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A locally commentative and 
transcriptive exercising in the quantum 

algebraic, analytic, and geometric 
garden stadium 

TAKAHIRO Suoo 

·Abstract 

As a back to the past for a return to the future, we review and study 
by running round, round, and through it, namely the non-commutative 
geometry (NCG) garden, explored and maintained by Connes-Marcolli. 

Dedicated to Professor Muneo Cho on his 68th birthday with gratitude and 
respect (in advance) '-
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Keywords: Noncommutative geometry, C*-algebra, von Neumann algebra, 
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dynamical system, algebraic geometry, algebraic topology, differential geometry, 
index theory, number theory. 

1 Introduction as original preface 

This is nothing but a running commentary (or a locally commentative and 
transcriptive exercising (LCTE)) based on Connes-Marcolli [83] primarily, as 
well as Connes {66] and more items as in the references secondly {but mostly in 
part). Almost along the story of (831, with some considerable effort within time 
limited for publication, we do make some additional, proofs, tables, examples, 
corrections, and (extended) remarks or comment_s, as inserted as: {Added). The 
texts • Some notations as well as some texts are slightly changed from the 
original ones, by our taste. Several (score) tables are worked out, 19 in total. 
With somewhat time and patience for checking out (or not yet) all the 213 items 
in the references of [83] 1 even with several items not found in the texts assigned, 
some items are either collected, slightly corrected, or updated, and some of 
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which are neither at hand nor accessible (without fee, at this moment), but 
included in the references at the end, even with several exceptional items, and 
added with some related items. Fed in by hands 242 items in total. However, 
almost the details are only touched or not yet checked well. As a reference at 
an (early) time of this reviewing, may read Village-Mountain (translated from 
Kan-ji as Chinese characters) [191) in Japanese (and more items such as [114], 
(134), (1351, [230], [231], [241]) for the exciting story of the theory of elementary 
particles and its experimental observations. Also refer to [183). This paper is 
organized of the following (the same number of rounds) 26 sections with titles a 
bit changed from original ones. The quantum (deformed) stadium is now open! 

Table 1: Contents 

Section Title 
1 Introduction as original preface 
2 Handling quantum algebras 

as noncommutative (NC) spaces 
3 Phase spaces in microscopic systems 
4 Noncommutative spaces as quotients 
5 Spaces of leaves of foliations 
6 The noncommutative tori 
7 Duals of discrete groups 
8 Brillouin zone and the quaritum Hall effect 
9· Tilings in Euclidean spaces · 
10 NC spaces from dynamical systems 
11 NC spaces from string theory 
12 Groupoinds and the index theorem 
13 Noncommutative Riemannian manifolds 
14 Spectral triples from Cantor sets 
15 Dimensional regularization in QFT 
16 Local algebras in super-symmetric QF.T 
17 The standard model of elementary particles 

as noncommutative geometry 
18 Isospectral deformations of Riemannian manifolds 
19 Algebraic deformations 
20 Quantum groups 
21 Noncommutative spherical manifolds 
22 Noncommutative spaces from Q-lattices 
23 Modular Hecke algebras 
24 Noncommutative moduli spaces from Shimura varieties 
25 The adele class space and the spectral realization 
26 Weil proof and thermo-dynamics of endomotives 

Corner References 
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There are several books on NCG such as [64) (missing, but its translation in 
Japanese by Circle-Mountain [181)), [66], (120], (148], [159], [169] (missing), and 
[l 76). May refer to these items. 

(Added). In addition, (841, and [95] (missing). • 

2 Handling quantum algebras 
as noncommutative (NC) spaces 

A quantum (smooth (C00
) or differentiable (or er class fo1: r EN= {l, 2, · · ·}) 

algebra A or (continuous) C*-algebra 2l is defined t.o be an algebra of (smooth, 
differentiable, or continuous) function elements as coordinates of a noncommu­
tative (or badly or slightly deformed) space X (such as non-Ham;dorff spaces 
obtained from locally compact Hausdorff spaces). We would like to understand 
such a noncommutative space X by quantum algebraic datam. There are 4 
steps: 

(S1]: Resolve quantum algebras and compute cyclic cohomology. 

[S2): Find geometric models of noncommutative spaces up to homotopy. 

[S3]: Construct spectral geometry for quantum algebras. 

(84]: Compute time evolution and analyze thermo-dynamics. 

Step 1. It means finding a resolution of A as a A-bimodule by projective 
A-bimodules making it possible to compute effectively the Hochschild homol­
ogy of A. In general, such resolutions are of type Koszul. A typical example 
_is the resolution (of the diagonal) for the algebra C 00 (X) of smooth functions 
on a compact manifold X as in the C00-version (61) of the Hochschild, Kostant, 
Rosenberg theorem (136]. It then follows to know what is the analogue of dif­
ferential forms and of de Rham currents on the ·space X, to compute the cyclic 
homology and cyclic cohomology for A, which are viewed as natural replace­
ments of the de Rham theory for X. For foliation algebras, this is done some , 
time ago (cf. (62), [37], (102)), and is tied in with the natural double complex of 
transverse currents. 

But it is not always easy to perform this step of finding such a resolution 
and computing Hochschild and cyclic homology or cohomology. For instance, in 
the case of algebras given by generators and relations this step uses the whole 
theory of Koszul duality, which is extented to homogeneous algebras (cf. (109] 
missing, [110), (111} missing, (112], (113], (23]). 

As a specific example, it is interesting to resolve the modular Hecke algebras. 
In essence, finding a resolution in the algebra of modular forms of arbitrary level, 
equivariant with respect to the action of the group of finite adeles, would yield 
formulas .for the compatibility of Hecke operators with the algebraic structure. 
This is a basic and hard problem in the theory of modular forms. 

Cyclic homology and cohomology theory is well developed, and is first de­
signed to handle the leaf spaces of foliations as well as group rings of discrete 
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groups (cf. [148]). The theory plays a central role as a purely algebraic version 
of (analytic) noncommutative geometry, and is also crucial in the analytic set-up 
to construct cyclic cocycles with compatibility with the topology of (quantum) 
algebras. For im;tance, if the definition domain for cocycles is a dense subalgebra 
of a underlying C* -algebra, stable under holomorphic functional calculus, then 
it automatically gives an invariant as the K-theory for C*-algebras (cf. (62)). 

Step 2. A lot of noncommutative spaces defined as quotients with bad (or 
less) topology can be de-singularized, provided that one is ready to work up to 
homotopy. For instance, if the space X is defined as a quotient X = Y / ,...., of 
an ordinary space Y by an equivalence relation "', then one can often view X 
as another quotient X = Z/ "', where the equivalence classes are contractible 
spaces. The homotopy type of Z is then uniquely determined and serves as a 
substitute for that of X. See Baum-Connes (16] . 

. For im;tance, if the equivalence relation on Y comes from a free action of a 
torsion free, discrete group r, then the space Z is given by a product over r of 
the from 

z = y X r Er = (Y X Er) ;r' 
where Er is a contractible space (or the universal principal f-space) on which r 
acts freely and properly and the equivalence relation by r is given as (g • y, u) = 
(y, g · u) (cf. (17)). 

The main point of this second step is that it gives a starting point for com­
puting the K-theory of the space X as well as the K-theory of the C* -algebra 
2l = A as the norm closure of a dense algebra A, playing the role of some algebra 
of continuous functions on X. 

Indeed, for each element of the K-homology of the classifying space Z, there 
is a general construction of an index problem for families parameterized by X 
that yields the assembly map ([16]) 

µ: K.,,.(Z)-+ K.,,.(2l). 

This Baum-Connes assembly map is an isomorphism in a somewhat large num­
ber of cases, with a suitable care without torsion. They include all connected 
locally compact groups, all amenable groupoids, and all hyperbolic discrete 
groups ((17]). It shows that the K-theory for X is computable in the sense 
that the topological K-theory for a geometric space X can be computed by the 
topological K-theory for an analytic C* -algebra 2l, which is noncommutative in 
general. 

Step 3. The third step is not only to compute K,,.(2l) but also to get a 
good model for the vector bundles over X, i.e., the finite projective modules 
over 2l. This step should be combined with the above first step to compute the 
Chern character using connections, curvature, and eventually computing moduli 
spaces of Yang-lVIills connections, as done for the noncommutative (NC) 2-torus 
by Connes-Rieffel (96]. 

We then pass from the soft part of differential geometry to the harder Rie­
mannian metric aspect. The sought for spectral geometry as a triple (A, H, D) 
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(of an algebra A and an operator D both acting on a Hilbert space H with some 
suitable conditions) has three essential features: 

(Fl): The K-homology class of (A, II, D). 

(F2): The smooth structure. (F3): The metric. 

One should always look for a spectral triple such that its K-homology class 
is as non-trivial as possible. Ideally, it should extend to a classs for the doubled 
algebra A® A 0 P with A 0 P the opposite algebra of A with products exchanged, 
and then be a generator for Poincare duality. In general, this is too much to 
ask for, since spaces do not always fulfill Poincare duality. 

The main tool for determining the stable homotopy class of a spectral triple 
is ttie bivariant KK-theory for C*-algebras by Kasparov. Thus, it is important 
to already have taken the step 2 and to look for classes such that their pairing 
with K-theory is as non-trivial as can be. 

For the smooth structure, there is often a natural candidate for a dense 
smooth subalgebra A00 of a C*-algebra 21 = A for some dense subalgebra A, that 
plays the role of the algebra of smooth functions on a space. It should in general 
contain the original algebra A and should have the further property that it is 
stable under the holomorphic functional calculus. This ensures that inclusions 
A00 CA c 2l extends to isomorphisms in the respective K-theory groups and 
makes it possible to complete a classification of smooth vector bundles over a 
space. 

The role of a ( unbounded, differential) operator D for the smooth structure 
is that it defines a geodesic flow by the formula 

ft(a) = itlDlae-itlDI = Ad(exp(itjDl))a, a E A00
, t E IR, i = v'=l, 

and it is expected that smoothness of the spectral triple is governed by the 
smoothness of the operator-valued function ft(a) on R. The main result in the 
general theory on it is the local index formula of Connes and Moscovici [89), 
which provides the analogue of the Pontrjagin classes of smooth manifolds in 
the noncommutative framework. 

The problem of determining the operator D from the knowledge of the K­
homology class corresponding to a spectral triple is similar to the choice of a 
connection on a bundle. There are general resulti; that assert the existence of 
an unbounded self-adjoint operator D on H with bounded commutators with A 
from estimates on the commutators with the phase operator F. The strongest 
is obtained by Coones as in [66, p. 391] just assuming that the (additive) 
commutators [F, a] = Fa - aF are in an ideal denoted as Li(H), and it ensures 
the existence of a 0-summable spectral triple which is what one needs to get 
started. 

It is not always possible to find a finitely summable, spectral triple, first 
because of growth conditions on an algebra (as in Connes [63]), but also since the 
finitely summable condition is analogous to being type II in the theory of factors. 
In a general case, like the noncommutative spaces coming from foliations, one 
can go from being type III to type II by passing to the total space of the space of 
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transverse metrics and then using the theory of hypo-elliptic operators (CnMs 
[90]). 

Another way to attack the problem of determining the operator Dis to con­
sider the algebra generated by A and D_ with some relations between A and D 
and then look for irreducible representations that fall in the stable homotopy 
class. Ideally, one should minimize the spectral action functional in this homo­
topy class, thus coming close to gravity (Chamseddine'-Connes [48)). In practice, 
one should use anything available, but the noncommutative space given by the 
quantum group SUq(2) shows that things can be quite subtle ([105)). 

Given or once determined a spectral triple (A, fl, D), as the pasic steps, one 
should compute the following: 

(Cl): The dimension spectrum in C. (C2): The local index formula. 

(C3): The inner fluctuations, scalar curvature, and spectral action. 

Step 4. It is often that a noncommutative space comes with a measure 
class, which in turn determines a time evolution {ut} c Aut(21), that is, a one­
parameter family of automorphisms of a C* -algebra 2l = A. In the type II case, 
one can apply the step 3 above, as well as in the finite dimensional case, use the 
operator D to represent functionals in the measure class of the form 

where§ denotes the Dixmier trace as the noncommutative integral and pis the 
dimension. In the type III (always or often in Physics) or general case, such a 
time evolution is highly non-trivial. 

Given such a data or a C*-dynamical system (21, Ut, JR), it is natural to 
regard it as a quantum statistical mechanical system, with a C* -algebra 21 as 
an algebra of observables and the JR-action u as time evolution. One can then 
look for equilibrium states for the system and for given values{) of the thermo­
dynamic parameter as inverse temperature. 

The algebra A may not be a C* -algebra. If the algebra A is concretely 
realized as a C* -algebra of bounded operators on a Hilbert space H, then one 
can consider the Hamiltonian fl, that is, a (unbounded) operator on fl that is 
the infinitesimal generator of the time evolution. If the operator exp(-/31/) is 
of trace class, then one.has equilibrium states for the system (A, Ut), written in 
the usual Gibbs form 

( ) _ tr(aexp(-{JH)) 
'PfJ a - tr(exp(-f)H)) ' where z({J) = tr(exp(-/3H)) 

is the partition function of the system. The notion of equilibrium states does 
make sense even if exp(-{JH) is not necessarily of trace class, and is given by 
the more subtle notion of KMS(Kubo-Martin-Schwinger) states. 

The KMSp states on A are positive continuous functionals 1fJ : A --+ C, so 
that cp(a*a) 2:': 0, with cp(l) = 1, namely states, satisfying the KMSp condition 
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such that for any a, b EA, there exists a function fa,b(z) which is holomorphic 
on the open strip O < Im(z) < /3, continuous and bounded on the closed strip 
0 ~ Im(z) ~ /3, namely !a,b E H(R x (0,,(1)), and 

fa,b(t) = cp(ao"t(b)) and fa,b(t + i/3) = cp(ut(b)a), t E IR.. 

The KlvIS states at zero temperature may be defined as t.he weak limits as 
/3 - oo of Kl'vIS,0 states. Using KMS states one can construct refined invariants 
of noncommutative spaces. For a fixed {3, the K.t\·IS.,a states form a simplex, and 
hence one can consider only the set £,a of extremal KMSp states, from which 
one can recover all the others by convex combinations. 

Proof. (Added). Suppose that 'PI,··· , 'Pn E £,0 and k1, ···kn 2:: 0 with E;=l kj = 
1. Then '£.;=l kjcpj is a state, and there are !a,b,j E H(IR. x (0, /3)), so that 
E7=t kJfa,b,i E H(IR. x (0, /3)) and such that 

n n 

L kJfa,b,j(t) = L kjcp1(aut(b)) and 
j=l J=l 

n n 

L kj/a,b,j(t + i/3) = L kj'Pj(O"t(b)a), t E IR.. 
J=l j=l 

• 
An extremal KMSp state is always factorial, and the type of the factor is 

an invariant of the state. The simplest situation is of type I. It can be shown 
under the minimal hypotheses ([731) that extremal KMS.a states continue to 
survive when the temperature becomes lower, i.e., {3 increases. Thus, in essence, 
when cooling down the system, it tends to become more classical, and he 0-
temperature limit of Ep gives a good replacement of the notion .of classical 
points for a noncommutative space. In examples related to arithmetic, we see 
how the classical points described by the zero temperature limit of KMS states 
of certain quantum statistical mechanical systems recover classical arithmetic 
varieties. The extremal KMS states at zero temperature, evaluated on suitable 
arithmetic elements in the noncommutative algebra, in significant cases, can be 
shown to have an interesting Galois action, related to interesting questions in 
number theory ([29], (86], and [81] missing). 

It is shown in (73) how to define an analogue in characteristic zero, of the 
action of the Frobcnius on the etale cohomology by a process involving the 
above thermo-dynamics. One key feature is that the analogue of the Frobenius 
is given by the dual of the above time evolution O"t- The process involves cyclic 
homology, and its three basic steps are 

(1) Cooling. (2) Distillation. 

(3) Dual action of IR.~ on the cyclic homology of the distilled space. 

When applied to the simplest system as the Bost-Connes system of (29}, this 
yields a cohomological interpretation of the spectral realization of the zeros of 
the Riemann zeta function ([70], [73]). 
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3 Phase spaces in microscopic systems 

What can be historically regarded as the first example of a noncommutative 
space is the Heisenberg formulation of the observational Ritz-Rydberg law of 
spectroscopy. In fact, it is shown by quantum mechanics that indeed the pa­
rameter space as the phase space of the mechanical system given by a single 
atom fails to be a manifold. It is important to convince oneself of this fact 
and to underst.and that this conclusion is indeed dictated by the experimental 
findings of spectroscopy. 

At the beginning of the twentieth century, a wealth of experimental data 
is collected, on the spectra of various chemical elements. These spectra obey 
experimentally discovered laws, like the most notable as the Ritz-Rydberg com­
bination principle. The RR principle can be stated as follows. 

Spectral lines are indexed by pairs of labels. Then certain pairs of spectral 
lines, when expressed in terms of frequencies, do add up to give another line in 
the spectrum. Moreover, this happens precisely when the two labels are of the 
form i, j and of j, k. 

In the seminal paper [131], W. Heisenberg considers the classical prediction 
for the radiation emitted by a moving electron in a field, where the observable 
d1pole moment can be computed, with the motion of the electron given in Fourier 
expansion. The classical model predicts frequencies distributed according to the 
law: 

· 1 dW 
v(n, o) = ov(n) = oh dn . 

When comparing the frequencies obtained in this classical model with the data, 
it is noticed that the classical law does not match the phenomenon observed. 

The spectral rays provide a picture of an atom as follows. If atoms are in 
classical systems, then the picture formed by the spectral lines becomes a group 
in our modern mathematical language, which is the law above predicts. That is 
what the classical model predicts that the observed frequencies should simply 
add, obeying a group law, or in Heisenberg notation that 

v(n, o) + v(n, /3) = v(n, o + /3). 

Correspondingly, the observables form the convolution algebr~ of a group. 
What the spectral lines are instead providing is the picture of a groupoid. 

It is realized by Heisenberg [131) that the classical laws above would have to be 
replaced with the quantum mechanical laws: 

1 . 
v(n, n - o) = h(W(n) - W(n ~ o)) and 

v(n,n - o) + v(n- o,n - o -/3) = v(n,n- o-/3). 

These replace the group law with the groupoid law. Similarly, the classical 
Fourier modes f

0
(n)eiw(n)ot are replaced with f(n, n - o)eiw(n,n-a)t_ 

The analysis of the emission spectrum given by Heisenberg h; in a good 
agreement with the Ritz-Rydberg law, or combination principle, for spectral 
lines in emission or absorption spectra. 
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Heh:;enberg [131) also extends the re-definition of q1e multiplication law for 
the Fourier coefficients to coordinates and momenta, by introducing transition 
amplitudes that satisfy similar product rules. This is the most audacious step 
in Born words, and that brings noncommutative geometry on the scene. 

It is Born who realizes that what Heisenberg described in his paper cor­
respond to replacing classical coordinates with another quantum coordinates 
which no longer commute, but which obey the laws as the matrix multiplica­
tion. 

The words· reported by B. L van der Waerden ([234) missing) are omitted 
except citing as: 

Heisenberg's symbolic multiplication is nothing but the matrix calcucus. 

Thus, spectral lines are parameterized by two indices l0 13 ::mtisfying a co-cycle 
relation: 

lo/3 + l13-y = ler-y, 

and a co-boundary relation expresses each line as a difference: 

In other words, the RR law gives the groupoid law above, or equivalently, (i, j) · 
(j, k) = (i, k), and the convolution algebra of a group is replaced by observables 
satisfying the matrix product: 

(ab)ik = L aiibjk, 
j 

In general, commutativity is lost as ab =/ ba. 
The Hamiltonian H is a matrix with the frequencies on the diagonal, and 

observables obey the evolution equation: 

!a =i[H,a). 

Out of the Heisenberg paper and of the Born interpretation in terms of ma­
trix calculus, is emerged the statement of the Heisenberg uncertainty principle 
in the form of a commutation relation of matrices: 

h 
[p,q) = ~l. 

.... 1ri 

The matrix calculus and the uncertainty principle are formulated by Born and 
Jordan in a subsequent paper, published in [27). This viewpoint on quantum me­
chanics is later some:what obscured by the advent of the Schrodinger equation. 
The Schrodinger approach shifts the emphasis back to the more traditional tech­
nique of solving partial differential equations, while the more modern viewpoint 
of Heisenberg implies a much more .serious change of paradigm, affecting o~r 
most basic understanding of the notion of spaces. The Heisenberg appproach 
can be regarded as the historic origin of noncommutative stadium. 
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Remark. (Added). If nece~ary, one may recall the· following bru:;ic facts in 
quantum mechanics from a Japanes~ exercising book (119]. 

Let v denotes a frequency of a photon. Its energy is given as hv and its 
momentum is h: = ~' where h denotes the Planck constant and c is the light 
speed, and A is its wavelength. Hence½=~ may be another frequency. 

Let A(m] denotes a wavelength of a light or photon of an atom such as · 
hydrogens. The spectral sequences are given as 

!_=RH(~ - _!__), n1 = ni + k, k EN, 
A n~ n} 

where RH is the Rydberg constant. It is called that the sequence is the Lyman 
sequence for ni = 1, the Balmer for ni = 2, the Paschen for ni = 3, the Bracket 
for for n; = 4, and the Pfund for ni = 5. 

For general atoms, the spectral rays are approximately obtained as 

where each term 1'j is said to be a spectral term. That is, to say that each 
spectral ray is represented as the difference or combination of two spectral terms 
or numbers, used by Ritz (1908), known as the Ritz combination law. 

In the classical model, frequencies can take integer multiples of the basic fre­
quency. While in the quantum model, frequencies can take combination values 
under the law above. 

Now set Vnm = c(Tn -Tm)- Then it holds that the relation: 

Vnl = Vnm + Vml· 

In the classical model, any addition between two frequencies is taken as another 
frequency, but in the quantum model, such a special addition only is allowed. 

On the other hand, if we set Wj = Tjch, then 

Hence, each Wi is an energy as a a stationary state. 
An electron o.f a hydrogen atom has as angular momentum L among the set 

{n 2:. In EN}. Each integer n is said to be a principal quantum number, and it 
corresponds to such an energy Wn, called as energy level. • 

4 Noncommutative spaces as quotients 

A large source of examples of noncommutative spaces is given by quotients of 
equivalence relations. Let X be an ordinary space such as a smooth manifold 
or a locally compact Hausdorff space. If X is compact, then this space can be 
described via C(X) the algebra of continuous, complex-valued functions on X, 
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that is a unital abelian C* -algebra. If X is non-compact, this space can be done 
via Co(X) the algebra of continuous, complex-valued functions on X vanh:;hing 
at infinity, that is a non-unital abelian c• -algebra. 

Suppose then that we are interested in taking a quotient space Y = X/ ,...., 
of X with respect to an equivalence relation. In general, it is expected that the 
quotient may have a less topology with respect to separating of points. Even 
when X is a smooth compact manifold, the quotient Y may not even be a 
Hausdorff space. In such a case, one may consider to characterize the space Y 
through its ring of functions, defined as follows. That consists of functions in 
C(X) invariant under the equivalence relation, so that the functions are constant 
on each equivalence class or an orbit of a point. If each of orbits are dense in 
X, in other words, an equivalence relation is (topologically) minimal, then the 
algebra of such orbit-wise constant, continuous functions on X becomes C of 
constant functions, the trivial c• -algebra. 

There is another better way to associate to the quotient space Y a ring of 
functions which is nontrivial for any equivalence relation. This requires drop­
ping commutativity of the algebra. Consider functions lab of two variables a 
and b defined on the graph of an equivalence relation, with a product which is 
no longer the commutative point-wise product, but the noncommutative convo­
lution product, dictated by the gTOupoid of the equivalence relation. In general, 
the elements of the algebra of functions Uab) with a,...., b act as bounded oper­
ators on the Hilbert space, i.e. the £ 2-space on the equivalence classes. It also 
guarantees the convergence in the operator norm of the convolution product as 

((/ab)* (9ab))ac = L lah9bc· 
b:a~b~c 

Given below are a few examples to illustrate the difference between the classical 
construction and that in noncommutative geometry. 

Example 4.1. Let X = {x0 ; xi} be a set of two points. Let Y be the quotient 
space of X with the equivalence relations x0 ,...., x 1 and Xj ,...., XJ (j = O, l). The 
algebra of continuous functions on X invariant under the relation becomes C. 
While the graph of the relation is just the product space Xx X. Hence functions 
on X x X may be regarded as 2 x 2 matrices as: 

l = (loo 101) , 
!to 111 

and their products are given by the matrix multiplication as 

f * 9 = (loouoo + f 01910 100901 + /01911) 
110900 + l 11910 110901 + f 11911 

Therefore, the algebra of these functions is the 2 x 2 matrix algebra over C, 
M2 ( C), the simple unital non-trivial C* -algebra acting on the complex Euclidean 
space C2

. Note that C and M2 (C) are not isomorphic as an algebra or a C* -
algebra, but they are Morita equivalent as an algebra. Note as well that the 
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spectrums of CC and M2(CC) are compo:;ed of only one point. This example 
represents the typical situation where the quotient is nice in the sense that two 
constructions.give Morita equivalent algebras. In this sense, Morita equivalent 
algebras are regarded as the same (commutative or noncommutative) spaces in 
noncommutative geometry. • 
Example 4.2. Let X = (0, 1] x {0, l} and let Y = X/ ,..._, with the equivalence 
relation (x, 0) ,..., (x, 1) for x E (0, 1). Then the algebra of continuous, C-valued 
functions on X invariant under the relation becomes C([0, 1]) (not C, corrected) 
the C*-algebra of continuous, complex-valued functions on (0, 1). On the other 
hand, the graph of the relation becomes (X x X)/ ,...,, which consists of both 
the dense subset 

[{{0, 1) x {0, l}) x {{0, 1) x {0, l})]/ ,...,~ (0, 1) x {(0,0), (0, 1), (1,0), (1, 1)} 

and the 4 points 

{ ( 0, 0)} x { { 0, 0)}, { ( 0, 1)} x { { 0, 1)}, { ( 1, 0)} x { ( 1, 0)} and { ( 1, 1)} x { ( 1, 1)}. 

Then the corresponding algebra of continuous, 2 x 2 matrix valued functions 
on (0, I], implied by ~ontinuity for that of the restrictions on (0, 1), becomes 
the C*-subalgebra of the C*-algebra C((0, l], ..M2 (C)) ~ C{(0, 1]) 0 M 2 (C) ·of 
continuous, .M2 (C)-valued functions / ·on (0, 1], with /(0) and /(1) diagonal. 
Such an algebra is so called as a dimension drop algebra. We may say it as 
a c• -algebra of matrix-valuned, continuous functions on the interval, partially 
vanishing and non-vanishing to the diagonals at infinity. 

In this case, these c• -algebras are not Morita equivalent. This can be seen 
by computing their K-theory groups (appeared). It means that the approach of 
noncommutative spaces can produce something genuinely new when the quo­
tient space ceases to be nice at the boundary. 

In general, the first kind of the construction of functions on the quotient 
space is cohomological in nature that if one seeks for functions satifying certain 
equations, but then there are very few solutions. Instead, the second approach 
in noncommutative geometry can typically produce a large class of functions on 
noncommutative spaces. • 

5 Spaces of leaves of foliations 

There is a rich collection of examples of noncommutative spaces given by the leaf 
spaces of foliations. The conection between noncommutative geometry and the 
geometric theory of foliations is far-reaching obtained, for instance, through the 
role of Gelfand-Fuchs cohomology, of the Godbillon-Vey invariant, and of the 
passage from type III to type II using the transverse frame bundle. It is the class 
of such examples that triggered the initial development of cyclic cohomology (cf. 
[148]), of the local index formula in noncommutative geometry, as well as the 
theory of characteristic classes for Hopf algebra actions. 
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The com;truction of the algebra ru;sociated to a foliation is a special cru;e of 
the construction in the previous section, but with the presence of holonomy and 
the special care for the case where the graph of a foliation is non-Hausdorff. 
Recall the basic steps below. 

Remark. (Added). Before doing so, recall some notions in manifolds from [183]. 
For f a smooth function on a smooth manifold Jl,J, the differential of J at 

p E M is the linear map dfp : Tp(M) -+ IR defined by dfv(X) = X(J), which is 
identified with an element of Tp(J\.J)*. 

Let cp: M-+ M' be a continuous map between smooth manifolds. If Jo cp 
for any f E e00 (M', IR) is smooth, then cp is said to be smooth. 

The differential of such a smooth map cp at p E M is the linear map 
dcpp: Tp(l\l)-+ Tcp(p)(M') defined by dcpp(X) = X' with X'(g) = X(g o cp) for 
g E e00 (M', IR). 

If dcpp i::; ::;urjective, the point p is said to be a regular point and cp(p) is to 
be a regular value. If not, p is to be a critical point and cp(p) to be a critical 
value. 

If dcpp at every p EM is injective, cp: M-+ M' is said to be an immersion. 
If so, for any p E M, there is a neighbourhood Up of p such that the restriction 
of cp to Up is a homeomorphism. An immersion is said to be an embedding if 
cp h; also injective. 

A submanifold M of a smooth. manifold M' is a smooth manifold M C M' 
such that the inclusion map is an immersion. Such a submanifold is regular if 
the inclusion map is an embedding. 

A smooth map between smooth manifolds without critical points is said to 
be a submersion. If cp: M-+ M' is a submersion, then for any q EM', cp-1 (q) 
is a regular submanifold of M, and M is covered by a family of mutually disjoint 
submanifolds, as M = LiqeM'cp- 1(q). 

Let cp : M -+ lvl' be a smooth map and N' be a submanifold of M'. Then 
Tq(N') is a subspace of Tq(M') for q E N' and thus there is a quotient map 
1rq : Tq(M') - Tq(M')/Tq(N'). The map cp is transverse to N' if 'lrip(p) o dcpp : 
Tp(M)-+ Tq(M')/Tq(N') is surjective. If so, cp- 1(N') is a submanifold of M. 

The transversality theorem states that for any smooth map cp : M -+· M' 
and any submanifold N' of M', there is a smooth map 'l/J : M -+ M' transverse 
to N', which is arbitrary approximately near to cp. 

If M, N are submanifolds of M', then M and N intersect transversely if 
the inclusion map MC M' is transverse to N. 

A vector field X on M (or its subset) is defined to be a function sending each 
point p E M to a tangent vector Xp E TpM. It is also defined to be a section 
of the tangent bundle TM over M. For any/ E e00 (M,IR) and X: M-+ TM 
as a section, the function X f on Mis defined by (X J)(p) = Xp/ for p EM. If 
each function X f is smooth (or er class), then Xis said to be a smooth (or er 
class) vector field on M. • 

Let M be a smooth manifold and TM its tangent bundle over M, so that 
for each x E M, TxM is the tangent space of Mat x. A smooth subbundle F 
of TM is said to be integrable it one of the following equivalent conditions is 
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satisfied (cf. (66, I 4.,8]): 

(a) Any x EM is contained in a submanifold W(x) (a leaf) of M such that 

Ty(W(x)) = Fy for y E W(x). 

(b) Any x E M is in the domain U C AI of a submersion p : U -+ Rq 

with q = codim(F) and with Fy = ker(p.)y for y E U. 

(c) C00 (F) = {f E C00 (TM) I fx E Fx,X E 1\1} is a Lie algebra. 

(In other words, if J,g E C00 (F), then [J,g) E C00 (F): (Frobenius).) 

(d) The ideal J(F) of smooth exterior differential forms which 

vanish on F is stable under exterior differentiation. 

Any I-dimensional subbundle F of TM is integrable. But if dim F ~ 2, then 
the condition is non:.trivial. For instance, if p : P -+ B is a principal H-bundle 
over B with H a compact structure group, then the bundle of horizontal vectors 
for a given connection is integrable if and only if the connection is flat. 

A foliation of M is given by an integrable subbundle F of TM. The leaves 
of the foliation (M, F) are the maximal connected submanifolds L of M with 
Tx(L) = Fx for x E £. The partition of M into leaves as AI = U0rexL0r is 
characterized geometrically by its local triviality in the sense that every point 
x E M has a neighbour hood U and a system of local coordinates (xi) i = 1, ... ,dim M 

called foliation charts, so that the partition of U in connected components.of 
leaves corresponds to the partition of 

Rdim M = JR.dim F X ]Rcodim(F) 

into the parallel affine subspaces of the form IR.dim F x {point}. These are the 
leaves of the restriction of F, called plaques. 

The set :F = M / F of leaves of a foliation (M, F) is in most cases a noncom­
mutative space (to be corresponded). In other words, even though as a set it has 
the cardinality of the continuum, it is in general not so at the_ effective level and 
it is in general impossible to construct a countable set of measurable functions 
on M that form a complete set of invariants for the equivalence relation coming 
from the partition of Minto leaves as M = LiL,.e:FL0 • Even in the simple cases 
in which the set :F = M / F of leaves is classical, it helps to introduce associated 
algebraic tools in order to get a feeling for their role in the singular case. 

(Added). In the literature as [183), a foliated manifold is defined to be 
M of (M, :F) with :F as such a foliation. In this case, the set of all tangent 
vectors of M tangent to leaves of :F defines such a ::mbbundle F of TM, called 
the tangent bundle of :F denoted as T(:F). Also, the set of all tangent vectors of 
M orthogonal to leaves of :F defines the normal bundle of :F denoted as N(:F), 
which is isomorphic to TM/T(:F). • 

To each foliation (M, F) associated is canonically a foliation C*-algebra 
C*(M, F) which encodes the topology of the space of leaves. The construc­
tion is basically the same as the general one for quotient spaces mentioned 
above. But there are interesting nuances coming from the presence of holonomy 
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in the foliation context. To take it into account, first construct a manifold .N 
with dim N = dim AI+ dim F, called the graph or holonomy groupoid of the 
foliation, which refines the equivalence relation coming from the partition of M 
into leaves as .M = UL

0
e;:L0,. This construction is due toThom, Pradines, and 

Winkelnkemper (cf. (238) missing). 
An element , of N is given by two points x = s(,) and y = r(,) of M 

together with an equivalence class of smooth paths: ,(t) EM fort E (0, 1) such. 
that ,(O) = x and ,(1) = y, tangent to the bundle F, so that }i;(t) E F-y(t) 

for t E (0, 1), up to the following equivalence in the sense that , 1 and ,2 are 
equivalent if and only if the holonomy of the path , 2 o , 11 at the point x is the 
identity. (Namely, those elements may be identified with classes of 1r1(L) for a 
left L in M and some base point in L, and which may be identified with the 
holonomly group for L, of germs of diffeomorphisms). 

The graph N has an obvious com posit.ion law that the composition , o, for 
,, ,' E N makes sense ifs(,)= r(,'). If the leaf L which contains both x and y 

has no holonomy, then the class of the path ,(t) in N only depends on the pair of 
x and y. The condition of trivial holonomy is generic in the topological sense of 
dense Ga. In general, for x = s(,) fixed, the map from Nx ={,EN Is{,)= x} 
to the leaf L through x, given by sending, E Nx toy = r(,), is the holonomy 
covering of L. 

Both the range and source maps r and s from the manifold N to M are 
smooth submersions and the paired map ( r, s) : N 2 - M 2 is an immersion 
whose image in lv/2 is the often singular, subset 

{(y, x) EM X MI y and X are on the same leaf}. 

In the first approximation, elements of C" (M, F) are viewed as continuous 
matrices or sections k(x, y), where (x, y) varies in the subset above. Now de­
scribe the foliation C* -algebra in more details. For the notational convenience, 
assume that the manifold N is Hausdorff. Since it fails in the case of interesting 
examples, also explain briefly how to remove thi:::; hypothesis. 

1 

The basic elements of C* ( M, F) are smooth half-densities / E C':° ( N, ff/v) 
l 

with compact support on N. The bundle ni of half-densities over N is defined 
1 

as follow::;. First define a line bundle n 11 over M, such that for x E, M, one lets 
! -nJ be the I-dimensional complex vector space of maps from the exterior power 

Ak Fx with k = dim F to C satisfying 

p(,,\v) = l--\l½p(v), v E AkFx,,,\ ER. 
1 l l 

Then, for, EN, identify n{ with !-dimensional complex vector space nJ ®f2], 
where, is such a path between x and y. In other word::;, define · 

1 1 1 

ni = r*(nl1> ®s*(nx1>· 
! 

The bundle f2X1 is trivial on M. Thus we could choose once and for all a 
l 

tirvialization v turning elements of C':°(N,f21) into functions. The use of half 
densities makes all the constructions canonical. 
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1 

For f, g E C':°(N, ff/v ), the convolution product f *9 is defined as the equality 

u. g)(-y) = Lo.,,~, J(-ri)g(-y.). 

This makes sense because, for fixed , such a path between x and y and fixing 
Vx E /\k Fx and Vy E /\k Fy, the product f(,1)9(,11--y) defines a one-density on 
NY= b1 EN I r(,1) = y}, which is smooth with compact support and vanishes 
if --y1 is not contained in the support of f, and hence can be integrated over NY 
to give a scalar, namely the right hand side (/ * g)(--y) evaluated on Vx and Vy. 

The involutive operation is defined as f* (,) = J(,- 1 ). Namely, for fixed , 
such a path between x and y and fixing Vx E /\ k Fx and Vy E /\ k Fy, then f* (,) 
evaluated on Vx and Vy is equal to J(,- 1 ) evaluated on Vy and Vx-

• It then follows that C':°(N, n;.,) becomes an involutive or *-algebra. 
For each leaf L of (M, F), one can define a natural representaion of this 

*-algebra on the £ 2-space of the holonomy covering L ~ of L, as follows. Fix a 
base point x EL, identify£~ with Nx = {-y EN I s(--y) = x} and define 

('irxeL(/)€)(,) = 1 /(,i)€(,2), €.E L2 (Nx), 
-Y10-Y2 

which is the £ 2-space of all square integrable, half-densities on Nx. Given such 
a path --y between x and y, there is a natural isometry between L2 (Nx) and 
L2 (Ny), which transforms the representation 1rx to 1ry. 

1 

By definition, C*(M, F) is the C*-algebra completion of C':°(N, n;.,) by the 
universal norm with respect to leaves L in M · 

11/11 = sup ll1rxeL(/)IJ. 
xEL,LCM 

Note that the foliation C*-algebra C*(M, F) is always separable with respect 
to the norm and admits a natural smooth dense subalgebra as C':°(M, F) = 

1 

C':°(N, O"M of smooth compactly supported half-densities on N. 
If such a leaf L has trivial holonomy, the corresponding representation 1rxeL 

is irreducible. In general, its commutant (algebra) may not be only scalars and 
is generated by the action of the (discrete) holonomy group N; on L2{Nx)-

Example 5.1. {Edited). If the foliation comes from a submersion p: M-• B, 
then its graph N is 

N = {(x, y) E M x MI p(x) = p(y)}, 

which is a submanifold of M x M, and then C* (M, F) is identical to the algebra 
of the continuous field of Hilbert spaces £ 2 (p- 1 ( { x})) for x E B. Thus, unless 
dim F = 0, it is isomorphic to the tensor product of Co(B) with IK{H) the 
elementary C* -algebra of compact operators on a Hilbert space H. 

If the foliation comes from an action of a Lie group G in such a way that 
the graph is identical to M x G (this is not always true, even for flows with 
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G = IR), then C*(M, F) is identical to the redµced crossed product Co(M) '>4rG 
of Co(M) by G. • 

Moreover, the construction of C*(J\1, F) is local in the following sense. If 
U c l\,f is an open subset and F' is the restriction of F to U, then the graph 
N' of (U, F') is an open subset in the graph N of (M, F), and the inclusion 

I I 

C'g° ( N', n iv,) c C'g° ( N, n iv) extends to an isometric *-homomorphism from 
C*(U, F') to C*(M, F). The proof is straightforward and also applies to the 
case of non-Hausdorff graph. 

Let us now briefly explain how the construction of the foliation C* -algebra 
C* (/1,/, F) is done in the case where the graph of the foliation is not Hausdorff. 
This case is rather rare, since it never -occurs if the foliation is real analytic. 
However, it does occur in the cases with topologically interesting foliations, 
such as the Reeb foliation of the 3-sphere, which are constructed by patching 
together foliated manifolds (Mi, Fi) with boundaries, where the boundary oMi 
is a leaf of Fi· In fact, most of the constructions done in geometry to produce 
smooth foliations of given co-dimension on a given manifold give non-Hausdorff 
graphs. The C*-algebra C*(M,F) turns out in this case to be obtained as a 
fibered product of the C*-algebras C*(Mj, FJ)· 

Example 5.2. (Added). Recall from Foliation in (183] the Reeb foliation. Let 
f(x) be a smooth, even function on the open interval (-1, 1) such that 

dk 1 
lim -d k f'( ) = 0, k = 0, k EN. lxl-1 X X 

For instance, may let f(x) = I tan(;:z=)I. Then ,,[x) = ¾ cos2 (1rn (x > 0), which 
goes to zero as x - 1 with x < 1. 

Consider the family of the ordinary graphs Le c JR.2 of functions y = f(x)+c 
for c E JR and x E ( -1, 1) and two lines £±1 : x = ±1. These define the smooth 
(Reeb) foliation for the product space M2 = [-1, l] x IR c R2 c IR3 , so that 

M2 = (UcelllLc) U (L; U L'_i). 

Rotating lv/2 around the y-axis of JR2 in JR3 defines the smooth (Reeb) foliation 
for M3 = D2 x R c IR3 with co-dimension 1, as · 

M3 = D2 x R = (UceaL;') U (S1 x R), 

where D2 is the closed unit disk in JR2' with the boundary oD2 = S 1 , and the 
leaf L'; as the rotation of Le has a bundle structure over the interval [c, oo) with 
fibers given as a point at c and as a circle at other points. 

That foliation for !v/3 is invariant under translation along JR the y-axis. Hence 
it induces the similar (Reeb) foliation for D2 x S 1 as the Reeb, component, as 

D2 x S1 = (UceRL;") U 1r2 • 

Note as well that the induced leaf L';' in D2 x S 1 has the closure with the 
boundary equal to the real 2-dimem,ional torus 'Il'2 • 
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Since the real 3-dimensional sphere S3 is obtained by attaching the boundary 
as the 2-torus '['2 of two copies of D2 x S1 , the Reeb foliation for S3 is given 
by taking the Reeb foliation for D 2 x S1 component-wise. • 

In the general, non-Hausdorff case, the graph N of (M, F) being non-Hausdorff 
may have only few continuous functions with compact support. However, by 
being a manifold, we can give a local chart as x : U - JRdim N. Then take a 
smooth function f E C':'(Rdim N) with the support off contained in x(U), and 
consider the function on N equal to/ox on U and to O outside of U. If N were 
Hausdorff, then this would generate all of C':'(N) by taking linear combinations. 
In general, we take this linear span as the definition for C'g°(N). Note that we 
do not get continuous functions, since there may well be a sequence Un E U 
with two limits, one in the 8upport of f o x and the other in the complement of 
u. 

l 

The above definition of C':'(N) extends to define C':'(N,D.;.,) the space of 
smooth half-densities on N with compact support. It then follows that the 

l 

convolution product and the involution are defined for elements of C':'(N, n;., ). 
Moreover, proceed exactly as in the Hausdorff case and construct the repre-

1 

sentation 'IrxeL of the *-algebra C':'(N, n;.,) on the Hilbert space L2(Nx)- Note 
that though N is not Hausdorff, each N x is Hausdorff, being the holonomy 
covering of the leaf L through x. 

l 

For each f E C':'(N,D.;.,) and x EL CM, the operator rrxedf) is smooth 
and bounded on L2 (Nx)-

Exactly as in the Hausdorff case, the foliation C* -algebra C* ( M, F) is defined 
l 

to be the C*-completion of C':'(N,D.1) with the norm 

IIJILu,F = sup llrrxeLU)II. 
xEL,LCM 

There is the so obtained functor from foliations to foliation 9* -algebras, 
which makes it possible; first of all, to translate from basic geometric properties 
to corresponding algebraic ones. The simplest examples of foliations already 
exhibit remarkable C* -algebras. 

Example 5 .. 3. (Edited). For instance, the horocycle foliation of the unit sphere 
bundle of a Riemann surface with genus 2:: 2 gives a simple C* -algebra without 
idempotents. 

The Kronecker foliation with angle 0 (as slope, ratio, or 21r0 radian) nonzero 
gives rise to the noncommutative 2-torus, which is simple if and only if 0 is 
irrational (cf. §6 below). • 

In the type II situation with the presence of a holonomy invariant transverse 
measure .X, the basic result of the theory is the longitudinal index theorem which 
computes the £2-index of differential operators Don a foliated manifold (M, F), 
which are elliptic in the longitudinal direction, i.e., the restrictions DL of D to 
the leaves L are ~lliptic operators. 
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Let us start with a pair of smooth ve"ctor bundles E1, E2 on.J\./ together with 
a differential operator D on AI from sections of E1 to those of E2 such that: 

(1) D i::; restricted to leaves in the sense that (D~)x o:nly depends on the 
restriction of a section { of E 1 to a neighbourhood of x in the leaf of x, i.e., D 
only uses partial differentiation in the leaf direction. 

(2) p is elliptic when restricted to any leaf. 

Theorem 5.4. ((58]). (a) There exist Borel transversals B and B' respectively 
such that the bundles ( l2 ( L n B)) LE AI IF and ( l2 

( L n B')) LEM Ip are measurably 
isomorphic to the bundles (ker(DL))LeM/F and to (ker(Di)heM/F· 

(b) The scalar >-.(B) < oo is independent of the choice of B and is denoted 
as dimA(ker(D)). 

(c) 
k(k + 1) 

climA{ker(D)) - dimA(ker(D*)) = (-1) 
2 

(ch{av)Td(Fc), (C]), 

where k = dim F, ch(av) is the Chem character (cohomology) class (or form) 
for the symbol av of D, Td{Fc) is the Todd genus cla~s (or form), and [CJ E 
Hk(M, C) is the homology class of the Ruelle-Sullivan current C, which is a 
closed de rham current of dimension k and encodes the transverse measure ).. 
by integtration of a k-dimensional differential form w on M along the plaques 
of foliation charts (and as well, (·, •} means the pairing between cohomology and 
homology theories) 

In particular, the Betti numbers /3j. of a measured foliation are defined by 
(58), and given is the £ 2-dimension of the space of £ 2-harmonic forms along the 
leaves. More precisely, 

Theorem 5.5. ([58]). {Edited). (a) For each integer j with O ::; j ::; dim F, 
there exists a 1Jorel transversal Bi such that the bundle (H1(L.<C)heM/F of j­
th square integrable harmonic forms on L is measurably isomorphic to (l2 (L n 
B))LeM/F· 

(b) The scalar /3j = >-.(B1) is finite, independent of the choice of Bj and of 
the choice of the Euclidean structure on F. 

( c) One has Li ( - 1 )i ,61 = x ( F, ).. ) , which is the Euler characteristic, given 
by the pairing of the Ruelle-Sullivan current C with the Euler class e(F) of the 
oriented bundle F over M. 

Extending ideas of Cheeger and Gromov (51] in the case of discrete groups, 
It is shown by D. Gaboriau (115) (and (116) missing) as a recent remarkable 
result that the Betti numbers /3j(F, >-.) of a foliation with contractible leaves are 
invariants of the measured equivalence relation 7?, = {(x,y) I y E L,x EL}. 

In the general case, it can not be expected to have a holonomy invariant 
transverse measure. In fact, the simplest foliations are of type III from the 
measure theoretic point of view. Obtaining an analogue in general as the theo­
rems above is the basic motivation for the construction of the assembly map. 

Let us briefly state the longitudinal index theorem as follows. Let D be as 
above an elliptic differential operator along the leaves of the foliation (M, F). 
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Since D h; elliptic, it has an inverse modulo c•CM, F), and hence it gives an 
element inda(D) of K 0 (C*(l\.J, F)), which is the analytic index of D. 

The topologial index is obtained as follows. Let i be an auxiliary embedding 
of a manifold M into R2n. Let now N be the total space of the normal bundle to 
the leaves as Nx = i. (Fx).L C IR2n. Foliate Af~ = M x R2n by p~ with Ft";,t) = 

Fx x {O}, so that the leaves of (M~, F~) are just i~ = L x {t}, where Lis a leaf 
of (,M, F) and t E R2n. The map sending (x, {) to (x, i(x) + {) sends an open 
neighbourhood of the 0-section in N into an open transversal Tof the foliation 
(M~, p~). For a suitable open neighbourhood n of T in lvJ~, the foliation 
C*-algebra C*(~, Fn) of the restriction En of p~ ton is Morita equivalent to 
C0 (T). Hence the inclusion C*(n, F0) c C*(l\1~, F~) yields a K-theory map: 
K 0 (N) - Ko(C*(M~, p~)). Since C*(M~, F~) ~ C*(M, F) ® C0 (R2n), then 
the Bott periodicty implies the equality K 0 (C*(M~,p~)) ~ K 0 (C*(M,F)). 

Using the Thom isomorphism, K 0 (F*) is identified with K 0 (N), so that we 
get by the above construction the topological index: 

indt : I<0 (F*) --+ I<o(C* (M, F)). 

Theorem 5.6. {Edited). The longitudianl index theorem of Connes and Skan­
dalis ([97)) is the equality: 

inda{D) = indt.{(avl) in Ko(C*(M, F)), 

where av is the longitudinal symbol of D and its class [av] E K 0 {F*). 

