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"Abstract

As a back to the past for a return to the future, we review and study
by running round, round, and through it, namely the non-commutative
geometry (NCG) garden, explored and maintained by Connes-Marcolli.
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1 Introduction as original preface

This is nothing but a running commentary (or a locally commentative and
transcriptive exercising (LCTE)) based on Connes-Marcolli [83] primarily, as
well as Connes [66] and more items as in the references secondly (but mostly in
part). Almost along the story of [83], with some considerable effort within time
limited for publication, we do make some additional, proofs, tables, examples,
corrections, and (extended) remarks or comments, as inserted as: (Added). The
texts 4 Some notations as well as some texts are slightly changed from the
original ones, by our taste. Several (score) tables are worked out, 19 in total.
With somewhat time and patience for checking out (or not yet) all the 213 items
in the references of [83], even with several items not found in the texts assigned,
some items are either collected, slightly corrected, or updated, and some of

Received November 30, 2017.



which are neither at hand nor accessible (without fee, at this moment), but
included in the references at the end, even with several exceptional items, and
added with some related items. Fed in by hands 242 items in total. However,
almost the details are only touched or not yet checked well. As a reference at
an (early) time of this reviewing, may read Village-Mountain (translated from
Kan-ji as Chinese characters) [191] in Japanese (and more items such as [114],
[134], [135], [230], [231], [241]) for the exciting story of the theory of elementary
particles and its experimental observations. Also refer to [183]. This paper is
organized of the following (the same number of rounds) 26 sections with titles a
bit changed from original ones. The quantum (deformed) stadium is now open!

Table 1: Contents

Section Title
1 Introduction as original preface
2 Handling quantum algebras
as noncommutative (NC) spaces

3 Phase spaces in microscopic systems
4 Noncommutative spaces as quotients
5 Spaces of leaves of foliations
6 The noncommutative tori
7 Duals of discrete groups
8 Brillouin zone and the quantum Hall effect
9- Tilings in Euclidean spaces
10 NC spaces from dynamical systems
11 NC spaces from string theory
12 Groupoinds and the index theorem
13 Noncommutative Riemannian manifolds
14 Spectral triples from Cantor sets
15 Dimensional regularization in QFT
16 Local algebras in super-symmetric QFT
17 The standard model of elementary particles

as noncommutative geometry
18 Isospectral deformations of Riemannian manifolds
19 Algebraic deformations
20 Quantum groups
21 Noncommutative spherical manifolds
22 Noncommutative spaces from Q-lattices
23 Modular Hecke algebras
24 Noncommutative moduli spaces from Shimura varieties
25 The adéle class space and the spectral realization
26 Weil proof and thermo-dynamics of endomotives

Corner References




There are several books on NCG such as [64] (missing, but its translation in
Japanese by Circle-Mountain [181]), {66], [120], {148], [159], [169] (missing), and
[L76]. May refer to these items.

(Added). In addition, [84], and [95] (missing). <«

2 Handling quantum algebras
as noncommutative (NC) spaces

A quantum (smooth (C*) or differentiable (or C" class for r € N= {1,2,---})
algebra A or (continuous) C*-algebra 2 is defined to be an algebra of (smooth,
differentiable, or continuous) function elements as coordinates of a noncommu-
tative (or badly or slightly deformed) space X (such as non-Hausdorff spaces
obtained from locally compact Hausdorff spaces). We would like to understand
such a noncommutative space X by quantun algebraic datam. There are 4
steps:

[S1]: Resolve quantum algebras and compute cyclic cohomology.

[S2]: Find geometric models of noncommutative spaces up to homotopy.
[S3]: Construct spectral geometry for quantum algebras.

[S4]: Compute time evolution and analyze thermo-dynamics.

Step 1. It means finding a resolution of A as a A-bimodule by projective
A-bimodules making it possible to compute effectively the Hochschild homol-
ogy of A. In general, such resolutions are of type Koszul. A typical example
is the resolution (of the diagonal) for the algebra C*°(X) of smooth functions
on a compact manifold X as in the C*-version [61] of the Hochschild, Kostant,
Rosenberg theorem [136]. It then follows to know what is the analogue of dif-
ferential forms and of de Rham currents on the space X, to compute the cyclic
homology and cyclic cohomology for A, which are viewed as natural replace-
ments of the de Rham theory for X. For foliation algebras, this is done some -
time ago (cf. [62], [37], [L02]), and is tied in with the natural double complex of
transverse currents.

But it is not always easy to perform this step of finding such a resolution
and computing Hochschild and cyclic homology or cohomology. FFor instance, in
the case of algebras given by generators and relations this step uses the whole
theory of Koszul duality, which is extented to homogeneous algebras (cf. [109)
missing, [110], (111] missing, [112], [113], [23]).

As a specific example, it is interesting to resolve the modular Hecke algebras.
In essence, finding a resolution in the algebra of modular forms of arbitrary level,
equivariant with respect to the action of the group of finite adéles, would yield
formulas for the compatibility of Hecke operators with the algebraic structure.
This is a basic and hard problem in the theory of modular forms.

Cyclic homology and cohomology theory is well developed, and is first de-
signed to handle the leaf spaces of foliations as well as group rings of discrete



groups (cf. [148]). The theory plays a central role as a purely algebraic version
of (analytic) noncommutative geometry, and is also crucial in the analytic set-up
to construct cyclic cocycles with compatibility with the topology of (quantum)
algebras. For instance, if the definition domain for cocycles is a dense subalgebra
of a underlying C*-algebra, stable under holomorphic functional calculus, then
it automatically gives an invariant as the K-theory for C*-algebras (cf. [62]).

Step 2. A lot of noncommutative spaces defined as quotients with bad (or
less) topology can be de-singularized, provided that one is ready to work up to
homotopy. For instance, if the space X is defined as a quotient X = Y/ ~ of
an ordinary space Y by an equivalence relation ~, then one can often view X
as another quotient X = Z/ ~, where the equivalence classes are contractible
spaces. The homotopy type of Z is then uniquely determined and serves as a
substitute for that of X. See Baum-Connes [16].

For instance, if the equivalence relation on Y comes from a free action of a
torsion free, discrete group I, then the space Z is given by a product over I of
the from

Z=Y xpr EI'= (Y x ET)/T,

where ET is a contractible space (or the universal principal ['-space) on which T’
acts freely and properly and the equivalence relation by I' is given as (g-y,u) =
(vr9-w) (cf. [17]).

The main point of this second step is that it gives a starting point for com-
puting the K-theory of the space X as well as the K-theory of the C*-algebra
2 = A as the norm closure of a dense algebra A, playing the role of some algebra
of continuous functions on X. ]

Indeed, for each element of the K-homology of the classifying space Z, there
is a general construction of an index problem for families parameterized by X
that yields the assembly map ([16])

p: Ko(2Z) - K.(Y).

This Baum-Connes assembly map is an isomorphism in a somewhat large num-
ber of cases, with a suitable care without torsion. They include all connected
locally compact groups, all amenable groupoids, and all hyperbolic discrete
groups ([17]). It shows that the K-theory for X is computable in the sense
that the topological K-theory for a geometric space X can be computed by the
topological K-theory for an analytic C*-algebra 2, which is noncommutative in
general.

Step 3. The third step is not only to compute K. (2l) but also to get a
good model for the vector bundles over X, i.e., the finite projective modules
over A. This step should be combined with the above first step to compute the
Chern character using connections, curvature, and eventually computing moduli
spaces of Yang-Mills connections, as done for the noncommutative (NC) 2-torus
by Connes-Rieffel [96].

We then pass from the soft part of differential geometry to the harder Rie-
mannian metric aspect. The sought for spectral geometry as a triple (A, H, D)




(of an algebra A and an operator D both acting on a Hilbert space H with some
suitable conditions) has three essential features:

(F1): The K-homology class of (A, H, D).
(F2): The smooth structure.  (F3): The metric.

One should always look for a spectral triple such that its K-homology class
is as non-trivial as possible. Ideally, it should extend to a classs for the doubled
algebra A ® A° with A° the opposite algebra of A with products exchanged,
and then be a generator for Poincaré duality. In general, this is too much to
ask for, since spaces do not always fulfill Poincaré duality. '

The main tool for determining the stable homotopy class of a spectral triple
is the bivariant KK-theory for C*-algebras by Kasparov. Thus, it is important
to already have taken the step 2 and to look for classes such that their pairing
with K-theory is as non-trivial as can be.

For the smooth structure, there is often a natural candidate for a dense
smooth subalgebra A® of a C*-algebra 2 = A for some dense subalgebra A, that
plays the role of the algebra of smooth functions on a space. It should in general
contain the original algebra A and should have the further property that it is
stable under the holomorphic functional calculus. This ensures that inclusions
A*® C A C U extends to isomorphisms in the respective K-theory groups and
makes it possible to complete a classification of smooth vector bundles over a
space.

