5%) 28, KK. (%1, 5%)

commutes, and S8 may be replaced with 8 in the diagram above to obtain
the corresponding diagram in the statement.

Step 3. We next show that the map § may be computed instead using
a geometric projective resolution of 2. Suppose that we are given a short
exact sequence of C*-algebras:

0—-5A—-31 —F—0

with Fo,§1 € N, K.(3o) and K.(31) free abelian, and the boundary map
K.(Fo) — K.—1(S2) = K, (2) surjective, such that

0— K*+1(31) - Kt+](30) - K&(Sm) — 0,

where if necessary, we replace 2 with S?2®K which has the same K-groups
as those of 2. Such sequence does exist by Schochet {9] (see also another
paper in this volume of RMJ). Suppose also that we are given the mapping
cone sequence:

0—*3@0—*91 — 88 -0

which comes from a geometric injective resolution as above. The short
exact sequences give rise to the following double complex of KK-groups
with exact rows and columns:

KK.(80,5D0) —— KK.i($1,5D0) —— KK.11(%,SDo)

! ! !

KK.(80,D1) — KK.(31,D1) — KK.1(%,D:)

l ! !

KK 41(30,8) — KK.11(5:1,8) —— KK.(%,'B).
On the other hand, since K.(3;) are free, so that Ext}(K.(5;), K.(SDo))

and Extj(K.(§;), K.(B)) are trivial, and since K,(D;) are injective, the
UCT tells us that the above double complex can be written in the following
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form:

H(K.(§o), K(85D0)) — H(K.(§1), Ke(85D0)) —— H(K.41(2), Ku(5D0))

! ! !

H(K.(80), K+(D1)) —— H(K.(§1), Ko(D1)) —— H(K.pa2(%), Ki(D1))

l l l

H(K.11(80), Ko(B)) —— H(K.u41(F1), Ku(B)) —— KK.(%,B)

where H(*,*) = Hom(*, *) just for short. The images of the maps ¢ and
p can each be identified with Ext} (K .11(2), K«(B)). Indeed, we have the
following exact sequences as a fact of homology theory:

0 — Hom(X.(S92), K.(B))
— Hom(K,41(F0), K«('B))
— Hom(K,41(F1), K«(B))
25 Ext}(K.(S2%), K.(B))
— Extz(K.(30), K.(B)) 20 — --

and

0 — Hom(K,41(21), K,4+1(59B))
— Hom(K,41(2), K.(SDo))
— Hom(K,41(2), K. (D1))

<5 Extp(Kos1 (%), Kot1(SB))
— Ext}(Kvp1(2), K, (8D0)) 20— -+

so that both of Ext} (K, (S2), K.(8B)) and Ext}(K,+1(2), Kut+1(S%B)) the
images under the respective maps o and p above can be identified with
Ext},(K.t1(2), K.(8)). Hence the diagram commutes at the right and
bottom corner, so that the map d induced by o coincides with that by p.
Step 4. Finally, we show that the map J is natural with respect to an
element pu € KKo(B,%B’). Take a geometric projective resolution for A:

0-8% —— § —— Fo—0

with Fo, %1 € N, K.(Fo) and K.(F1) free abelian, and the boundary map
K. (Fo) — K.—1(SU) = K, (2) surjective, where i means the inclusion map
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and g does the quotient map. It then follows the following diagram:
H(K.(50), K.(B)) —— H(K.(51), K.(B)) —— Extz(K..1(5%), K.(B))

E ~

KK.Go,®) 2% kr.@n®) B kK. @,8)
l®nw :3:74 l@«au
3
KK.(30,%) 2% kk.(;®) U KK ,9)

lg |=
H(K.(Fo), K+ (B')) —— H(K.(51), K.(B')) —— Extz(K.11(S%), K.(B'))
where H(x,*) = Hom(*, x) just for short, since K,(Fo) and K.(F1) are free,

so that for j = 0,1, both Ext}(K.(3;), K.(B)) and Ext}(K.(5;), K«(B"))
are trivial. It follows that the following diagram commutes:

0 0
Ext) (K, (i), K.(B)) LN Exté(K*(ﬁlt), K.(®B')
KK. (81, %)/(q,lid)*KK* (S0, B) KK, (%o, %')/(q,lid)‘KK*(ﬁo, B’)
KK.(31, ‘Bl) [ker(i, id)* KK,(31,%')/ker(i, id)*
i, id)“K;{. (31,%) ELLN G, id)*m}, (31,8")
KK.n(2,9) e Ko (%)

where the map (®«). is defined to be the composite of the two down arrows
in the left with the map ®gu in the line up from the bottom line and with
the reverses of the two down arrows in the right, so that

Exty(K.(2), K.(B)) 222, Bxtl(K, (%), K. (B'))

ls ls

KK.q(2,%8) 2245 KK, (2,9)
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commutes, and S8 may be replaced with 9B in the diagram above to obtain
the corresponding diagram in the statement. O

5 Special cases of the KT

This section is devoted to prove the following:

Theorem 5.1. Let A € N and B a C*-algebra such that K.(*B) is finitely
generated and free. Then the map

a(U,B) : K*(A) @ K.(B) » KK.(%,B)
is an isomorphism.

This theorem is equivalent to say that the KT holds for all pair (2, 8)
wih 2 € N and K. (*B) finitely generated and free.

In fact, note that Tor?(K*(21), K.(B)) is trivial in such a case.

The theorem above is proved via several propositions below.

Proposition 5.2. Assume that K,(B) is a free Z-module. Then K’(x) ®
K,.(®B) (j = 0,1) form a cohomology theory on the category of separable
nuclear C*-algebras *, which is invariant under strong Morita equivalence,
and a(x,B) is a natural transformation of cohomology theories. If K.(B) is
finitely generated and free, then K7(*)® K.(B) (j = 0,1) form an additive
cohomology theory.

Proof. With no restriction on 8 there is an isomorphism
K™ (@) ® K.(B) = (ILK"(2:)) ® K.(B).

Note that K*(™%) = KK.(%,C), and KK,(x,C) forms an additive coho-
mology theory.
If K,("B) is finitely generated and free, then

(ILK™(%:)) ® K.(B) = IL(K* (%) ® K.(B)).
O

Proposition 5.3. Let 0 — 3 — 2 — A/J — 0 be a short ezact sequence of
C*-algebras. Suppose that K.(B) is torsion free and that two of the three
maps o(3J,B), a(A,B), and a(A/I,B) are isomorphisms. Then so is the
third map.
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Proof. We have the following commutative diagram:

K™ (21/3) @ K.(8) <222, kK, .1 (2/3,8)

K" e K.(8) 222 gk.0,8)
K" @ K.(8) 22, kK., %)
Kr@/3) e K.(8) 2022, kK. (21/3,8)

: .
K0 e K.(B) 222 kK, ,(3,B).

The Five-Lemma argument completes the proof for the middle map to be
an isomorphism, and other cases are proved by using the similar diagrams
shifted (or added) one line up or down. O

Proposition 5.4. Let {2} be a countable set of C*-algebras. Suppose that
K.(B) is finitely generated and free and the map a(%;,B) is an isomor-
phism for all i. Then the map o(®;%U;,B) is an isomorphism.

Proof. There is the following commuting diagram:
KK.(®;%4;,8) —— ILKK,(%;,B)
Ia(eajm,,m) eTn,-a(m,-,as)
K*(@;2;) ® K.(B) —— IL{K*(%) ® K.(B)]
which implies that the map o(®;2;,B) is an isomorphism. O

Proposition 5.5. Suppose that A = lim %y, K.(B) is finitely generated
and free, and that a(2Uk,B) is an isomorphism for all k. Then the map
a(U,B) is an isomorphism.

Proof. The KK-g;oups KK;(x,'B) always form an additive cohomology
theory and the K7(x) ® K.(8) also do the same theory by the assumption
on K,.(B). Thus both theories satisfy the Milnor lim! sequence, so that
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the following commuting diagram is induced:

0 0
{
R m'a(%,B)
lim" K9~ (2A)) ® K.(B) lim" K K,y j1 (U, B)
i s N a(2,B) ‘.’
Ki(lim2%) ® Ku(B) ——  KK.y;(lim 2, B)
. . l(iLnO(mk,B) .
limK7 (%) ® K.('B) ImK K, (%, B)
0 —— 0-
Since both of the maps !i_rllla(ﬁlk, B) and !iLna(Qlk, B) are isomorphisms,
the Five-Lemma implies that the map a(2, ) is an isomorphism. O

Proposition 5.6. Suppose that A is a separable C*-algebra of type I and
that K,(?) is finitely generated and free. Then the map o(U,B) is an
isomorphism.

Proof. This follows from the general structure theory for separable C*-
algebras of type I as considered in the proof of Proposition 2.6 and from
combining Propositions 5.3 to 5.5 for the respective operations taking ex-
tensions, direct sums, and inductive limits. Indeed, a type I C*-algebra
has a composition series of closed ideals with subqutients of continuous
trace. O

Proposition 5.7. If K.(B) is finitely generated and free and the map
a(2,B) is an isomorphism, then the map a(?U x,R,B) is an isomorphism
for any crossed product 2 x, R by an action of R on a C*-algebra .