Since the K-theory group K 0(C*(M, F)) is hard to compute, one needs more 
computable invariants of its elements, and this is where cyclic cohomology enters 
the scene. In fact, its early development is already completed in 1981 for that 
precise goal {cf. [148]). The role of the trace on C*(M, F) associated to the 
transverse measure ). is now played by cyclic cocycles on a dense subalgebra· of 
C*(M, F). A hard analytic problem is to show that these cocycles have enough 
semi-continuity properties to define invariants of K0 (C*(M, F)). This is achived 
as in [62] and makes it possible to formulate corollaries whose statements are 
independent of the general theory, like the following: 

Theorem 5.7. {[62]). Let M be a compact, oriented manifold and assume . 
that the A"-genus A"(M) is non-zero, where M is not assumed to be a spin 
·manifold, so that A"(M) need not be an integer. Let then F be an integrable 
spin sub-bundle of TM. Then there exists no me tic on F, J or which the scalar 
curvature of the leaves is strictly positive on M. 

There is a rich interplay between the theory of foliations and their charac­
teristic classes and operator algebras even at the measure theoretic level, as the 
classification of von Neumann factors. 

In a remarkable series of paper, J. Heitsch and S. Hurder [132] (cf. (138] 
missing and [139]) have analyzed the interplay between the vanishing of the 
Godbillon-Vey (GV) invariant of a compact foliated manifold (M, F) and the 
type of.the von Neumann algebra of the foliation. Their work culminates in the 
following result of S. Hurder {[138J missing): 
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Theorem 5.8. If the von Neumann algebra of a foliated compact manifold 
(M, F) is semi-finite, then the Godbillon- Vey invariant vanishes. 

In fact, it is shown that cyclic cohomology yields a stronger result, by proving 
that if CV "I 0, then the central decomposition of the von Neumann algebra 
necessarily contains facctors whose virtual modular spectrum is of finite co­
volume in R+. Indeed, 

Theorem 5.9. ([62]). Let (M, F) be an oriented, transeversally oriented, com­
pact, foliated manifold with codim(F) = 1. Let fill be the assocaiated von Neu­
mann algebra, and mod(ml) be its flow of weights. Then, if the Godbillon-Vey 
class of ( M, F) is non-zero, then there exists an invariant probability measure 
for mod(fill). 

Actually constructed is an invariant measure for the flow mod(M), exploit­
ing the following remarkable property of the natural cyclic 1-cocycle T on the 
algebra A oft.he transverse 1-jet bundle for the foliation: 

When viewed as a linear map 8 from A to its dual, 8 is an unbounded 
derivation, which is closable, and whose domain extends to the center 3 of the 
von Neumann algebra generated by A. Moreover, 8 vanishes on this ceter, and 
elements h E 3 can then be used to obtain new cyclic cocycles Th on A. The 
pairing defined as l(h) = (Th, µ(x)) with the K-theory classes µ(x) obtained 
under the assembly mapµ, which is constructed by [16}, does give a measure 
on 3, whose invariance under the flow of weights follows £rpm discreteness of 
the K-theory group. To show that it is non-zero, use an index formula that 
evaluates the cyclic cocycles, assocaiated as above to the Gelfand-Fuchs classes, 
on the range of the assembly map µ. 

The central question in the analysis of the noncommutative leaf space of 
a foliation is the step 3, namely the metric aspect which entails in particular 
constructing a spectral triple describing the transverse geometry. The reason 
why such a problem is so difficult is that it essentially amounts to doing metric 
geometry on manifolds in a way, which is background independent, by using the 
terminology of physicists, i.e., which is invariant under diffeomorphisms rather 
than covariant as in traditional Riemannian geometry. 

Indeed, the transverse space of a foliation is a manifold endowed with the 
action of a large pseudo-group of partial diffeomorphisms implementing the 
hoonomy. Thus, in particular, no invariant metric exists in the general case, 
and the situation is similar to trying to develop gravity without making use of 
any particular background metric, which automatically destroys the invariance 
under the action of diffeomorphisms (cf. (94] and (190} both missing). 

Using both the theory of hypo-elliptic differential operators and the basic 
technique of reduction from type III to type II, a general construction of a 
spectral tripie is done by Connes-Moscocivi [89]. The remaining problem of the 
computation of the local index formula in cyclic cohomology is solved by [90] 
and leada in particular to the discovery of new symmetries given by an action 
of a Hopf algebra which only depends upon the transverse dimension of the 
foliation. This also leads to the development of. the noncommutative analogue 
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of the Chern-Weil theory of characteri8tic classes (91] in the general context of 
Hopf algebra action::; on noncomutative spaces and cyclic cohomology, a 8ubject 
which is under-going in rapid progre8s, in particular thanks to the recent works 
by M. Khalkhali [147] {mi::;::;ing), [148] and collaborators ([128], (149}, (150), 
[151]). 

6 The noncommutative tori 

The noncommutative torus is considered as the prototype example of a noncom­
mutative space, since it illustrates the properties and structures of noncommu­
tative geometrie8. Noncommutative tori play a key role in the early development 
of the theory in the 1980'8 {[59)), giving rise to noncommutative analogues of 
vector bundles, connections, curvature, etc. 

Noncommutative tori can be regarded as a special case of noncommutative 
spaces arising from foliations (cf. (66, I 4.,B]). In this case, consider certain 
vector fields on the ordinary real 2-dimensional torus 1'2 = R2 /Z2 • In fact, 
consider the Kronecker foliation on 1r2 as dx = Ody, where 0 is a given real 
number. The case where 0 is irrational is especially interesting. Consider the 
space of solutions of the differential equation: dx = Ody for x, y E R/Z. In other 
words, consider the space of leaves of the Kronecker foliation on 1I'2 • 

{Added). Namely, 

1I'2 = UeeR/ZLe, Le= {(x, y) E (R/Z)2 Ix= 0y + c} ~ IR. 

There is the following vector bundle diagram: 

FcT1I'2 .--

l II 
{(!)P =} (~)P} CIR (/x)P EBR (a°y)P, 

with F; = {(dx)p = O(dy)p} c (Tp1r2)* = R(dx)p EB R(dy)p the co-tangent 
vector space of 1r2 at p E 'lr2 . Note that a section of the co-tangent bundle 
(T1'2 )* over 1'2 such as the function dx : p 1-+ (dx)p is called a differential 1-
form. Note as well that any p E 'lr2 is contained in Le for some c E IR such that 
Tq(Le) = Fq for any q E Le. Hence, the subbundle F is integrable, namely a 
foliation bundle. • 

Choose a transversal T to the Kronecker foliation, given by T = (IR/Z) x {O}, 
so that T ~ S 1 (homeomorphic or diffeomorphic). Two points of the transversal, 
which differ by an integer multiple of 0 give rise to the same leaf. Describe the 
quotient space S1 /OZ by the equiv~lence relation which identifies any two points 
on the orbits by the irrational rotation or shift on T as Ro(x) = x + 0 mod 1. 

May regard the circle S1 = T and the quotient space T /fJ.Z at various levels of 
regularity such as being smooth, topological, and measurable. This corresponds 
to different algebras of functions on the space S1 as 

C00 (S1
) C C(S1

) C L00(S1 
). 
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When passing to the quotient 8 1 /0Z, if we consider invariant functions under 
the action, then the algebra of such functions at any levels has only constant 
functions. 

Instead, if we consider the algebra of functions on the graph of the equiva­
lence relation with the convolution product, then we obtain a highly non-trivial 
noncommutative algebra as a noncommutative space, describing the space of 
leaves of the Kronecker foliation. This is given in the algebraic category by the 
irrational rotation algebra as 

Ae ={(%)I i,j ET, Li= Li}· 

Namely, elements of the algebra are oo x oo matrices, but with finitely many 
non-zero (rows with) entries associated to the transversal T = 8 1 mod the 
action. The algebraic rules become the same as for ordinary matrices (but with 
product as multiplication of series). Since the equivalence on T is given by a 
group action by Z, the construction coincides with the crossed product as an 
algebra. 

(Added as a pm;sible corresponding interpretation). Note that the graph of 
the equivalence relation on Tis the set 

{(x,y) ET x Tix E T,y = Rnox,n E Z}, 

which is not discrete. But since the action of Z on T = S 1 is minimal, i.e., any 
orbit is dense in T, then we may assume that the parameter space is just a single 
orbit, i.e., a discrete space, to make sense of the matrix representation above. 
Namely, assume that {x, y) = (Rno(xo), Rmo(x0 )) for some fixed xo E T and 
n, m E Z. Moreover, an infinite row of the oo x oo matrix (ax,y) as above may 
be identified with a function on T belonging to C(S1 ). In this sense, we can 
define a C(S1 )-valued function on Z as Z 3 n ~ an,z E C(S1) (coordinated as 
n), which is viewed as an infinite column (an,z)n, Then the product is defined 
as the multiplication of series: 

(an,z)n * (bm,z)m = L an,z L bm,z• • 
n m 

For instance, in the topological category, Ao is identified with a dense *­
subalgebra in the ~rossed product C*-algebra as its norm closure: 

- 1 2 Ae C Ao = 2lo = C ( S ) ><l Ro Z = 1r o. 

This crossed product has two natural generators as C(S1 )-valued (continuous) 
functions on Z: for z E S1 , 

u = (un,z)n = {ol = l{z) n = l, and v = (vn,z)n = {z n = O,. 
1 '/; n E Z, 0 otherwise, 

where u is identified with the generator of Zand v is done with that of C(S1 ). 

In fact, any element b of 2lo can be written as a (norm convergent) power series 

b = (bn,z) = L bnun, bn = bn(z) E C{S1), Z E S1
, 

nEZ 
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where the multiplication rule is given by 

ufu- 1 = f o R91 = 09(!), f E C(S1
),09 E Aut(C(S1

)). 

(Added). Note as well that (cf. Rich :Mountain (232]) 

n m n,m 

n m n m'=n+m 

m=m' n m 

where the summands are the convolutions with respect to the action 09. • 
Since C(S1) as well as C00 (S1 ), L00 (S1) are generated by the function v(t) = 

e21l'it for t E IR {mod 1), it then follows that 2lo as well as Ao are generated by 
two unitaries u and ·u with presentation given by the commutation relation 

vu= Attv, .X = e211'iO_ 

If we work in the smooth category, then any element of A0 as a smooth crossed 
product contained in 2lo and containing Ao, called as the smooth noncommu­
taive 2-torus, is given by a power series 

L bn,mUnVm, bn,m E S(Z2
), 

(n,m)EZ2 

where S(Z2 ) is the Schwartz space of sequences on Z2 of rapid decay. 
In the definition of Ao, it is not always necessary to restrict to the condition 

that points i,j are in the tram,-versal 1'. Instead, it is possible to also form 
another algebra as 

Bo= {(aij) l,i,j E 1I'2 ,Li = Lj}-

Now the parameter of integration is no longer discrete. But this ought to corre­
spond to the same noncommutative space in NG. In fact, the algebras are related 
as the Morita equivalence, so that their C*-algebras are stably isomorphic as 

where 1K is the C* -algebra of all compact operators on a Hilbert space. 
The tangent space to the ordinary 2-torus 1I'2 ·is spanned by the tangent 

(direction) derivatives tz and ;Y at any point of 'Il'2 • By choosing coordinates 
u and v with u = e21rix and v = e 2rriy, the tangent vectors are given by 

!__?. !_ d !.__2. !._ ax - .... 1riu au an 8y - mv av. 

These have analogues in terms of derivations of the algebra as the noncommu­
tative torus. The two commuting vector fields which span the tangent space 
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for 1r2 correspond algebraically to two commuting derivations of the algebra 
C 00 (1r2 ) of smooth functions on 1r2 . 

These derivations are extended to make sense by replacing the generators u 
and v of C 00 (1I'2 ) by those of the smooth crossed product algebra A9 , which 
no longer commute. The corresponding derivations 81 and 82 are given by the 
same formulas as for %x and ;Y, so that 

d1(Lbn,mUnvm) = 2,riLnbn,m'lLnVm, 

n,m n,m n,m 

(Added). Hence it follows that 

82 o 81 (L bn,mUnvm) = 2,ri L nmAnbn,m'lLnVm = 81 O 62(L bn,mUnvm). 
n,m n,m n,m 

Hence the derivations are commuting on A0 (as well as the other algebras). 
(Added). Moreover, 

I I I ' I ' ' 01 (unvm)un vm + unvm81 ('un vm ) = (n + n )unvmun ·um 

61 ((unvm)(un' vm')) = c51(Amn' un+n' vm+m')) = (n + n')).mn' un+n' vm+m' I 

<>2(unvm)un' vm' + unvm82(un' vm') = (m).n + m').n')unvmun' vm' 

82((unvm)(un' vm')) = 62(Amn'-un+n' vm+m')) = (m + m')).mn'+n+n' un+n' vm+m' I 

It then follows that the Leibniz rule certainly holds for 61, but not for 62 (?). 
Instead of 82 , we may consider c5~ = 2,ri fv v as an action from the right, with v 
as the right multiplication (corrected). Then 

8~(,L bn,mUnvm) = L mbn,mUnVm, 

n,m n,m 

and c5~ o 81 = 81 o c5~, and moreover, 

o~(unvm)un' vm' + unvm8~(un' vm') = (m + m')unvmun' vm' 

<5'2 ((unvm)(un' vm')) = 82 ().mn' un+n' vm+m')) = (m + m')).mn' un+n' vm+m'. 

Therefore, the Leibniz rule holds for c5~. • 
Just as in the classical case of a usual manifold, what ensures that the 

derivations considered above are enough to span the whole tangent space is the 
condition of ellipticity for the Laplacian 6- = 8? + 8~. In Fourier modes, the 
Laplacian is of the form n2 + m2 , and hence 6-- t is a compact operator. 

The geometry of the Kronecker foliation is closely related to the structure 
of the algebra As. In fact, a choice of a closed transversal as T of the foliation 
corresponds canonically to a finite projective module over the algebra Ae or 2le: 
In fact, the main result on finite projective modules over the noncommutative. 
2-torus 'Ir~ is the following classification result, obtained by combing those of 
[59), [199), and [208]: 
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Theorem 6.1. Finite projective modules over 2lo are classified up to isomor­
phism by a pair of integers (p, q) such that p+q(} ~ 0. For a choice of such a pair, 
the corresponding module Pp,q is obtained from the transversal Tp.q given by the 
closed geodesic of the 2-torus 1r2 specified by (p, q), via the following construc­
tion. Elements of the module associated to the transversal Tp,q are rectangular 
matrices (~i,j) with (i,j) E 1r x S1 with i and j belonging to the same leaf. The 
right action of (ai,i) E Ao is by matrix multiplication. 

For instance, from the transversal in the y-axis one can obtain the following 
module over Ao. The underlying linear space is the usual Schwarz space S(IR) 
of complex-valued, smooth functions on R such that all of whose derivatives are 
of rapid decay. The right module structure is given by the action of the two 
generators u, v: 

(~u)(s) = ~(s + 0) and (~v)(s) = e21ris~(s), s E JR. 

Then the commutation relation v·u = .Xuv is satisfied, and the space S(R) as a 
right module over Ao or A9 is finitely generated and projective, i,e, it comple­
ments to a free module. 

Finitely generated, projective modules play an important role in noncom­
mutative geometry, as they replace vector bundles in the commutative setting. 
In fact, in ordinary commutative geometry, vector bundles are equivalently de­
scribed through their sections, which in turn form a finitely generated, projective 
module over the algebra of smooth functions. The notion of finitly generated, 
projective modules contiues to make sense in the noncommutative setting, and 
provides in this way a notion of noncommutative vector bundles. 

Suppose given a vector bundle E over a smooth manifold X, which is de­
scribed algebraically through the space C00 (X, E) = A of smooth sections on 
X. The dimension of E is computed by the trace of the identity endomorphism. 
In terms of the space of smooth sections on X and hence of finitely generated, 
projective modules£= pAm for some m and some finite projection p E Mm(A), 
it is possible to recover the dimension of E as a limit 

dim A £ = lim .!_ # { Generators of en}, 
n--oo n 

where#{·••} means the number of a set. 
This method is applied to the noncommutative setting. In the case of the 

noncommutative tori, it then follows that the Schwarz space S(.IR) has dimension 
dimAo S(R) = ()_ Similarly, one finds values p + q0 for the more general case as 
in the theorem above. 

The appearance of a real-valued dimension is related to the density of trarn,-ver­
sals in the leaves, that is, the limit 

1
. #(Br n S) 
Im----

r-oo IBrl 
where Br is the ball of radius r in a leaf and S = {x = O}. In this sense, 
the dimension 0 of the Schwarz space measures the relative densities of the two 
transversals S = {x = O} and T = {y = O}. 
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In general, the appearance of non-integral dimension is a basic feature of 
von Neumann algebra::; of .type II. The dimension of a vector bundle is the 
only invariant that remains when we use the algebra L00 {S1) of measurable 
functions from the measure theoretic point of view. The von Neumann algebra 
which describes the quotient space S1 /0'/l from the meai:;ure theoretic point of 
view is the crossed product von Neumann algebra 

This is the well known hyperfinite factor of type JJ1 . In particular, the classi­
fication of finitely generated, projective modules £ over R is given by positive 
real numbers a8 the Murray-von Neumann dimension 

The simplest way to describe the phenomenon of Morita equivalence for 
noncommutative 2-tori is given in ·terms of the Kronecker foliation, where it 
corresponds to reparameterizing the leaf ::;pace in terms of a different closed 
transversal. Thus, Morita equivalence of the algebras 2lo and Ql9, for 0 and 0' 
in the same orbit by PGL2 (Z) becomes simply a statement that the leaf space 
of the foliation is independent of the transversal use<l to parameterize it. For 
instance, Morita equivalence between 2lo and Ql_0 -1 corresponds to changing 
the parameterization of the space of leaves from the transversal T = {y = O} to 
the transversal S = {x = O}. 

More generally, an explicit construction of bimodules Mo.o• is obtained by 
Connes (59] (cf. Rieffel (207]). These are given by the Schwarz space S(IR x Z/c), 
with the right action of Ao given by 

c0+ d d 
uf(x, n) = f(x - --, n - 1) and vf(x, n) = e21ri(:i:-7) f(x, n), 

C 

and with the left action of Ao, given by 

u' f (x, n) = f(x - ~, n - a) and v' f(x, n) = e2,ri(i:iT-t<l-~> f(x, n). 
C 

The bimodule Mo,o• realizes the Morita equivalence between .Ae and .A9, for 

O' = aO + b = 0 g E PG L2 (Z). 
cO+d 9 ' 

7 Duals of discrete groups 

Noncommutative geometry provides naturally a generalization of Pontrjagin 
duality for discrete groups. The Pontrjagin dual fA of a finitely generated, 
discrete abelian group is a compact abelian group. The dual of a more general, 
finitely generated, discrete (non-abelian) group can be a noncommutative space. 
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To see this, recall that the usual Pontrjagin duality assigns to a finitely 
generated, discrete abelian group r its dual group r" = Hom(f, U(l) = 'Jr) of 
characters of r. The duality between rand f" is given by Fourier transform 

where , 1,··· ,'Yk are generators off, n = (n1,··· ,nk) E 'll.k ~ r, and z = 
(z1, · · · , zk) E 'Irk ~ r" (refined). 

Moreover, the Fourier transform gives an identification between the c•­
algebra of continuous, complex-valued function·s on f" and the group c• -algebra 
of r 

C(f") .~ C*(f), 

which is the universal C*-algebra completion of the group algebra C[f] = Cc(f) 
or the Banach *-algebra l1(r) of absolutely summable functions on r. Since r 
is commutative, C*(f) coincides with the reduced group c;(r), which is the 
C* -algebra generated by f under the left regular representation on the Hilbert 
space l2 (f) of square summable functions on r, and c; (f) is a quotient of C* ( G) 
in general. 

When r is non-abelian, the Pontrjagin duality is no longer applied in the 
classical sense as above. Indeed, r" is almost not Hausdorff, so that the left 
hand side makes no sense. However, the right hand side still makes sense and it 
behaves like the algebra of functions on a noncommutative space (as well as on 
the unitary dual r", which is the space of equivalence classes of unitary repre­
sentations of r). It can be said that for a non-abelian group r, the Pontrjagin 
dual is certainly generalized to the unitary dual, but this is also rather limited to 
such as the case where the unitary dual has a composition series with Hausforff 
sub-quotients. More generally, the reduced group C*-algebra c;(r) as well as 
C* (f) are viewed as a noncommutative space as an algebra of coordinates. In 
fact, the representation theory off is just identified with that of C*(f), not of 
C;(r). (Detailed). 

A_s an example that illustrates the general philosophy above, 

Example 7.1. Recall below that the dihedral group can be written as a semi­
direct product Z ><1 Z2 , which is isomorphic to the free product ~ * Z2, with 
Z2 = Z/2.Z. 

First note that any representation of the free product group ~ * Z2 = r 
is identified with a pair of subspaces E and F in the Hilbert space H. Define 
the operators u = l - 2PE and v = l - 2pp with PE and PF the projections 
co~responding to E and F respectively. Then u = u*, v = v*, and 

u2 = 1- 4pE + 4pE = l and v2 = 1 - 4pp + 4pp = l. 

Hence u and v represent reflections. 
The group r is realized as and generated by words in the generators u and v. 

Equivalently, the group r can be described as the semi-direct product Z ><1 Z2, 
by setting x = uv, with the action vxv- 1 = x- 1 (corrected). 
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The regular representation of r is analyzed by using the Mackey machine 
for semi-direct product groups. First consider representations of the normal 
subgroup Z Then consider orbits of the action of Z2 . The irreducible represen­
tations of Z are labeled by S 1 = 1I' and given by sending xn to z" for n E Z and 
z E S1 . The action of Z2 is the involution given by conjugation sending z to z. 
The quotient of S1 by the Z2-action is identified with the closed interval [-1, l] 
by sending z to the real part Re( z). For points in the open interval ( -1, 1), 
the corresponding irreducible representations of rare two-dimensional. At each 
of the two end-points ±1, two inequivalent I-dimensional representations of r 
correspond. Then it follows that C* (f) is isomorphic to t~e dimension drop 
C*-subalgebra of C([-1, 1), M2 {C)), converging to the trivial C*-algebra at ±1. 
• 

In the general theory for arbitrary discrete groups f, the first two basic steps 
are known as follows: 

{1) The resolution of the diagonal and computation of the cyclic cohomology 
are provided by the geometric model clue to Burghelea (39), given by the free 
loop space of the classifying space Bf. · 

{2) The assembly BC-map ((16)} from the K-homology of the classifying 
space Bf to the operator K-theory of the reduced C*-algebra c;(r) refined to 
take care of torsion in the group f and gives an approximation to the K-theory 
of c; (r) { cf. (220]). 

In the presence of a natural smooth subalgebra of c; (r) containing the group 
ring qr] and stable under holomorphic functional calculus, the combination of 
the two steps above makes it possible to prove an index theorem which is a 
higher dimensional form of Atiyah £2-index theorem for cov~rings. This gives 
the first proof of the Novikov conjecture for hyperbolic groups ((88)}. Since then, 
the analysis of dense smooth subalgebras has played a key role, an in particular, 
in the ground-breaking work of Vincent Lafforgue {(158)}. See also (16], (142), 
[220], and [221]. 

The next step {3) as the construction of a spectral geometry is directly re­
lated to the geometric group theory. In general, it can not be expected to obtain 
a finite dimensional spectral triple since the growth properties of a group, ex­
cept for groups with polynomial growth, give a basic obstruction (cf. (63)). A 
general construction of a 0-summable spectral triple is given in (66, IV. 9). Ba­
sically, the transition from finitely summable spectral triples to the 0-summable 
ones corresponds to that from the finite dimensional geometry to the infinite 
dimensional case. In the 0-summable case, the Chern character is no longer a 
finite dimensional cyclic cocycle and it is needed to extend to the cyclic coho­
mology using cocycles with infinite support in the (b, B) bicomplex, fulfilling 
a subtle growth condition. The general theory of the entire cyclic cohomology 
is developed in (65]. It is in general difficult to compute the Chern character 
in the 8-summable case and it would take a long time until it would done for 
the basic example as discrete subgroups of semi-simple Lie groups. In the case 
of real rank one, it has been achieved by a remarkable paper of M. Puschnigg 
[201]. . 
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The fourth step as the thermo--dynamics might seem irrelevant in the type 
II context of discrete groups. However, a small variant of the com;truction of 
the group rings, namely, as the Hecke algebra associa~ed to an almost normal 
inclusion of discrete groups in the sense considered in [29), suffices to meet the 
type III world. One of the open fields is to extend the above steps (I), (2), and 
(3) in the general context of almost normal inclusions of discrete groups, and to 
perform the thermo--dynamical analysis in the spirit of [73] in that context. 

8 Brillouin zone and the quantum Hall effect 

An important application to physics of the theory of noncommutative 2-tori is 
the development of a rigorous mathematical model for the integer quantum Hall 
effect (IQHE) obtained by Bellissard and collaborators ( cf. [19] and [20] both 
missing and [66]) (cf. (46) as well). 

The classical Hall effect is a physical phenomenon first observed in the 19th 
century ([129) missing). A thin metal (sheet) sample is now immersed in a 
constant uniform strong magnetic field, orthogonal to the surface of the sample. 
By forcing a constant current to flow through the sample in a direction, the 
flow of charge carriers in the metal is subject to a Lorentz force perpendicular 
both to the current and and to the magnetic field. Then the equation for the 
equilibrium of forces in the sample is given of the form 

- --+ --+ NeE + j AB =0, 

--+ 
where E is the electr:ic field, e and N are the charge and number of the charge - -carriers in the metal respec~ively, B is the magnetic field, and j is the current. 

The equation above defines a linear relation, so that the ratio of the in­
tensity of the Hall current to the intensity of the electric field defines the Hall 
con<:! uctance as · 

Ne8 
Uff=B, 

--+ 
with B = I BI (as norm) the intensi_ty of the magnetic field and 8 the sample 
{sheet) width. The dimension-less quantity 

N8h 
vn = -- =unRn 

Be 

is called the filling factor, while the quantity Rn = f,I is the Hall ·resistance. 
The filling factor measures the fraction of Landau level filled by conducting 
electrons in the sample. Thus, classically, the Hall conductance, measured in 
units of. f, equals the filling factor. 

In 1980, about a century after the classical Hall effect was observed, it is 
shown by the experiment of von Klitzing that lowering the temperature below 
I K, the relation of Hall conductance to filling factor shows plateaux at integer 
values {[153]). The integer values of the Hall conductance are observed with 
a surprising experimental accuracy- of the order of 10-s. This ph~nomenon of 
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quantization of the Hall conductance is known as the integer quantum Hall effect 
(iqHe, changed). 

It is first suggested by Laughlin [161) that the iqHe should be of a geometric 
origin. A detailed mathematical model of the iqHe is developed by Bellissrd 
and collaborators ((19) and (20) both missing). The model accounts for all 
the important features of the experiment such as quantization, localization, 
insensitivity to the presence of disorder, vanishing of direct .conduct~nce at 
plateaux levels, improving over the earlier Laughlin model. 

The Bellissard approach to the iqHe is based on noncommutative geometry. 
The quantization of the Hall condunctance at integer values is indeed geometric 
in nature in the sense that it resembles another well known quantization phe­
nomenon that happens in the more familiar setting of the geometry of compact 
two-dimensional manifolds, namely the Gauss-Bonnet theorem, where the inte­
gral of the curvature is an integer multiple of 21r, a property that is stable under 
deformations. In the same spirit, the values of the Hall conductance are related 
to the evaluation of a certain characterh;tic class, or in other words, to an index 
theorem for a Fredholm operator. 

More precisely, in the physical model, made is the simplifying assumption 
that the iqHe can be described by non-interacting particles. Then the Hamilto­
nian describes the motion of a single electron subject to the magnetic field and 
an add"itional potential representing the lattice of ions in the conductor. 

·1n a perfect crystal and in the absence of a magnetic field, there is a group 
of translational symmetries. This corresponds to a group of unitary operators 
u0 for a E G, where G is the locally compact group of symmetries. Turning 
on the magnetic field breaks this symmetry, in the sense that the translates 
Ha = u0 Hu; 1 (a =/ le) of. the Hamiltonian H no longer commute with H. 
Since there is no· preferred choice of one translate over the others, the algebra 
of observables must include all translates of the Hamiltonian, or more better, 
their (translated) resolvents, namely the bounded operators 

R 0 (z) = u 0 (zl - H)-1u-;; 1
, z r/. u(H) the spectrum of fl. 

For a particle of effective mass m and charge e, confined to the plane, subject 
~ 

to a magnetic field of vector potential A and to a bounded potential ·u, the 
Hamiltonian is of the form 

H = --;}- L (PJ - eAJ )2 + v = Ho+ v, 
-m 

J=l,2 

where the unperturbed part Ho is invariant under the magnetic translations, 
namely the unitary representation of the translation group R2 given by 

-ieB 
ua'f/J(x) = exp( 

2
/i w(x, a))'f/J(x - a), 

with w the standard symplectic form in the plane. 
The hull of the translated resolvents above as the strong closure yields a 

topological space, whose homeomorphism type is independent of the point z in 
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the resolvent (complement) set u(HY of H. Thh; provides a noncommutative 
version of the Brillouin zone. 

Recall that the Brillouin zones of crystals are fundamental domains for the 
reciprocal lattice obtained via the following inductive procedure. The Bragg 
hyperplanes of a crystal are the hyperplanes, along which a pattern of diffraction 
of maximal intensity is observed, when a beam of radiation such as X-rays is 
shone at the crystal. (For instance, for a convex part of a crystal which may not 
be conv~x, such a hyperplane is just a line through on a face of the local convex 
part). Then-th Brillouin zone consists of all the points such that the line from 
that point to the origin ·crosses exactly n - 1 Bragg hyperplanes of the crystal 
{where the hyperplaces are assumed not to contain the origin. But if they do 
contain the origin, then we may choose the other point, not contained, instead. 
In fact, the zones correspond to cutting as well as gradation of the crystal.) 

More precisely, in the case above, if e1 and e2 are generators of the periodic 
lattice, then there is a commutation relation 

where 0 is the flux (or bundle) of the magnetic field through a fundamental 
domain for the lattice, in dimension-less uni.ts. Hence the noncommutative 
Brillouin zone is described by a noncommutative 2-torus. 

This can also be seen in a discrete model, where the Hamiltonian is given 
by the operator 

(Haf)(m, n) = e-iaim J(m, n + 1) + eiaim f(m, n - 1) 

+ e-ia2n J(m + 1, n) + eia2n J(m - 1, n) 

for f E L2 (7l.2) {modified). This is a discrete version of the magnetic Laplacian. 
Note that the equation above can be written in the ( corresponding) form 

Ha =u+u"' +v+v*, 

where 

(uf)(m, n) = e-iaim J(m, n + 1) and (vf)(m, n) = e-ia2n J(m + 1, n). 

These satisfy the commutation relation of 'Ir~ with(}= a 2
2~a, (corrected). 

Proof (Added). For f, g E L2(Z2), 

(uf, g) = L e-iaim J(m, n + l)g(m, n) 
m,n 

= L J(m,k)eiaimg(m,k-1) = (J,u"'g) .. 
m,k=n+l 
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It then follows that u*u = uu• = l. Similarly, the same holds for v and v*. 

(vuf)(m, n) = v(uf)(m, n) = e-ia2 n(-uf)(m + l, n) 

= e-ia2ne-ia,(m+l) J(m + 1, n + 1), 

(uvf)(m, n) = ·u(vf)(m, n) = e-ia,rn(vf)(m, n + 1) 

= e-ia 1 me-ia2(n+l) J(m + 1, n + 1). 

Therefore, obtained is vu= ei(a2- 0i>uv = e21ri9uv. • 
In the zero-temperature limit, the Hall conductance satisfies the Kubo for­

mula 
1 

0-H = ;;----=--R r(pµ[c51Pµ, 82pµ]), 
..,.7r1, H 

where Pµ is the spectral projection of the Hamiltonian on energies smaller than 
or equal to the Fermi level (energy) Eµ, and r is the trace on Ao given by 

n,m 

and 81,82 are the derivations (where 82 should be replaced with c5~)- Here we 
assume that the Fermi level µ (or Eµ) is in a gap in the (possibly discrete) 
spectrum of the Hamiltonian.· In this case, the spectral projection Pµ belong 
to the C*-algebra of observables. The Kubo formula above can be derived 
from purely physical considerations, such as transport theory and the quantum 
adiabatic limit. 

The main result is then the fact that the integrality of the conductance 
observed in the integer quantum Hall effect is expained topologically in terms 
of the integrality of the cyclic cocycle r(a0 (c51a 182a2 - 82a 181a2)) ((59]). 

The fractional quantum Hall effect (fqHe) is discovered by St0rmer and 
Tsui in 1982. The setup is as in the integer quantum Hall effect as follows. 
In a high quality semi-conductor interface, which is modelled by an infinite 
(area), 2-dimensional surface, with low carrier concentration and extremely low 
temperatures similar to lOmK, in the presence of a strong magnetic field, the 
experiment shows that the graph of ~O"H against the filling factor v exhibits 
plateaux (which looks like bottoms) at certain (easy) fractional (or rational) 
values. 

The independent electron approximation, in the case of the iqHe, that re­
duces the problem to a single electron wave-function, is no longer viable in the 
fqHe. So we need to incorporate the Coulomb interaction between the elections 
in a many-electron theory. Nonetheless, it is possible to use a crude approxi­
mation, whereby we need to alter the underlying geometry to account for an 
average effect of the multi-electron interactions. Can be obtained in this way 
a model of the fqHe via noncommutative geometry, where we use hyperbolic 
geometry to simulate the interactions (cf. Marcolli-Mathai (179], and (178] and 
[180] both missing). 

- 41 - . 



The noncommutative geometry approach to the integer quantum Hall effect 
described above is extended to hyperbolic geometry in [40]. The analog of the 
operator fl 11 is given by the Harper operator on the Cayley graph of a finitely 
generated, discrete subgroup r of PSL2(R). Given a (normalized) 2-cocycle (or 
multiplier) a: f x f--+ U{l) satisfying a('Y, 1) = a{l, "Y) = 1 for "YE f and 

a('Y1,1'2)a('Y1')'2,1'3) = a('Y1,')'21'3)a('Y2,1'3), 1'1,1'2,')'3 E f, 

consider the right a-regular representation on the Hilbert space l2(f) of all 
square summable, C-valued functions on r, of the form 

r~'I/J("Y') = 1/J('Y'')')a(,'',"Y), "Y,"Y' E f 

satisfying r~ r~, = a( "Y, "Y')r~..,,. 

Proof (Added). Indeed, for 91, 92, 93 __ E f, 

(r;1 r;2 w)(93) = (r;2 '1/J){93g1)a{93,91) 

= '1/J( (9391 )92)a(93g1, 92)a(g3, 91) 

= 'I/J((g3(g1g2))a(g3, 9192)a(g1, 92) = a(g1, 92)(r;192 'l/1){93). • 

• 
For {9iH=i a symmetric set of generators of r (together with inverses), the 

Harper operator is of the form 

k 
- ~ O' 

Tu - L- r9,, 

i=l 

and the operator k - r u is the discrete analogue of the magnetic Laplacian ( cf. 
Sunada (or Sand-Field) [228) missing). 

The idea is that by the effect of the strong interaction with the other elec­
trons, a single electron sees the surrounding geometry as a hyperbolic world, 
with lattice sites that appear as a multiple image effect, as the points in a 
lattice r in PSL2(R). Thus, consider the general form of such a lattice as 
r = r(9;v1,··· ,vn), with generators ai,bi,Cj for i = 1,··· ,9 and j = l,··· ,n 
and with a presentation of the form 

with [ai, bi] = aibia; 1b;1 the multiplicative commuta_tor and with v1, · · · , Vj 
torsions and with 2g the number of torsion free generators. The quotient of the 
upper half-plane 1HI in C by the action of r as isometries 

E(g, V1, · · · , Vn) = f\llil 
is a hyperbolic orbifold. 
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Now let PE denote the spectral projection associated to the Fremi level E, 
i.e., PE = X(-oo,EJ(H) by functional calculus. Then, in the zero temperature 
limit, the Hall conductance is given by 

UH= trK(PE,PE,PE), 

where trK denotes the conductance (Kubo) 2-cocycle. It is a cyclin 2-cocycle 
on the twiseted group algebra qr, u] of the form 

g 

trK(fo, Ji, h) = L tr(Jo[8i(Ji)8i+9 (h) - 8j+9(/i)8i(h)]), 
j=l 

where 8j are derivations associated to the 1-cocycles associated to a symplectic 
basis {aj,bilJ= 1 of H 1(f,R} (cf. (180] missing). 

Within this model, obtained are the fractional values of the Hall conductance 
as integer multiples of orbifold Euler characteristics 

Xob(E(g; V1, · · · , Vn)} = 2 - 2g + V - n E Q. 

In fact, it is shown by Marcolli-Mathai ((178] and [180] both missing) that 
the conductance 2-cocycle is cohomologous to another cocycle, i.e., the area 2-
cocycle, for which can be computed the values on K-theory and hence the value 
of uH, by applying a twisted version of the Connes-Moscovici higher index 
theorem [88]. 

While in the case of the integer quantum Hall effect, the noncommutative 
geometry model is satisfactory enough to explain all the physical properties of 
the system, but in the fractional case, the orbifold model can be considered as 
a first rough approximation to the quantum field theory that governs the fqHe. 
For instance, the geometry of 2-dimensional hyperbolic orbifolds is related to 
the Chern-Simons theory through the moduli spaces of vortex equations. This 
remains an interesting open question. 

9 Tilings in _Euclidean spaces 

Recall now a tiling in ntd as follows. Let { b1, • • • , bn} be a finite collection of 
closed bounded subsets of Rd, homeomorphic to the closed unit ball. These bj 
are called proto-tiles. Usually assume that the proto-tiles are polytopes (or a 
connected union of cubes) in Rd with a singled-dimensional cell (fixed} as the 
interiors of the proto-tiles. But this assumption can be relaxed. A tiling of Rd 
is then defined to be a covering 'I of subsets with mutually disjoint interior, each 
of which is a tile, which is defined to be a translate of one of the proto-tiles. 

Given a tiling 'I ofJitd, can be formed its orbit closure under translations. The 
metric on tilings of Rd is defined as that two tilings are close if they almost agree 
on a large ball centered at the origin in !Rd. Fore more details and equivalent 
definitions, may refer to (4) (and [21) missing). 

·. Tilings can be either periodic or aperiodic. There are many familiar ex-· 
amples of periodic tilings. The best known examples of aperiodic tilings are 
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the Penrose tilings {[197) missing). Similar types of aperiodic tilings have been 
widely studied in the physics of quasi-crystals {cf. (14), (21), and also (167) triple 
missing). · 

It is understood early on in the development of noncommutative geometry 
{cf. (63) and (66)) that Pe.nrose tilings provide an interesting class of noncom­
mutative spaces. In fact, let n be the set of tilings 'Ij of ]Rd with given prototiles 
{b1, · · · , bn}, Define the equivalence relation on r given by the action of ]Rd by 
translations. Namely, identify tilings that can be obtained from one another by 
translations {or vector shifts). In the case of aperiodic tilings, this yields the 
type of quotient construction described before, which leads naturally to non­
commutative spaces. An explicit description of the noncommutative space for 
the case of Penrose tilings can be found at (66, IL 3). 

To simplify the picture slightly, we can consider the similar problem dually 
with arrangements of points of Rd instead of tilings. This is the formulation used 
in the theory of aperiodic solids and quasi-crystals {cf. [21] missing). Instead 
of those, we consider discrete subsets r,i of points of Rd. Such an r, is said to 
be a Delaunay set if there are radii r > 0 and R > 0 such that every open ball 
U(x, r) of radius r meets r, at at most one point and every closed ball B(x, R) 
of radius R meets r, at at least one point. 

{Added). Namely, for any x E !Rd, U(x,r) n r, is either a one point set or 
empty, and B(x, r) n r, always contains a pointr • 

Define the counting measure associated to the set r, as 

µ£(/) = L f(x), f E Cc(Rd) 
xe.C 

with/ any continuous, real-valued function on Rd with compact support. Define 
the action of JRd by translations as 

where ta is the translation by a. Then taken as the orbit closure of the measures 
µ.c in the space 'R.(Rd) of Radon measures, with the weak-* topology. Then 
obtained is the (topological) dynamical system (fl, t), where t is the action of 
Rd by translations. 

Tha~ dynamical system does determine a corresponding noncommutative 
space, which is described as the quotient of n by translations. Namely, the 
crossed product C* -algebra 

do arise. In fact, also consider the groupoid with set of units the transversal 

X = {w En I The supp(w) containis O}, 

arrows of the form (w, a) En x Rd, with source and range maps 

s(w, a)= Law, r(w, a)= wand (w, a) o (Law, b) = (w, a+ b) 
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(cf. (21) missing). This defines a locally comp~ct groupoid G(..C, X). 
Then the grouppoid C*-algebra C*(G(..C, X)) and C(S1) ><It JRd are Morita 

equivalent. 
In the case where ..C is a periodic arrangement points with a cocompact 

symmetry (or commutative lattice) group r in JRd, the space n is an ordinary 
commutative space, which is topologically homeomorphic to a torus, so that 
n = JR.d/r. The C*-algebra 2l in this case is isomorphic to C(f")@OC, where 1K 
is the C*-algebra of compact operators on a Hilbert space and f" ~ 'll'd is the 
Pontrjagin dual of the abelian group r ~ zd, which is obtained by taking the 
dual of Rd module the reciprocal lattice 

r~ = { k E !Rd~ (!Rd)* I {k, --y) E exp{27rZ) C 'll', 1' E r} 

(corrected). Thus, in physical language, --y" is identified with the Brillouin zone 
B = !Rd /f~ of the periodic crystal corresponding to ..C. In this periodic case, the 
transversal X = ..C/f is a finite set of points. As well, the groupoid C* -algebra 
C*(G{..C, X)) is isomorphic to C(f")@Mk(C), where k is the cardinality of the 
transversal X. Thus, the periodic case falls back into the realm of commutative 
spaces, in the noncommutative geometry, while the aperiodic patterns give rive 
to truly noncommutative spaces, which are highly non-trivial and interesting. 

Two of the richest sources of interesting tilings are the zellijs and the muqar­
nas, widely used in ancient architecture. Also, those patterns, collectively de­
fined as arabesques, not only do exhibit highly nontrivial geometry, but they 
reflect the intricate interplay between philosophy, mathematics, and aesthetics 
(cf. (9] and {38] both missing). Some of the best studies on the zelfijs and the 
muqarnas concentrate on 2-dimensional periodic patterns. 

For instance, may find a quoted sentence in [9, p. 43} that: 
"As Nature is based on rhythm1 so the arabesue is thythmic in concept. It 

reflects movement marked by the regular recurrence of features 1 elements, phe­
nomena; hence it has periodicity. 11 

It seems from that viewpoint that only the theory of periodic tilings as 
commutative geometry should be relevant in that context. However, more recent 
studies (cf. [38), [43), [44], and (193] all missing) suggest that the design of 
zellijs and muqarnas is not limited to two-dimensional crystallo-graphic groups, 
but, especially during the Timurid period, it involves also aperiodic patterns 
with fivefold symmetry, analogous to those (non included) observed in quasi­
crystals. This is not an accident and is certainly due to the result of a highly 
developed geometric theory. Indeed, already in the historic textbook of Abu'l­
Wafa' al-Buzjani (940-998) on geometric constructions ([235] missing), there 
is an explicit mention of meetings and discussions, where mathematicians are 
directly involved alongside artisans in the design of arabesque patterns. 

The appearance of aperiodic tilings is documented in the anonymous Per­
sian manuscript ([5J missing) titled as ''On interlocking similar and congruent 
figures", which dates back to the 11th-13th century. Some of these aperiodic 
aspects of zellijs and muqarnas are studied by Bulatov in a book ([38] missing), 
which also contains Vil'danova's Russian translation of the ancient Persian text. 
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For a more recent study of quasi-periodic tilings in Persian architecture, may 
find it. 

Remark . . (Added). Recall from [237] the following facts. Zellige (zellij in 
Arabic) is mosaic tile-work made from individually chiseled geometric tiles set 
into a plaster base. This form of Islamic art is one of the main characteristics 
of Moroccan architecture. It consist:; of geometrically patterned mosaics, used 
to ornament walls, ceilings, fountains, floors, pools, and tables. Muqarnas is a 
form of ornamented vaulting in Islamic architecture, the geometric subdivison 
of either a squinch, cupola, or corbel into a large number of miniature squinches, 
producing a sort of cellular structure, sometimes also called a honeycomb vault. 
It is used for domes, and especially half-domes in entrances, iwans, and apses, 
mostly in· traditional Persian architecture. • 

10 NC spaces from dynamical systems 

Let us look at some examples of noncommutative geometry (NCG) spaces as­
sociated to a dynamical system on a discrete set. For instance, such a discrete 
dynamical system is given by a self-mapping of a Cantor set. Such noncommu­
tative spaces have been (first) extensively studied in (a paper of GPS (118) or 
[222] {missing) for a survey) a series of papers, where C. Skau and his coworkers 
have obtained remarkable results on the classification of minimal actions of Z on 
Cantor sets using the K-theory of the associated (crossed product) C*-algebras. 

It is found recently {cf. [99}, [100] (missing), [174, §8] (missing), and (176, 
§4)) that the mapping torus of such systems can be used to model the dual 
graph of the fibers at the archimedean primes of arithmetic surfaces, in Arakelov 
geometry, as in the particular case in which the dynamical system is given by 
a subshift of finite type, encoding the action of a Schottky group r in SL2(C) 
on its limit set Ar. in 1(1>

1 (C). In fact, the results of [99] are motivated by earlier 
results of Manin [170} that provide a geometric model for such dual graphs in 
terms of hyperbolic geometry and Schottky uniformizations. 

Remark. Recall from [99] the following definitions. A Fuchsian group is a dis­
crete subgroup of PSL2 (JR.) the group of orientation preserving isometries of the 
hyperbolic plane 1HI2• A Kleinian group is a discrete subgroup of PSL2 (C) the 
group of orientation preserving isometries of the 3-dimensional real hyperbolic 
space IHI3 = PSL2(<C)/SU(2). For g ~ l, a Schottky group of rank g is a 
discrete subgroup of PSL2(C), which is purely loxodromic and isomorphic to a 
free group of rank g. Schottky groups are Kleinian as particular examples. 

Let nr the domain of discontinuity of r, defined as the complement of Ar 
in P1(<C). Let Xr = r\nr, which is a Riemann surface of genus g. A Schottky 
uniformization of X r is the covering nr --+ X r. • 

More generally, given an alphabet with letters {l1 , • • • , lN }, we let S! the 
space of a subshift of finite type consist of all right-infinite, admissible sequences 

S! 3 w = [ak]k=O = aoa1a2 ·.·•an··· 
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•in the letters of the alphabet. Namely, each ai is one of the letters l1 , · · · , lN, 
subject to an admissibility condition specified by an N x N matrix A = (Aij) 
with entries in {O, l}, ::;o that two letter::; li and l1 in the list can appear as 
consecutive digits as aka1.:+1 in a word w if and only if the entry Aii of the 
admissibility matrix A is equal to 1. 

Similarly, define the space SA as the set of doubly-infinite admissible se­
quences as 

SA 3 w = [a1.:]keZ = · · · a-m · · · a-2a-1aoa1a2 ···an··· . 

The sets S,! and SA have a natural choice of topology. The topology on SA 
is generated by the sets as neighbourhoods of x E SA 

W 5 (x, ko) = {y E SA I Xk = Yk, k ~ ko} and 

wu(x, ko) = {y E SA I Xk = Yk, k::; ko} 

for ko E Z. This induces the topology on S,! by realizing it as a subset of SA, for 
instance, by extending each sequence of S! to the left as a constant sequence. 
Then consider the action T on SA by the two-sided shift and that on S,! by the 
one-sided shift, both of which is defined by 

(Tw)k = (T[ak])k = llk+1, w = [ak]k E SA, s;t. 

(Note that the action T on S,! erases the first letter a0 of a word w and then 
shifts, so that it looks like the adjoint of the unilateral shift on a Hilbert space.) 
Typically, the spaces S,! and SA are topologically Cantor sets. The one-sided 
shift T on S,! is a continuous s9rjective map, while the T on SA is a home­
omorphism. (Note as well that the only shifting action on s_t viewed in SA 
by extending is different from that on elements of_S,t by erasing, shifting, and 
extending.) 
Remark. (Added). By definition, if y E W 5 (x, k0 ) in -SJ with ko ~ O, then 
Tk 11 (y) = Tk0 (x). If y E W 5 (x, k0 ) in SA, then T8(y) (improperly) converges to 
T 5 (x) ass ~ +oo (on compact subsets). Such a neighourhood W 5 (x, k0 ) of x 
may be said to be a stable subset. On the other hand, if y E wu(x, ko) in SA 
(and in s,t c SA), then r-s(y) (improperly) converges to r-s(x) ass~ +oo 
(on compact subsets). Such a neighourhood wu(x, k0 ) ofx may be said to be 
an unstable subset. • 
Example 10.1. {Added). For im;tance, let l1 = a and l2 = b with N = 2. Let 

A.= G :) E J\12({0, !}). 

Then 
S,t = { w = aa · · · } LI { w = a · · · abb · · · } LI { w = bb · · · } . 

As well, 

SA = { w = · · · aa · · · } LI { w = · · · aabb · · · } U { w = · · · bb · · · } . 
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But these sets are countable. Since 

T( abb · · · ) = bb · · · = T( bb · · · ) . 

Hence T on SX is not injective. 
If let 

A=G !)EM2({0,l}). 

Then the space S! consists of the words of the form 

w = a · --ab · · -ba • • • ab • - • , or 

w = b · · · ba · · · ab · · · ba · · · , 

where the last · · · of each sequence may continue constantly, or alternatively 
(finitely or infinitely). Therefore, S! is uncountable and is homeormorphic to 
the Cantor set as the inifinite product space IICX) { 0, l}. • 

For example, let r = F9 be a free group of g generators {-y1, • • • , 19 }. Take 
the set · 

b1,--·1'g,1'11, ... ,1;1
} = {l1:··· ,lg,lg+1,··· ,l2g}. 

as an alphabet. Then consider the right-infinite or doubly-infinite words w = 
[ak]k in these letters, without cancellations in the sense of being subject to the 
admissibility rule that ak+l -:/, a;1

. This implies a subshift of finite type, where 
the admissibility matrix A= (Ai1) becomes the symmetric 2g x 2g matrix with 
Aij = 0 for Ii - j I == g and Aij = 1 otherwise. 