The role of a (unbounded, differential) operator D for the smooth structure
is that it defines a geodesic flow by the formula

fi(a) = t!Plae= Pl = Ad(exp(it|D|))a, a€ A%, t€R,i=—1,

and it is expected that smoothness of the spectral triple is governed by the
smoothness of the operator-valued function f;(a) on R. The main result in the
general theory on it is the local index formula of Connes and Moscovici [89),
which provides the analogue of the Pontrjagin classes of smooth manifolds in
the noncommutative framework.

The problem of determining the operator D from the knowledge of the K-
homology class corresponding to a spectral triple is similar to the choice of a
connection on a bundle. There are general results that assert the existence of
an unbounded self-adjoint operator D on H with bounded commutators with A
from estimates on the commutators with the phase operator F. The strongest
is obtained by Connes as in [66, p. 391] just assuming that the (additive)
commutators [F,a] = Fa — aF are in an ideal denoted as Li(H), and it ensures
the existence of a #-summable spectral triple which is what one needs to get
started. i

It is not always possible to find a finitely summable, spectral triple, first
because of growth conditions on an algebra (as in Connes [63]), but also since the
finitely summable condition is analogous to being type II in the theory of factors.
In a general case, like the noncommutative spaces coming from foliations, one
can go from being type III to type I by passing to the total space of the space of



transverse metrics and then using the theory of hypo-elliptic operators (CnMs
(90]).

Another way to attack the problem of determining the operator D is to con-
sider the algebra generated by A and D with some relations between A and D
and then look for irreducible representations that fall in the stable homotopy
class. Ideally, one should minimize the spectral action functional in this homo-
topy class, thus coming close to gravity (Chamseddine-Connes [48]). In practice,
one should use anything available, but the noncommutative space given by the
quantum group SU,(2) shows that things can be quite subtle ([105]).

Given or once determined a spectral triple (A, H, D), as the basic steps, one
should compute the following:

(C1): The dimension spectrum in C.  (C2): The local index formula.
(C3): The inner fluctuations, scalar curvature, and spectral action.

Step 4. It is often that a noncommutative space comes with a measure
class, which in turn determines a time evolution {o,} C Aut(2), that is, a one-
parameter family of automorphisms of a C*-algebra 2 = 4. In the type II case,
one can apply the step 3 above, as well as in the finite dimensional case, use the
operator D to represent functionals in the measure class of the form

la) = falDr"’, a€ A,

where § denotes the Dixmier trace as the noncommutative integral and p is the
dimension. In the type III (always or often in Physics) or general case, such a
time evolution is highly non-trivial.

Given such a data or a C*-dynamical system (2,0, R), it is natural to
regard it as a quantum statistical mechanical system, with a C*-algebra 2 as
an algebra of observables and the R-action o as time evolution. One can then
look for equilibrium states for the system and for given values 8 of the thermo-
dynamic parameter as inverse temperature.

The algebra A may not be a C*-algebra. If the algebra A is concretely
realized as a C*-algebra of bounded operators on a Hilbert space H, then one
can consider the Hamiltonian H, that is, a (unbounded) operator on H that is
the infinitesimal generator of the time evolution. If the operator exp(—GH) is
of trace class, then one has equilibrium states for the system (.;_4, o;), written in
the usual Gibbs form

 tr{aexp(—BH)
#6(2) = < exp(BH)

is the partition function of the system. The notion of equilibrium states does
make sense even if exp(—BH) is not necessarily of trace class, and is given by
the more subtle notion of KMS(Kubo-Martin-Schwinger) states.

The KMS states on A are positive continuous functionals ¢ : A — C, so
that p(a*a) > 0, with (1) = 1, namely states, satisfying the KMSg condition

where z(8) = tr{exp(—8H))



such that for any a,b € A, there exists a function f, 5(z) which is holomorphic
on the open strip 0 < Im(z) < 3, continuous and bounded on the closed strip
0 < Im(z) < 8, namely fop € H(R x (0,3)), and

fa,b(t) = ‘p(adt(b)) and fn.b(t + Zﬂ) = ‘r’(at(b)a)’ teR.

The KMS states at zero temperature may be defined as the weak limits as
B — oo of KNSg states. Using KMS states one can construct refined invariants
of noncommutative spaces. For a fixed 3, the KMSg states form a simplex, and
hence one can consider only the set £5 of extremal KMSg states, from which
one can recover all the others by convex combinations.

“ Proof. (Added). Suppose that ¢y, , ¢, € Egand ky,- - -k, > 0 with Z;‘=l kj =
1. Then 37_, kjp; is a state, and there are f,5; € H(R x (0,3)), so that
S 1 kjfas € H(R x (0,0)) and such that

n

k;fapi(8) =D kjp;(ace(b)) and
1 =1 .

i=
S kifapi(t+iB) = kjp;(ar(b)a), teR.
Jj=1 i=1

a

An extremal KMSg state is always factorial, and the type of the factor is
an invariant of the state. The simplest situation is of type I. It can be shown
under the minimal hypotheses ([73]) that extremal KMSg states continue to
survive when the temperature becomes lower, i.e., § increases. Thus, in essence,
when cooling down the system, it tends to become more classical, and he 0-
temperature limit of £g gives a good replacement of the notion of classical
points for a noncommutative space. In examples related to arithmetic, we see
how the classical points described by the zero temperature limit of KMS states
of certain quantum statistical mechanical systems recover classical arithmetic
varieties. The extremal KMS states at zero temperature, evaluated on suitable
arithmetic elements in the noncommutative algebra, in significant cases, can be
shown to have an interesting Galois action, related to interesting questions in
number theory ({29], [86], and [81] missing). ‘

It is shown in (73] how to define an analogue in characteristic zero, of the
action of the Frobenius on the étale cohomology by a process involving the
above thermo-dynamics. One key feature is that the analogue of the Frobenius
is given by the dual of the above time evolution o;. The process involves cyclic
homology, and its three basic steps are

(1) Cooling.  (2) Distillation.
(3) Dual action of R} on the cyclic homology of the distilled space.

When applied to the simplest system as the Bost-Connes system of [29], this
yields a cohomological interpretation of the spectral realization of the zeros of
the Riemann zeta function ([70], [73]).



3 Phase spaces in microscopic systems

What can be historically regarded as the first example of a noncommutative
space is the Heisenberg formulation of the observational Ritz-Rydberg law of
spectroscopy. In fact, it is shown by quantum mechanics that indeed the pa-
rameter space as the phase space of the mechanical system given by a single
atom fails to be a manifold. It is important to convince oneself of this fact
and to understand that this conclusion is indeed dictated by the experimental
findings of spectroscopy.

At the beginning of the twentieth century, a wealth of experimental data
is collected, on the spectra of various chemical elements. These spectra obey
experimentally discovered laws, like the most notable as the Ritz-Rydberg com-
bination principle. The RR principle can be stated as follows.

Spectral lines are indezed by pairs of labels. Then certain pairs of spectral
lines, when expressed in lerms of frequencies, do add up to give another line in
the spectrum. Moreover, this happens precisely when the two labels are of the
form i,j and of j, k.

In the seminal paper [131], W. Heisenberg considers the classical prediction
for the radiation emitted by a moving electron in a field, where the observable
dipole moment can be computed, with the motion of the electron given in Fourier
expansion. The classical model predicts frequencies distributed according to the
law:

When comparing the frequencies obtained in this classical model with the data,
it is noticed that the classical law does not match the phenomenon observed.

The spectral rays provide a picture of an atom as follows. If atoms are in
classical systems, then the picture formed by the spectral lines becomes a group
in our modern mathematical language, which is the law above predicts. That is
what the classical model predicts that the observed frequencies should simply
add, obeying a group law, or in Heisenberg notation that

v(n,a) + v(n,B) = vin,a + B).

Correspondingly, the observables form the convolution algebra of a group.

What the spectral lines are instead providing is the picture of a groupoid.
It is realized by Heisenberg [131] that the classical laws above would have to be
replaced with the quantum mechanical laws:

vin,n—a)= ;ll-(W(n) - W(n-a)) an(i
vin,n—a)+vin—a,n—a—-B)=v(nn—a-p).

These replace the group law with the groupoid law. Similarly, the classical
Fourier modes fo(n)e™ (™2t are replaced with f(n,n — a)e(mn=)¢,

The analysis of the emission spectrum given by Heisenberg is in a good
agreement with the Ritz-Rydberg law, or combination principle, for spectral
lines in emission or absorption spectra.



Heisenberg [131] also extends the re-definition of the multiplication law for
the Fourier coefficients to coordinates and momenta, by introducing transition
amplitudes that satisfy similar product rules. This is the most audacious step
in Born words, and that brings noncommutative geometry on the scene.