Proof. By the Thom isomorphism of Fack-Skandalis for KK-theory used in
Proposition 2.7, we have

K*(% %, R)® K.(B) = KK.(% %, R,C) ® K.(B)
= KK,1(%,C) ® K.(B) = K**(2) ® K.(*B)
= KK,11(%,8B) (by the assumption)
= KK,(% x,R,B).
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Proposition 5.8. Suppose that K,(B) is free and the map a(2,B) is an
isomorphism. Then the map a(2Ax,Z,*B) is an isomorphism, where A x,Z
is the crossed product C*-algebra by an action p of Z on .

Proof. Consider the following diagram (corrected):

Extoy1(2) ® K, (B) = K*(SW ® K.(8) 2B, gk, .. (5%,98)
l(id—p)‘@id. l(id-—p)'
Extoy1(%) ® K. (B) = K*(SW) @ K.(B8) 22, kK, .1(59,%)
'6®id. Va
Ext, (2 %, Z) ® K.(B) = K*(2 %, Z) ® K,(B) <220, gk, \(1,%)
Vi'@id. Vi‘
Ext.(2) ® K.(B) = K*(2) ® K.(B) @B KK, (2, B)
| tid=p)"@id. | ta=o)®
Ext. (%) ® K.(B) = K*(%) ® K.(B) @B KK, (2, B).

The left column is exact by the six-term exact sequence of C*-algebra ex-
tension theory Ext.(*) by Pimsner-Voicuclescu and the assumption that
K,.(B) is free. The right column is exact by the Thom isomorphism of
Fack-Skandalis. See also [2, Sections 16,4 and 19.6]. The diagram com-
mutes by examination of the maps involved, and then the Five-Lemma
implies that the map a(2 %, Z,‘B) is an isomorphism. O

Proof of Theorem 5.1. The proof is completed by the propositions proved
above in this section. a

6 The general KT

Theorem 6.1. Let U,'B be C*-algebras. Suppose that the KT holds for all
pairs (A, V) with K,(B) finitely generated and free. Then the KT holds for
all pairs (A,B) with K.(B) finitely generated.

Proof. Construct a geometric projective resolution for 28 as follows. If nec-
essary, replacing B by $2%, there is a C*-algebra §g and a *-homomorphism
f : 8o — BRK such that K.(JFp) is free and finitely generated (since K.(B)
is finitely generated), and

fa: Kt(%'o) - K*(% ®K) = K*(%)
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is surjective (where we use the construction method for §o). Let §1 = Cf
be the mapping cone of f. The mapping cone sequence:

0> SBRK — § —2 Fo—0

has the associated K-theory sequence as

8—f.

0— K;(F1) —2— K;(Fo) — K;-1(SB®K) = K;(B) — 0.

This is a geometric projective resolution of K, (B) by finitely generated, free
abelian groups. The associated sequence of KK-groups has the following
form:

(id-9),

'd, 1 -
- KK @,51) 20 g @50 20 Kk o,8)
O kE;@F) 2 kK@) Y KK ,8) —

with KK;.1(%,8) = KK;(%, SB ® K) and with p;;1 = p = p;. It yields
the following short exact sequence:

0 — coker(id, pj+1)« = K K;j1+1(%, Fo)/im(id, pj+1)«
= KKj+1(Ql, 30)/ker(id,, 3)
— KKj1(2,B) — im(id, i), = ker(id, p;)« — 0.

Check below that this is the Kiinneth theorem.
Since K, (§;) are finitely generated and free, the maps a(2, §;) are iso-
morphisms in the following diagram:
K* (%) ® K. (31) —22% K*(2) ® K. (30)
otz | ateno)

KK.(@,3) 22 gk, (@,%0).

Thus, .
ker(id, p). = ker(id, ® p.) = Tor?(K* (1), K.41(B)),

where the long exact sequence for torsion product Tor is

(id..,8) (ida ,is)
_ _—

TOI'%(K“‘(Q[),KJ'(S())) =0 TOI‘%(K*(m)‘ K](%))
K*(2) ® K;—1(%1) K*() ® Kj1 (o) 2282
K@ eKa®) — — 0

ide®(pj—1)s
_—
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and hence,
ker(id, pj)s = TorF(K*(1), K;.1(%B))

and the quotient map £ in the KT has degree one. It also follows from the
diagram above that

coker(id, p). = coker(id ® p.) & K*(2) ® K.(B)
and indeed, from the long exact sequence,
coker(id. ® (p;).) = K™ () ® K;(S0)/im(id. ® (p;).)

= K*(%) ® K;(30)/ker(id, ® 9)
= K*(%) ® K;(B)

and the inclusion map « in the KT has degree zero. O

Proof for the KT except naturality. Theorems 5.1 and 6.1 prove the KT in
the introduction. The naturality of the KT may be proved as that of the
UCT in Theorem 4.2. 0

But we state the following:

Theorem 6.2. The KT is natural in both variables in the sense that if
A,A € N, B and B’ are C*-algebras with countable approrimate units
with K.(B) and K.(B') finitely generated, and A € KKo(A,A'), p €
KKy(*B,%’), then the following diagrams commute:

0— K*@) ® K.(B) —2— KK.(,8) —2— TorZ(K*®'), K,41(8)) — 0
| o@an: |rea | o@an

0— K*®) ® Ku(B) —2— KK.(U,8) —2— Tor?(K*(®), Kus1(B)) — 0

with Qg : KKo(%, %) ® KK.(%,B) » KK.(2,B), and also

0— K*() ® K,(B) —2— KK,(%,8) —2— Tor2(K*(®), Kuy1(B)) — 0
l(@m#)' l®«3# l(@m#)'

0 — K*(%) ® Ku(B') —2— KK,(%,8") —2— Tor?(K*@), K.41(B')) — 0

with @ : KK,(%,B) ® KKo(B,%8') » KK,(%,B').

Sketch of the proof. As in the proof of Theorem 6.1, take a geometric
projective resolution for 8 which implies a geometric projective resolution
for K.(B) by finitely generated, free abelian groups such that

0 — K;(81) — K;j(3o) —» K;(B) - 0
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(7 =0,1). Then we have the following commutative diagram:

K* () ® K.(31)) — K*(%) ® K.(§o) —— K*(%') ® K.(B) —— 0

o= a|s le

KK.% %) —— KK.(%,3%) —— KK.(%,%B)

lA@gl 1A®g, lX@gl

KK.%,%1) —— KK.%,3) —— KK.(2,'B)

K* (%) ® Ku(§1) —— K*(%) ® Ku(3o) —— K*(A) @ K.(B) —— 0

and one can construct the map (AQq)* from the right upper corner K*(2')®
K.(*B) to the right bottom corner K*(2) ® K.(B) as the composite of the
reverse of the quotient map ¢, the three maps a, A®q, and the reverse of
o in the middle column, and as well the quotient map gq.

We also have the following commutative diagram:

0 —— TorZ(K*(W), K\ 41 (B)) —— K*(U') ® K.(31)

P oo
KK, (%, %8) KK, (;",:3'1)
[ RE2Y
KK,(%,8) KK,(%,31)
, 1o

0 —— TorZ(K* (), Kuy1(B)) —— K*(A) ® K.(31)

and one can construct the map (A®q)* from Tor% (K*(2'), Ku41(B)) at
the left upper corner to TorZ(K*(2), K.4+1(%B)) at the left bottom corner
‘as the composite of the inclusion map i, the three maps o, A®g, and the
reverse of « in the right column, and as well the reverse of the inclusion
map ¢. O

7 Further consequences and generalizations

Proposition 7.1. Suppose that 2; and Uz are separable C*-algebras, B is
a C*-algebra with a countable approzimate unit, and the UCT or KT holds
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for the pair (A;,B). If there is an invertible KK-element X in K Ko(%;, U2),
then the theorem also holds for (22, 'B).

Proof. The Kasparov product A~ 1®g, with A~! € K Ko(22,2;) on the left
side induces the following isomorphisms:

KK.(%,,8) > KK.(%,B) and K*(2;) = KK,(2:,C) —» K*(2).
The product ®g,A~! on the right side induces the following isomorphism:
K,(¥s) = KK,(C,2) — K.(2;).

1t follows that the following diagram is induced:
0 —_— 0

! !

Extl(A~1®g,,id.)
Exth (K. (1), Kug1(B)) ———2" Ext}(K.(%2), Kus1(B))
L L
-1
KK.(2,8) SR KK,(%,B)
K K
A id.
Hom(K.(21), K.(B)) com®2aA7 i) -y (K. (22), Ku(B))

! l

0 0
and commutes to have the right column exact, and also the following dia-
gram is induced:

o
o

. Aml@”‘l *
K* (%) ® K.(B) — K*(22) ® K.(B)
o l
KK,(2%,8) 2 O, KK, (%,B)
1 g

TOI'Z(Q A_lrld‘)
Pl A Sl el TorZ (K. (A2), Kvs1(B))

| l

—_— 0
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and commutes to have the right column exact. a

Corollary 7.2. The UCT holds for (A xq Fn,'B) or for (A Xqr Fn,B),
where A Xy Fy, and A x4 Fy, are the full and reduced crossed product of a
C*-algebra A in N by an action a of a free group F, respectively (in fact,
of any torsion free, discrete subgroup of SO(n,1) for some n).