(Added). For instance, and for convenience, let g = 2. Then 

! ~ ~i 1 1 1 . 
0 1 1 

Any word in st has the form 

w = ( ,t ... ,t) ( ,t, .. ·. it) ( it ... it) ( ,t, ... ,,t,) . . . ' 
where k-:/, k' in {1, 2} and signs ±1 take the same (···)-wise. • 

Suppose now that r is a Schottky group of genus g, i.e., a finitely generated, 
discrete subgroup of SL2 (C), isomorphic to the free group F9 of g generators, 
where all non-trivial elements are hyperbolic. Then the points in st defined 
as above parameterize points in the limit set Ar in IP1 (C), that is the set of 
accumulation points of orbits of r. The points of SA parametrize geodesics in 
the 3-dimensional real hyperbolic space lHI3 with ends at points on the limit set 
Ar-

{Added). Note that the projective line over C is defined to be 
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where for z, w E C2 , z ,..., w if and only if z = >..w for some nonzero >. E C. • 
The dynamical system (SA, T) as a typical example on an interesting class 

of OS is said to be a Smale space. It also means that the space SA can be 
locally decomposed as the product of expanding and contracting directions for 
T. More precisely, the following properties are satisfied: 

(i) For every point x E SA, there exist subsets W 5 (x) and wu(x) of SA such 
that W 5 (x) X wu(x) is homeomorphic a neighbourhood of x; 

(ii) The map T is contracting on W 5 (x) and expanding on wu(x), and 
ws(T(x)) and T(W5 (x)) agree in.some neighbourhood of x, and sodo wu(T(x)) 
and T(Wu(x)). 

It follows from a construction of Ruelle [213] that different C* -algebras can 
be associated to each of Smale spaces. Refer also to [202] and [203]. For Smale 
spaces like (SA, T), there are four associated C*-algebras as follows. The crossed 
product C*-algebra of the dynamical system (SA, T): 

C(SA) ><1r .Z, and C* (Ci) ><1r .Z j = s, u, a 

the crossed products by the action of the shift Ton the groupoid C*-algebras 
C* ( Gi) of the groupoid GJ for j = s, u, a of the stable, unstable, and asymptotic 
equivalence relations on (SA, T) respectively. 

The first choice as C(SA) ><1r.Z is closely related to the continuous dynamical 
system given by the mapping torus of the action T, while another as C*(Gu) ><1r.Z 
is related to the quotient of S! by the action of T. As in the example of the 
Schottky group r, this corresponds to the action of r on its limit set. 

Indeed, for the first, consider the suspension flow Sr of the dynamical system 
(SA, T). This is the mapping torus of (SA, T), which is defined by 

Sr= SA x (0, 1)/ r.J' where (x, 0),..., {T(x), 1). 

(Added). Topologically, this space is said to be a solenoid, that is, a fiber bundle 
over the circle S1 with fiber a Cantor set ((I 76, §4, 2]). • 

The first cohomology group H 1(Sr,.Z) of Sr is the ordered cohomology of 
the dynamical system (SA, T), in the sense of (32] and [196) {the last missing). 
There is an identification of H 1(6r, .Z) with the even (or zero) K-theory group 
of the crossed product C* -algebra as 

This can be deduced from the Pimsner-Voiculescu six-term exact sequence for 
the K-theory groups of a C*-algebra crossed product by .Z ([199]), so that 

Ko(C(Sr )) ~ C(Sr, .Z) 
(l-r). 

Ko(C(Sr)) 
i. 

Ko(C{SA) ><1r .Z) ~ -----t 

al la=o 

K1 (C(SA) ><IT .Z) i.=0 K1(C(SA))~O ~ K1(C(SA)) ~ 0, to--

where i : C(SA) -+ C(SA) ><IT Z is· the inclusion map and i., and (1 - T). are 
respectively induced by the maps i and 1-T. {Note that (1-T)f = J - f oT). 
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(Added). As in [176, §4, 2.1], since the space SA is totally disconnected, 
then K1 (C(SA)) ~ 0 and Ko{C(SA)) ~ C(SA, Z) the group of locally com;tant, 
Z-valued functions on SA. It then follows from the diagram that 

K 1 (C(SA) )(IT Z) ~ im(8) = ker((l - T).) ~ Z, (im(•) as image) 

Ko(C(S.4.) )(IT Z) ~·C(S, Z)/im((l - T).) = coker((l - T).). • 
That can be also obtained in terms of the Thom isomorphism (for K-theory 

groups of a C*-algebra crossed product by IR) ([60], (62]). 
{Added). As done in [176, §4, 2.1], the Thom isomorphism (as above for 

degree changing by +l (mod 2)) and the µ-map (or the assembly map) (via the 
Chern character for the isomorphism below) imply that for j =_0, 1, 

µ: Ki+1(6T) ~ Hi+1(6T,Z)--+ Ki(C(SA) )(IT Z). 

Hence, 

the· last which can be identified with the Cech cohomology group, given by the 
homotopy set [6T, U(l)), by mapping [J] to the homotopy class [exp(21ritf(x))] 
for any class [f] E C(S, Z)/im{{l - T).). • 

In fact, as discussed above, one of the fundamental construction of noncom­
mutative geometry is given by that of homotopy quotients (cf. (62)). These are 
commutative spac.es which provide, up to homotopy, geometric models for the 

. corresponding noncommutative spaces. The noncommutative spaces in the case 
shown below appear as quotient spaces of foliations on the homotopy quotients 
with contractible leaves. 

For the quotient space SA/Z as the noncommutative space as the crossed 
product C*-algebra C(SA) )(ITZ, with Z acting as pow_ers of the invertible two­
sided shift T, the homotopy quotient is given by the mapping torus 6T = 
SA Xz Ji. The noncommutative space SA/Z can be identified with the quotient 
space of the natural foliation on 6T whose generic leaves are contractible as a 
copy of Ji. 

Another noncommutative space associated to a subshift of finite type like T, 
( which, up to Morita equivalence, corresponds to another choice of the crossed 
product C*-algebra of a Smale space, as mentioned above), is the Cuntz-Krieger 
c• -algebra O A, where A is the admissibility matrix of the subshift of finite type 
{cf. (104], [103]). 

{Detailed). A partial isometry is a bounded linear operator Son a Hilbert 
space H such that there is a closed subspace K of H, and S is an isometry on 
K, · and S is zero on the orthogonal complement K 1. of K. Equivalently, either 
the adjoint S* is a partial isometry, S* S is a projection, SS* is a projection, 
S = SS*S, ors•= S*SS*. • 

The Cuntz-Krieger algebra OA with A= (aij) an NxN matrix over {O, l}, is 
defined to be the universal C*-algebra generated by partial isometris s1, · · · , SN 
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satisfying the relations 

N N 

LSjS; = 1 
j=l 

and sjs1 = L aiisisj. 
j=l 

(It says that the range projections sis; sum to the whole space and the source (or 
domain or initial) projections sjs1 are decomposed by those range projections). 

In the case of a Schottky group r in PS_L2 (C) = SL2 (C)/{±1} of genus g, 
the Cuntz-Krieger algebra 0 11 (with A= Ar associated to f) can be described 
in terms of the action of the free group r on its limit set Ar in IP1 (<C) ( cf. (210], 
[225}). Then O A can be regarded a..-; a noncommutative space replacing the 
classical quotient Ar /r as 

OA 9:! C(Ar) ><Ir. 
The quotient space A x r 1HI3 is precisely the homotopy quotient of Ar with 
respect to the action of r, with Er = 1HI3 and the classifying space Br = 
1HI3 /f. Moreover, 1HI3 /r is a hyperbolic 3-manifold of infinite volume, which is 
topologically a handle-body of genus g. In this case it is also found that the 
noncommutative space Ar/f is the quotient space of a foliation on the above 
homotopy quotient with contractible leaves as IHI3 • 

(Added). The real 3-dimensional hyperbolic space 1HI3 is defined to be 

the upper-half space with the Riemann metric: 

ds2 = (dx~ + dx~ + dx~)(x~)- 1 = 9i1diidx1 

= ( (~ (88
., aa )) 

3 

(dx1, dx2, dx3)t, (dxi, dx2, dx3)t), 
X3 Xi X3 i,j=l 

which involves the canonical inner products for the tangent and cotangent spaces 
of the tangent and cotangent bundles TIHI3 .and (TIHI3)* respectively. As well, 
we have the following Lie group isomorphism: 

of isometric transformations of 1HI3 preserving orientation. There is a bijective 
corresponding between the group of linear fractional transformations t on the 
Riemann sphere C U { oo}: 

t(z) = az + b, tr, 
cz + d a, b, c, d E \L.., ad - be =I- 0 

with t(oo) = ~ and t(- ~) = oo (c =I- 0), which is isomorphic to PSL2 (C), and 
that of orientation preserving, isometric transformations on Ilil3 , extended from 
linear fractional transformations on CU {oo}, where CU {oo} is viewed as the 
boundary of the corresponding compactification of Ilil3 • • 
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11 NC spaces from string theory 

Yang-Mills theory on noncommutative 2-tori 210 or Ao is first formulated by 
using suitable notions of connections and curvature for noncommutative spaces 
(cf. [961). 

In fact, the analogues of connections and curvature of vector bundles are 
straightforward to be obtained as follows ((59]). A connection is just given 
by the a88ociated covariant differentiation 'v on the space of smooth sections. 
Thus, it is given by a pair of linear operators on the Schwartz space of rapidly 
decaying functions 

. Vi: S(R) .- S(R), j = 1,2 

such that 
'vi(~b) = ('vjl;)b + ~8j(b), l; E S(JR), b E Ao. 

As in the usual case, it is checked that the trace of the curvature 

is independent of the choice of a connection. 
Let us make the following choice for a connection: 

Note that, up to the correct powers of 21ri, the total curvature of S(JR.) 
becomes an integer. In fact, the curvature n is constant as equal to #· so that 
the irrational number 0 disappears in the total curvature, equal to 00- 1 = 1. 
This integrality phenomenon, as that the paring of dimension and curvature, 
both of which are non-integral, yields an integer: 

(dim, n) rv 0 X 0- 1 = 1 "E z, 

is the basis for the development of a theory of characteristic classes for non­
commutative spaces. In the general case, this requires the development of more 
sophisticated tools, since the analogues of the derivations 8i used in the case 
of the noncommutaive 2-tori are not there in general. The general theory is 
obtained through cyclic homology, as developed in (61]. 

Consider the projective module Pp,q over 21o described above. Defiine an 
2lo-valued inner product (·, ·)2t6 on Pp,q , as in (208). which is used to show that 
Pp,q is a projective module. Connections are required to be compatible with the 
metric, so that 

<)j ( (l;, 1/)2l6 ) = (V jl;, 1/}2l6 + {l;, V j1/}2l6 • 

It is proved by (59] that such connections always exist. The curvature n has 
values in E = End2t9 (Pp,q)- An E-valued inner product on Pp,q is given by 
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Also, a canonical faithful trace TE is defined as 

where , is the trace on the c• -algebra 2lo, given above. 
The Yang-Mills action is then defined as (in (961) 

,( (n, n) £). 

Sought are the minima of the Yang-Mills action among metric compatible con­
nections "v1 given above. The main result of (96) is that this recovers the classical 
moduli spaces of Yang-Mills connections on the ordinary 2-torus: · 

Theorem 11.1. For a choice of a pair (p, q) of integers with p + q(J ~ 0, the 
moduli space of Yang-Mills connections on the 210-module Pp,q is a classical 
space given by the symmetric product 

where En is the group of permutations inn elements, with n = gcd(p, q). 

The fact that noncommutativity of space coordinates is relevant for gravity 
goes back to the analysis of S. Doplicher, K. Fredenhagen, and John Roberts 
(108), which is independent of string theory and produces in a natural manner 
the Moyal deformations of space-time, a compact Euclidean version of which 
is given by the noncommutative 2-tori. Since then, tremendous progress has 
been made in understanding quantum field theory on noncommutative spaces, 
thanks mainly to the bre!lkthrough by H. Grosse and R. Wulkenhaar (121). 

{Added). May recall the following from GW (122). The renormalized </>4 -

model corresponds to the classical action 

with x; = 2(0-1 ) 1.wxv and *4 <1> = ¢4 . The appearance of the harmonic oscillator 
second term in the action is a result of the renormalization. • 

The main aspects of string and D-brane theory that ivolve noncommutative 
geometry are the bound states of configurations of parallel D-branes (by E. 
Witten (239)), the matrix models for M-theory (by T. Banks, W. Fischler, S. H. 
Shenker, and L. Susskind [15)), and the strong coupling limit of string theory 
{by F. Ardalan and collaborators [8) and [6) both missing). It also plays an 
important role in the M-theory compactifications (by Coones-Douglas-Schwarz 
[751). All these aspects are not discussed in details. Only mentioned is a couple 
of examples of noncommutative spaces arising from string and D-brane theory. 

The noncommutative tori and the components of the Yang-Mills connections 
do appear in the classification of the BPS states in M-theory (by CDS [751). 

In the matrix formulation of M-theory, the basic equations to obtain two 
periodicity of the basic coordinates Xi turn out to be 

i = 1,2, 
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where the Ui are unitary gauge transformations. The multiplicative commutator 
u1u2u11u21 = [u1 , u2] is then central, and in the irreducible case its scalar value 
.,\ = e2 rriO corresponds to ·the algebra of coordinates as the noncommutative 2-
torus. The xi are then the components of the Yang-Mills connections. The same 
picture is emerged from the other information about M-theory concerning its 
relation with eleven dimensional super-gravity and that string theory dualities 
can then be interpreted using Morita equivalence, relating the values of(} on an 
orbit of SL2(7l). 

It is shown by Nekrasov and Schwarz [194] that Yang-Mills gauge theory on 
the noncommutative IR4 gives a conceptual unden;tanding of the nonzero B-field 
desingularization of the moduli space of instantons obtained by perturbing the 
ADHM equations. 

(Added}. May quote the following from [194): The gauge theory on the 
world-volume of N coincident D-branes is a non-abelian gauge theory. In this 
theory the scalar fields Xi · in the adjoint representation are the non-abelian 
generalizations of the trasverse coordinates of the branes. The compactification 
of Matrix theory on a torus 'Ir' implies that certain.constraints are imposed on 
the matrices Xi as that 

xi+ 21rRi8ii = uixiuj- 1
• 

Also, ADHM stands for Atiyah-Drinfeld-Hitchin-Manin. • 
Exhibited by Seiberg and Witten [216) is an unexpected relation between 

the standard gauge theory and the noncommutative one, and clarified is the 
limit in which the entire string dynamics is described by a gauge theory on a 
noncommutative space. 

Techniques from noncommutative differential and Riemannian geometry, in 
the sense discussed above are applied to string theory (for instance, as done by 
F. Ardalan and collaboraton; [8] missing). 

The role of noncommutative geometry in the context of T-duality is consid­
ered in an interesting recent work of Mathai and collaborators ([30], [31), and 
[182]). · 

(Added}. May recall from [31] the following. Let 1r : E -+ !vi be a prin­
cipal circle bundle, i.e., a circle bundle with a free circle action, with H -

. flux [HJ E H 3 (E,.Z). Such bundles are classified by their first Chern class 
c1 {E) E H 2 {M, Z}. It is shown that the T-duality interchanges the fiberwise 
integral of the H-flux with the first Cheam class, so that the pair (E, H} and 
its T-dual (EA, HA) are related as 

c1(E) = f H~ and c1(EA) = { H, JTA JT 
which can be obtained from the Gysin sequence of the bundles E and £A. 
In addition, the isomorphisms between the twisted cohomologies and twisted 
K-theories of {E, H) and (EA, H") are constructed. • 

Recently, in the context of the holographic description of type IIB string 
theory on the plane-wave background, obtained by M. M. Sheikh-Jabbari [218) 

- 54 -



an interesting class of noncommutative spaces from the quantization of Nambu 
d-brackets. The cla::;sical Nambu brackets defined as 

{f r } L it•"ik of1 8fk 1,···,Jk= f -,-.···-.-
8x'1 8x'"' 

for k real-valued functions with variables x1, • • • , xk is quantized in the even 
case to the expression in 2k operators as 

i~ [F1, ... 'F2k] = L ik(~k)! i1 ·••i21.• Fi1 ... Fi21.:. 

(The summations above are omitted in the text). ·This generalizes the quanti­
zation of the Poisson bracket defined as 

The odd case is more subtle and it involves an additional operator 'Y related to 
the chirality. Set 

!_(Fi ... P.2k 1 -v] - ~ _l_fit•••i2 " F, ... F', "V 
ik I I - ' , - L..,, ik(2k)! '• 121.:-1 fl 

where 'Y is the chirality operator in 2k dimensions. For example, for k = 2, 

1 
(F'1,F'2,F'3,"'f] = 

24 
({[F1,F'2],(F3,"'f)}- {[F'1,F'3),[F'2,'Y]} + {(F'2,F'3),[F'1,'Y]}), 

where {S,T} = ST+TS. 
If the ordinary d-dimensional sphere of radius r is described by the equation 

Ef~11(xi)2 = r2 , then the coordinates safo,fy the equation 

These equations are then replaced by their quantized version, using the quanti­
zation of the Nambu bracket and the introduction of a quantization parameter. 
This defines algebras generated by unitaries,. subject to the relations given by 
the quantization of those equations. Matrix repre:;entations of the:;e algebras 
correspond to certain fuzzy spheres. It would be interesting to study the general 
structure of the:;e noncommutative space:; from the point of view of the steps 
introduced above. 

(Added). There are five types of 10 dimen:;ional super string theories involv­
ing fermions and bosons and their super symmetries, of type I, type IIA, type 
IIB, of normal mixed strings, and of abnormal mixed strings, without gravitons 
as gravity. Any (such) super string theory requires that the space-time is 10 
dimensional. Any string may have Plank length 10-33 [cm). 

The string theory of type I contains both open strings as (low or high di­
mensional) open intervals and closed strings such as circles and closed intervals. 
The other theories contain only closed strings. The string theory of type IIA 
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ha::; a symmetry a::; a space symmetry, and that of 11B ha::; a chirality a::; without 
such a symmetry. 

All the super string theories are unified by E. Witten in the 11 dimensional 
space-time. It is shown that both the 10 dimensional super string theory with­
out branes and the 11 dimensional super gravity (SG) theory with branes and 
without strings are obtained as a sort of limits of an 11 dimensional theory, and 
the five types of super string theories and the 11 dim SG theory are transformed 
by the following dualities: 

11 dim Super G 

I Duality j !:!! 

Sl Duality 
Type IIA 

T Dulality 
Type 11B 

!:!! l n Duality 

Normal Mixed T Duality Abnormal M s Duality Type I 
~ ~ 

This 11 dimensional super symmetric theory is the M-theory by Witten. 
For example, a strength g of force in the typy I theory is transformed by 

S-dulity to } in the abnormal mixed string theory. • 

12 Groupoids and the index theorem 

Since the construction of the c• -algebras of foliations is based on the holonomy 
groupoid, groupoids have played a major role in noncommutative geometry. In 
fact, the original construction of matrix mechanics by Heisenberg mentioned 
above is exactly that of the convolution algebra of the groupoid of transitions 
imposed by experimental results. The convolution algebra of groupoids can be 
also defined in the context of von Neumann algebras and of c•-algebras (cf. 
[58] and [2051). It is particularly simple and canonical in the context of smooth 
groupoids (cf. [66; Il.51). One virtue of the general construction is that it 
provides a geometric mental picture of complicated analytical constructions. 

The prototype example is given by the tangent groupoid of a manifold ( cf. 
[66, 115]). It is obtained by blowing up the diagonal in the square M x M of a 
manifold M and is given as a set by 

GM= M x M x (0,1] UTM, 

where TM is the total space of the tangent bundle of M, and a tangent vector 
X E Tx(M) appears as the limit of nearby triples (x1,x2 ,e) provided that in 
any chart the ratios (x1 - x2)e-1 converge to X (possibly as x1 -+ x, x2 -+ x, 
and e-+ O}. When e-+ 0, the Heisenberg matrix law of compositon: 

converg~ to the addition of tangent vectors, so that GM becomes a smooth 
groupqid. The functoriality of the construction of the convolution groupoid c• -
algebras c•(G) for smooth groupoids G, as a functor G ~ C*(G}, is then enough 
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to define the Atiyah-Singer analytic index of pseudo-differential operators. It 
is simply given by using the six-term diagram of K-theory groups for the short 
exact sequence of c• -algebras, associated to the geometric sequence 

· M x M x {0,1]- GM :J TM, 

where TM is viewed as a closed subgroupoid of GM. The corresponding short 
exact sequence of c• -algebras can be written as 

which is a geometric form of the extension of pseudo-differential operators. By 
construction, the C*-algebra C0 {(0, 1]) is contractible and the same holds for 
the C*-tensor product C0 ((0, l])®IK by the C*-algebra 1K of compact operators. 
{The being contractible in general implies that its K-theory groups are zero, 
namely trivial). It then follows that the *-homomorphism C*(GAI) - Co(T* M) 
as a restriction map induces isomorphisms in K-theory: 

The analytic index by the evaluation map C* (GM) - 1K (?) is also obtained as 

Ko(C*(GAI)) _. Ko(IK) ~ Z, 

composed with the isomorphism above. (Possibly, may use the evaluation map 
as C0 (T* M) _. C for a point (or a certain fiber), with K0 (C) ~ Z.) 

As well, using the Thom isomorphism yields a geometric proof ( cf. [66]) of 
the Atiyah-Singer index theorem, where the analyses by the functor G ~ C* ( G) 
need to be done carefully. 

This paradigm for a geometric setup of the index theorem has been success­
fully extended to the cases of manifolds with singularities (cf. [188] and [189] 
the last missing) and of manifolds with boundary ([I]). 

13 Noncommutative Riemannian manifolds 

A main property of the homotopy type of a compact oriented m~nifold is that the 
Poincare duality holds not just in ordinary homology but also in K-homology. 
It fact, the Poincare duality in ordinary homology is not sufficient to describe 
the homotopy type of manifolds {cf. [187]). It is proved by Sullivan [227] that 
for simply connected PL manifolds of dimension at least 5, ignoring 2-torsion, 
the same property in KO-homology doe::; suffice and the Chern charact~r of 
the K 0-homology fundamental cla::;s carries all the rational information on the 
Pontrjagin classes. 

For an ordinary manifold, the choice of the fundamental cycle in K-homology 
is a refinement of the choice of orientation of the manifold. In its simplest form, 
it is a choice of spin structure. The role of a spin structure is to allow for the 
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construction of the corresponding Dirac operator, which gives a correspond­
ing Fredholm representation of the algebra of smooth functions. The choice 
of a square root involed in the Dirac operator corresponds to a choice of K­
orientation. 

K-homology theory admits a simple definition in terms of Hilbert spaces and 
Fredholm (module) representations of algebras. 

Definition 13.1. ([66, Definition 1]). Let A be an involutive algebra over C. 
An odd Fredholm module (1r, H, F) over A consists of 

(1) a *-representation ,r of A as (bounded) operators on a Hilbert space H 
and (2) an operator F with F = F* and F 2 = 1 the identity map on H (or mod 
JK(H)) such that [F, 1r(a)] for any a EA is a compact operator on H. 

An even Fredholm module (1r, H, F, 7) over A is defined to be an odd 
Fredholm module (1r, H, F) together with a ~-grading 'Y with --y = --y• and 
72 = 1 on H (so 'Y = --y- 1) such that 

(a) 71r(a) = 1r(ah for all a E A and (b) --yF = -F7. Equivalently, 
71r(a)'Y-1 = Ad('Y)1r(a) = 1r(a) and 7F7-1 = Ad('Y)F = -F. • 

This definition is derived from the Atiyah definition ([11] missing) of abstruct 
elliptic operators, and agrees with the Kasparov definition (144] for the cycles in 
K-homology as the KK-theory KK(21, C) as an extension theory of C*-algebras 
by lK (but it is a cohomology theory for C*-algebras), when 21 is a C*-algebra 
(cf. (241). 

Remark. (Added). In (1), if 1r is assumed to be faithful, we may replace 1r(a) 
with a E A. In (2), it says that F and 1r(a) essentially commute or commute 
mod JK(H). 

For Z2-graded algebras as A= Ao EB A1 , the condition (a) becomes 71r(a) = 
(-l)dcg(a),r(a)'Y. 

The conditions F = F• and F 2 =.1 may be replaced with 1r(a)(F - F*) E 
JK(H) and 1r(a)(F2 

- 1) E JK(H). • 
Lemma 13.2. (Added). Jf (1r, H, F,--y) is an even Fredholm module over A, then 
the Hilbert space H is Z2-gmded as fl = H0 EB H 1 with Ho = ½{I+ --y)H and 
H1 = ½(l-7)H and --y as the gm.ding operator, and the *-algebra B = C[1r(A), F] 
generated by 1r(A) and F is ~-graded as B = Bo EB 8 1 with 8 0 = ½(1 + Ad('Y))B 
and 8 1 = ½(1-Ad('Y))B and Ad(7) as the grading operator, s~ that Bo contains 
1r(A) and 1 and so on, and 81 contains F, 1r(A)F, and so on. • 
Example 13.3. ([66, 288-2891). Let M be a smooth compact manifold (such 
as the n-dfmensional torus 'Im) and C(M) the C*-algebra of all continuous 
complex-valued functions on M with the supremum norm. Let E± be smooth 
Hermitian complex vector bundles over M and P: C00 (1v/, E+) -+ C00 (M, E-) 
an elliptic pseudo-differential operator of order O on the spaces of smooth sec­
tions over M. There is an extension of P to a bounded operator as P : 
L2 (M, E+) -+ L2(M, E-) on the Hilbert spaces of L2-sections over M, because 
of being of order 0. There also exists a so-called parametrix Q: £2 (M, E-) -
L2 (M, E+) for P such that both PQ - I and QP - 1 are compact operators 
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on L2 (M, E=F), by being elliptic. It then follows that there is an even Fredholm 
module over C(M) defined by 

(
1r+(J) 0 ) (0 Q) (1 0 ) 

1r(J) = 0 1r- (!) ' F = P O ' 'Y = 0 -1 

on the Hilbert space H = L2 (M, E+)a,L2 (M, E-) ==- H+EBH-, where 1r±(J)f. = 
f~ = M1€ for any t; E £ 2 (M, E±), as multiplication operators. 

Proof. (Added). For any f,g E C(M) and f.EB11 EH, we have 

1r(J g)(f. EB 71) = (/ gf.) EB(/ 971) = 1r(J)1r(g)(f, EB 11) 

and 1r(f*)(f, EB 11) = U*f.) EB (/*11) = (1r+(J))*f. EB (1r-(/))*TJ = 1r(J)*(€ EB 71), 
where 

(M1-t;,t;') = [ J*f.(f.')* = (f.,M1f) = (Mj€,f.'). jM 
The condition F = F* is equivalent to P = Q* and Q = P*. We have 

a diagonal sum in a 2 x 2 matrix, which is contained in JK(H+ EB H-). Also, 

[F, 1r(J)] = F1r(J) - 1r(J)F 

( 
0 Q1r-(J) - 1r+(J)Q) 

= P1r+(J) -1r-(J)P O E JK(H) 

becam;e P1r+(J)-11r-(J)P E IK(H+,H-) and Q1r-(J)-1r+(J)Q E Il{(H- ,H+) 
by M. F. Atiyah ([11) the la~king item). .• 
Remark. (More details from Atiyah [12]). Let U be an open subset of Rn. Let 
p(x, y) be a smooth function on U xntn (called a symbol of order m) such that 
for every compact subset K of U and all multi-indices a= (aj), /3 = (/3j) E zn 
with non-negative components, we assume that for some constant Ca,/J,K, 

where lal = E;=l Oj and D~, D~ are the partial derivatives as 

D: = ( -i ~I ) o, ... ( -i ~Jo., 
To each such p(x, y), an associated linear operator P from C~(U) of smooth 
functions on U with compact supports to C00 (U) of smooth functions on U 
( called a pseudo-differential operator on U ( as a local chart)) is defined by 

(P J)(x) = (21r)-n /. ei(x,y}p(x, y)f (y)dy, 
R" 
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where (x, y) is the real inner product of JR.n and J denotes the Fourier transform 
of f defined as 

f (y) = l.n e-i(y,t) J(t)dt. 

l\foreover, for any smooth manifold !vi, one can define extendedly a pseudo­
differential operator P: Cgo(M) - C00 (Af) defined locally as above. Further­
more, for any smooth vector bundles E and F over M with dimensions k and 
l, one can define a pseudo-differential operator P : Cgo(M, E) -· C00 (M, F) 

• defined locally as a l x k matrix P = (Pij) with entries Pij pseudo-differential 
operators on smooth functions with compact supports on local charts of M. 

• 
Remark. (Added). As one of the fundamental formuae in Fourier analysis in 
one real variable in JR., we have 

d
dkk f(x) = ~ 1 ei:i:y(iyt ( ~ 1 f(t)e-itydt) dy 
X V 27r R · V 27r R 

by the Fourier inverse formula. Therefore, a pseudo-differential operator is 
viewed as a natural generalizaion of differential operators written as the ex­
tended Fourier transform with finitely many variables in JR.". 

If P = p(x, D) = Eial::;k Ya(x)D: as a differential operator of rank (or 
order) k with coefficients as C00-functions 90 , then it corresponds to p(x, y) = 
E1al$k 9a(x)y0 with y0 = yf1 

· • • Y~" and the homogeneous polynomial pk(x, y) = 
E1al=k 9a(x)y0 is called the principal symbol for P, denoted as u{P). Then P 
has order k, because, for instance, there are constants Co,o,K and C0 ,o,K such 
that 

lp(x, Y)I ~ Co,o,K{l + IIYlll and ID~p(x, y)I ~ Co,o,K(l + IIYlll-I01 

for x E K and y E JR.". 
Anyhow, if such a P has order 0, then P = Eiad$k 9a(x)l = Mg the multi­

plication operator with g = Eial::;k g0 (x). If Mg is a Fredholm operator, then 
there is a parametrix for !vi g, also called a pseudo-inverse for Mg, as in the case 
where Mg or g is invertible (see [192, Theorem 1.4.151). • 
Example 13.4. {[66, IV. 51). Let r be a free group and T be a tree on which r 
acts freely and transitively. _By definition, the tree Tis a I-dimensional simplicial 
complex which is connected and simply connected. Let Ti be the set of all j­
simlices of T for j = 0, 1. Let p E T 0 and define a bijection c.p : T 0 

\ {p} - T 1 by 
ip(q) = (p, q) the I-simplex connecting p and q as its end points and contained in 
the line segment (p, q) in T for q E T 0 \ {p}. The bijection <p is almost invariant 
in the sense that for any g Er, one has 

ip(gq) = (p,gq) .= gip(q) = g(p,q) = (p,gq) 

(by definition) except for finitely many q. Let fl+ = l2 (T0 ) and H- = l2 (T1
) EB 

C. The action of r on T 0 and T 1 yields a c;(r)-module structure on l2 (Ti) for 
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j = 0, 1, and hence on ff±, where 

a{€,>.)= (a€,0), ~ E i2{T1),>. E C,a E C;(r).· 

Define a unitary operator P : fJ+ - H- by 

Pop = (0, 1) and Pc5q = c5ci,(q), q E T 0 
\ {p}. 

Then an even Fredholm module over 2l = c;(r) as well as A= Cr is defined 

( ) _ (1r + {a) 0 ) F _ ( 0 P*) 
1r a - O 1r_(a) ' - P 0 

on fl= H+ EB H-, with 7r±(a) = Ma the multiplication operator. 

Proof. {Added). It holds that F = F* and F 2 = 1 and that 

[F, 1r{a)] = F1r(a) - 1r(a)F 

_ ( 0 P*1r_(a) - n+(a)P*) 
- Pn+(a) - 1r_(a)P O · 

In particular, if a= 89 = g for g E r, then 

[P*1r_(a) - n+(a)P*](c5ci,(q), >.) = P*a(oci,(q), -\) - a(c5q + -\op) 

= P*(c5ci,(gq), 0) - (o9q + -Xc59 p) = c59q - (o9q + >.o9p) 

= ->.c5gp 

for any q E T 0 \ {p}, so that the operator P*1r_(a) - 1r+(a)P* has rank 1 and 
hence, is compact. Similarly, if a= o9 = g for g Er, then 

[.P1r+(a) - 1r_(a)P](Mp + µc5q) = Pa(Mp + µc5q) - a(µocp(q), >.) 

= P(AOgp + µOgq) - (µo'{'(gq), >.) = (>.ocp(gp) + µO,p(gq)) - (µc5,p(gq), >.) 

= >.(ov,(gp), -1) 

for any q E T 0 \ {p}, so that the operator Pn+(a) - 1r_(a)P has rank 1 and 
hence, is compact. • D 

Example 13.5. ((66, IV, 3.o]). With S 1 ~ P 1 (IR) ~ (IR2 \ {0} )/ r,J as directions, 
consider the algebra C(P1{IR)) of functions/, acting on the Hilbert space L2 (IR) 
as multiplication operators Mi as (J~)(s) = f(s)~(s) for f E C(P1 (R)) and 
~ E L2 (IR), where JR+ ~ S1 defined by the Cayley transform 

, s-i 
lR 3 s .- c(s) = --. E S1, 

s +i 

where Is - ii = Is+ ii. If we assume that c(s) = ei9 with 0 < (} < 21r, then 
s = -~t 

1 (0 -I 1r). Define the Hilbert transform Fas an 2 

(F€)(s) = ~ 1 ~(t) dt. 
1ri s - t 
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'rhis multiples by + 1 the positive Fourier modes a~d by -1 the negative Fourier 
modes. For f E C(P1 (R)), we have that [F,J) is of finite rank if and only if 
f is a rational function, denoted as ~~:~ a fraction of polynomials. This is 
Kronecker's c.haracterization of rational functions. 

{Added). More precisely, any measurable bounded function f E L00{R) 
.defines a bounded operator Mi on L2 (JR). For the quantized calculus by a 
Fredholm module to be translation invariant, the operator F must commute 
with translations as Tu and hence be giveri by a convolution operator. It also 
requires that F does commute with dilations D>.. ass.- >.s with ,\ > 0. It then 
follows that the only nontrivial choice of F with F 2 = 1 is the Hilbert transform 

(FE,)(s) ~ ~ lim 1 E,(t) dt. 
7n e-0 ls-ti >e>O s - t 

Note that 

(Ft,)(s) = :/ f * t,(t))(s) = ~: ( i, t,(s - t)), 

where the* means the convolution with respect to Cauchy principal value, and 
the _right hand side means the bracket as a functional, so that it exists for E, such 
as Schwarz functions as rapidly decreasing smooth functions on JR with compact 
support and for their £2-extensions. Also, 

Tu(FE,)(s) = (FE,)(s - u) = ~ lim f ~(t) ) dt (t + u = v) 
1T'Z c:-0 Jls-u-tl>e>O S - t + U 

= ~ lim 1 E,(v - u) dv = F(TuE,)(s), 
1l"'Z e-o ls-vl>e>O S - V 

and hence TuF = FTu, Namely, the range of F is translation invariant. More­
over; similarly, it is invariant under the dilations as 

D>..(FE,)(s) = (Ft,)(>.s) = ~ lim 1 ,E,(t) dt (>.- 1t = u) 
• 1T'Z e-+0 1>..s-tl>e>O AS - t 

= ~ lim 1 E,(>.u) ,\du= F(D>..c,)(s). 
1TtA e-o ls-ul>>..-•e>O S - u 

On the other hand, we obtain 

(FE,, 11)2 = f (FE,)(s)11(s)ds = f (~ lim f E,(t) dt) TJ(s)ds 
la JR 1T'l e-o 11s-tl>e>O s - t 

= f t,(t) (~ lim { -
1
-11(s)ds) dt 

JIR 1T't e-o 11s-tl>e>O S - t 

= J. t,(t) (-(
1 

.) lim 1 -1
-11(s)ds) dt 

R 1T -i e-+0 ls-tl>e>O S - t 

= l t,(t)(F11)(t)dt = (€, Fr,)2, 
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and thus F* = F. Also, 

(F€, F17)2 = .l (F€)(s)(F17)(s)ds 

= { (~ lim 1 €(t) dt.) (F17)(s}ds Ja 1ri e-0 ls-tl>e>O s - t . 

= f ~(t) (~ lim 1 -1 
{~ lim f 1J(u) du} ds) dt Ja 1ri e-0 ls-tl>e>O S - t 7r1, c-+O Jls-ul>e>O S - U . 

= f ~(t) (-; lim f r,(u) { lim 1 1 
ds} du) dt J.,. 1T e-0 Jls-ul>e>O e-0 ls-tl>e>O (s - t)(s - u) 

= L €(t)17(t)dt = (€, 17)2, 

{but the last step seems to be nontrivial and is unchecked) and thus F 2 = 1 on 
the Hilbert space L2 (IR). 

Compute the commutator as the quantum differential df off as 

[F, M1)€(s) = F(/€)(s) - J(s)(F€)(s) 

= ~ lim f J(t)€(t) dt - J(s)~ lim f €(t) dt 
7r1, e-0 Jls-tl>e>O S - t 7r1, e-+O Jls-tl>e>O S - t 

= ~ lim 1 (J(t) - J(s))~(t) dt. 
7r1, e-+O ls-tl>e>O S - t 

By the Cayley transform, one can transport the above Fredholm module 
(undetermined) to the algebra of (rational or some) functions on S1 as follows. 
Let H = L 2 (S1 ), on which essentially bounded measurable functions of L 00 (S1

) 

act as multiplication operators. Let F = 2P - 1, where 1 = lH and P is the 
orthogonal projection onto the space 

l/2 (S1
) = {~ E L2 (S1

) lf'(-n) = O,n EN} 

where€" E l2 (Z) = L2 (S1 
)" is the Fourier transform of€­

Note that F* = 2P* - 1 = F and 

F 2 = (2P - 1 )2 = 4P2 
- 2P - 2P + 1 = 1. 

As well, 

F = 2P - l = P - {1 - P) = P EB -(1 - P) = ( 1
P
0
(H) O ) 

-1(1-P)(H) 

on the direct sum l/ = P(H) EB (1 - P)(H). 
For f E L00 {R) or L00 (S1 

), the quantum differential df = (F, f] is of finite 
rank if and only if/ is equal a.e. to a rational function with no pole on IR or 
s1. 
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For any interval/ of S1
, denote by/(/) the mean rh fr J(x)dx of a function 

J(x) on I. For a> 0, the mean oscillation off is defined by 

Ma(!)= sup 1111 r lf(x) - I(J)ldx. 
1£15a Jr 

A function f is said to have bounded mean oscillation (BMO) if Ma(!) for all 
a > 0 are bounded. This is true for f E L00 (S1 ). 

Proof {Added). Because 

1 f 1 m lr IJ(x) - I(J)ldx ~ m(ll!lloolll + llllloolll)_= 211/lloo• 

• 
A function J is Sfl,id to have vanishing mean oscillation (VMO) if Ma(/)---+ 0 

as a---+ 0. This is true for f E C(S1 ). 

Proof. (Added). Because, since S1 is compact, f and f (x) - l(J) are uniformly 
continuous on S1 . Hence, for any c > 0, there is a > 0 such that if III ~ a, then 
lf(x) - I(J)I < c for every x E J, and thus, lv/0 (/) ~ c as well as Ma,(!) ~ c 
for O < a' < a. • 

For f E L00 (S1 ), [F, /] is a compact operator if and only if/ has vanishing 
mean oscillation (VMO). • 

(Returned). Besides the K-homology class, specified by a Fredholm module, 
also generalized to the noncommutative setting the infinitesimal line element ds 
of a Riemannian manifold. In ordinary Riemannian geometry, we deal with the 
ds2 given by the usual local expression as 9µvdxµ.dxv. 

(Added). In the special theory of relativity, for (x0 , x1, x2 , x3) = (ct, x, y, z ), 

ds2 = 9abdxadxb = c2dt2 
- dx2 

- dy2 - dz2 

= ((1 EB -1 EB -1 EB-1) (cdt, dx, dy, d4, (cdt, dx, dy, dz)t) 

with a, b = O, 1, 2, 3 and t as time and c as light speed, to defi~e the Minkowski 
space-time. • 

However, in order to extend the notion of metric space to the noncommuta­
tive setting, it is more naturai to deal with ds. 

{Added). Recall from [66, VI) the following detailed facts about geometric 
spaces as manifolds with certain matrics. 

Define the metric on a manifold M ( such as the 2-dimensional torus 1'2 in 
nt3) as 

d(x, y) = inf {Length l(-y) of paths -y between x and y in M} 

= inf l(-y), 
-yCM:x-y 
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where the length is computed as the integral of the square root of a quadratic 
form in the differential of the path ,: 

l(,) = f.y 11,'(t)lldt = f.y J{--y1(t),,'(t))(t)dt 

= 1Y 9-y(t)b'(t), ,'(t))dt = 1Y ,-L-9-µv_d_x-µd_x_"' 
µ,,v 

with (Yµv)µ,v a positive definite symmetric matrix. 
Let A be an involutive algebra and (H, F) a Fredholm module over A. To 

define a unit of length, we consider an operator of the form 

q q 

Bc(x, x') = L (dxl-')* g1w(dx"') = L ([F, xi-'])* 9µv[F, x"'] 
µ,v=l µ,v=l 

= ([F,x,.,});G([F,xv])v = [F,x]*G[F,x'] E B(fl) 

with [F,x] = ([F,xµ])!=t = (dxµ)!=i, [F,x'] = ([F,x"])!=t = (dxv)~=l' 

where dx = [F,x] for any x EA, xl-',xv are elements of A, x = (x,.,),x' = (xv) E 
Aq, and G = (9µv)!,v=l is .a positive matrix of the q x q matrix algebra Mq(A) 
over A. By construction, each value at (x, x) is a positive infinitesimal, that is, 
a positive compact operator on H, to viewed as ds2 in Riemannian geometry. 

Note as well that. Bo : Aq x Aq ~ K.(H) is a sesquilinear form with being 
conjuagate linear in the first variable and linear in the second. 

Define the unit of length as the positive square root: 

ds= ffa. 

We denote by ds the infinitesimal line element of a Riemannian manifold 
!vi. For ds2 , the usual local expression is Lµ,v9µvdxl-'dx"'. We may use the 
Einstein (reduced) summation as it to be: 

µ,v 

= Ldxµ LBµvdx"' = ((dxl-'), (dxµ)) = dx,.,dx,.,, 
µ V 

(or x2 = x · x = (x;Gx) = 9µvXµXv = Xµx"') 

where the metric G = (9µv) is given in the ordinary (and the super-symmetric) 
Minkowski space M = IR4 , (respectively) as the diagonal sum(s): 

G = l EB -1 EB -1 EB -1 ( and G = - l EB 1 EB 1 EB 1), 

so that x · y = XoYo ·- L;=i,2,3 X;Y; (and x · y = -XoYo + L;=i,2 ,3 X;Y;) (cf. 
[214] and [183]). 

The following table is added: 
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Table 2: Classification of vectors in the Minkowski space 

T: Timelike L: Lightlike S: Spacelike 
Inner product X·X > 0: X·X=O: X·X < 0 

Time xo > 0: future, xo > 0: future, xo > 0: future, 
xo < 0: past xo = 0: now, xo < 0 xo = 0, xo < 0: 

(past observed) (past observable) (to be done) 

where we have the following respective decomposition into cones: 

M =Tu Lu S, with T = T+ u T_ and so on, 

andµ is used for time coordinate xo and vis used for space coordinates x 1, x 2 , x3. 

• 
The ds equally corresponds to the fermion propagator in physics, and to the 

inverse n-1 on the Dirac operator D. 
In other words, a spin or spine structure makes it possible to extract the 

square root of ds2 , using the Dirac operator as a differential square root of a 
Laplacian. 

This prescription recovers the usual geodesic distance on a Riemannian main-
fold as follows. ,, 

Lemma 13.6. ((63]). On a Riemannian spin manifold M, the geodesic distance 
d( x, y) between two points x, y E !vi is computed by the f ormv.la: 

d(x, y) = sup{lf(x) - J(y)I If EA, ll(D,/]11 ~ 1 }, 

where D is the Dime operator, defined as D = d( •) ( ds )-1 = fs , and A is the 
algebm C00 (M) of smooth functions on M. 

Proof. This essentially follows from the fact that the quantity ll[D,/)11 can be 
identified with the Lipschitz norm of the function f as 

[ . . . If (x) - f (y)I 
11 D, JJII = essSUPxeMll(V /)xii = sup d{ ) • 

· x-:fyEM . x,y 

( where [ D, J] could be identified with DJ = !vi D f in this commutative case). 0 

Note that points x, y E !vi (or a noncommutative space X) are replaced with 
corresponding pure states 'Px and ({)y on the C* -algebra closure of an algebra A 
such that f(x) = '{)x(/) and J(y) = <py(J) for any f EA. It then follows that 

d(x, y) = sup{j/(x) - /{y)I If EA, II: II ~ l}, 

with 1s = dj(ds)- 1 = [F,J](ds)- 1 (or = (ds)- 1dl), where we assume that 
dBe = [F, Be] = 0, that is, Be commutes with F, similar to the Kahler 
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I 

condition. Define a self-adjoint operator D = FB-; 2 = F(ds)- 1 = (ds)- 1F 
(and as well = F(·)(ds)- 1 = (ds)- 1(·)F), where we assume that Ba is non­
singular, i.e., the kernel of Be is zero. Then 

ds = (F, J](ds)- 1 = (F J - J F)(ds)- 1 = F J(ds)- 1 
- f D 

=. { ds )- 1 
[ F,J] = D f - ( ds )- 1 J F, 

which should be equal to [D, /] (in the sense as above). 
Note that if ds has dimension of a length l, then D had dimension t and 

d(x, y) ahm has dimension of a length. 
On a Riemannian spin manifold M, the condition ll[D, J]II ~ I is equivalent 

to the condition that f is a Lipschitz function with Lipschitz constant no more 
than l. 

Example 13. 7. {Added). Consider the case of M = [O, I] the closed interval 
(or any [a, b] in the real line IR). If /(x) = x E C(M), then IJ(x)- J(y)I = lx-yl 
and J'(x) = 1 with lll'II = 1. 

If f E C 1 (/V/) the algebra of all continuously differentiable functions on M, 
which is a dense subalgebra of C(M), and if If (x) - J(y)I ~ 1 · Ix - YI for any 
x, y E M with Lipschitz constant 1, then 1/'(x)I ~ 1 for any x E M. Hence 
lll'II ~ l. Conversely, suppose to the contrary that there ares, t E M with s < t 
such that IJ(s)- f(t)I > Is- ti. Then the mean value theorem for differentiable 
functions with one variable in Calculus tells us that there is some c E !vi with 
s < c < t such that IJ'{c)I > 1, a contradiction to 11!'11 ~ 1. 

Hence we obtain that for x, y E M = [O, I),' 

Ix - YI= sup{IJ(x) - J(y)I If E C 1 (M), 11/'II ~ 1} 

with D f = f' = f. 
Since d~(J · g) = ig + fl for f,g E C1(M) of continuously differentiable 

functions on IYI, we have 

d d df 
[D,J]g = [dx'f]g = [dx'M1]0 = dxg = Mv/9· 

Hence [D,J} = Mv1 may be identified with DJ= i. Note as well that C1(M) 
as well as C00 (M) are dense iIJ £2 (.M) with respect to the 2-norm. • 

The advantage of the abov~ definition of the line element ds is that it is of a 
spectral, operator theoretic nature, and hence it extends to the noncommutative 
setting. The structure of combining the K-homology fundamental cycle with the 
spectr~l definition of the line element is the notion of spectral triple, given as 

Definition 13.8. (cf. [68] and (89]). A (compact, initial) noncommutative 
geometry is a spectral triple (A, H, D), where A is a unital algebra represented 
as an algebra of bounded operators on a Hilbert space H, and D is an unbounded 
Dirac operator defined as the inverse of the line element as D = d~ or ds = n-1

, 

and with the following properties required: 
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{1) The additive commutator [D,a) is bounded for any a E 21<X>, where 21<X> 
is a dense subalgebra of the c• -algebra 21 as the completion from A. 

(2) Self-adjointness D = D., and the compact resolventness that (D->.1)-1 

is a compact operator for all .,\ E CC \ IR.. 
A spectral triple (A, H, D) is even if the Hilbert space H has a Z2-grading 

by an operator, such that 'Y = 1*, , 2 = 1 with ,-1 = ,, and that ,D = -D,, 
and 1a = a, for any a EA, equivalently, Ad{,)D = -D and Ad{,)a = a as 

H -D 
- H1EBH0 

and 

H a -
Hence, on JI= Ho ED H1, for some D12, D21 and au, a22, 

D = ( 0 D12) 
D21 0 

and a= ( 011 O). 
· 0 a22 

H. 

This definition is entirely spectral. The elements of the algebra are operators 
and the line element is also an operator. 

The polar decomposition D = FIDI gives rise the operator Fas in an even 
Fredholm module (H, F) over A, defining the fundamental class in K-homology. 

{Added). Note that for a densely-defined, closable operator.Ton a Hilbert 
space H has the polar decomposition as T = WITI with W E IB(H) a unique 
partial isometry with ker(T) = ker(W). • 

The above formula for the geodedic distance is extended to the following 
context: 

Definition 13.9. A state on a unital *-algebra A is a positive linear functional 
<p: A - CC such that cp{l) = 1 and cp(a*a) 2:: 0 for any a EA. 

The distance between two states cp1, cp2 on A is given by the formula 

d(cp1, cp2) = sup{lip1 (a) - 'P2(a)I I a EA, ll[D, a]II ~ l}. 