It is Born who realizes that what Heisenberg described in his paper cor-
respond to replacing classical coordinates with another quantum coordinates
which no longer commute, but which obey the laws as the matrix multiplica-
tion. » )

The words reported by B. L van der Waerden ([234] missing) are omitted
except citing as:

Heisenberg’s symbolic multiplicalion is nothing but the malriz calcucus.

Thus, spectral lines are parameterized by two indices g satisfying a co-cycle
relation:

lag + lp-y = ln-,,

and a co-boundary relation expresses each line as a difference:
lag = Vo — Vg,

In other words, the RR law gives the groupoid law above, or equivalently, (, §)-
(4, k) = (3, k), and the convolution algebra of a group is replaced by observables
satisfying the matrix product:

(@b)ix = ) _ aijbj,
j

In general, commutativity is lost as ab # ba.
The Hamiltonian H is a matrix with the frequencies on the diagonal, and
observables obey the evolution equation:

d
—a =1i[H,al.
5% = iH.dl

Out of the Heisenberg paper and of the Born interpretation in terms of ma-
trix calculus, is emerged the statement of the Heisenberg uncertainty principle
in the form of a commutation relation of matrices:

ool =

2t

The matrix calculus and the uncertainty principle are formulated by Born and
Jordan in a subsequent paper, published in [27]. This viewpoint on quantum me-
chanics is later somewhat obscured by the advent of the Schrédinger equation.
The Schrddinger approach shifts the emphasis back to the more traditional tech-
nigue of solving partial differential equations, while the more modern viewpoint
of Heisenberg implies a much more serious change of paradigm, affecting our
most basic understanding of the notion of spaces. The Heisenberg appproach
can be regarded as the historic origin of noncommutative stadium.



Remark. (Added). If necessary, one may recall the following basic facts in
quantum mechanics from a Japanese exercising book [119].

Let v denotes a frequency of a photon. Its energy is given as hv and its
momentum is % = %, where h denotes the Planck constant and ¢ is the light
speed, and A is its wavelength. Hence % = £ may be another frequency.

Let A[m] denotes a wavelength of a light or photon of an atom such as

hydrogens. The spectral sequences are given as

1 1 1
—=Ryl{—=-—=1], nf=n;+kkeN,
A (n? n"}) f t

where Ry is the Rydberg constant. It is called that the sequence is the Lyman
sequence for n; = 1, the Balmer for n; = 2, the Paschen for n; = 3, the Bracket
for for n; = 4, and the Pfund for n; = 5. :

For general atoms, the spectral rays are approximately obtained as

1 1 1 R R ~
A R((”'i+5i)2 - ("f+5f)2) T+ 62 (g +0p)? =T-Tr

where each term Tj is said to be a spectral term. That is, to say that each
spectral ray is represented as the difference or combination of two spectral terms
or numbers, used by Ritz (1908), known as the Ritz combination law.

In the classical model, frequencies can take integer multiples of the basic fre-
quency. While in the quantum model, frequencies can take combination values
under the law above.

Now set vnm = ¢(Tn — Tra). Then it holds that the relation:

Vni = Vnm + Umi.

In the classical model, any addition between two frequencies is taken as another
frequency, but in the quantum model, such a special addition only is allowed.
On the other hand, if we set W; = Tjch, then

u=%(W,~—Wf)@hu=W,<—Wf.

Hence, each Wj is an energy as a a stationary state.

An electron of a hydrogen atom has as angular momentum L among the set
{n#= |n € N}. Each integer n is said to be a principal quantum number, and it
corresponds to such an energy W, called as energy level. <«

4 Noncommutative spaces as quotients

A large source of examples of noncommutative spaces is given by quotients of
equivalence relations. Let X be an ordinary space such as a smooth manifold
or a locally compact Hausdorff space. If X is compact, then this space can be
described via C(X) the algebra of continuous, complex-valued functions on X,



that is a unital abelian C*-algebra. If X is non-compact, this space can be done
via Cp(X) the algebra of continuous, complex-valued functions on X vanishing
at infinity, that is a non-unital abelian C*-algebra.

Suppose then that we are interested in taking a quotient space ¥ = X/ ~
of X with respect to an equivalence relation. In general, it is expected that the
quotient may have a less topology with respect to separating of points. Even
when X is a smooth compact manifold, the quotient Y may not even be a
Hausdorff space. In such a case, one may consider to characterize the space Y
through its ring of functions, defined as follows. That consists of functions in
C(X) invariant under the equivalence relation, so that the functions are constant
on each equivalence class or an orbit of a point. If each of orbits are dense in
X, in other words, an equivalence relation is (topologically) minimal, then the
algebra of such orbit-wise constant, continuous functions on X becomes C of
constant functions, the trivial C*-algebra.

There is another better way to associate to the quotient space Y a ring of
functions which is nontrivial for any equivalence relation. This requires drop-
ping commutativity of the algebra. Consider functions f,; of two variables a
and b defined on the graph of an equivalence relation, with a product which is
no longer the commutative point-wise product, but the noncommutative convo-
lution product, dictated by the groupoid of the equivalence relation. In general,
the elements of the algebra of functions (f,5) with a ~ b act as bounded oper-
ators on the Hilbert space, i.e. the L2-space on the equivalence classes. It also
guarantees the convergence in the operator norm of the convolution product as

((fab) * (gnb))ac = Z SabGee-

b:a~broc

Given below are a few examples to illustrate the difference between the classical
construction and that in noncommutative geometry.

Example 4.1. Let X = {zq,z,} be a set of two points. Let Y be the quotient
space of X with the equivalence relations zp ~ z; and x; ~ z; (j = 0,1). The
algebra of continuous functions on X invariant under the relation becomes C.
While the graph of the relation is just the product space X x X. Hence functions
on X x X may be regarded as 2 x 2 matrices as:

r=(fo 1),

and their products are given by the matrix multiplication as

frg= (foogoo + forgi0  foogor + forg1
Si0900 + fu1g10  frogm + fuign

Therefore, the algebra of these functions is the 2 x 2 matrix algebra over C,
M3(C), the simple unital non-trivial C*-algebra acting on the complex Euclidean
space C2. Note that C and M,(C) are not isomorphic as an algebra or a C*-
algebra, but they are Morita equivalent as an algebra. Note as well that the



spectrums of C and AM(C) are composed of only one point. This example
represents the typical situation where the quotient is nice in the sense that two
constructions give Morita equivalent algebras. In this sense, Morita equivalent
algebras are regarded as the same (commutative or noncommutative) spaces in
noncommutative geometry. <

Example 4.2. Let X =[0,1] x {0,1} and let Y = X/ ~ with the equivalence
relation (z,0) ~ (z,1) for z € (0,1). Then the algebra of continuous, C-valued
functions on X invariant under the relation becomes C([0, 1]) (not C, corrected)
the C*-algebra of continuous, complex-valued functions on [0, 1]. On the other
hand, the graph of the relation becomes (X x X)/ ~, which consists of both
the dense subset

[((0,1) x {0, 1}) x ((0,1) x {0, 1})]/ ~= (0,1) x {(0,0),(0,1),(1,0), (1, 1)}

and the 4 points

{(0,0)} x{(0,0)}, {(0, )} x {(0, )}, {(1,0)} x {(1,0)} and {(1,1)}x{(1,1)}.

" Then the corresponding algebra of continuous, 2 x 2 matrix valued functions
on [0, 1], implied by continuity for that of the restrictions on (0,1), becomes
the C*-subalgebra of the C*-algebra C([0,1], M2(C)) =2 C([0,1]) ® M>(C) of
continuous, Mp(C)-valued functions f on [0,1], with f(0) and f(1) diagonal.
Such an algebra is so called as a dimension drop algebra. We may say it as
a C*-algebra of matrix-valuned, continuous functions on the interval, partially
vanishing and non-vanishing to the diagonals at infinity.

In this case, these C*-algebras are not Morita equivalent. This can be seen
by computing their K-theory groups (appeared). It means that the approach of
noncommutative spaces can produce something genuinely new when the quo-
tient space ceases to be nice at the boundary.

In general, the first kind of the construction of functions on the quotient
space is cohomological in nature that if one seeks for functions satifying certain
equations, but then there are very few solutions. Instead, the second approach
in noncommutative geometry can typically produce a large class of functions on
noncommutative spaces. <«

5 Spaces of leaves of foliations

There is a rich collection of examples of noncommutative spaces given by the leaf
spaces of foliations. The conection between noncommutative geometry and the
geometric theory of foliations is far-reaching obtained, for instance, through the
role of Gelfand-Fuchs cohomology, of the Godbillon-Vey invariant, and of the
passage from type III to type II using the transverse frame bundle. It is the class
of such examples that triggered the initial development of cyclic cohomology (cf.
[148]), of the local index formula in noncommutative geometry, as well as the
theory of characteristic classes for Hopf algebra actions.



The construction of the algebra associated to a foliation is a special case of
the construction in the previous section, but with the presence of holonomy and
the special care for the case where the graph of a foliation is non-Hausdorff.
Recall the basic steps below.