Sketch of the proof. Note that the canonical quotient map from 2 x4, Fj,
to 2 x4 Fy, gives an invertible KK-element, i.e., a KK-equivalence (see
[2, Section 20.9]). Assuming that K, () is injective, we have the following
commutative diagram:

KK.1(%,8) ——  Hom(K,.1(2), K.(B))
(a ,id*) Vuom(a.,id.)
KK,.H(@"m 8) —— Hom(®"K.(2), K.(B))
|@ia) | Hom(®.id.)
KK.(2 g5 Fp,®B) —— Hom(K, (2 xa,,F) K.(B))
(1 ,id*) Hom(z..xd.)

KK, (m B) ——~  Hom(K. (m) K.('8))

(a id*) Hom(a.,ld )
KK,,(ee"m B) — Hom(eB"K,,(Ql) K.(B))

where o* = 377 ,(id — ;)" and 0, = 3°7_;(id — o;). with o; automor-
phisms of % corresponding to generators of F;,, and the maps v except the
middle one are isomorphisms by the assumption, and the right column is
exact by the K-theory six-term exact sequence of Pimsner-Voiculescu (see
[2, Section 10.8]), and as well is the left column (but not checked). The
Five-Lemma implies the special UCT holds for (2 X4, Fn,B), and hence
that the general UCT holds for the pair. The Proposition 7.1 above implies
that the UCT holds for the pair (2 % Fy,B). O

Proposition 7.3. Let U; and A, be C*-algebras in N. Suppose that there is
an element A\ € KKo(;,%2) such that y(A\) = A\, € Hom(K(21), K«(22))
is an isomorphism. Then X is a KK-equivalence, i.e., there exists \™! €
KKo(A2,2,) such that

A®g, A =idy, and 27! @g, A = idy,.
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Proof. Let B be any separeble C*-algebra. The UCT for (2;,8) and
(™2, B) implies the following commutative diagram:

0 pemtm 0

! !

Exth(K. (%), K. (B)) 220 Exth(K.(2), K.(B))

| !

A
KK.(%,8) 22, KK,(,98)

l l

Hom (K, (2s), K.(B)) 225 Hom(K. (%), K.(B))

!

0.

0
The Five-Lemma together with the hypothesis of y(\) implies that the

map A®gq, : KK,.(2U2, B) —» KK,.(;,B) is an isomorphism. Similarly, the
UCT for (9M,2,) and (M, A;) with N € N implies that the map

Qo At KK, (M, %) — KK.(M,A2)
is an isomorphism. Choosing B = ?; and 2 = 2,, we see that

AQq, : KK, (A2,2) - KK,.(U,2%;) and
®Q11/\ : KK*(le,Qll) - KK,,(QlQ,QlQ)

are isomorphisms, so that there are elements p and p' € K Ko(22,%;) such
that A ®@q, p = idy, € KKo(%1,2) and p' ®g, A = idg, € KKo(2U2,A2).
Moreover, one can check that

= idmz O, 4
= (“" Ba, A) ®a, 1
= 1’ ®q, (A ®a, 1) (by associativity)
=y g, idgy, = s
and thus, u = g’ = A7 € KKo(U2, ;). 0

Proposition 7.4. Let 2 be any separable C*-algebra, not necessarily nu-
clear. Then there is a separable commutative C*-algebra € (which we
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can choose with the spectrum € of € finite-dimensional), and an element
A € KKo(C€,) for which

Y(A) = At K (€) — K, (™)

is an isomorphism. Furthermore, we may take € = €0®C! with Ko(€!) =0
and K1(€%) = 0. If K,() is finitely generated, then we can take the one-
point compactification (€M) of € as a finite complez.

Sketch of the proof. One can construct commutative C*-algebras €° and
¢! such that Ko(€!) =0, K;(€%) =0, and

K@) = K;(%) (=0,1)
as a group. For instance, to construct €°, choose a free resolution of the
Z-module Ko(21):
0—-F 1, F,— Ko(2%)—0

with each F; a direct sum of Z. We may choose commutative C*-algebras
D, and D3 each as a co-direct sum of copies of Cy(R), and a *-homomorphism
@ : D1 — Da, such that K1(D;) 2 Fj (j = 1,2) and ¢, = f. Then let €°
be the mapping cone Cy:

0—80; -€=Cyp—D; —0.
Note that the associated six-term exact K-theory sequence becomes:
Fy — Ko(€®) — 0
T8=<p.=f la
B —— K (€%) —— 0

so that Ko(€%) = Ko(21) by the Five-Lemma, and hence, K;(€°) = 0 by
the diagram.

Similarly, one can define €! as required. Indeed, choose a free resolution
of the Z-module K;(2):

0-G, - Gy — K(%) — 0

with each G; a direct sum of Z. We may choose commutative C*-algebras
$1 and $ each as a co-direct sum of copies of Co(R?), and a *-homomorphism
¥ : $H — $H2, such that Ko(H;) ¥ G (j = 1,2) and ¢, = g. Then let ¢!
be the mapping cone Cy:

0> 59, €l =Cyp—H —0.
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Note that the associated six-term exact K-theory sequence becomes:

0 — Ko(€!) — Gy

E |o=vu=s

0 —— K(€') —— G2

so that K;(€!) & K;(2) by the Five-Lemma, and hence, Ky(€!) = 0 by
the diagram.

Let € = ¢9 @ ¢1. By construction, there is an isomorphism of graded
groups in Hom(K.(€), K.(2)). Surjectivity of the map 7 of the UCT for
the pair (€,?) implies the existence of the KK-theory class A with y())
equal to the isomorphism. 0O
Remark. By construction, we see that the spectrums (€%)" and (€!)" (as
well as their one-point compactifications) have dimension at most two and
three, respectively.

Corollary 7.5. Any C”-algebra 2 in N is KK-equivalent to a separable
commutative C*-algebra € (with (€")* finite-dimensional). In fact, we can
choose € of the form € @ € with K,(€%) = 0 and Ko(€!) = 0. If K, (2)
is finitely generated, one may take (€")* to be a finite (3-dimensional) cell
complez.

Any two C*-algebras in N with the same K-groups are KK-equivalent.

Proof. Just combine Proposition 7.4 with Proposition 7.3. O

Remark. Let 2 be any separable C*-algebra and € be a commutative C*-
algebra with the same K-groups. Then there is an element A € K K(€, )
such that () is an isomorphism on K-theory groups. By Kasparov theory,
this corresponds to an extension:

0-ARK—> B — SC — 0,

and the six-term K-theory group exact sequence:
Ko(%) —— Ko(B) — Ki(€)
e«Ta afla
Ko(€) —— K 1(B) —— K (%)
implies that K,(®B) = 0.

Theorem 7.6. Suppose that Ay and Ay are in N. Then the UCT holds
Jor (A1 @ AU, B) for all B.
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Proof. Fix a C*-algebra 2, in N and fix a C*-algebra B with K,(B) in-
jective. Define the functors h* and &* by

hj(ng) = KK;(% ®%2,B) and
k7 (22) = Hom(K;(2; ® Az), K.(B)).

Both h* and k* are additive cohomology theories with respect to 23. The
following map:

Yoo = (% ® A2, B) : A7 (A2) — k7 (A2)

is a natural transformation of additive cohomology theories. The following
map:
¢ : KK.(2; ® C,B) — Hom(K,.(%; ® C), K.(*B))

is an isomorphism since 2; ® C=A; € N.

The same arguments as for the special UCT in Theorem 2.1 imply that
the map 7y, is an isomorphism for all 2 € N with K,(8) injective. This
establishes the UCT for all (2; ® 22,B) with both ?1; and 23 in N and
K, (B) injective.

The general case with B arbitrary follows by the geometric injective
resolution argument, just as for the general UCT in Theorem 4.1. a

Theorem 7.7. Suppose that A € N, and B; or By € N, and the groups
K.(*B;) are finitely generated. Then there is a natural short exact sequence:

0 — KK.(%,8)) ® K.(B,)
—2 & KK,%,%8;8%8;) —— Tor?(KK.(%,B1), K.(B2)) — 0.

Proof. Suppose first that K.(B2) is finitely generated and free. Fix 9B;.
Define the functors h* and k* by

K (%) = KK;(%,8B:) ® K.(B2) and
K (%) = KK;(%1,8, ® B2).

These are additive cohomology theories with respect to 2. The Kasparov
product:

®c : KK;(®,%B1 ® C) ® KK,(C®C,B3) » KK;1.(%®C, B, ®By)
together with K K, (C,®B;) = K.(B2) induces the following map:

ag : h*(A) — k*(A)
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as a natural transformation of the theories. The map ac is:

ac : KK, (C,B1) @ K.(B2) = K.(B2) ® K.(*B2)
— KK,(C,B; ® B2) = K.(B1 ® B2)

an isomorphism since one of B; is in N. This is the Kiinneth theorem for
K-theory groups by Schochet.

