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A LOCAL STUDY ON THE
KK-THEORY EQUIVALENCE AND
MORE BASICS FOR C*-ALGEBRAS

TAKAHIRO SUDO

Abstract

We review and study the KK-theory equivalence for C*-algebras
as the main subject. For this we review and study some more basics
on the KK-theory for C*-algebras. As a result as a collection we
obtain a table on classification of some KK-equivalent C*-algebras.
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1 Introduction

This paper is based on the reference textbook [1] of Blackadar on K-
theory for operator algebras. We study basic elements of KK-theory of
C*-algebras, aimed at KK-equivalence of C*-algebras mainly, to be con-
tained and to be self-contained, but far from being, and some to be not
included.. With some considerable effort, we make and give some elemen-
tary and helpful, exact computations, proofs, or hints for some facts on the
KK-theory to understand those completely or suitably at the basic level.
Consequently, at the end we obtain a, perhaps or certainly, useful table on
classification of some known KK-equivalent C*-algebras, which would be
a guiding map for further investigation. Since time and effort for publi-
cation are limited, we could not contain all the topics and their details in
KK-theory story. ' '

We also refer to the textbook [6] of Wegge-Olsen on K-theory and C*-
algebras, in particular, as for Hilbert modules over C*-algebras. Also, es-
pecially, refer to [5] on Takai duality for crossed products of C*-algebras.
See also [3] of the author, containing a section on KK-theory basics as an
appendix. As well, may refer to [4] on the UCT, based on [2].

This paper, viewed as a technical note, with some corrections or inter-
pretations, possibly from misprints, is organized as Contents above.

Now, given a few:

Notaions. We denote by K the C*-algebra of all compact operators on a
separable, infinite dimensional, Hilbert space. Denote by M, (C) the n x n
matrix C*-algebra over the complex field C.

We denote by C(X) the C*-algebra of all complex-valued, continuous
functions on a compact Hausdorff space X. Denote by Co(X) the C*-
algebra of all C-valued, continuous functions on a locally compact Hausdorff
space X vanishing at infinity.

A positive elemeng p of a C*-algebra 2 is said to be strictly positive
if p(p) > 0 for every state ¢ : 2 — C a functional with norm one, which
is equivalent to that p2 is dense in 2. A C*-algebra has a strictly positive
element if and only if it has a countable approximate identity. In particular,
every separable C*-algebra contains a strictly positive element. A C*-
algebra is said to be o-unital if it has a countable approximate identity.

Denote by @ and ® the usual direct sum and (mimimal) tensor product
for C*-algebras and some others. But the same symbols with suffix such as
®7p are used frequently in the different sense in what follows.



2 Hilbert fnodulés over C*-algebras

Let B be a C*-algebra. A Hilbert module E over B is defined to be
the completion of a right B-module Ey with a B-valued inner product
(-,-) : Ep x Ep — B such that the function is conjugate linear in the first
variable and linear in the second; (z,yb) = (z,y)bforall z,y € E, b€ B;
(y,z) = (z,y)* for all z,y € E; (z,z) > 0; if (z,z) =0, then z =0, and
with the norm ||z|| = ||(:z:,a:)||% forz € E.

Example 2.1. e Any C*-algebra B is viewed as a Hilbert B-module with
the B-valued inner product (a,b) = a*b for a,b € B.

Check it out: (a,cb) = a*chb = (a,c)b; (b,a) = b*a = (a*b)* = (a,b)*;
(a,a) =a*a>0; |/(a,a)||z = |la*a||z = ||a|| (the C*-norm condition).

e Let B" = @™B denote the direct sum of n copies of a C*-algebra B.
Then B" is a Hilbert B-module (over B).

Indeed, (b1,--- ,bn)b = (b1b,--- ,bnd) and ((a]) (b )) = ) ;- a;bj and
then ((a;), (b;)b) = ((a]) (b ))b; ((6), (a5)) = X5, bja (Z =1 ,b )
e ()5 (o) (o) = Sy > 05 H(al = | Ty el

e Let Hy be the Hilbert space over 8, which is the completion of
the direct sum of a countable number of copies of B, in the sense that Hyg
consists of all sequences (bn) such that Y>> ; b%by, converges, with the inner
product ((a,), (bn)) = > ney anbn € B.

Check it out: ((an),(bn)c) =3 o arbac = {(an), (bn))c;  ((bn), (an)) =
Y1 bpan = (2201:1 anbn)* = ((an)vl(bn))*; ((an), (an)) = 302, anan >
0;  fl{(an), (@an))Iz = I 220%1 ananll? = li(an)ll.

Let E be a Hilbert B-module. B(E) is the set of all module homomor-
phisms T : E — E for which there is an adjoint module homomorphism
T* : E — E such that (Tz,y) = (z,T*y) for all z,y € E. B(FE) is a C*-
algebra with respect to the operator norm, whose elements are bounded.

If T is an adjointable map in that sense, then T' (and T*) are modules
maps and bounded. Indeed,

(T(x+ M), 2) = (z+ My, T*2) = (x,T*2) + X\*(y, T"2)
' = (Tz,2) + \*(Ty, 2) = (Tz + ATy, 2),

so that T'(z + \y) = T(z) + AT'(y), and also

(T(zb), y) = (zb, T"y) = (T"y,zb)* = [(T"y, z)b]"
= [(y, T(@)b]" = (v, T(z)b)" = (T(2)b,y),
so that T'(zb) = T(z)b.



Boundedness follows from that the graph of T is closed. In fact, if
Tp, —» z in F and Tz, — y in E, then for any z € E,
0 = (zpn, T*2) = (zp, T*2)
= (Tzp,2) — (zn, T"2)
—(y,2) — (z,T*2) = (y — Tz,z) = 0.

Therefore, we get Tz = y.
The operator norm of T is defined by

IT|| = sup{||Tz|| |z € E, ||z|| < 1}.

We see that the norm is submultiplicative and ||T|| = |||, |T*T|| = |IT||?,
and B(FE) is complete.
K(FE) is the closure of the linear spans of (rank one) operators on E
such as 0;y(2) = z(y, 2) for z,y,z € E. K(E) is a closed ideal of B(E).
Check it out: Oz 4(21 + 22) = z(y, 21) + T(y, 22) = Oz y(21) + Oz4(22);
0z y(az) = zy*(az) = az(y, 2) = abzy(2); Ozy(2b) = z(y, 2b) = z(y, 2)b =
0z4(2)b;
<9$,y(z)’ w) = (x<ya Z)v 'lU)
= (zy*z,w) = z'yz*w
= (z,y(z, w)) = (z,0y,s(w)),
so that 67 , = 6, € K(E). Note that the maps 0;, are not projections,
but 67 , = 6., self-adjoint and positive since
(0z,2(2), 2)) = (zz*2,2) = 2*zz"2 = (2,2)(2,2)* > 0.
Also,
Ozz 0 0z2(2) = Oz 2(z2*2) = 22T 2 = Opge 20+ (2).

It certainly follows from this consideration that if z is a projection, then
the map 0, , is an idempotent, so that 8; , is also a projection.
With T € B(E), we check that

T 06zy(2) = T(z(y, 2)) = T(z){y, 2) = O7(2)4(2),
Ory 0 T(2) = 2y, Tz) = z(T2,y)" = z(z, T"y)*
= x(T*y, 2) = O;7+y(2), and
Ozy © Oup(2) = Oz y(uv*2) = zy*uv*z
= Ozye ue (2),
16,5 ()1 = llzy™2ll < llzl| -l ™[} -II 21,
so that [|0; 4| < |lz]|-||y||. It follows that K(E) is a two-sided ideal of B(E).



Example 2.2. e For any C*-algebra B, we have K(B) = ‘8.
To show it we define a linear map ® from finite sums of generators of
K(B) by

(D Mbarp,) = Y Mearbi € .
k k

This is well defined because if ), Axb,, 5, = ZJ. 50c;,a;, then Yy Aparbiz =
>j jcidsz for every z € . Thus,

1D Aeardi = > picidill < Y Mearbi — D Ararbius||
k ' J k k
+ 11D Marbius — D picidiusl| + 11 D micidius — Y picid;|
P i i i

goes to zero, with (us) an approximate unit for B, a net of the positive
part of the unit ball of B, with ||b — bu|| and ||b — usb|| going to zero for
any b € 8. The map @ is a *-homomorphism because

Oap 0 0c4(2) = Ogp(cd* z) = ab™cd* z = Oape der (2)

and _
®(0gp 0 0c.q9) = ab*cd” = B(0,5)P(0:.4),

and
®(025) = 2(0b,a) = ba™ = (ab™)* = @(0ap)"

Surjectivity follows from the existence of a SOft of polar decompositions
in B: every b € B can be written as b = u|b|2 for some u € B. Hence,

b= <I>(0u bt ). The map @ is an isometry. Indeed,

1> Mol = sup | Meaxbizl|
& lzll<1
<Y Marbill = 180 Mbar )|,
k k
and on the other hand,
1) Aeardill < 1) Aearby — Y Mearbius|l + 1D Aeaxbius||
k k k k
=11 Mardi — D Mearbiusll + 1| D Mebay pe (us)ll
k k k

<Y Mkarbi — > Aearbiusll + 11D Aebay b |
k k k



which converges to || D", Ak, b, |-

o If B is a unital C*-algebra, then B(B) = B = K(*B) as well as
B = M(B) the multiplier algebra of 9B.

Note that 6; ;(z) = 1(1, 2) = z = idg(z) the identitiy map on B belongs
to K(*B), so that B(B) = K(B). Also, the map from B(8) to ‘B defined
by T — T(1) gives an isomorphism. Indeed, the map is injective because
if T(1) = S(1), then T(2) = T(1)z = S(1)z = S(2). Also, SoT(1) =
S(T(1)) = S(1)T(1), and for any b € B, we have b = 65;(1) with 6,; €
B(*B).

e As a remarkable theorem, for any Hilbert module F over a C*-algebra
2, we have B(E) isomorphic to M (K(E)). It follows that for any C*-algebra
2,

Moreover,

B(e™A) = M(K(e™))
= M(Mn (%)) = Ma(M(2)),

where M, (2l) is the n x n matrix algebra over 2.
Note that for a = (a;),b = (b;), z = (z;) € Uy,

n n
0(az), ) (21, 1 2n) = a(b,2) =a Y brz; = (a; Y bhz;)jm
k=1 k=1

t
albf s alb,’; 21

* *
anbl -+ anbj Zn

where []' means the transpose, and the equation implies an isomorphism
between K(2") and M, (2) by the argument as mentioned above.
e For the Hilbert module over a C*-algebra 2, we have

B(Hy) = M(K(Ha)) = M(2 ® K).

Note that K(Hg) is viewed as the closure of the union U3 K(?"), and
each K(2A™) = M,(2), and A ® K is viewed as the closure of the union
U2, M, (). Thus, we have K(Hg) isomorphic to 2 ® K.

n=

Let Ep, Es be Hilbert modules over C*-algebras 81, B85 respectively,
and ¢ : B) — B(E2) a *-homomorphism. The tensor product E; ®, E>
is the completion of the algebraic tensor product F, ©g, E2 with E; as a



left B;-module via ¢, with the product as a right 8B32-module, with respect
to the By-valued inner product

(1 ® 2, Y1 ® y2) = (T2, ({Z1,¥1)1)¥2)2 € Bo,

where (-, -); is the B;-valued inner product on E;.
Check some out. For A € C,

(Mz1 ® z2), 11 ® Y2) = ((AT1) ® T2, 41 ® Y2)
= (z2, p((AZ1, ¥1)1)¥2)2 = A* (21 @ Z2, Y1 ® ¥2);

(z1 ® T2, A(y1 ® 12)) = ((Az1) ® T2, (A1) ® ¥2)
= (T2, p({z1, AW1)1)y2)2 = Mz1 ® 22, Y1 ® ¥2);

and for b € B,

(z1 ® Z2, (y1 ® y2)b) = (T2, 0({Z1,¥1)1)y2b)2 = (T1 ® T2, Y1 ® y2)b;
and
(y1 ® y2, 71 ® z2) = (y2, o({y1, T1)1)Z2)2 = (¥2, ({1, ¥1)1)T2)2

= (y2, p({z1, y1)1)*z2)2 = (p({Z1, y1)1)¥2, T2)2
= (22, 0({z1,91)1)92)2 = (21 ® 22,51 ®2)7;

and
(z1 ® 72,71 ® T2) = (T2, ({21, T1)1)T2)2 .
= (‘P(($1,$1)1)%$2,CP((11,$1)1)%$2)2 >0

in B9; and

1 1 1
lz1 ® z2|| = |{e({Z1, Z1)1) 222, ({1, Z1)1) 2T2)2]| 2.

Example 2.3. ¢ If © : B; — B is a x-homomorphism of C*-algebras, then
B1 ®, B3 is isomorphic to the closed right ideal ¢ (B1)B of B, generated
by ¢(B1), as a Hilbert module, where the overline means the norm closure.

Note that the simple tensor 2y ® 2 = z® ¢(y)z € B, ®, B3, is mapped
to w(zy)z = ¢(z)¢(y)z in the closure, respectively. Also,

lz @yl = Iz ®y,z @)
= ly*(p(e*z)y)|1? = ly*e(z)*e(2)yl? = llp(z)yl-



e If ¢ : B; — By is a unital *-homomorphism of unital C*-algebras,
of more generally, if ¢ is essential in the sense that ¢(8;) contains an
approximate identity for B,, then B, ®, B, may be identified with B,, as
a Hilbert module.

Because

B1 ®yp Ba = p(B1) By = Bs.

o If ¢ : C — M(*B) is unital, then Hc ®, B = H Qc B = Hg.

Note that the element (z,)A® b = (z,) ® p(A)b € Hc ®, B is mapped
to (znAb) € Hes. Also.

1) @ Bl = l{(An) ® b, (An) @ )] 2

= 11*0(((An), (Aa)))b]|2
= 1> Aab*bl|2

=1 ") (Mabd)lI?
= [1{(Aad), Ab)IZ = l(Anb)-

o If ¢ : B; — By is essential, then we may identify Hg, ®, B2 with
H®c®B2 = Heg,. .
Because Heg, ®¢,%2 = (H®C%1)®¢%2 = H®c (%1®¢%2) = HRcBs.

(Stabilization or Absorption). If F is a countably generated Hilbert
$B-modules, then £ & Hyg = Hgy.

. As a corollary, if E is a Hilbert ®8-module, then F is countably generated
if and only if K(E) has a strictly positive element.

3 Graded, C*-algebras and Hilbert modules

Let A = A@ @A) be a graded C*-algebra such that each direct summand
A is a self-adjoint closed linear subspace and if z € A9, y € AK) | then
zy € AUHR) (j 4+ k mod 2). Set the degree dx = j if z € AY). In particular,

A0 0) - 9O o(Ng(1) - 9(0)

and A AW ¢ A1) and AWYAO ¢ >D).

If there is a self-adjoint unitary g € M () such that A = {a €
A | gag = (—1)"a}, then the grading is called even and g is called a grading
operator for the grading. If 2(!) = {0}, the grading is trivial. A trivial
grading is even with the grading operator 1 € M ().



A homomorphism ¢ : 24 — B of graded C*-algebras is a graded homo-
morphism such that o(2A@)) c BO) for j = 0,1. Namely, as a diagonal
map,

0 =00 @) %= gyl - B =80 ¢pl

A grading on a C*-algebra 2 is nothing but an action of Zo = Z/2Z on
2, that is, an automorphism a of 2 with period two a? = idg : 2 — 2 the
identity map on 2. Then

A=A e AW = {a € A| a(a) = a} ®{a € A| a(a) = —a}

with

a=(@®,aM) = (a +;(a), a —;(a)) .

Conversely, a grading on 2 gives an Zy-action o defined by a(a(®, a(l)) =
(@@, —aM). A grading is even if and only if the corresponding Z,-action
is inner.