Remark. (Added). Before doing so, recall some notions in manifolds from [183].

For f a smooth function on a smooth manifold A/, the differential of f at
p € M is the linear map df, : Tp(M) — R defined by df,(X) = X(f), which is
identified with an element of T,(A)*.

Let ¢ : M — M’ be a continuous map between smooth manifolds. If fo ¢
for any f € C*°(M’, R) is smooth, then v is said to be smooth.

The differential of such a smooth map ¢ at p € A is the lincar map
dpp : To(M) — Ty(p)(M') defined by dp,(X) = X’ with X’(g) = X(g o) for
g € C™(M',R).

If dpp is surjective, the point p is said to be a regular point and ¢(p) is to

be a regular value. If not, p is to be a critical point and ¢(p) to be a critical
value. .
If dpp at every p € M is injective, ¢ : M — A’ is said to be an immersion.
If so, for any p € M, there is a neighbourhood U, of p such that the restriction
of ¢ to Uy is a homeomorphism. An immersion is said to be an embedding if
@ is also injective.

A submanifold M of a smooth.manifold M’ is a smooth manifold M C M’
. such that the inclusion map is an immersion. Such a submanifold is regular if
the inclusion map is an embedding,.

A smooth map between smooth manifolds without critical points is said to
be a submersion. If ¢ : M — M’ is a submersion, then for any g € M’, ¢~1(q)
is a regular submanifold of M, and M is covered by a family of mutually disjoint
submanifolds, as M = Ugeprro ™ (q).

Let ¢ : M — M’ be a smooth map and N’ be a submanifold of M’'. Then
T,(N') is a subspace of Toq(M') for ¢ € N’ and thus there is a quotient map
g : Tg(M') — Tg(M')/T,(N’). The map ¢ is transverse to N’ if 7,y o dpp :
T, (M) — To(M')/T,(N’) is surjective. If so, o~ !(N’) is a submanifold of M.

The transversality theorem states that for any smooth map ¢ : M — M’
and any submanifold N’ of M’, there is a smooth map 7 : M — M’ transverse
to N’, which is arbitrary approximately near to .

If M, N are submanifolds of M’, then M and N intersect transversely if
the inclusion map M C A’ is transverse to N.

A vector field X on M (or its subset) is defined to be a function sending each
point p € M to a tangent vector X, € T,M. It is also defined to be a section
of the tangent bundle TM over M. For any f € C°(M,R) and X : M - TM
as a section, the function X f on M is defined by (X f)(p) = X, f forpe M. If
each function X f is smooth (or C" class), then X is said to be a smooth (or C™
class) vector field on M. <«

Let M be a smooth manifold and TM its tangent bundle over M, so that
for each x € M, T; M is the tangent space of M at xz. A smooth subbundle F
of TM is said to be integrable it one of the following equivalent conditions is



satisfied (cf. (66, I 4.0]):

(2) Any z € M is contained in a submanifold W (z) (a leaf) of M such that
T,(W(z)) = F, for y € W(z). ’
(b) Any z € M is in the domain U C M of a submersion p: U — R?
with ¢ = codim(F) and with F, = ker(p.), fory € U.
(c) C®(F) = {f € C*(TM)| fx € Fz,z € M} is a Lie algebra.
(In other words, if f,g € C°(F), then [f,g] € C(F): (Frobenius).)
(d) The ideal J(F) of smooth exterior differential forms which
vanish on F is stable under exterior differentiation.

Any 1-dimensional subbundle F of TM{ is integrable. But if dim F > 2, then
the condition is non-trivial. For instance, if p: P — B is a principal H-bundle
over B with H a compact structure group, then the bundle of horizontal vectors
for a given connection is integrable if and only if the connection is flat.

A foliation of M is given by an integrable subbundle F' of TM. The leaves
of the foliation (M, F') are the maximal connected submanifolds L of M with
T:(L) = F; for € L. The partition of M into leaves as M = UqexLa is
characterized geometrically by its local triviality in the sense that every point
z € M has a neighbourhood U and a system of local coordinates (z7 )i=1,-- dim M
called foliation charts, so that the partition of U in connected components.of
leaves corresponds to the partition of

Rdim M o_ Rdim F x Rcodim(F)

into the parallel affine subspaces of the form RY™ ¥ x {point}. These are the
leaves of the restriction of F, called plaques.

The set F = M/F of leaves of a foliation (M, F) is in most cases a noncom-
mutative space (to be corresponded). In other words, even though as a set it has
the cardinality of the continuum, it is in general not so at the effective level and
it is in general impossible to construct a countable set of measurable functions
on M that form a complete set of invariants for the equivalence relation coming
from the partition of M into leaves as M = Uy erLo. Even in the simple cases
in which the set 7 = M/F of leaves is classical, it helps to introduce associated
algebraic tools in order to get a feeling for their role in the singular case.

(Added). In the literature as [183], a foliated manifold is defined to be
M of (M,F) with F as such a foliation. In this case, the set of all tangent
vectors of M tangent to leaves of F defines such a subbundle F of TM, called
the tangent bundle of F denoted as T(F). Also, the set of all tangent vectors of
M orthogonal to leaves of F defines the normal bundle of F denoted as N(F),
which is isomorphic to TM/T(F). <«

To each foliation (M, F) associated is canonically a foliation C*-algebra
C*(M, F) which encodes the topology of the space of leaves. The construc-
tion is basically the same as the general one for quotient spaces mentioned
above. But there are interesting nuances coming from the presence of holonomy



in the foliation context. To take it into account, first construct a manifold N
with dim N = dim A + dim F, called the graph or holonomy groupoid of the
foliation, which refines the equivalence relation coming from the partition of Af
into leaves as M = Ur_ 7 Lo- This construction is due to' Thom, Pradines, and
Winkelnkemper (cf. [238] missing).

An element v of N is given by two points £ = s(y) and y = r(7) of M
together with an equivalence class of smooth paths: y(¢) € M for ¢ € [0, 1] such
that v(0) = = and (1) = y, tangent to the bundle F', so that %7(t) € Fyu
for t € [0,1], up to the following equivalence in the sense that v, and v. are
equivalent if and only if the holonomy of the path y2 0/ ! at the point z is the
identity. (Namely, those elements may be identified with classes of m;(L) for a
left L in A/ and some base point in L, and which may be identified with the
holonomly group for L, of germs of diffeomorphisms).

The graph N has an obvious composition law that the composition -y o+ for
7,7 € N makes sense if s(y) = 7(7’). If the leaf L which contains both z and y
has no holonomy, then the class of the path y(t) in N only depends on the pair of
z and y. The condition of trivial holonomy is generic in the topological sense of
dense Gs. In general, for £ = s(7) fixed, the map from N, = {y € N|s(y) =z}
to the leaf L through z, given by sending v € N, to y = r(%), is the holonomy
covering of L.

Both the range and source maps r and s from the manifold N to M are
smooth submersions and the paired map (r,s) : N2 — M2 is an immersion
whose image in M? is the often singular, subset

{(y,z) € M x M |y and z are on the same leaf}.

In the first approximation, elements of C*(M, F') are viewed as continuous
matrices or sections k(z,y), where (z,y) varies in the subset above. Now de-
scribe the foliation C*-algebra in more details. For the notational convenience,
assume that the manifold N is Hausdorff. Since it fails in the case of interesting
examples, also explain briefly how to remove this hypothesis.

1

The basic elements of C*(M, F) are smooth half-densities f € CZ°(N,QF)

1
with compact support on N. The bundle QF; of half-densities over N is defined
1
as follows. First define a line bundle Q7; over M, such that for z €, M, one lets

1 . .
Q2 be the 1-dimensional complex vector space of maps from the exterior power
AFF, with k = dim F to C satisfying

p(W) = |\Zp(v), veEA*F,AeR

L L
Then, for vy € N, identify Q2 with 1-dimensional complex vector space Q;‘} 0z,
where 7 is such a path between z and y. In other words, define

1 1 1
N =1"(QF) ® s*(Q4))-
1
The bundle Q}, is trivial on M. Thus we could choose once and for all a
TSP . 1
tirvialization » turning elements of C2°(N, Q%) into functions. The use of half
densities makes all the constructions canonical.



1
For f,g € C°(N, %), the convolution product fxg is defined as the equality

(f*9)(7) = / Fon)alr).

T1072=Y

This makes sense because, for fixed v such a path between z and y and fixing
vy € AFF, and vy € A*F,, the product f(71)g(7;'v) defines a one-density on
N¥ = {v € N|r(y1) =y}, which is smooth with compact support and vanishes
if 1 is not contained in the support of f, and hence can be integrated over N¥
to give a scalar, namely the right hand side (f * g)() evaluated on v; and v,.

The involutive operation is defined as f*(y) = f(y~!). Namely, for fixed v
such a path between z and y and fixing v € A*F, and v, € A¥F,, then f*(7)
evaluated on v, and v, is equal to f(y~1) evaluated on v, and v;.