The same arguments as for the special KT in Theorem 5.1 imply that
ag is an isomorphism for all % € N with K,(B2) free.

The general case with K,(B;) finitely generated follows by the geometric
projective resolution argument as for 9B,, just as for the general KT in
Theorem 6.1. O

As it contains a generalization, it holds that

Theorem 7.8. The Kiinneth Theorem KT for KK-theroy groups holds if
either K.(2A) or K.(MB) is finitely generated, where we assume that A € N
and B i3 separable.

Furthermore, the KT ezact sequence splits (unnaturally).

Proof. If we assume that 2 € N, then we may assume by Corollary 7.5 that
2 is commutative, with the same K-theory groups and with the spectrum
(AM)* finite-dimensional (even a finite complex if K, (%) is finitely gener-
ated). Furthermore, by Proposition 7.4, there is a commutative C*-algebra
B’ with similar properties and a KK-element in K Ko(%8’,B) inducing an
isomorphism of K-theory groups of B’ and 8. Using the UCT for (2, B’)
and (U, B) and their UCT diagrams together with the Five Lemma, we see
that there is a natural isomorphism:

KK,(%,%") —— KK.(%,B).

Hence there is no loss of generality in assuming that ‘8 is commutative.
Now set % = Cp(X) and B = Cy(Y). Then

KK.(Co(X),Co(Y)) 2 K* Y (F(XFT)AYH).

If K,(B) is finitely generated, then we may assume that Y+ is a finite
complex and apply the Kiinneth theorem for representable K-theory of
spectra (not checked).

If K.(9) is finitely generated, we may assume that X* is a finite com-
plex and replace the functional Spanier-Whitehead dual spectrum F(X*)
by a finite complex D(X ), namely, the classical Spanier-Whitehead dual,
and then use the Kiinneth theorem for topological K-theory of compact
spaces. (Not checked).

In either case, the KT exact sequence splits (unnaturally). O

— 136 —



Theorem 7.9. Suppose that A € N and B is any separable C*-algebra.
Then the UCT exact sequence splits (unnaturally). If B = A, then the
splitting is even a splitting as a ring, and the graded ring KK,(%,2) is
(anti)-isomorphic to
@15, Exty(K; (@), Ke(¥) 4,k € Zo)
=(®;,x Hom(K;(2), Ki(2))] ® (@1 Extz(K;(2), Ki(2)))

with the following ring structure: the product of any two Ext}-terms is zero,
and Ext) = Hom operates as usual on Hom and Ext}. Thus, for instance, if
z € Hom(Ko(21), K1 (1)) = Ext)(Ko(2), K1(2)) andy € Ext}(K: (%), Ko(21)),
then z2 =42 =0,

Ty = z.(y) € Ext}(Ko(2A), Ko(A)) and

yz = z*(y) € Ext}(K1(%), K1(21)).
Proof. As in the proof of the Theorem 7.8 above, we may reduce to the case
where both 2 and B are in N and are commutative. Furthermore, we may

assume that 2 = A° @ A! and B = B0 @ B! with K;(W) = 0 = K;(B)
for i # j. And then

KKo(21,B) 2 [@i=01 K Ko(A°, B%)]  [©j=0,1 K Ko (!, B)].
Applying the UCT to each of the four terms separately, we obtain

K Ko(2°,8°%) = Hom(Ko(2°), Ko(B°)) = Hom(Ko(21), Ko(B)),
KKo(°,B') = Exty(Ko(%°), K1(B')) = Extz(Ko(2), K1(B)),
K Ko(2%}, 8% = Ext} (K1 (%), Ko(B%)) = Ext}(K1(21), Ko(B)),
K Ko(21!, B') = Hom(K; ('), K1(B')) = Hom(K1 (), K1(8)).

Also,

KK (2°,%8°) = Exty(Ko(2°), Ko(B®)) = Extz(Ko(2), Ko(B)),
KK (%% %B') = Hom(Ko(2°), K1(B')) = Hom(Ko(21), K1(8)),
KK; (21, 8% = Hom(K; ('), Ko(B%)) = Hom(X1 (%), Ko(*B)),
KK (%, B') = Ext} (K (%), K1(B')) = Ext},(K1(2), K1(B)).

And it then follows that
KK.(2,%) = Ext}(K.(2), K.(B)) ® Hom(K, (1), K.(B)).
This gives us the desired splitting of the UCT.
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When 2 = B we take 2% = B0 and %! = B!. Note that KK, (2°,A°)
and KK,(2',?') are graded subrings of K K, (2, ?), and that

KK,(*,%°) ®q KK, (',x) =0 and
KK.(>%') @y KK.(A°% %) = 0.
Check the ring structure on KK, (2U,%) as follows. For instance, given
z € KKo(2°, ') = Ext}(Ko(2), K1(%)) and
y € KKo(2', 2% = Exty (K1 (%), Ko(2)),
we have
T Qo y € K Ko(A°,2°%) = Hom(Ko(2), Ko(2)) = Extd(Ko(2), Ko(21)).

But y(z) = 0 and ¥(y) = 0 and thus v(z ®gu y) = v(y)¥(x) = 0, and hence
T ®gu y = 0. Similarly, y ®go z = 0. Thus, the Ext}-terms in the UCT give
rise to an ideal in KK, (%, 2) with square product zero. .

Also, given

z € KK (A%, 2%Y) = Hom(Ko(), K1 (2)) = Extd (Ko(2), K1(2A)),
y € KKo(',2%) = Exty(K:1(2), Ko(?%)),

we have
IZQq Yy € KK](QlO,QlO) = Exté(Ko(m), Ko(m))
and
YQqo T € KK;(Q(I,QII) & Exti(Kl(Ql),Kl(Ql))
(corrected). ]

Remark. Note that the above argument can also be adapted to prove split-
ting of the Kiinneth exact sequence for K-theory groups of tensor products
of C*-algebras. Thus, if %U,B € N, then the following KT short exact
sequence:

0 — K.(%) ® K.(B) — K.(%® B) — TorZ(K,(2), K.(B)) — 0

of Schochet splits (unnaturally). As a proof, choose KK-equivalence A €
KKo(%,2") and p € KKo(B,B’), where %' = A° @ ! and B’ = B0 ¢ B!
are commutative with K;(29) = 0 = K;(%B) for i # j. Then the Kasparov
product by p induces an isomorphism

K.(A®%B) - K, (A® D)
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and applying the Kasparov product by X in turn gives
K,(A®3B) = K, (A B
& [Diz0,1 K+ (A° ® BY)] © [®=0,1 K. (A @ B7)]

(corrected). Now argue as in the proof above.
Specializing to the case where 2 and B are commutative, one recover

the splittings of the K-theory Kiinneth sequence of Atiyah [1] for compact
spaces X and Y:

0— K*(X)® K*(Y) = K*(X x Y) = Tor¥(K*(X),K*(Y)) - 0,

a result due to Bodigheimer [3] and [4].

Remark. The KK-theory groups are not additive in the second variable.
For instance, let 2 = @;; with 2; = C, so that 2 = Cy(N). Then

KKo(2,2) = Hom(Ko(2), Ko(21))

and its identity element corresponds to the identity map on Ko(2), which
dose not belong to the group:

@®; Hom(Kp(21), Ko(2%:)) = ®; K Ko(2,24;).

On the other hand, suppose that % € N and Ko(2) = Q and K;(2) = 0,
for instance, 2 a UHF-algebra (an inductive limit of tensor products of a
matrix algebra over C) with K, (%), not finitely generated. Since we have

Hom(Q,Z) =0, Hom(Q,Q)=Q, Ext3(Q,Q)=0
it follows from the UCT that
K°) = KKo(%,C) =0, KKo(%U,A)=Q, KK (%,2)=0.
Therefore,
(K°(2) ® Ko(2)] ® [K' (%) ® K1 ()] = 000 % K Ko(%,2)

and hence, the Kiinneth theorem for K K-groups does fail in general.
Nevertheless, one has additivity of KK-theory groups under an assump-
tion as in:

Proposition 7.10. Suppose that 4 € N and that K.(A) or K.(B) is
finitely generated, with B = &;®B;. Then the natural map

@i KK.(%U,B;) - KK.(A,B)

is an isomorphism.
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Proof. Suppose that K, () is finitely generated. Then
Hom(K, (), K«(B)) = &; Hom(K,(2), K.(B;))
and
Ext} (K. (%), K.(B)) = ®; Ext}(K.(2), K.(B,)).

The result follows from the UCT for (,8) and (2,B;) and the Five-
Lemma. Indeed, the following diagram is obtained:

0 0
®; Ext (K. (2), K.(Bi)) =—— Ext}(K.(2), K.(B))
B0 é
®; KK, (%,8;) —_— KK.(%,B)
Diy o]
@®; Hom(K,(2), K.(B;)) =—— Hom(K,(2), K.(B))
0 0.