(Added). For a positive operator A E IB(H), the trace of A is defined to be 

tr{A) = L (Aen, en), 
n 

where {en} is any complete orthonomal basis for H. 
{Added). Let 1 ~ p < oo. Let J:,P(H) denote the Schatten-von Neumann 

ideal of IB(H) of compact operators T with the p-norm IITllp such that the 
trace tr{ITIP) = IITII: < oo or the p-summablility of the decreasing sequence 

{µn(T)}~=O of countable, non-negativ~ eigenvalues of ITI = (T*T)½ with finite 
multiplicities (counted repeatedly and respectively) vanishing at infinity, i.e., 
L~=O µn (T)P < 00 with µn (T) 2:: µn+l (T) 2:: 0 and limn-oo µn (T) = 0, and 
that 

00 

IITII: = tr{ITIP) = L(ITIPen,en) = L ttn(T)P 
n n=O 
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for TE IK(H), because ITIP = Lk ttk(T)Pe~ ® e~ for some CONB {eU. 

Lemma 13.10. (Added, [133, Propositon 4.2.5]). Let I ~ p < p' < oo and 
A, BE IR(H). Then 

IIAII ~ IIAllp' ~ IIAllp, C,P(H) C C,P' (fl) C IK(H), 

IIA*IIP = IIAII, IIABllv ~ IIBIIIIAllv, IIBAllp ~ IIBIIIIAIIP• 

Let 1 ~ p < oo. A Fredholm module (1r, H, F) over a *-algebra A is said to 
be p-summable if [F, 1r(a)] E C,P(JJ) for any a E A, or if the *-subalgebra of 
a EA with [F, 1r(a)] E £P(H) is dense in A, or if the Hmbalgebraof 1r(a) E 1r(A) 
with [F, 1r(ci)] E C,P(H) is dense in 1r(A) (under the operator norm). 

Proof. (Added). Note that if [F, 1r(a)J, [F, 1r{b)] E £P(J-J) with a, b EA, then 

[F, 1r(a + b)] = [F, 1r(a)] + [F, 1r{b)] E C,P(H), 

[F, 1r(ab)] = [F, 1r(a)]1r(b) + 1r(a)[F, 1r(b)] E C,P(H), 

[F, 1r(a*)] = -[F, 1r(a)]* E C,P(H). • 

• 
Let p be a positive real number. A spectral triple (A, H, D) is of metric 

dimension p, or p-summable, if IDl- 1 is an infinitesimal of order p {of C,P) 
(corrected), i.e., IDl-p is an infinitesimal of order 1 (of C.1 ). Namely, 1n1-1 E 
C,P(H) (and thus p 2='. I). 

(Added). Equivalently, IDl-p E C. 1(H), so that. 

tr(IDI-P) = tr((IDl-1)P) < oo. 

(For this, we need to assume that the spectrum of IDI is discrete and countable 
because IDl- 1 and IDl-p are compact operators). 

(Added). By the min-max principle, 

µn(T) = min{IITlv 111 EC H,dim E = n}, 

where E is an n-dimensional subspace of H and EJ. is the orthogonal comple­
ment of E in H and Tl gt is the restriction of T to El.. In fact, this minimum 
is attained by taking E to be the eigen-space corresponding to the first n eigen­
values µo(T), · · · ,µn-1(T) of ITI. 

Example 13.11. (Added). If T = (tii)iJ=l is a diagonal oo x oo matrix 
· operator on l2 (N) with diagonal entries (tii) bounded, decreasing and vanishing 

at infinity, then T is bounded and compact, with µn (T) = tn+1,n+1 for n 2 0. 
Let (en)~=l be the canonical orthonormal basis for l2(N) and let En be the 
subspace generated by e1, · · · , en. Then IITIE~ 11 = ltn+1,n+1 I = µn(T). The 
principle says that the left hand side must be the minimum among IITIEII for 
subspaces EC l2 (N) with dim E = n. 
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Let Rn(H) denote the set of finite rank operators on H with rank~ n. Then 
Jtn (T) is equal to the distance: 

µn(T) = d(T, Rn)= inf {IIT - XII IX E Rn(H)}. 

Proof (Added). Note that if X = TIE for E a subspace of H with dim E ~ n, 
then T-TIE = TIE-L- D 

It then follows that for any T1 , T2 E IK(H), 

Proof. (Added). Because for X E Rn, we have 

for (i,j) = (1, 2) or (2, 1), which implies the inequality above. 

The inclusion Rn(H) + Rm(H) C Rn+m(H) implies 

µn+m(T1 + T2) ~ µn(T1) + µm(T2). 

Proof. (Added). Because for X E Rn(H) and X' E Rm(X), we have 

µn+m(T1 + T2) ~ IIT1 + T2 - X1 - X2II ~ l1T1 - Xiii+ IIT2 - X2II, 

which implies the inequality above. 

Similarly, 
µn+m(T1T2) ~ µn(T1)µm(T2). 

Proof. (Added). Because for X1 E Rn(H) and X2 E Rm(H), we have 

IIT1 + X1IIIIT2 + X2II ~ IIT1T2 + T1X2 + X1(T2 + X2)II ~ µn+m(T1T2). 

In particular, since µo(Tj) = IITill, then 

D 

D 

D 

Definition 13.12. (Added, [159, Definition 6.1.1)). A compact operator T E 
OC(H) is said to be an infinitesimal·of order o Ent+ if µn(T) = O(n1,.) (n-+ oo), 
i.e., µn(T) ~ C n1,. for some constant C and for any n ~ no for some no ~ 1 
(corrected). 

It follows from the estimates above the definition above that 

Lemma 13.13. (Edited and added). If T1 and T2 are infinitesimals of order 
o 1 and 02 1 then T1T2 is an infinitesimal of order 01 + 02. 

The set of all infinitesimals of order o becomes a two-sided ideal of IBI( H) 
( but not closed). 
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Remark. An infinite::;imal of order l may not be in £ 1(H). Any infinitesimal 
T of order o higher than l is contained in £ 1 (H), because E:=:°=nu µn(T) :s; 
C E:=no n~• < 00 with Q > l. • 

Let J½ denote the (two-sided) ideal of IK(H) of compact operators Ton H 
such that µn(T) = O((logn)-½) (n -> oo). Namely, if n large enough, then 

u2 
11-in(T)I :s; ✓l~~n for some positive M. Equivalently, n :s; e1,,,:(T)12

• Note as well 

that TE .P-2 if and only if the sequence { Jlogn · µn(T)}~=l is bounded. 

Proof. (Added). Note that for T1, T2 E Jl-2, 

✓log(n + m) · µn+m(Ti + T2) :s; Jlog(n + m)(µn(Ti) + µm(T2)) 

m n = logn + log(l + -) · µ 11 (Ti) + logm + log(l + -) · J.tm(T2)-
n m 

If n = m ~ 2, then 

If m = n - 1 ~ 3, then 

✓log(2n - l) • µ2n-1(T1 +T2) :s; v2( ~· µn(T1) + Jlog(n - l) · µn-1(T2)). 

• 
(Added). A Fredholm module (1r, H, F) over a *-algebra A is said to be 

0-summable if [F, 1r(a)] E J½ for any a E A. It then follows that A is stable 
under holomorphic functional calculus, so that A and its c• -algebra completion 
have the same K-theory ((66, 8.o, Lemma 3]). Moreover, there is a self-adjoint 
unbounded operator D on H such that Sign(D) = DIDI-I = F (and thm, 
D = FIDI), [D, 1r(a)] is bounded for any a E A, and Tr(e- 02

) < oo ([66, 8.o, 
Theorem 4]). 

(Returned). A spectral triple (A, H, D) is 0-summable if tr(e-tD
2

) < oo 
for all t > 0, or if tr(e- 02

) < oo. 
(Added). Define the partial sums of the sequence {µn(T)} as 

n-1 

an(T) = L µk(T) ~ 0. 
k=O 

We have 

an(T) = sup{tr(ITEI) = IITEll1 IE CH, dimE = n}, 

where E is an n-dimensional subspace of H. The supremum is attained if we 
take E to be the eigen-space corresponding to the first n eigenvalues of ITI. It 
then follows that 
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Proof. {Added). Note that 

which implies the inequality above. 

As well, 

Let 
£ 1

•
00 (H) ={TE IK(H) I un(T) = O(logn)(n _. oo)}. 

By definition, this set consists of TE IK(H) such that the sequence 

is bounded. 
The natural norm on £ 1•00 (H) is given by 

1 
IITll1,oo = sup-

1 
-un(T) = ll{(logn)-1un(T)}ll 00 • 

n2!2 ogn 

The normed space £ 1•00 (H) is a two-sided ideal of B(H). 

Proof. (Added). Note that 

1 1 1 
-
1 

-un(T1 + T2) ~ -
1 

-un(T1) + -
1 

-un(T2) ~ IIT1 II 1 oo + IIT2lli oo 
ogn ogn ogn ' ' 

and that for Ti E £ 1•00 (H) and T2 E lli(H), 

• 

• 
Lemma 13.14. (Added). The ideal £ 1(H) of HJ(H) is contained in the ideal 
t:,l,oo(H). 

For TE IR(H), we have the norm estimate IITll1,oo ~ 10~ 2 IITlli-

Proof. If TE £ 1 (H), then IITII 1 = E:=o µn(T) converges. Then for n ~ 2, 

Un(T) < IITlh < IITll1. 
logn - logn - log2 

Thus, IITll1,oo ~ 10~ 2 IITll1- • 
Lemma 13.15. (Added). The ideal of all infinitesimals of order 1 is contained 
in the ideal £ 1 •00 

( H). 
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Proof. Note that if µn(T) ~ C¼ for some C > 0 and any n 2'.: no for some 
n0 2'.: 11 then for any n - 1 ~ no, 

n-l no-1 n-l l 

Un(T) = Lµk(T) ~ L µk(T) +CL k 
k=O k=O k=nu 

nu-1 l ln-1 l 
~ L µk(T) + C( - + -dx) 

k=O no no X 

nu-1 l 
~ L µk(T) + C(- - logn0 + logn) 

k=O no 

and hence ~~!~) is bounded by C + c as n--+ 00 1 for any e > 0. D 

Remark. As in [159, Section 6.2), one may define .C1•00 (/f) to be the ideal of 
all infinitesimals of order 1. The converse of the statement above does not hold 
? Probably, it does not, but we could not find a suitable proof for that it does 
hold. 

(Added). The Macaev [Matsaev) ideal .C00
•
1 (J/) of B(H) is defined to be 

,C00
•
1(H) ={TE IK(H) IL .!.µn(T) < oo}. 

n:2:1 n 

The predual of the ideal .C00
•
1(H) is the ideal .C~·00 (H) of 1$(/f): 

.C~•00 (H) = {TE IK(H) I un(T) = o(logn)(n--+ oo)} 

under the pairing given as (A, B) = tr(AB). 
For any bounded sequence a = (an)~=t, the associated bounded function 

lo on lR+ = (O, oo) is defined by 

!a(x) = On for x E (n - 1,n] for n EN. 

(Added). The Cesaro mean for fa bounded function on IR+ is defined by 

• 1 ly dx 
mc(f)(y) = -

1 
- J(x)-. 

ogy l X 

Note that the function me(!) is bounded and continuous on IR~. 
The Cesaro mean satisfies the following scale invariance that for any bounded 

function J, 
lim lmc(Bµ(f))(.,\) - mc(/)(.-\)1 = 0, 

>.-oo 

whereµ> 0 and 
Bµ(f)(.,\) = /(.,\µ) for.,\ E JR~. 
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Proof. {Added but not completed). We then have 

lmc(Oµ(J))(.-\) - mc(J)(.-\)j 

I 1,\ dx l 1,\ dx = I- f(µx)- - - f(x)-1 
log ,\ 1 x log ,\ 1 x 

1 1µ,\ ds l 1.x dx 
:5 I- f(s)-1 + - 11/11-

log ,\ µ s log ,\ 1 x 

::; 
1
ll!I~ (log(µ,\) - logµ+ log.-\)= 211/11. 
OgA 

(withs= µx) 

(Possibly, the other estimate is needed. Or it may involve the limit with respect 
toµ.) Indeed, we also have 

1 1.x dx lmc(Oµ(J))(.-\) - mc(J)(.-\)I = 1-
1 

\ (Oµ(J)(x) - J(x)-1 
OgA 1 X 

::; IIOµ(J) - !II, 

w~ich may go to zero as µ -+ I in a possible sense. • 
Then 

X 
o ½ Ua)(x) = la( 2) = fco:1,0:1 ,0:2,0:2,··· >(x) = lea" ,an> (x). 

If cp is any positive linear form on Cb(lR+) such that cp(/) = limx-oo f (x) 
for any f E Cb(lR+) convergent at infinity, then the composition w = cp o me is 
a positive linear form on l00{R+) such that (cpomc)(J) = limx-oo f(x) for any 
J ~ l00 (1R+) convergent at infinity and th~t w(J(o:n)) = wUco:1,0:1,0:2,0:2,··· )) = 
w(J(o:n,o:n))- Moreover, we may assume that cp{l) = 1 and cp is zero on the 
subspace C0 (1R+) of continuous functions on R+ vanishing at infinity. 

Let TE .C1•00{H) and T 2'.: 0. The Dixmier trace of Tis defined to be 

n-1 

trw(T) = lim -
1 

1
- L µk(T) 

w ogn k=O 

= w(J{ $CTn(T)} :"=), 

which may as well be written as f T for short as before. 

Proposition 13.16. ([66, Proposition 3, Page 3061). (Added and edited). 
(1) The Dixmier trace extends by linearity to the ideal .C1•00 (H) of IK(H) as 

a positive functional. 
(2) If SE Ili(H) and TE .C1•00 (H), then trw(ST) = trw(TS). 
(3) The Dixmier trace is independent of the choice of an inner product on 

H and it depends only of the Hilbert space H as a topological vector space. 
(4) The Dixmier trace vanishes on the ideal £~•00 (H), which is the II· 111,00-

norm closure of the ideal of finite rank operators, and so does on the ideal .C 1(H), 
contained in r.i•00 (H). 
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Proof. {Edited). For (1). If T1 , T2 E £ 1•00 (H) are positive, then 

trw(T1 + T2) = trw(Ti:) + trw(T2). 

Because 

trw(T1 + T2) = w(J{ $ E;::,: µA-(T1 +T2 )}) 

~ w(J{ r.¼n E~;,! µAc(Ti) }) + w(J{i .. !,. EZ~,! µ~,(T2 ) }) = trw(Ti) + trw(T2). 

On the other hand, we have 

Hence 

1 1 log(2n) 1 
-
1 

-an(Ti) + -1 -an(T2) ~ -1-( -) -1 (? ) a2n(T1 + T2) ogn ogn og n og ... n 

with 
lim log(2n) = lim ~n = 1. 

n-oo log{ n) n---oo 2n 

Therefore, 

trw(T1) + trw(T2) = w(J{ ~u,.(Ti) }) + w(J{ r.;j};;u,.(T2 ) }) 

< w(/{1ug2n 1 (T +r. )})' - lul( " log 2n U2,. l 2 

= w(J{ Ci:~2,:· -1) lug1
2,, u2,.(T1 +T2) }) + w(J{ 1oi2n u2,.(T1 +T2) }) 

= O + w(f {..,l(\n u2,. (T1 +T2)}) 

= w(f { log.2n U2n(T1 +T2).,.,g12,. u2,.(T1 +T2)}) 

= w(f{log12,,0'2n(T1+T2)-,.,K(2~-l)U2n-dT1+T2),0}) + trw(T1 + T2) 

= 0 + trw(T1 + T2), 

where note that 
1 1 

-1-?-a2n{T1 +T2)- l (? _ I)°"2n--1(T1 +T2) og .... n og .... n 
1 

~ I ? I (
2 

) (log(2n)a2n(T1 + T2) - log(2n)a2n-1(T1 + T2 )) 
og ... n og n - 1 . 

1 . 
= 

1 
(
2 

) µ2n-1 (T1 + T2) --+ 0 (n--+ oo). og n-1 

For (2). Note that for S E JR(H) and T E ,C,1 (H) (such as finite rank 
operators), 

1 1 1 1-
1 

-O'n(ST) - -
1 

-an(TS)I ~ -
1 

-lan(ST) - O'n(TS)I 
ogn ogn ogn 

1 
~ log 

2 
(lan(ST) - tr(ST)I + ltr(TS) - an(ST)I) --+ 0 (n-+ oo). 
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Hence trw(ST-TS) = 0. For TE .C1
•00 (H), we may use the density of .C1(H) 

in .C 1•00 (H) under the norm II · ll1,00 (if so?). 
For (3). If SE IS(H) is invertible (or unitary), then for any TE .C1•00 (H), 

trw(STS- 1
) = trw(S-1ST) = trw(T). 

For (4). Note that if T E .C~'00 (H), then the sequence ( 10!nun{T))n;~2 
belongs to c0 (N + 2). 

Also, if TE .C1 (H), then 

1 1 
·-
1 

-un(T) ~ -
1 

-IITll1 __. 0 
ogn ogn 

as n--. oo. • 
Remark .. It is known that for A E £P(H) and B E .Cq(H) where 1 < p, q < oo 
with ! + ¼ = 1, we have tr(AB) = tr(BA). For A E .C1 (H) and B E lli(H), the 
same formula holds. See [133, Proposition 4.2.12). • 

(Returned). Spectral triples also provide a more refined notion of dimen­
sion besides the metric dimension summability. It is given by the dimension 
spectrum, which is not a number but a subset of the complex plane, defined 
below. 

Assume that a spectral triple (A, H, D) satisfies the regularity condition 
as that for any a E A00 C A, we have a, [D,a] E nkdom(8k), where 8 is 
the derivation defined by 8(x) = [IDI, x] for x E dom(8) the domain. Let B 
denote the algebra generated by 8k(a) and 8k([D, a]) for any a· E A00

• Then 
the dimension spectrum of the triple (A, H.D) is defined to be the subset 
u C C consisting of all the singularites of the analytic functions (b(z) obtained 
by continuation of 

(b(z) = tr(blDl-z), Re(z) > p,b EB. 

Example 13.17. Let M be a smooth compact Riemannian spin manifold. The 
corresponding spectral triple (A, H, D) is defined by A= C00 (M) the algebra 
of all smooth functions on M, H the Hilbert space of spinors: 

H .= L2 (M, S) = L2 (M, c±) 

~ L2 (M, c+) EB L2 (M, c-) = n+ EB n-, 

with c± ~ C EB C as spins ±, and D the Dirac operator: 

as an unbounded differentiable operator. Then the spectral triple has the metric 
dimension equal to the dimension dim M and has the dimension spectrum equal 
to the set {O, 1, · · • , dim M}. 
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In the case of an ordinary Riemannian manifold Al, it is interesting to check 
the meaning of the points in the dimension spectrum that are smaller than 
n = dim M. These are dimensions in which the space manifests itself non­
trivially with some interesting geometry. 

At n = dim M of the dimension spectrum of the spectral triple, the vol­
ume form of the Riemannian metric is recovered by the equality (valid up to a 
normalization constant) •( cf. [66]) 

where the integral in the left hand side is given by the Dixmier trace (cf. [107)}, 
generalizing the Wodzicki residue of pseudo-differential operators (cf. [240]}. 

(Added). Recall from (66, IV 2.(3 Proposition 5) that the Wodzicki residue 
Res(T) for a pseudo-differential operator T of order -n acting on the space of 
sections of a complex vector bundle E on an n-climensional compact manifold 
M is defined to be 

Res(T) = (: )n 1 trH(u(T))ds, 
n ... 1r s·M 

where u(T) = u_n(T) means the principal symbol forT, which is a homogeneous 
function of degree -n on the cotangent bundle T* M of M, and the integral 
above is independent of the choice using a metric on M, of the unit sphere 
bundle S* M in T* M with its induced volume element. Then 

(1) The operator Ton H = L2 (M, E) of sections of E over M belongs to 
the ideal .C1

•
00 (H). 

(2) The Dixmier trace trw(T) is independent of w, and that 

f T = trw(T) = Res(T). • 

One can also has the integration J dsk in any other dimension in the dimen-
sion spectrum {dim-sp), with ds = n- 1 the line element. · 

In the case of a Riemannian manifold, found are other important curvature 
expressions. For instance, if M is a manifold of dimension 4, by considering 
integration in dimension 2, found is the Einstein-Hilbert action. In fact, a 
direct computation implies the following (cf. [145], [1431): 

Proposition 13.18. Let M be a manifold of dimension dim M = 4. Let dv = 
,fgd4x denote the volume form, ds = n-1 the length element as the inverse of 
the Dirac operator D, and r the scalar curvature. Then 

f 2 -1 { 
ds = 481r2 J M rdv. 

In general, the scalar curvature of an n-dimensional manifold is obtained 
from the integral f dsn-2 • 
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More refined properties of manifolds carry over to the noncom mutative case, 
such as the presense of a real structure, which makes it possible to distinguish 
between K-homology and KO-homology and the order one condition for the 
Dirac operator, as follows (cf. (69] (and (67] missing)). May refer to [120] as 
well. 

Definition 13.19. A real structure on an n-dimensional spectral triple (A, H, D) 
is defined to be an anti-linear isometry J : H - H such that 

J 2 = e(n)l, 

JD= e1(n)DJ (or [J,±D] = c'(n)l), 

and J, = e11(n),J (or [J, ±,] = e"(n)l) (even case), 

where the signature functions e:(n), e:'(n), and c"(n) are defined as in the table 
(corrected) below: 

Table 3: Values of the signature functions 

n mod 8 0 1 2 3 4 5 6 7 
e: = e:(n) 1 1 -1 -1 -1 -1 1 1 

e:' = c'(n) 1 -1 1 1 1 -1 1 1 
c11 = e:"(n) 1 No -1 No 1 No -1 No 

Moreover, the action 1r of A satisfies the commutation rule that [a, b0
] = 0 

for any a, b EA with a= 1r(a), where b0 = Jb* J-1 = 1r0 (b) for any b E A, and 
the operator D satisfies that [[D, a], b0

] ~ 0 for any a, b EA. 

The condition [A,A0
] = {O} says that the action of A commutes with that 

1r0 of A 0
• 

Note that the element b0 = 1r0 
( b) is viewed as a representation of the opposite 

algebra A 0 of A with multiplication as its elements exchanged. 

Proof. Note that for any a, b E A and A 0 with ba E A equal to ab E A 0
, 

1r0 (ab) = J1r(ba)* r 1 = J1r(a)*1r(b)* J-1 = 1r0 (a)1r0 (b). 

• 
In ordinary Riemannian geometry, the anti-linear isometry as J is given by 

the charge conjugation operator acting on spinors. In the noncommutative case, 
this is replaced with the Tomita-Takesaki (TT) anti-linear conjugation operator 
(cf. [229]). 

There are necessary and sufficient conditions known as that a spectral triple 
has the following items in order to come from an ordinary compact Riemannian 
spin manifold ((65) and [120]): · 
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1 
(1) An infinitesimal ds = n- 1 of order n of ,en(H), or of order - in the sense 

n 
that n-n E £ 1 (H) or E ,C 1•00 (H) but fl .ci·00 (H). (Classical dimension). 

(2) A real structure as .J above. 

(3) The commutation relation: [(D, a], b0
} = 0 for any a, b EA, 

which is [[D, a], b} = 0 for any a, b EA commutative. 

(4) The regularity hypothesis: a, [D, a} E nkdom(8k) for all a E A00
• 

(5) A Hochschild cycle c E Zn(A00
, A00 ® A0

) such that 

1r(c) =, in the even case and 1r(c) = 1 in the odd case, 

where 1r(a0 ®•••®an)= a0 [D, a1
} • • • [D, an} on H. (Orientation). 

(6) The space H 00 = nkdom(Dk) of smooth vectors a finitely generated, 

projective A-module, endowed with an A-valued inner product (f,,, 11), 

with (af,,, TJ) = f a(f,,, 1J)dsn. (Finiteness). 

(7) The intersection form K,.,(A) x K,.,(A)-+ Z obtained from 

the Fredholm ind~x of D with coefficients in K,.,(A@A0
) invertible, 

or nondefenerate. (Poincare dualiry). 

A noncommutative spin geometry is defined to be such a real spectral 
triple satisfying the conditions {l) to (7) above. 

When A = C00 
( M), the above conditions characterize the Dirac operator 

associated to both of a Riemannian structure and a spin structure on M ( cf. 
[120]). 

(Added). That the number n of order is even corresponds to that the spectral 
triple is even. If the algebra A and the Hilbert space Hare finite dimensional, 
then the classical dimension of the geometry is zero. • 

As formulated in [69}, in the commutative case, we could drop the hypothesis 
that A= C00 (M) and use the orientation condition to construct an embedding 
of the spectrum of the algebra A as a submanifold of Rn. There is a recent work 
by Lord, Rennie and Varilly ([206] and cf. [166] with the title changed), which 
gives promising results in this direction. fvloreover, the conditions can be stated 
without any commutativity assumption on A. For instance, they are satisfied 
by the isospectral deformations of (79], discussed later. Another significant 
noncommutative example is given by the standard model of elementary particles 
(cf. (69]), also discussed later. 

Another example of spectral triple associated to a classical space, which is 
not classically a smooth manifold, is in the case of manifolds with singularities. 
In particular, consider the case of an isolated conical singularity as follows. 

Example 13.20. {Edited). ([164] and also, cf. (163) missing). Let M be a 
manifold with an isolated conical singularity. The cone point c E 1V/ has the 
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property that there is a neighbourhood U of c in M such that U\ { c} has the form 
( 0, 1) x N with N a smooth com pact manifold and with metric gl u = dr2 + r2 g N, 

where YN is the metric on N. 
Note that M looks like an attached disjoint union as: 

M = {c} Lie ([O, 1] x N) LIN Mo, 

where the point c is identified with {O} x N and 1 x N identified with N is 
attached to the boundary oMo of a submanifold Mo of M. 

A class of differentiable operators on manifolds M with isolated conical sin­
gularities is given by the elliptic operators of Fuchs type, action on sections of a 
bundle E over M. The restriction of such operators to (0, 1} x N has the form 

d 

r-"I:ak(r)(-r8r)\ for v E JR,ak E C00 ([0, l).Difd-k(N,EIN), 
k=O 

which are elliptic with symbol O'Af(D) = E:=o ak(O)zk that is an elliptic family 
parameterized by the imaginary part of z. In particular, operators of Dirac 
type are elliptic of Fuchs type. For such an operator D being of first order 
and symmetric, it is shown that its self-adjoint extension has discrete spectrum, 
with (n + 1)-summable resolvent, where n = dim M ([52], [36}, [1641). 

Let A = C'{' ( M \ { c}) EB C the unitization of the algebra of all smooth 
functions on M \ { c} with compact support, which is identified with the algebra 
of all functions that are smooth on M \ { c} and constant near the singularity. 

The Hilbert space H on which D acts is chosen from a family of weighted 
Sobolev spaces. A weighted Sobolev space is roughly defined as that its smooth 
part is the standard Sobolev space and its cone part is defined locally by norms 

where JI\ denotes the Fourier transform on the group lR+ x ]Rm-l _ • 
Remark. (Added). Recall from [183] that the Sobolev Hilbert space WJ(X) on 
a space X for l E Z non-negative is defined to be of functions J(x) on X such 
that differentials D0 f E L2 (X) in the weak sense for any_ lol :::; l, with 

(J,g)2 = 1 L D0 f(x)D 0 g(x)dx 
X 0:5lal:5l 

as the inner product. Note that a partial derivative is converted to the corr~ 
sponding multication by the Fourier transform, preserving the inner product. 

• 
Theorem 13.21. ([1641). The (A, H, D) chosen above is a spectml triple. 

In particular, the zeta junctions tr(alDl-z) admit analytic continuation to 
the complement of the dimension spectrum in C, where the dimension spectrum 
is of the form { dim M - k I k E N} with multiplicities :::; 2. 
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The zeta functions are related to the heat kernel as 

1 100 

= 02 tr(IDl-z) = r(½) 
0 

t 2 -
1tr(e-t )dt, 

which relys on the results of [52] and [164). 
The case of tr(alDl-z) is treated by splitting alDl-z as a: sum of a contri­

bution from the smooth part and the other from the singularity. 
The Chern character from the K-{cohomology) theory for the space M to 

the cohomology theory for M is applied to the spectral triple as 

Ch: K*(M) ~ K*(A)-+ H.(M,<C) ~ PHC*(A) 

as the transformation from the K-(homology) theory for the algebra A to the 
periodict cyclic homology for A. {Note that homology is assigned to_homology, 
and that cohomology to cohomology.) 

The cocycles 'Pn in the (b, B)-bicomplex for the algebra A have beEfn com­
puted explicitly as ([164, Theoreme 5.11) 

<.po(a +-XI)= { aA"(M) A Ch(E) + A ind(D+), ,\EC, a E Cc:°(M) jM 

'Pn(ao, · · · , an) = Vn { aoda1 I\··· I\ dan I\ A"(M) A Ch(E), n 2: 1. 
}Al . 

(Added). May recall the construction of the fundamental (b, B) bicomplex 
of entire cyclic cohomology for a u~ital Banach algebra A over C, following [66, 
IV 7.a]. For any n E .N, let en = cn(A, A*) denote the space of continuous 
(n + 1)-linear forms <.p on A. For ii< O, set en = {O}. Define two differentials 
b: en -+ cn+l an:d B = Gp O Bo : en -+ cn-l -+ cn-l as 

n 

I)-t)i cp{a0 , · · · , ai ai+I, · · · , an+I) + (-l)"+lcp(an+Ia0 , a 1 , • •. , an), 
j=O 

(Bocp)(ao' ... , an-1) = 

cp(l,a0 ,. ·· ,an- 1)- {-l)"cp(a0 ,-- · ,an-i, 1), cp E en, 

(Cp'l/J)(ao, ... ,an-1) = 
n-1 

:~::)-l)(n-l)j'l/J(ai,ai+l, ... ,ai-1), 'l/J E cn-1. 

j=O 

It then follows that b2 = B 2 = 0 and b o B = - B o b, so that obtained is the 
bicomplex (Cn,m,d1,d2), where cn,m = cn-m for any n,m E Z, and 

d1 = (n - m + l)b: ·cn,m -+ cn+i,m and d2 = - 1-B : cn,m -+ cn,m+i. 
n-m 
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Namely, the (b, B) bicomplex diagram with degree n ± 1 is given by 

en b cn+l b cn+2 - -
Bj ja 1B 
cn+I b cn+2 b cn+3 - -
Br ja rB 
cn+2 b cn+3 b cn+4 - -

where the diagram above does not commute, but the diagram can be changed 
into the {d1 , d2 ) bicomplex with bidegree (n, m) + (1, 0), (0, I) as: 

cn,m di cn+l,m di cn+2,m 
(n-m+l)b (n-m+2)b 

d2 i ~-!+1 d2 r ,._?,.+2 d2 r n-?..+:1 

cn,m-1 di cn+l,m-1 d1 cn+2,m-l 
(n-m+2)b (n-m+3)b 

d2 r ,._?,.+2 d2 r n-!+:1 d:J i ,,_?,_+4 

cn,m-_2 d1 cn+l,m-2 di cn+2,m-2 
(n-m+3)b (n-m+4)b 

where the above diagram still does not commute. 
Note from [66, III l.o] that the complex (Cn(A, A*), b) is the Hochschild 

complex of A (with coefficients in A*). There is the linear map from cn(A, A*) 
to cn(A, A*) defined by 

Cp<.p = L e{,)r.po-y, <.p E en, 
-rer,.+1 

where r n+l is the group of cyclic permutations of the set {O, 1, 2, · · · , n}. Define 
Cf (A) to be the range of the map Gp as the subspace of cn(A). Then (Cf(A), b) 
is a subcomplex of the Hochschild complex. In particular, HC0(A) = Zf (A) is 
the linear space of traces on A. 

The cyclic cohomology groups HCn(A) of an algebra A are defined to be 
the cohomology groups of the complex (Cf(A), b). 

As example, if A= C, then HC2n(C) = C and nc2n- 1(C) = 0 for n 2::: 1, 
while Hn(C) = 0 for any n 2::: 1. 

Moreover, HC*(C) = EBn2!:oHCn(C) is a polynomial ring with one generator 
of degree two. Any HC*(A) = EBn2!:oHCn(A) is a module over the ring HC*(C). 

Furthermore, the periodic cyclic cohomology for A is defined to be 

PHC*(A) = HC*(A) ®Hc·(C) C. 

Now define 

ccv = ccv(A) = TineNc2n and cod= cod(A) = TineNC2n+l_ 
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The boundary operator O = di + d2 maps cev to cod and cod to ccv respec­
tively. 

An even cochain ('P2n)neN E ccv and an odd cochain (cp2n+1)neN E cod are 
said to be entire if infinity is the raduis of convergence of respectivety 

00 1 L nl 1l'P2nl!zn and 
nEN . 

00 1 L nl ll'P2n+l llzn, 
nEN . 

where for cp E cm for any m ~ 0, the norm of cp is given by the Banach space 
norm: 

llcpll = sup{lcp.(a0
,· • • ,am)ll llajll :s; 1,0::; j s; m}. 

It follows in particular that any entire even (or odd) cochain (cp2n) E ccv defines 
an entire function fc,.p2 ,.) on the Banach space A by 

oo (-l)n 
le 'P2n) (x) = L -,-<p2n (x, · · · , X), X E A. 

n=O n. 

(Note that (-l)n may b~ replaced with 1). 
Define 

ccv = cev(A) and cod= C0 d(A) en en en en 

to be the sets of entire even and odd cochains in ccv and cod, respectively. . 
The entire cyclic cohomology of a Banach algebra A is defined to be the 

cohomology of the short complex of entire evne and odd cochains on A: 

cev(A) ~ cod(A) ~ cev(A) ~ cod(A). 
en d1 +d2 en d1 +d2 en d1 +d2 en 

Then define the entire cyclic cohomology groups H~v(A) and H~d(A) to be the 
quotients ker(8)/im(8) at ci:(A) and C~~(A), respectively. 

As example, if A= C, then H~v(C) = C and H~d(C) = 0 (66, IV 7.o], where 
an isomorphism is induced by sending 

cv oo (-l)n 
Ce (C) 3 (cp2n) ~ I:-,-cp2n(l, · · ·, 1). 

n= 0 
n. 

There is an obvious map 

PHC.(A) ~ H;(A) = n:v(A) EB H~d(A). 

As another example, if A= C(z, z- 11 the algebra of Laurent polynomials, 
then H!v(A) = C = H~d(C), where generatos are given by the cyclic cocycles 
Tj [66, IV 7.€]: 

To(/)= j f(z)dz and r 1(J0,J1) = / J0dJ 1
• • 
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14 Spectral triples from Cantor s~ts 

As an important class of C*-algebras, consider direct limits or a sequence of 
finite dimensional C* -algebras and embeddings. These C* -algebras are said to 
be approximately finite dimensional (AFD) or simply AF-algebras. 

For an AF C* -algebra, its isomorphism class is determined by a diagram 
corresponding to its direct limit system, so called the Bratteli diagram [33] (cf. 
[39]). From the Bratteli diagram, it is possible to obtain the structure of the 
algebra, f~r instance, its ideal structure. 

Example 14.1. (Edited). Let X be a Cantor set and C(X) be the C*-algebra 
of all continuous, complex-valued £unctions on X compact. Then C(X) is a 
unital commutative AF-algebra. 

(Added). Note that the Cantor set Y in the closed interval [O, 1) = Io is 
defined to be the intersection nnin of decreasing unions In of closed intervals, 
obtained inductively by removing the middle open interval for each closed inter­
val in In-1, divided into 3 intervals with the same length such as Ii= Io\(½,}). 
Viewing each closed interval of In as C we obtain the injective Bratteli diagram 
for C(Y) as 

2 2 22 2 
Io= C --+ Ii= CEBC ~ I2 = EB C ---+ · ·· --+ C(Y) 

where each homomorphism is injective with multiplicity two at each direct sum­
mand. 

Recall that a topological space X is said to be totally disconnected if every 
connected component of X consists of a single point of X. The Cantor set Y in 
JR is homeomorphic to the product space II{O, l} with the product topology. In 
particular, for every point of Y, its open or closed neighbourhoods with more 
than the point are disconnected, so that its connected component is the point. 

A Cantor set Xis a totally disconnected, c·ompact Hausdorff (metric) space. 
A Cantor set X is also the intersection of a family of decreasing coverings of 
disjoint closed sets. This family provides the injective Bratteli diagram for C(X) 
as well.· 

Conversely, a unital commutative AF C* -algebra A is spanned by its projec­
tions, since any finite dimensional commutative C* -algebras are generated ·by 
mutually orthogonal projections. It then follows that the spectrum for A unital 
is a compact Cantor set. • 
Example 14.2. Let E be a real Hilbert space and T : E -. JR( H) a linear map 
sending f to Ti such that 

{Ti, T9 } = T1T9 + T9T1 = 0 and {Tj, T9 } = (g, /)1. 

Define the algebra A to be generated by all the operators Ti for J E E. • 
May refer to [106) as well. 
As described in [66, IV 3.c], one can construct the Hilbert space for a Cantor 

set X in JR as follows. We may assume that X has no isolated points and 
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is contained in the closed interval (0, 1] and 0, 1 E X. Let O = xc be the 
complement of X in (0, 1]. Then the open set O in (0, 1] is the disjoint union 
of a sequence of bounded intervals Ii (notation changed). Denote by lj = llil 
the length of each interval Ij. We may assume that the lengths are ordered as 
l1 2:: 12 2:: • • • > 0. We let Ij = (xi, xj) for every j with xf as the boundary 
·points of Ii. Denote by V = v+ U v- the set of the boundary points xf as a 
disjoint union respectively. 

Define the Hilbert space for a Cantor set X as 

Since V C X as a set, there is an action of C(X) on H given by 

(J · i;)(x) = f(x)~(x), for f E C(X),c; E H,x EV C X. 

Note that V is countable but X is not. 
Define the closed subspace of the piecewise constant functions of H with 

respect to V as 

K = {c; EH I ~(~i) = ~(xj) for any xf EV}, 

and let p be the orthogonal projection from H to K. Define F = 2p - 1 = 
pEB-(1-p) = lKEB-lK" on KEBK1- = H with K1- the orthogonal complement 
of Kin H (cf. (66]). Hence the operator F has K the eigenspace with eigenvalue 
+ 1 and K 1- the other with -1. : 

Denote by Hi the subspace of H corresponding to the coordinates ~(x7) for 
~ E H. Then the restriction Pi of p to Hi is 

Thus the restriction F; of F to Hi is 

F; = 2p; - l "' = ( ~ ~) = l 0 1. 

For any f E C(X), we have 

df = (F, J] = [F, M1] = EBj[Fj, (M1 )HJ] 

= EBj[l 0 l, f(xi) EB/ (xj)] = EB; {J(xj) - /(x:;))[-1011). 

Proposition 14.3. (Edited). The pair (H, F) is a Fredholm module overC(X). 
The operator df = (F, f] has characteristic values ±i(f(xj) - J(x;)) with 

respect to the intervals Ij = ( x J, x j), with multiplicity one (corrected). 
{Added). If J E C(X) satisfies J(x) = x = id(x) on X, then the operator 

df = [F, JJ does have characteristic values ±i(x; - x;) = ±il; with li = lljl, 
or certainly does those li with multiplicity two, but up to modulus one. 
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Proof. Since Fi = FJ and F] = 12 = 1 ffi 1, then F = F* and F 2 = 1 on H. If 
J E C(X), then J is uniformly continuous on X a compact space, i.e., for any 
C > 0, there is 6 > 0 such that if lj < 6, then l(J(xl) - f(x_n1 < c. It then 
follows that df = [F, f] is a compact operator on H. 

Compute that for ,\, µ E C with µ fixed, 

det {.X{l EB 1) - v(-10 I))= .-\2 + µ 2 = 0, 

which implies ,\ = ±iµ. 

We compute D = FdJ- 1 or dJ- 1 Fas the Dirac operator as 

D = Fdr1 
= ©j (~ ~) (J(xj)- J(x;))- 1 

(~ ~/) 

= (B;(/(xj}- f(xJW 1 G ~1) or 

= dr1 F = ffij(J(xj) - J(x;))- 1 
( ~l n · 

(Compare with that in [83)). 

D 

Proposition 14.4. Let X be a Cantor set in JR. Let AC C(X) be the dense 
subalgebra of locally constant functions on X. Then we have a spectral triple 
(A, H, D), with the multiplication action on H = l2 (V) = l2 (X) and with D 
defined as above. · 

The zeta function satisfies the equation 

tr(IDl-s) = 2(£{s) = 2 L lk, 
k 

where (L(s) is the geometric zeta function of L = {lkh~1 for s E C with the 
real part Re( s) positive. 

These zeta functions are related to the theory of Dirichlet series and to other 
arithmetic zeta functions, and also to Ruelle's dynamical zeta functions (cf. M. 
L. Lapidus and M. van Frankenhuysen ([160) missing). 

Example 14.5. (Edited). If X is the classical or original Cantor set such that 
l 1 = ½ = j - ½, l2 = l3 = -/,r, · · · , and l2k = · · · = l2k+ 1 _ 1 = 3k~ 1 with 
multiplicity 2k, then the formula above says that 

Proof. {Added). Indeed, if J(x) = x, then D = FdJ- 1 satisfies 

IDl2 = v• D = (B;lj2 
(~ ~) and !DI-•= (B;lj (~ n 
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and that IDl2 is unbounded and IDl-s is compact for s ER positive or for s EC 
with real part Re(s) positive. Moreover, 

00 

tr{IDl-s) = 2 L lJ-
j=l 

0 

It then follows that the dimension spectrum of the spectral triple of the 
Cantor set has points off the real line. In fact, the set of poles of the right hand 
side is 

{ 
log2 . 21rn } 
log 3 + 1 log 3 I n E z · 

Proof. (Added). Solve the equation 1 - 2 • 3-s = 0 for s E R positive by taking 
logarithm. Then the solution is s = ~-

Solve the equation 1 - 2 • 3-s = 0 for s E C with Rs(s) positive by taking 
exponential logarithm. Then the solutions are given by 

. . log2 -1 
s = Re(s) + ilm(s) with Re(s) = loo-

3 
and Im(s) = {log3) 2mr for n E Z. 

0 

• 
In this case the dimension spectrum lies on a vertical line and it intersects 

the real axis at the point D = log2 · {log3)-1 E R, which is the Hausdorff 
dimension of the ternary Cantor set. The same also holds for other Cantor sets, 
as long as the self-similarity is given by a unique contraction as in the ternary 
case where the original interval is replaced by two intervals of lengths scaled by 
1 
3· • 
Remark. (Added). For a subset A of Rn, its Hausdorff dimension is defined to 
be tlie infimum 

inf{s > 0 I f/ 5 (A) = 0}, 

with 8 > 0 and 

where H 5 (A) = lim H6(H) 
«5-o 

HJ(A) = inf{Ld(U;)5 I {U;} is a 8-covering of A}, 
j 

where a countable family of subsets {U;} of Rn is said to be a 8-covering of A 
if AC U;U; and the diameters of U1 are upper bounded as 

d(U1) = sup{llx -yll I x,y E Uj} ~ o. • 
If we consider slightly more complicated fractals in IR, where the self-similarity 

requires more than one scaling map, then the dimension spectrum may be cor­
respondingly more complicated. This can be seen in the case of the Fibonacci 
Cantor set, for instance, as follows {cf. M. L. Lapidus and M. van Frankenhuysen 
[160] missing). 
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Example 14.6. (Edited and extended). The Fibonacci sequence (/ n) is defined 
by J n = f n-1 + J n-2 for n ~ 2 with Jo = 0 and ft = 1. The Fibonacci Cantor 
set Xi is defined to be the intersection nn~oin of unions In of closed intervals 
obtained as that Io= (0, 4), / 1 =Io\ (1, 2) = (0, 1} u (2, 4], / 2 =Ii\ {2 + ½, 3) = 
[O, IJ U [2, 2 +½JU (3, 4},. -

1 1 1 1 
J3 = 12 \ {( 22, 2) u (3 + 2;;? '3 + 2)} 

1 1 1 1 1 = [O, 22 ].u [2, !Ju [2, 2 + 2) U [3,3 + 22 ] U (3 + 2,4}, 

and inductively, In is defined to be the union of closed intervals obtained from 
In-1 by removing fn open intervals of lengths ln = 2 }_ 1 from closed intervals 
of In-I, where the closed intervals in In-I are chosen (and underlined) with 
respect to their lengths ordered, higher first, and each chosen closed interval is 
removed by the open interval at the part of the closed interval as ratios from ¼ 

1 to 2. 
One can associate to the Fibonacci Cantor set X f the unital commutative 

AF C*-algebra A = C(X1) as that viewing each closed interval of In as C 
implies that 

Io= C __!_ Ii= C2 ~ J3 = C3 ~ /4 = C5 
- · · ·-+ C(X1) 

where each homomorphism is injective with multiplicity one or two at each 
direct summand. 

We let V denote the set of all endpoints of closed intervals of Ii for j ~ 0. 
Define the Hilbert space for the Fibonacci Cantor set X 1 as H = l2 (V). One 
can define an action of C(X f) on H as multiplication operators. 

Define the closed subspace K of H of functions on X f that are constant' 
at each pair of endpoints of closed intervals of Ii· The the Fredholm module 
(F, H) over C(X1) is associated to the orthogonal projection to K. 

Define the Dirac operator as 

D = Fdr 1 or dr 1 F with df = [F, J\tljJ. 

Let A C C(X f) be the dense involutivie subalgebra of locally constant functions 
on X f. Then we obtain a spectral triple {A, H, D). 

Moreover, the zeta function formula is obtained as 

oo 2-s 
=2°"J 2-ns = ---- L- n+l 1 - 2-s - 4-s 

n=O 

(corrected) for s E Z with real part positive, where (1(s) is the geometric zeta 
function associated with the Fibonacci numbers fn-
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Proof. (Added). The proof for the first equality is essentially the same as that 
for the corresponding equality in the previous example. For the second, 

CX) 

(L(s) = L l!: = 1 + rs + (r2s + r2s) + ... 
k=l 

00 

= Ii + 12rs + 1ar2s + ... = I: f n+l rns 
n=O 

For the third, it is well known in number theory that 

f n = ~ { ( l \ 
15) n - ( I -

2
15) n} , n ~ O. 

It is proved by induction as in (227). Note as well that the equation x2-x-1 = 0 

implies the solutions o = 1
-/5 and {3 = 1+/5. Then f n = f n-1 + f n-2 = 

(o + /3)f n-1 - o/3/ n-2, which is converted to f n - of n-1 = f3Un-I - of n-2) 
and to f n - f3fn-l = o(fn-1 - /3/n-2)-

It then implies that 

= =------
(2s+1 - 1 - J5)(2s+l - 1 + Js) (25 +1 - 1)2 - 5 

2s+l 2-s-l 
=------=-----4(22s - 2s - 1) 1 - 2-s - 2-2s. 

D 

The dimension spectrum for the spectral triple is given by the set 

{ 
log a . 2,rn } { log/3 . 2,rn } 
log 2 + i log 2 I n E z LI log 2 + i log 2 I n E z 

(corrected) where o = 1-/2 and /3 = 1+2v's called the golden ratio. 

Proof. {Added). Solve the equation 1 - 2-s - 4-s = O, which is converted to 
(2-s)2 + 2-s - 1 = 0. The equation x2 + x - 1 = 0 has solutions -l~v's. 

We then solve the equation 2-s = -t~/5. Taking exponential logarithm 
implies that 

?-Rc(s) -ilm(s)log2 _ -1 ± J5 
., e - 2 . 

It then follows that Im(s) = 1!~~ for n E Zand Re(s)log2 = log( 1\v'5). 
• D 
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Recent results on the noncommutative geometry of fractals and Cantor sets 
and spectral triple constructions for AF-algebras can be found in CI [53] (cf. 
[7]) and GI [123), [124). 

For the dual group of the Cantor set viewed as the product of countably 
many copies of the cyclic group Z/27l = ~' the corresponding spectral triple 
is constructed by [53) (cf. [7]). In particular, the Dirac operator has the form 
E~=l O:nqn, where (o:n) is a sequence of positive reals and (qn) is a sequence of 
pairwise orthogonal projections. · 

It is shown by a recent work [54) that it is easy to describe a compact metric 
space, recovering the metric via a spectral triple. The space is a sum of two­
dimensional modules, but spectral triples carry much more information than 
just regarding the metric. Also provided by the construction of [55] is a natural 
spectral triple for the Sierpinski gasket, of topological dimension one. 

15 Dimensional regularization in QFT 

In perturbative, quantum field theory (QFT), computed are expectation values 
of observables via a formal series, where the terms are parameterized by Feyn­
man graphs and reduced to ordinary finite dimem;ional integrals in momentum 
space of expressions assigned to the graphs by the Feynman rules. These ex­
pressions typically produce divergent integrals. 

For example, in the example of the scalar </>3 theory in dimension D = 4 or 
D = 4 + 2n with n EN, a divergence appears already in the simplest one-loop 
diagram, with corresponding integral in Euclidean signature as 

l; v 1 l1:m1 v 2 1; 
-· 0 ·-Pt l:z:m:z P:z 

(corrected as in the sense below). 

Remark. (Added). Recall from (183) the Feynman graph (or diagram) (Fg) as 
follows. The graph Fg is a finite connected graph, consisting C>f finite points ( or 
vertexes) v1, · · · , Vk in the 4-dimensional space-time, and of finite, I-dimensional 
(curved, closed) intervals (or edges) l1 , · · · , lN, and of finite, half-open lines 
lf, · · · , lk,, such that the two end points of each l; and the one end point of each 
lJ are (two or one) vertexes. Refer to the above graph, where the circle is in fact 
divided into a union l1 Ul2 and l1 nl2 = { v1, v2}. As well, the half line lJ contains 
v; as the end point. Each half line lJ corresponds to a 4-dimensional vector Pi, 
and each interval l; does to a non-negative constant m;. An orientation for a 
Fg is given as just the arrows. Then the incidence number [vi: l;) with respect 
to Vi and l; is defined to be +1 when l; goes into Vi and -1 when li starts from 
Vi and O otherwise. Similarly, define [vi, lJ). 