Example 3.1. e For 2 any (ungraded) C*-algebra, there is a grading on
the 2 x 2 matrix algebra M2(2) over 2 such that

Ma(2)© = {(g g) |a,dem}, M) = {(2 b) b, cem}

Note that
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This is an even grading with grading operator 1 @ —1 the diagonal sum,
called the standard even grading on M;(2). In fact,

(1&-1) (0 d) (1o- )—(8 2) (19-1) <2 g) (1@-1):(_°c ‘0”>.

Since A ® K = M(2 ® K), we obtan the standard even grading of 2 ® K.



e For any (ungraded) 2, there is the standard odd grading on the
direct sum 2 @ 2 such that (A ® A)® = {(a,a)|a € A} and (A DAV =
{(a,—a)|a € A}. If A = C, there is the standard odd grading on C2,
denoted by C;. Note that C, is isomorphic to the group C*-algebra C*(Z2)
of Zy = Z/27Z, and the grading is given by the dual action o™ of the dual
group Z5 = Z; defined as af(g) = (g9,7)g = 7(g)g for v € Z% and g € Z,
viewed as a unitary in C*(Z,).

e A grading on a C*-algebra 2 induces a canonical grading on M () in
the sense that

M) = MR)O o M) = M) @ M(AD).

For B a graded C*-algebra, a graded Hilbert B-module is a Hilbert
B-module E = EQ@EWM such that EMB) ¢ E(M+n) and (E™), EM)
sg(m+n) 1n particular, E(mp0) « E(m) gtable under B, but E@81) ¢
EW and EWBW ¢ EO).

Example 3.2. o Let B = B @ B(1) be a graded C*-algebra. Then
m =80 g[8 = [e"BO)] @ [o"BM)].
Moreover,
Hg = Hg) @ Hg) = Hyo) © Hya)-
Note that
((ale) (l))n-la(b(o) szl))S;l)

= Z(aﬁ?’, aP) (6D, b3))
n=1

[es) .

= > (@5, (aP)"63))
n=1
o) o0

= S @) @ Y (o) HY
n=1 n=1

= (@)1, B)e21) @ ((a)e2y, (63))521) € B @ B,
e A grading on F induces a grading on B(E) and K(FE) as:
B(E) = B(E)? o B(E)V
=[B(E®) oB(EW) @ []B(E(l),E(O)) ® IB(E(O),E(I))]

B(E©) B(EM, EO)
( (E(O) E(l) ]B(E(l)) )

(e B,

IR



and for T € B(E),

Too T
= [(Too, T11] ® [(T10, Ton)]-

T = (Too Tm) .E=E® gED _ = EO g EW.

As for Ty, € B(EY), EX)), note that

(T'(z0, 1), (yo, ¥1)) = ((z0, 21), T* (30, ¥1))

EROO-CEBE
Ton T/ \z1)’ \n 1) ' \T 11/ \»n
- ((Tooﬂvo + Tmfcl) (yo)) _ ((730) (Té‘oyo + T51y1))
Torzo + Tz )’ \n1 1)’ \Tiovo + ThHun
& (Toozo, yo) = (o, Toyo), (Th0Z1,¥0) = (Zo, Tp1¥1),
(Torzo, 1) = (1, Towo), (Tuzi, 1) = (1, T 1%1),

so that T, € B(E™), EV)) in this sense and adjointableness for B(E(), E®))
should be defined together with B(E®*), E()). Similarly, K(E) is under-
stood as well. Note also that for z; € EVU) and y;41 € EUFY, Oy 11.z; €
K(E(j),E(j+1)) is defined by Gyj%zj(zj) = yj+1(xj,zj) € E(j+1), and
K(EW, EU+D) should be defined as the closure of linear spans of such
operators 8y ;.

e In particular, if 2 is a graded C*-algebra, then

K(2(0) KM, 21(0)
<= (gt gty " Ko
N (0) KM, 24(0)
= (K(Ql(o),%(l)) (1) )
and
B(2A©) B(AW), 210))
3@ = (pai0,al0) By
- MEAO©)  BERA®), %10
* (agatam ") )

e For E = E® @ EW) a graded Hilbert B-module, we denote by E =
EMW @ E© the opposite of E, also a graded Hilbert B-module.

Define H = Hp & Hyf. Hj is isomorphic to Hp as a Hilbert 98-
module, but not in general as a graded Hilbert B-module.



If Hg = Ha @ {0} is trivially graded, then we say Hj has the standard
even grading. Then HY = (Hs® {0}) ® ({0} & Hg) = Hy ® Hyp the usual
direct sum, isomorphic to Hg.

We may write E® = E @ E°P.

Let 2 and B be graded C*-algebras. Let 2 ® B denote the (minimal)
graded tensor product of 2 and 8, which is the same symbol as the usual
(minimal) tensor product of C*-algebras and is obtained as the (minimal)
completion of the algebraic tensor product of 2 and 8 with the product
and the involution given by '

(agil) Q bgkl))(a§i2) Q bgkz)) — (_l)klig(agil)agz) ® bgkl)bgﬁz)),
(@ ® b®)* = (=1)"*((a?)* ® (6™)"),
where 8(a®) = i and o) € A®, and with the degree d(a? @ b(*)) =i + k.
If E; and E; are graded Hilbert modules over 2 and B respectively,
and ¢ is a graded *-homomorphism from 2 to B, we define the graded

tensor product E; ®, E3 to be the ordinary tensor product (of the same
symbol) with grading 8(z® ® y*)) =i + k for () € E®) and y*¥) € E®),

Example 3.3. ¢ If ¢ : 2 — B is an essential graded homomorphism of
C*-algebras, then A®, B = B, Hy ®, B = Hy, and H) ®, B = Hj as
graded Hilbert 2B-modules.

Because, especially,

=t {[QL(O) Ry %(0)] @ [Ql(o) Ry %(1)]} D {[Ql(l) ®q %(0)] @ [Ql(l) ®y %(1)]}
> (80 ¢ {0}} & {{0} BV} = B

and similarly,

o {[2[(1) ®y SB(O)] @ [Ql(l) ®p 53(1)]} ® {[Q[(O) ®y %(0)] ® [21(0) ®y 58(1)]}
>~ (80 ¢ {0}} ® {{0} @ B} = B

Also,

Hy®,B =A% ®,B =B = Hy,
H&p Ry B = (AP)*° @y, B = (BP)* = Hogor = HY,

so that Hj) ®, B = Hj.



e If E; is a Hilbert U-module and E, is a Hilbert B-module, and if
¢ : %A — B(Ey) is a graded homomorphism, then EYf ®, Ey = E) ®, B3’ =
(E1 ®, E2)P and Ef ®, Ef = E; ®,, E; as graded Hilbert 8-modules.

Indeed,

E?®, B, = (E" @ EY) ®, (E” ¢ E{Y)

~ 0 (© 0 1

= (B &, B @ [E{" 8, E{"]} © {[E{” &, E"| ® [E{" ®, E"]}
~ 0 0 1 0 0
= {[E{" &, B{") @ [E]" ®, E{"]} @ {[E]" ®, Eé o B ®¢ B )
~ 0 1 0 0 1 1 1 0

= ([E” &, E) 0 (B 0, B’} 0 (EY 8, B o [E" @, E{"]}

where we use isomorphisms as Hilbert modules by interchanging direct sum
components without breaking grading structure. Since we have

E ®y Bz = [E1 ®, B2 @ [E1 ®, o)V
= (E? ®, E”) 0 (B ®, EV)) @ (B ©, EL) & (B ®, ESV)),

then we have

(E1 ®, E)™ = [E) ®, B3]V @ [E1 ®, Ep]®
=B @, B") @ (B @, By @ [(E}” ®, EY") @ (By ®, F; )]
> (B @, E”) @ (B ®, By @ (B ®, ) & (E” ®, E5")]
= [Eil) ®y E2] @ [Eﬁo) ®yp Ep] = EYF @, E.

Moreover,

By ®, B2 2 (B ®, Bo)™)™
~ (B ®, Ep)? = (B ®, EJP)P = E? @, E.

Example 3.4. ¢ If 2 is evenly graded and B is trivially graded, then the
graded 2 ® B is the usual tensor product.

Because B(1) = 0.

e If A and B are both evenly graded with grading operators g and h
respectively, then 2 ® B is evenly graded with grading operator g ® h.

o If 2 is evenly graded and M3(C) has the standard even grading, then
2A® M2(C) = M2(2) with the standard even grading. In addition, if K has
the standard even grading, then

ARK 2 A® My(K) 2 A® (M2(C) ®K) = (AR K) @ M2(C) = Mr(A®K)



with the standard even grading.

o If A is evenly graded, then A ® C; = A @ A with the standard odd
grading.

Note that

(@®,aM) @ ((s,5) @ (t, 1))

=[(a,aM) & (s,5)] @ [(a©, D) ® (1, 1)]

= [(sa(o), saM) @ (sa'?, sa(l))} ® [(ta(O), ta(l)) ® (—ta'®, —ta(l))]
c@a1)Ve @),

o If A is a graded C*-algebra with an action a of Zg, then A ® C; =
2 Xq Zy the crossed product with the grading corresponding to a ® a”
(corrected) with o the dual action of Z = Z,.

e C; ® C; = M,(C) with the standard even grading.

Takai duality implies that C x4 Zg Xon Zg = CQ® M2(C) = M3(C), with
CxaqZo=2CRCy =C;y and Cp xpn Zo =2 C; ® C;.

(Stabilization). Let B be a graded C*-algebra and E a countably
generated graded Hilbert B-module. Then E® Hj = Hg as graded Hilbert
$B8-modules with natural grading.

4 Kasparov modules and their KK-theory groups

Let 2,8 be graded C*-algebras. E(2,B) is the set of all triples (E, p, F),
where E is a countably generated, graded Hilbert module over ‘B, ¢ is a
graded *-homomorphism from 2 to B(E), and F is an operator in B(E) of
degree 1, such that the (additive) commutators [F,¢(a)], and (F? —1)p(a),
and (F — F*)p(a) are all in K(E) for all a € 2. The elements of E(,B)
are called Kasparov modules for (2,B). D(2,B) is the set of triples in
E(2, B) such that [F, p(a)], (F? —1)p(a), and (F — F*)yp(a) are zero for all
a € 2. The elements of D(, *B) are called degenerate Kasparov modules
for (2,B). »

Notes: ¢ = @ @ o) : 2 = A0 g AN - B(E)O @ B(E)V with



eAL) c B(E)Y for j = 0,1, and F is in B(E)"). Also, in general,

_ 0 F12 (p(o)(a(o))ll (p(l)(a(l))lz
[F, p(a)] = ( Fy 0 ) (Lp(l)(a(l))m 00 (a(0)),

_ (lp(o)(a(o))u <P(1)(a(1))12> ( 0 F12)
(p(l)(a(l))m 0@(a®)g ) \Fy; 0
_ (FizpM(aM)g1  Fi2p® (a)gg
- <F21<P(0)(a(0))11 F21¢(1)(a(1))12>
_ <‘P(1)(a(l))12F21 <p(°)(a(°))11F12>
e (@) Fy M (aW)g Fig

_ (Fi2pW(aM)g1 — oM (aM)19Fp;  Fiap®(a®)gg — 9@ (al®)11 Fio\
T \Fap@ (@)1 — 0O (a®)gyFo1 Forp®(a®)12 — oM (aM)21 Frg

(F? ~ 1)p(a) = (F SR 1) o(a)

= ((F12F21 = D@ (FiaFy - l)w(l)(a(l)h?) :
(FnFi2 = )M (@MW) (FarFig — 1)@ (a@)gy

(F=F)p(a

- F3
(F21 FTy 0 ) #a)
((Fm - F3)pW(aM)gy  (Fia — F*1)<P(°)(a(°))22> '
(P — Fl)e®@ @)1y (B — Fp)eM(aW)1o

Let q : B(E) — B(E)/K(E) = Q(E) be the canonical quotient homomor-
phism. Note that
B(E)/K(E) = [B(E)/K(E)© @ [B(E)/K(E)W
= [QE®) @ Q(EM)] @ [QEW, E®) © Q(E©, EW)]
QEE®)  QEW,E®)\ _ (Q(E)o Q(E)) _
(Q(E“”,E(”) QEW) ) - (Q(E)m Q(E)u) = Q(E),

where we let Q(BG)) = B(ED)/K(EY) for j = 0,1 and Q(E®), EW) =
B(EW, E®))/B(EV), E(). Hence we may let

(g0 quo) . _ (B(E)oo B(E)wo) _,
q_<<101 qL)‘B(E)‘(B(E)m B(E)u> Q(E).



This our indexing might be new and more useful than the usual one. Any-
how, we have

a(F)g(e(a)) — q(p(a))g(F) = 0 € Q(E),
(a(F)? = q(1))q((a)) = 0 € Q(E),
(a(F) — q(F)")g(p(a)) = 0 € Q(E),

where we can write down their components by using g;; and the compu-
tation above, but better to be omitted. Importantly, those equations say
that F' and each p(a) commute mod compact parts and if ¢ is unital or
essential, then F' is a self-adjoint unitary mod the same.

Two triples (Eo, o, Fo), (E1, p1, F1) of E(2,B) are unitarily equiva-
lent if there is a unitary, say U, in B(Ep, E ), of degree zero (i.e., a diagonal
sum of unitaries on graded Ey to E)), intertwining ¢; and F;;

Eo=EPYoEY Y- B =EQ 9 EY

&po(a)l lcm (a)
Eo -, E,
Eo 2. E;
ol I
Ey v, Ey

for a € 2. Its unitary equivalence is denoted as =,,.

A homotopy connecting (Eo, o, Fo), (E1, @1, F1) is an element (E, ¢, F')
of E(2, IB) such that (E ®y, B, f; 0 ¢, fis(F)) ~u (Ei, i, F;), where f;
for i = 0,1 is the evaluation homomorphism from I8 = C([0,1],B) =
C([0,1]) ® B to B (at 0,1 respectively):

Eis — E®;, 8 2 E
‘P(a)l lfiocp(a) lwi(a)

Eig —— EQ®y, ‘B LR E;
Ers —Lo Ee, B -2 E

Fl lfi,.(F) lﬂ-

Ein L E®y, B LN i



for a € AU, where the diagrams commute, and the middle down arrows are
defined to be that the left squares are commutative, and Ejg = E over
I8, and U; are the implementing unitaries of the unitary equivalences =~,,.

The homotopy respects direct sums. The homotopy equivalence on
E(2,B) is denoted by ~4.

If Ey = E,, a standard homotopy is a homotopy of the form E =
C([0,1], Eo), ¢ = (¢t), and F = (F}), where [0,1] 3 t — F; and t — ¢4(a)
are strong *-operator continuous for each a € . Any homotopy can be
converted into one in standard form by using the stabilization theorem.

Note that

¢ = (pr) : A — B(C((0,1]) ® Eyp),

and o, F € C([0,1],B(Ep)) = C([0,1]) ® B(Ep), which is strictly contained
in B(C([0,1]) ® Ep) in general.

An operator homotopy is a standard homotopy where ¢; is constant
and F; is norm continuous.

e Degenerate Kasparov modules are homotopic to zero module.

The operator homotopy equivalence relation ~,, on E(2,B) is gen-
erated by operator homotopy and addition of degenerate elements. Namely,
two Kasparov modules are operator homotopy equivalent if there is an op-
eraptor homotopy (up to unitary equivalence) for their sums with some
degenerate ones.

The compact perturbation equivalence relation ~¢, on E(2,B) is
generated by unitary equivalence, compact perturbation F’ of F' (via ¢)
in the sense that (F — F')¢(a) € K(E) for (E, ¢, F), (E, ¢, F') € K(,B),
and addition of degenerate Kasparov modules.