Suppose that K,.(®B) is finitely generated. Then

K*(2) ® K. (B) = &:(K* (™) ® K«(B1))
and
Tor} (K* (), K.(B)) = @; Tor} (K™ (%), K.(B:)).

The result follows from the KT for (2, 8) and (%, B;) and the Five-Lemma.
Indeed, obtained is the following diagram:

0 — 0
®i (K*(A) @ K.(B:)) —= K*'(A)® K.(B)
Bia o
®; KK.(2,8;) ——  KK.(%,%)
@6 B
@; Tor? (K* (%), K.(B:)) == TorZ(K*(2), K.(B))
0 —_— 0
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O

Now, let us assume given a cohomology theory H* and an associated
additive homology theory H,. We say that the UCT holds for an algebra
A if there are abelian groups G, and for each n, a natural short exact
sequence:

0 — Extz(Hp-1(2), Gro1) — H*() — Hom(H,(2),G,) — 0.

Proposition 7.11. Suppose that A = U; is a direct limit of a directed
sequence of C*-algebras 2U; and that the UCT holds for each ; :

0 — Ext}(Hn-1(2), Gn—1) — H™(2;) — Hom(H,(2;),Gr) — 0.

Then the following are equivalent:
(a) The UCT holds for «.
(b) The Milnor lim! sequence holds for 2 :

0 — lim' H™(2%;) — H™(%) — lim H™(2;) — 0.
Observe that
lim'Ext3(L;, G) =0
for any directed sequence of abelian groups L;, and that there is an exact
sequence
0 — lim'Hom(L;, G) — Extj(lim L;, G) — lim Extj(L;, G) — 0.

Note that
Hom(L;, G) = Ext}(L;, G) = Ext;~(L;, G).

8 Applications to mod p K-theory

Let us fix an integer n > 2 (in almost all applications this will be a prime
p). Let C, be the mapping cone of a *-homomorphism f : Co(R) — Cp(R)
of degree n. That is, the following sequence:

0—- SCy(R) = Crn=Cf— Co(R)—0

is exact, where (§,a) € Cf C ICy(R) & Co(R) with £(0) = 0 and £(1) =
f(a). The spectrum C2 is homeomorphic to the locally compact space
obtained by removing the basepoint from a 2-dimensional Moore space.
For example, C; = Co(RP? \ {pt}) where pt means a point and RP? =
(R3\ {0})/ ~ (or = 82/ ~) the real projective plane with the equivalence
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relation ~ defined by x ~ y if there is t € R non-zero (or ¢t = %1) such that
z = ty. Note that C, belongs to the class N since it is abelian and has
K-theory groups Ko(Cr) & Z, = Z/nZ and K;(C,) = 0. Indeed, deduced
is the following six-term exact sequence:

Z —— Ko(Cp) —— 0

BTxn 18
Z —— KI(Cn) — 0

where the map xn means the multiplication by n, so that we have the
required isomorphisms by the diagram.

In fact, recall a fact from [6, 12.3] in the following. Let n be a natural
number. The Moore space X,, is defined to be the quotient space D/ ~,
of the 2-dimensional, closed unit disc D with the equivalence relation ~,
defined by: for z,w € D, z ~, w if |2| = |w| and 2" = w", or if 2 = w. For
instance, z ~y, z€2™/" for any z € T the one-torus. Then

C(Xn) = {g € C(D) | g(2) = g(2e>™"/"), z € T}.

Define a *-homomorphism f* : C(T) — C(T) by f*(g)(z) = g(z™), whose
restriction to Cp(R) as a closed ideal of C(T) gives the map f of degree n
above. There is the following short exact sequence and the diagram:

0 — Co(R?) — C(X,) —— C(T) — 0
| | I [ ||
0 —— SCo(R) —— Cp=Cf —— Co(R) —— 0

and it is shown that the boundary map in the six-term exact K-theory
sequence of the short exact sequence at the first line is the multiplication
by n. Note that the unitization C;¥ of C, by C is isomorphic to C(Xy,),
and in particular, C(X2) = C(RP?) = C}.

Let © be any C*-algebra. Define the K-theory groups with coefficients
in Z,, (the mod n K-theory groups) for D as

Ki(®;Z) = K;(® ® Cy).

Theorem 8.1. (Schochet [10]). For any C*-algebra M € N with Ko(N) =
Z, and K1(M) = 0, there is a natural equivalence of homology theories:

Ki(x:Zn) = K, (x@MN).
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The Cuntz algebra O,,41 generated by n + 1 orthogonal isometries with
the sum of their range projections equal to the identity satisfies Ko(On41) =
Z,, and K1(On+1) = 0 (see [11, 12.2]).

Proposition 8.2. Let A € N with Ko(2) = Z, and K1(2) = 0. Then the
Zy-graded ring KK,.(U,2) is a free Zy-module of rank two with generators
idg of degree 0 and By the Bockstein element of degree 1, with multiplication
determined by the relation :351 =0.

Proof. By the UCT, we have

K Ko(2,2) = Hom(Ko(2), Ko(2)) & Hom(K; (%), K1 (%))
= Hom(Z,,Z,)® 0= Z,

even as a ring, where the last isomorphism is obtained by the group homo-
morphisms ¢ with (1) =1+4+---+1=k-1€ Z, for k € Z,. Note that
¢1 corresponds to idg in K Ky. And also, the UCT implies that

KK (2,9) = Exty(Ko(%), Ko(%)) @ Extz (K1 (21), K1 (%))
= Ext}(Zn,Z,) 0= Zy,

(additively). The Bockstein element (g is the generator of K K;(2,%)
corresponding to the extension of abelian groups:

0—- Ko()=2Zp, > Zp2 — Ko(U) =Z,, — 0.

However, By induces the zero map y(fy) = 0 : K.1(™) — K. (™). Thus,
the element 83 € K K1(, %) ®u K K (%, %) = K Ko(,2) induces the zero
map .

¥(6%) = 7(Bx) 0 ¥(Bm) = 0 : K. (%) — K.(%)

in Hom(K, (), K.(2)). Hence, the UCT implies that 8% = 0in K Ko(%,2).
Note that other group extension classes of Exté(Zn,Zn) are, possibly,

given by the direct product Z, x Z,, and (non-abelian) semi-direct products

Zn X (k) L, With the action pgk) on Z, given by multiplication by k£ mod =,

where the case of £k = 1 corresponds to the direct product with the trivial
action a

Corollary 8.3. Any two C*-algebras 2, and Az in the class N with
Ko(U;)=2Z, and K (%;)=0 (j=0,1)

are KK-equivalent.
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Proof. This is a special case of Corollary 7.5, which says in particular that

the same K-theory groups of two C*-algebras in N imply KK-equivalence,

i.e., the equivalence between the identity elements of their KK-theory rings.
The UCT implies that there is an element:

AE KKQ(Ql],le) = Hom(Ko(Qll),Ko(ng)) =7,

which induces an isomorphism on Kj, and there is a unique element A~! €
K Ko(™2,2;) which induces the inverse isomorphism. Then the Kasparov
products:

A By, Ale KKo(2;,%) and A1 ®a, A € KKo(Uz,A2)

induce respectively the identity maps on Ko(®;) and Ko(22), again by the
UCT. Hence, the Kasparov products coincide with idg, € KKo(2,2)
and idg, € K Ko(22,22), by Proposition 8.2 above. O

Remark. Invertible KK-elements induce natural equivalences of K,(*®%2;)
with K*(* ® 912).

Proposition 8.4. Let 2 and B be C*-algebras in N. Then the natural
map v = (A, B) in the UCT factors asy=1oyp:

KKo(2,B) — . H(Ko(21), Ko(2)) ® H(K (21), K1 (1))
| II
Nat(Ko(x ® ), Ko(x ® B)) —— H(Ko(%), Ko(2)) @ H(K1 (%), K1 (%))

where H(:,-) = Hom(-, -), and Nat(-,-) means the group of natural transfor-
mations (possibly),and where the map ¢ is determined by

e(z)(y) = y®uz € KKo(C,D ® B) = Ko(D ®B)

forz € KKo(U,B) and y € Ko(P @A) = KKo(C,D Q@A) with D a
C*-algebra, and where the map v is determined by the restriction of the
variables x to the C*-algebras C and Cp(R).

If we have

Extz(Ko(%), K1(%B)) = 0 = Ext}(K1(%1), Ko(B)),
then ¢ is injective.

The map v is always surjective.
If K.(2) is torsion free, then 9 is injective.
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Proof. The first statement is obvious. The second follows immediately from
the UCT. The third does also.

Assume now that K, (%) is torsion free. The Kiinneth theorem of K-
theory for C*-algebras by Schochet implies that

Ko(D @A) = [Ko(D) ® Ko(A)] ® [K1(D) ® K1(A))

for any C*-algebra @. If z € K;(D) and y € K1(2), then there is some
map f : Co(R) — D ® K such that = = f,()\) by Rosenberg, where A is the
canonical generator for K1(Co(R)), and so 2 ® y = (f ® id).(A ® y) with
AQy € K1 (Co(R))®K;(2), so that the diagram for a natural transformation
6:

K1(Co(R)) ® K (%) —— K1(Co(R)) ® K1 (B)

l(f&d). l(f@id).