It then follows that C2°(N, Q,%v) becomes an involutive or x-algebra.

For each leaf L of (M, F), one can define a natural representaion of this
+-algebra on the L2-space of the holonomy covering L™ of L, as follows. Fix a
base point z € L, identify L™ with N, = {y € N|s(y) = z} and define

(reec(NOM = [ Fl)elm). €€ L2(V),

T1072

which is the L2-space of all square integrable, half-densities on N,. Given such
a path v between z and y, there is a natural isometry between L2(N,) and
L2(Ny), which transforms the representation x; to .
1
By definition, C*(M, F) is the C*-algebra completion of CZ°(N,Q};) by the
universal norm with respect to leaves L in M~

ImzeL (FII-

IFll= sup
z€L,LCM
Note that the foliation C*-algebra C*(M, F) is always separable with respect
to the norm and admits a natural smooth dense subalgebra as C°(M, F) =
L
C(N,Q}) of smooth compactly supported half-densities on N.
If such a leaf L has trivial holonomy, the corresponding representation mzer,
is irreducible. In general, its commutant (algebra) may not be only scalars and
is generated by the action of the (discrete) holonomy group NZ on L2%(Ny).

Example 5.1. (Edited). If the foliation comes from a submersion p: M — B,
then its graph N is .

N = {(z,y) € M x M |p(z) = p(y)},

which is a submanifold of M x M, and then C*(M, F) is identical to the algebra
of the continuous field of Hilbert spaces L2(p~!({z})) for z € B. Thus, unless
dimF = 0, it is isomorphic to the tensor product of Cp(B) with K(H) the
elementary C*-algebra of compact operators on a Hilbert space H.

If the foliation comes from an action of a Lie group G in such a way that
the graph is identical to M x G (this is not always true, even for flows with



G = R), then C*(M, F) is identical to the reduced crossed product Co(M) %, G
of Co(M)by G. =

Moreover, the construction of C*(M, F) is local in the following sense. If
U Cc M is an open subset and F’ is the restriction of F to U, then the graph
N’ of (U, F’) is an open subset in the graph N of (M, F), and the inclusion
C§°(N’,Q,%v,) c C(N, Q‘%,) extends to an isometric *-homomorphism from
C*(U,F') to C*(M, F). The proof is straightforward and also applies to the
case of non-Hausdorff graph.

Let us now briefly explain how the construction of the foliation C*-algebra
C*(M, F) is done in the case where the graph of the foliation is not Hausdorff.
This case is rather rare, since it never -occurs if the foliation is real analytic.
However, it does occur in the cases with topologically interesting foliations,
such as the Reeb foliation of the 3-sphere, which are constructed by patching
together foliated manifolds (M}, F;) with boundaries, where the boundary OM;
is a leaf of F;. In fact, most of the constructions done in geometry to produce
smooth foliations of given co-dimension on a given manifold give non-Hausdorff
graphs. The C*-algebra C*(M, F) turns out in this case to be obtained as a
fibered product of the C*-algebras C*(Mj, Fj).

Example 5.2. (Added). Recall from Foliation in [183] the Reeb foliation. Let
f(z) be a smooth, even function on the open interval (—1, 1) such that
d 1 |

Izl:}Tlmf'_(ﬂ;)- =0, k=0,keN.

For instance, may let f(x) = | tan(5E)[. Then ,,(‘E) = 2 cos?(Z£) (z > 0), which
goes tozeroas z — 1 withz < 1.

Consider the family of the ordinary graphs L. C R? of functions y = f(z)+c¢
force Rand z € (—1,1) and two lines L ,: £ = £1. These define the smooth
(Reeb) foliation for the product space Mz = [—1,1] x R C R? C R?, so that

1"12 = ('—lcElRLc) u (L,I u L,—l)'
Rotating M> around the y-axis of R? in R3 defines the smooth (Reeb) foliation
for M3 = D? x R Cc R® with co-dimension 1, as
M= D? xR = (UeerLy) U (S x R),

where D? is the closed unit disk in R? with the boundary dD? = S!, and the
leaf L as the rotation of L. has a bundle structure over the interval [c, 00) with
fibers given as a point at ¢ and as a circle at other points.

That foliation for Mj is invariant under translation along R the y-axis. Hence
it induces the similar (Reeb) foliation for D? x S! as the Reeb_component, as

D? x 8§ = (UeerLy) U T?.

Note as well that the induced leaf L' in D? x S! has the closure with the
boundary equal to the real 2-dimensional torus T2.



Since the real 3-dimensional sphere 3 is obtained by attaching the boundary
as the 2-torus T2 of two copies of D? x S!, the Reeb foliation for S? is given
by taking the Reeb foliation for D? x S* component-wise. <«

In the general, non-Hausdorff case, the graph N of (A{, F') being non-Hausdorff
may have only few continuous functions with compact support. However, by
being a manifold, we can give a local chart as x : U — RY¥™~_ Then take a
smooth function f € C(R4™ V) with the support of f contained in x(U), and
consider the function on N equal to fox on U and to 0 outside of U. If N were
Hausdorff, then this would generate all of C° (V) by taking linear combinations.
1In general, we take this linear span as the definition for C°(N). Note that we
do not get continuous functions, since there may well be a sequence u, € U
with two limits, one in the support of f o x and the other in the complement of
U.

The above definition of C2°(N) extends to define C°(N, Q,%,) the space of
smooth half-densities on N with compact support. It then follows that t';he
convolution product and the involution are defined for elements of C&°(N,Q3%).

Moreover, proceed exactly as in the H?usdorff case and construct the repre-
sentation mzey, of the x-algebra CZ°(N,Q}) on the Hilbert space L2(N;). Note
that though N is not Hausdorff, each N, is Hausdorff, being the holonomy
covering of the leaf L th‘roxljgh x.

For each f € C®(N,Q%) and x € L C M, the operator mzer(f) is smooth
and bounded on L2(N).

Exactly as in the Hausdorff case, the foliation C*-algebra C*(M, F)is defined

to be the C*-completion of C(N, Q,%v) with the norm

Willarr = sup |lwzer(F)Il-
2€L,LCM

There is the so obtained functor from foliations to foliation C*-algebras,
which makes it possible; first of all, to translate from basic geometric properties
to corresponding algebraic ones. The simplest examples of foliations already
exhibit remarkable C*-algebras.

Example 5.3. (Edited). For instance, the horocycle foliation of the unit sphere
bundle of a Riemann surface with genus > 2 gives a simple C*-algebra without
idempotents.

The Kronecker foliation with angle # (as slope, ratio, or 278 radian) nonzero
gives rise to the noncommutative 2-torus, which is simple if and only if 8 is
irrational (cf. §6 below). <

In the type II situation with the presence of a holonomy invariant transverse
measure A, the basic result of the theory is the longitudinal index theorem which
computes the L2-index of differential operators D on a foliated manifold (M, F),
which are elliptic in the longitudinal direction, i.e., the restrictions Dy, of D to
the leaves L are elliptic operators.



Let us start with a pair of smooth vector bundles E|, E5 on-A together with
a differential operator D on M from sections of Ey to those of E» such that:

(1) D is restricted to leaves in the sense that (DE), only depends on the
restriction of a section £ of F; to a neighbourhood of z in the leaf of z, i.e., D
only uses partial differentiation in the leaf direction.

(2) D is elliptic when restricted to any leaf.

Theorem 5.4. ([58]). (a) There ezist Borel transversals B and B’ respectively
such that the bundles (I*(L N B))Leayr and (12(L N B’)) ey are measurably
isomorphic to the bundles (ker(Dp))remy/r and to (ker(DL))rear/F-

(b) The scalar A(B) < oo is independent of the choice of B and is denoted
as dim) (ker(D)).

(k +1) (ch{op)Td(Fc), [C]),

(c) dimy(ker(D)) — dimy(ker(D")) = (-1)———=
where k = dim F, ch(op) is the Chern character (cohomology) class (or form)
for the symbol op of D, TA(F¢) is the Todd genus class (or form), and [C] €
Hi(M,C) is the homology class of the Ruelle-Sullivan current C, which is a
closed de tham current of dimension k and encodes the transverse measure A
by integtration of a k-dimensional differential form w on M along the plaques
of foliation charts (and as well, {-,-) means the pairing between cohomology and
homology theories)

In particular, the Betti numbers B; of a measured foliation are defined by
(58], and given is the L2-dimension of the space of L2-harmonic forms along the
leaves. More precisely,

Theorem 5.5. ([58]). (Edited). (a) For each integer j with 0 < j < dim F,,
there erists a Borel transversal B; such that the bundle (H?(L.C))Lem/r of j-
th square integrable harmonic forms on L is measurably isomorphic to (I2(L N
B))rem/F-

(b) The scalar B; = A(B;) is finite, independent of the choice of B; and of
the choice of the Fuclidean structure on F.