The Feynman rule is a correspondence between each Feynman graph and its 
integral, given as above. In rather general, the correspondence is given as that 
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for such Fg defined above, 

where kJ = kJo - L~=l kJv· • 
Therefore, we need a regularization procedure· for these divergent integrals. 

The regularization most commonly adopted for computation in quantum field 
theory is dimensional regularization (or renormalization) {DimR) and minimal 
subtraction {MinS). The method is introduced in the 1970s in [25] and [137]. It 
has the advantage of preserving basic symmetries. 

The regularization procedure of DimR is essentially based on the use of the 
formula 

e- d k=1r2>i_-2, J Ak 2 d " ., 

to define the meaning of the integral in d = D - z dimensions, for z E C in 
a neighbourhood of zero. For instance, in that case above, the procedure of 
dimensional regularization yields the following: 

In a recent survey [172), it is Yuri Manin who refers to DimR as dimensions 
in search of a space, as a reminiscent of, Six characters in search of an author, a 
play of Pirandello. Indeed, in the usual approach in perturbative quantum field 
theory, the dim~nsional regularization procedure is just regarded as a formal rule 
of analytic continuation of formal {divergent) expressions in integral dimensions 
D to complex values of the variable z (corrected). 

However, using noncommutative geometry, it becomes possible to construct 
actual spaces as in the sense of noncommutative Riemanian geometry, as Xz 
whose dimension in the sense of dimension spectrum is a point z E C { cf. (85) 
missing but checked not to be specified). 

It is known in the physics literature that there are problems related to using 
dimensional regularization in chiral theory, which involves giving a consistent 
prescription on how to extend the --y5 as the product of the matrices --yi when 
D = 4, to non-integer dimension D-z. It turns out that a prescription known as 
Breitenlohner-Maison [35) (and (56) missing) admits an interpretation in terms 
of the cup product of spectral triples, where we take the product of the spectral 
triple associated to the ordinary geometry in the integer dimension D, by a 
spectral triple Xz whose dimension spectrum is reduced to the complex number 
z (cf. [85) missing). 

Illustrate here the construction for the case where z E R+ of positive reals. 
The more general case where z E C is more delicate. 

Example 15.1. {Edited). We need to work in a slightly modified setting for 
spectral triples, which is given by the type II spectral triples {cf. [22], [41), [42)). 
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In this setting, the usual type I trace of operators in C} (H) the trace class is 
replaced by the trace on a type 1100 von Neumann algebra. 

Consider a self-adjoint operator Y, affiliated to a type 1100 factor N, with 
spectral measure given by, via functional calculus, 

trN(xs(Y)) = ~ l Idy 

for any interval E in JR, with XE the characteristic function on E. 
If Y = FIYI is the polar decomposition of the operator Y, then set 

Dz = p(z)FIYI ¼ 

by functional calculus, where the normalization function p(z) h; chosen to be 

! 

p(z) = ,r-½r (~ + 1) ~, 
so that it is obtained as 

trN(e--'D~) = ,r½A-½, A E JR~. 

This gives a geometric meaning to the basic formula of DimR, given above. 
The algebra A of the spectral triple X z can be defined to contain any oper­

ator a such that the additive commutator [Dz, a) is bounded, and both a and 
[Dz, a] are smooth for the geodesic flow defined as, for Tin the domain, 

T ._ eitlD.,,lre-itlD=I, t E.,JR. 

The dimension spectrum of Xz is reduced to the single point z, since 

trN((D~)-i) = p(z)-s /
00 

u-f du= p(z)-s _z_ · 
1 S - Z 

has a single simple pole at s = z, and is absolutely convergent in the half space as 
Re(~)> 1, where tr.N denotes the trace with an infrared cutoff, i.e., integrating 
outside of IYI < l. • 

16 Local algebras 1n super-symmetric QFT 

It is striking that the g~neral framework of noncommutative geometry is suitable 
non only for handling finite dimensional spaces, commutative or not, of dimen­
sion, interger or not, but is also compatible with infinite dimensional spaces. (As 
a note it seems be always that it can be extended to the infinite case without the 
convergence problem). As already seen before, discrete groups of exponential 
( or polynomial?) growth naturally give rise to noncommutative spaces which 

.are described by a 0-summable spectral triple, but not by a finitely summable 
one. This is characteristice of an infinite dimensional space. In that case, as for 
discrete groups, cyclic cohomology needs to be extended to entke cyclic coho­
mology. A similar kind of noncommutative space also arises from the quantrum 
field theory (QTF) in the super-symmetric context, as in [66). 
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Example 16.1. (Added). {(66, IV 9.,B]). {The free massive scalar field theory). 
Let X = S 1 x IR as a space-time, with the Lorentzian metric. 

A scalar field is defined to be a real-valued function <p = <.p(x, t) on X gov­
erned by the Lagrangian L{<p): 

a a 
80=- and Eh=-

8t ax 
the time derivative for t E JR. and the spacial derivative for x E S 1 . 

The action functional is given by 

l(,p) = l L(,p)(x, t)dxdt = L (L, L(,p)(x, t)dx) dt 

= L (fs
1 

L(cp)dx) (t)dt. 

Thus, at the classical level, one is dealing with a mechanical system with finitely 
many degrees of freedom, whose configuration space C = L2 (S1 , IR) is the space 
of (square integrable) real-valued functions on S 1 . 

The Hamiltonian of this classical mechanical system is the functional on the 
cotangent space T*C, given by 

where one uses the linear structure of the space C to identify T*C with C x C*, 
and one views the field 7T' as an element of the dual space c• of C of all 7T' : C - C 
bounded and linear, as 

1T'(<.p) = [ cp(x)1T'(x)dx EC. ls1 
Consider the components 'Pk= J81 cp(x)e-ikxdx under the Fourier transform 

in C and those 7T'k of 7T' in c• ., which are subject to the reality condition that 
<.p:...k = 'Pk and 'lr-k = 7T'k for any k E Z. Thus, both spaces C and T*C are infi­
nite products of finite-dimensional spaces and the Hamiltonian H is converted 
to the infinite sum: 

In a system with configuration space as IR and Hamiltonian Has ½(p2 +w2q2
), 

the quantization of a single harmonic oscillator does quantize the ·values of the 
energy in replacing If by the operator ½((-ili~)2 +w2q2 ) on the Hilbert space 
L2 (IR), with the set {nlu.v In EN} as the spectrum up to a shift. The algebra of 
observables of the quantum system is then generated by a single operator a* and 
its adjoint a with the commutation relation: [a,a*] = l, and the Hamiltonian 
is H = lu.va*a. These two equations completely describe the quantum system. 
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Its only unitary representation in L2 (IR.) is defined to be a= 72 (-£ + q) up to 
unitary equivalence. The unique up to phase, normalized vector n such that 
an= 0 is called the vacuum vector. 

It follows from the reality condition for 'Pk fork positive that the pair { -k, k} 
corresponds to a pair of harmonic oscillators, whose quantization does to a pair 
of. creation operators aZ and a~k· The observable algebra of the quantized· 
field has the following presentation. The algebra is generated by az and ak for 
k E Z, indexed by the canonical orthonormal basis (ej) for L2 (IR.), with the 
commutation relations: 

[ak, aZ] = 1, [ak, ad = 0, and . [ak, a;) = 0 

for k, l E Z with k #- l. 

Proof. (Added). Indeed, the Fock Hilbert space is 

H = Cn EB [EB~=t (®n L2 (1R))), 

and the creation operator aZ: = a*(ek) and the annihilation operator ak = a(ek) 
are defined by that for any k E Z and {1 , • · · , {n E L2 (IR), we let aZ(Q) = ek, 
ak(n) = 0, ak(€i) = (ek, c;1)n, and 

aZ(fa ® {2 ® · · · ® c;n) = Jn + lek ® €1 ® 6 ® · · · ® c;n, n ~ 1, 

ak(c;i ® €2 ® · · · ® c;n) = ./n(ek, c;1)c;2 ® c;3 ® · · · ® c;n, n ~ 2. 

Therefore, we compute 

[ak, aZ]n = (akak - aZak)n = akek = (ek, ek)n = 1n, 

[ak, aZ]€1 = (akak - aZak)c;i = ak( v'2ek ® fa) - aZ( (ek, c;i)n) 
= 2(ek, ek)c;1 - (ek, c;1)ek = 26 - (ek, fa)ek, 

which is not equal to c;1 in general. • 
So, it should be corrected as that the canonical commutation relations 

(CCR) on the basis (ek) hold: 

[ak,+, aZ,+1 = 1, [ak,+, a,,+J = 0, and [ak,+, ai,+1 = 0 

fork, l E Z with k i- l, where ak,+ = P+akP+ = a+(ek) and az.+ = P+akP+ = 
a+(ek), where 

where the sum is taken over permutations of the set { 1, • · · , n}, and the sym­
metric projection P+ is detined to be a bounded operator with norm one by 
extending linearly and continuously. The subspace P+ H of the Fock space H is 
said to be the (symmetric) Bose-Fock space. See [34}. (Probably, ak and ak in 
[66, IV 9.,B] are not the creation and annihilation operators and should mean 
those cut down by the projection P+.) 
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Proof. {Added). Compute that 

[ak,+, at+Jn = (ak,+ak - at+ak)n = akek = (ek, ek)n = m, 
[ak,+, aZ,+l{1 = (ak.+aZ - ai,+ak)6 = ak.+( V2ek ® {1) - ai,+( (ek, fa)f2) 

= P+ak ( ~((ek@ ~i) + ({1@ ek))) - (ek,{1)ek 

= (ek, e1,:){1 + (ek, {1)ek - {ek, {1)ek = {1. 

More computations are omitted. • 
On the other hand, the·(anti-symmetric) Fermi-Fock space is defined simi­

larly to be the subspace p_-H of the Fock space fl, where the anti:..symmetric 
projection P- is defined by 

where err= 1 if the permutation 7r is even and= -1 if odd. Then the canonical 
anti-commutation relations {CAR) on the basis (ek) hold: 

{ak,-,aZ,_} = l, {a1,:,-,a1,-} = 0, and {ak,-,ai,-} = 0 

for k, l E .Z with k =/: l, where ak,- = p_akP- = a_(ek) and ak _ = p:...aicP- = 
a~(ek), and {x,y} = xy + yx. ' 

The {bosonic) Hamiltonian is then the derivation corresponding to the formal 
sum 

Hb = L liwkaic,+ak,+, Wk= ✓k2 + m 2
• 

kEZ 

The vacuum representation is given by the tensor product Hilbert space Hv = 
®kez(Hk, 111,:) and the tensor product algebra representation, corresponding to 
the tensor product of the vacuum states ((·)Ok, nk) with respect to the vacuum 
vectors f2k. • 
Example 16.2. {Edited with [66, IV 9.,B]). (The free Wess-Zumino model in 
two dimension). This is a super-symmetric free field theory in a two-dimensional 
space-time where space is compact. Assume that space is the circle S 1 and 
space-time is the cylinder set S 1 x JR endowed with the Lorentzian metric. The 
fields are given by a complex scalar bosonic field cp of mass m and a spinor field 
1/J of the same mass. The Lagrangian of the theory is of the form L = Lb + L J, 
where· 

{
Lb= ~~8ofl2 

- l81cpl2 
- ~

2 l'Pl2), 

L f = z1/J Lµ=O 'Yµ8µ'lj) - m'lj)'lj), 

where the spinor field is given by a column matrix 
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with 7J; = 1/J*,0 , and the rµ are 2 x 2 Pauli or Dirac matrices, anticommuting, 
self-adjoint and of square 1. In fact, 

,o = ( ~ ~) and , 1 = ( ~ ~ 1) . 

Then , 0 = ,o but ,i = -,1, and ,6 = 1 but,?= -1, and 

(1 0) (-1 0) l,0,,1] = ,0,1 - ,1,0 = 0 -1 - 0 1 = 0, 

and hence they do commute. 
The bosonic part is quantized exactly as in the real example above, except 

that the field c.p is complex, so that we need twice as many creation operators 
a;J ,+ ( k) ( cut down by the symmetric projections PiJ .+) for k E Z, i = v'=T, and 
j = O, 1, for which the commutation relations hold; 

[aiJ ,+(k}, aiJ ,+(l)] = [aiJ ,+(k}, a;J ,+(l)J = 0 and [aiJ ,+(k}, a;J ,+(l)J = 8kt 

(corrected}. We use this notation in what follows. 
The time-zero field cp(x) is given by 

c.p(x) = ~ L ~(ai +(k} + ai,+(-k}}e-ikx, w(k} = Jk2 + m2 • 
v41r kEZ yw(k} ' 

The conjugate momentum is given as 

1r(x) = . ~ I: jw[k}(a;,+(k} - a1,+(-k})e-ikx_ 
v 41r kEZ 

Then the canonical commutation relations hold: 

(c.p(x}, c.p(y)] = [1r(x}, 1r(y)] = [1r*(x), c.p(y)] = 0, [1r(x), 1r(y)] = -i8(x - y). 

The quantum field c.p(x) and its conjugate momentum 1r(x) are operator­
valued distributions in Hb and the bosonic Hamiltonian has the form: 

where the Wick ordering (omitted} takes care of an irrelevant additive constant. 

The C* -algebra generated by the fermionic field ,f, = ( :) is generated by 

its Fourier components 1/Jj(k} for i,j = 1, 2 and k, l E Z such that the anti­
commutation relations (on the Fermi-Fock space) hold: 

where { x, y} = xy + yx. In other words, it corresponds to the c• -algebra A 
associated to the canonical anti-commutation relations in the Hilbert space HI 
of £ 2:.spinors on S1. 
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The quantum fields 1/J.1 and 1/J2 are given by 

1/Jj(x) = L.1/Jj(k)e-ikx XE s1' 

kEZ 

which are A-valued distributions on S 1 . This specifies 1/J = ( ~:) at time zero. 

Its time evolution is specified by the Hamiltonian, given by the derivation of A 
as o(a) = [Hi, a], where, with "°ip = 1/J*--y0 , 

HJ = { ("ifi--Y1 i81/J - mtP'I/J) dx 1s1 
= L k(1/J1 (k)*1/J1 (k) -1/J2{k)*1/J2(k)) - m(1/J~{k)1/J2{k) + 1/J2{k)*1/J1 {k)). 

kEZ 

The derivation above defines a one-parameter group of automorphisms Ut of 
A the CAR algebra with respect to £2 (S1, S) and Ut, where Ut is the one­
parameter group generated by the operator 

H1 = . . ( 
i8 -m) 
-m -ia 

The representation of A associated to the ground state is said to be the 
Dirac sea representation, described as follows. The Hilbert space Hf is the 
anti-symmetric Fock space over 

i.e., in other words, a suitable spin representation of the infinite dimensional Clif­
ford algebra containing the fermionic quantum fields 1/Jj(x). Denote by b;i,-(k) 
the corresponding creation operators fork E Z (cut down by the anti-symmetric 
projections Pii ,-), indexed by the natural orthonormal basis of L2 {S1 , S). The 
operators satisfy CAR and are related to 1/Jj{k) as that 

1 
1/J1 (k) = ---;:::::====;:=(v{-k)b~1 _ (k) + v(k)b1,-{-k)), 

✓41rw(k) ' 

'f/J2{k) = l (v{k)b~ 1 _(k) - v(-k)b1,-(-k)), 
✓41rw(k) ' 

which define the representation of A on HJ, where 

w(k) = ✓k2 + m2 and v(k) = ✓w(k) + k. 

The fermionic Hamiltonian is the positive operator on Hi given by 
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which is the generator for the one-parameter group <rt of automorphisms of A 
in that representation. 

The Hilbert space of the quantum theory is the tensor product H = Hb®HJ 
of the bosonic Hilbert space Hb and the fermionic one HJ- The full Hamiltonian 
of the non-interacting theory acts on the Hilbert space H = Hb ® HJ by the 
positive operator: 

H=llb®I+l®HJ. 

The self-adjoint square root of H is then defined as in the same way as that the 
Dirac operator is defined to be the square root of the Laplacian in the case of 
finite dimensional manifolds. The square root Q of H is called the supercharge 
operator in supersymmetry, given by 

./iQ = { {1/Ji(x)(rr(x) - 81/,*(x) - im.cp(x))+ lsi 
1/J2(x)(rr*(x) - 8<p(x)-: imcp*(x)) + h.c.}dx, 

where the symbol (· · ·) + h.c. means the adding the Hermitian conjugate of 
(· .. ). • 

The basic relation to spectral triples is then given by the following ([66, 
§IV]): 

Theorem 16.3. For any local region O c C, let A(O) be .the algebra of func­
tions of quantum fields with support in O acting on the Hilbert space H. Then 
the triple (A(O), H, Q) is an even 0-sumrrtable spectral triple, with 'Li-grading 
given by the operator, = (-l)N1 counting the parity of the fermion number 
·operator NJ. 

The algebra A(O) is generated by the imaginary exponentials ei(<p(f)+'PUn 

and e_i(1r(J)+1r(ff) for J E C~(O). 
As shown in [66], exactly as in the case of discrete groups with exponential 

growth, needed is the entire cyclic cohomofogy rather than its finite dimensional 
version, in order to obtain the Chern character of 0-summable spectral triples. 
Indeed, the index map is non-polynomial in the above example of the Wess­
Zumino model in two dimension, and the K-theory of the above local algebras 
is highly non-trivial. In fact, it is in the framework that the JLO-cocycle is 
discovered by Jaffe, Lesniewski, and Osterwalder (141). 

It is an open problem to extend the above result to interacting theories in 
higher dimension and to give a full computation of the K-theory of the local 
algebras as well as of the Chern character in entire cyclic cohomology. The re­
sults of Jaffe and collaborators on constructive quantum field theory yield many 
interacting non-trivial examples of super-symmetric two dimensional models. 
Moreover, the recent breakthrough by Puschnigg in the case of lattices of semi­
simple Lie groups of rank one opens the way to the computation of the Chern 
character in entire cyclic cohomology. 
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1 7 The standard model of elementary particles 
as noncommutative geometry 

The (Glashow-Weinberg-Salam (GWS or WS)) standard model of elementary 
particle physics provides a surprising example of a spectral triple in the non­
commutative setting, which. in addition to the condition of the definition, also 
has the real structure satisfying all the additional conditions of the definition. 

· The noncommutative geometry of the standard model, developed by [69) 
(cf. [47], [48), [80] (missing), [146] (missing)) gives a concise conceptual way 
to describe the full complexity of the input from physics, through a simple 
mathematical structure. 

The physics of the standard model can be described by a Lagrangian. We 
consider the standard model minimally coupled to gravity, so that the La­
grangian L is the sum LEH + LsM of the Einstein-Hilbert Lagrangian LEH 
and the standard model Lagrangian LsM• 

The standard model Lagrangian LsM has a somewhat complicated expres­
sion, which might take a full page if written in full (cf. M. Veltman (233] 
missing). It may comprise of terms of five types as 

LsM =Le+ LeH + LH +Lei+ LH1, 

where the terms involve elementary particles in the table below (revised and 
refined): 

Table 4: Elementary particles with spin and Pauli principle 

Spin Pile Elementary particles 
0 OK Higgs bosons H (almm;t confirmed) 

as scalar fields for giving mass 
1 OK Gauge bosons: 8 gluons Bi, photons --y, 

weak bosons w± and zo 
as vector fields for interactions 

2 OK Gauge bosons as gravitons 
(not yet confirmed) 

!. No Fermions f 2 
as quarks and leptons for matter 

~ No Baryons with three quarks 
nEN No Mesons with two quarks 

and the term Le is the pure gauge boson part, LeH for the minimal coupling 
with the Higgs fields, and L H gives the quartic Higgs self interaction, and the 
fermion kinetic term Lei contains the hypercharges YL, Yn. These numbers, 
which are constant over generations, are assigned phenomenologically, so as 
to obtain the correct values of the electro-magnetic charges. The term L HI 
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contains the Yukawa coupling of the Higgs scalar fields with fermions. A more 
detailed and explicit description of the various terms above is given by [66, 
Vl.5.,B). See also [233) of Veltman .. 

The following table is revised and refined: 

Table 5: Fermions in the three generations (with charges) 

Fermions I II III 
q: Quarks u: Up (ie) c: Charm (~e) t: Top·(~e) 
as Flavour d: Down (-½e) s: Strange (-½e) b: Botom (-½e) 
l: Leptons Ve: e-Neutrinos (0) vµ: µ-Neutrinos (0) vr: r-Neutrinos (0) 

(Light) e-: Electrons {-le) µ-: Muons (-le) r-: Tauons {-le) 
q: Anti- u: Up-bar (-~e) c: Charm-bar {-te) t: Top-bar (-~e) 

b: Botom-bar ( ½e) quarks - 1 d: Down-bar (:\e) s: Strange-bar (½e) 
l: Anti- Ve: Anti-Ve {0) 'ilµ: Anti-vµ (0) Vr: Anti-Vr {0) 
leptons e+: Positorons {le) µ+: Anti-µ (le) r+: Anti-r {le) 

where u < c < t, d < s < b, and v < e < µ < T as mass (after the 4th transition 
at 10-4 second), and electrons have size zero. It is predicted by Dirac that 
there exist anti-particles such as positorons to electrons, and it is confirmed by 
C. Anderson that there are e- and e+ from the gamma line in the mist box. 

Added is the table below: 

Table 6: Gauge bosons, forces (as interactions), mass, charges, and objects (as 
examples), and Higgs bosons 

Gauge particles Forces m& C Objects 

91, · · · , us: Gluons Strong m: 0,c:O Nuclears, Sun energy 
-y: Photons Electro-magnetic m:O,c:O Atoms, Molecules 

z0 , w±: Weak bosons Weak c: O, ±le Nuclear ,B collapsing 
Gravitons Gravity m: O,c: 0 Stars, Galaxy 

H: Higgs particles Give mass c:O Other particles 

where the weak bosons zo and w± do have mass 91 GeV and 80 GeV respec­
tively after the third transition at 10-11 second. 

As a note, apply quantum mechanics to electro-magnetic fields and interac­
tions by electrons, the quantum electro-dynamics is completed, and the general 
quantum field theory is formulated. But in application as perturbed, it involves 
difficulty of divergence such as ultra-violet divergence coming from integral in 
momentum and infrared divergence from that photos have no mass, so that 
integr.al in momentum diverges in a neighbourhood of 0. 

- 100 -



The quantum field theories are divided into either the renormalizable thoeies 
such that infinitely many untra-violet divergences are absorbable to a finite 
number of constants in renormalization, or the unrernomalizable ones otherwise. 

Also added below is the. table for interactions between elementary particles 
in the standard model: 

Table 7: Do or not interact or self-interact 

q l 9j --y z W± H 
q No No Yes Yes Yes Yes Yes 
l No No No Yes Yes Yes Yes 

Yi Yes No Yes No No No No 
--y Yes Yes No No No Yes No 
z Yes Yes No No No Yes Yes 

W± Yes Yes No Yes Yes Yes Yes 
H Yes Yes No No Yes Yes Yes 

Yet, added below is the table for elementary particles (at an early stage): 

Table 8: Hadrons 

Hadrons Quarks (or anit-), colors Examples, combinations, (charges) 
Baryons 3 to be fermions p: Protons u-u-d (~ + j - ½ = 1), 
(Heavy) in vacuum after the n: Neutrons u-d-d (j - ½ - ½ = 0), 
(8-fold 4th transition at 10-4 s, Hyperons >-./u0 : u-d-s (¾ - ½ - ½ = 0), 
way) Permutations of (R, G, B) u+: u-u-s (+I), u-: d-d-s (-1), 

or (R, G, B) to white { 0 : u-s-s (0), {-: d-s-s (-1), · · · 
Mesons 2 to be bosons, Yukawa: 1r+ / p: u-d (l + ½ = 1), 

(Middle) (R, R), (G, G), or (B, B) 1r-= u-d (-1), 1r0 : u-u (0), 
m Kons with s: K+: u-s (j + ½ = 1), 

~ -K-: u-s (-1), K0 : d-s (0), K : d-s (0), 
Cons with c: J/1/J: c-c (j - j = 0), · · · 
Bones with b: Y: b-b (-½ + ½ = 0), · · ·, 

Tons with t: t-t (} - i = 0), · · · 

where for instance, 

1r± .- µ± + v and µ± .- e± + v + 17, 

n .- p + w- (d .- u) and w- .- e- + 17e 

in {3 collapsing for 1r mesons high up in· the atmosphere and for unstable n 
neutorons, and where 17 is the anti-neutrino with charge 0 = -1 ·0, and moreover, 
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x means the anti-quark to a quark x, with charge -1 times that of x. Protons 
and neutrons have size 1.6 x 10-15 m. There are more than 300 kinds of hadrons 
found out, all of which are composed of 3 in 6 kinds of quarks. Note that there 
are just 63 = 216 combinations· of only quarks and 216 x 23 = 1728 of quarks 
and anti-quarks, but with ignoring charges (it may happen? or to be nonsense). 

A /3 collapsing in quarks is given as 

n - p + W - p + v + e. 

A proton collapsing with taking 1037 years is the interaction as 

p - X (boson) +1r
0 

- e+ + 1r
0 (orµ+ 1r

0
). 

Higgs particles are thought to be created as 

e- + e+ - H + z0 and e- + e+ - H + Tle + Ve. 

In the interaction by strong force, gluons and colors are exchanged between 
quarks in baryons such as protons or neutrons, or quarks in mesons, preserving 
total color white. In the interaction by electro-magnetic force, photons are 
exchanged between protons and electrons. In the interaction by weak force, the 
{J collapsing of elementary particles is induced such as that unstable neutrons 
are changed into protons. In the interaction by gravity, gravitons are assumed 
to be exchanged between usual matters. Higgs particles are assumed to live as 
sea in vaccuum to give mass to other elementary particles, especially to weak 
Bosons. 

Added below is the table for four forces: 

Table 9: Four forces and their properties 

Forces Strength Range Force charge Objects 
Strong 103 :::; 10-15 m Color, 1r Quarks and hadrons 

Electro-magnetic 1 00 Electorical Quarks and leptons 
(EM) (ratio) +,-,, except neutrinos 
Weak 10-s :::; 10-11 m Flavour, W, Z Quarks and leptons 

Gravity 10-40 00 Mass, Yi Quarks and leptons 

When energy is high (GeV), electro-magnetic force (EM), weak force (W), and 
strong force (S) are unified to be the grand unified force (GUF). In the standard 
model, those forces are not exactly identified at any envergy level, but in the 
super-symmetry theory, they are done at 1016 [GeV). When temperature (K) is 
further higher, gravity is also unified with GUF to be the universal force (UF). 

The gauge theory for quarks and gluons is said to be quantum chromo­
dynamics ( QCD). 

Added below is the history of our universe at early time: 
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Table 10: The early history of the universe 

Time (second) /' Temperature'\. Forces events (as 4 transitions) 
0 second [s) ,..., More than Universal force, Plank era 

10-44 [s],..., lO;s:t K ,.._, Gravity separated (first) 
(Plank Time ,..., ) (Plank K ,...,) Grand unification (GU) era 
10-;st> second ,..., 10:ti:s K,..., Strong force separated (second) 

Electric-Weak era (,..., 10-12 [s]) 
Inflation (rv 10-32 [s]) 

10-32 second ,..., 10:~ K,..., Gig Bang (10-ai [s]), Photons (curved), 
x? weak bosons, and Higgs bosons born, 

(Super-symmetry breaking) 
10-1:t second,..., 101~ K,..., Weak force separated from EM force 

(third), Quarks era 
10-5 (or 5> second ,..., 1Ql4(or 13) K ,...., Protons, neutrons born (fourth, QCD) 

(around) (around) Quarks closed into hadrons, Hadrons era 
1,..., 10 second 101:t K,..., Electrons, positorons born or caught 

(around) Leptons era 
lO(s),..., 38 x 104 [y) ,..., 3000 K Photons era 

105 (y) around The universe clear up after Plazma 
,...., 137 x 10i:s years ,..., 3 K 

~ 
The present 

Note that the Plank time is defined to be ✓ Ghc-5 = 10-44 second. Also, the 
Plank length is defined to be JGhc-3 = 10-33 cm. Note that x Kelvin (K) 
= x - 273.15 Celsius (°C). · 

May recall that in the general theory of relativity, the Einstein equation for 
the universe in 1917 with the universe (third) term· is defined as 

I 81rG 
Rik - 2YikR + Agik = ~Tik, 

where the summation Lo<i k<J or the 4 x 4 matrix representation as tensors 
are omitted, 9i,k, Ri,k, and R are respectively, the metric tensor, Riemann 
curvature tensor, and the scalar curvature for the space-time, and Ti,k is the 
energy momentum tensor of matter and so on, and A is the universe constant, 
to obtain to make the universe stopping. The formula above says that the left 
hand side in terms of curving on the space-time is just equal to the right hand 
side in terms of energy or mass in the sense of 

E mc2 . h ·1 . = H wit v v1 oc1ty. 
1 v2 -~ 

A Riemannian metric g on a smooth manifold !vi is defined to be a smooth, 
positive definite, inner product-valued function on M, denoted as gp(X, Y) for 
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p EM and X, YE Tp(M). -The metric can be written locally as 

g = L 9i,1dxidx1 

i,j 

with (Yi,j) a dim M x dim M positive definite, symmetric matrix over R. If M 
is a paracompact space, then there is such a metric tensor. 

Define the norm 

11£11 = ✓ Yp(L, L) for LE Tp(M). 

The curvature tensor Ron a Riemannian manifold (M,g) is the curvature, 
of its Levi-Civita (or Riemannian) (linear, unique) connection (with re8pect to 
the orthonormal frame bundle on M) corresponding to its covariant derivative 
'v, defined by 

R(X, Y)Z = 'v x('vyZ) - 'vy('v xZ). 

It can be written locally as 

R - ~ Ri dxj dxk d ' a - L-, jkl © © X © 8xi ' 

where 
. (Br;j Brtj) ~ . . 

Rjkl = Bxk - Bx' + ~(rljrkm - rkjrlm), 

where the Christoffel symbol means that 

f~- ~ ! ~ kl { Bgil Bglj _ Bgij } 
11 2 L-,B Bxi + Bxi Bx' ' 

l 

so that 

The sectional (or Riemanian) curvature is defined to be 

Kp(P) = gp(R(X, Y)Y, X), 

where Pis a 2-dimensional subspace of Tp(M) with {X, Y} as an orthonormal 
basis for P, and Kp is independent of the choice of such a basis. 

The Ricci tensor is defined to be 

Rij = - LRtk• 
k 

The Ricci curvature at p E M along L E Tp(M) with norm 1 is defined to be 
Ric(£, L), corresponding to the 2-form associated to (Rii). This is the mean of 
Kp(P) for a 2-dimensional subspace P containing Lin Tv(M). 
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The scalar curvature Rat p E Mis defined to be the mean of Ric(£, L) with 
respect to L. 

If {Xi} is an orthonormal basis for Tp(M), then 

Ric(£, L) = L gp(R(Xj, L)L, Xi) and R = L Ric(Xj)-
j j 

Further recall that for !vi a manifold with dim M = n, the frame bundle P 
over M with 1r: P - !vi is defined to be the set of all p = (x, (e1, · · · , en)) for x E 
M and (e 1, · · · , en) a basis of Tp(M). There is a right action on P by GL"(R) 
such that pg= (x, (e1, · · · , en))g = (x, (e1, · · · , en)9), so that P/GLn(R) = !vi. 

A linear ( or affine) connection of M is defined to be a connection of P of M. 
The canonical I-form () of P of !vi is defined by 0p(X) = id;1(1rp(X)) for 

X E Tp(P), with idp : F __. Tx(M) a linear isomorphism and 7rp(X) E Tx(M). 
The torsion form 9 for such a linear connection P of M is defined by 9 = DB 

(covariant derivative or curvature form), for which the structure equation holds: 

dB+ 0 AB= 9, 

where 
(w A B)(X, Y) ·= w(X)B(Y) - w(Y)0(X) = [w, 0](X, Y). 

A linear connection of M implies the parallel transformation cp in TM. 
For two vector fields X and Y over it, given a connection, the covariant 

derivative of Y along X is defined to be 

(VxY)p0 = lim !(cpi"1(Ypt)-Yp0 ), 
t-o t 

where <pt is the parallel transformation along the integration curve of {Pt} of X 
passing through Po E !vi. 

A linear connection V of a real vector bundle E over M is said to be a metric 
connection if for any (tangent) vector field X over M and sections cp1, I./J2 of E, 

The Levi-Civita connection is defined to the unique metric connection of 
T !vi such that its torsion form is zero. 

Consider a differentiable (or smooth) principal fiber bundle P over !vi: 

M 

so that a Lie group G acts on P from the right as that r9 (p) = pg for p E P 
and g E G. The maps rand 1r induce the linear maps r9 : Tp(P) - Tp9 (P) and 
,r: Tp(P)-+ Trr(p)(M) by the same symbols respectively. Define Vp(P) = ker(,r) 
in Tp(P), whose elements are said to be vertical. 
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A connection on Pis given by a vector subspace Qp of Tp(P) for each p E P 
such that 

. Tp(P) = Vp(P) EB Qp, r9 (Qp) = Qp9 , 

and the· map sending p f--4 Qp is differentiable. Each vector in Op is said to be 
horizontal. 

(Namely, it seems to look like that a connection on P may be a continuous, 
finite rank projection-valued function on P, and the Levi-Civita one may be a 
continuous, standard, finite rank projection-valued function.) 

There are two parameters to decided the property of the expanding universe, 
namely, the constant A and the other n, which represents total of energy and 
matter of the whole universe. If A = 0, then the univer::;e would be open if 
n < 1, closed if n > 1, and flat if n = 1. • 

Table 11: The unified theories (UT) for forces 

Force Theory Contributors (in part) 
E&M E & M theory Maxwell 
EasM QED: Quantum electro- Tomonaga-Feynman-Schwinger, 

'Y dynamics, Relativity Einstein 
E, Weak QFD: Quantum Glashow-Weinberg-Salam 
w±, z0 flavor dynamics Nanbu, · · · 
Strong QCD: Quantum Fermi-Yang, Sakata, Gell-Mann, 
q,g,m chromo-dynamics, 1r Yukawa, •·· 
E, W,S Standard model Dirac, Fermi, GWS, Higgs, 

f,b (as to QFD + QCD) Koshiba, Kobayashi-Maskawa, · · · 
Super-symmetry (as a) (Not yet confirmed) 
GUT (QFD + QCD) (Not yet completed) 

Gravity G theory Galilei, Kepler, Newton, Einstein 
E, W,S,G Super-GUT (Not yet) Einstein, Weyl, · · · 

Super-string T (Not yet but developed) Nanbu, 
Green-Schwarz-Witten, · · · 

A particle or its field is said to be bosonic if its components are commutative 
as xy = yx. A particle or its field is said to be fermionic if its components are 
anti-commutative as xy = -yx (see [214]). 

The Maxwell equations in a vacuum are gives as 

a 
co BtE = rotH - Jo, co div E = p0 , 

8 
µo BtH = -rotE- Jm, µodiv H = Pm, 

where Po and Pm are electric and magnetic densities respectively, and J0 and 
Jm are electric and magnetic current densities respectively, so that the following 
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equations of continuity are satisfied: 

:tPo + div Jo= 0 and :tPm + div Jm = 0. 

As well, co and µ 0 are constants such that 

1 
rc:::,,;: = c = 2.99792 x 108 (m/ s). 

ycotto 

In fact, in experience, it may be assumed that Pm = 0 and J-m = 0, which 
breaks symmetry between electric and magnetic quantities, but there are no 
contradictions in the classical theory even if those are nonzero. Therefore, the 
Maxwell equations above may be converted as 

2 8 E -1 1 µoc rot fl = at + c0 Jo, div E = c0 po, 

a 
rotE = -µ0 8tH, div H = 0. 

Recall that the divergence and the rotation of a (column) vector-valued function 
(or a vector field) 

3 X = (Xj)j=l = (Xi(t,x1,X2,x3)) 

are written as the inner and exterior products, 

3 a 
div X = (V,X) == L-a . Xj, 

j=l X3 

3 

( 
8 a ) rotX = '\1 XX= L -a--Xj+2 - -a--Xj+l ej, 

j=l Xj+l Xj+2 

V= (~)3 ' 
OXj j=l 

where j + k = 3 + j' = j' (mod 3) • 
(Returned). The symmetry group of the Einstein-Hilbert Lagrangian LeH 

by itself would be, by the equivalence principle, the diffeomorphism group 
Dif(X) of the space-time manifold X. In the standard model Lagrangian LsM, 
on the other hand, the gauge theory has another huge symmetry group which 
is the group of local gauge transformations. According to our current under-. 
standing of elementary particle physics, that is given by 

GsM(X) = C00 (X, U(l) x SU(2) x SU(3)) 

at least in the case of a trivial principal bundle, e.g., when the space-time 
manifold X is contractible. 

Then the full symmetry group for the Lagrangian L would be a semi-direct 
product 

G(X) = GsM(X) ~ Dif(X). 
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In fact, a diffeomorphism of the manifold X relabels the gauge parameters. 
As for a geometrization of the standard model, one would like to have a 

space X such that 
G(X) = Dif {X). 

It is shown as a result of Thurston-Epstein-Mather {cf. [184)) that the con­
nected component Dif0{X) of the identity in the diffeomorphism group Dif{X) 
of a connected manifold X is a simple group. A simple group does not have 
a nontrivial normal subgroup, so that it does not have the semi-direct product 
structure like G(X). 

In the noncommutatiye setting, the group Dif0(X) may be replaced with the 
group Aut+(A) of automorphisms of a noncommutative algebra A, preserving 
the fundamental class in K-homology, i.e., implementing a unitary compatible 
with the grading and real structure. 

The group Aut(A) of automorphisms a of an algebra A has a normal sub­
group Inn(A) of inner automorphisms of A such that 

Ad(u)(x) = uxu- 1 

for x E A and u E A- the group of invertible elements of A. 

Proof. {Added). We have that 

(a o Ad(u) o a-1)(x) =.a(uo- 1 (x)u-1
) 

= a(u)xa{u)-1 

= Ad(a(u))(x). 

D 

The group Aut+(A) also has Inn(A) as a nor.ma! subgroup. 
There is a noncommutative algebra A whose Inn(A) corresponds to the 

group of gauge transformations GsM(X) such that the quotient group 

Aut+(A)/Inn(A) 

corresponds to the group of diffeomorphisms {cf. Schlicker (215) and [140) as 
well). The noncommutative space is a product Xx F of an ordinary spacetime 
manifold X by a finite noncommutative space F. The noncommutative algebra 
AF is a direct sum of C, lliI of quaternions, and M3 (C). 

The algebra AF corresponds to a finite space, where the stand~rd model 
fermions and the Yukawa parameters as masses of fermions and mixing matrix of 
Cabibbo-Kobayashi-Masukawa determine the spectral geometry in the following 
sense. The Hilbert space HF is finite dimensional and has the set of elementary 
fermions as a basis. This comprises of the three generations of quarks: ups­
downs, charms-stanges, tops-bottoms, with left or right handed and with anti­
particles as opposites with overlines and with the additonal color index as red, 
blue, and green, and of the three generations of leptons: electrons, muons, 
tauons, and the corresponding neutrions as below. (Edited). 
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Table 12: Left and right handed, fermions in the three generatiom, 

Fermions I II III 
Quarks U: 'UL, UR C: CL, CR t : ti, lR 

d: dL, dR s: SL, sn b: bi, bR 
Anti-quarks u: 'fh, UR c: ci, en t: lL, tR 

d: dL, dR s: SL, SR b: bL, bn 
Leptons Ve : vi {only) Vµ : vr (only) Vr : vf (only) 

e: ei, eR µ: µL, µR T: TL, TR 

Anti-leptons Ile : i71 (only) Iiµ : Ii~ (only) Vr: vi, (only) 
e: f£, fR Ji: "fit, liR r:ri,rR 

We discuss only the minimal standard model with no right handed neutrinos. 
The Z2 grading --y F on the Hilbert space HF has sign + 1 on left-handed 

particles and sign -1 on the right-handed particles. The involution J F giving 
the real structure is the charge conjugation such that if HF = E EB E the 
direct sum of particles and anti-particles, then J F acts on the fermion basis as 
JF(f, h) = (h, ]). Then J'j.. = 1 and Jp--yp = --YFJF. 

Proof (Added). Indeed, 

Jp--yp(fL, f R, hL, hR) = JF(h, -jR, hL, -hR) = (hL, -hR, Ji, -l R) 

= --YF(hi, hR,f i.l R) = --ypJp(fL, IR, hL, hR)-

• 
The algebra AF has a natural representation on HF as follows. Any element 

(z, q, m) EC EB 1HI EB .l\lfJ(C) = AF acts on HF as 

(z,q,m) • (~~) = q (~~), (z,q,m) • (~:) = (;~:), 

(z, q, m) · UR = mun, (z, q, m) · dn = mdR, 

(z,q,m). (:D = q (:D' 
(z, q, m) · eR = zeR, (z, q, m) . (~L) = (Z~L) ' 

eR zen 

and does similarly for the other generations, where each q =a+ {3j E IHI with 
a,/3 EC acts as the matrix multiplication by 

and each matrix m E M 3 (C) acts on the color indices as (R, G, B) or (r,g, b). 
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We obtain a spectral triple (AF, HF, DF), where the Dirac operator_ as a 
finite matrix is given by D F = Y EB Y the diagonal sum on HF = E EB E, where 
Y is the Yukawa coupling matrix, which combines the masses of the fermions 
with the Cabibbo-Kobayashi-Maskawa {CKM) quark mixing matrix. 

The fermionic fields acquire mass through the spontaneous symmetry break­
ing produced by the Higgs fields. The Yukawa coupling matrix has the form 
Y = Y1 EB (Yq ® 1), where 

( 

0 0 Me) 
Y1 = 0 0 0 = M; 0 0 0 Me 

M; O_ 0 

with respect to the basis as (eR, VL, eL) and successive generations, while 

0 
0 
0 

MJ 

with respect to the basis as (uR, dR, uLdL) and successive generations. In the 
lepton case, up to rotating the fields to mass eigenstates, one obtain a mass term 
for each fermion, and the off-diagonal terms in Me of Y1 can be reabsorbed into 
the definition of the fields. In the quark case, the situation is more complicated 
and the matrix Yq can be reduced to the mass eigenvalues and the CKM quark 
mixing. By rotating the fields, it is possible to eliminate the off-diagonal terms 
in Mu of Yq. Then it holds that V Md V* = Mu, where V is the CKM quark 
mixing, given by 

acting on the charge -J quarks {of down, strange, and bottom). The entries of 
this matrbc can be expressed in terms of three angles 012 , 023 , 013 , and a phase, 
and can be determined experimentally from weak decays and deep inelestic 
neutrino scatterings. 

The detailed structure of the Yukawa coupling matrix Yq and in particular 
the fact that color is not broken allow us to check that the fiinite geometry 
(AF,HF,DF) satisfies all. the axioms of the definition for a noncommutative 
spectral manifold. 

Any element a E AF and (Dp,a] commute with JFAFJF. These operators 
preserves the subspace E of Hp. The action of JFb* JF on E for b = (z,q,m) 
is the multiplication by z or the transpose mt. It is then not hard to check 
explicitly the commutation with a or [DF, a] (cf. (66, §VI 5.o]). By exchanging 
the roles of a and b, one sees that a commutes with JpbJp and [DF, JpbJF] on 
E. . 

Example 17.1. (Added). (The space X of two points a and b [66, Vl:3 Example 
al). Let A = C EB C the direct sum of C. An element f E A corresponds 
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(J(a), J(b)) E C2 • Define a noncommutative geometry (A, H, D,,) as that 
H = HaffiHb the direct sum of Cn (or a Hilbert space), on which A is represented 
as 

,r(J) = (/(~)l /(~)l) E M2n(C), f EA 

on H = Ha $ fh, and 

( 0 M*) (1 0) D = M O , , = O _ 1 E M2n(C), 

where At/ : Ha - Hb and M* : Hb - Ha are linear operators. Compute that 
for f EA, 

[D, 1r.(J)] = D1r(J) - 1r(J)D 

_ ( 0 Ar J(b) - J(a)M*) 
- M f (a) - J(b)M 0 

( 
0 M*) = (J(b) - J(a)) -M O : 

Then the norm of the commutator [D, /] is IJ(b)- f(a)I.-\, where.,\ is the largest 
eigenvalue IIMII of IMI = J M* M. 

Note that a matrix D' is skew hermitian, i.e., (D')* = -D' if and only if 
iD' is hermitian, i.e., (iD')* = iD', which is diagnalizable by a unitary matrix, 
and so is D'. 

Therefore, the distance between between the points is 

1 I 
d(a, b) = sup{lf (a) - J(b)I I ll[D, /]II ~ 1} = A = IIMII. 

Consider the case where E = A, i.e., the trivial bundle over X. Let 0 1 (A) 
be the space of universal I-forms on A, given by the kernel of the multiplication 
m : A ® A - A defined as m(J ® g) = / g. Since f g is identified with 

(J(a)g(a), f(b)g(b)) E C2 = X 

and / ® g is identified with 

(J(a)g(a), f (a)g(b), f(b)g(a), J(b)g(b)) E C4
, 

the forms are functions on Xx X that vanish on the diagonal. Thus, 0 1 (A) ~ C2 

as a space. Let e E A denote the idempotent such that e{a) = 1 and e(b) = 0, 
i.e., e = {1, 0) E C2 • This space has a basis as w = .,\ede + µ(l - e)d(l - e) with 

ede = e ® e and (1 - e) ® (I - e) = {1 - e)d(l - e) 

The differential d : A _. 0 1 (A) is defined to be the difference 

df = (~J)ede - (~J)(l- e)d(l - e), ~f = J(a) - J(b). 

It is a derivation. Note that e(de) = ede and (1-e){d(l-e)) = (1-e)d(l-e) and 
that d{l - e) = -de, so that ed(l - e) = -ede and (1- e)d{l - e) = -(1- e)de. 
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Proof. (Added). Indeed, 

dl = (1 - l)ede - (1 - 1)(1 - e)d(l - e) = 0. 

Also, with x(Jdg)y = xfd(gy) - xf gdy for x,y, J,g EA, 

(df)g + f(dg) = {(!(a)- J(b))ede - (!(a) - f(b))(l - e)d(l - e)}g 

+ f{(g(a) - g(b))ede - (g(a) - g(b))(l - e)d(l - e)} 

= {Llf(ed(eg) - e2dg) - (J(a) - J(b))((l - e)d((l - e)g)- (1 - e)2dg)} 

+ {(g(a) - g(b))(Je)de - (g(a) - g(b))(J(l - e))d{l - e)} 

= { (!(a) - f (b))(e{g(a)ede - g(a)(l - e)d(l - e)} 

- e{ (g(a) - g(b))ede - (g(a) - g(b))(l - e)d(l - e)}) 

- (!(a) - /(b))({l - e){(-g(b))ede - (-g(b))(l - e)d(I - e)} 

- (1 - e){ (g(a) - g(b))ede - (g(a) - g(b))(l - e)d(l - e)})} 

+ {f(a)(g(a) - g(b))ede - f (b)(g(a) - g(b))(I - e)d{l - e)} 

= { (f (a) - f (b))(g(a)ede - (g(a) - g(b))ede) 

- (!(a) - f(b))(g(b)(I - e)d(l - e) + (g(a) - g(b))(I - e)d{l - e))} 

+ {f(a)(g(a) - g(b))ede - f (b)(g(a) - g(b)){l - e)d{l - e)} 

= { (!(a) - f (b))g(b)ede - (f(a) - f (b))g(a)(I - e)d(l - e)} 

+ {f (a)(g(a) - g(b))ede - f(b)(g(a) - g(b)){l - e)d(l - e)} 

= (f(a)g(a) - f(b)g(b))ede - (f(a)g(a) - f(b)g(b))(I - e)d(l - e) = d(f g). 

• 
If f EA and w E 0 1(A), then fw-:/: wf in general. 

Proof. (Added). Note that for w = >-.ede + Jt(l - e)d(l - e). 

fw = >-.Jede + µf(I - e)d{l ~ e) = >.J(a)ede + µJ(b)(I - e)d(I - e), 

wf = >-.(ed(ef) - e2df) + µ((I - e)d((I - e)f) - (1 - e)2df) 

= >-.{f(a)ede - e((Llf)ede - {Llf)(l - e)d{l - e))} 

+ µ{f(b)(I - e)d{l - e) - (1 - e)df} 

= >-.J(b)ede + µf (a)(I - e)d(I - e), 

and hence, 
fw - wf = >-.(Llf)ede - µ(Llf)(l - e)d{l - e), 

which becomes zero if and only if >-.(Ll/) and µ(6.f) are zero. In particular, if 
Llf = 0, then fw = wf for any w E n1(A). • 

If M is nonzero, then the A-bimodule representation 1r : !11 (A) -+ IE(H) 
given as 

( 
0 ->-.M*) 1r(>-.ede + µ(I - e)d(I - e)) = µM O E B(H) 
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is injective, and is extended to be the representation 1r : O*(A) ---+ JB(H), and 
set n1(A) = Ob(A). 

Proof (Added). The additivity as well as the injectivity are clear. As for the 
left multiplication by any / E A tow= >iede + µ(1 - e)d(l - e)) E 0 1 (A), 

1r(Jw) = 1r()..J(a)ede + µJ(b)(l - e)d(l - e)) 

_ ( O -Aj(a)M*) _ (/(a) 0 ) ( 0 ->i
0
AI*) 

- p,f (b)M O - 0 J(b) µM 

= 1r(J)1r()..ede + µ(1 - e)d{l - e)) = 1r(J)1r(w). 