The stabilized compact perturbation equivalence relation ~, on
E(2,%B) is defined by that two Kasparov modules are stalilized compact
perturbation equivalent if their sums with unitarily equivalent Kasparov
modules are compact perturbation equivalent.

The equivalence relation ~, is also called homology or cobordism.

e When 2 is separable and B is o-unital, the equivalence relations ~y,,
~oh, and ~gcp on E(2,B) all coincide.

o If (E,p,F) and (E,y, F') belong to E(2,B), with F’ a compact
perturbation of F' via ¢, then (E, ¢, F) is operator homotopic to (E, ¢, F').

Indeed, define F; = (1—t)F +tF’ for t € [0,1]. Then (C([0,1], E), (¢ =



vt), F = (F;)) gives an operator homotopy. Check that

[Fionp(a)] = {(1 ~ )F + tF'}p(a) — {(1 - )F + tF'}p(a)
= (1 = t)[F,p(a)] + t[F', p(a)] € K(E);
(F7 = Dp(a) = {(1 - t)*(F? = 1) + ((F')* - 1) }p(a)
—{Q-HFF' ~1) = t(1 - t)(F'F — 1)}(a)

with

FFl—1=FF -F*+F?-1=F(F' - F)+ (F*-1),
FF-1=FF—-(F) +(F) -1=F(F-F)+ ((F)*-1),

so that (F? — 1)p(a) € K(E), and
(Ft — F)p(a) = (1 = t)(F = F*)p(a) + t(F' — (F')*)p(a) € K(E).

e The equivalence relation ~, on E(2, ) implies ~,p, and the equiv-
alence relation ~,, implies ~,. '

o If (E,p,F) and (E,p, F') are Kasparov (2, B)-modules, such that
¢(a)[F, F'l¢(a)* > mod K(E) for all a € 2, then (E, ¢, F) ~op (E,p, F').

(KK-theory groups). KK(%,B) = KK,(2,B) is the set of all equiv-
alence classes of E(2,B) under ~y,.

Set KK'(2,8B) = KK(2,8 ®C)).

Similarly, define K Kon(2,B), KKcp(A,B), K Ksep(A, B) to be the sets
of equivalence classes of E(2,B) under ~gp, ~cp, and ~cp, respectively.

Set KKL, (U,B) = KK,n(%,B1C,), KKclp(Ql,%) = KK(%,B80C,),
and KKslcp(Ql, B) = KKsp(A,B ®Cy).

There are surjective maps:

KK, (%,%B) — KKo,(%,%8) —» KK(2,B).

e KK(2,8B) and K Ko,(,B) are abelian groups, and K K,(2,B) and
K Kcp(2U,B) are abelian semigroups with identity.

The proof is as follows. Two degenerate Kasparov modules are equiv-
alent under ~,, and the class of elements of D(2,B) is the respective
identity. If (E,p, F) € E(%,B), then let ¢~ : A — B(E) be defined by
©~(al®,aM) = p(a®, —a)) (perphaps, missed defined), and then

(E, o, F)® (E?,¢~,—F) ~ob (E®EP, 0@ ¢ ’(1 0>)



via the operator homotopy:

)

ot soomt
(C([0,1], E® E?),p & o™, F = (Ft _ (Fcos 1sin T ))

1sinZ —Fcos%

(corrected). Note also that

& Dromrnel- (4 ) (o %)
= (oo S0 7% )

which should be zero (but not sure, even belong to K(E @ E°P)), however,
is zero certainly when 2 is trivially graded, and

(€0 9}wmero=o
{((1) (1)) B ((1) é)*}(w(a)@w(a)):Q

(Possibly, if no misunderstanding, or as a case, ¢~ may be replaced and
defined as ¢~ (a®,a(V) = ¢(0,aM)Bp(a®,0) in B(E?) = B(EV @ EO),
and then ¢~ is actually the same with ¢ and is identified with ¢, so that
P~ —p=0.)

As a note. If 2 is separable, K K;,(2,B) is also a group.

K K, does not have cancellation in general. There is a surjective homo-
morphism ¢ from K K, (2, B) to the cancellation semigroup of K K,(24, B),
temporarily denoted by K Kcp(A, B)cqn. There is also an induced surjective
homomorphism ¢’ from KK, (2, B) to KK,p(2, B).

As a summary, we obtain the following diagram:

0

I

KKop(U,B) —— KKep(A,B)ogn —— 0

H q

KK,(%,8) —— KK5,(%,%8) — 0

’
q
4

KK, (%,B) —— KK,,(%,%8) —— KK(%,B)

!

0 0




where ¢ = roiogq, with r, 7/, and s the canonical surjections by the
definitions of the equivalence relations, and ¢ the canonical inclusion map.

Example 4.1. e There is a sequence of surjective maps:
Z — KK(C,C) - KK,(C,C) - KK,,(C,C) — Z,

so that all the maps are isomorphisms, and as well KK (C,C) = Z.

An element of E(C,C) is a module of the form a = (HE,¢, F) or
((C™", p, F), where we may let HY = Hy & H;F. Then ¢(1) is a pro-
jection of degree zero, i.e., ¢(1) = P & Q for some projections P and Q,

and F is of the form <g., 'g) with degree one.

The Kasparov module a above is a compact perturbation via ¢ of the
module (HE, ¢, p(1)Fp(1)). Thus, the equivalence class of o in K K, (C, C)
can be represented by a module of the form:

o 0o s
ﬂ=(H0€BH1pv‘P=1a (T/ O))

with ¢ unital on C, where H{ may not be the same as the first one. Then
T’ is essentially a unitary operator from Hy to H; (mod K(Hy, H;)), and
S’ ='(T")* essentially (mod K(H:, Hp)). By another compact perturbation,
we may assume that 7” is either an isometry or coisometry, and that S’ =
(T

If T’ is unitary, then the module 3 is degenerate.

If T’ is a proper coisometry, i.e., T'(T")* = 1, (T')*T’ # 1, then set
P’ =1— (T')*T'. Then P’ is a projection in B(Hp) of finite rank n, and
the module § is unitarily equivalent to

{(P'Ho, 1,0} { (1 - P")Ho ® HP, 1, (53' ‘7;)*)».

The second module is degenerate, and the first module is isomorphic to n
times the module obtained from the identity map id¢ : C — C as:

®"(C,idc,0)

or equivalently, the first module is isomorphic to the module coming from
the unital map i : C — M,(C) as:

(My(C),1,0).



Similarly, if 7" is a proper isometry, then set Q' = 1—(T")(T")* € B(Hh1).
Then the module 8 is unitarily equivalent to '

(@mope(mea-mr (. T,

which is compact perturbation equivalent to the module (corrected) of a
homomorphism.
Thus the map Z — KK, (C,C) sending 1 to the class of idc : C — C is
surjective, i.e., KK¢(C,C) is a (cyclic) group generated by the class [idc].
There is an inverse map from K K,,(C,C) to Z by sending the module
in the first to the following Fredholm index:

op —_ —
(tyo .o = PO Q.F = (5 5

0 S)) — index(QTP),

with
sFe) = (gpp To%)-

and the Fredholm index equal to dim PHy — dim QH,; if PHy and QH; are
finite dimensional. This map is well defined because an operator homotopy
preserves this index. Thus the map is surjective.

o If 98 is o-unital, then in the definition of K K, (2, ), hence also for
KK,,(2,8) and KK (2, B), it suffices to consider only the triples (E, ¢, F)
with E = Hj.

Since the triple (Hg,0,0) is in D(2,B), then (E,p, F) has the same
class in K Ksp(%,B) with (E® Hy, ¢ ®0,F @ 0), where E @ Hiy = Hy
by the stabilization theorem.

o If (E,p,F) € E(,B), then there is its compact perturbation via
¢: (E,¢,G) with G = G*. Thus, in the definition of K K,c,(2,B), hence
also for K K,4(2,B) and KK (2,B), it suffices to consider only the triples
(E,p, F) with F = F*.

If (E,p,F) € E(%,B), then so are (E,p, F*) and (E, p, 3(F + F*)),
which are compact perturbations of (E, p, F)) via ¢. Also, a homotopy (or
operator homotopy) (E:, ¢:, Ft) from (Ep, po, Fo) to (E1, @1, F1) yields a
homotopy (or operator homotopy) (Et, ¢, 5(F;+ F}')) from (Eq, wo, 3 (Fo+
FY) to (Bv, 1, 3(F1 + FY)).

o If (E, p, F) € E(2,*B), then there is its compact perturbation (E, ¢, G)
with G = G* and ||G|| < 1. If 2 is unital, we may in addition assume that
G? — 1 € K(E). Thus, in the definition of K Kscep(2,B), hence also for
KK, (2,%8) and K K(2,*B), it suffices to consider only the triples (E, ¢, F')
with F = F* and ||F|| < 1, and in addition F? — 1 € K(E) if 2 is unital.



Example 4.2. ¢ If ¢ = f : 2 — B is a graded homomorphism, then its
corresponding class [f] € KK (2, B) is represented by the triple (B, f,0).
Note again that B(8) = M (B) and K(*B) = B. Also, zero 0 € B(8) has
degree any, and all [0, p(a)] = 0, (02—1)p(a) = —¢(a), and (0—0*)p(a) =
belong to K(B).
One may also associate to f : 24 — B the Kasparov (2, 8)-module

(B&BP,p=f®0,F= ((1’ (1)))

to give the same KK-element. As a note,

o _ [ B(B)  BE®®B))\ [ M) BE,B)
82037 = (g m), b)) = (a@a), Mne) )"

and
oy _ [ K(B)  K(B”B)\ _ B K(%8°, B)
kBB = (g, sy ) * (ko) )
Hence p = f @0 : A — K(B & B). Also, F € B(B & B°) has degree
one, and
_ (a) 0 f(a) 0\ (0 1
[F"/’(“)]_(l 0>< 0 0)'( 0 o) (1 0)
_( 0 —f(a)
(s o) ex@on,
(F? — 1)g(a) = (1 - 1)p(a) = 0 € K(B & B?),

)=
(F — F*)p(a) = (F — F)p(a) = 0 € K(B © B”).

elf p = f:% — BK is a graded homomorphism, then its cor-
responding class [f] € KK(2,B) is represented by the triple (Heg, f,0),
where K(H) is identified with 8 ® K.

Note again that B(Hg) = M(K(Hg)) = M(B ® K). Also, zero 0 €
B(Hg) has degree any, and all [0,¢(a)] = 0, (02 — 1)p(a) = —p(a); and
(0 — 0*)p(a) = 0 belong to K(Hspg).

One can also associate to f : A — B ® K the Kasparov (2,8 ® K)-
module

(BoK @ [BOK” o= 80,F= (‘; é))

(corrected) to give the same KK-element.



Note also that

B([B ® K| © [B ® K|”?) = ( B(B ® K) B([B ® K|, B ® K))

B(B 9 K, [B ® K|P), B([%B ® K]7)

( M(®BK)~2Hy B(BK”B® K))
B(B ® K, [B ® K|), M([®B ® K|°P)

1R

and similarly,

K(BoK[®[BK]?) (K BRK=Kg K([‘B@K]"”,%@]K)) .

(B oK, [B K|P), B ® K|P

Hence p: f®0: 2 — K([BK[®[B ®K]?). Also, F e B((BRK]® [B®
K]°P) has degree one, and

meai=( o) (9 6)-(9 5 o)
- (f?a) _J;(a)) €K(Bekle[BoK?),
(F? = 1)p(a) = (1 - 1)p(a) =0 € K(B QK] @ [B @ K]°P),

(F = F*)p(a) = (F — F)p(a) = 0 € K([B ® K| ® [B ® K|°P).

e Given a split short exact sequence of graded C*-algebras

0 ) SR, SO BN 0

with s : 2 — D a section, we associate a Kasparov (D, 8B)-module

(BB 0o wosod swows (] o))

where w is the canonical homomorphism from ® to M(8) = B(*B). This
Kasparov module is called the splitting morphism of the split short exact
sequence, denoted by ms. When © = B @ A, then

n=@onvreo,(] o)) cE®B),

with p : ©® — B the projection, so that posog=0withs: A — D a
section as the canonical injection.



Note that p = w B ws : D — M(B) & M(B°) in B(*B @ BP). Also,
F € B(*B @ B°P) has degree one, and

_ (0 1\ (w(d) O w(d) 0 01
@l = (7 ) ("5 wtw) = ("5 wntn) (1 0)
_ 0 s(d) - (d) 0;
- (w(d)_ws(d) wes ) € K(B @ B%),
(F? = 1)p(a) = (1 ~ 1)p(a) = 0 € K(B © B*),
(F — F*)p(a) = (F — F)p(a) =0 € K(*B @ BP?).
Indeed, we have the following commutative diagram:

0 — BB L, »n 2L, A —K0

II | [
0 —— B=K(B) —— M(B) —1— M(B)/B —— 0

with b the Busby invariant, so that w(d) — ws(d) is mapped to zero under
g in the second line, and hence w(d) — w;(d) € K(B).
e Similarly, for a split short exact sequence of graded C*-algebras

0 — BIK ——— D —91, 9 0

with s : 21 — D a section, we associate a Kasparov (D, B ® K)-module

(o B wo wosoq). (] o),

also called the splitting morphism, where w : ® — M(B®K) = B(B®K)
is the canonical homomorphism, with M(8 ® K) = M (Kwg) = Hg.

o If (E;, p;, F;) is a Kasparov (2;,B)-module, for j = 1,2, then (E; @
Es, 1 & w2, F} ® F,) is a Kasparov (2; @ Uz, B)-module. Similarly, if
(E;, ¢, F}) is a Kasparov (2,%;)-module, for j = 1,2, then (E] ® Ej, | ®
¢y, F] @ F3) is a Kasparov (2,8, @ B;), where each E7 is viewed as a
Hilbert B @ B2-module by letting B with k # j act trivially on E.

Note that @1 @ ;1 : U A, — B(E,) & B(E,) C B(E] (&%) EQ), and

[F1 @ F2,p1(a1) ® p2(a2)]
N (Fol 19'2) (‘plg"l) 902?02)) - <‘Plg‘1) 802?‘12)) (FOI Foz)

— [F"P (a1)] 0
_( 1 01 1 [Fz,w2(a2)])€K(El®E2)’



and

{(F1 @ F2)* - (18 1)}(p1(a1) © pa(az))

= (F{ — )p1(a1) @ (F5 — 1)pa(az) € K(E1 @ Ep);
{(FL® F) — (F1 & F2)*}ei1(a1) ® p2(a2))

= (F1 — FY)p1(a1) ® (F2 — F3)p2(a2) € K(E1 © E3).

The other case is omitted.
e If0 - B — ® — A — 0 is an invertible extension, then the Busby
invariant 7 : % — Q(B) = M(B)/B dilates to a *-homomorphism:

Y11 P12
= A — Mo(M(B
4 (‘Pm ¢P22) 2(M (%))

and ((B@®B)®Cie®1,(1® -1)® (1,-1)) the Kasparov module in
E(AU,B ® C,) is associated to the invertible extension.

Note that ¢ is identified via the inclusion A — A ® C;, with ¢ ® 1 :
ARC; — M2(M(8))R®C1 in B(*B®B)QB(C1) contained in B((B&B)®C,),
and (16 -1)® (1,-1) € B(B ® B) ® B(C,), and

(e -1)@(1,-1),¢(a)®1]

_ (1 0 (en(@) e
- <0 _1> (@21(0:) gpzz(a)) ®(1,-1)
_ (p1(a) ¢12(a)) (1 0 _
(afe) o) (6 5) e

_{ eula) ¢12(a) o (eule) el B
_<”‘p21(“) “P22(a))®(1’ ) (<P21(a) —<p22(a)>®(1’ D

_ 0 2¢12(a) _
B (—2‘P21(a) 0 >®(1’ b

which should belong to K(B & B) @ B(C;) = M>(B) ® C; (possibly in this
sense), and
{1e-1e1,-1’-1e}w(a)®1)
={1®1) - (1®1)}p(e) ®1) =0;
{(le-1)®(1,-1)-(1e-1)*®(1,-1)*}e(a) ® 1) =0.