Ki(®)®@ Ki(%) —— Ki(D)® K1(B)
commutes, and the natural transformation 6 is determined by its image in
Hom(K, (%), K1(8)).
A similar argument applies to the case of Ko(D) ® Ko(2). Indeed,
Ko(D) = K1(SD). Let ¢ € Kop(D) and y € Ko(2%). There is a map
g : Co(R) — SD ® K such that z = g,()). Then we have

Ko(C) ® Ko(®) —2—  Ko(C)® Ko(B)

o =~

d 1
K1(Co(R)) ® Ko(¥) —2— K1(Co(R)) ® Ko('B)

’(g®id). ] (g®id).
Ki(SD)® Ko(¥) —2— Ki(SD)® Ko(B)

Ko@) ® Ko(¥) —>— Ko(D)® Ko(B).

Corollary 8.5. If K.(2) is torsion free and
Extz(Ko(%), K1(%)) =0,
Extz (K1(21), Ko(%)) =0,

then the ring of degree-preserving, (self-) homology operations (or natural
transformations) for K.(x ® 2) is naturally (anti-) isomorphic to the KK-
ring KK,(%,2).
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Proof. The proposition above with the assumptions implies that

0 _— 0
0 — KKo(2,2) — . Nat(Ko(» ® ), Ko(*» ® %))
x| el:p
EBj:o,lHom(Kj(Ql), Kj (91)) @j_—,o'lHom(Kj (Ql), Kj (521))

l

0.

0

It follows that the map ¢ is an isomorphism.
Note also that K K;(2,B) = KKo(SU,B) = KKo(™U, SB) and Ko(*®
SU) = Ki1(» @A), Ko(*® SB) = K1(x® B). O

Remark. Homology operators need not be degree-preserving. We are
mostly interested in the case where K.(2) has torsion.

The Bockstein homology operation 8 = 3, of degree 1 is the connecting
map in the long exact sequence: for any C*-algebra D,

o Kat(D5Z) —2 K(DiZ0) — Ko (D3 Z2) — Ko (Di Zn)
B K i (DiZ0) = Kue1(D;Z2) — -
with K,(D;Zy,) = K.(D ® Cy,). Indeed, the KT implies that
0 — K.(D)® Zy — Ko(D R Cr) > TorZ(K.(D),Z,) — 0
and also, the following diagram is induced by splitting of the KT:
K®)®2, — K.9)®Z,, — K,(D)QRZ,

! l !

K.®®C,) —— K.(P0Cp) — K.(DRC,)

! ! !

Tor?(K.(D), Zs) —— Tor?(K.(D),Z,2) —— Tor?(K.(D),Zy)

which corresponds to the short exact sequences:

022y, > Zyp2—2Z,—0
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and, moreover (it should be),

K1(®)®Zi —2o K.(D)®Z,

l !

K1(®;Z,) =2 K.(9:Z.)

l !

. Tor?(Kui1(D), Zn) Tor?(K. (D), Zn)

(but note that there are no arrows at the bottom line to make the extended
diagram to be commutative in general).

Theorem 8.6. The Zy-graded ring of (self-) homology operations for K, (x;Zy)
(on the category of separable C*-algebras %) is a free Zn-module of rank 2
with generators the identity map of degree 0 and the Bockstein operation
By of degree 1.

As a Zs-graded Ting over Zy,, the ring of homology operations for K.(x; Zy,)
is the exterior algebra over Z, on (3.

Proof. As computed in Proposition 8.2, the Zs-graded ring KK .(Cy,Cr)
is a free Z,-module of rank 2 with generators idc, and B¢,. This ring
operators via the Kasparov product ®c, on

K.(D:;Z,) = KK.(C,D ® Cy)

KK.(C,D ® Cp) ® KK;(Cn,Cr) — KK,1;(C,D ® Cy)

with ®c, id¢, the identity and ®c, B¢, = 8. We must show that there are
no other homology operations other than those via the Kasparov product
of KK.(Chp,Chr).

Suppose that 8 is a homology operation for K,(*;Z,) and that D is any
separable C*-algebra. It suffices to show that the operation 8 on K, (D;Z,)
is determined by that on K.(Op+1;Z,), where Opnq is the Cuntz algebra
generated by n + 1 orthogonal isometries with the sum of their range pro-
jections the identity, with Ko(Op+1) = Z,, and K3(Op+1) = 0. The KT for
K-theory implies that

0— K*(On+l) ® Zn - K~(0n+1 ® Cn) = K~(0n+l3zn) '
— Tor?(K.(Ont1),Zs) — 0
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so that

Ko(On41® Cn) = Ko(Ony1) ® Zy = L ® Zn = Zn,
K1(On41 ® Cr) = Tor? (Ko(Ont1), Zn) = Zn,

that is, K,(Op+1 ® Cy) is a free Z,-module Z, & Z, of rank 2, with gen-
erators [l]p and [1]; corresponding to generators of the K-theory groups
Ko and K respectively. Since the boundary map 8 : K.41(Ont1) ® Zp, —
K.(Op41) ® Z, is zero, we have B([1]o) = 0 and B([1}1) = [1]o, because
the Kj-group K1(Op+1 ® Cy) is mapped to Ko(Op41 ® Cyr) under 8 = .
Thus, if 8 on K,(Op+1;Zy) is degree-preserving, it must be given by muli-
tiplication by some zg € Z, in degree 0 and by some z; € Z, in degree
1. It follows from the above K-theory isomorphisms K;(Ont1 ® Cp) = Zy,
via Ko(Op+1) that 8 becomes multplication by a constant. If 6 is degree-
reversing, then it becomes a multiple of 8 by the same reasoning (slightly
different from that in the text).

It remains to show that @ is determined by its operation on K, (Op41; Zy).
Since 6 is compatible with taking suspentions in the sense as: the following
diagram:

K(On413Z0) —— K\(On11;Z0)

eTs ETS
Ku(SOp41;Z0) —2— Ku(SOns1;Zn)

commetes (i.e., for 6 to be stable), it is enough to consider elements z €
Ko(D;Z,) and to compute 8(z) in terms of 8 for Op41. Note that

Ko®)®Z, —25 Ki(D)®2Zn

! !

Ko(@:Z,) £ Ki(D;2Zn)

l !

Tor? (K1 (D), Z,,) TorZ(Ko(D), Zn).

Thus, if B(z) = 0, then there is a class u € Ko(D) that corresponds to
z. Then the class u corresponds to a projection p in D+ ® K. We view u
as u = f,([1c]), where f : C —» D* @ K with f(1c) = p and [1¢] is the
standard generator for Ko(C). We then have

= (f®id).([1c] ® [1on44))s
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where f ® id : C® Opy1 — D @ K ® 041, where we identify Ko(D;Z,)
with a summand in Ko(D* @ K;Z,) = Ko(D*  K® Ony1). Note that

0 — 0

!

'd »
Ko(C) ® Ko(Onp1) L2, Ko(@+ ® K) ® Ko(Ops1)

l

Ko(CZ,)  ER Ko 9 K;Z)
o :
Ko(CZ,) L2 koDt @ K;Z)
where the last square commutes by naturality of . In particular,
6(z) = 8(f ® id)«([1c] ® [10,4.1))
= (f ®id).8([1])

with (1] the standard generator of Ko(C;Z,), which is identified with [1¢]®
1o, +1)- Since the unital inclusion of C in On41 induces an isomorphism
on Ko(*;Z,), we see that 6(z) is determined by the restriction of 8 to
Ko(Ont1;Zy). Note that

Ko(Ont1;Zs) = Ko(Ont1 ® Ont1) = Ko(On41) ® Ko(Ons1)
2 Zn @@Ly = Ly,
Ko(C;Z,) = Ko(C® Op41) = Ko(Ont1) £ 2,

by the KT. |
Now even if B(x) # 0 in K;(D;Z,), then B(B(z)) = 8%(z) = 0 with

K(®)®Z, —2 Ki(®D)®Z,

! !

K(D;Z,) 22 Ko(®;Zn)

! !

Tor?(Ko(D), Zn) Tor? (K1(D), Zn)
so that there is a class w € K1 (D) that corresponds to B(z). Since

K1(®) = K 1(D) ® Z = Ko(5D) ® Ko(Ooo)
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where O is the Cuntz algebra generated by countably infinite, orthogonal
projections with the finite sums of their range projections not equal to the
identity. and has Kj equal to Z and K trivial. And the KT implies

0 — K1(D) = Ko(5D) ® Ko(Oco)
— Ko(5D ® Oco)
— Ko(SD* ® Oco)

where the last map is injective because the following sequence:
Ko(SD ® Ox) — Ko(SD ® Ouo) — Ko(Oco) X Z

splits. Hence w may be identified with a class of Ko(SP* ® Ox). By a
lemma of Cuntz (see [10]), there is a *-homomorphism:

#: Ons1 = (Co(R) ®D)* ® Cr ® Oco

(slightly corrected in our sense) such that ¢.([1]) = w, where we view
w € K;(D) as with torsion in

K1(®D)®Zy = Ko(SD) ® Zn — Ko((SD)T ® Ox) ® Zy,
which has the following inclusion by the KT:

Ko((SD)* ® Ouo) ® Zy, = Ko((SD)* ® Ono) ® Ko(Cr)
— Ko((SD)* @ Cr ® Oco).