As for the right, 

1r(wf) = 1r(>if (b)ede + µf (a)(l - e)d(l - e)) 

= ( 0 ->,.J(b)M*) = ( 0 -)..M*) (!(a) 0 ) 
µf(a)M O µM O O J(b) 

= 1r(>iede + µ(I - e)d(l - e))1r(J) = 1r(w)1r(J). 

D 

A vector potential is given by a self-adjoint element V of Ob(A), i.e., by a 
complex number <I>, with 

( 
0 °4iM*) 

1r(V) = <I>M O I 

so that V = -°4iede + <I>(l - e)d(l - e). Its curvature is given by the 2-form in 
0 2 (A): 

() = 'v2 = dV + V2 = -°4idede - <Pdede + (¥ede - <P(l - e)de)2 

= -( <I> + 4i)dede - ( <P<fi)edede 

(the last term corrected), where 

and 

e(de)(l - e) = ed(e(l - e)) - e2d(l - e) = ede, 

e(de)e = ed(e2
) - e2de = 0, 

(1 - e)(de)(l - e) = (1 - e)d(e(l - e)) - (1 - e)ed(l - e) = 0. 

( 
0 -M*) 1r(de) = 1r(ede + {1 - e)de) = M 

0 

(
-M*M O ) 

1r(dede) = 1r(de)1r(de) = O -MM* 
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Recall the following in general. Let E be a Hermitian, finitely generated, 
projective module over A. A connection on E is given by a linear mapping 
'v: E __. E ®Anb such that 

'v({a) = ('v€)a + { ® da, € E E,a EA. 

A connection 'v is compatible with the metric if and only if 

({, 'vTJ) - ('v{, TJ) = d(~, TJ), ~. TJ E E. 

Extend 'v .to a unique linear mapping v~ from E~ = E ®A Oi:, to E~, such 
that 

v~(€ ®w) = ('v€)w + € ® dw, { E E,w E Oh. 
Define o~ = ('v~)2 and O = 0~1E in HomA(E, E ®Ant). 

Recall also the following {cf. (159, 7.3]) in general. Let {A, H, D) be an 
n-dimensional spectral triple. Then the tracial state on A is defined by 

ip(a) = trw(1r(a)IDI-"), a EA. 

It is extended to 1r{O*(A)) = EBp1r(OP(A)) by replacing A with rr(O*(A)), under 
the regularity conditions as that A2 = A or that A2 is subalgebra large enough, 
where the subalgebra A2 is generated by elements a EA such that both a and 
[D, a] are in the domain of the derivation 8 defined by 8(-) = [IDI, •], which is the 
generator for the automorphisms Ad{eisfDI) for s ER. Then the inner product 
on. 1r(QP(A)) is defined by 

(w1,w2)p = trw(w;w2IDI-"), w1,w2 E 1r(OP(A)), 

where 1r may be removed in such a case where 1r is faithful. 
As well, recall the following {cf. [159, 8.1]) in general. A vector potential 

V is a self-adjoint element of nb(A). The corresponding field strength is the 
2-form O = dV + V 2 E Qb(A). Then 

V = Lai[D,bi] = V*, ai,bi EA, 
j 

as a sum, written in several ways. Then 

dV = I)D, ail[D, bi) 
j 

modulo a junk 2-form. Then O = o•, since dV = (dV)* modulo a junk 2-form. 
It then follows in that case that the Yang-Mills action is the formula: 

YM(V) = (0 = dV + V 2 ,dV + V2)2 = YM('v) 

= trw(1r(0)2 IDl-d) = 2(1<1> + lj2 - 1)2tr((M* M)2) 

with d = 0 and trw = tr. 
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Proof. {Added). In fact, we compute 

1r(edede) = 1r(ede)1r(de) 

= (~ -n (i -n = (-,,~P,[' ~) 
{cf. (159, Section 7.2.2]) and hence, 

(0)2 =(-(<I>+¥) (-M* M O ) _ <I>¥ (-M* M 0) )
2 

1r O -MM* 0 0 

= (<I>+ ¥)2 ((M* M)
2 o ) (<1>¥)2 ((M* M)

2 o
0

) 
0 (MM*)2 + 0 

+ {(<I>+ ¥)<I>¥+ <1>¥(<1> + ¥)} ( (M*ci/)2 ~) 

and thus, 

tr(1r(0)2) = {(<I>+ ~)2 +(<I>+ ¥)<I>¥+ <1>¥(<1> .+ ¥) + (<I>¥)2}tr((!v/* M)2) 

+(<I>+ ¥)2tr((M M*)2) 

= {2(<1> + ¥)2 + 2<1>¥(<1> + ¥) + (<1>¥)2 }tr((!v/* M)2) 

={(<I>+ ¥)2 +(<I>¥+ <I>+ ¥)2}tr((M* M)2) 

with tr({M !v/*)~) = tr((!v/* M)2). On the other hand, as in (66, Page 565), 

tr(1r(e~)2
) = tr{1r(-(<I> + <P)dede - (<I>¥)dede)2) 

= 2{<1>¥ +<I>+ ¥)2tr((M* M)2) = 2(1<1> + 112 - 1)2tr{(M* M)2) 

(Therefore, it seems that the last terms are slightly different.) D 

The action of the gauge group U = U(I) x U(l) on the space of vector 
potentials is given by 1'u(V) = udu* + uVu* for u = uae + ub(l - e). 

The fermionic action in this case is given by (¢, (D + 1r(V))lj,), where 

D + (V) = ( 0 (1 + ¥)M*) 
1r (l+<I>)M O 1 

which is a term of Yukawa type couling the fields 1 + <I> and¢. • 
Example 17.2. {Added). (The product space of a 4-dimensional Riemanniah 
manifold V and the two-points space X [66 1 Vl.3 Example b)). Let V be a 
compact Riemannian spin 4-manifold, A 1 the algebra of functions on V, and 
{H1,D1,1's) the Dirac K-cycle on A1 , with its canonic~l Z2-grading ')'5 given by 
the orientation. Let A2 = C2 , H2 = H2,a EB H2,b, and 

(
0 !vi*) D2 = Iv/ O = lv/0M* 
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(the notation that we made here) as in the example above. Let A= A1 ® A2, 
H = H1 ® H2 , and D = D1 ® l + 75 ® D2 . The algebra A is commutative and 
is the algebra of complex-valued functions on the space Y = V x X = Va U ¼ 
the disjoint union as a space, with V =· Va = ¼. . 

The metric on Y associated· to the K-cycle ( H, D) is given by 

d(p,q) = sup{IJ(p)-J(q)I I ll[D,JJII ~ I}. 
/EA 

Since A= Aa EB Ab .with respect to Y = Va U Vb, then any J E A is a pair (/a, lb) 
of functions on V. Since 

with respect to H2 = ll2,a EB H2,b, then the action off EA is diagonal as 

The operator D in this decomposition becomes 

where av is the Dirac operator on V and 1's is the Z2-grading of its spinor 
bundle. 

The Connes differential of a function f E A is given by 

[D, /] = D(Ja EB /b) - (/a EB /b)D 

= ((av® l)fa - la(cJv ® 1) (lb - la)bs ® M*) ) 
Ua - /b)bs ® M) (EJv ® 1)/b - /&(cJv ® 1) 

with 
(8v ® I)fx - fx(cJv ® 1) = C 17(dfx) ® 1 

for x = a orb, where dfx is the usual differential of the restriction off to Vx of 
· V and the difference la - lb= f (pa) - f (P&) = 6.f for Pa E Va and Pb E Vb. 

The norm of the operator [ D, J] is computed as 

( 
lldfa(P)II -il!M!l(Aj)(p)) 

ll[D, 1111 = :~e illMll(Aj)(p) lldfb(P)II 

where each lldfx(P)II is the length of the gradient of/ x at p E Vx. • 
Example 17.3. (Edited). As described in the example above, we next consider 
the product space Xx F, where X is an ordinary 4-dimensional Riemannian spin· 
manifold and F is the finite geometry described above. This product geometry 
corresponds to a spectral triple (A, H, D), obtained as the tensor product of the 
spectral triple {C00{X), L2 (X, S), Di) with the spectral triple (AF, Hp, DF), 
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where D1 is the Dirac operator for X acting on square integrable spinors in 
L2(X, S). Namely, the algebra A, the Hilbert space H, and the Dirac operator 
Dare given by 

where 'Y is the usual .Z2 grading on the spinor bundle S over X. The induced 
Z2 grading on H is the tensor product 'Y ® 'YF, as well as the real structure is 
given by J = C ® .lp, where C is the charge conjugation operator on spinors. 

Note that we have only used the,information on the fermions of the standard 
model (so far). One sees that the bosons, with the correct quantum numbers, 
are deduced as inner fluctuations of the metric of the spectral triple (A, H, D). 

It is a general fact that for a noncommutative geometry (A, H, D), one can 
consider inner fluctuations of the metric _of the form: 

D .,_. D +a+ JaJ- 1
, a= L ai[D, a~), ai, a~ EA. 

In the case of the standard model, a direct computation of the inner fluctuations 
gives the standard model gauge bosons,, w±, Z, the eight gluons, and the Higgs 
fields cp with accurate quantum numbers (cf. [69)). 

In fact, such a field a of the form above can be separated into a discrete part 
a<0 ,1> = E ail,® Dp, a~) and a continuous part aCl,O) = E ai[D1 ® 1, a~], with 
ai = (zi, Qi, mi) and a~ = (z:, q;, mD for Qi = Oi + /3d and q; = o~ + /3U. The 
discrete part gives a quaternion-valued function 

q(x) = L Zi((o~ - z:) + Zi/3ti) = '{)1 + tp2j, 

which provides the Higgs doublet. The continuous part gives three types of fields 
as a U(l) gauge field, an SU(2) gauge field, and a U{3) gauge field respectively 
as 

U = L Zidz;, Q = L Qidq;, M = L midm~, 

where the last field can be reduced to an SU (3) gauge field M' by subtracting 
the scalar part of the overall gauge field, which eliminates inessential fluctuations 
that do not change the· metric. 

The resulting internal fluctuation of the metric a+JaJ- 1 is then of the form 
as the diagonal sum {cf. (69)) 

-2U $ (Qu - U Q12 
) = -2U $ [Q - (u $ u)J 

Q21 Q22 - U 

on the basis of leptons (eR, VL, eL) and successive generations, and 

4 -2 1 I [(3U + M') $ ( 3 U + M')] $ [Q + (3U +!vi')$ (3 + M')] 

on the basis of quarks given by (uR, dR, UL, dL) and successive generations. As 
a fact, the expressions above recover all the exact values of the hypercharges YL, 
YR that appear in the fermion kinetic term of the standard model Lagrangian. 

- 117 -



One can also recover the bosonic part of the standard model Lagrangian from 
the spectral action principle of Chamseddine-Connes {cf. [47), [48], and [49] the 
last missing) as a very general principle. As a result ( cf. [47)), the Hilbert­
Einstein action functional f~r the Riemannian metric, the Yang-Mills action for 
the vector potentials, and the self-interaction and the minimal coupling for the 
Higgs fields all appear with the correct signs in the asymptotic expansion of 
the number N(>,.) of eigenvalues of D which are bounded by>,. and -A for large 
postitve A, namely, 

N(>,.) = !{eigenvalues of Din [-.X,-X]}I. 

The spectral action principle, applied to a spectral triple (A, H, D), can be 
stated as saying that the physical action depends only of the spectrum a(D) in 
IR. This spectral datum corresponds to the data ( H, D) of the triple, and be 
independent of the action of A. That different algebras correspond to the same 
spectral data can be thought of as the noncommutative analogue of isospectral 
Riemannian manifolds. 

A natural expression for an action that depends only on the spectrum a(D) 
and is additive for direct sums of spaces is of the form 

tr(x(.x- 1 D)) + (1/J, D'l/J), 

where x(-) is a positive even function, and >,. is a scale. 
In the case of the standard model, the formula above is applied to the full 

metric including the internal fluctuations and gives the full standard model 
action minimally coupled with gravity. The fermionic part of the action as the 
second term above gives {cf. [47], [48)) 

(1/J, D'l/l} = l (Lai~ LHJ) \1191d4x. 

The bosonic part of the action as the first term above, evaluated via hert kernel 
invariants gives the standard model Lagrangian minimally coupled with gravity. 
Namely, write the function x(>,.-1 D) as the superposition of exponentials. Then 
compute the trace by a semi-classical approximation from local expressions in­
volving the familiar heat equation expansion. This delivers all the correct terms 
in the action {cf. [48)). 

Note that we here treat the spacetime manifold X in Euclidean signature. 
The formalism of spectral triples can be extended in various ways to Lorentzian 
signature (cf. [130]). As the most convenient choice, one may drop the self­
adjointness condition for D, while still requiring D2 to be self-adjoint. 

It is remarkable to obtain the standard model action from geometric princi­
ples, but there are several shortcomings as follows. (1) First, the finite geometry 
Fis put in by hand, with no conceptual understanding of the representation of 
AF in HF. 

(2) Second, there is a fermion doubling problem in the fermionic part of the 
action (cf. [165]). 
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(3) Third, it does not incorporate the neutrino mixing and see-saw mecha­
nism for neutrino masses. 

These three problems have been solved in (50) (and [72) missing as a preprint 
as an early version of which), by keeping the distinction between the following 
two notions of dimension of a noncommutative space: 

• the metric dimension and • the KO-dimension. 
The metric dimension manifests itself by the growth of the spectrum of the 

Dirac operator. It appears that the situation of interest is the 4-dimensional 
one. In particular, the metric dimension of the finite geometry F is zero. 

The KO-dimension as in Definition is only well defined modulo 8 and it 
takes into account both the Z2-grading 'Y of H and the real structure J. The. 
only needed change beside~ the easy addition of right-handed neutrinos is to 
do change the Z2-grading of the finite geometry F to its opposite in the anti­
particle sector. It is only due to this that the fermion doubling problem pointed 
out in [165] can be successfully handled. Moreover, it automatically generate 
the full standard model, i.e., the model with neutrino mixing and the see-saw 
mechanism. The fermionic part of the action now involves all the structure of 
the real spectral triple and takes the form 

treated as Grassmann variables. 

Example 17.4. (Added). (The Glashow-Weinberg-Salam model with U(l) x 
SU(2) as unification of electromagnetic and weak forces for leptons as (finite) 
generators (66, VI.31). The GWS Lagrangian in the Euclidean (imaginary time) 
framework with the cooresponding fields is given as 

Lew s = Le + L F + LcJ;, + Ly + Lv, 

where the pure gauge boson part Le is 

where 

are the field strength tensors of an SU(2) gauge field Wµa and a U(l) gauge 
field Bµ,- {Einstein summation over repeated indices is used here and there.) 

And the fermion kinetic term L F has the form 

where h and / R are the left and right-handed fermion fields respectively, which 
for leptons and for each generation are given by a pair, i.e., an isodoublet, of 
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left-handed spinors such as ( :~) and of right-handed spinors as a single_t (eR), 

and where YL and YR are hypercharges, which for leptons are given by YL = -1 
and YR= -2. 

And the kinetic terms for the Higgs fields are . 

L,. = -I (aµ+ ig ~ Wµa + it Bµ) <1>1 2, 

where <I>= ( ::) is an SU(2) doublet of complex scalar fields <1>1 and <1>2 with 

hypercharge Y,i, = 1. 
And the Yukawa coupling of Higgs fields with fermions is 

where HJ/' is a general coupling matrix in the space of different fermiones. 
And the Higgs self-interaction Lv is the potential 

Lv = µ2(<I>t<I>) _ ~.\(<I>t<I>)2, 

where ,\ > 0 and µ 2 > 0 are scalars. • 
Example 17.5. (Added). (The dictionary between noncommutative geometry 
and the quantum filed theory of G.\:V.S. [66, VI 31) 

Table 13: Noncommutative geometry and GWS quantum field theory 

Noncommutative geometry Quantum filed theory 
Vector 'l/1 EE ®A H,-y'l/1 = 1/J Chiral fermion J 
Differential components of Pure gauge bosons W, B 

connection wa, wb 
Finite-difference component of Higgs field <I> 

connection (1 + c5°), ob 
/2 Pure gauge boson Le 
Ii Kinetic terms L,i, 
lo Higgs potential Lv 
Jo Fermion kinetic term LF 
J1 Yukawa coupling Ly 

We have the action 
YM('v) = /2 +·/1 + lo 

where each Ii is the integral over M of a Lagrangian density given by the 
following formulas. 
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where Na= dim H2,a, Nb= dim H2,b and the norms are the ::;quared norms for 
the curvatures of the connections va and Vb, respectively. 

For I,, 2 Iv (1 ::i) i\r(M• M), 

where V is the covariant differentiation of a pair of scalar fields, given as 

d (
wi1 - wt1 wi2 ) + a a b · 

W21 W22 - W11 

For lo, {1 + 2(1 - (11 + <fJil 2 + l'P212))2}tr((AJ.(M* M))2), 

where Al. is the orthogonal projection of the Hilbert-Schmidt space of matrices 
onto the orthogonal complement (Cl)J. of the scalar multiplies of the identity. 

The fermionic action is 

Jo + J1 = ('f/J, Dv'l/J), 

where 1/J E E®AH, --y'f/J = 1/J is given by a pair of left-handed sections of S®H2,a 

denoted by ( ~D, and a right-handed section of S@ H2,b denoted by 1/Jb. Both 

of Jo and J 1 are given by Lagrangian densities respectively as 

-:;J:(8 + Cl--y(wa))'l/Ja + tij\8 + Cl--y(wb))'l/Jb 

and tijbM(l + <()1, <p2)1Pa + h.c. • 
Example 17.6. {Added). (The dictionary between noncommutative geometry 
and particle physics [66, VI 5.o]). A translation of a noncommutative geometry 
or a spectral triple (A, H, D) is given as 

{

H: the Hilbert space of Euclidean fermions, 

D: the inverse of the Euclidean propagator of fermions 

U{A): the gauge group of local gauge transformations, 

where U(A) is the unitary group of a *-algebra A. 
A functor from *-algebras to groups is defined by sending A to U(A). An­

other functor from algebras to groups is defined by sending an algebra A to 
the group GL(A) of invertible elements of A, which plays a fundamental role in 
Algebrai<:: K-theory. • 
Example 17. 7. {Added). (The standard model with U(l) x SU(2) x SU(3) 
(66, VI 5.,8)). As with the Glashow-Weinberg-Salam model for leptons, the 
Lagrangian of the standard model contains five different terms as 

L =Lo+ LF,+ Lcp +Ly+ Lv. 

The pure gauge boson part Lo is 

Lo= ~(GµvaG~v) + ~(FµvFµ") + ~(HµvbHf:V), 
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where Gµva is the field strength tensor of an SU(2) gauge field Wµa, Fµ is the 
field strength tensor of a U(l) gauge field Bµ, and Hµvb is the field strength 
tem;or of an SU(3) gauge field Vµb· This last gauge field, called the gluon field, 
is the carrier of the strong force, the gauge group SU(3) is the color group, and 
is the essential new ingredient. The respective coupling constants for the fields 
W, B, and V are denoted as g, g', and g", consistent with the previous notation. 

The fermion kinetic term L F is obtained that to the leptonic terms as 

one adds the following similar terms involving the quarks: 

where the underline is just for emphasis. For each of the three generations of 

quarks (~), (:), and (!) one has a left-handed isodoublet such as(~~) and 

two right-handed SU(2) singlets such as ( ::) . Each quark field (for a baryon) 

has 3 colors as red, green, and blue (to make white by 3 colors overlapping) 
such that for instance, UR is equal to either Un, u1, or u~. All of these quark 
fields are thus in the fundamental representation of SU(3). The hypercharges 
YL and YR are identical for different generations quarks and leptons and given 
by the following table below. These mumbers are not explained from the theory 
but are set by hand so as to get the electr<rmagnetic charges Qem from the 
formulas: 

2Qem = YL + 213 and 2Qem = YR, 

where / 3 is the third generator of the weak isospin group SU(2). 
(Added and edited). 

Table 14: Hypercharges for fermions in three generations 

Fermions I (YL, YR) II (YL, YR) III (YL, YR) 
Quarks u:. (½, 1) c: (½, ½) t· ( ! !! ) . 3' 3 

d: (½,-¾) s: (½, -i) b: (½, -~) 
Leptons lie: (-1,·) llµ: (-1,·) ll-r: (-1,·) 

e: (-1,-2) µ: (-1, -2) r: (-1,-2) 

The kinetic term £~ for the Higgs fields is exactly the same term as in the 
G WS model for leptons. 
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The Yukawa coupling of Higgs fields with fermions is given by Ly as in the 
GWS model. More explicitly, there is no Hf f' =f:. 0 between leptons and quarks, 
so that Ly is a sum of a leptonic part and a quark term. 

Since there is no right-handed neutorino in this model, the leptonic part has 
the form 

Li·,lep = -Ge(Le, <l>)en - Gµ (Lµ, if>)µR - Gr(Lr, <l>)rn + h.c., 

where L, is the isodublet (";t), and Lµ, L, similarly for the other generations. 

The coupling constants Ge, Gµ, and Gr provide the lepton masses through the 
Higgs vacuum contribution. 

The quark Yukawa coupling is more complicated owing to new three terms, 
providing the masses of the up particles, and to the mixing angles. The first 

has the form GLun<I!~, where the isodoublet L = ( ;~) is obtained from a 

left-handed up quark and a mixing QL of left-handed down quarks, and cp~ has 
the same isospin but opposite hypercharge to the Higgs doublet cf> and is given 
by 

cp~ = Jcp* with J = -10 1. 

The Higgs self-interaction Lv is exactly the same form as in the GWS model. 
There are essentially, three novel features of this complete standard model 

with respect to the leptonic case as follows. 

(i) The new gauge symmetry as color, with gluons responsible for the strong 
interaction. 

(ii) The new values such as 

of the hyper-charge for quarks. 

1 4 2 

3'3' '3 

(iii) Tne new Yukawa coupling terms as GLun<P~. • 
Added below is the table for super-symmetric (SUSY) particles as super 

fermions: 

Table 15: Super-symmetric partners to fermions in the three generations 

Scalar-fermions I II III 
S-quarks us: u~ (~e) cs: c~ (te) ts: t~ (je) 

(unknown) ss-d: d~ (-½e) ss-s: s~ (-½e) ss-b: b~ (-½e) 
S-leptons v:: v;' (0) vt: v; (0) v~: v-; (0) 

(unknown) es: e~ (-e) µs: µ~ (-e) rs: r~ (-e) 

Also added below is the table for super-symmetric (SUSY) particles as super 
bosons: 
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Table 16: Super-symmetric partners to gauge bosons and Higgs bosons 

Gaugeno particles 01 · · · ,o's 
(unknown) 1~, (Z0 )~, (W±)~ 

Higgsino particles (unknown): H":' 

where the unknown particles 1~, (Z0 )~ and (part of) H~ are thought to be the 
candidates for dark matter, and super-symmetric partners have spin ½ different 
from corresponding elementary particles in the standard model. 

18 Isospectral deformations of Riemannian man­
ifolds 

A rich class of examples of noncommutative manifolds is obtained by cosidering 
isospectral defor~ations of a classical Reimannian manifold. These examples 
satisfy all the axioms of ordinary Riemannian geometry ( cf. [69)) except com­
mutativity. Those are obtained by the following by Connes-Landi: 

Theorem 18.1. {[79)). Let M be a compact Riemannian spin manifold. If the 
isometry group of !vi has rank r ~ 2, then M admits a non-trivial one-parameter 
isospectral deformation to noncommutative geometries Me. 

The main idea of the construction is to deform the standard spectral triples 
describing the Riemannian geometry M along a two-torus embedded into the 
isometry group of M, to a family of spectral triples describing noncommutative 
geometries Me. 

More precisely, assume that there is an inclusion of the two-torus into the 
isometry group of a compact Riemannian spin manifold M as 

For any s = (s1, s2) E 1r2 with real parameters, let u(s) be the unitary op­
erator corresponding to s in the subgroup T2, acting on the Hilbert space 
H = L 2(M, S) of the real standard spectral triple 

(A= C00 (M), H = L2(M, S), D, J), 

where J is the anti-linear isometry on H as the charge conjugation operator. 
Equivalently, we may write u(s) = exp{i(s1p1 +s2P2)) 1 where p1, P2 are operators 
corresponding to the Lie algebra generators for IR2 such that the spectrums 
u(2p;) c Z, [D,p;] = 0, and {P;, J} = p;J + Jp; = 0, so that [u(s), D] = 
[u(s), J] =·O. 

Proof (Added). Since D and i(s1p1 + s2P2) commutes, so does D and its 
multiples. Hence D and u(s) commute. 
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We also have 

• 
Define the action as(t) = u(s)tu(s)- 1 = Ad(u(s))(t) fort E C(X)(M). Note 

that u( s + s') = u( s )u( s') since P1 and P2 commute. 
We say that a bounded operator t on H is of bidegree (n 1, n2) if as(t) = 

ei{sin 1 +s2 n 2 )t for any s = (s1.s2) E 'lr2. 
For a bounded operator t on H, if the map 'Ir2 3 s i--. as(t) is smooth in 

norm, then the operator t can be uniquely written as a norm convergent series:· 

t = L t~1,n2 with 
n1,n2EZ 

for s = (s1,s2) E 'll'2, i.e., each t~
1
,n

2 
is of bidegree (n1,n2), where the sequence 

of norms 1lt~
1
,n

2
II has rapid decay. 

For reals fJ E JR, define the left and right twists for such operators t by 

lo(t) = L t~
1
,n2 exp(21rifJn2pi) and ro(t) = L exp(21rifJn1p2)t~1 ,n; 

(corrected). Both series converges in norm, since Pi are self-adjoint operators. 
Note that llt~

1
,n

2 
exp(21rifJn2pi)II ~ llt~

1
,n

2 
II, and so on. · 

For reals f} E JR, we then define the left and right deformed products as 

(corrected) for x = x~
1
,n

2 
a homogeneous operator of bi-degree (n1,n2) and 

y = y:, n' a homogeneous operator of bi-degree (ni, n;). 
1' 2 

These deformed products with fJ omitted satisfy l(x)l(y) = l(x *l y) and 
r(x)r(y) = r(x *r y) (corrected). 

Proof. (Added). For x = x~1 ,n2 and y = y:~.n;, note that 

a
8
(xy) = as(x)as(Y) = ei(s1n1+s2n2)xei(s1n~+s2n;)y . 

= eis1{n1+nD+s2(n2+n;>xy, 

and hence, xy is of bidegree (n1 + ni, n2 + n;). 
We then compute 

l(x *l y) = l(e21ti8n~n2xy) 

= e21tiBn~n2 xyexp(21rifJ(n2 + n;)pi), 

l(x)l(y) = (x~1 ,n2 exp(21rifJn2p1))(y:; ,n; exp(21rifJn~i)) 

= xn" n exp(21rifJn2p1)Yn"• n' exp(-21rifJn2P1) exp(21rifJ(n2 + n;)P1) 
1, 2 1 • 2 

= x" e21tiOn2n~ y" exp(21riO(n + n' )p ) n 1 ,n2 n~,n; 2 2 l , 
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so that we obtain l(x *l y) = l(x)l(y). 
Similarly, we compute 

r(x *r y) = r(e-211'i9n~n2xy) 

= e-271'iOn;n2 exp(21riO(n1 + nUP2)xy, 

r(x )r(y) = ( exp(21riOn1p2)x~
1 
,n

2 
)( exp(21ri0n~p2)y:~ ,n) 

= exp(21ri8(n1 + nDP2) exp(-21ri8n~P2)x~
1 

n
2 

exp(21ri8n~p2)Y~• n' 
' 1' 2 

so that we obtain r(x *r y) = r(x)r(y). • 
MaY. refer to [79] for more details. 
The deformed spectral triples Mo in the theorem above are then obtained as 

Mo = (Ao = lo(C00 (X)), H = L2(X, S), D, Jo= J exp{21ri8{-p1 + p2))) 

(corrected or revised), where Ao is nothing but C00 (X) with pointwise product 
deformed to the left product *l = *l,,. 

And J9 defined so above is an anti-linear isometry on H by definition be­
cause J is an anti-linear isometry and exp{21ri9{-p1 + p2)) is a unitary, with 
Jo = exp(21ri8{p1 - P2))J {corrected or revised) and then J'j = J 2 , and. is a 
twisted involution in the sense that Jol(x)J91 = r(JoxJ91

) (?) for x of bide­
gree {n1,n2). 

Proof. (Added, not completed). Note that 

J(21ri8(-P1 + P2)t = (21riOt J(-p1 + P2t = {21riOt(p1 - P2)k J 

= (21ri8(p1 - P2) t J. 

Therefore, Jo = exp(21ri8(p1 - P2))J as well. 
Note that since a 8 (x) = ei(sini +s2n2 >x, then 

ei(s1(-n1)+s2(-n2))JxJ-l = Jas(x)J-l = as(JxJ-1). 

Therefore, JxJ- 1 is of bidegree {-n1, -n2). 
Compute that for x of bidegree (n1, n 2), 

Jol(x) = J exp(21ri8{-p1 + P2))x exp(21ri8n2P1) 

= Je211'iB(-ni+n2>x exp(21ri8(-p1 + P2)) exp{21ri8n2p1), 

r(Jxr 1 )Jo = exp(21ri8(-ni)p2)JxJ-1 J exp(21ri8(-p1 + P2)) 

= J exp(21ri8n1p2)x exp(21ri8(-P1 + P2)) 

= Je211'iOnin2x exp{21ri8n1P2) exp(21ri8(-P1 + P2)), 

{so that both do not coincide in our revised case). 
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19 Algebraic deformations 

There is a general context in which noncommutative spaces are constructed 
via deformations of commutative algebras. Unlike the isospectral deformations 
discussed in the previous section, we here proceeds mostly at a formal algebraic 
level, without involving the operator algebra structure and without invoking the 
presence of a Riemannian structure. 

In what follows, may refer to Kontsevich [156] (cf. (155] (missing)). 
The idea of algebraic deformation quantization originates from that for a 

smooth manifold !vi as a phase space with a symplectic structure, which de­
fines a Poisson bracket { ·, · }, the system as classical mechanics is quantized by 
deforming the pointwise product in the algebra A= C00 (M) or its suitable sub­
algebra to a family of associative products *Ii. but riot necessarily commutative, 
satisfying f *Ii. g -+ f g as h -+ 0 and 

(inr1(1 *h g - g *Ii n--• {J,g} (n--• o). 

Namely, the Poisson bracket is deformed as the limit of products *h above. 
The Poisson bracket for the algebra C00 

( M) is specified by assigning a section 
,,\ of A 2 (TM) such that 

{f,g} = (..\,df I\ dg) 

satisfies the Jacobi identity. Typically this produces a for~al deformation as 
a formal power series in h. Namely, the deformation products can be written 
in terms of a sequence of bi-differential operators bk : A x A -+ A, which are 
bilinear differential maps, such that for f, g E A, 

f *h 9 =Jg+ b1(J,g)h + ~(J,g)h2 + · · ·. 

Moreover, for any two elements of A([/i]] of formal power series over A with 
respect to h, the *Ii product is defined by 

Under this perspective, it is proved by Kontsevich (156) (and [155) missing) 
that such formal deformations always exist, by providing an explicit combinato­
rial formula that generates all { b2, b3 , • • • } in the expansion from the b1, hence 
in terms of the Poisson structure ,,\. The formal solution to the equation for 
f *h g above can then be written as 

00 

L /in L w..,b..,,>.(J,g), 
n=O -yeG(n] 

where G[n] is a set of nn(n+ l)n labeled graphs with n+2 vertices and n edges, 
w.., is a coefficient obtained by integrating a differential form depending on the 
graph "Yon the configuration space of n distinct points in the upper half-plane, 
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and b-y,-X is a bi-differential operator whose coefficients are derivatives of A of 
orders specified by the combinatorial information of the graph -y. 

Remark. (Added). Recall from [183] the following facts. 
A Poisson structure on a manifold M is defined to be a real bilinear differ­

ential operator 
{ ·, ·} : C00 (M) x C00 (M) - C00 (M) 

such that the Jacobi identity holds: 

{{f,g},h} + {{g,h},J} + {{h,/},g} = 0 

and {J,g} = -{g, /} and {Jg, h} = J{g, h}+g{J, h}. A manifold with a Poisson 
structure is said to be a Poisson manifold. 

The Poisson bracket for a symplectic manifold M defines a Poisson structure 
on !vi. Conversely, a non-degenerate Poisson structure on a manifold !vl defines 
a symplectic structure for M. Also, the dual space of a Lie algebra has a Poisson 
structure. 

A symplectic manifold is defined to be a differentiable manifold M with a 
symplectic structure form w, i.e., a non-degenerate, closed 2-form on !vi 

The Poisson bracket for functions J, g on a symplectic manifold M with w 
is defined to be {J,g} = w(X9 ,X1), so that [X1,X9 ] = X{J,g}, where X1,X9 

are Hamiltonian vector fields over M associated to f, g respectively. 
. A deformation quantization for a Poisson manifold !vl is defined to be a 

product structure * on C00 [[1i]] with Ii a formal element, defined as that for 
J,g E C00 (M), 

00 

J * g = L Iii J *i g, f *jg E C00 (M) 
j=O 

where f *o g = Jg, f *1 g = {J,g}, and *i is a-real bilinear differential operator 
on C00 (M), so that the associativity holds: (J * g) * h = f * (g * h}. • 
Example 19.1. (Added}. ([156, 1.4.1)}. As the simplest example as a defor­
mation quantization, we recall the Moyal product for the Poisson structure on 
Rd with constant coefficients as 

a = L OijOi /\ Oj · for Oij = -Oji E IR, 
i,j 

where each Oi = a:i is the partial derivative with respect to the variable Xi 

(1 ~ i s d). The Moyal product *11. for C00 (1R.d)[[li]] is given as that for f, g E 
coo(JRd), 

fi2 
J *11 g =Jg+ Ii L aijai(J)aj(g) + 

2
! L aijak1aiak(f)aja,(g) + • • -

i,j i,j,k,l 

oo /in 
= L n! L rrk=lOiA,j,.ai. ···8i,.(f)8Ji ···8j,.(g). • 

n=O i1 , ... ,in ,ii,·· ,j,. 
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A setting of deformation quantization, which is compatible with C* -algebras, 
is developed by Rieffel [209}. Recall briefly the setting as follows. For simplicity, 
may restrict to the simple case of a compact manifold. 

(Added). Let M be a smooth manifold and let C00 (M) the associative*­
algebra of smooth complex-valued functions on M with pointwise operations. 
A Poisson bracket on M is a Lie algebra structure on C00 (M) as a linear space 
such that for every f E C00 (M), the linear map C00 (M) -+ C00 (M) sending g 
to {/, g} is a derivation, with {!*, g*} = {I, g} *. 

Let TM denote the tangent bundle over M. To give a Poisson structure on 
NI is the same as to give a skew 2-vector field A on M, which is a cross-section 
of A 2T M, such that {/, g} = (A.df I\ dg} with the Jacobi identity. 

Definition 19.2. ([209}). Let M be a compact manifold. A strict Rieffel 
deformation quantization of A = C00 (M) in the direction of { ·, ·} is obtained 
by assigning an associative product *Ii, an involution *Ii, and a C*-norm II · lln 
on A for each Ii in a closed interval I containing 0, such that for every f E A, 
the function 11/1111. on I is continuous (corrected), and for any J,g EA, 

ll(ili)-1(! *Ii g - g *Ii J) - {f,g}ll1t-+ 0 

as Ii-+ 0. 

Remark. (Added). If we denote by 21n the c•-algebra obtained ·by completing A 
by the C*-norm 11 · lln, then 210 becomes C(M) the C*-algebra of all continuous 
functions on M with the ordinary pointwise operations, and the family {2l1i} 
together with A viewed as a *-algebra of continuous cross-sections of this family 
determines a continuous field of C* -algebras over I with 211i as fibers. 

If Mis not compact, we may take A as a *-algebra, which contains C':'(M) 
with support compact and is contained in Crf (M) vanishing at infinity. Then 
it follows that 21o = C0 (M) of continuous functions vanishing at infinity. • 

The functions involving Ii are assumed to be analytic with respect to Ii, so 
that formal power series expansions as in A[[ Ii]} make sense. 

As a remark, the notion of strict deformation quantizations should be re­
garded as that of integrability for formal solutions. 

Rieffel also provides a setting for compatible actions by a Lie group of sym­
metries and proves that noncommutative tori of higher rank are strict deforma­
tion quantization of ordinary tori, that are compatible with the action of the 
ordinary tori as groups of symmetry. Typically, given a Poisson structure, its 
strict deformation quantizations are not unique, already in the case of tori. 

Using a result of Wassermann [236], Rieffel [209] also produces an example, 
where formal solutions are not integrable. 

Example 19.3. (Added). Let S2 be the 2-sphere. There is a symplectic struc­
ture on S2 and a corresponding Poisson structure ...X, which is invariant under 
S0(3). • 

But 
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Theorem 19.4. ([209, Theorem 7.11). There are no S0(3)-invariant strict 
deformation quantizations (should be noncommutative) of the ordinary product 
on C00 (S2 ) in the direct to the S0(3)-invariant Poisson structure on S 2

• 

Remark. It also implies that no S0(3)-invariant deformation of the ordinary 
product in C(S2 ) can produce a noncommutative C* -algebra. This rigidity 

· result reflects a strong rigidity result for SU(2) by Wassermann [236], namely 
that there are only ergodic actions of SU(2) on von Neumann algebra of type I. 

As a fact, there are formal deformati.ons of the Poisson structure that are 
S0(3)-invariant (cf. [18] and [126] both missing), but these only exist as a 
formal power series in the sense of Kontsevich, and not integrable by the results 
of Wassermann and Rieffel. • 

(Added). Recall from (209) the following definition. Let G be a Lie group 
and a an action of G as a group of diffeomorphisms of a compact, or non­
compact, smooth Poisson manifold !vi, which preserve the Poisson structure. 
Assume that the corresponding action a of G on C00 (M) preserves A. A strict 
deformation quantization of A defined above is invariant under the action a if 
the operator alphax on A with *Ii for any x E G and Ii E / is an isometric 
*-automorphism, and the map G 3 x 1-+ ax (J) is a smooth function on G in the 
norm II· ll1t for any f EA and Ii E /, and there is an action a of the Lie algebra 
~ of G on A such that for X E ~ and f E A, 

with respect to 11 · 1111-

Theorem 19.5. {[209, Theorem 1.31). Let '1r1 be the d-dimensional torus. Let 
0 = ((}ii) be a skew-symmetric matrix which defines a Poisson structure A on 
Coo('I['d) as 

A= -1r-
1 L 8;kxj A xk, 

j<k 

where each X; denotes the vector field on 'Il'd corresponding to the differentiation 
in the i-th direction. For each real Ii, let 2lri the twisted group C* -algebra of the 
dual group zd of 1fd obtained by both the Fourier transform carrying C00 ('1r1) 
onto S('ll.,d) the Schwarz space of functions rapidly going to zero at infinity and 
the corresponding bicharacter u1;, for e defined as 

u11(m, n) = e21rili.8(m,n) 

withe viewed as a skew bilinear fo:rm on '11.,d by the inner product {0m, n}. The 
the family {2l1t} provides a strict deformation quantization for C00 ('1r1) in the 
direction of.,\, which is invariant under the evident action of T"-. • 

Note the following type of phenomenon as a summary. On the one hand, 
there are formal solutions, formal deformation quantizations about which a lot 
is known, but for which, in general there may not be an integrability result. 
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More precisely, in trying to pass from formal to actual solutions, there are cases 
where the existence fails as in the sphere, and the others as the tori, where 
the uniqueness fails. The picture that emerges is similar to the case of formal 
and actual solutions of ordinary differential equations. (Namely, there are formal 
solutions and actual solutions for ordinary differential equations. Likewise, there 
are formal noncommutative spaces as *-algebras and actual noncommutative 
spaces as C*-algebras (integrated) as in the situation above.) 

Example 19.6. (Edited). To ·illustrate that concept, we take a· took at the 
analogous story in the theory of ODE. For a modern viewpoint, may refer to 
[204] (missing). For instance, there is a formal solution to the Euler equation_ 
x2y' + y = x as a power series expansion E:°=0 (-l)nn!x"+l. But convergent 
series give existence of actual solutions. Moreover, using summation processes 
such as Borel summation one can transform a formal solution of an analytic 
ODE into an actual solution on some local region, but such solution is not 
unique in general. Also, some divergent series can be summed module functions 
with som·e exponential orders. This property known as Gevrey summability 
holds for formal solutions of analytic ODEs. As stated in a more geometric 
fashion, it is essentially a cohomological condition. It also shows that whereas 
on small sectors, there are actual solutions but no uniqueness, on large sectors 
there is the uniqueness, at the cost of possibly losing existence. A complete 
answer to summability of formal solutions can then be given in terms of a more 
refined multi-summability, combining Gevrey series and functions of different 
order, and the Newton polygon of the equation. • 

The general flavor of that theory is similar to the problem of formal so­
lutions in noncommutative geometry. It· is to be expected that an ambiguity 
theorem would exist, which accounts for the cases of lack of uniqueness, or of 
lack of existence, of actual solutions illustrated by the results of Rieffel. Al­
ready, in dealing with the noncommutative 2-tori as the first truly non-trivial 
example of noncommutative spaces, we encounter subtletie~ related to the dif­
ference between the quotient and the deformation approach to the construction 
of noncommutative spaces. 

Example 19~7. (Edited). The smooth *-subalgebras in the noncommutative 
tori (as noncommutative two-torus 'JI'j generated by two unitaries u, v such that 
uv = e21ri0 vu) are obtained as deformations of the ordinary product of smooth 
functions J, g on tori, by setting the (-Moy.al) products 

U *o 9 )(x,'!i) = exp(21rio ! 8:,J(x,y)g(x',y')lx=x',y=y' 

= ~ (21ri0)" D"JDn 
L__ n! X y

19 
n=O 

for f, g E C00 ('11'2). Note that ufu, v Jv are derivations for the smooth subalge­
bras, but not the case for ! , ;., . 
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The same holds for the quantum plane denoted as JR~, that is the algebra 
( over JR) generated by two elements x and y as real variables with relation 
xy = qyx for q =/: 0 a non-zero real (cf. Yu. I. Manin (168) missing). 

Those generators u, v for '['i can be rotated as u ._ .Xu and v ._ µv for 
any A,µ E 11' without changing the presentation, and to give automorphisms 
of the noncommutative 2-torus, but such translations of the generators x, y are 
not defined as automorphisms of the quantum plane. In other words, one can 
view the noncommutative two-torus as a deformation of the ordinary two-torus, 
which is a quotient of the classical plane IR.2 by a lattice of translations, but 
the action of translations does not extend to the quantum plane. This is an 
instance of the fact that operations of quotient and deformation in constructing 
noncommutative spaces do not satisfy compatibility in that sense. 

(Added). In fact, the following diagram does commute: ·, 

C~2~;0 
t,._,. 

c~2,..;o 
i 1r2 t,._,, 1r2 - ---+ 8 - 8 

o-ol o-ol o-ol o-ol 
C[z1, z1] t,.,,. q I 

- Z1,Z2 ~ C(11'2) ~ C(11'2) 

where we do define C! the quantum complex plane as the algebra over C gener­
ated by z1 , z2 as complex variables with relation z1z2 = wz2z1 for w a non-zero 
complex, and t)i.,µ is the translation for ..X, µ E '[', and the maps i in the first and 
second lines are the evident restriction maps and are injective, and both 'lrj and 
C('lr2 ) may be replaced with both the smooth *-subalgebra of'['~ and C00 (11'2 ), 

respectively, and down arrows are deformations (reversed). 
The Morita equivalence between two noncommutat~ve tori for (} and } are 

not detectable in a deformation theoretic perturbative expansion like the Moyal 
products given above, so that such a phenomenon is not perturbative and cannot 
seen at the perturbative level as the star products. • 

In that respect, a version of the structure of spectral triples for non-compact 
spaces is considered by Gayral, Gracia-Bondfa, Iochum, Schucker, and Varilly 
(117) as follows. In this case, one cannot expect the Dirac operator to have 
compact resolvent but one can expect a local version to hold, such as that 
a( D - i)- 1 are compact for a E A. Other properties for spectral triples as non­
commutative geometry are adapted to this local version, with some difficulties. 
It is shown that the Moyal product deformation of JR2n fits in the framework 
of spectral triples and it provides an example of non-unital spectral triples. It 
then appears that the structure of noncommutative, noncompact Riemannian 
geometry provided by non-unital spectral triples are adapted to some classes of 
algebraic deformations in this case. 

Example 19.8. (Added). ((117, Theorem 3.21). It says that the (spectral) 

triple (S(JRk),L2 (JRk)@C2L½J ,D) with -y,J for JRk as a spin manifold defines 
a noncompact, commutative geomerty of spectral dimension k, where for f E 
S(JRk), (D, f] = D f, and J(D + c)-k are compact operators of Dixmier trace 
class, with Dixmier trace a scalar multiple off J(x)dkx. 
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· Example 19.9. {Added). {[117, Theorem 4.221). It as the main theorem says 
that for the Moyal planes (S{R2n), *o) with the products *o, for R2n as spin 
manifolds, the triples 

((S(R2n), *9), L2 (R2n) ® c2" 1 D) with 'Y, J 

define connected real noncompact, spectral triples of spectral dimension 2n. 

• 
It appears at first that spectral triples may not be the right type of structure 

to deal with noncommutative spaces associated to algebraic deformations, be­
cause a spectral triple corresponds to a form of Riemannian geometry, while such 
noncommutative spaces originate from Kahler geometry. However, the Kahler 
structure can often be encoded in the setting of spectral triples, for example, 
by considering a second Dirac operator as in [28], or through the presence of a 
Lefshetz operator as in [99). 

Noncommutative spaces obtained as deformations of commutative algebras 
fit in the context of a well developed algebraic theory of noncommutative spaces 
(cf. Kontsevich [154) and KR [157] both missing, Rosenberg [212] and [211] 
missing, Manin [168], [169], and [171] triple missing, and Soibelman [2241). 

This theory touches on a variety of subjects like quantum groups, and is con­
nected to the theory of mirror symmetry. However, it is often not clear how to 
integrate this deformation approach with the functional analytic theory of non­
commutative geometry, briefly summarized before. Only recently have several 
results confirmed the existence of an interplay between the algebraic and the 
functional analytic aspects of noncommutative geometry, especially through the 
work of Connes and Dubois-Violette ( cf. [76], [77], [78]) and of Polishchuk (200]. 
Also, by the the work of Chakraborty and Pal [45] and of Connes [71] and more 
recently of [105] and [226], shown is it that quantum groups fit nicely within the 
framework of noncommutative geometry, described by spectral triples, contrary 
to what is previously believed. Ultimately, successfully importing tools from 
the theory of operator algebras into the realm of algebraic geometry might well 
land within the framework of what Manin refers to as a second quantization of 
algebraic geometry .. 

20 Quantum groups 

For some time, it is believed that quantum groups could not fit into the setting 
of noncommutative manifolds, defined in terms of spectral geometry. On the 
contrary, it is shown by Chakraborty and Pal (45] that the quantum group 
SU9 (2) for O < q < 1 admits a spectral triple with Dirac operator that is 
equivariant with respect to its own coaction, as follows. 

The *-algebra Aq (or the C*-algebra 2lq) of (continuous) functions on the 
quantum group SUq(2) is generated by two elements a and /3 with relations 

a* a+ {3* f3 = 1, aa* + q2{3{3* = 1, · 

a/3 = q{Ja, a/3* = q{J* a, {3* /3 = {3/3*. 
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and with the coproduct ~ : A -+ A® A as a group structure defined by 

D..(o:) = o: ® o: - qf)* ® /3 and 

~({)) = {3 ® o: + o.* ® {). 

Note that SU(2) ~ S3 , where any element of SU(2) has the form 

(
z w*) w -z• , where 

lzl2 + lwl2 = Re(z)2 + Im(z)2 + Re(w)2 + Im{w)2 

= 1, z,w EC. 

If we take q = 0, then Ao= 210 = C with a= 1 and {J = 0. If we take q = 1, 
then 211 = C{SU{2)) the C*-algebra of continuous functions on SU(2) as a 
space. The quantum group SUq(2) may be identified with the *-algebra Ai or 
the C*-algebra 21q. We may also write as 21q = C(SUq(2)). 

By the representation theory of the quantum group SUq(2) {cf. [152] miss­
ing), similar to its classical counterpart, for each n = ~ form positive integers, 
there is a unique irreducible unitary representation tCn) of dimension 2n + 1. 

Denote by ti;> the {i,j)-entry of t<n) as a {2n + 1) x (2n + 1) matrix. Define 

a Hilbert space .H with an orthonormal basis {e~;>} as t~;> normalized with 
i,j E {-n, · · · , n} for n E ½N. Then the unitary representation (omitted) of 
SUq(2) on His defined by 

( (n)) _ { . ") (n+½) { . ") (n-½) o: e.1- - a+ n,i,J e. 1. 1 +a_ n,z,J e. 1 . 1, 
• 1-2,J-2 l-2,J-2 

/3( (n)) _ b ( . ") (n+½) b ( .. ) (n-½) e.1- - + n,z,J e.+• . 1 + _ n,z,J e.+• . 1 , 
• l 2,J-2 l :j,J-2 

/3*{ (n)) _ b* ( . ") (n+½) b* ( .. ) (n-½) ei1• - +n,z,Je. 1 •+ 1 + _n,z,Je. 1 .+ 1 ' 
i-2,J :i 1-2,J :i 

with coefficients defined by 

( . .) _ 2n+i+i+l F (2n - 2j + 2 2n - 2i + 2) 
a+ n, i, J - q 4n + 2 4n + 4 ' 

( . .) = F (2n - 2j 2n + 2i) 
a_ n, i, 1 4n 4n + 2 ' 

b ( • ") = _ n+j F (2n - 2j + 2 2n + 2i + 2) 
+ n,i,J q 4n + 2 4n + 4 ' 

b ( . ") = n+i F (2n + 2j 2n - 2i) 
- n, i,J q 4n 4n + 2 ' 

b" ( . •) = n+i F (2n + 2j + 2 2n - 2i + 2) 
+ n, i, J q 4n + 2 4n + 4 ' 

b" ( . ") = _ n+j F (.2n - 2j 2n + 2i) 
- n, i, 1 q 4n 4n + 2 ' 
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where we use the notation as 

F(ks l)-~~ 
t - ~ ~ .. 