(Additivity). We have

KK ©2,8) = KK(;,B) ® KK (s2,B)



and
KK(2,8;®B2) = KK(A,B,) ® KK(2A,B>).

Additivity in the first variable also holds for countable direct sums, but
does not in the second variable in general.

(Functoriality). If f : 2l; — 25 is a graded homomorphism, then the
following homomorphism is induced:

f*: KK (2,8) — KK(%;,B)

for any B, with f*[(E,p,F)] = [(E,po f,F)] € KK(%;,%B). Thus,
KK(-,*B) with B fiexd is a contravariant functor from C*-algebras to
abelian groups.

If g : B; — B, is a graded homomorphism, then the following homo-
morphism is induced:

9: : KK(2,%8) — KK(2,B5)

for any A, with g.[(E,¢,F)] = [(E ®¢ B2,¢o ® 1,F ® 1)] € KK(2,B2).
Thus, KK(,-) with 2 fixed is a covariant functor from C*-algebras to
abelian groups.

Let 2, B, and D be C*-algebras. There is a map from E(2,B) to
ERA®D,B QD) given by (E,0,F) - (E®D,p®1,F®1). This map
respects direct sums and the equivalence relation and thus induces a homo-
morphism 79 : KK(U,B) - KK(AQ® 9,8 ® D). The homomorphism 75
is natural in each variable, which may be called by us the tensor-inducing
homomorphism.

In particular, if z = [f] € KK(2,B) with f : 2 — 9B a homomorphism,
then 7p(z) = [f®idp] € KK(A®D,BRD) with fQidp : ARD — BRD.
Indeed, z = [(B, f,0)] and

mo(z) = [(B®D, f®idp,0® 1 = 0)] = [f ® idg).

o If h : ®; — D3 is a homomorphism, then we have the following
composites, denoted by (®h). and (®h)* respectively:

T@l

KK(®,%8) — KK@®D;,BOD,) 128,

KK(2A®9:,8Q9,),
and

(idey ®h)*
_

KK®,B) —2, KK @D, B ®D,) KK(2®D1,B®D,),



and moreover, the following diagram commutes:

TDI

KK(%,B) 2, KK®®D;,B®D)

Tmzl l(idg@h)-

KK(%® D2, B®D,) 2O, preD,Be9,),

so that (®h). = (®h)*, which may be denoted by ®h.
e For any 2 and ‘B, the map
K : KK(2,B) - KK(AQK,B ®K)
is an isomorphism. Moreover, as a corollary,
KK(2,8) = KK(A® M,(C),B ® M,(C))

2 KK(AQK,B®K)

= KK(RIQK,B)= KK(2,B ®K).
The same holds for KK,, and KKp.

Indeed, the inverse map for 7 sends the Kasparov module (E, ¢, F) €
KK(AQK,BRK) to (E®; Hg,poh, F®1), wherei: BK —» BQRK C
B(Heg) = M (B ® K) the inclusion map and b : 2 — A QK is defined by
sending a to a ® p for a rank one projection p of degree zero.

For instance, (¢ o h)(a) = p(a ® p) = ¢(a) ® ¢(p) € B(E) ® B(Hp) C
B(E ® Heg) and

[F®1,(poh)(a)] = Fp(a) ® p(p) — p(a)F ® p(p)
= [F,¢(a)] ® p(p) € K(E) ® K(Hsp),

and

(F2®1-1®1)(poh)(a) = (F* - 1)¢(a) ® p(p) € K(E) ® K(Hsp),
(F®1-F*®1)(poh)(a) = (F - F)p(a) ® p(p) € K(E) ® K(Hsp).

Note that for (E, ¢, F) € E(%,*B),

(7t 0 ) (B, ¢, F)] = g (E ® K, p ® idk, F ® 1))
=[(E®K®; Hg,(p®idg) o h, F®1® 1)]

with K= C® K = K(Hc).
Moreover,

KK(2A® Mp(C),B® Mny(C)) = KK(2A® M,(C) ® K, B ® Mn,(C) ® K)
*KKAQK,B®K)=KK(,B),



and

KK@®K,B)~ KKARK®K, B ®K)
~ KK ®K, B ®K) = KK(2,B).

(Formal Bott periodicity). For any 2 and B, the map
1, : KK(U,B) - KK(A®Cy,B®C)
is an isomorphism, and so there are isomorphisms:
KK'(,%8) = KK(A® C,,B)
and

KK(®,%8) 2 KK'(A,88C;) = KK'(A®C,,B)
=KK2A®C,BoC)).
The same holds for KK,, and KK,.

Note that the map ¢, o 7c, = Ty, () since C; ® C; = M(C), so that
that the following diagram commutes:

T(:l

KK(2,8) — KKRA®C;,B®C))
TM:(C)l 1’01
KK2® MQ(C),% ® M3(C)) —— KK(A®C;®C;,BRC; ®C,),

with 7 1= 7';4: () © 7C, 8s an inverse.
Moreover,
KK'(2%,8) = KK(%,8 ®C;)
2 KK@®C,BRC; ®C;)
~ KK(R®C1,BQ M(C)) 2 KK(A®Cy,*B),
and also
KK'%,B8®C)=KK®,B88C;®C))
*KKRA®C,B®C)
2KKRA®C;®C,B8C, ®C1)
= KK(A® M(C),B @ My(C)) = KK(A,*B)

and similarly, for KK}(A® C;,B) = KK(A® C;,B ® C;).



e As for the case where 2 = C, we have

KK(C,B) = KK(C,B ®K)

= ([T):T € M*(B),T*T - 1,TT* -~ 1 € BRK]},
KK'(C,B)= KK'(C,B8®K)

= ([T): T € M*(B),T =T*,T> -1 BRK]},

where [T'] means the homotopy class for T. Note that there is only one
unital homomorphism ¢ = 1¢ from C to M*(B) = M(B®K) = B(B®K).
The elements (E, 1c, F) of E(C, B ® K) are identified (up to equivalence)
with the preimages T of unitaries in Q*(®8) = M (B ® K)/B ® K. The
equivalent relation in K K,,(C,B) is homotopy. Any homotopy in Q°(‘B)
can be lifted to a homotopy in M*(‘B).

Similarly, the elements of K K, (C, B) can be identified with self-adjoint
elements in M*(B) with unitary image in Q°(*B), and these may be iden-
tified with projections in Q*(*B).

It follows that

(K-theory). e If B is a trivially graded o-unital C*-algebra, then

KKon(C,B) = K1(Q*(B)) = Ko('B).

and
KK},(C,B) = Ko(Q*(B)) = K1('B).

Note that the identification of K;(Q°(*B)) with K;+1(®B) (j = 0) re-
quires the Bott periodicity in K-theory of C*-algebras and the triviality of
the K-theory K,(M*(3B)) for x =0, 1.

e If 'B is a trivially graded o-unital C*-algebra, then

KK},(Co(R),B) = K1(Q*("B)) = Ko(B).

Any *-homomorphism 1 from Cp((0, 1)) into a unital C*-algebra defines
a unitary u = ¥(f) + 1, where f(t) = > — 1, and conversely, any unitary
u of a unital C*-algebra defines a homomorphism ¢ of Cp((0, 1)) by sending
ftou—1.

Check that (¥(f) + 1)(@(f) + V)* =o(ff*+ f+ f*)+1 and

(ff* + f + f*)(t) — (621rit _ 1)(6—21rit _ 1) + (627rit _ 1) + (6—27rit _ 1) =0.

Note that we extend ¢ to ¢t on Cy((0,1))*t = C(T) by ¢(f,1) = (u —
1) +1 = u with (f, 1) = e2™ the generator for C(T), with T the one-torus.
Thus ¢ on Cy((0,1)) is defined as the restriction of p* from C(T) to the
unital C*-algebra generated by u.



Two such homomorphisms are homotopic if and only if the correspond-
ing unitaries are in the same connected component. Thus elements of
KK'(Co(R),B) with B trivially graded are represented by triples (Hg, U, T),
where U is a unitary in B(*B ® K) = M*(*B) and T is a self-adjoint, es-
sentially unitary operator in M*(B) essentially commuting with U. Set
P = L(T + 1), a projection essentially. Set uw(U,P) = q(PUP + 1 — P)
with ¢ : M*(*B) — Q°(*B) the quotient map. Then u(U, P) is a unitary
in Q*(*B), and u(U, P) and a similar u(V, Q) are in the same component if
and only if (U, P) and (V, Q) are operator homotopic. If P is a projection
commuting with U, then (U, P) is degenerate. If v is a unitary in Q*(*B),
let V be a lift of v ® v™! in Ma(M*(%B)), and then (V,1®0) hasv® 1 as
an image.

5 Kasparov product

If 21 is a separable C*-algebra, B is a C*-algebra, and ® is a o-unital
C*-algebra, then we have the Kasparov (intersection) product (map)
defined as the following bilinear function denoted as:

®p: KK(,D) x KK(D,8) » KK(%,B),

with ®p(z,y) =z Qpy € KK(,B).

Outline of the construction is as follows. Given z € KK (%,D) and y €
KK(D,B), choose representatives (E1, @1, F1) € E(U,D) and (E2, g2, F2) €
E(®D,B). Then define (E, ¢, F) € E(A,B) by E = E1®y, E2, ¢ = p1®y, 1,
and F a suitable combination of F} and F5. Keep in mind the notations in
the following examples below.

Example 5.1. ¢ If z = [f] € KK (2,D) with f : 24 — ® a homomorphism,
then we may let (E1, @1, F1) = (D, f,0). Assume that 3 is essential. Then
Ei ®y, E2 = D ®y, F2 = Ep and we may take F' = F5. Namely, the
Kasparov product is

[(D’ f’ 0)] 2] [(E2v902a F2)] = [(E2>f ®‘P2 1=p20 fv F2)]

This class T ®p y = [f] ®p y is denoted by f*(y). Note that f(a)®1 =

p2(f(a))-

oelfz = [f] e KKU,DQK) = KK(/A,D) with f : A - D®K
a homomorphism, then we may take (Ey, 1, F1) = (Ho, f,0) and then
E = Hp ®y, E; = H ®c E and we may take FF = 1 ® F5. Namely, the
Kasparov product is

[(Ho, £,0)] ® [(E2, 02, F2)] = [(H®c E2, f ®, 1 =1® (p20 ), 1® F)].



In general, F' is a combination of F1 ® 1 and 1 ® F». We may write
F = F(F,, F3) for a suitable combination (troublesome to make) of F; and
Fs.

e Let 2 and B be graded C*-algebras, with 2 o-unital. If (E, ¢, F) €
E(2,B), then there is (E',¢’, F') € E(U,DB) with ¢’ essential and that
(E, SD’F) ~h (E,’ SolrFI)'

Example 5.2. ¢ Consider (E, 1, F1) € E(%,D) and (8, 9,0) € E(D,B)
with g : ® — B a homomorphism. Then the Kasparov product is

[(E1, 01, F1)] @9 [(B,9,0)] = [(E1 ® B, 1 ® 1, L @ 1)].
This class z ®p y =z ®p [g] is denoted by g.(z).

o If 9l is separable and ® is o-unital, then there is a Kasparov product -
for (Ey,¢1,F1) € E(A,D) and (Ey, 2, F2) € E(D,B), which is unique
up to operator homotopy. If F; and F;, are self-adjoint, then there is a
self-adjoint F' = F(F, F).

(Kasparov product map). If 2 is separable and © is o-unital, then
the Kasparov product defines a bilinear function:

®p: KK(2,D) x KK(D,8) — KK(,B),
. ('7:’ y) —ZQp Y.

Note that KK,, = KK under the assumption. The Kasparov product
of two Kasparov modules is uniquely determined up to homotopy. It is
shown that the map is well defined.

o If 2 is separable and B is o-unital, then the equivalence relations ~j
and ~,p, coincide on E(%, B).

e Consequently, if 2 and B are trivially graded, with % separable and
B og-unital, then

Ko(B) = KK(C,8), K;(B)= KK'(C,B),

and Ext(2,B)~! = KK(,B).

Note that Ext(2, B)~! is the group of invertible elements of Ext(%, B)
(recalled later below). If A is separable, the Busby invariant 7 : 2 — Q°(*8)
corresponding to an extension: 0 - B K — E — A — 0 defines an
invertible element of Ext(%, B) if and only if 7 lifts to a completely positive
contraction from A to M*(‘B).

If A is a separable, nuclear C*-algebra, then Ext(2,B) is a group for
any C*-algebra 8. Hence then Ext(2,B)~! = Ext(%, B).



(Associativity). Let 2,8, €, D be graded C*-algebras with 2 and B
separable and € g-unital. Then the following diagram commutes:

KK(%,8) x KK(B,¢) x KK(€,D) 2%, KK (%,%B) x KK(B,D)
Qx Xidl 1@'3
KK(®,¢) x KK(¢,D) LN KK(2,D),
with z @g (Y Q¢ 2) = (z s y) Q¢ 2.
(Functoriality). Let 2;,; = 2,B; = B,B2,D; = D, Dy be graded
C*-algebras, with 2,2, separable and ©;,®2 o-unital, and let f : %; —

Az, g : By — Bo, h : ®; — D9 be graded *-homomorphisms. Then the
following diagrams commute:

KK(%,D) x KK(D,8) 22 KK(3,B)
f‘xidl lf“
KK(%,D) x KK(D,%8) =2 KK(%;,B),
with f*(z ®p y) = f*(z) @y € KK(2;,B), and

KK(,D) x KK(®,81) —22 KK(,%B,)
idxg.l lg*
KK(®,D) x KK(D,B,) -2 KK(2,%,),

with g.(z ®p y) = = ®p g.(y) € KK(,B2), and

KK(,D,) x KK(D2,%8) 229, KK (®,D,) x KK(Ds,B)

idxh‘l 1@92
KK@,D1) x KK(®,,B) —21, KK(2,%),
with h.(z) @, y = z ®p, h*(y) € KK(2,*B), and

KK(%,D) —2 , KK®,%) x KK(2,D)
N Lo
KK(U,9) x KK(D,D) —22- KK(%,D),

with 4,42 unital canonical injections and [idg) gy z = z ®p [idp] = z €
KK, D).



o Let A, D, B be graded C*-algebras, with 2 separable and ® o-unital.
Let f: 2% — ® and g : ® — B be graded homomorphisms. Then
f*: KK(®,%8) » KK(4,B),
v £ (),
®p: KK(U,D)x KK(D,8) » KK(2,B),
(@, £,0),9) = ([f,v) = [fl®py = f*(v)

with the first f*(-) equal to [f] ®9 (-) = f*(-) the second, and

0 : KK(®,D) —» KK(,B)
I g*(a:),
®p: KK®,D) x KK(D,B) — KK(%,8),
(z,[(%B,9,0)]) = (z,[9]) =~ = ®9 [g] = g.(z),

with the first g.(-) equal to (-) ®p [g] = g«(-) the second.

(Ring structure). If A is a separable C*-algebra, then KK (2, ) is
a unital ring under the Kasparov intersection product, with the class [idg]
as the unit:

®u: KK(,2A) x KK(A,2A) - KK(A,2),
with =z ®g [idg[] = [idsz[] Ry = .

Example 5.3. KK(C,C) = Z as a ring, with the Kasparov product as
multiplication:

®c : KK(C,C) x KK(C,C) - KK(C,C),
([C,idc, 0)], [(C,idc, 0)]) = ([idC]’ idc]) — [idc] ®c [idc]
= [(C ®iqe C, idc 0 idc, 0))
= [(C,idc,0)] = [idc]-

If A is an (approximately finite dimensional) AF-algebra, that is an
inductive limit of finite dimensional C*-algebras, then

KK, %) = Hom(Ko(2), Ko(2))

the endomorphism ring of Ko(?). The isomorphism is deduced from the
UCT (below later) and that 2 is separable, belongs to the UCT class,
K; () =0, and Ko(2) is free. Ifa C*-algebra satisfies these four conditions,
then the isomorphism also holds.