(c) One has 3°;(—1)B; = x(F, )), which is the Euler characteristic, given
by the pairing of the Ruelle-Sullivan current C with the Euler class e(F) of the
oriented bundle F over M.

Extending ideas of Cheeger and Gromov [51] in the case of discrete groups,
It ‘is shown by D. Gaboriau [115] (and [116] missing) as a recent remarkable
result that the Betti numbers 3;(F, ) of a foliation with contractible leaves are
invariants of the measured equivalence relation R = {(z,y)|y € L,z € L}.

In the general case, it can not be expected to have a holonomy invariant
transverse measure. In fact, the simplest foliations are of type III from the
measure theoretic point of view. Obtaining an analogue in general as the theo-
rems above is the basic motivation for the construction of the assembly map.

Let us briefly state the longitudinal index theorem as follows. Let D be as
above an elliptic differential operator along the leaves of the foliation (M, F).



Since D is elliptic, it has an inverse modulo C*(A{, F'), and hence it gives an
element ind, (D) of Ko(C*(2{, F)), which is the analytic index of D.

The topologial index is obtained as follows. Let ¢ be an auxiliary embedding
of a'manifold M into R?". Let now IV be the total space of the normal bundle to
the leaves as N, = i,(F;)* C R?". Foliate M~ = M xR?" by F~ with ) =
Fp x {0}, so that the leaves of (M™, F™) are just L™ = L x {t}, where L is a leaf
of (M, F) and ¢t € R?*. The map sending (z,£) to (z,i(z) + £) sends an open
neighbourhood of the 0-section in N into an open transversal Tof the foliation
(M, F~). For a suitable open neighbourhood Q of T in M~, the foliation
C*-algebra C*(Q, F§') of the restriction £y of F™~ to Q is Morita equivalent to
Co(T). Hence the inclusion C*(Q, Fg) C C*(A[~, F™) yields a K-theory map:
K°(N) = Ko(C*(M™~,F™)). Since C*(M~,F~) = C*(M, F) ® Cp(R?"), then
the Bott periodicty implies the equality Ko(C*(M™, F™)) = Ko(C* (M, F)).

Using the Thom isomorphism, K°(F*) is identified with K°(N), so that we
get by the above construction the topological index:

ind, : KO(F*) — Ko(C*(M, F)).

Theorem 5.6. (Edited). The longitudianl index theorem of Connes and Skan-
dalis ([97]) is the equality:

indo(D) = ind,([op]) in Ko(C* (M, F)),
where op is the longitudinal symbol of D and its class [op] € K°(F*).

Since the K-theory group Ko(C*(M, F)) is hard to compute, one needs more
computable invariants of its elements, and this is where cyclic conomology enters
the scene. In fact, its early development is already completed in 1981 for that
precise goal (cf. [148]). The role of the trace on C*(M, F) associated to the
transverse measure X is now played by cyclic cocycles on a dense subalgebra of
C*(M, F). A hard analytic problem is to show that these cocycles have enough
semi-continuity properties to define invariants of Ko(C* (M, F)). This is achived
as in [62] and makes it possible to formulate corollaries whose statements are
independent of the general theory, like the following:

Theorem 5.7. ([62]). Let M be a compact, oriented manifold and assume .
that the A"-genus AM(M) is non-zero, where M is not assumed to be a spin

manifold, so that A®(M) need not be an integer. Let then F be an integrable

spin sub-bundle of TM. Then there exists no metic on F, for which the scalar

curvalure of the leaves is strictly positive on M.

There is a rich interplay between the theory of foliations and their charac-
teristic classes and operator algebras even at the measure theoretic level, as the
classification of von Neumann factors.

In a remarkable series of paper, J. Heitsch and S. Hurder [132] (cf. [138]
missing and [139]) have analyzed the interplay between the vanishing of the
Godbillon-Vey (GV) invariant of a compact foliated manifold (M, F) and the
type of the von Neumann algebra of the foliation. Their work culminates in the
following result of S. Hurder ([138] missing):



"Theorem 5.8. If the von Neumann algebra of a foliated compact manifold
(M, F) is semi-finite, then the Godbillon-Vey invariant vanishes.

In fact, it is shown that cyclic cohomology yields a stronger result, by proving
that if GV # 0, then the central decomposition of the von Neumann algebra
necessarily contains facctors whose virtual modular spectrum is of finite co-
volume in R}. Indeed,

Theorem 5.9. ([62]). Let (M, F) be an oriented, transeversally oriented, com-
pact, foliated manifold with codim(F) = 1. Let M be the assocaiated von Neu-
mann elgebra, and mod(9M) be its flow of weights. Then, if the Godbillon-Vey
class of (M, F) is non-zero, then there exists an invariant probability measure
for mod(9M).

Actually constructed is an invariant measure for the flow mod(M), exploit-
ing the following remarkable property of the natural cyclic 1-cocycle 7 on the
algebra A of the transverse 1-jet bundle for the foliation:

When viewed as a linear map & from A to its dual, § is an unbounded
derivation, which is closable, and whose domain extends to the center 3 of the
von Neumann algebra generated by A. Moreover, § vanishes on this ceter, and
elements h € 3 can then be used to obtain new cyclic cocycles 7, on A. The

. pairing defined as I(h) = (7, u(z)) with the K-theory classes p(x) obtained
under the assembly map u, which is constructed by [16], does give a measure
on 3, whose invariance under the flow of weights follows from discreteness of
the K-theory group. To show that it is non-zero, use an index formula that
evaluates the cyclic cocycles, assocaiated as above to the Gelfand-Fuchs classes,
on the range of the assembly map .

The central question in the analysis of the noncommutative leaf space of
a foliation is the step 3, namely the metric aspect which entails in particular
constructing a spectral triple describing the transverse geometry. The reason
why such a problem is so difficult is that it essentially amounts to doing metric
geometry on manifolds in a way, which is background independent, by using the
terminology of physicists, i.e., which is invariant under diffeomorphisms rather
than covariant as in traditional Riemannian geometry.

Indeed, the transverse space of a foliation is a manifold endowed with the
action of a large pseudo-group of partial diffeomorphisms implementing the
hoonomy. Thus, in particular, no invariant metric exists in the general case,
and the situation is similar to trying to develop gravity without making use of
any particular background metric, which automatically destroys the invariance
under the action of diffeomorphisms (cf. [94] and [190} both missing).

Using both the theory of hypo-elliptic differential operators and the basic
technique of reduction from type III to type II, a general construction of a
spectral triple is done by Connes-Moscocivi [89]. The remaining problem of the
computation of the local index formula in cyclic cohomology is solved by [90]
and leada in particular to the discovery of new symmetries given by an action
of a Hopf algebra which only depends upon the transverse dimension of the
foliation. This also leads to the development of the noncommutative analogue



of the Chern-Weil theory of characteristic classes [91] in the general context of
Hopf algebra actions on noncomutative spaces and cyclic cohomology, a subject
which is under-going in rapid progress, in particular thanks to the recent works
by M. Khalkhali [147] (missing), [148] and collaborators ([128], [149], [150],
[151]).

6 The noncommutative tori

The noncommutative torus is considered as the prototype example of a noncom-
mutative space, since it illustrates the properties and structures of noncommu-
tative geometries. Noncommutative tori play a key role in the early development
of the theory in the 1980s ([59]), giving rise to noncommutative analogues of
vector bundles, connections, curvature, etc.

Noncommutative tori can be regarded as a special case of noncommutative
spaces arising from foliations (cf. [66, I 4.8]). In this case, consider certain
vector fields on the ordinary real 2-dimensional torus T2 = R?/Z2. In fact,
consider the Kronecker foliation on T? as dz = fdy, where 8 is a given real
number. The case where 6 is irrational is especially interesting. Consider the
space of solutions of the differential equation: dz = 6dy for z,y € R/Z. In other
words, consider the space of leaves of the Kronecker foliation on T2.

(Added). Namely,

T? = Ueerszle, Le={(z.y) € (R/Z)*|z =0y +c} ~R.

There is the following vector bundle diagram:

FCTT? —— F, C T,T?
! ||
7 (#),=4(&) ) cr(Z),0R(F) .

with F; = {(dz), = 0(dy),} C (T,T?)* = R(dz), ® R(dy), the co-tangent
vector space of T2 at p € T2. Note that a section of the co-tangent bundle
(TT?)* over T? such as the function dz : p — (dz), is called a differential 1-
form. Note as well that any p € T? is contained in L. for some c € R such that
To(Lc) = Fg for any g € L.. Hence, the subbundle F is integrable, namely a
foliation bundle. <

Choose a transversal T to the Kronecker foliation, given by T = (R/Z) x {0},
so that T = S' (homeomorphic or diffeomorphic). Two points of the transversal,
which differ by an integer multiple of 8 give rise to the same leaf. Describe the
quotient space S'/8Z by the equivalence relation which identifies any two points
on the orbits by the irrational rotation or shift on T as Rg(z) = z + # mod 1.