The *-algebra A; {or the C*-algebra 21~ = C(SUq(2)") of (continuous) 
functions on the dual of SUq(2) are generated by tbe following two operators 
a", {3" on H defined by 

a" {e~':l)) = qi e~':1) 
ZJ lJ I 

/3"{e~':1)) = {o -------
lJ J q-2n + q2n+2 _ q-2j _ q2i+2et.i>+l 

j =n, 
j <n. 

with 

Jq-2n + q2n+2 _ q-2j _ q2i+2 = q-nJl _ q2n-2iJI _ q2n+2j+2 

{corrected), satisfying the relations 

a"/3" = q{J"a", a"(/3")* = q-1({3")*a", [,B",a"] = q-
1
q_1 ((a")2 -(a")-2

) 

and with the coproduct defined by 

6.{a") =a"® a" - q(,B")* ® ,B", 6.(/3") = (a")-1 ® {3" + ,B" ®a", 

6.((,B")*) = {a")-1 ® (/3")* + (,B")* ® a". 

An equivariance condtion means that there is an action on H of the en­
veloping algebra Uq = Uq(SU(2)), which commutes with the Dirac operator 
D. 

Or an operator on H is said to be equivariant if it commutes with a", ,B", 
and (,B") • defined above. 

Any equivariant self-adjoint {Dirac) operator Don H with discrete spectrum 
has the form 

D (n) _ d( ") (n) eii - n, i eii , d(n, i) ER. 

We then compute the commutators as 

[D I (n) D[ ( . ") n+½ ( . ') n-½ ] (d( ") (n)) ,a eij = a+ n,i,J ei_.! 
1
._ 1 + a_ n,i,J ei_.! 

1
._ 1 - a n,i eii 

2' 2 · 2 1 2 . 

1 . 1 .. 1 

= [a+(n, i,j)(d(n + 2, i - 2) - d(n, i))]e~~½,i-½ 

1 1 n-1 + [a-(n, i,j)(d(n - 2, i - 2) - d(n, i)))ei-½,i-½, 

[D /31 (n) D[b ( . ") n+½ b ( . ") n-½ ) ,B(d( ") (n)) , eii = + n, i,J ei+l 
1
._ 1 + - n, i,J ei+11._1. - n, i eii 

2' 2 2' 2 

= [b+(n, i, j)(d(n + i, i + ~) - d(n, i))]e::ti-½ 

+ (b_ (n, i,j)(d(n - ~' i + ~) - d(n, i))]e:;ti-½ • 
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It then follows that [D, a] is bounded for any a E A, if and only if the 
following two conditions hold ([45, Propsition 3.11): 

{
d(n + ½, i + ½) - d(n, i) = 0(1) and 

d(n + ½, i - ½) - d(n, i) = O(n + i + 1). 

The Dirac operator D of that form has compact resolvent if and only if 
d(n,'i) as a single sequence does not have any other limit point than ±oo. 

For instance as the origine, we may define the operator D as 

De~'!') = {2n + 1 
'
1 -2n - 1 

n :/: i, 

n=i, 

defined by ponnes [71]. 
It then follows that 

Theorem 20.1. An SUq(2)-equivariant odd 3-summable spectral triple is ob­
tained by (Aq, H, D) defined above. 

The classical group SU (2) has topological and metric dimension three, and 
the topological dimension of the *-algebra A, drops to one, but the metric 
dimension of the spectral triple remains equal to three (cf. (45]). 

Moreover, it is shown by Chakraborty and Pal (45] that the Chern character 
of the spectral triple is nontrivial. 

(Added). Indeed, it is shown that the pairing between the (algebraic or 
C*-algebraic) K-theory and the K-homology via the Kasparov product as 

is non-trivial and onto, where Aq may be replaced with 2lq. Computed is the 
pairing between sign(D) = DIDl-1 for some (equivariant or not) spectral triples 
(Aq, H, D) obtained above and th~ generator class (u] of K1 (Aq) corresponding 
to the elements u = x1({J*{J)(f3 - 1) + 1 or Ur = (/3*/JY(fJ - 1) + 1 E Ag, 
where x 1 ( ·) means the characteristic function at 1 on the spectrum of /3* /3, and 
X1 (/3* /3) is defined by functional calculus, and r E N with q2

r < ½ < q2r- 2 • 

Namely, 

([u], [(2l, H, D)]) = [u] ® [sign(D)] = -index(poUrPo) :/: 0, 

where Po is the projection onto the eigenspace corresponding to the eigenvalue 
-1 of sign(D). Note that sign(D)2 = D2IDl-2 = 1. • 

On the other hand, by Connes (71], given is an explicit formula for its local 
index cocycle, where provided is a cochain whose coboundary is the difference 
between the Chern characater and the local version in terms of remainders in 
the rational approximation to the logarithmic derivative of the Dedekind eta 
function. 

The local index formula is obtained by constructing a symbol map p: ~ ~ 
C00 (S;), where the algebra C00 (S;) is a noncommutative version of the cosphere 
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bundle, that is, the cosphere bundle s; of SUq(2), with a restriction map r : 
C 00 (S;) -- C00 (D:+ X D;_) the algebra of two noncommutative disks, and 
where 23 is the algebra generated by the elements <>k(a) for a E A, with <>(a) = 
[IDI, a]. On the cosphere bundle, there is a geodesic flow, induced by the group 
of automorphisms of A sending a i-+ eitlDlae-itlDI_ Then p(b)0 is defined to be 
the component of degree zero with respect to the grading induced by this flow. 

The algebras C00 
( D~± ) have extensions 

0 .- OC00 
- C00 (D;±) ~ C00 (S1

) - 0, 

where the ideal OC00 is the algebra of rapidly decaying matrices in the C* -algebra 
OC of compact operators. 

There are linear functionals r 1 and r 0 on C00 
( D!±) defined by 

1 1211' { n } T1 (a) = 2 a(a)d0 and To·(a) = lim L {aek, ek) - nT1 (a) , 
7r O n-oo k=O 

where To is defined in terms of the representation of C00 
( D;±) on the Hilbert 

space l2(N) with the canonical orthonormal basis {ek}- Note that T1 is zero on 
OC00 and To = tr the usual trace on the same. 

Now, recall from (66, III.l] that a cycle of dimension n is defined to be a triple 
(n, d, f) where (n = G:(J=0ni, d) is a graded differential algebra over C with d a 
graded derivation of degree 1 such that d : ni - ni+i and d2 = d o d = 0, and 
f : nn - C is a closed graded trace on n. A cycle over an algebra A over C is 
given by a cycle (n, d, f) together with a homomorphism p : A - n°. 
Example 20.~. (Added). ([66, III.1]). Let lv/ be a smooth compact manifold, 
and let C be a closed deRham current on M of dimension q ~ dim M. For 
0 ~ j ~ q, define Oi = C00 (M, AiT* M) the space of smooth differential forms 
on M of degree j, where n° = C00 (M). Then n = EB1=0ni becomes a differential 
algebra with the usual pointwise operations and differentiation. Define a closed 
graded trace on nq as J w ~ {C, w) for w E nq. • 

In the case of the algebra Aq = C00 (SUq(2)) of SUq(2), a cycle (n, d, f) over 
Aq is given as in [71] by n = n° mn1 with n° = Aq, where 0 1 = Aq EB n(2>(S1 ), 

with n<2>(S1) the space of weight two differential forms J(0)d82 on S1 and with 
the Aq-bimodule structure for n1as 

a(~, f) = (a~, a(a)J) . and (~, J)a = (~a, -icr(~)cr(a)' + J u(a)), 

and with differential d : Aq - n1 

l 
da = 8a + -u(a)"d02 

2 

with derivation 8 = op - 80 , and with trace J: n1 .- C as 

f (~, J) = T(~) + 
2
:i J J d(}, T(a) = To(r _ (a<0>)) 
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with a<0> the component of degree zero for a and T _ the restriction to C00 (D;-). 
This definition for the cycle corrects for the fact that T itself as well as To fail 
to be traces. 

{Added). By construction, r is 8-invariant. 
The Hochshild co-boundary bro is computed as 

Also, 

br(ao, ai) = _!_ J bro(ao(t), a1 (t))dt = bTo(ao, ai), 
21r 

where ai(t) = v(t)(a;) = exp(it8)ai. 
Define the following trace as the residue at zero of the zeta function with 

respect to x and IDI: 

f x = resz=otr(xlDl-z) = resz=O(x{z) 

defined on the algebra generated by A= .Aq, [D, A], and IDlz, where z EC • 
It then follows the following by Connes [71}: 

Theorem 20.3. {1} The spectral triple (.Aq, H, D) as in the theorem above has 
dimension spectrum equal to {1, 2, 3}. 

{2} The residue formula for psudo-diff erential operators a E 23 in terms of 
their symbols is given by 

f alDl-1 = (ro ,g,'ro){r(p(a)0
)), f alDl-3 = (r1 ® r1}{r(p(a)0

)), 

and f alDl-2 = (r1 ® r0 +To® r1}{r{p(a)0)). 

{3} The character x(a0 , a1 ) = f a0da1 of the cycle (0, d, f) is equal to the 
cyclic cocycle 

1P1(ao,a1) = 2 f ao8(a1)PIDl-1 - f ao82(a1)PIDl-1, 

with p = ½{1 + F). 
The local index formula for the local index cocycle cp is given by 

'Podd = 1P1 - (b + B)cpcvcn 

in the sense that 

cp1 = 1P1 - (b + B)cpo and cp3 = 1P1 - (b + B)cp2, 

where the co-chaines t.po, t.p2 are given by 
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(4) The character tr(ao[F, a 1]) differs from the local form 1/;1 by the cobound­
ary b'l/Jo, with 1/Jo(a) = 2tr(aplDl-s)s=O· This cochain is determined by the values 
'l/Jo((/3* f3r). of the form 2q-2n(q2 Rn (q2 )-G(q2 )), where G(q2 ) is the logarithmic 
derivative q28q2 log(17(q2)) (up to sign) of the Dedekind eta function 

17(q2) = qf2 Ilk=:1 {1 - q2k), 

so that ( up to constant) 
00 k 2k 

G(q
2

) = L 1 _: 2k' 
k=l q 

and Rn(·) are mtional functions with poles only at roots of unity. 

Proof (Only a part added). We have 

1 00 

log(7J(q2)) = 
24 

logq2 + L log(l - q2k), with q2 = x, so, 
k=l 

1 oo -kxk-1 
Bx log(11(x)) = 

24
x + L 

1 
_ xk , with x = q2

, so, 
k=l 

1 00 kq2k 
q2aq2 log(11(q2)) = 24 - L 1 - 2k. 

k=l q 

• 
More recently, another breakthrough i~ the relation between quantum groups 

and the formalism of spectral triples is obtained by (105] and [226]. Constructed 
by these is a 3+-summable spectral triple (Aq, H, D), where Aq is the algebra 
of coordinates of the quantum group SUq(2). The geometry in this case .is an 
isospectral deformation of the classical case, in the sense that the Dirac operator 
D is the same as the Dirac operator the round metric on the ordinary 3-sphere 
S3 • Moreover, that spacetral triple is nice as much as that it is equivariant with 
respect to both left and right action of the (Hopf) enveloping algebraUq(SU(2)). 

The classical Dirac operator for the round metric on S3 has spectrum E = 
E+ U E_, with 

E+ = {21· + ~ 11· = 0 .!_ 1 ~ · · ·} and E = {-(21· + .!_) 11· = .!_ 1 ~ · · ·} 
2 '2' '2' - 2 2' '2' 

with multiplicities (2j + 1)(2j + 2) and 2j{2j + 1) respectively. The Hilbert 
space is defined by taking H >.. @ C2 , where H >.. is the representation Hilbert 
space for the left regular representation ,\ of Aq. It is important to take that 
Hilbert space, instead of C2 @ H >.· Not only does the latter choice violate 
the equivariance condition, but also it is shown by Goswami that it produces 
unbounded commutators [ D, a], and hence, not obtained is a spectral triple in 
that way. 

The spectral triple constructed as above ((105] and (226]) has a real structure, 
and the Dirac operator satisfies a weak form of the order one condition. The 
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local index formula of (71) (cf. the theorem above) is extended to the spectral 
triple of (226), as proved in [105). As well, the structures of the cotangent space 
and the geodesic flow are essentially the same. 

Even more recently, the construction of finitely summable spectral triples 
of [105] and [226] is generalized by Sergey Neshveyev and Lars Tuset (195], to 
a functional constructio_n that works for any quantum group Gq, obtained as 
q-deformation of a simpiy connected, simple compact Lie group G. 

21 Noncommutative spherical manifolds 

The noncommutative 3-dimensional spheres S! contained in the noncommuta­
tive 4-dimensional Euclidean spaces JR! are obtained as solutions of a problem 
as the vanishing of the first component of the Chern character of a unitary 
2 x 2 matrix over the quantum *-algebra of functions on the noncommuta­
tive sphere, where the Chern character is taken in the cyclic homology of the 
(b, B)-bicomplex. The origin of such a problem is to quantize the volume form 
of a 3-manifold ([76]). The solutions are parameterized by three angles 'Pk 
for k = 1, 2, 3 and the corresponding algebras are obtained by imposing the 

. unit sphere relation E!=o x! = 1 on the four generators xo, x 1 , x2, x3 of the 
quadratic algebra C(R!) with the relations 

sin(tpk){xo,xk} = icos(tp1 - 'Pm)[x,,x71l], 

cos(cpk)[xo, Xk] = i sin(cpz - 'Pm){x,, Xm}, 

where [a, b] = ab - ba is the commutator and { a, b} = ab + ba is the anti­
commutator and the indices k, l, m take 1, 2, 3 cyclicly, or we may use the nota-
tion [a, b]± =ab± ba ([77]). · 

The analysis of these algebras is a special case of the general theory of central 
quadratic forms for quadratic algebas. May refer to [77] and [78]. 

Let A= A(V, R) = T(V)/(R) be a quadratic algebra, where Vis the linear· 
span- of the generators or a finite dimensional vector space over C and (R) is the 
two-sided ideal of the tensor algebra T(V) over V generated by the relations,. 
or a subspace R of V ® V. 

(Added). Consider the subset of V* x V* consisting of (o,/3) with each 
nonzero such that (w, o ® /3) = 0 for any w E R. It then defines a subset 
r of P(V*) x P(V*), where P(V*) is the complex projective space of all 1-
dimensional complex subspaces of V*. Let E1 and E2 be the projection of r in 
the first and second component P(V*). Assume and set E = E 1 = E2. Define 
the correspondence u with graph r to be an automorphism of E. Define L to be 
the pull-back on E of the dual of the tautological line bundle of P(V*). Then 
the algebraic variety E is referred to as the characteristic variety, and in many 
cases, E is the union of elliptic curves, each of which has a finite number of 
points which are invariant by u. • 

The geometric data { E, u, L} is {again) given by an · algebraic variety E, a 
correspondence u on E, and a line bundle Lover E. These data are defined so 
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as to yield a homomorphism h from A to a crossed product algebra constructed 
from sections of powers of the line bundle L on the graphs of the iterations of 
the correspondence a. This crossed product only involves the positive powers 
of the correspondence a, hence it remains triangular and far· removed from the 
semi-simple set-up of C* -algebras. That morphism h can be considerebly refined 
using the notion of positive central quadratic form. 

Definition 21.1. ((77, Definition 6)). Let q E S2 (V) be a symmetric bilinear 
form on V* and Ca component of Ex E. It is said that Q is central on C if 
for all (z, z') EC and w E R, one has 

w(z, z')q(a(z'), a- 1 (z)) + q(z, z')w(a(z'), a- 1 {z)) = 0. 

It then follows that one can construct purely algebraically a crossed prod­
uct algebra and a homomorphism from A = A(V, R) to the crossed product. 
Also, C* -algebras arise from positive central quadratic forms that make sense 
on involutive quadratic algebras. 

Let A = A(V, R) be an involutive quadratic algebra, that is a * algebra 
over CC with involution x* preservjng the subspace V of the generators. The 
real structure of V is given by the anti-linear involution j(v) for v E V as the 
restriction of x*. As (xy)* = y*x* for x, y EA, the space R of relations satisfies 

(j ®j)(R) = t(R) c V ® V, 

where t : V ® V - V ® V is the transposition defined by t( v ® w) = w ® v. This 
implies that the characteristic variety is stable under the involution j and that 
a(j(z)) = j(a-1 (z)). 

Now let C be an invariant component of Ex E. It is said that Cis j-real if 
it is globally invariant under the involution r(z, z') = (j(z'),j(z)). 

Let q be a central quadratic form on C. It is said that q is positive on C if 
q(z,j(z)) > 0 for any z EC. One can then endow the line bundle L dual to the 
tautological bundle on P(V*) with the Hermitian metric given by 

, -L(z)L'(z) 
(J L, gL }q(z) = J(z)g(z) Q(z,j(z)) 

for L, L' E V,z EK, f,g E C(K). 
One then defines a generalized crossed product C*-algebra C(K) ><lu,L Z 

following M. Pimsner [198] as follows. Given a compact space K, a homeomor­
phism a of K, and a Hermitian line bundle Lover K, we define the C*-algebra 
C(K) ><lu,L Z to be the twisted crossed product of C(K) by the Hilbert C*­
bimodule associated to a and L ([2], [198)). 

For each n ~ 0, let Lun be the hermitian line bundle pullback of L by an 
and let (cf. (10], (223] both missing) 

L 
CT c,n-1 

Ln = ® L ® · · · ® L . 
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Define a *-algebra as the linear span of the monomials ~wn and (w•r1,. for 
~' TJ E C(K, Ln) with product given as in {cf. [10), [223]), so that 

({1 w:ni )(~2wn2) = (~1 ® {~2 o uni ))wni +n2. 

Using the Hermitian structure of Ln we give meaning to the products r,•~ and 
~r,• for ~' 1/ E C(K, Ln). The product then extends uniquely to an associative 
product of a *-algebra fulfilling the additional rules 

The C•-norm of C(K) >4u,L Z is defined as for ordinary crossed product C•­
algebras. Due to the amenability of the group Z, there is no distinction between 
the maximal and reduced c• -norms. The maximal C* -norm is defined to be the 
supremum of the C* -norms by c• -algebra representations on Hilbert spaces. 
There is a natural positive conditional expectation from the twisted crossed 
product C*-algebra onto the c•-subalgebra C(K), it follows from which that 
the C*-norm restricted to G_(K) coincides with the usual sup-norm on C(K). 

Theorem 21.2. Let K be a compact u-invariant subset of E and q be central 
and strictly positive on the set { (z, z) I z E K}. Let L be the restriction to K of 
the dual of the tautological line bundle on P(V*) endowed with the Hermitian 
metric (·, ·}q. Then, 

(i) The equality /'o(y) = yw 7" w*y* implies a *-homomorphism 

0: A= A(V, R) -+ C(K) '>4u,L Z. 

( ii) For any y E V, the C* -norm of 0(y) fufills 

sup IIYII ~ v'2°ll0(y)II ~ 2sup IIYII• 
K K 

(iii) If u4 =/: I, then 0(q) = 1, where q is viewed as an element of T(V)/(R). 

In the above case of the quantum sphere s;, one lets q be the quadratic 
form as q(x, x') = E xµx~. In the general case one has 

Proposition 21.3. {1) The characteristic variety is the union of 4 points with 
an elliptic curve F ip . 

(2) T~e quadmtic form q is central and positive on Fip x Fip. 

In suitable coordinates, the equations defining the elliptic curve Fip are given 
by 

Z6 - Zf Z6 - z~ Zfi - zj ---=---=---
S1 S2 S3 

where Sk = I+ t,tm with tk = tan 'Pk· 

The positivity of q is automatic since in the coordinate x, the involution jip 
of the *-algebra C[R~] is just ic;,(z) = z, so that q(x,jip(x)) > 0 for x =/: 0. 
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Corollary 21.4. Let K be a compact a-invariant subset of Fr.p. The homomor­
phism(} obtained in the theorem above is a unital *-homomorphism from C(S~) 
to the twisted crossed product C(K) ><lu,L Z. 

It follows that a non-trivial c•-algebra C*(S~) is obtained as the completion 
of C(S~) for the semi-norm IIPllu = sup ll1r(p)II, where 1r varies over all unitary 
representations of C[S~] .. The semi-norm defines a finite C*-semi-n<?rm on C(S~) 
since the equation Ex! = 1 as the sphere together with the self-adjointne88 as 
Xµ = x; implies that 1l1r(xµ)II ::::; 1 for any µ in any unitary representation 1r. 
What the above corollary gives a lower bound for the C* -norm such as that 
given by the theorem above on the linear subspace V of generators. 

The correspondence u on F"' for cp generic is a translation of modulus T/ of 
the elliptic curve Fr.p and one can distinguish two cases: the even case where it 
preserves the two real components of the curve Fr.p n P 3 (R) and the odd case 
where it permutes them. 

Proposition 21.5. Let cp be generic and even. Then, 
(i) The crossed product C*-algebra C(Fr.p) ><lu,L Z is isomorphic to the map­

ping torus of the automorphism f3 of the noncommutative 2-torus 11'~ = Ccp ><lu Z 
acting on the generators by the matrix [1 EB 1] + [0 0 4). 

(ii) The crossed product C*-algebra C(Fr.p) Xlu,L Z is a noncommutative 3-
manifold with an elliptic action of the 3-dimensional Heisenberg Lie algebra 1)3 
and with an invariant trace r. 

May refer to the framework developed in [59). Also refer to [209) and f 3) 
(missing), where those noncommutative manifolds are analyzed in terms of 
crossed products by Hilbert C* -bimodules. 

An integration on the translation invariant volume form dv of Fcp gives the 
1)3-invariant tracer, defined as that for/ E cc~0 (Fr.p) and k =/: 0, 

r(f) = 1 f dv and r({wk) = r((w*l71*) = 0. 
F., 

It follows, in particular that the following gives the fundamental class as a 3-
cyclic cocycle 

where 8j are the generators of the action of 1)3 • 

The relation between the noncomi:nutative 3-spheres s; and the noncom­
mutative nil manifolds C(Fcp) Xlu,L Z is analyzed in [77) and (781, thanks to the 
computation of the Jacobian of the homomorphism 8. 

22 Noncommutative spaces from Q-lattices 

A class of examples of nonco'mmutative spaces as relevance to number theory 
is given by the moduli spaces of Q-lattices up to commensurability. These fall 
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within the general framework of noncommutative spaces obtained as quotients 
of equivalence relations. 

May refer to (82]. 
A Q-lattice in ]Rn is defined to be a pair (A, cp) of a lattice A in ]Rn, that is 

a co-compact free abelian subgroup of ]Rn with rank n together with a system 
of labels of its torsion points given by a homomorphism of abelian groups as 
1.p : Qn /zn - QA/ A. 

Two Q-lattices are commensurable, denoted as (A1, <pi) "' (A2, 1P2), if and 
only if QA1 = QA2 and 1.p1 = 1.p2 mod A1 + A2. 

In general, the map 1.p is just a group homomorphism. A Q-lattice is said to 
be invertible if 1.p is an isomorphism. Two invert.ible Q-lattices are commensu­
rable if and only if they are equal. 

We denote by Ln the space of commensurable classes of Q-lattices in Rn. 
The space Ln has a typical property as noncommutative spaces in the sense 
as follows. It has cardinality of continuum but one can not construct a count­
able collection of measurable functions that separate points of the space Ln. 
Thus, one can use noncommutative geometry to describe Ln as a quotient space 
throught a noncommutative C* -algebra as C* (£n)-

We consider especially the case where n = I or n = 2 in what follows. 
One is also interested in the c• -algebras describing Q-lattices up to scaling 

as A1 = c• (£i/1R+) and A2 = c• (£2/C*). 

Example 22.1. (Edited). (The I-dimensional case). In this case, a Q-lattice 
{A, 1.p) ih JR can be written in the form (..\Z, ..\p) for some..\> 0 and some 

p E (Q/Zt = Hom(Q/Z, 'lr) ~ ~ 'll/n'll ~ Z # Z" = Hom(Z, 'lr) ~ 'lr, 

(where there is an inclusion Q/Z C '.[' = JR/Z, and the first dual group is just -a subspace of the direct product of (Z/nZ)" ~ Z/n'll, and our notation Z 
means the profinite completion of Z). By considering lattices up to scaling, we 
can eliminate the factor,\> 0, so that I-dimensional Q-lattices are completely -specified up to scaling by the choice of the element p E Z . Thus, the alge-
bra of coordinates of the space as I-dimensional Q-lattices up to scaling is the -commutative C* -algebra G( Z ), which is isomorphic to the group C* -algebra 
G*(Q/Z), which is isomorphic to C((Q/Z)") by the Gelfand transform, which 
is isomorphic to the inductive limit of C(Z/nZ), where we use Pontrjagin duality 
between locally compact abelian groups and their dual groups. 

The equivalence relation of commensurability is implemented by the action 
of the semi-group N* on Q--lattices. The cQrresponding action on the G* -algebra 
C*(Q/71..) ~ C((Q/71..)") is given as that for n EN*, 

On(/)(p) = J(n- p) p En~, 
{ 

1 -

0 otherwise. 

Thus, the quotient of the space of I-dimensional Q--lattices up to scaling by the 
commensurability relation as well as its algebra of coordinates is given by the 
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semi-group crossed product C* -algebra c• (Q/Z) ><1 N*. This is the Bost-Connes 
C*-algebra (29). 

It has a natural time evolution given by the covolume of a pair of comen­
surable Q-lattices. It has symmetries compatible with the time evolution given 

4- . 

by the group (Z)* ~ GL1 (A1)/Q*, and the KMS (Kubo-Martin-Schwinger) ._ 
equilibrium states of the system have arithmetic properties, where A1 = '1l ® Q 
is the ring of finite adeles of Q. Namely, the partition function of the system is 
the Riemann zeta function. There is a unique KMS state for sufficiently high 
temperature, while at low temperature the system undergoes a phase transi­
tion with spontaneous symmetry breaking. The pure phases as extremal KrvIS 

. ._ 
states at low temperature are parameterized by elements in ( Z )*. They have 
an explicit expression in terms of polylogarithms at roots of unity. At zero 
temperature, the extremal KMS states, evaluated at the elements of a rational 
subalgebra, take values that are algebraic numbers. The action on these values 
of the Galois group Gal(Q/Q) factors through its abelianization and is obtained, 
via the isomorphism (Z)* ~ Gal(Qab /Q) in the class field theory, as the action 
of symmetries on the algebra (cf. [29), [81] (missing), [82] for details). • 
Example 22.2. (Edited). (The 2-dimensional case as the GL2-system). In 
this case, a Q-lattice (A, cp) in R2 can be written in the form (.-\(Z + Zr), .-\p) for 

some.,\ EC*, some r E 1HI, and some p E M2(Z) = Hom(Q2/Z2,Q2/Z2). Thus, 
the space of 2-dimensional Q-lattices, up to the scaling factor .,\ E C* and up to 
isomorphisms, is given by 

4-

M2( Z) x lHI mod r = SL2(Z). 

The commensurabiHty relation giving the space £ 2 /C* is implemented by 
the partially defined action of GLf (Q). 

In this case, consider the quotient of the space 

u~ = {(g, p, a) E GLf(Q) X M2(Z) X GLf(R) I gp E 1\th(Z)} 

by the action of r X r given by 

b1,-Y2)(g,p,a) = b1Y"Y:i°1,"Y2P,1'20). 

The groupoid 'R2 of the equivalence classes by commensurability on 2-dimensional 
Q-lattices, not considered up to scaling at this moment, is a locally compact 
groupoid, which can be parameterized by the quotient of the space u~ by r x f 
via the map r : u~ ---+ 'R2 defined by 

r(g, p, a) = ((0-19-1 Ao, 0-1 p), (0- 1 Ao, o-1p)). 

We then consider the quotient by scaling. 
The quotient GLf (IR)/C* can be identified with the hyperbolic plane 1HI 

in the usual way. If (Ak, <pk) for k = 1, 2 are a pair of commensurable 2-
dimensional Q-lattices, then for any.,\ EC*, the Q-lattices (.-\Ak, .,\cpk) are also 
commensurable, with 

r(g, p, a.-\- 1
) = .,\r(g, p, a). 
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However, the action of C* on Q-lattices is not free due to the presence of lattices 
such as Ao above with non-trivial automorphisms. Thus, the quotient Z = 
'R.2/C* is no longer a groupoid. But one can still define a convolution algebra 
for Z by restricting the convolution product of 'R,2 to homogeneous functions of 
weight zero, where a function f has weight k if it satisfies 

J(g, p, o:.-\) = )..k f(g, p, o:), ).. E C*. 

The space Z is the quotient of the space 

U = {(g, p, z) E GLt(Q) x M2(Z) x 1H[ I gp E M2(Z)} 

+--
by the action of r x r, where the space M2( Z) x 1H[ has a partially defined 
action of GLt(Z) given by g(p,z) = (gp,g(z)), where g(z) denotes the action 
as a fractional linear transformation. 

Thus, the algebra A2 of coordinates for the noncommutative space of com­
mensurable classes of 2-dimensional Q-lattices up to scaling is given by the 
following convolution algebra. Consider the space Cc(Z) of all continuous, com­
pactly supported, functions on Z. These can be viewed as functions on the 
space U invariant under the r x r action as (g, p, z) 1-+ (1'1g')'21, ')'2z). Endow 
Cc(Z) with the convolution product and the involution 

(ft* h)(g,p,z) = ft(gs- 1, sp, s(z))h(s,p, z), 
ser\GLt(Q),spE.M2(Z) 

f*(g,p,z) = J(g- 1,gp,g(z)). 

There is a time evolution on that algebra, which is given by the covolume 

Ut(/)(g, p, z) = det(glt f(g, p, z). 

The partition function for this G L2-system is given by 

Z(/3) = det(m)-.8 

mer\M!(Z) 
00 

= L u(k)k-.8 = (.(/3)(,(/3 - 1), 
k=l 

where u(k) = Edik d. The partition function of this form suggests that two 
distinct phase transition might happen at {3 = 1 and /3 = 2, as a possible sense. 

• 
Moreover, the structure of KMS states for the system above is analyzed by 

Connes-Marcolli [81] (missing) as the following: 

Theorem 22.3. The KMSp states of the GL2 -system with O < {3 < oo the 
inverse temperature have the following properties: 
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(1) In the range /3::; 1, there are no KMSp states. 
(2) In the range /3 > 2, the set £p of extremal KMS,o states is given by the 

classical Shimura variety as 

The symmetries are more complicated than in the Bost-Connes system. In 
fact, in additon to symmetries given by automorphisms that commute with the 
time evolution, there are also symmetries by endomorphisms. The resulting 
symmetry group is the quotient GL2 (A1 )/Q•. It is shown by Shimura [217] 
that this group is in fact the Galois group of the field F of modular functions. 
The group GL2(A1) d~composes as a product GLt(Q)GL2(Z), where GL2{Z) 
acts by automorphisms related to the deck transformations of the tower of the 
modular curves, while GLt(Q) acts by endomorphisms that move across levels 
in the modular tower. 

The modular field F is the field of modular functions over Qab, namely 
the union of the fields FN of modular functions of level N rational over the 
cyclotomic field Q{(n), that is. such that the q-expansion in powers of q-k = 
exp( 27J?) has all coefficients in Q(e2N"-). 

The action of the Galois group (Z)* ~ Gal{Qab /Q) on the coefficients de-
+-

termines a homomorphism cycl: ( Z )* --+ Aut(F). 
If T E IHI is a generic point, then the evaluation map / ~ J(r) determines 

an embedding of F into C. We denote by Fr the image in C. This implies an 
identification 

0r : Gal{Fr/Q) ~ Q•\GL2(A1 ). 
There is an arithmetic algebra A2,Q defined over Q of unbounded multipliers 

of the c• -algebra A2 , obtained by considering continuous functions on Z with 
finite support in the variable g E f\GL!(Q) and with the properties as follows. 

+-
Let PN : M2{ Z) --+ M2 (Z/ NZ) be the canonical projection. With the notation 
f(g,p)(z) = J(g, p, z), we say that f(g,p) E C{IHI) is of level ·N if f(g,p) = fc 9 ,PN(P)) 

for any (g,p) E GLt{Q) x M2(Z). We require that any element/ of A2,Q has 
f(g,p) of finite level, with f(g,m) E F for all (g, m). Also require that the action 
cycl on the coefficients of the q-expansion of the /(g,m) satisfies 

/(g,a(u)m) = cycl(u)/(g,m) 

for all diagonal g E GL!(Q) and all u E (Z)\ with a(u) = u EB 1 the diagonal 
sum, to avoid some trivial elements that would spoil the Galois action on values 
of states {cf. [81] {missing), [821). The action of symmetries extends to A2,Q• 

It then follows that {[81) {missing)): 

Theorem 22.4. Consider a state cp = '{)oo,L E £00 for a generic invertible Q­
lattice L = (p, T). Then the values of the state on elements of the arithmetic 
subalgebm generate the image in C of the modular field, and <p(A2,Q) C Fr, and 
the isomorphism 
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given by 0.,,(,) = p- 10T(,)p, for 0T given above, intertwines the Galois action 
on the values of the·state with the action of symmetries, 1cp(J) = cp(0,p(,)J) for 
J E A2,Q and, E Gal(FT/Q). 

Remark. (Added). Recall from [82] the following about quantum statistical 
mechanics. The algebra of observables in quantum statistical mechanics is given 
by a c• -algebra 2l. Expectation values for observables are obtained by values of 
states on 2l. A state on 2l is a positive, unital linear functional tp : 2l-+ C, which 
may be viewed as a probability measure on the correspond noncommutative 
space X. The time evolution of ·a system (or a C*-algebra 21) in quantum 
statistical mechanics is given as a one-parameter family of automorphisms Ut of 
2l fort E IR. Under a representation of 2l on a Hilbert space, the time evolution 
is implemented by the Hamiltonian operator H such that 

Ut(a) = Ad(eitH)(a) = eitH ae-itH, a E 2l. 

Look for equilibrium states, which depend· on a thermo-dynamical parameter, 
the inverse temperature (3 = k1r with k the Boltzmann constant (to be equal 1 
for simplicity). In the quantum statistical setting, define a state 

- 1 -{JH cp(a) - Z(,B) tr(ae ), with Z(,B) = tr(e-PH), 

as the partition function, where the definition makes sense under the assumption 
that the operator exp(-fjH) is of trace class. This is only (or certain) the case 
where the temperature T is low and positive and so ,B is large. 

Given a c• -dynamical system (2l, u, IR), a state cp on 2l is said to satisfies 
the KMS condition at the inverse temparature ,B with O < ,B < oo, or is a KMSp 
state if for any a, b E 2l, there is a function la,b(z) holomorphic on the strip 
0 < Im(z) <,Band continuous and bounded on the closed strip O ~ Im(z) ~ ,B 
such that for any t E JR., 

la,b(t) = cp(aut(b)) and la,b(t + i,B) = cp(ut(b)a). 

At zero temperature with ,B = oo one may define a KMS00 state similarly 
and properly. But a better notion as the KMS00 is given by considering states 
obtained as weak limits of KMSp states as ,B-+ oo. Namely, that is 

ip00 (a) = lim !,Op(a), a E 2l. 
P-oo 

Denote by £00 the set of extreme points of the set of KMS00 states in this sense. 

• 
A notion analogous to that of Q-lattices can be made for other number fields 

IK. This notion is used in [86) to construct a quantum statistical mechanical 
system for 1K an imaginary quadratic field. This system also has properties 
as for the Bost-Connes system of (29] and the GL2 syste~ as 2-dimensional 
Q-lattices of (81) (missing). 
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Example 22.5. (Edited). We assume that 1K = Q( J=ci.) the imaginary quadratic 
field for d a positive integer. Let r = ~ E IHI (the upper half plane) be such 
that 1K = Q( r) and O = Z + Zr is the ring of integers of IK. There is an 
embedding from 1K into C. 

A I-dimensional IK-lattice (A, r.p) is a finitely generated, CJ-submodule A in 
C such that A ®o 1K ~ JK, together with a morphism of CJ-modules: r.p: IK/0-+ 
OCA/ A. A I-dimensional IK-lattice (A, r.p) is invertible if <p is an isomorphism of 
CJ-modules. In particular, a I-dimensional IK-lattice is a 2-dimensional Q-lattice. 

Two I-dimensional IK-lattices (A1, cp1) and (A2 , <p2) are said to be com­
mensurable if IKA1 = OCA.2 and <p1 = <p2 mod A1 + A2. In particular, two 
I-dimensional IK-lattices are commensurable if and only if they are commensu­
rable as 2-dimensional Q-lattices. 

The algebra of the corresponding noncommutative space is obtained as a 
restriction of the algebra of the GL2-system to the sub-groupoid of the equiva­
lence of commensurability restricted to IK-lattices. As well, the time evolution 
is given by a restriction from the G L2-system. 

The partition function for the resulting system is the Dedekind zeta function 
(oc ([J) of the number field 1K. More precisely, 

. (K(fJ) = 
J ideal in 0 

where CJ is the ring of algebraic integers of JK, and n(J)-fJ = r.pp(eJ) for a 
KMSp state, where eJ = µJµj and µjJtJ = I for some JLJ E Ate. As well, 
ut(M) = n(J)itµJ for any t ER. 

At the critical temparature T = I there is a unique KMS state, while at 
lower temparatures the extremal KMS states are parametrized by elements of 
Ai/lK*, where Aoc = A-K.J x C are the adeles of IK, with Aoc,1 = A1 ® 1K. The 
KMS states at zero temparature, evaluated on the restriction to IK-lattices of 
the arithmetic algebra of the G L2-system, have an action of the Galois group 
Gal(JK.ab /JK), realized via the class field theory isomorphism through the ac~ion 
of symmetries of the system as automorphisms and endomorphisms. • 

For more details, refer to (86]. 

23 Modular Hecke algebras 

The modular Hecke algebras A(f) of level r, a congruence subgroup of PS L2 (Z) 
are defined by Cannes and Moscovici (92]. These extend both the ring of classical 
Hecke operators and the algebra of modular forms. Indeed, modular Hecke 
algebras encode a priori unrelated, two structures on modular forms. One is 
the algepraic structure given by the pointwise product, the other is the action 
of the Hecke operators. 

To any congruence subgroup r of PSL2 (Z) corrresponds a crossed product 
algebra A(r), called the modular Hecke algebra of level r, which is a direct 
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extension of both the ring of classical Hecke operators and the algebra M (r) of 
r-modular forms. 

These algebras can be obtained by considering the action of GLt(Q) on 
the algebra of modular forms on the full (adelic) modular tower, which yields 
the holomorphic part of the ring of functions on the noncommutative space of 
commensurability classes of 2-dimensional Q-lattices. 

Denote by M = M(r) the algebra of modular forms of arbitrary level r. 
The elements of A(r) are maps with finite support · 

f: r\GLt(Q) -M, ra i-. fo EM, 

satisfying the covariance condition 

lcr--1 = Joh, 0 E GLt(Q), 'YE r, 

and their products ~re given by convolution. 
More in details. Let G = GLt(Q) and r c PSL2 (Z) be a subgroup with 

finite index. The quotient map from r\G to r\G/r takes finite subsets to one 
points, and r acts on C(r\G]. 

Let H k be the space of holomorphic functions f : IHI -+ C with polynomial 
growth and with the action fork E 2Z of GL;(Q) of the form 

(
ilk (a b)) (z) = (ad- be)½ f (az + b). 

c d (cz + d)k cz + d 

This implies the induced actions of G and r on Hk. The space of modular forms 
is then obtained as Mk(r) = Hf as the invariants under the action of r. 

Then define Ak (r) as the fixed point algebra as 

Ak(r) = (C[r \ G] ®c Hkf, 

with respect to the right action of r by 

j j 

Define the graded vector space A.(r) = EBkAk(r). The elements of Ak(r) 
can be thought of as finitely supported, r-equivariant maps 

<p: r\G - Hk, <p(L(rgj) ® Ii) = J;. 
j 

Let H .. = EBkHk. Consider an embedding 

A.(r) c A~(r) = Homr(C[r\G), II,,.), 

where we assume A .. (r) = H,,.[r\G] ·as polynomials in r\G with H. as co­
efficients, and view A~(r) = H.[(r\G)) as formal power series, that is, r­
equivariant maps <p: f\G - H •. 
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There is an associative multiplication on A.(r) (cf. [92)), which makes it 
into a noncommutative ring, given by a convolution product, as follows. For 
any <p E Ak(r), we have <pg = 1.()-yg with <pg = 0 off a finite subset of f\G, and 
1.fJgl-r = cp9 -y, so that these ter.ms are left f-invariant and right f-equivariant. For 
cp E Ak(f) and 'l/J E A,(r), then define the convolution product as 

(<p*'l/J)g = 

The algebra A(f) = A. (f) constructed above has two remarkable subalge­
bras. One is the algebra of Hecke operators, that is, Ao(f) = C[f\G/f], and 
the other M.(r) = EBkMk(f) since Mk(r) c Ak(r). In particular, observe 
that all the coefficients <p9 are modular forms. In fact, we have cp9 l-r = '{Jg-,, and 
thus <pgl-, = <pg for 'YE r. 

However, note that the convolution product on A.(r) does not agree with 
the Hecke action h Indeed, the diagram with i the inclusion maps is not com­
mutative, nor is the symmetric one: 

M.(r) ® Ao(f) or A0 (f) ® M.(r) ~ M.(r) 

il li 

On the other hand, it is obtained that the following diagram is commutative: 

. h 
Ao{f) ® M.(r) ~ M.(r) 

il IE®l 
. A.{f) ® A.(r) ~ A.(r), 

where€: C[f\G)-+ C is the augmentation map, and is extended to the map 

The Hopf algebra 1t 1 associated to the transverse geometry of cerdimension 
one foliations is introduced by Connes and Moscovici (90]. This is the universal 
enveloing algebra 6f a Lie algebra with basis {X, Y,8n,n ~ 1} such that for 
n.k.l ~ 1, 

[Y,X] = X, [Y,on] = n8n, [X,on] = <>n+l, and [ok,8,) = 0, 

and with coproduct as an algebra homomorphism .6.: H 1 -+ H 1 ® H 1 such that 

-6.X = X ® 1 + 1 ® X + 81 ® Y, 

-6.Y = Y ® 1 + 1 ® Y, and .6.81 = 81 ® 1 + 1 ® 81, 

and with antipode as the anti-isomorphism S satisfying 
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and with co-unit E(h) as the constant term of each h E H1 . 

The Hopf algebra H1 acts as symmetries of modular Hecke algebras. As a 
general fact, symmetries of ordinary commutative spaces are encoded by group 
actions, while those of noncommutative spaces are given by Hopf algebras. 

By comparing the actions of the Hopf algebra H 1 , derived is an analogy (cf. 
[92]) between the modular Hecke algebras and the crossed product algebra of 
the action of a disrecte subgroup of Dif (S1) on polynomial functions on the 
frame bundle of S 1 . 

Indeed, let r be a discrete subgroup of Dif(S1) and M be a smooth com­
pact !-dimensional manifold. Consider the crossed product algebra Ar = 
C~(Ji(M)) >4 r as in [92], where Ji(M) is the oriented 1-jet bundle. This 
algebra has an action of the Hopf algebra H1 defined by 

with coordinates (y, yi) on Ji (M) ~ M x nt+. Define the tracer by the volume 
form as 

r(Ju;) = {JJ!(M) J(y, yi) dy~;Y•' cp = l, 

0, cp =I- 1, 

which satisfies r(h(a)) = v(h)r(a) for h E H1 , where v E Hi satisfies v(X) = 0, 
v(Y) = 1, and v(8n) = 0. The twisted antipodes~ = v * S satisfies (S~)2 = 1, 
and 

s~(x) = -X + 81Y, s~(Y) = -Y + 1, and s~(81) = -«51. 

The Hopf cyclic cohomology of Hopf algebras is a fundamental tool in non­
commutative geometry, and is developed by Coones and Moscovici (90]. It is 
applied to the computation of the local index formula for transversely hypo­
elliptic operators on foliations. 

An action of a Hopf algebra on an algebra induces a characteristic map from 
the Hopf cyclic cohomology of the Hopf algebra to the cylic cohomology of the 
algebra, and hence the index computation can be done in terms of the Hopf 
cyclic cohomology. The periodic Hopf cyclic cohomology of the Hopf algebra 
of transverse geometry is related to the Gelfand-Fuchs cohomology of the-Lie 
algebra of formal vector fields (91] (missing). 

In the case of the Hopf algebra H1 , there are three basic cyclic cocycles or 
classes, which correspond respectively to the Schwarzian derivative 8~ = 82-½8?, 
the Godbillon-Vey class 81 , and the trranverse fundamental class 

in the original context of transverse geometry, as in [92). 
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In particular, the Hopf cyclic cocycle (class) associated to the Schwarzian 
derivative is of the form 

£/ £ 1 2 2 
u2 = u2 - i°• with «5~(/u~) = y1 {<p(y);y}fu~~ 

where {F· x} = .!!:.._ (iocr dF) - ! (.!!... (too- dF)) 2 

' dx2 0 dx 2 dx O dx 

The action of the Hopf algebra 1-l1 on the modular Hecke algebra described 
in [92) involves the natural derivation on the algebra of modular forms, ini­
tially introduced by Ramanujan, which corrects the ordinary differentiation by 
a logarithmic derivative of the Dedekind 11-function 

1 d I d 4 X = -- - --(locr11 )Y 
21ri dz 21ri dz O 

' 

k 
Y(f) = -f 

2 

for f E Mk. The element Y is the grading operator that multiples by ~ forms 
of weight k, viewed as sections of the ~-th power of the line bundle of. 1-forms. 
The element «51 acts as multiplication by a form-valued cocycle on GLl(Q), 
which measures the lack of invariance of the section TJ4dz. Moreover, 

Theorem 23.1. ([92]). There is an action of the Hopf algebra 1-l1 on the 
modular Hecke algebra A(r) of level r, induced by an action on Ac+(Q) -
M ~ Q+(Q), for M = ~N--oo M(f(N)), of the form 

X(Ju;) = X(J)u;, Y(Ju;) = Y(J)u;, 

and «5n(Ju;) = :;n (tog d{;;-y)) (dZt Ju;, 

with X(f) and Y(J) defined just above, and Z(z) = J::C, 114 dz. 

The cocycle (class) assocaited to the Schwarzian derivative above is repre­
·sented by an innter derivation of .Ac+(Q), defined as «5~(a) = [a, w4], where W4 

is the weight four modular form 

which is expressed as a Schwarzian derivative as w,1 = (2;i)2 { Z : z}. 
This result is used in [92) to investigate perturbations of the Hopf alge­

bra action. The freedom that one has in modifying the action by a 1-cocycle 
corresponds exactly to the data introduced by Zagier (242], defining canonical 
Rankin-Cohen algebras, with the derivation and the element 4>, corresponding 
respectively to the action of the generator X on modular forms and to w4 = 24>. 

The cocycle associated to the Godbillon-Vey clas.s is described in terms of 
a 1-cocycle on GLt(Q) with values in Eisenstein series of weight two, which 
measures the lack of GLl(Q)-invariance of the connection associated to the 
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generator X. Derived from this is an arithmetic presentation of the rational 
Euler class in H 2 (SL2 (Q), Q) in terms of generalized Dedekind sums. 

On the other hand, the cocycle associated to the transverse fundamental 
class gives rise to a natural extension of the first Rankin-Cohen bracket [242) 
from modular forms to the modular Hecke algebras. 

Rankin-Cohen algebras can be treated in different perspectives, as intro­
d uced and studied by Zagier [242] with a direct algebraic approach. There 
seems to be a connection to vertex; operator algebras, as in a form of duality 
between these two types of algebras. 

Let R be a graded ring with a derivation D of degree two, such that R = 
R. = ffi1.:?,0Rk and D: R1.: --. Rk+2· The Rankin-Cohen brackets [·, •Ji*•*) on R. 
are defined to be a family of brackets 

[·, -]~k,t) : Rk ® Rt __. Rk+t+2n, for n ~ 0, and for J E Rk, g E Rt, 

[/,g]t•·•> = L (-l)'(n + :-1) (n + :- l)D' f D'g. 
r+s=n 

(Corrected. In fact, Dr f E Rk+2r and D~g E Rt+2s, and hence Dr f Dsg E 

Rk+t+2n.) Inducing the Rankin-Cohen brackets as (R., D) converted to (R., [·, ·)~*,*)) 
gives rise to a standard Rankin-Cohen algebra, by Zagier [242]. There is an iso­
morphism of categories between graded rings with derivations and standard . 
Rankin-Cohen algebras. 

In the· case of Lie algebras, we define a standard Lie algebra as the Lie algebra 
(A,[·,·]) associated to an associative algebra A with * product, by setting the 
bracket [x, y) = x * y - y * x. An abstract Lie algebra is defined to satisfy all 
the algebraic identities as in a standard Lie algebra, not necessarily induced by 
an associative algebra. It then follows as a theorem· that the anti-symmetry 
of the bracket and the Jacobi identity are sufficient to determine all the other 
algebraic identifies, and henc~ one can assume these as a definition of an abstract 
Lie algebra. 