(Generalized Kasparov product map). Let 2;, 2z, *B1, B2, and D
be graded C*-algebras, with 2; and 2 separable and 2; and D o-unital.
Then the (generalized) Kasparov (intersection) product:

KK(QI],%] ®®) X KK(@@Q[Q,%Q)
®®l
KK(% ® 22,8 ® B2)

is bilinear, contravariantly functorial in ; and 25 and covariantly functo-
rial in B; and B,.

Let z € KK(2;,8:199), y € KK(D ® U2,B5). Define z @5 y to be
the composite:

(IE ® [ld912]) ®F ([id‘B1] ® y) = T ('T) ®E T, (y)

in KK(2; @ 22,8 ® By), where E =B, @ D @ 2.
Note that

z ® [idg,] = o, (z) € KK (21 ® A2, B1 @D @A),
[ids,] ® vy = 78, (y) € KK(B1 @D ® A, B @ Bs).
Hence,.in fact we have
KK(2,,8; ®D) x KK(D ® 23,B3)
(raymmy) |
KK(2% @, B1 0D @A) x KK(B, @D @ Uy, B1 ® By)
®E=®‘BI®D®‘2|21

KK(2; ® 2,8 ® B2)

and ®p = ®@s,808%; © (T2, T8, )-
e If h: ®; — Dy is a homomorphism of o-unital C*-algebras, then we

have the following composites:
KK(2;,B1 ®9:)
(ids31®h).l
KK(;,B1 ® D2) x KK (D2 ® Ug, Bo)

®921

KK(2; ® 22,B; ® Bs),



and :
KK(D; @ Uz, B2)

l(h@idmz)‘
KK(Q[],%] ®©1) X KK(@] ®m2,%2)

o

KK(2; @ 23,81 ® Bs),
so that ®9, o (ids, ® h)« = @9, o (idg, ® h)* and
(id%1 ® h)*(l') 9, Yy =T Qp, (idle ® h)*(y)

forz € KK(Q(],%I ®®1) and y € KK(DQ ®Q12,%2).
e We have the following commuting composites:

KK(%,8,29) x KK(D ® 2, 83)

®nl

KK(2; ® 2s,B; ® By)

Tgll

KK(2% @2 @9Di,B; ® B, ® D)
for any ©1, and
KK(21,8: D) x KK(D ® Az, B2)

Tglngl

KK, ®91,B:1890®9:1) x KK(D®D; ® A2, B2 ® D))

1@9@91

KK ® % ®9D1,B, B, D))

for any o-unital ®;, so that

T, (T ®p y) = T, (T) ®peD, ™, (¥)

forz € KK(2;,B:®9) and y € KK(D ® Uy, By).



e We have the following composites:
KK(2;,8, 89, 09) X KK(D QD2 ® AUs, Bs)

T@legl
KK ®92,8: 803D 0D;) x KK(D1 3D @ D2 ® Az, D1 @ By)
l@@lss)@@z

KK @ D20 2,B; @ D ® Bs)

and
KK(2:,8109,09) X KK(D QD2 ® s, Bo)

®p 1
KK(2 @ Dy ® A2,B1 ® D1 ® B2),
so that ®p,gpeD, © (T0,, ™0,) = ®p and
9, (T) ®9,0080: ™0, (¥) =T @9 Y-
Note that by definition,

TQRpY = (7532®912 (JI)) D02 DB ®D; (7'91®91 (y))

(Kasparov product on graded KK). We can define the following
map: ' .
®Rp: KK (A, D) x KK/ (D,8) - KK (2,8),
where 4, §,i+ j (mod 2), and KK° = KK.
The map
Rp: KKY(U,D) x KK(D,8) — KK'(2,B)

with KK'(2,D) = KK(%,59) and KK*(,B) = KK(S%,B) is defined
by z®py = 7s5(r) ® y € KK(S%,B) or by z®p y = = ®sp 7s(y) €
KK(2, SB), where S = SC = Cy(R).
The map
®p: KK(%,9) x KK'(D,8) - KK'(,B)

with KK'(D,8) = KK(SD,%8) and KK'(2,8) = KK(2, SB) is defined
by t®py = t®p 75(y) € KK(U,5B) or 2 ®@py = 75(z) ®sp y €
KK(5%,B).
The map
®p: KK'(%,D) x KK'(D,8) - KK(,B)

with KK'(A, D) 2 KK(S%,D) and KK}(D,B) = KK(59,B) is defined
by z ®@py = 75(z) sp (y) € KK(U,B) or c®py = = ®p 715(y) €
KK(S%, SB).



6 KK-theory equivalence

An element z € KK (2, B) is a KK-equivalence if there is y € KK (*B,2)
such that z ®p y = [idg] € KK(2,2) and y ®g = = [idw] € KK (B,B).
C*-algebras 2 and B are KK-equivalent if there exists a KK-equivalence
in KK(%,B). Then we may denote its being by A ~k i B.

Lemma 6.1. The KK-theory equivalence for C*-algebras is an equivalence
relation.

Proof. The equivalence 2 ~ g 2. For it there is the class [idg] € KK (2, )
such that [idg] Qg [idgy] = [idg o idy] = [idy] € KK (A, 2A).

If A ~kx B, then B ~xx A. For it, it is clear by definition.

IfA ~kx B and B ~gx €, then A ~gx €. For it, since there are
¢ € KK@,B) and y € KK(B,?) with z Qg y = [idy] € KK(2,2)
and y Qg z = [idg] € KK(B,B), and there are s € KK(B,€) and t €
KK(€,B) with s®c¢t = [ids] € KK(B,%8) and t®gps = [id] € KK (€, €),
then 2 ®p s € KK(2,€) and t ®p y € KK (C,2) such that

(z®85)®c(t®sY) =73 ((s®ct)®sY)

=z @ ([ids] ®8 y) = z @ y = [ida] € KK (2, 2),
(t®zY) ®u (z ®p s) =t ((y ®u 7) OB 5)

=t Qp ([ids] @s s) =t ®p s = [id¢] € KK(C,€)

by associativity of Kasparov product. O

If € KK(2,B) is a KK-equivalence with y its inverse, then for any
C*-algebra ®, the following maps:

zQp (-): KK(B,9) - KK(A,9D), ()Quz:KK(®,A) — KK(D,B)
are isomorphisms. Indeed, if z ®3 f =2 ®5 g € KK (A, D), then

YQu (r®x f) = (yQuz) ®p f = [ids] ®s f = f,
YQu (r®sg) = (yQuz)®s 9= [ds]|®s9 =g,

so that f = g € KK(B,D). Hence the map z ®g () is injective. If
he KK(2,D), then y ®y h € KK(B,D). Therefore,

T Qp (Yy®uh) = (r®py) Qu h = [idy] ®y h = h,

which shows that the map z ®g (-) is surjective. The similar holds for
(") ®a z.



In particular, it follows that if % and 9B are o-unital and A ~gx B,
then K;(2A) = K;(B) (j = 0,1), which may be viewed as an equivalence
relation, because

K;(%) = KK7(C,9) = KKI(C,B) = K,('B).

Then we may say that KK-theory equivalence implies K-theory equivalence
for o-unital C*-algebras.

If z € KK(2,B) is a KK-equivalence with y its inverse, then there is a
ring-isomorphism from KK (2, ) to KK (B, B) by the map y ®g (-) ®g z.
Indeed, for f,g € KK(2, ), if y®q f Quz = y ®n g @z € KK(%B,B),
then

T®x (YQu f®uz) sy = (r O Y) Ou f Ou (z O Y)
= [idy] @y f Qg [idg] = f

and similarly, z ® (y ®9 9 ®% z) @8 y = 9. Hence the map is injective. If
h e KK(*8,B), then t @ h ®py € KK(A,2) and

YR (T8 h @B Y)®uz = (yuz) s h Qx (y O )
= [idg] ®p h @ [ids] = h,

which shows that the map is surjective.

Example 6.2. o Isomorphic C*-algebras are KK-equivalent.

Ifa: A — B and B: B — A are isomorphisms, then [a] @y [0] =
[Boa] =[idy] € KK(A,2) and [3] ®q [a] = [a o 8] = [idxs] € KK(B,B).

e Any C*-algebra 2, the n x n matrix algebra M, (2) over 2, and AQK
are all KK-equivalent. Stably isomorphic C*-algebras are KK-equivalent.

Indeed, KK (AU, M,(2%)) = KK(2,), KK(A,A®K) = KK(2,), and
KK(M,(2),A®K) = KK(,%) all contain KK-equivalences, because any
C*-algebra 2 is KK-equivalent to itself by the KK-class of its identity map
idg, i.e., [idy] € KK (2, ) with the inverse itself and [idg]Qg[idy] = [ida] €
KK(,). A C*-algebra 2 is stably isomorphic to B if A @ K = B ® K.

e Homotopy equivalent C*-algebras are KK-equivalent.

Indeed, two C*-algebras 2 and B are homotopy equivalent if there are
homomorphisms a : % — B and 3 : B — U such that S o a and a o (3 are
homotopic to idg and ideg respectively. Then for the corresponding classes
[a] € KK(2,B) and [§] € KK(B,2), we have

[6] ®a [a] = [a0 f] = [ids] and [o] @ [6] = [B0a] = [idg].

e Contractible C*-algebras are KK-equivalent to zero.



If A is a contractible C*-algebra, then there are zero homomorphisms
from 2 to {0} and from {0} to 2 and their compositions are zero homomor-
phisms that are homotopic to idg : 24 — 2 and the zero map 0 : {0} —{ 0},
respectively, by contractibility and triviality.

e If a compact Hausdorff space X is contractible to a point, then C(X)
is KK-equivalent to C.

Indeed, there are canonical unital *-homomorphismsa =1: C(X) - C
and 8 =1:C — C(X) and their compositions are the unit homomorphisms
that are homotopic to idc(x) and idc by contractibity of X and triviality,
respectively.

o If A and B are KK-equivalent via x € KK (2,B), then for any C*-
algebra ©, we have A ® D and B ® ® KK-equivalent via 9.

Check it out. Since 7p(z) € KK(AQRD,BR®D) and m9(y) € KK(B®
D,A® D), then we have

Tp(z) @B ™(Y) = T0( @ ¥) = To([ida])
= [idago] € KK ®D,2A8D),

T(y) ®ugp To(z) = Tp(y O z) = Tp([idm])
= [idggp] € KK(B®D,BR®D)

where the following diagrams commute:

KK(%,B) x KK(B,2) 2=, KK(2,9)
™ XTDJ, ' lT@
KK@®D,B09)x KK(BRD,A0D) —222, KK(A®D,A®D),

and
KK(B,%) x KK(2,%8) B2, KK(B,B)

™ XTgl l"':b

KK(B®D,%3D)x KKA®D,BRD) —222, KK(B®D,B®D).

eIf0 - A D -5 B — 0 is a split short exact sequence of C*-
algebras with s : 8 — D its section, then ® is KK-equivalent to the direct
sum ADB. Then we may write the split extension ® = AXB ~g g ADB.

Show it out. The element

[]®[s] € KK(®,9)® KK(B,D) ~ KK(2 & %B,D)



is a KK-equivalence with inverse
Ts® g € KK(D,%)® KK(D,B) = KK(D,4 & B),
where 75 is the splitting morphism. Indeed,

(] @ [s]) ®o (s @ [q])

= ([i] @2 75) @ ([1] ® [g]) @ ([s] @D 75) @ ([s] @ [g])

= (i*(ms)) @ ([g 0 i]) @ ([s] ®p 75) @ (g 0 8])

= [ide] @ [0] ® [0] ® [ids] = [ida ® id] € KK(A ® B, 2 & B),

and

(s @ [q]) ®aee ([i] © [s])

= (75 Qags [i]) © (7s ues []) © ([7] ®ues [i]) @ ([7) ®ues [s])
=[ioms]|D[soms|B[iog]d[sog]

=[soms]®[0] & [0] D [soq] = [idp] € KK(D,D).

e For T the one-torus or circle, there is 0 — Cp(R) - C(T) = C —0a
split extension, so that C(T) = Cyo(R) x C ~xx Co(R) & C.

For S™ the n-dimensional sphere, we have 0 — Co(R?) — C(S™") —
C — 0 a split extension, and hence C(S™) = Co(R™) x C ~xx C® Co(R™).

e If 2 and B are AF algebras, then 2 and B are KK-equivalent if and
only their dimension groups are isomorphic as groups, ignoring the order
structure.

Check it out. The UCT for KK-theory implies that

KK(%,%8) = Hom(Ko(%), Ko(B))

because the Ko-groups of 2 and B, written as inductive limits of finite
direct sums of Z as dimension groups, are torsion free, and their K;-groups
are zero. It follows that if 2 and B are KK-equivalent via x € KK (2, B)
with inverse y € KK (B,2), then £ Qg y = [idg] and y ®y = = [idg], so
that the corresponding composites

®py o @z : Ko(2A) = Ko(C,2) 222, Ko(C,B) = Ko(B) 2% Ko(2),
®az 0 ®my : Ko(B) = Ko(C,B) 2% Ko(C, ) = Ko(2) = Ko(®)

are idg, () and idg,(m), respectively. Hence ®gz and ®qy as maps are
injective repectively, so that Ko(2) = Ky(B) as a group. The converse
also holds via the UCT (given below).



e The Toeplitz algebra ¥ is KK-equivalent to C.

Indeed, ¥ is generated by the unilateral shift U on a Hilbert space with
an orthogonal basis such as Hc¢ 2 [2(Z) of all square summable sequences
of C on Z. Then 1 — UU™* is a one-dimensional projection, and ¥ contains
K as an essential ideal, i.e., which has non-zero intersection with any other
non-zero closed ideal, and the quotient T/K = C(S!) the C*-algebra of
all continous functions on the unit circle S, so that 0 - K — ¥ 4,
C(S') — 0 is exact, and the sequence dose not split, where the quotient
map ¢ sends U to the coordinate unitary function u(z) = z € S'. Let
evioq : ¥ — C be the composition of the quotient map ¢ with the evaluation
map ev; at 1'€ S'. Let j : C — T be the unital embedding. Then
[evi oq] € KK (%,C) is a KK-equivalence with inverse [j] € KK (C,¥). For
this, (evy 0 q) o j = idc. Hence [j] ®< [ev1 0 ¢] = [idc] € KK (C,C). Also,
[evi 0 ] ®c [7] = [j o (ev1 0 q)] = [idg] € KK(%,%). For the last equality,
a homotopy between the maps may be given by the maps ¢;(u) = u® for
te[0,1].

For B any C*-algebra, B and B ® T are KK-equivalent. Indeed, since
¥ and C are KK-equivalent, then T®*B and C® B = B are KK-equivalent
via the tensor-inducing homomorphism 7.

o For 2Ax5B an amalgamated free product (or amalgam) of C*-algebras
2 and B over D, if there are retractions r;, ro of 2 and B onto D, then
AxpB is KK-equivalent to the pullback C*-algebra P = A®5B = {(a,d) €
ADB|11(a) =72(b)}. '

In fact, [k] € KK (2 *9 B, P) is a KK-equivalence with inverse [f] — [g],
where k : 2 xp B — P is defined by k(a) = (a,71(a)) and k(b) = (r2(b),d)
foraeUand b e B, g =ior: P— AxpB with r : AD5HB — D defined by
r(a,b) = r(a) = r(b) and with i : © — A x5 B the canonical inclusion map
(corrected from [1]), and f : P — My(2 xp *B) is defined by f(a,b) =a®b
the diagonal sum. It follows that (1® k) o f : P — My(P) sends (a,b) to
(a,r1(a)) ® (r2(b), b), and this homomorphism is homotopic to idp & (ko g),
and also the composition f ok is homotopic to idgu, B ® (90 k). See [3] for
more details for this. Thus, [(1®k)o f] = [idp®(kog)] € KK (P, Ma(P)) =
KK (P, P) as an identification. Also, [fok] = [idou, 8® (90k)] € KK (A*p
B), Ma(A xp B)) = KK(A *p B, AU xp B). Therefore,

(If] = [9]) ®2o B (k] = [f] ®rap ) [1 ® k] — [9] ®a1p 5 [K]
=[1®k)o f] - [kog] =[idp] € KK(P, P),
(k1 ®p ([f] - [9]) = K] ®p [f] - [K] ®P [9]
= [f o k] — [g o k] = [idaup ],

where those identifications are used implicitly.