Recall that [1o = B([1)1) in K.(On+1;Z,). Consider now the following
commutative diagram with exact two row and added with the inclusion via
a lemma of Cuntz:

KO(On+1§Zn) _ﬁ" K1(0n+l§Zn) _@_, K0(0n+1;Zn)
l(so@id). l(«p@id). l(cp@id),
Ko(D;Z,) —2 Ki(D;2,) 0 Ki(®)®Zn —2—  Ko(D;Z,)

1

Ko(Oni13Z0) 20 Ko((SD)* © Onoi Zn)
Then we have
B(z) = w = (¢ ®id).([1]o)

= (¢ ®id).(8([1)1))
= B((¢ ®id).([1)1))-
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Therefore, B(z — (¢ ® id)«([1]1)) = 0, which is in the case already dealt
with above. Thus,

8(z) = 6(z — (¢ ®id).([1]1) + (p ® id)«([1]1))
= G(x - (‘P ® id)*([lll)) + 0((‘P ® id)*([lll)))
= 0(z — (¢ ®id).([1]1)) + (v ®id)«(8([1)1)))

both of the first and second terms of which are determined by the operation
0 restricted to Ky(On41;2Zn).

We have shown in the process that the Cuntz algebra O, is a sort of
universal object for mod n K-theory. a

An admissible multiplication on K,(x;Z,) is a bilinear natural trans-
formation:

p Ki(xZy) x Kj(*l;zn) — Ki+j(* ®*’;Zn)

satisfying certain reasonable axioms. We may as well assume that y is to
be associative (for triples of separable nuclear C*-algebras). The other key
axioms are that g should commute up to sign with suspension in either
variable, and that p should be the multiplication when one or the other of
the K-theroy classes is in the image of the composite:

K.(x) = Ky (%) ® Zp — Ki(x; Zy),

and that the Bockstein operation 3 should be a (graded) derivation.
Possibly, those things mean as that the following two maps are the
same:

X o2 [Ki(xi Zn) X Kj(¥;Za)] X Kie(¥"3Zn) = K(igjyk(* @+ @ x"5 Zy),
px s Ki(x Zn) X [Kj(¥'3 Za) X Ki(*"3Z3)] = Kip(j4k) (x @ ¥ @ %"; Zy),

and that the following two maps are the same up to sign:

g Ki(SxZ5) x Kj(x';Zp) = Kiyj(S * @, Zy),
b Ki(x Zy) x Kj(S*';Zn) - I{i+j(*® S*,;Zn)’

and that the restriction of p to K;(*) x K;(x’) is a map as:
p: Ki(x) x Ki(¥') = Kipj(x®+'),
and that the following composite:

Ki(%Zp) x Kj(*;Zn) —— Kiyj(x®¥;Zy) £, Kiyjo1(>x® ', Zy)
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should be equal to the sum of the following composites:

Ki(6Zn) % K;(#1Zn) 2295 Ki (% Z0) x K;j(¥; Z0)

s I

Ki(x,Z,) x Kj_1(¥3Zn) —2—  Kiyjo1(* ® %' Zy),

so that
Bop=po(Bxid)+po(id x B).

Theorem 8.7. The admissible multiplications on K.(x;Zy) are in natural
one-to-one correspondence with the elements of K Ko(Cp ® Cp, Cr) whose
image by the UCT in the group

Hom(Ko(Cn) ® KO(Cn), KO(Cn))

with

by the K-theory KT and with Ko(Cy) = Zy, is ezactly the usual multiplica-
tion map from Z, @ Z,, to Z,.

There are exactly n such elements. When n is odd, ezactly one of the
admissible multilications is commutative.

When n = 2, neither multiplication is commutative and the two multi-
plications are essentially equivalent.

The multiplication p) corresponding to a KK-element A in KKo(Cp, ®
Cn,Cyr) is given by the counter-clock-wise composition involving the K-
theroy KT and Kasparov product:

K(®®Cr)®K;(E®Cn) ->  Kiij(DRERCy)

l T®cn®c..’\

Kij(D®Ch®ERCy) %"» Kii(D®E®Cr® Cy),

Jor any C*-algebras D and €, where o33 is induced by the filp from C, @ €
to €®C,.

Proof. By naturality and associativity of the Kasparov product, any ele-
ment A € KKo(Cp, ® Cp,Cyp) gives rise to a natural bilinear associative
multiplication gy on K, (*;Zy) for which degrees add correctly.

Check the associativity for puy as in the following computation: for
zQa € Ki(D;Z,) = Ki(D®C,), y®b € K;(€;Z,), and 2®c € Ki(F; Zy,),

— 152 —



we have

mpr((z®a)® (y®b)) ®(2®¢))

= ®Cn8CnM02,3(®Caec. A(023((z ®a) @ (Y ® D)) ® (2 ® )]
= ®CneCaA[023(®C0c. M(2® Y) ® (a ® D)) ® (2 ® ¢))]

= ®C.eC A023(((z®Y) ® (a ® b) ®c,ec. A) ® (2®¢))]

= ®cnecnA(z® Y ® 2) ® ((a ®)) ®cac, A) ® )]
=(z®y®2)®[((a®b) ®c.ec, A) ®¢) ®c,aC, Al

and

m((z®a) ® pr((y ®d) ® (2®¢)))

= ®cecnAlo23((z ® a) ® (®c.ec. A(02,3((y ® b) ® (2 ® €)))))]
= ®c,ecnAlo23((z ® @) ® (®c.ec. A((y ® 2) ® (b ® )]

= ®C.aCa A023((z®a) ® (y ® 2) ® (b ® ¢) ®c,ec. A))]

= Q®C.eC M(z®Y®2)®a® ((b® c) ®c,ec, M)
=(z®y®2)®[(a® ((b®c)®c,ec, V) ®c.ac. A

with
((a®b) ®c,ec, A) ®c) ®c,ec, A = (a® ((b® c) ®c,8C, A)) ®CaaCa A

by the associativity of the Kasparov product.

It is also clear that if u) is the usual multiplication in the case where © =
C = €, then it must project to the usual multiplication in Hom(X4(Cp) ®
KO(CYI): KO(Cn))

Indeed, with K;(C;Z,) = K;(C® C;) = K;(C,),

Ki(C®Ch)® K;j(C®Cy) >  Kitj(C®C®Ch)

l T ®cne@cn A

Kipj(CR®Cn®C®Cn) —2 Kiyj(C®C®Crn®Ch)

so that uy maps Ko(Cr) ® Ko(Cy) to Ko(Cy) and is zero otherwise.
Now by the K-theory Kiinneth theorem, we have

Ko(Cn ® Cn) & Ko(Cn) ® Ko(Cr) = Zn,
K1(Cr ® Cn) = Tor?(Ko(Cr), Ko(Cy)) & Z,,.
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We then have the following short exact sequence by the UCT:

0 — Ext}(K1(Cn ® Cn), Ko(Cr)) = Ext}(Zn, Z,)
b d KKO(Cn ® Cn, Cn)

1 Hom(Ko(Cn) ® Ko(Cr), Ko(Cr)) = Hom(Zn, Z,,) — 0.

This, together with Exté(Zn, Z,) = Z,, confirms that there are exactly n
K K-elements A of the desired type (which are mapped by v to the usual
multiplication map for Z,,).

The naturality of the map p) in both variables and the representability
theorem proved in the course of the proof of Theorem 8.6 show that it
is enough to check the axioms only for the various combinations of two
special elements: (1] € Ko(C;Z,) and [1]1 € K1(Ont1;Zy) = K1(Cn; Zy,)
with 8([1]1) = [2)o in Ky(On41,Z,) = Ki(Cn,Z,). There are only three
equations to check (as corrected):

pa(B([111), [1]1) = pa([L)o, 1)) = O,
(11, B((1]1)) = pa((2h, (o) = 1) ® (1],
B o pa([1]1,[1]1) = pA(B([1]1), 1) = O,
where the first and second equations take place in K3(Op+1;Zy) or K1(Cp; Zy),

and the third equation takes place in K{(Opt+1 ® Ony1;Zs) or K;(Cn ®
Cn;Zy). And also, deduced is

pa(B([1)1), B([111)) = pa((tlo, [1]o) = [1]o ® [1] = Bka([1]:1, [2]o))