May regard the circle S' = T and the quotient space T'//8Z at various levels of
regularity such as being smooth, topological, and measurable. This corresponds
to different algebras of functions on the space S* as

C=(S") c C(SY) c L=(SY).



When passing to the quotient S'/8Z, if we consider invariant functions under
the action, then the algebra of such functions at any levels has only constant
functions.

Instead, if we consider the algebra of functions on the graph of the equiva-
lence relation with the convolution product, then we obtain a highly non-trivial
noncommutative algebra as a noncommutative space, describing the space of
leaves of the Kronecker foliation. This is given in the algebraic category by the
irrational rotation algebra as

Ag = {(ai;)|4,5 € T, Li = L;}.

Namely, elements of the algebra are co x co matrices, but with finitely many
non-zero (rows with) entries associated to the transversal T = S! mod the
action. The algebraic rules become the same as for ordinary matrices (but with
product as multiplication of series). Since the equivalence on T is given by a
group action by Z, the construction coincides with the crossed product as an
algebra. )

(Added as a possible corresponding interpretation). Note that the graph of
the equivalence relation on T is the set

{(z,y) e TxT|z € T,y= Rpz,n € Z},

which is not discrete. But since the action of Z on T = S! is minimal, i.e., any
orbit is dense in T, then we may assume that the parameter space is just a single
orbit, i.e., a discrete space, to make sense of the matrix representation above.
Namely, assume that (z,y) = (Rne(zo), Rma(zo)) for some fixed zo € T and
n,m € Z. Moreover, an infinite row of the co x co matrix (a,,y) as above may
be identified with a function on T belonging to C(S!). In this sense, we can
define a C(S')-valued function on Z as Z 3 n + a, . € C(S') (coordinated as
n), which is viewed as an infinite column (an :)n. Then the product is defined
as the multiplication of series:

(@n.z)n * (bm,2)m = Z Qn ; Z bm.. <
. n m ’
For instance, in the topological category, Ay is identified with a dense *-
subalgebra in the crossed product C*-algebra as its norm closure:
Ap C—A;=ng =C(Sl) R, ZETS.

This crossed product has two natural generators as C(Sl)-valued (continuous)
functions on Z: for z € S,

1=1z) n=1, z n=0,
U= (Un,z)n = d = Unz)n =
(un.c) {0 1#neZ, and v = (vn.e)n {0 otherwise,

where u is identified with the generator of Z and v is done with that of C(S?).
In fact, any element b of g can be written as a (norm convergent) power series

b=(bnz) = buu", bn=ba(z) € C(SY),2€ S,
nez



where the multiplication rule is given by
ufu™' = foRy' = ap(f), fe€C(S"),a € Aut(C(S")).
(Added). Note as well that (cf. Rich Mountain [232])

axb= Zanu meu Zanu bu™
= Z Z an0f (bm)u™™ =" " anaj 2 (bt —n)u™

n m'=n+m

Z [Z @n0f (bm—n)Ju™ Z(a * b)(m),

m=m’ n m

where the summands are the convolutions with respect to the action cg. <

Since C(S?) as well as C*(S*), L*°(S?) are generated by the function v(t) =
e?™ for t € R (mod 1), it then follows that 2 as well as Ay are generated by
two unitaries u and v with presentation given by the commutation relation

vu = uv, \=e2™,

If we work in the smooth category, then any element of Ag° as a smooth crossed
product contained in %y and containing Ay, called as the smooth noncommu-
taive 2-torus, is given by a power series

Y bamu™™, bam € S(Z2),
(n,m)eZ?

where S(Z?) is the Schwartz space of sequences on Z2 of rapid decay.

In the definition of Ay, it is not always necessary to restrict to the condition
that points i,j are in the transversal T. Instead, it is possible to also form
another algebra as

Bs = {(ai;) |4, € T%, Li = L;}.

Now the parameter of integration is no longer discrete. But this ought to corre-
spond to the same noncommutative space in NG. In fact, the algebras are related
as the Morita equivalence, so that their C*-algebras are stably isomorphic as

By =AU Q K,

where K is the C*-algebra of all compact operators on a Hilbert space.
The tangent space to the ordinary 2-torus T? is spanned by the tangent
(direction) derivatives 2 3; and —"’- at any point of T2. By choosing coordinates

u and v with u = €?™* and v = 62’"5’ the tangent vectors are given by

.0 .
— =2miu— and — =27iv

Oz du M '

These have analogues in terms of derivations of the algebra as the noncommu-
tative torus. The two commuting vector fields which span the tangent space



for T2 correspond algebraically to two commuting derivations of the algebra
C*(T?) of smooth functions on TZ.

These derivations are extended to make sense by replacing the generators u
and v of C°(T?) by those of the smooth crossed product algebra A3, which
no longer commute. The corresponding derivations §, and &2 are given by the
same formulas as for 595 and 5%, so that

&1 (Z bp,mu™v™) = 2mi z by mu"v™,

n,m n.m
da( E bnmuv™) = 2mi E mby mvu™v™ ! = 27 _;_ mA"bp mu™v™.
n,m n,m nm

(Added). Hence it follows that

200, (Z b mu™v™) = 2mi Z nmA by muv™ =4d; 0 62(2 bp mu™v™).

nm nm n,m

Hence the derivations are commuting on A$° (as well as the other algebras).

(Added). Moreover,
S (@™ v™ + e (W V™) = (n 4 n o™ e o™
S (W™ (@™ v™)) = & (AR YY)y (g ) AT Y
Sa(u ™)™ V™ + ut S (u ™) = (mA” + m A" v o™
Sa((uv™) (™ v™)) = S(A™ u T ™)) = (m o+ m) AR e b mm’
It then follows that the Leibniz rule certainly holds for &, but not for &2 (7).

Instead of §2, we may consider 85 = 21ria‘—360 as an action from the right, with v
as the right multiplication (corrected). Then

Q(Z bn,mu"v™) = Z mbp mu™v™,
n,m n,m
and 85 0 ; = 4 005, and moreover,
6£(unvm)un'vm' + unvméé(un'vm') — (m + ml)unvmun'vrn"
Sa((mo™) (™ v™ ) = Gp(A™ wH YY) = (1 f )\ R ymebm’

Therefore, the Leibniz rule holds for §;. =
’ Just as in the classical case of a usual manifold, what ensures that the
derivations considered above are enough to span the whole tangent space is the
condition of ellipticity for the Laplacian A = §2 + 62. In Fourier modes, the
Laplacian is of the form n? + m?2, and hence A~! is a compact operator.

The geometry of the Kronecker foliation is closely related to the structure
of the algebra Ay. In fact, a choice of a closed transversal as T of the foliation
corresponds canonically to a finite projective module over the algebra Ay or 2.
In fact, the main result on finite projective modules over the noncommutative
2-torus T?% is the following classification result, obtained by combing those of
[59], [199], and [208|:



Theorem 6.1. Finite projective modules over gy are classified up to isomor-
phism by a pair of integers (p, q) such that p+¢@ > 0. For a choice of such a pair,
the corresponding module P, 4 is obtained from the transversal Ty, , given by the
closed geodesic of the 2-torus T? specified by (p,q), via the following construc-
tion. Elements of the module associated to the transversal T, 4 are rectangular
matrices (& ;) with (i,5) € T x S' with i and j belonging to the same leaf. The
right action of (ai ;) € Ag is by matriz multiplication.

For instance, from the transversal in the y-axis one can obtain the following
module over Ag. The underlying linear space is the usual Schwarz space S(R)
of complex-valued, smooth functions on R such that all of whose derivatives are
of rapid decay. The right module structure is given by the action of the two
generators u, v:

(Eu)(s) = €E(s+6) and (Ev)(s) = e2™€(s), s€ER.

Then the commutation relation vu = Auv is satisfied, and the space S(R) as a
right module over Ag or A is finitely generated and projective, i,e, it comple-
ments to a free module.

Finitely generated, projective modules play an important role in noncom-
mutative geometry, as they replace vector bundles in the commutative setting.
In fact, in ordinary commutative geometry, vector bundles are equivalently de-
scribed through their sections, which in turn form a finitely generated, projective
module over the algebra of smooth functions. The notion of finitly generated,
projective modules contiues to make sense in the noncommutative setting, and
provides in this way a notion of noncommutative vector bundles.

Suppose given a vector bundle E over a smooth manifold X, which is de-
scribed algebraically through the space C*°(X, E) = A of smooth sections on
X. The dimension of E is computed by the trace of the identity endomorphism.
In terms of the space of smooth sections on X and hence of finitely generated,
projective modules £ = pA™ for some m and some finite projection p € M (A),
it is possible to recover the dimension of E as a limit

1
dim4 £ = lim —#{Generators of £"},
n—oon

where #{- - - } means the number of a set.