In particular, let F> be the free group of two generators and C*(F»)
the full group C*-algebra of Fy. Then C*(Fy) = C(T) ¢ C(T) is KK-
equivalent to C(T) @&c C(T) = C(8) with 8 the figure eight, homeomorphic
to the one-point compactification of the disjoint union R UR, so that there
is the following short exact sequence:

0 — Co(R) ® Co(R) — C(8) = C(T) &c C(T) - C — 0.

More generally, let F,, be the free group of n generators. Then C*(F,) =
(---(C(T)*c C(T)) - - - ) ¢ C(T) the unital successive amalgam by C is KK-
equivalent to the successive pullback ®¢C(T) = (--- (C(T)®cC(T))--- )¢
C(T) = C((LU"R)*) with (U"R)* the one-point compactification of the
disjoint union U"R, homeomorphic to the Hawaian ring H, of (disjoint) n
circles joined at a point, with Hs = 8 the eight, so that

0— &"Co(R) — C(H,) Z2a¢C(T) - C — 0.
It also follows that

Ko(C(Hn)) = [@"Ko(Co(R))] & Ko(C) = [@"0] @ Z = Z,
K\(C(Hy)) = [@"K1(Co(R))] @ K1 (C) = [@"Z] 0 = Z".

Similarly, one can define the Hawaian ring H, of countably inifinitely many
(disjoint) circles joined at a point, so that

0 — ®*°CH(R) — C(Hw) = &FC(T) — C — 0.
It also follows that

Ko(C(Hwo)) = [®*° Ko(Co(R))] & Ko(C) = [670] @ Z = Z,
K1(C(Hw)) = [@®K1(Co(R))] @ K1(C) = [@°Z]) 0 = Z°.
Furthermore, let F, the free group of countably infinitely many generators.

Then the group C*-algebra C*(F*°) is isomorphic to *®C(T) the unital free
product of countably infinite copies of C(T) and has K-theory groups

Ko(C*(Foo)) = lim Ko(C*(Fn)) 2 imZ = Z and
K (C*(Feo)) 2 lim Ko(C*(Fp)) = lim 2" = 2

and is KK-equivalent to C(Hy). In fact, the KK-equivalence should follow

from the same argument as for C*(F3) ~xx C(T) ®¢c C(T), without using
the UCT (below soon later).

— 60 —



e Let 2 be a C*-algebra and let g = A+ the full free product. Then
the identity maps idg on 2 as free product factors induce the quotient map
q(idg, idg) : g — A, so that the following is exact:

0= =AU =A+xA—-A -0,

where 2, is the kernel of ¢ = g(idg,idg). Then, similarly, define the quo-
tient homomorphisms 79 = ¢(idg,0),m = ¢(0,idgy) : Ao — 2 and its
restrictions mp,m : Ay — A. If follows that the KK-element [mo & m] €
KK(24,2) is a KK-equivalence with inverse given below, where the KK-
element is corrected from [1], and mo @ m; : Uq — AP Y, but the image can
be identified with 2.

Indeed, let A+ = A; A3 and i; : A = A; — Ag the canonical inclusion
map. For z € 2, define s(z) = i1(z) — iz(z) € . Then g(s(z)) =0 € ¥,
and hence s(z) € ;. Then 2, is the ideal of 2g generated by s(z) for
z € A, but the map s is not a homomorphism. Note that m(s(z)) = z for
z € A. Also, as for m; : ¢(0,idy) : Ao — A, m(s(x)) = —x for z € A.
Define the maps k =19 @ m : g > ASAand f =i, i : ADA —
M>(2g). Then [k] € KK(g,2 & ) is a KK-equivalence with inverse
[f] € KK (2 & 2,2g), as shown above (with [g] = [0]), and hence, 2g is
KK-equivalent to 2 & 2. Anyhow, one gets

[0 ® m1] @ [f] = [idng] € KK(Q(Q,Q[Q),
[f] ®ag [mo ® m1] = [idaga] € KK(ASAADA).

By considering the restriction of those maps to 2, and D(2 & ) the cor-
responding diagonal part of 2 @ 2, it is obtained that

[(mo @ ™)1, ] ®2 [fD(0m)] = [ida,] € KK (g, 2y),
[f Do) B, (o ® m1)a,] = [idp@ea)] € KK(D(@ & 2), D(AS A))
= [idm] € KK(U,2)
(corrected from [1]).

A C*-algebra 2 is said to be K-contractible if KK (2,2) = 0. This
implies that KK (,B) = KK(*B,2) = 0 for any C*-algebra ‘B.
Indeed, the classs [idy) € KK (2, 2) is a KK-equivalence. Because

[idgl] Q9 [idm] = [idm o idm] = [idm] (S KK(QI, Ql)
It then follows that the following map is an isomorphism and is zero:
[ide] ®2 (+) : KK(2,B) — KK(,B)

by [idg) = 0. Thus, KK (,®B) = 0. Similarly, KK(8,2) = 0 by that the
map (-) Qg [idy] : KK (B,2) —» KK(B,2) is an isomorphism and is zero.



Example 6.3. e Any contractible C*-algebra is K-contractible. In partic-
ular, the cone CB = Cy([0,1),B) = Co([0,1)) ® B for any C*-algebra B
is K-contractible. :

Indeed, the identity map idg : 2 — 2 is homotopic to the zero map
on 2, so that [idg) = [0] € KK(A,A). Then the following map is an
isomorphism and is zero:

ide] ®a () : KK (Y, %) — KK(2,2).

It follows that KK (2,2) = 0. By the way, the cone C*B is contractible,
and thus is K-contractible.

e For 0 —» 3 — 2% -4 2/ — 0 a short exact sequence of (graded) C*-
algebras, suppose that the following six-term exact sequences (given below)
hold for a (graded) C*-algebra ®:

KK(®,3) —“> KK®,%) —%*5 KK(®,%/3)

8‘[ 18
KK\(®D,9/7) «>— KK'(®,%) «*— KKD,9)

and

. *

KK(3,D) ——— KK@®,D) «X— KK(®/3,D)

0| T
KK'(%/3,9) -~ KK'(%,9) —— KK(3,D).

If the class corresponding to the quotient map ¢ is a KK-equivalence, so

that [¢] € KK(2,%/7) is a KK-equivalence, then J is K-contractible.

In particular, for the short exact sequence: 0 — T — T eI C - 0,
with ¥ the Toeplitz algebra and ¥ the kernel of ev; oq, generated by U —1,
the closed ideal Ty and B ® ¥, for any C*-algebra B are K-contractible.

As a proof, it follows that the maps ¢, on KK and KK! in the first
diagram above are isomorphisms, so that the maps i, and 0 on the left are
zero. Hence KK (®,J) = 0 for any C*-algebra ©. This is equivalent to
that J is K-contractible.

Similarly, the maps ¢* on KK and K K! in the second are isomorphisms,
so that the maps ¢* and O on the left are zero. Hence KK (J3,D) = 0 for
any C*-algebra ®. This is equivalent to that J is K-contractible.

Since the short exact sequence for ¥ as an extension of C by ¥ is
split, so that it is semi-split, i.e., there is a completely positive, norm-
decreasing, grading preserving, cross section for q. Therefore, the six-term



exact sequences for KK-theory groups hold. As well,

idg ®(ev10q)
_—

0-BRTHY—-BRT BRC—-0

is split.
Since
KK(C,,SC)= KK(C,SC®C;) = KKI((C SC) =2 Ext(C,SC)=Z

the generating class z € KK*(C,SC) = KK(C,C) is represented by the
cone CC = Cy([0, 1]) as the extension of C by the suspension SC = Cy(R):

0—-SC—-CC—-C—0.

We may alternatively interpret the class = as the element of K;(SC) corre-
sponding to the unitary u(t) = e?™* in SC* = C(T), restricted to 0 < ¢ < 1.
We may call z the Bott class.
The generating class y € KK!(SC,C) = Ext(SC,C) = Ext(SC) =
Z with KK'(SC,C) = KK!(SC,K) @ KK(C,C) is represented by the
extension
0-K->C*"(V-1)-SC=Cy(R)=S -0

where V is a coisometry of Fredholm index one, e.g., the adjoint U* of the
unilateral shift U, and where the C*-algebra C*(V') generated by V is the
Toeplitz algebra ¥ and the C*-algebra C*(V — 1) generated by V — 1 is a
C*-subalgebra of ¥ and the quotient map ¢ : ¥ — C(T) sends V — 1 to
u—1¢€ C(T), with the C*-algebra C*(u—1) generated by u— 1, isomorphic
to Co(R).

It follows that z € KK(C;, SC) is a KK-equivalence with inverse y €
KK(SC,C;) = KK!(SC,C). We may call y the inverse Bott class.

Indeed, Ext(C, SC) = Ext(SC, C) = Z, and we need to check that

zQgsc y = [idc] € KK(C,,C;) 2 KK(C,C) = Z
YQc, T = [idSC] € KK(S(C,S(C) o KK(C, C)g 7

with 2 ®scy = ®c y and y ®¢, = = y Q¢ z. Note that there is a pairing
(-,-) between Ext() = Ext(,C) = KK'(2,C) and K; (%) = KK!(C,2)
for any C*-algebra 2 as

([7], [u]) = index(7~(u)) € Z,

for [7] € Ext(2) and [u] € K;(2), where 7 : 4 — B/K = @Q the Busby
invariant, u is a unitary in M, (2) for some n, and 7~ : Mp(™A) — Mp(Q) =



Q the canonical extension of 7, and where if 2 is non-unital, 2 is replaced
by the unitization 2*. Thus each [r] € Ext(2) defines a homomorphism
v([7]) from K;(2) to Z by v([7])([u]) = ([7], [v]) € Z. Also, for B a trivially
graded o-unital C*-algebra, we have

z ®g y = index(7™(e*™%)) = ([7], [*™*]) € Z,

forz € KK'(C,) = K1(8) and y € KK'(*B,C) = Ext(‘B), where y = [7]
with 7 : B — @ = B/K the Busby invariant and z € M (*B)4 with g(z) =

" a projection of Q(B) = M(B)/B with [p] = z.

(Bott Periodicity). For any C*-algebras 2 and 9B, we have

KK (,%8) = KK(2,5B) = KK(S%,B)
and

KK(2,%8) = KK' (2, S%8) = KK'(S%,8)
~ KK(S*,B) ~ KK (2, 5%8) = K(S%, SB).

Proof. Indeed, the KK-equivalence z € KK(C;,SC) with inverse y €
KK(SC,C;) induces the KK-equivalence mg(z) € KK (C;,®B, SB) with
inverse T5(y) € KK (S8, C; ®B). It then follows by the Kasparov product
®c,@8Ts(z) that

KK'(2,%8) = KK(2,C; ® 8) = KK(2, SB)
and also by the Kasparov product ® ss7x(y) that
K%, 58) = KK(%,C, @ B) = KK'(Y,B).

Similarly, we have the KK-equivalence m9(z) € KK (C;, ®%, SU) with in-
verse Ty(y) € KK(SU,C; ® A). It then follows that by the formal Bott
periodicity and the Kasparov product 7g(y)®c,eu that

KK'(,8)=KK(2,B8R3C;) 2 KK(A® C;,B)
~ KK(S2,8)

and also by the Kasparov product 7o(z)®g9 that
KK(S%,8) = KK(C; ®2,8) =~ KK(%,8®C;) = KK'(2,B).

Therefore, it is deduced that the commutativity for S holds: K K (2, SB) =
KK(S%,8) = KK'(2,B), which may be viewed as the definition of K K.



Moreover, it follows by the formal Bott periodicity and the Kasparov
product Ty (y)®c,eu that

KK'(%,58%8) = KK(2,C, ® $8B) = KK(A® C;, SB)
~ KK(S,SB)

and also by the Kasparov product 79(z)®gg that
KK(S%,58) =~ KK(C; 9%, 58B) =~ KK'(, SB).
By the commutativity for S,
KK(S2,5%) = KK(S%, 93) and KK(S%,S5%)= KK(,5*B)
and as well
KKY(2,88) = KK;(%,SB ®C,) = KK, (5%,8 ® C;) = KK'(S%,B).

It also follows by the Kasparov product ®gses7s(y) and the formal Bott
periodicity that

KK (S%,8) = KK(S%,8B®C;) 2 KK(A® Cy,SB)
= KK(Q[@Cl,%®C1)
= KK(,B).

Since my(y) € KK(SAU,A® Cy) =2 KK(S2A® Cy,2), we also have
KK(2,%8) = KK(S2 ® C;,B) = KK (5%,8).
|

Example 6.4. For any C*-algebra 2 given, 2 and S are KK-equivalent.
In particular, C and Cy(R?) are KK-equivalent.
Because, the Bott periodicity implies that

KK(2,5%) = KK(%,2) and KK(S?%,2) = KK(%,92),

both of which contain KK-equivalences. Indeed, it follows that the element
[idy) € KK(U,2A) is viewed as in both KK (2, 5?U) and KK (5%, 2), so
that

[ide] ®g [idey]) = [idgy o idgy] = [idsy]

in KK(2,2) = KK(S?2, S%2) both.



(Thom isomorphism in KK-theory). Let 2 x, R be the crossed
product C*-algebra of a separable trivially graded C*-algebra 2 by an ac-
tion o of R of reals on 2. Then 2 x, R is KK-equivalent to S2.

It follows that for any D,

KK@ xaRD)  22®0ar0 o pron p) = KKI(2,D),
KKY(®,9) = KK(D,Sa) )®sate, KK(®,%xaR),

with £, € KK (S, %o R) = KK(A, A x4 R) the KK-equivalence, called
the Thom class for 2 and «, corresponding to the Thom module (2 x,
R, ¢, Fy) for o, a Kasparov (2,2 x4 R)-module, which is identified with
a Kasparov (2, (2 x4 R) ® C;)-module, such that ¢ : A — M (2 x, R) is
a canonical homomorphism and Fy € M(2 x4 R) is the Thom operator
on A X, R, corresponding to a continuous, complex-valued function f on
R with lim;,0 f(t) =1 and lim;—,_ f(t) = —1.

Example 6.5. o As a corollary, let G be a simply connected, solvable Lie
group and U %, G be the crossed product of a separable, trivially graded
C*-algebra 2 by an action of G on . Then A %, G is KK-equivalent to 2
if dim G is even, and to S if dim G is odd.

Since A, G is obtained as a successive crossed product Axq, R« -Xq,,
R of & by actions a; of R with 1 < j < dimG, we have 2 x, G KK-
equivalent to SIMEGY,

It follows that for any D,

KK(,®) ifdimG even,
KK'(%,D) if dim G odd;

KK(®,2) ifdimG even,
KK'(D,?) if dimG odd.

KK® x G,D) = {
KK(®,% x G) {

e Let 2 = C and « = id the trivial action. Then C xjg R = Cp(R).
Then the Thom class tjq = z € KK'(C, SC) the Bott class.

o Let A = Co(R) and id" the dual action of R* = R on Co(R) by trans-
lation. Then Co(R) xjgr R = K by Takai duality. The Thom class tjga €
KK (Cy(R),K) corresponds to the inverse Bott class y € KK(SC,C;) =
KK!(SC,C).