As in the case of Lie algebras, we can define a (abstract) Rankin-Cohen 
algebra as a graded ring R. with a family of degree 2 brackets h ·]n satisfying 
all -the algebraic identifies of the standard· Rankin-Cohen algebra. However, in 
this case there is no simple set of axioms that implies all the algebraic identities. 
What's more. 

Example 23.2. (Edited). There is an example of a Rankin-Cohen algebra 
which is non-standard, provided by modular forms ([2421). 

If f E Mk is a modular form satisfying 

(az+ b) k f CZ + d = ( CZ + d) f ( z), 

then , (az + b) ad - be k k 
J cz + d (cz + d)2 = kc(cz + d) -l J(z) + (cz + d) J'(z), 
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then its derivative is no longer a modular form, due to the presence (of the first 
term and not) of the second term (corrected) in 

J' (az + b) = kc(cz + dl-1-1 J(z) + (cz + d)k+2 J'(z). 
cz+d 

On the other hand, if/ E Mk and g E M,, then the bracket defined as 

[l,g](z) = lf'(z)g(z) - kf(z)g'(z) 

is a modular form in Mk+l+2· 

Proof. (Added). Indeed, we have 

[/,g) (::!) 
= lkc(cz + dl+l f(z)(cz + d)1g(z) + l(cz + dl+2 J'(z)(cz + d)1g(z) 

- k(cz + dtf(z)lc(cz + d)1
+ 1g(z) - k(cz + d)k J(z)(cz + d)1+2g'(z) 

= (cz + d)k+'+2[J, g](z). 

Moreover, we can define then-th bracket 

[·, ·]n : Mk® Mt --1- Mk+l+2n 

as before. In particular, note that 

(/,g)o = Jg, [J,g]t = (~)Jg' -G)J'g = kfg' - lf'g, 

[J.g)o = e ~ !)Jg"-e ~ I) c: l)N + c ~ l)J"g 

= ½(k + l)kfg" - (k + l)(l + l)J'g' + ½(l + l)lf"g. 

• 

Note that for the graded ring M. (f) of modular forms, we have the inclusion 
M.(r) CH, where H = Hl(Ilil)pl is the vector space of holomorphic functions 
on the upper half-plane Ilil with polynomial growth. This H is closed under dif­
ferention as D, and (H, D) induces a standard Rankin-Cohen algebra (H, [·, ·]~). 
The inclusion (M., [·, •].) c (H, [·, •].) is not closed under differentiation but it 
is closed under the brackets. 

A way of constructing non-standard Rankin-Cohen algebras is provided by 
the canonical construction by Zagier ([242]). Consider the data (R., D, <l>), 
where R. is a graded ring with a derivation D and with a choice of an element 
<l> E R4 , as the curvature. Then define the brackets by the formula 

[/,g)l;'•') = r~n (-l)'(n + :-:-1) (n + :- l)fr9s, 

where Jo= f and fr+i = Dfr + r(r + l)<l>fr-1• 
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Then ( R., [ •, • J.) is a Rankin-Cohen algebra. 
There is a gauge action on the curvature <I>. Namely, for any cp E R2 and 

f E Mk, the transformation of D 1-+ D' and <I> i-. <I>' is defined by 

D'(J) = D(J) + kcpf and <I>'= <I>+ cp2 
- D(cp), 

which give rise to the same Rankin-Cohen algebra. Thus, all the cases where 
the curvature <I> can be gauged away to zero correspond to the standard case. 

The modular form w4 defined above provides the curvature element W4 = 
2<I>, and the gauge equivariance condition as for <I>' above can be rephrased in 
terms of Hopf algebras as the freedom to change the 1i1 action by a cocycle. 
In particular {cf. [921), for the specified action, the resulting Rankin-Cohen 
structure is canonical but not standard, in the terminology of Zagier. • 

The I-form dZ = 1J4dz is, up to scalars, the only holomorphic differential on 
the elliptic curve E = Xr(6) ~ Xro(36) of equation y2 = x3 + 1, so that dZ = ~x 

in Weierstrass coordinates. 
The Rankin-Cohen brackets on modular forms can be extended to those 

RCn on the modular Hecke algebra, defined in terms of the action of the Hopf 
algebra 1i1 of tranverse geometry. 

In fact, more generally, it is shown in [93] that one can define such Rankin­
Cohen brackets on any associative algebra A endowed with an action of the Hopf 
algebra 1i1, for which there exists ari element w EA such that 82{a) = [w, a] for 
any a EA, with 82 defined above, and 8n(w) ~ 0 for any n ~ 1. Under these 
hypotheses, the following holds: · 

Theorem 23.3. {[931). Suppose that an associative algebra A has an action of 
the Hopf algebra 1i1 satisfying the conditions thatforsomew EA, 82(a) = [w,a] 
holds for any a EA, and 8n(w) = 0 for any n ~ l. Then, 

(1) There exist Rankin-Cohen brackets RCn of the form 

RCn{a,b) = ~ ~; (2Y + k)n-k(a) (:~-;)! (2Y + n- k)k(b), 

with (x)r = x(x+ 1) · · · {x+r-1) and the coefficients A_1 = 0, Ao= 1, B0 = 1, 
and B1 = X, and 

0 n-1 
An+i = S(X)An - nw (X - -

2
-)An-1, 

n-1 
Bn+l = XBn - nf2(Y - -

2
-)Bn-i, 

with w0 the right multiplication by w, where the antipode S(X) is given by 
S(X) = -X + 61Y. 

(2) When applied to the modular Hecke algebra A(r), with w = w4 = 2<I>, the 
above construction yields the brackets as above that are completely determined 
by their restriction to modular forms, where they agree with the Rankin-Cohen 
brackets with respect to the curvature <I> above. 
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{3) The RC brackets RCn(·, ·) determine associative deformations defined as 

n 

As for the first step, resolving the diagonal in A(r) is not yet done for the 
modular Hecke algebras. It should shed light on the number theoretic problem 
of the interrelation of the Hecke operators with the algebraic structure given by 
the pointwise product. 

The algebra A{f) is certainly related to the algebra of the space of two­
dimensional Q-lattices. 

(Added). Recall from [93) that for a, b EA, 

RC1 (a, b) = S(X)(a)2Y(b) + 2Y(a)X(b), 

and 

RC2(a, b) = S(X)2 (a)Y(2Y + I)(b) + S(X)(2Y + l){a)X(2Y + l){b) 

+ Y{2Y + l)(a)X2 {b) - Y(a)wY(2Y + l){b) - Y(2Y + l)(a)wY(b). 

24 Noncommutative moduli spaces from Shimura 
varieties 

An important source of noncommutative spaces is provided by the boundary 
of classical algebro-geometric moduli spaces, where one takes into account t~e 
possible presense of degenerations of classical algebraic varieties that give rise 
to objects no longer defined within the context of algebraic varieties, but which 
still make sense as noncommutative spaces. 

Example 24.1. (Edited). An example of algebro-geometric moduli spaces, 
which is sufficiently simple to describe but at the same time exhibits a rich struc­
ture, is given by that of the modular curves. The geometry of modular curves 
has already appeared behind the discussion of the 2-dimensional Q-lattices and 
of the mod~lar Hecke algebras, through an assocatiated class of functions: the 
modular functions that appeared in the discussion of the arithmetic algebra for 
the quantum statistical mechanical system of 2-dimensionl Q-lattices and the 
modular forms in the modular Hecke algebras . 

. The modular curves, defined as quotients of the hyperbolic plane lH[ by the 
action of a subgroup r of SL2(7l) with finite index, are complex algebraic curves, 
which admit an arithmetic structure, as they are defined over cyclotomic number 
fields Q((N ). They are also naturally to be moduli spaces. 

The object that they parameterize are elliptic curves with some level struc­
ture. The modular curves have an algebra-geometric compactification obained 
by adding finitly many cusp points, given by the points in P 1 (Q)/r. These 
correspond to the algebro-geometric degeneration of the elliptic curve to C*. 
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However, in addition to these degenerations, one can consider degenerations 
to noncommutative tori, obtained by the limit of q--+ e2rriB in the modulus q = 
e21rir of the elliptic curve, where 8 is now allowed to be irrational. The resulting 
boundary P 1 (R)/r is a noncommutative space. It appeared in the string theory 
compactifications considered by Coones-Douglas-Schwarz [75]. The arithmetic 
properties of the noncom mutative spaces P 1 (R) /r are studied in [173], [175], 
and [177] {the last missing). • 
Example 24.2. {Edited and continued). The modular curves corresponding to 
finite index subgroups r in SL2(Z) varying form a tower of branched coverings. 
The projective limit of this tower sits as a connected component in the refined 
adelic version of the modular tower, given by the quotient 

where A= A1 x JR denotes the adeles of Q, with A1 = Z ® Q the finite adeles. 
The two-sided quotient space above is also a moduli space. In fact, it belongs 

to an important class of algebro-geometric moduli spaces of great arithmetic 
significance, that is, the Shi-mura {Will-Village) varieties sm( G, X), where the 
data (G, X) are given by a reductive algebraic group G and a Hermitian sym­
metric domain X. The pro-variety as the quotient above is the Shimura variety 
sm(GL2 , IHI±), where nn± = GL2{JR)/C• is the union of the upper and lower 
half-planes in P 1 (C). 

As mentioned above, the spaces P 1 (IR) /r describe degenerations of elliptic 
curves to noncommutative tori. This type of degeneration corresponds to degen­
erating a lattice A= Z+Z, to a pseudo-lattice l = Z+Z8. (May find a detailed 
discussion of this viewpoint, by Manin [171] missing, and its implications in non­
commutative geometry and in arithmetic). In terms of the quotient_space above, 
it corresponds to degenerating the archimedean component, namely replacing 
GL2 {1R) by M2 (JR)-0 = M2 (JR) \ {O} of nonzero 2 x 2 matrices over JR. However, 
with the adelic description as the quotient space, one can equally consider the 
possibility of degene.rating a lattice ·at the non-archimedean components. This 
brings back directly to the notion of Q-lattices. 

In fact, it is shown by Connes-Marcolli-Ramachandran (87] that the notions 
of 2-dimensional Q-lattices and commensurability can be reformulated in terms 
of Tate modules of elliptic curves and isogeny. In these terms, the space of 
Q-lattices corresponds to non-archimedean degenerations of the Tate module, 
which corresponds to the bad quotient 

The combination of these two types of degenerations yields a noncommutative 
compactification of the Shimura variety sm(GL2 ,1HI±), which is the algebra of 
the bad quotient 

GL2(Q) \ M2{A)-0 /C, 
where M2 (A)-0 consists of the elements ·of M2 {A) with non-zero archimedean 
component. One can recover the Shimura variety sm{GL2 , nn±) as the set of 
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classical points as extremal KMS states at zero temperature of the quantum 
statistical mechanical system associated_ to the noncommutative space as the 
first bad quotient above ([87) and (81) the last missing). • 
Example 24.3. (Edited and continued). More generally, Shimura varieties 
are given as moduli spaces for certain types of motives or as moduli 8paces of 
Hodge structures (by Milne [186) (the prepreint mi8sing)). A Hodge 8tructure 
is a pair (W, h) of a finite dimensional Q-vector space Wand a homomorphism 
h: §-+ GL(WR) of the real algebraic group§= resc1RGm, with WR= W ® IR. 
This determines a decomposition Wa ® C = EBp,q WP,q with WM = wq,p and 
h(z) action on Wp,q by z-P·z-q. This gives a Hodge filtration and a weight 
filtration WR = EBk wk, where wk = EBp+q=k wp,q. 

The Hodge structure (W, h) has weight m if WR = Wm. It is rational 
if the weight filtration is defined over IQ. A Hodge structure of weight m is 
polarized if there is a morphism of Hodge structures 'f/J : W ® W -+ IQ( -m), 
such that (21ri)"1'f/J(·, h(i)'f/J) is symmetric and positive definite, where IQ(m) is 
the rational Hodge structure of weight -2m, with W = (2-rri)mlQ with the action 
h(z) = (zz)"1. For a rational (W, h), the subspace of W ® IQ(m) fixed by h(z) 
for all z E c• is the space of Hodge cycles. 

Then· one can view Shimura varieties sm(G, X) as moduli spaces of Hodge 
structures in the following way. For a Shimura datum (G, X), let p: G-+ GL(V) 
a faithful representation on V. Since G is reductive, there is a finite family of 
tensors Ti such that 

G ~ {g E GL(V) IYTi = ri}. 

A point x E X is by construction a G(IR) conjugacy class of morphisms hx : 
§ -+ G, with suitable properties. 

Consider data of the form ((W, h), {si}, <p), where (W, h) is a rational Hodge 
structure, {si} a finite family of Hodge cycles, and 'Pa K-level structure, for 
some KC G(A1 ), namely a K-orbit of Ai-module isomorphisms 'P: V(A1) -+ 

W(A1 ), which maps Ti to Si· Isomorphisms of such data are isomorphisms 
J : W -+ W' of rational Hodge structures, sending Si i-. s~, and such that 
J o <p = ({)1 k for some k E K. 

Assume that there exists an isomorphism of IQ-vector spaces /3 : W -+ V 
mapping Si i-. Ti and h to hx for some x E X. 

Denote by hg(G, X, K) the set data ((W, h), { si}, 'P). 
The Shimura variety 

SffiK(G, X)_ = G(IQ)\[X x G(A1 ))/ K 

is the moduli space of isomorphism classes of data ((W, h), {si}, 'P)- Namely, 
there is a map from hg(G, X, K) to smK(G, X) over C, that descends to a 
bijection on isomorphism classes of hg( G, X, K) / rv. 

In such cases one can also consider degenerations of these data, both at 
the archimedean and at the non-archimedean components. One then considers 
data ((W, h), {si}, 'P,./3~), with a non-trivial homomorphism 13~ : W -+ V, 
which is a morphism of Hodge structures, such that 13~ (ls.) C l,,.,. This yields 
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noncommutative spaces, jnside which the classical Shimura variety sits as the 
set of classical points. 

Quantum statistical mechanical systems associated to Shimura varieties have 
been studied by Ha and Paugam ([127) missing). Given a faithful representation 
p: G .- GL(V) as above, there is an enveloping semigroup M, that is, a normal 
irreducible semigroup M in End(V) such that Jv[X = G. Such a semigroup 
can be used to encode the degenerations of the Hodge data described above. 
The data ( G, X, V, M) then determine a noncommutative space which describes 
the bad quotient smif (G, X) = G(Q)\[X x M(A.1 )] and is a moduli space for 
the possibly non-invertible data ((W, h), { si}, cp). Its set of classical points is 
the Shimura variety sm(G, X). The construction of the algebras involves some 
delicate steps, especially to handle the presence of stacky singularities ( cf. [127) 
missing). • 
Remark. Recall from [183) the following. 

The group SL2 (Z) acts on the upper half plane 1H[ = {r EC I im(r) > O} as 

gr = (ac b) r. = ar + b. 
d cr+d 

Proof (Added). 

(gg')T = (: :) (~ ~) T = (::: t!;, :t :::} 
( aa' + bc')r + ab' + bd' =...;_ ________ and 
( ca' + dc')r + elf + dd'' 

( 'r) = (a b) a'r + b', = a(a
1
r + b

1
) + b(c'r + d1

) = ( ')r 
gg c d c'r+d' c(a1r+b1)+d(c'r+d') gg · 

• 
There is a bijection between the quotient space S L2 (Z) \IHI and the space 

of isomorphism classes of elliptic curves over C, by the correspondence of each 
T E IHI to an elliptic curve ET = C/ LT a quotient of C by a lattice, that is, a 
complex I-dimensional torus, where LT= Z + Zr. • 

25 The adele class space and the spectral real­
ization 

As a noncommutative space we consider the adele class space XK, associated 
to any global field IK, which leads to a spectral realization of the zeros of the 
Riemann zeta function for K = Q, and more generally of £-functions assocaited 
to Hecke characters. It also gives a geometric interpretation of the Riemann-Weil 
explicit formulas in number theory as a trace formula. That space for ·oc = Q is 
closely related with the space of commensurability classes of Q-lattices described 
above. 
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We first consider the problem of finding the geometry of the set of prime 
numbers in the proper perspective. Namely, we consider the problem in arith­
metic to understand the distribution of the set of all prime numbers as a subset 
of Z of integers. 

Define the counting function 1r as 1r(x) to be the number of primes p ~ x 
for x E IR . The problem is to understand the behavior of the function 1r(x) as 
X -l- 00. 

Shown by H. Laurent ([162] missing) is the following formula: 

n e2rrir(k)k- 1 _ 1 
1r(n) = 2 + L e-21rik-1 _ 1 ' 

. k=5 

where f(k) = (k - 1)!. 
The asymptotic expansion of 1r(x) guessed by Gauss is the following: 

1x 1 
1r(x) = -

1 
-du+ R(x), 

0 ogu 

where the logarithmic integral has the asymptotic expansion 

LX 1 X 

Li(x) = -
1 

-du r,J L(k - 1)!-
1 

( )k • 
0 ogu og x 

The size of the reminder R(x) is governed by 

R(x) = O(vx.log~) (x -j, oo). 

A couple of graphs of the functions 1r( ·) and Li(·) are not included. El 

The Riemann hypothesis is a conjecture on the zeros of. the zeta function 

00 1 
((s) = "-. ~ ns 

n=l 

The definition goes back to Euler, who shows the fundamental factorization 

1 
((s) = Ilp: primc--1 . 

1- -p" 

It extends to a meromorphic function on the whole complex plane C and fuifills 
the functional equation 

1 (s) 1 (1-s) -r - ((s) = --r - ((1 - s), -Jis 2 ✓81-s 2 

so that the function 

(Q(s) = ~, G) ((s) 

admits the symmetry invariance under sending s i-. 1 - s. 
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The Riemann conjecture asserts that all zeros of (Q are on the critical 
l . 1 •lI]) 
ine 2 + t.11'.. 

The reason why the location of the zeros of (Q controls the size of the remain­
der R(x) comes from the explicit formulas that relate primes with the zeros. It 
is proved by Riemann as the first instance of an explicit formula that 

1r'(x) = Li(x) - L Li(xP) + /
00 +~ + log{(0), 

P lr: u - u ogu 

where ~(0) = -½f(¼)1<(½), and the second sum is over non-trivial complex 

zeros of the zeta function, and · 

from which the Mobius inversion formula is given as 

'.f he explicit formulas of Riemann are written as the more modern form by 
A. Weil as 

where OC is now an arbitrary global field, v E LK varies among the places of IK, 
and the integral is over the locally compact field Kv obtained by the completion 
of 1K at the place v. As well, J' is also the paring with the distribution oµ IKv 
which agrees with 11~uul for u -=/ 1 and whose Fourier transform relative to a 
self-dual choice of additive characters av vanishes at 1. 

By definition, a global field is a countable discrete cocompact subfield in a 
locally compact ring. This locally compact ring depends functrorially on 1K and 
is the ring of adeles of IK, denoted by AK. The quotient CK= GL1 (AK)/GL1 (JK) 
is the locally compact group of idele classes of IK, which plays a central role 
in class field theory. The multiplicative group G £ 1 (1Kv) = 1K; is embedded 
canonically as a cocompact subgroup of CK. 

In the Weil 's explicit formula above, the test function h is in the Bruhat­
Schwarz space S(CK)- The sum on the left hand side is over the zeros of£­
functions associated to Hecke characters. The function h" is the Fourier trans­
form of h. 

The generalized Riemann conjecture asserts that all the zeros of these 
L-f'unctions are on the critical line ½ + iIR.. 

This is proved by Weil when the global field JK has non-zero characteristice, 
namely, some 1 + • · • + 1 = 0, but remains open in the case where 1K is of 
characteristic zero, namely, any 1 + · · · + 1 -=/ 0, and as well, in this case, 1K 
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is a number field, that is, a finite algebraic extension of the field Q of rational 
numbers. 

A few graphs of the zeta function (Q(·) are not included. El 

For e > 0, let n( e) be the number of zeros of the Riemann zeta function (Q 
whose imaginary parts are in the open interval (0, e). It is proved by Riemann 
that the· step function n(e) can be written as the sum 

n(e) = nsm(e) + nos(e) 

of a smooth approximation nsm ( e) and a purely oscillatory function nos ( e), with 
the explicit form for the smooth approximation 

e e 7 
nsm(e) = 

2
7r (log 

2
7r - 1) + 8 + o(l). 

(Added). As in (70], the oscillatory part of the step function n(e) is given 
by 

1 1 
n08 (e) = ;Im log ((2 + ie), 

where e is not the imaginary part of any zero and the logarithm takes the 
(principal) branch (band) which is (or contains) 0 at oo. • 

There is a striking analogy between the behavior of the step function n( e) 
and that of the function counting the number of eigenvalues of the Hamiltonian 
H of the quantum system obtained by the quantization of a chaotic dynamical 
system, in the theory of quantum chaos. As a comparison of the asymptotic 
expansions of the oscillatory terms in the two cases, 

1 
00 

1 1 
nos(e) r,J - ~ ~ - ..\ sin(meTp) 

1r L., L., m 2 ·· h ~ 
p m=l sm 2 

for the quantization of a chaotic dynamical system, and 

-1 
00 

1 I 
nos(e) =-;-LL m If sin(melogp) 

p m=l p 

for the Riemann zeta function. It gives an indication on the hypothetical Rie­
mann flow that would make it possible to identify the zeros of the zeta function 
as the spectrum of a Hamiltonian. For instance, the periodic orbits of the flow 
should be labeled by prime numbers and the corresponding periods Tp in the 
spectrum should be given by log p. However, a closer look reveals that an overall 
minus sign forbids any direct comparison. 

The spectral realization as an absorption spectrum. The above ma­
jor sign obstruction is bypassecl by Connes [70) by using the following basic 
distinction between observed spectra in physics: 

# When the light coming from a hot chemical element is decomposed through 
a prism, it gives rise to bright emission lines on a dark background (band), 
and the corresponding frequencies are a signature of its chemical composition. 
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b When the light coming from a distant star is decomposed thr~ugh a prism, 
it gives rise to dark lines, called absorption lines, on a white background 
{band). 

The spectrum of the light emitted by the sun is first observed as an example 
of an absorption spectrum. In this case, the absorption lines are discovered 
by Fraunhofer. The chemicals in the outer atmosphere of the star absorb the 
corresponding frequencies in the white light coming from the core of the star. 

Then the simple idea is that, because of the minus sign above, one should 
look for the spectral realization of the zeros of the zeta function not as a usual 
emission spectrum, but as an absorption spectrum. This idea does not suffice 
to get a solution since one needs such a basic dynamical system. 

The adele class space, defined as the quotient Xoc == A:yJIK!' introduced by 
Connes (70], does do the good job as desired. The action of the idele class 
group CK = Aic/IK* on the adele class space XK is given by multiplication. 
In particular, the idele classs group Coc also acts on the Hilbert space L2 (XK) 
suitably defined, and the zeros of £-functions give the absorption spectrum, 
with non-critical zeros appearing as resonances. 

The adele class space X K involves all the places of K In order to simplify, 
if one consider a restriction to a finite set of places, then one can still get a 
noncommutative space and one can analyze the action of the analogue of the 
idele classs group CK and compute its trace after performing a suitable cutoff, 
necessary in all the cases to see the missing lines of an absorption spectrum. 
Then the following trace formula is obtained: 

1
, h( -1) 

tr{r-\u{h)) = 2h{l) log',\+ L -
1 

u I d*u + o{l), 
K• 1-u 

VES V 

where the second term on the right-hand side is exactly the same as in the Weil 
explicit formula mentioned above. This is very encouraging because at least it 
gives rise to a geometric meaning to the same complicated term of the formula 
as a contribution of the periodic orbits to the computation of the trace. 

in particular, it gives a perfect interpretation of the smooth function nsm(e) 
approximating the counting function n( e) of the zeros of the zeta function, 
as counting the number of states of the I-dimensional quantum system with 
Hamilto•nian h(p, q) = 21rpq, which is just the generator of the scaling group. 

Indeed, the function term 2: (log 2: - 1) of the Riemann explicit formula 
above appears as the . number of missing degrees of freedom in the number of 
quantum states for the system above, because one obtains 

Area(B+) = - • 2log,\- - log- -1 , e e ( · e ). 
21r 21r 21r 

from a simple computation of the area of the region B+: 

B+ = { (p, q) E [O, .-\) 2 1 h(p, q) = 21rpq ~ e }, 

while the term 2: 2 log,\ corresponds to the number of degrees of freedom of 
white light. 
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{Added). Compute that 

!A e e e A e 
IB+I = . 2 dp + .-\ · ?. .-\ = 2 [logp)p=--!!... + -2 ra 1rp -1r 1r 2 .. .,. 7r 

= ..!:.. (tog.,\ - log _e_ + 1) = ..!:.. (2 tog.,\ - log ..!:.. + 1) . • 
21r 21r .-\ 21r 21r 

A more careful computation gives not only the correction term as i in the 
formula but all the remaining o{l) terms. 

It is shown by Connes (70] that the generalized Riemann hypothesis is equiv­
alent to the validity of a global trace formula. But this is one of many equivalent 
reformulations of the Riemann hypothesis. 

26 The Weil proof and thermo-dynamics of endo­
motives 

In many ways, a virtue of a problem as RH comes from the developments that 
it generates. It does not appear as having any relation with geometry, but its 
geometric nature gradually does emerge in the 20th century, mainly because of 
the solution of Weil in the case of global fields of positive characteristic. Outline 
the program of CCM [74] {missing) {cf. (101]), announced in Tehran in 2005, 
to adapt the Weil proof for that case to the case of number fields. 

Given a global field 1K of positive characteristic, there exists a finite field 
IFq and a smooth projective curve C defined over lFq such that 1K is the field of 
IFq-valued, rational functions on C. 

The analogue of the zeta function_ by Artin, Hasse, and Schmidt is 

1 
(K{s) = IlveEK 

1 1 , 
. -~ 

where EK is the set of places of 1K and f(v) is the degree of the place ·v EEK· 
The functional equation takes the form 

q(g-1)(1-s)(oc{l - s) = q(g-l)s(K{s), 

where g is the genus of C. 
The analogue of the Riemann conjecture for such global fields is proved by 

Weil {1942) who developes an algebraic geometry in that context. The proof of 
Weil rests on two steps: (a) Explicit formula and (b) Positivity.· 

Both of the steps are based on the geometry of the action of the Frobenius 
on the set C{lFq) of points of C over an algebraic closure 1Fq of lFq. This set 
C{1Fq) is mapped canonically to the set EK of places of JK, and the degree of a 
place v E EK is the number of points in the orbit of the Frobenius acting on 
the fiber of the projection from C{1Fq) to Enc· 

. The analogue of the Lefschetz fixed point formula: 
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makes it possible to compute the left-hand side number of points with coordi­
nates in the finite extension IF qi from the actin of Fr* in the etale cohomology 
group H:t(C, Ql), which does not depend upon the choice of the l-adic coeffi­
cients Q,. 

This shows that the zeta function is a rational fraction 

p(~) 
(K(s) = (1 - -;J; )(1 - ql-s)' 

where the polynomial p( •) is the characteristic polynomial of the action of Fr* 
in H 1 . 

The analogue of the Riemann conjecture for global fields of characteristic q 
means that its eigenvalues >..i E C of the factorization 

p(t) = 11(1 - >..jt) 

are of modulus 1>..i I = .,fo. 
The main ingredient in the proof of Weil is the notion of correspondences, 

given by divisors in C x C. They can be viewed as multivalued maps: 

z : C-+ C, p ~ z(p). 

Two correspondences u and v are equivalent if they differ by a principal divisor, 
so that 

U "' V <=} U - V = (j). 
The composition of two correspondences is defined as 

and their adjoint is given by z' = u(z), using the transposition u(x, y) = (y, x). 
The degree d(z) of a correpondence is defined by 

d(z) = ze (p x C), 

independently of a generic points p E C, where • is the intersection number. 
The codegree of a correpondence z is defined similarly as 

d'(z) = z • (C x p). 

The trace of a correspondence z is defined by Weil as 

tr{z) = d(z) + d'(z) - z • ~, 

where ~ means the identity correspondence. 

Theorem 26.1. (Weil). The following positivity holds that tr(z *Z
1

) > 0 unless 
z is a trivial class. 
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If one imitates the steps of Weil's proof of RH for the case of number fields, 
then one clearly needs to have an analogue of the points of C(Fq) and the action 
of the Frobenius, of the etale cohomology and of the unramified extensions 
1K ®Fq lF q" of 1K. 
Endomotives and Galois action 

The adele class space XK = AK/JK* of a global field 1K admits a natural 
action of the idele class group C11< = Aoc/lK*, as on the adelic side of the class 
field theory isomorphism. In order to obtain a description of this space which 
is closer to geometry, one needs to pass to the Galois side of class field theory. 

In the case where 1K = Q, it is possible to present the adele class space in 
a simple manner not involving adeles, thanks to its intimate relation with the 
space of I-dimensional Q-lattices. The direct interpretation of the action of 
the Galois group of Q/Q on the values of fabulous states for the BC-system 
suggests that one should be able to construct directly the space XQ with a 
canonical action of the Galois group of Q/Q. 

This is done by Connes, Consani, and Marcolli (73], thanks to an extension 
of the notion of Artin motives, called endomotives. Following Grothendieck, 
one can reformulate the Galois theory over a field 1K as the quivalence of the 
category of reduced commutative finite dimensional algebras over 1K with the 
category of continuous actions of the Galois group G of OC/IK on finite sets. 

By construction, the algebra of the BC-system is a crossed product of a 
commutative algebra A by a semi-group. 

When working over 1K = Q which is essential in the definition of fabulous 
states, the algebra A is the group ring Q(Q/Z] of the torsion group Q/Z. Then 

A= li!!!An, An= Q[Z/nZ], 

and we deal with a projective limit of Artin motives. 
The key point then is to keep track of the corresponding action of the Galois 

group G of JK/IK, with 1K = Q. 
The Galois-Grothendieck correspondence associates to a reduced commuta­

tive finite dimensional algepra B over 1K the set of characters of B with values 
in OC, together with the natural action of G. This action is non-trivial for the 
algebras An= Q[Z/nZ], where it corresponds to the cyclotomic theory. 

-Then it is able to recover the Bost-Connes system with its natural Galois 
symmetry in a conceptual manner which extends to the general context of semi­
group actions on projective systems of Artin motives. 

These typically arise from self-maps of algebraic varieties. Given a pointed 
algebraic variety (Y, y0 ) over a field 1K and a countable unital abelian semi-group 
S of finite endomorphisms of (Y, Yo), unramified over Yo E Y, one constructs a 
projective system of Artin motives Xs over 1K from these data as follows. 

Fors ES, set 
Xs = {y E YI s(y) = Yo}. 

For a pair of s, s' E S, withs' =so r, the map {s',s : Xsor ~ Xs is given by 
{s 1 ,s(Y) = r(y). 
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(Added). Because (so r)(y) = Yo, and thus s(r(y)) = Yo• • 
This defines a projective system indexed by the semigroup S with partial 

order given by divisibility. Let X = ~s X 5 • 

Since s(yo) = Yo, the base point Yo defines a component Zs of Xs for alls ES. 
Let ~_;; 1s(Zs) be the inverse image of Zs in Xs'· It is a union of components of 
Xs'• This defines a projection es onto an open and closed subset Xe .• of the 
projective limit X. 

It is then shown by CCM [73] that the semigroup S acts on the projective 
limit X by partial isomorphisms Ps : X ~ x;,. defined by 

~sou(Ps(x)) = {u(x), for any u E Sand x E X. 

The BC-system is obtained from the pointed algebraic variety (Gm(Q), 1), 
where the affine group scheme Gm is the multiplicative.group. The semi-group S 
is given by the semi-group of non-zero endomorphisms of Gm. These correspond 
to the maps of the form u 1-+- u" for some non-zero integer n E Z, restricted to 
n E .N*. . 

In this class of' examples, one has an equi-distribution property, by which 
the uniform normalized counting measures µ 5 on Xs are compatible with the 
projective &ystem. Then define a probability measure on the limit X. Namely, 
one has 

{s 1 ,sµs = µs', for any s, s' E S. 

This follows from the fact that the number of pre-images of a point under s E S · 
is equal to the degree deg s. 

This provides the data which makes it possible to perform the thermo­
dynamical analysis of such endomotives. This gives a rather unexplored new 
territory since even the simplest examples beyond the BC-system remain to be 
investigated (at that time). 

For instance, let Y be an elliptic curve defined over 1K. Let S be the semi­
group of non-zero endomorphisms of Y. This gives rise to an example in the 
general class described above. 

When the elliptic curve has complex multiplication, this gives rise to a system 
which agrees with the one constructed by Connes, Marcolli, and Ramachandran 
(86] in the case of a maximal order. 

In the case without complex multiplication, this provides an example of ~ 
system, where the Galois action does not factor through an abelian quotient. 

The Frohenius as a dual of the time evolution The Frobenius is such a 
universal &ymmetry in characteristic p, owing to the linearity of the map sending 
x to xP, that it is very hard to find an analogue of such a far-reaching concept 
in characteristic zero. As we now go to explain, the classification of type III 
von Neumann factors provides the basic ingredient which, when combined with 
cyclic cohomology theory, makes it possible to analyze the thermo-dynamics of 
a noncommutative space and to get an analogue of the action of the Frobenius 
on etale cohomology. 

The key ingredient is of that noncommutativity generates a time evolution 
as the (noncommutative) measure space theory level. While it is well known 
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in Operator Algebra that the theory of von Neumann algebras represents a far­
reaching extension of ordinary measure space theory, the main surprise obtained 
by Connes [57] following Tomi-ta (Rich, Rice field) theory is that such a von 
Neumann algebra ml inherits, from its noncommutativity, a God-given time 
evolution: 

o : 1R--+ Out(ml) = Aut(ml)/Inn(ml), 

that is the quotient of the group of automorphisms of VJl by the normal subgroup 
of inner automorphisms of ml. This leads to the reduction from type III to 
type II von Neumann algebras and their automorphisms, and eventually to the 
classification of injective factors. They are classified by their modules: 

Mod(ml) C JR~, 

which are virtual closed subgroups of R+, in the sense of G. Mackey, i.e., ergodic 
actions of JR+, called the flow of weights of Connes and Take-saki (Bamboo­
Cape) [98]. This invariant is first defined and used by Connes [57], to show in 
particular the existeJ}ce of hyperfinite factors which are no isomorphic to the 
Ara-ki (Wild Tree)-Woods factors. 

The noncommutative measure space theory level as the set-up of von Neu­
mann algebras does not suffice to obtain a relevant cohomology theory. And 
one needs to be given a weakly dense subalgebra A in VJl playing the role of 
smooth functions on the noncommutative space. This algebra plays a key role 
in cyclic cohomology used at a later stage. 

At first one takes its norm closure 2l = A in VJl and assumes that it is 
globally invariant under the modular automorphism group ut of a faithful nor­
mal state c.p on rot. One can then proceed with the thermo-dynamics of the 
C*-dynaniical system (2l, Ut, JR). 

By a simple procedure assuming that KMS states at ·1ow temperature are of 
type I, one obtains a cooling morphism 1r which is a morphism of algebras from 
the smooth crossed product A >4a JR to a type I algebra of compact operator 
valued, functions on a canonical IR+ -principal bundle rr;; ov~r the space !lp of 
type I extremal KMSp states fulfilling a suitable regularity condition ((731). 

Any p E !lp gives an irreducible representation 1r P of A, and the choice of its 
esentially unique extension to A ><la IR determines the fiber of the JR+-principal 
bundle n-;;. The cooling morphism is then given by 

1fp,H(l x(t)utdt) = k 1rp(x(t))eitH dt. 

This morphism is equivariant for the dual action (h_ E Aut(A ><la IR) of JR+ given 
as 

fh,(L x(t)utdt) = L Aitx(t)utdt. 

The key point i~ that the range of the morphism 1r is contained in an algebra 
of functions on !l2 with values of trace class operators. In other words, modulo 
the (strong) Morita equivalence, one lands in the commutative world, provided 
one lowers the temperature. 
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The interesting space is then obtained by distillation and is given by the 
co-kernel of the cooling morphism 1r, but this does not make sense in the cat­
egory of algebras and algebra homomorphisms, since the latter is not even an 
additive category. This is where cyclic cohomology enters the scene. Because 
the category of cyclic modules is an abelian category with a natural functor 
from the category of algebras and algebra homomorphisms. 

Cyclic modules are modules of the cyclic category A, which is a small cate­
gory, obtained by enriching with cyclic morphisms the familiar simplicial cate­
gory Ll of totally ordered finite sets and increasing maps. 

Alternatively, the category A can be defined by means of its cyclic covering, 
the category EA. The latter has one object (Z,-n) for each n 2'.: 0 and the 
morphisms/ : (Z, n) ~ (Z, m) are given by non-decreasing maps/ : Z ~ Z, 
such that f(x + n) = f(x) + m for any x E Z. 

One has A= EA/Z, with respect to the obvious action of Z by translations. 
To any algebra A one associates a module Ab over the category A by assign­

ing to each n the (n + 1)-fold tensor product ®"+l A. 
The cyclic morphisms correspond to the cyclic permutations of the tensor 

products, while the face and degeneracy maps correspond to the algebra product 
of consecutive tensor products and the insertion of the unit. 

The corresponding functor sending A to Ab gives a linearization of the cate­
gory of associative algebras, and cyclic cohomology appears as a derived functor. 

One can then define the distilled module D(A, <p) = (A ~u IR)/ker(1r) with 
u = u"', as the co-kernel of the cooling morphism 1r. And consider the dual 
action of IR+ obtained from the equivariance above, in the cyclic homology 
group HC0 (D(A, <p)). As shown by Coones, Consani, and Marcolli (73], this 
in the simplest case of the BC-system gives a cohomological interpretation of 
the above spectral realization of the zeros of the Riemann zeta functions and of 
Hecke £-functions. 

One striking feature is that the strip in the KMS condition is canonically 
identified with the critical strip of the zeta function by multiplication by i = 
J=I, where {3 > 1. 

This cohomological interpretation combined with the above theory of en­
domotives gives a natural action of the Galois group C of Q/Q on the above 
cohorriology. This action factorizes through the abelianization cab, and the 
correspoD;ding decomposition according to characters of cab corresponds to the 
spectral realization of £-functions. 

The role of the invariant S(9Jt) in the classification of factors, or of the more 
refined flow of weights mentioned above is similar to the role of the. module of 
local or global fields and the Brauer theory of central simple algebras. 

In fact, there are striking parallel worlds (see [73)) between the lattice of 
unramified extensions from a global field OC of characteristic p to lK®Fq IFqn and 
the lattice of extensions of a factor 9Jt to the crossed product algebras 9Jt ~O'T Z. 
Taking the algebraic closure of IF q; i.e., the operation II{ -+ II{ ®F q IF q corresponds 
to passing to the dual algebra as 9Jt ~ 9Jt ~ulR, and the dual action corresponds 
to the Frobenius automorphism when as above the appropriate cohomological 
operations such as distillation and cyclic homology HCo are performed. 
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Table 17: Parallel world 

World Global fields OC Factors OOl 
Modules Mod(OC) c lR+ Mod(OO'l) C lR+ 

Extensions JI{ - JI{ ®F,, IF q" OOl - OOl )(IO'T z 
(discrete) tensor, unramified Z crossed products 

Extensions JI{ - JI{ ®Fq IF q OOl-. OOl >:1u lR 
(continuous) by algebraic closure by modular automorphism a 

Duals Frobenius automorphism Dual action 0 

A notable difference from the original Hilbert space theoretic spectral real­
ization of Connes (70] is that while, in the latter case, only the critical zeros are 
appearing directly in the cyclic homology set-up, and the possible non-critical 
ones are appearing as resonances, it is more natural to use everywhere the rapid 
decay framework, advocated by Meyer (185), so that all the zeros appear on the 
same footing. 

This eliminates the difficulty coming from the potential non-critical zeros, 
so that the trace formula is proved and reduced to the Riemann-Weil formula. 
However, it is not obvious how to obtain a direct geometric proof of this formula 
from the S-local trace formula of Connes (70]. 

This is done by Meyer [185], by showing that the noncom mutative geometric 
framework makes it possible to give a geometric interpretation of the Riemann­
Weil explicit formula. 

Remark. (Added). Now recall from (185) some basic definitions. 
An algebraic number field K is a finite algebraic extension of the field Q of 

rational numbers. The set P(K) of places of K consists of equivalence classes 
of dense embeddings of K into local fields. For instance, P(Q) contains the 
embeddings of Q into Rand into Qp of the p-adic integers for all prime numbers. 
Let AK be the adele ring of K, let AK be its ideal group, and let CK = 
AK/ K* be its ideal class group. For instance, CQ is isomorphic to the direct 
product Ilvz; x JR, where p runs through the prime numbers and z; denotes 
the multiplicative group Qf p-adic integers of norm 1. • 

While the spectral side of the trace formula is given by the action on the 
cyclic homology of the distilled space, the geom~tric side is given as follows. 

Theorem 26.2. ([73)). Leth E S(CK) the Schwartz space. Then it holds that 

tr(,?(h)IH•) = hA(O) + hA(l) - ti.• D.h(l) - I; l. ~t~-:i d'u. 
v (K1,,et<,,) 

May refer to [73) for the detailed notations, in particular, for the restricted 
Schwarz space S(CK), which are essentially those of Connes (70). 

The origin of the terms in the geometric side of the trace formula comes 
from the Lefschetz formula of Atiyah-Bott [13) and its adaptation by Guillemin-
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Sternberg (cf. [ 125)) to the distribution theoretic trace for flows on manifolds, 
which is a variation on the theme of AB [13]. 

(Added). May now recall [125, Introduction] into the following: 

Table 18: The systems in physics 

Physics Classical Quantum 
States Points of a phase space as Functions or v.ectors 

a symplectic manifold !vi of a Hilbert space H 
Dynamics Hamiltonian energy function H Self-adjoint operator D 

Moving in time Symplectic vector field XH Unitary group exp( itD) 
Equilibrium states A point in M, at which An eigenstate of D 

the trajectory of X H periodic with eigenvalue A 
Oscillating Period of the trajectory Period 271'" .X - i 

May also recall from [183) the following facts. A symplectic manifold (M,w) 
is a differentiable manifold M with a symplectic form w, i.e., a non-degenerate 
closed 2-form., so that dw = 0. 

Under a Hamilton function n(q,p) independent of time, the motion equation 
is given as 

dqi = an and dpi =_an_ 
dt {)pi dt aqi 

Viewing the right hand side as a vector field X(= dH), then (suppose) dH = 
ix(w0 ) (a closed I-form with dw0 = 0), and (then) Lxwo = 0 by Cartan re­
lation, so that integrating X implies to obtain a diffeomorphism preserving 
w0 = - L dpi A dqi. In general, a symplectic vector field on (M,w) is a vector 
field X on M such that L xw = 0. There is a bijective correspondence between 
symplectic vector fields and closed I-forms on M. A Hamiltonian vector field is 
defined to be a symplectic vector field corresponding to an exact I-form T/, so 
that T/ = dw' for some w'. If ixw = df, then X = XJ is the Hamilton vector 
field off, and f is said to be the Hamilton function (Hamiltonian) of the X. 

The interior productixw between X and w is defined by 

(ixw)(Y) = w(X, Y). 

The Lie derivative L xw is defined by 

(Lxw)(Y, Z) = X(w(Y, Z)) - w([X, Y], Z) - w(Y, [X, Z]). 

Moreover, in particular, 

Lx = ixd + dix and Lx(dw) = d(Lxw), 

the first of which is one of Cartan relations. 
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It then follows that 

Lxwo = 1,xdwo + ddH = 0. • 
For the action of CK on the adele class space XK, the relevant periodic 

orbits XK,v, on which the computation concentrates, turn out to be type III 
noncommutative spaces. Each of them admits classical points to form a subset 
SK,v C XK,v• The union of these classical periodic points is given by 

where for each place v E EK, one lets [v] be the adele defined by [v)w = 1 for 
any w -:/= v, and [v)v = 0. 

In the function field case, one has a non-canonical isomorphism of the fol­
lowing form: 

Proposition 26.3. Let 1K be the function field of an algebraic curve C over lF q. 

Then the action of the Frobenius on Y = C(lFq) is isomorphic to the action of 
cf on the quotient SK/CK,l · 

In the case where 1K = Q; the space BQ/Co_,1 appears as the union of-periodic 
orbits of period logp under the action of CQ/CQ,l ""'JR 

The figure as the classicaf points of the adeles class space, corresponding to 
log 2, log 3, log 5, · · · , log p, · · · , is omitted. 

This give a first approximation to the sought for the space Y = C(lFq) 
in characteristice zero. One important refinement is obtained from the subtle 
nuance between the adelic description of Xio and the finer description in terms 
of the endomitive obtained from the pointed algebraic variety (Gm(Q), 1). The 
second description keeps track of the Galois symmetry, and as in the proposition 
above the isomorphism of the two descriptions is non-canonical. 

At this point we have, in characteristic zero, several of the geometric notic;:ms 
which are the analogues of the ingredients of the Weil proof, and it is natural 
to try and imitate the steps in the proof. 

The step (a) as the explicit formula corresponds to the formula obtained in 
the theorem above. What remains is to prove a corresponding positivity result. 

A well known result of A. Weil ( cf. (26) missing) states that RH is equivalent 
to the positivity of the distribution entering in the explicit formulae. 

Thanks to the above H 1 obtained as the cyclic homology of the distilled 
module, the reformulation from Weil\; can be stated as in the following. 

We let -O(g)IH' denote the induced action of g E CK on the co-kernel H1 

described above. We also ~rite D(J)IH' for the action of fc:< f(g)-O(g)d*g with 
f E S(Coc), as in [73] and [74] (missing). Then 

Theorem 26.4. The following two conditions are equivalent: 
(1) All L-functions with Grossencharakter on 1K satisfy the Riemann Hy­

pothesis (RH). 
(2) tr(D(J * fb)IH1) ~ 0 for all f E S(CK) (Pos: Positivity), 
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where the convolution of two Junctions, using the multiplicative Haar measure 
d* g is defined by 

(11 * h)(g) = lK ft(k)h(k- 1 g)d*g, 

and the adjoint Jb off is defined by 

I, l--
r(g) = iBiJ(g-1). 

The role of the specific correspondences used in the Weil proof of RH of 
positive characteristic is played by the test functions f E S(C,). More precisely, 
the scaling map which replaces f(x) by J(g- 1x) has a graph, namely the set of 
pairs (x,g- 1x) E XK x XK, which we view as a correspondence z9 • Then, given 
a test function J on the ideles classes, one assigns to J the linear combination 

z(J) = 1 J(g)z9 d*g 
CK 

of the above graphs, viewed as a divisor on XK x xK: 
The analogs of the degrees d(z) and co-degrees d'(z) = d(z') of correspon­

dences in the context of the Weil proof are given respectively by 

d(z(h)) = hA(l) = J h(u)luld*u, 

so that the degree d(z9 ) of the correspondence z9 is equal to IYI, and similarly, 

d'(z(h)) = d(z(hb)) = J h(u)d*u = h"(O), 

so that the co-degree d'(z9 ) of the correspondence z9 is equal to 1. 
One of the major difficulties is to . find the replacement for the principal 

divisors which in the Weil proof play a key role as an ideal of the algebra of 
correspondences on which the trace vanishes. At· 1east, already, one can see 
that there is an interesting subspace V of the linear space of correspondences 
described above, on which the trace also vanishes .. It is given by the subspace 
V of S(CK) as 

V = {g(x) = L ~(kx) I~ E S(AK)o}, 

where the subspace S(AK)o of S(AK) is defined by the two boundary conditions 
~(O) = 0 and J {(x)dx = 0. 

This shows that the Weil pairing as in the theorem. above admits a huge 
radical given by all th~ functions which extend to adeles and gives another 
justification for working with the above cohomology H 1 . In particular, one 
can modify arbitrarily the degree and co-degree of the correspondence z(h) by 
adding to h an element of the radical V using a subtle failure of the· Fubini 
theorem. 
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It is shown by CCM [74] (missing) that several of the steps of the Weil proof 
can be transposed in the framework described above. 

This constitutes another just motivation to develop noncommutative geom­
etry much more further. One can write a tentative form of a dictionary between 
the language of algebraic geometry in the case of curves and that of noncommu­
tative geometry. The dictionary is summarized in the following table. It should 
be stressed that the main problem is to find a correct translation in the right 
column for the well establised notion of principal divisor in the left column. 
The table below is somewhat crude in that respect, since one does not expect 
to be able to work in the usual primary theory which involves periodic cyclic 
homology and index theorems. Instead, one expects that both the unstable 
cyclic homology and the finer invariants of spectral triples arising from trans­
gression play an important role. Thus, the table below should be taken as a 
rough approximation in the first stage and could be a motivation for developing 
the missing finer notions in the right column. 

Table 19: A sort of dictionary between AG and NG 

Algeraic Geometry Noncommutative G 
Modulo torsion K K(21, ~ ® IIi) 

Effective correspondences Epimorphism of C* -modules 
Principal correspondences Compact morphisms 

Composition Kasparov product in KK 
Degree of correspondence Pointwise index d{f) 

deg D( P) 2:: g implies d{f) > 0 implies 
,...., effective r + K onto for some K 

Adjusting the degree Fubini step 
by trivial correspondences on the test functions 
Frobenius correspondence Correspondence z9 

Lefschetz formula Bivariant Chern of z(h) 
{Localization on graph z{h)) 

Weil trace unchanged Bivariant Chern unchanged 
by principal divisors by compact perturbations 

Epilogue. Added and collected mostly is the basic knowledge such as only def­
initions, related elementary or· fundamental properties or results, and facts, as 
cited. But more other terms, details, or explanations could not be included 
to be self-contained as aimed. However, hope that it may be some useful as 
a convenient reference, especially for beginners {including Mr. myself against 
forgetting) to go into the noncommutative world. So may not to be lost there. 
Still, at this last moment, there may be found some minor mistakes in typing, 
because of the limited time and effort for proofing the texts, grown large. 
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