By definition of puy,

(Lo [1)1) = o2,3([1]o ® [1]1) ®cnec, A
(1)1, [1o) = o2,3([1)1 ® [1]o) ®c.ec, A-

Moreover, in K;(Cp, ® Cp;Z,) = K1(Cr ® C,, ® Cp,), we compute

o2,3([1)o ® [1]1) = o2,3([1c.]o ® [1c.]o ® [1]1)
= 023([1c. o ® [1e.)o ® B~ (1, )0, [1c,]0))
= [lc.Jo® [Le.lo ® 87 ([1c.]o, [1c,)o);
a2,3((1]1 ® [1)o) = o2,3([1)1 ® [1c]o ® [1c,]o)
= 023(87 ([1c,)o, [1e.o) @ [1c,)o ® [1c.]o)
= B7Y([1c.)o, [1c.)o) ® [1c.)o ® [1ealos
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where 7! is the splitting map in the K-theory KT, so that
02,3([1]o ® [1)1) ®cneca A = [1)o ® (1)1 ®c.ec. A) =0;
02:3([1]1 ® [t]o) ®cneca A = [1h ® ([l]o ®c.ec, A) = [1]:1-

Note that by the Kasparov product,

K1(Cn ® Cn) ® Ko(Cn ® C, Cn) 252822, K1(C,) = 0
A
Ko(Cr ® Cp) ® Ko(C ® Cn, Cr) —228%2%, K4(C) & Zo,

and hence [1}; ®¢,ec, A = 0 and [1]o ®c,.ec, A = [1].
We next compute

pa((1]1, [11) = 02,387 (1,0, [1ca)) ® B~ (e, ), [1ea))) ®caecn A
= (87 ([1en]o: [1c.)) ® B~ ([1c.), [1ca))) ®cneca A
= (1)1 ® ([1]1 ®cpec. A) =0

and hence B(pa([1]1,[1]1)) = 0. (Possibly, the plausible derivation equation
would fail.)

We next check that the map A — uy is injective. Suppose that this
is false. Considering the difference of two distinct KK-elements A;, Ag
inducing the same multiplication py, = p»,, we obtain an element 7 =

() = 0 € Hom(Ko(Cr ® Cn), Ko(Cn)),
and k(1) # 0 € Ext3(K1(Cyr ® Crn), Ko(Cr))

but such that for all C*-algebras D,
ZQc.ec, T=0€ K.(D®Cy)

for all z € K\(D ® Cp, ® Cy) since pr = py, — pa, = 0. This is impossible.
Because, if
0—-2,—-FEF—-2Z,—0

is an abelian group extension realizing the element «(7), then the following
sequence:
anzn®zn—)zn®E—*Zn®anZn

is no longer exact, hence when extended to a long exact sequence, it gives
a non-trivial connecting map

Tor?(Zn,Zy) — 2, ® Z,
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(not checked, but it always exists since Tor% (Z,, Zs) = Zy,). This says that
if D = C,, and z is suitably chosen, then 2 ®c,gc, T can be non-zero, a
contradiction.

Note, indeed, that

KO(Cn ® Cn) = KO(Cn) ® KO(Cn) = Zn ® Zm
Tor?(Ko(Cn ® Cn), Ko(Cn)) = K1(Cn ® Cn; Zy)

which contains Ko(Cr) ® K1(Cr @ Cy).

We now consider the part of the theorem about commutativity. A
multiplication u) is commutative in the graded sense if and only if the
corresponding ) is invariant under the automorphism of K Ko(Cy ® Cyp, Cy)
induced by the flip o interchanging the two tensor factors in Cp, ® Cp. The
UCT gives the following sequence:

0 — Ext}(K1(Cn ® Cr),Zp) — KKo(Crn ® Cp,Chn)
— Hom(Ko(Cpn ® Cp),Zy) — 0.

Clearly, o is trivial on Ko(Cr, ®Cy), however, it acts by —1 on K1(Cr®Ch),
because

Ko(Ca®Cr) = Ko(Cr)®Ko(Cr), Ki(Ca®Cy) = Tor2(Ko(Cn), Ko(Cr))-

We now distinguish two cases: n odd and n even.
If n is odd, then o has two two distinct eigenvalues +1 on K Ky(Cr®C),
we have a direct sum splitting:

KKO(Cn ® Cns Cn) = Ethz(Kl (Cn ® Cn),Zn) @ KKO(Cn ® Cn1 Cn)a

with K Ko(Cn ® Cr,Cr)? the subgroup of elements fixed under o. The ad-
missible multiplications all have the same component in the fixed-point set,
s0 1) is commutative if and only if A has projection zero in Ext}(X;(Cp ®
Cr),Z,), which happens for exactly one A.

Note that the commutativity for uy means that px(a ® ¢,b ® d) =
ur(b® d,a ® c), so that

a®b® ((c®d)®c,ec, \) =b®a® ((d®c) ®c,ec, N
=b®a® ((0(c®d)) ®c.ec, A)

(where it probably should be that a = b).
On the other hand, consider the case where n = 2. Then ¢ acts trivially
on both Ext}(K;(C2 ® C2),Z2) and Hom(Kop(Cz ® Cs),Z3) (note that it
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seems like that it is non-trivial on the first summand, but it is trivial because
Zy ® Zy = Zy, so that 1 = —1 in Zy). However, o is not diagonalizable as
an operator on KKo(Cz ® Cs,C>). Instead, it acts by the unipotent 2 x 2
matrix over Z, the field of two elements:

11 . 01
(0 1) conjugate over Zs to (1 0) ,

i.e., o interchanges the two admissible multiplications and neither is com-
mutative. Note that 1+ 1 =1+ (—1) =0 in Z and also

1 1\ /1 0\ _ (0 1} (1 0\ /0 1
0 1)\1 1/ \1 1/ \1 1/\1 0/
For an amusing proof, one may use the following identification:

KKo(C; ® Cy,Cp) = KY(F(RP2 ARP?) ARP?)
~ KY(Y AY ARP?),

where Y is a suitable retract of the complement of an embedded copy of
RP? in . In effect, we may take Y = RP2.

Note that C(RP?) & C; as stated before. And also, with C; =
Co((RP2)~) with (RP2)~ the non-compactification of RP? by removing
one point, we have

KKo(Cz ® Cs,Cy) = KKo(Co((RP?)™ x (RP?)7), Co((RP?)7))

= KKi1(Co((RP?)™ x (RP?)7), SCo((RP?)7))
= KO(F([(RP?)™ x (RP?)7I%) A [S(RP?)T]*)
~ K1(F(RP? ARP?) ARP?),
where we have
KK (Co(X),Co(Y)) = KOF(XT)AY™)

by Rosenberg-Schochet (7).
Should be computed the action of the flip of the first two factors in

K'(RP? ARP? ARP?) = KY(RP? ARP?; Z)
&~ Hod(RP2 ARP?; Zy).
By the Kiinneth Theorem in cchomology over the field Z,,
H*(RP? x RP?;Zy) = H*(RP?;Zy) ® H*(RP?;Zy)
= {Zo[w)/(w*)} ® {Za[w]/ (%)},
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with w the generator of H!(RP?,Zy) & Zj, so that the odd cohomology
(ring) is spanned by w ® w? and w? ® w, which are exchanged by the flip.
Note that there are isomorphisms called Chern character as:

K(X)eQ~ P H'(X:Q), K'(X)eQx P H™"X;Q),
n even n odd

with X a compact space, where H™(X; Q) denotes the n-th (Alexander or
Cech) cohomology group of X with coefficients in Q. Note also that

Ho(RP)=Z, H{(RPY)=1Z, Hy(RP?)=0

and that
HO(RP?,Q) = Ha(RP?,Q) 20
and also
H'(RP%,Q) = H)(RP?,Q) 2 Z, @ Q = Z*
and

H%(RP2,Q) = Ho(RP?%,Q) = Z™.
Moreover, since RP? 22 C,, we have
K°(RP?) = Ko(C(RP?) =Z®Z, and K'(RP?) = K;(C(RP?))=0

(see [6], but it looks like that the Chern character would fail to be an
isomorphism in that sense, or possibly, something is wrong).
Note that the Kiinneth theorem in homology implies that
HY(RP? x RP?;Z,) = Hy(RP? x RP?;Zy)
= @pqma Hp(RP?; Z;) ® Hy(RP%;Z2)) = 0;
HY(RP? x RP?;Z,) = H3(RP? x RP?; Z,)
N @prg=s[Hp(RP% Z2) ® Hy(RP% Z,)] = 0

and also
H2(RP? x RP?%Zy) = Hy(RP? x RP%; Z,)
= H,(RP% Zo) ® Hi(RP?;Z,)
= HY(RP? Zo) ® H (RP?, Zy).

and

H3(RP? x RP?,Zy) = H,(RP? x RP?;Z,)
= [Hy(RP? Zs) ® Ho(RP?;Z2)) @ [Ho(RP?; Z,) ® H1(RP?;Zy))
& [HY(RP?;Z2) ® H3(RP?; Z,)] @ [HY(RP% Z,) ® H*(RP?; Z,)),
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and

HYRP? x RP?%Z,) = Ho(RP? x RP?; Z,)
= Ho(RP%; Zs) ® Ho(RP%; Z,)
&~ H(RP?;Z,) @ HX(RP?; Zy).

O

Remark. The non-commutativity of multiplications on K, (x;Z2) and its
proof give an illustration that the UCT and the KT cannot have natural
splittings. We have seen that for the case of K Ko(C2 ® Ca,C2), there are
no splittings equivariant for the flip automorphism o.
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