As a key part of the proof for the Thom isomorphism in KK-theory, let



o be the dual action of R on 2 x4 R. Then the Kasparov product:
KK'(A,2% xqR) x KKY (A xg R, (A %o R) 348 R)
.
KK (A XxaR) xrn R) 2 KK(AAQK) = KK(2A,2),
by Takai duality, and that t, QxR tar = [ide] € KK (2, ), with
KK %A %o R, (A xgR) Xqr R) = KK (2 %o R, ) = KK (A o R, S2).

If 2 is a (graded) C*-algebra, the cone C2 of 2 is the {(graded) C*-
algebra A ® CC = Cy([0,1),2) (with the obvious grading).

If op: U — B is a (graded) *-homomorphism of C*-algebras, then the
mapping cone C, of ¢ is the (graded) C*-subalgebra of A & C*B:

Cp ={(z, f) e 4® CB|p(z) = f(0)}-

There is a standard short exact sequences of C*-algebras for C,:

0—88 —— C, —2> A0,

where S*B is identified with Cp((0,1),%B) = Cy((0,1))®B and i(f) = (0, f)
for f € SB with ¢(0) =0 = f(0), and p(z, f) =z € A.

The mapping cone of ¢ : 2 — B is an important example of the pull-
backs of C*-algebras, so as

Co=%0pCB —2— CB

m| e

A L)%,

where p; = p and ps the projection defined by pa(z, f) = f and evp the
evaluation at zero defined by evo(f) = f(0).

The mapping cone construction is natural in % and B in the sense that
if we have a commutative diagram:

A —2— »;

7| E

2 —2 B,



then there is a map w : C, — Cy making the following diagram commuta-
tive:

0 — 8B, —— C, —2— 2, 0
s b
0 —— SB, — C, —2— Ay » 0.

Example 6.6. o Ciy, = C2. Because,
Cidg = {(=, f) e A @ CU|idg(z) = z = f(0)}

and

0—SA —— Cygy —2— A0,

and the isomorphism is given by the map (f(0), f) — f € C2.
o Cs, =2 S(C,) for any ¢ : % — B. Indeed, with Sy : SA — SB,

Csyp = {(z, f) € SA® C(5B) | Sp(z) = f(0)}.

For (z,f) € Csp, if t =y@zfory € SCand z € A and f = f, ® fo for
fi€ CCand fo € SB with fo = f3®0b for f3 € S and b € *B, then

Sp(z) = Sp(y®2) =y ®p(2) = f(0) = /1(0) ® fo = fs ® f1(0)b € SB.
Therefore, the following map defined as:
(2,f)=Wy®z N f1eb) ~yfs®(z,1®b) € S(Cyp)
induces the isomorphism.

(Puppe sequences). Let 2,8, D be graded C*-algebras and ¢ : A —
B a graded *-homomorphism. Then the following sequences are exact:

KK(®,S8) —— KK(®,C,) -2~ KK(D,%)

se.| [#-

KK(®,S5%) KK(D,B)

and
KK(SB,D) ——— KK(C,,®) <=— KK(U,D)

s T

KK(S%,D) KK(8,D).



Proof. Omitted, regrettably. O

A short exact sequence

07 ——a —2 5 %A/3-0

of graded C*-algebras is said to be semi-split if there is a completely
positive, norm-decreasing, grading-preserving cross section for g, and then
J is called a semi-split ideal of .

Example 6.7. e Semi-split ideals are exactly the ideals corresponding to
invertible extensions. '
o If p : A — B is a graded homomorphism, then the mapping cone
sequence:
0—-S8B—-Cp-%—0

is semi-split. A cross section for p is given by the map defined by ¥(a) =
(a,(1 = t)p(a)) for a € A and (1 — t)p(a) € CB.

In fact, since 9 is a *-homomorphism, 1 is norm-decreasing and also
that the entry-wise induced map ¥™ : M, (™) — M,(*B) is a *-homomorphism
and hence, is positive, so that 9 is completely positive.

As a theorem, if 2 is a separable C*-algebra, then an extension 7 : A —
Q*(B) = M(B ®K)/B ® K defines an invertible element of Ext(U,B) if
and only if T lifts to a completely positive contraction from A to M*(B) =
M(B ® K). If A is unital and 7 is unital, then 7 defines an invertible
element of Ext¥(AU,B) if and only if T lifts to a (non necessarily unital)
completely positive contraction from 2 to M*(B). (Such an extension is
called semi-split.) v

As for the proof of this theorem, if 7 is an invertible extension, then
there is an extension 77! such that 7 @ 77! is trivial. Then 7@ 77! : 2% —
M,(Q*(*B)) lifts to a *~-homomorphism

_ [Prn1 p12) . s
v= <8021 9022) %= M (M (B))

where ¢1; and also g9 being the comprerssions of a *-homomorphism

must be completely positive contractions from 2 to M*(), mo ¢y =

7. The converse is true by the generalized Stinespring Theorem: if 2

is separable, and if T has a completely positive contractive lifting @11 to

M?3(%B), then 11 can be dilated to a homomorphism

= (i)} : U — Ma(M°(%B)),



which may be unital if A is unital, and 7o p1; = 7 is a homomorphism, so
that m o o2 is also a homomorphism from A to Q*(*B) and is an inverse
for T.

(Basics in Extension theory). Recall now that for an extension E
of A by B:

0 , 98— EF —1 2 — 0
l| gl K
0 B —— M(B) —— M(B)/% =Q(B) — 0

with the canonical maps, the Busby invariants 7 : A = E/B — Q(B) is
defined and deduced from the composite 7 o ¢ in the diagram.

The Busby invariants 7 is injective if and only if B is essential in E.

An extension E of 2 by B is trivial if the Busby invariant 7 : 2 — Q(*B)
lifts to a *-homomorphism from 2 to M (*B). This is the case where the
short exact sequence splits, with a section s : 2 — E.

In particular, F is the direct sum 2A®B if and only if 7 = 0 the zero map.
If B is unital, this is the only extension since B = M(B) and Q(B) = 0.
If B is non-unital, then B # M (B) quite large.

Two extensions E; of A by B (j = 1, 2) are.strongly (unitary) equiv-
alent if there is a unitary u € M(B) such that 7(a) = 7(u)n (a)7(u)* for
alla € A

Two extensions E; of A by B (j = 1,2) are weakly (unitary) equiv-
alent if there is a unitary v € Q(*B) such that m(a) = vri(a)v* for all
a €.

Two extensions E; of 2 by B (j = 1,2) are homotopy equivalent if
the Busby homomorphisms 7; : 2 — Q(8) are homotopic.

e The strong equivalence for extensions implies the weak equivalence.
If the unitary group of M(*B) is connected, in particular, if B is a o-unital,
stable C*-algebra, then the strong equivalence for extensions implies the
homotopy equivalence.

Let Ext(2,B) = Ext;(2,B) denote the set of strong equivalence
classes of extensions of 2 by B, which is a commutative semigroup.

Let Ext,,(2,%B) and Ext,(2,B) denote the sets of weak and homo-
topy equivalence classes of extensions of 2 by ‘B, respectively, which are
quotients of Ext(2, B).

Let Ext(2,B) = Exts(,B) denote the quotient of Ext(2,B) by the
subsemigroup of trivial extensions. Similarly, Ext,, (2, %) and Ext, (2, B)
are defined respectively as the quotients of Ext,, (2, B) and Ext, (2, B) by
the subsemigroup of trivial extensions.



For x = s,w, h, Ext (2, B) is defined as the quotient of the subsemi-
group of essential extensions by the subsemigroup of essential trivial exten-
sions. If 2 is unital, Ext} (2, B) is defined as the quotient of the subsemi-
group of unital extensions by that of strongly unital trivial extensions.

Example 6.8. ¢ When 2 = C and B = Cy((0,1)) = Co(R), the direct sum
Co((0,1))®C and C(S?!) viewed as extensions of 2 by B are trivial. There
are two other extensions Cp([0,1)) = CC and Co((0,1]) = CC. Moreover,
the associated diagram becomes:

0 — CR) — E —— C ——0

I| ! I

0 —— SC —— M(SC) —— Q(SC) —— 0

and M(Cp(R)) = C(BR), where BR is the Stone-Cech compactification of
R.
o All extensions of M, (C) by K are trivial. In this case, the diagram is:

0 K , E » M,(C) —— 0
I I
0 » K » B » B/K —— 0.

(We have no time to review and consider further, until the last minute.)

Example 6.9. e Let 2 be a separable (graded) C*-algebra, J a semi-
split (graded) ideal of 2, and g : A — 2/J the quotient map. Let Cy be
the mapping cone for ¢ and e : 3 — C, defined by e(z) = (z,0). Then
le] € KK (3,C,) is a KK-equivalence.

Note that C; = A @g/3 C(/J) as a pull-back C*-algebra, with (x,0)
for z € A and 0 € C(/7T), so that g(z) =0 =0(0) € A/7J.

The inverse of [e] is the element u of KK(Cy,J) = KK'(Cy, SJ) repre-
sented by the extension:

0— ST —CUA —"— Cy=ADg3C(A/T) — 0,

where 7(f ® a) = (f(0)a, f ® g(a)) for f®a € CUA = Cp([0,1)) ® Y,
so that ¢g(f(0)a) = f(0)g(a) = [f ® ¢(a)](0). More specifically, if v €
KK'(C,,587) = KK(C,,7J) is the element represented by this extension,
then u = v®j3([id5]®cy) (corrected), wherey € KK!(SC,C) = KK(SC, SC),
and

®c: KK(3,3®C) x KK(C ® SC, SC) — KK(S3,53) = KK(3,7),

([id3), y) = [ids] ®¢ v,



and

®3: KK(Cy,7) x KK(3,3) = KK(Cqy,7),
(v, [id3] ®c y) — v ®5 ([ids] ®¢ y) = u.

e We have [e] ®c, u = e*(u) = [idy] € KK (J,7).
It follows from the following diagram:

KKY(3,87) 3 ¢e*(v): 0 > 7 » 03 =2 3 > 0
] | s -
KKY(Cy,8F)2v:0 » 87 cA —— C, 0

that [e] ®c, v = e*(v) = [id3] ®¢ =, where z € KK*(C, SC) is represented
by the extension:
2:0-SC—-CC—-C—-0.

Note that
®c:KK(3,79C) x KK(C® SC,SC) — KK(S3,5873) = KK'(3,87),
([id5], z) > [idg] ®c =,
Thus, [e] ®c, v = e*(u) = [idg] € KK (3,7). Because
€] ®c, u = €] ®c, {v®37([ids] ®c v)}
= ([e] ®c, v) ®3 ([id3] ®c ¥)
= ([ids] ®c z) ®3 ([id3] ®c ¥)
= [idg] ®¢ (z ®3 [id3]) ®c ¥

= [idy) ®c (z ®c ¥)
= [idj] ®c [idc] = [id3].

(Six-term exact sequence). Let

07 —— 2 25 %A/3-0

be a semi-split short exact sequence of o-unital graded C*-algebras. Then,
for any separable graded C*-algebra D, the following sequence is exact:

KK®,3) —“> KK®,%) —% KK(®,/3)

s |s

KK'(®,2/3) <X — KK!(D,9) —=— KK!(D,7).



If 2 is separable, then for any o-unital D, the following sequences is exact:

KK(3,D) «——— KK®,D) «L— KK(®/3,D)

l& TJ
KK\ (®/3,9) -2~ KK'(%,9) —— KK(3,D).

The maps § in the first and second diagrams are given by the Kasparov
product from the right or left by the class §; € KK*(2/3,J) corresponding
to the extension. Under the identification of K K1(2/7,J) with KK (S(2/3,7),
04 corresponds to j*(u), where j is the natural inclusion map of S(?/7) into
Cq=A®y/3 C(A/T) and u € KK(C,,T) is the inverse of e : T — C.

Note that

(6(-),8e)=(-)®a /304

KK'(®,2/3) x KK \@/I,7) KK(D,7),

and similarly,
6(-),0e)=( é

KK(®,9/3) x KKY(21/1,3) 07080 prn (g gy,
and also,

KK'(®/3,7) x KK(3,D) Lef=0®0) g 19y /5 5,
and similarly,

KKY(%1/3,3) x KK1(3,D) LX=0®0) g p(o1/3,9).

Since j : S(4/3) — Cg, we have
j*: KK(C,,3) — KK(S(2/3),7) = KK'(%/3,7),

with 7*(u) = é.
Furthermore, the Puppe sequences for the extension:

03 —— 9 —2 5 9/350

become that the following sequences are exact:

KK(®,S(2/3) = KK'\(,%/3) -~ KK(®,C,) —2— KK(®,9)

5] J=

KK(®,5%) = KK'(D,%) | KK(D,2/3)



and
KK(S(2/3),D) = KK (%/3,9) «X— KK(C,,®) «Z— KK(%,9)
o I
K(S%, D)~ KK'(A,D) KK(2/3,9).
In addition, the KK-equivalence [e] € K K (J, Cy) implies the isomorphisms:
KK(®,3) 2 KK(D,C,) and KK(C, D)= KK(3,D).

As well, similarly, we have the following Puppe exact sequences:

K(SD,5(2/9)) = KK(D,%/3) —~— KK(SD,C,) —2— KK(SD,%)
Sq.T lq.
K(SD,5%) = KK(D,9) KK(SD,%/7)
and
KK(S(2/3),89) = KK(%/3,D) ——— KK(C,,5D) «2— KK(2,5D)
o] Ir
KK(S%,59) = KK(%,D) KK(2/3,5D),
with
KKY(®,7) 2 KK(59,7) ¥ KK(SD,C,) and
KK(C,, 8D) = KK(3,89) = KK'(3,D).

The proof for the six-term exact sequence is done.

(Pimsner-Voiculescu exact sequence for KK-theory). Let 2 be
a trivially graded o-unital C*-algebra, and 2 x4 Z the crossed product C*-
algebra of 2, with o an action of Z of integers on 2. Then, if D is any
separable graded C*-algebra, then the following sequence is exact:

KK@®,2) 20 prma) —— KK®,%%,7Z)

I !

KK\(D,%%a2) —— KK'®2) S99 gl ).



If A is separable, then for any o-unital graded C*-algebra ®©, the following
sequence is exact:

KK@®,D) <827 ppe®)  ——  KK(@ %, Z,D)

KK'@%a2,D) —— KK\(,0) 2079 gl D).

Indeed, there is the following short exact sequence:

05 S@AR®K) —— (AxaZ) xgr R —2— ARK — 0

corresponding to the mapping torus construction, with o the dual action
of T = Z", extended to R periodically. This exact sequence is locally split,
and hence semi-split. The maps § in the diagrams above are given by the
Kasparov product from the left or right by the class §, € KK (AQK, S(A®
K)) = KK(2,2) corresponding to this extension, which also corresponds
to the class [idg — a] € KK (A, ).

Recall that the mapping torus for an action a of Z on 2 is defined
to be the C*-algebra M, of all A-valued continuous functions f on R such
that f(z + 1) = a(f(z)) for z € R. There is the following short exact
sequence:

0—-SA—- M,—A—0.

The dual action o” of T & Z" on 2 X, Z, extended to R periodically,
induces the following isomorphism:

(Ql Ha Z) A R = M(a’\)’\’

with the mapping torus M,a)a for the second dual action (a™)" of Z =
T" = (ZM)™ on (U Xg Z) Xon T the crossed prodcut, which is isomorphic
to A ® K by the Takai duality theorem.

The KK-theory six-term exact sequence and the Thom isomorphism
imply that

KK(®,SA®K)) —— KK!(D,%A%,2Z) —~— KK®,A0K)

5] s

KK'(®D,2A0K) «X— KK[®,%x,2) —=— KK!(®,5%&K))



and

*

KK(S@®K),D) ——— KK'(Ax,Z,9) —~— KK@AQK,D)

| To
KK'A®K,D) —L» KK@%,.Z,D) —— KK'(D,52A®K)).
e As a byproduct of the PV sequence, we have that for 2 a trivially
graded o-unital C*-algebra, if © is any separable graded C*-algebra, then

KK®,%xoT) =070 gg(®,2%x,T) —— KK(®,)

E A
KK'(®,9)  —— KK\(® Ax,T) <=8 grl(9, 9 %, T)

and if 2 is separable, then for any o-unital graded C*-algebra D,

KK@»,T,0) <9 pr@x,T,D) —— KK(,D)

q.l _ T -
KK'®,D) —— KK'(@x.T,9) =% prlx, T,D),
where A = (2 x4 T) Xon Z with o” the dual action of Z = T” for an action
a of the one torus T on 2, by Takai duality, and the maps ¢ in the diagrams
above are given by the Kasparov product from the left or right by the class
0 € KK (A %o T,S((AxeT)®K)) 2 KK (A %o T, x4 T) corresponding
to the following extension:

0—S((2 %o T) ®K) —— [(A 20 T) Xgn Z] Xgr)r R
—2 . @Ax,T)®K —0,

where this extension is viewed as the mapping torus M((qr)a) for the third
dual action ((a”))" of Z on [(A X T) Xan Z] X (on)a T, which is isomorphic
to (A o T) ® K by Takai duality.

e As another byproduct of the PV sequence, in the same manner we
have that for 2 a trivially graded o-unital C*-algebra, if D is any separable
graded C*-algebra, then

KK(D, A XaZy) =000 KK®D, A %o Zn) —— KKY(D,% %0 Z)

| lq.

=(id—a”
KK(®D,A%aZ) —— KK (D,%xq2Z,) <87 ppl(D o x, Z,)



and if 2 is separable, then for any o-unital graded C*-algebra D,

KK@ %aZn,®) 8970 g g3y 20, ®) —— KK\ x,Z,D)

q"l Tq*
1 s=(id—a”)* 1
KK(A xqZ,D) —— KK (2 x4 Zn,®) ——— KK (™A van,CD),

where 2 X, Z with the action & extended to Z from an action a of a cyclic
group Z, = Z/nZ on Y is isomorphic to the mapping torus M, for the
dual action a” of Z,, = Z, extended to Z and to R periodically, on A x4 Z,
with

0— S xg Zy) — A EUANGZ —2 U xg Zy — 0,

and the maps 4 in the diagrams above are given by the Kasparov product
from the left or right by the class §;, € KK (U g Zy, S(A %q Zy)) =
KK(U Xy Zp, A xq Zy) corresponding to this extension. Note that

(Ql A Zn) NN R= Ma’\-
As well, we have another one:
0> SAXGZ) = (AXgZ) Xgr RE M/n — A%y Z — 0.

This quotient should give a quotient map from M\ to Mgn.

7 UCT and KK-equivalence

We denote by N the smallest class of separable nuclear C*-algebras such
that:

(N1) N contains C;

(N2) N is closed under countable inductive limits of C*-algebras;

(N3) For a short exact sequence of C*-algebras, if non-zero two terms
are in N, then so is the nonzero third;

(N4) N is closed under KK-equivalence.

Let Np denote the smallest class of separable nuclear C*-algebras closed
under

(Nol) Ny contains C and Cp(R); (No2)= (N2);

(Np3) For a split short exact sequence of C*-algebras, if nonzero two
terms are in Ny, then so is the nonzero third; (Np4)=(N4).

The class N is called the booetstrap category in this sense.



The class N is also the smallest category of all separable nuclear C*-
algebras such that the UCT below holds for their pairs of every C*-algebra.
In this sense, the class N is also called the UCT class.

Set K.() = Ko(A)OK,(A), KK(A,B) = KK°(A,B), and KK*(A,B) =
KK°(2,8) ® KK'(,B).

(Universal Coeflicient Theorem (UCT)). Let 2 and B be separable
C*-algebras, with A in the bootstrap category or the UCT class N. Then
we have the following short exact sequence:

0— Ext%(K*(Ql),K*(%)) LI KK*(2,B) X, Hom(K,.(2), K.(8B)) — 0
and so that, more exactly,

0 ——  Extz(Ko(2), K1(B)) @ Extz (K1 (), KO(%))
LN KK(%,B)
—  Hom(Ko(2), Ko(B)) ® Hom(K; (), K1(B)) — 0

and

0 ——  Bxth(Ko(2), Ko(%®)) ® Exth(K: (), Ki(%B))
_5, KK'(2,B)
—— Hom(Ky(2), K1 (B)) ® Hom(K; (), Ko(B)) — 0.

The sequence is natural in each variable, and splits unnaturally. If K.()
is free or K.(B) is divisible, then 7y is an isomorphism.
In particular,

0 ——  Exth(Ko(2), K1(2)) @ Exty (K1 (2), Ko(21))
AN KK (@, 9)
—— Hom(Ko(2), Ko(?)) ® Hom(K: (2), K1(2)) — 0
and
0 ——  Extz(Ko(2), Ko(%)) ® Extz(K:1(2), K1(2))
2, KK'\(2,2)
—— Hom(Ko(2), K1 (%)) ® Hom (K (), Ko()) — 0,

and KK(,2) as well as KK*(A,2%) = KK°(A,2) ® KK (A,2) a graded
ring have the following ring structure: the product of any two Ext% is zero,
and Hom = Ext) acts on Hom and Ext} as usual, so the respective Exty



terms in KK(U,A) and KK*(A,A) form ideals with square zero. Also,
KK(,2) is viewed as a subring of KK*(2,2), but KK (A,2A) is not,
without Ting structure. _

We denote by N’ the class of C*-algebras such that the UCT holds for
their pairs with every C*-algebra, i.e., if 2 € N’, then the UCT holds for
(A, B) with B any. Certainly, we have N C N’. That the inclusion is strict
has already shown above. The reason is that there are some non-nuclear,
separable C*-algebras for which the UCT holds. We may call the class N’
the general UCT class, to distinguish from the UCT class .

Example 7.1. e Let 2 and B be C*-algebras in N’. If they have their
K-theory groups isomorphic, then 2 and 8 are KK-equivalent. Namely, in
the general UCT class N’, the K-theory equivalence implies the KK-theory
equivalence. In particular, the same holds for the UCT class N.

This is deduced as a corollary from that if 2 and B in N’ and thereisz €
KK (2,B) such that v(z) € Hom(K. (), K.(B)) is an isomorphism, then z
is a KK-equivalence. Hence, if K,() = K,.(), then there is the canonical
isomorphism in Hom(K.(2), K.(*B)), and it is viewed as an element of
KK (2,B) by splitting of the UCT, which gives a KK-equivalence between
2 and *B.

Indeed, by naturality of the UCT we have the following commutative
diagram:

Ext}(K.(B), K.(D)) —— Ext}(K.(2), K.(D))

é )
KK*(3,0) =220, gr@,D)

Y v

Hom(K.(B), K.(D))

~

Hom (K., (%), K.(D))

F

0 _ 0
with 6 and 7 the isomorphisms induced by K.(B) = K,.(2). Apply the
Five Lemma to obtain that the middle map z ®s (-) by Kasparov product

is an isomorphism. Taking ©® = 2, we have that there is y € KK(B,)
such that z ®g y = [idg] € KK (2,2). Similarly, by naturality of the UCT




we have
0 prse—— O

l

Exth(K.(D), K. (%)) —— Ext}(K.(D), K.(B))

| ;

KK*®,2) U2 kgD, %)

| :

Hom(K.(D), K.(2)) Hom(K*(é),K*(%))

0 0
with 6 and 7 the isomorphisms induced by K,(2) = K.(8). Apply the
Five Lemma to obtain that the middle map (-) ®9 = by Kasparov product
is an isomorphism. Taking ® = 9B, we have that there is y € KK(B,2)
such that y Qg z = [idg] € KK (*B,B).

o Consequently, the K-theory equivalence is the same as the KK-theory
equivalence, for o-unital C*-algebras in the general UCT class N’. In par-
ticular, the same holds for C*-algebras in the class N.

o Let A be any (separable) C*-algebra. Then there is a (separable) com-
mutative C*-algebra €, whose spectrum has dimension at most three, and
there is an element t € KK(C,B) such that v(z) : K.(€) — K.(B) is
an isomorphism. For all A € N’, we have that (-) ®cz : KK*(A,€) —
KK*(2,8B) is an isomorphism. If B € N', then z is a KK-equivalence.
We may choose € to be the direct sum €y @ €, such that K;(€y) = 0 and
Ko(€) = 0. If K.(*B) is finitely generated, then we may also choose €
whose spectrum is a finite complex of dimension at most three.

The proof is as follows. Since the map v : KK*(€,B) — Hom(K.(€), K.(*B))
is surjective, it is only necessary to find a commutative C*-algebra with its
spectrum specified and its K-groups isomorphic to those of B. There is
a standard way to construct a commutative €y with Ky specified and K;
trivial: choose a free resolution:

F

0= F —1 B . Ko(B) — 0,
and let D; and D, each be a ¢y-direct sum of copies of SC = Co(R) and
¢ : D1 — Da with p, = f on K*(D1), and let €y be the mapping cone of
p:

€ = {(z, ) € D1 ® CD2 | p(z) = f(0)}



and then let €; = S, to obtain € = €y® ;. Other things follow as before
or from a moment of thought.

o It follows that the class NV is equal to the smallest class N~ of separable
nuclear C*-algebras such that:

N7 contains commutative C*-algebras and

(N4) N~ is closed under KK-equivalence.

We may call the class N~ the KK-commutative class.

e Let A be a C*-algebra in the class N with torsion free K-theory. Then
there are simple AF C*-algebras o and U; such that A ~gr Ao & SAU;.
Thus 2 is in fact in the class Np.

The proof is as follows. Any countable torsion-free abelian group G
with G # Z can be embedded as an additive subgroup of R, so that the
image is dense in R. For instance, Z2 = Z & §Z C R? with 6 an irrational
number. If K;(2A) = Z, then set A; = C; otherwise embed K;(2) into R and
let 2; be an AF C*-algebra with the image of K;(2) as dimension group.

o It follows that the class Ny consists of C*-algebras in N with torsion
free K-theroy.

We may call the class Ny the torsion free UCT class or the torsion
free bootstrap category.

o Let B be a C*-algebra. The following conditions are equivalent: (i)
B € N'; (ii) B is KK-equivalent to a C*-algebra in N; (iii) B is KK-
equivalent to a (separable) commutative C*-algebra; (iv) If ® is any C*-
algebra with K.(®) =0, then KK*(%8,D) = 0.

The proof is as in the following. '

(i) = (ii). The UCT implies that if K, (D) = 0, then both Ext}(K.(B), K.(D))
and Hom(K,(B), K.(®D)) are zero and hence KK*(B,D) = 0.

(iii) = (ii). The class N contains any C(X) for every finite simplicial
complex X. Since every compact space is an inverse limit of simplicial com-
plexes, then C(X) € N for every compact space X. Also, N contains Co(X)
for every locally compact X because we have 0 — Cp(X) — C(X*) - C —
0 and use (N3). Thus N contains all separable commutative C*-algebra.
Thus if B ~gx A= C(X) or Cyp(X), then B ~xx A€ N.

(ii) = (i). If B ~xkx U € N with z € KK (3B,2) a KK-equivalence,
then z ®g (-) : KK(%,9) - KK(8,9) and (-) ®p z : KK(D,B) —
KK(®,2) are isomorphism for any C*-algebra D, so that in particular,

K;(®B) = KK’(C,B) = KK(C,2) = K;()
for 2 and B both o-unital. Therefore, for a separable C*-algebra D,

the UCT for (A,®) implies that the UCT for (%,D) by KK(B,D) =
KK(2,D) and K;(*B) = K;(2).



(iv) = (ili). There is a (separable) commutative C*-algebra 2 and
z € KK(2,B) with vy(z) : K.(%) — K,(*B) is an isomorphism. Represent
z by a semi-split extension:
0—8BOK —— D —25 29 —0.

Then the six-term exact sequence of K-groups becomes:

Ky(B) —— Ko(®) —2— Ko(%)
6T"=’ %18
K(?) <2 Ki(D) «—2— Ko(B)

and hence K,(®) = 0 Thus, KK*(%8,D) = 0. And then the KK-theory
six-term exact sequence in the second variable becomes:

KK(B,8) —*— KK(B,D)=0 —% KK(B,2)
[osas |©8aa
KKY(8,%) <~ KK!(8,9)=0 —=— KK(%,8)

and thus (-) ®@gz : KK(B,2) — KK(8B,B) is an isomorphism, and hence
there is y € KK(B,2) such that y ®g z = [ids] € KK (*B,B). Moreover,
similarly, represent y by a semi-split extension:

0-SARK —— D —1— B -0,
so that if follows that
KK'(%,9%) —=— KK®,D)=0 —* KK(%,%B)
T(~)®my 1(‘)@%9
KKY%,%8) <& KK'(%,D)=0 «=— KK(,9)

by using (iii) = (iv) and thus () ®p y : KK(A,B) — KK(2,2) is an
isomorphism, and hence there is ' € KK(2,B) such that 2’ Qg y =
[ide) € KK (A, 2A). It then follows that B ~gx 2.

(iii) = (iv). If B is KK-equivalent to a commutative C*-algebra €, then
KK*(B,D) = KK*(¢,®D) for any C*-algebra. The UCT implies that if
K.(®) =0, then KK*(€,D) = 0. Therefore, KK*(B,D) = 0.

8 Classification of C*-algebras by KK-equivalence

Obtained as a collection is the following table in the next page:



Table 1: Classification for some KK-equivalent C*-algebras

Representatives Classes Examples
K-theory groups
Zero 0 Contractible to 0 CC = Cy((0,1)),
Ky=0,K;=0 CA=Co(0,1) @A
Point C Commutative Co(R*™)
Contracitible to C c([o,1]™) .
Ky=7Z,K,=0 Elementary M,(C), K
Type I, non-split ext Toeplitz ¥
Crossed product by R Even solvable Lie C*(G)
Line Cp(R) Commutative Co(R?™+1)
Ko=0,K, =27 Suspended SAUA ~kx SC = Cp(R)
Crossed product by R Odd solvable Lie C*(G)
Circle C(T) Direct sum AP B ~xx Cd Co(R)
Ky=7Z,K, =7 Split extension C(8%7+1) = Cyp(R?"+1) x C

Free product (=FP)

AXB ~xx Co(R)dC
A*B ~gx C@CQ(R)

Two points C*
Koy=7% K, =0

Direct sum
Split, extension (=ext)

Free product

ADB~xx CHC
C(8%) = Co(R*™) x C
AXB~gr CpC
A*B ~gy C?

Eight C(8) Split extension C(8) =2 Co(RUR)x C
Koy=2Z, K, =7 Pull back C(8) = C(T) @c C(T)
Unital free product C*(F») = C(T) x¢ C(T)

n points C® Direct sum @™ ~xi C

Ky=7", K1 =0

Successive split ext
Successive FP

Ay ¥ --- XA, ~kg Cx---xC
Ay - %A, ~grg Cx---xC

Hawaian C(H,)

Split extension

C(H,) = Co(U"R) x C

Ky=7Z,K, =27Z" Pull back C(Hp,) =2 C(T) ¢ ---dc C(T)
Unital FP C*(F,) = C(T) *¢ - - - x¢ C(T)
oo points @*°C Direct sum &% ~xx ®°C
Ko=72*, Ki=0 Successive split ext Ay XMoo x Uy ~ggCx---xC---
Successive FP Ay - %Ay - ~gg Cx---xC---

Hawaian C(H)
Ky=12Z, K =Z%®

Split extension
Pull back
Unital FP

CHox) = Co(U®R) % C
C(Hw) = &gC(T)
C*(Foo) = +2C(T)
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