This method is applied to the noncommutative setting. In the case of the
noncommutative tori, it then follows that the Schwarz space S(R) has dimension
dim 4, S(R) = 6. Similarly, one finds values p + ¢g@ for the more general case as
in the theorem above.

The appearance of a real-valued dimension is related to the density of transver-
sals in the leaves, that is, the limit

lim —#(Br ns)

r—co  |By|
where B, is the ball of radius 7 in a leaf and S = {z = 0}. In this sense,
the dimension @ of the Schwarz space measures the relative densities of the two
transversals S = {z =0} and T = {y = 0}.



In general, the appearance of non-integral dimension is a basic feature of
von Neumann algebras of type II. The dimension of a vector bundle is the
only invariant that remains when we use the algebra L>°(S!) of measurable
functions from the measure theoretic point of view. The von Neumann algebra
which describes the quotient space S'/0Z from the measure theoretic point of
view is the crossed product von Neumann algebra

R = L*(5") x4, Z.

This is the well known hyperfinite factor of type I/,. In particular, the classi-
fication of finitely generated, projective modules £ over R is given by positive
real numbers as the Murray-von Neumann dimension

dimg € € R,.

The simplest way to describe the phenomenon of Morita equivalence for
noncommutative 2-tori is given in-terms of the Kronecker foliation, where it
corresponds to reparameterizing the leaf space in terms of a different closed
transversal. Thus, Morita equivalence of the algebras 2y and 2y for 8 and ¢
in the same orbit by PG L2(Z) becomes simply a statement that the leaf space
of the foliation is independent of the transversal used to parameterize it. For
instance, Morita equivalence between 2y and A_p-: corresponds to changing
the parameterization of the space of leaves from the transversal T = {y = 0} to
the transversal S = {z = 0}.

More generally, an explicit construction of bimodules My g is obtained by
Connes [59] (cf. Rieffel [207]). These are given by the Schwarz space S(Rx Z/c),
with the right action of Ap given by

cd+d

—.n~-1) and vf(z,n) =" f(z,n),

uf(z,n) = f(z -

and with the left action of Ag- given by
l . . n
v f(z,n) = f(z - Z,n—a) and o f(z,n) = 2™ (@@ f(z,n).

The bimodule My ¢ realizes the Morita equivalence between Ag and Ay for

, _af+b
T cf+d

= g0, g€ PGL2(Z).

7 Duals of discrete groups

Noncommutative geometry provides naturally a generalization of Pontrjagin
duality for discrete groups. The Pontrjagin dual " of a finitely generated,
discrete abelian group is a compact abelian group. The dual of a more general,
finitely generated, discrete (non-abelian) group can be a noncommutative space.
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To see this, recall that the usual Pontrjagin duality assigns to a finitely
generated, discrete abelian group I' its dual group I'* = Hom(T,U(1) = T) of
characters of '. The duality between T and I'* is given by Fourier transform

(P2 Mm) =0z(va) =271 -2z €T forya =7 ---1p* €T, g, € TN,

where ;,--- ,v are generators of I', n = (ny,--- ,n) € Z* = T, and z =
(21, ,2) € T* 22 " (refined).

Moreover, the Fourier transform gives an identification between the C*-
algebra of continuous, complex-valued functions on I'"* and the group C*-algebra
of I

c@r™) = c*(D),

which is the universal C*-algebra completion of the group algebra C[I'| = C.(T)
or the Banach *-algebra {!(T') of absolutely summable functions on I'. Since I’
is commutative, C*(I') coincides with the reduced group C;(T), which is the
C*-algebra generated by I' under the left regular representation on the Hilbert
space {?(T') of square summable functions on T, and C} (') is a quotient of C*(G)
in general.

When T is non-abelian, the Pontrjagin duality is no longer applied in the
classical sense as above. Indeed, I'* is almost not Hausdorff, so that the left
hand side makes no sense. However, the right hand side still makes sense and it
behaves like the algebra of functions on a noncommutative space (as well as on
the unitary dual ', which is the space of equivalence classes of unitary repre-
sentations of I'). It can be said that for a non-abelian group I, the Pontrjagin
dual is certainly generalized to the unitary dual, but this is also rather limited to
such as the case where the unitary dual has a composition series with Hausforff
sub-quotients. More generally, the reduced group C*-algebra C:(T') as well as
C*(T') are viewed as a noncommutative space as an algebra of coordinates. In
fact, the representation theory of I is just identified with that of C*(T'), not of
Crz(T). (Detailed). .

As an example that illustrates the general philosophy above,

Example 7.1. Recall below that the dihedral group can be written as a semi-
direct product Z x Zs, which is isomorphic to the free product Zy * Zs, with
Zy=7Z[/2Z. .

First note that any representation of the free product group Z; xZ; =T
is identified with a pair of subspaces E and F in the Hilbert space H. Define
the operators u = 1 — 2pg and v = 1 ~ 2pp with pg and pr the projections
corresponding to E and F respectively. Then u = u*, v = »*, and

w?=1-4dpg+4pp=1 and v’ =1-4dpr+dpr=1.

Hence u and v represent reflections.

The group T is realized as and generated by words in the generators u and v.
Equivalently, the group I can be described as the semi-direct product Z x Z,,
by setting = = uw, with the action vzv™! = z~! (corrected).



The regular representation of I' is analyzed by using the Mackey machine
for semi-direct product groups. First consider representations of the normal
subgroup Z Then consider orbits of the action of Z;. The irreducible represen-
tations of Z are labeled by S' = T and given by sending z" to z" for n € Z and
z € S'. The action of Z is the involution given by conjugation sending z to Z.
The quotient of S by the Z,-action is identified with the closed interval [—1, 1]
by sending z to the real part Re(z). For points in the open interval (—1,1), .
the corresponding irreducible representations of I" are two-dimensional. At each
of the two end-points +1, two inequivalent 1-dimensional representations of I’
correspond. Then it follows that C*(I) is isomorphic to the dimension drop
C*-subalgebra of C([—1, 1], M2(C)), converging to the trivial C*-algebra at 1.
<

In the general theory for arbitrary discrete groups I', the first two basic steps
are known as follows:

(1) The resolution of the diagonal and computation of the cyclic cohomology
are provided by the geometric model due to Burghelea [39], given by the free
loop space of the classifying space BT. '

(2) The assembly BC-map ([16]) from the K-homology of the classifying
space BT to the operator K-theory of the reduced C*-algebra C}(I") refined to
take care of torsion in the group I' and gives an approximation to the K-theory
of C(I") (cf. [220]).

In the presence of a natural smooth subalgebra of C} (') containing the group
ring C[I'] and stable under holomorphic functional calculus, the combination of
the two steps above makes it possible to prove an index theorem which is a
higher dimensional form of Atiyah L2-index theorem for coverings. This gives
the first proof of the Novikov conjecture for hyperbolic groups ([88]). Since then,
the analysis of dense smooth subalgebras has played a key role, an in particular,
in the ground-breaking work of Vincent Lafforgue ([158]). See also [16], [142],
[220], and [221]. :

The next step (3) as the construction of a spectral geometry is directly re-
lated to the geometric group theory. In general, it can not be expected to obtain
a finite dimensional spectral triple since the growth properties of a group, ex-
cept for groups with polynomial growth, give a basic obstruction (cf. [63]). A
general construction of a §-summable spectral triple is given in [66, IV. 9]. Ba-
sically, the transition from finitely summable spectral triples to the §-summable
ones corresponds to that from the finite dimensional geometry to the infinite
dimensional case. In the #-summable case, the Chern character is no longer a
finite dimensional cyclic cocycle and it is needed to extend to the cyclic coho-
. mology using cocycles with infinite support in the (b, B) bicomplex, fulfilling
a subtle growth condition. The general theory of the entire cyclic cohomology
is developed in [65]. It is in general difficult to compute the Chern character
in the 8-summable case and it would take a long time until it would done for
the basic example as discrete subgroups of semi-simple Lie groups. In the case
of real rank one, it has been achieved by a remarkable paper of M. Puschnigg
[201]. '



The fourth step as the thermo-dynamics might seem irrelevant in the type
IT context of discrete groups. However, a small variant of the construction of
the group rings, namely, as the Hecke algebra associated to an almost normal
inclusion of discrete groups in the sense considered in [29], suffices to meet the
type I1I world. One of the open fields is to extend the above steps (1), (2), and
(3) in the general context of almost normal inclusions of discrete groups, and to
perform the thermo-dynamical analysis in the spirit of ['73] in that context.

8 Brillouin zone and the quantum Hall effect

An important application to physics of the theory of noncommutative 2-tori is
the development of a rigorous mathematical model for the integer quantum Hall
effect (IQHE) obtained by Bellissard and collaborators (cf. [19] and [20] both
missing and [66]) (cf. [46] as well).

The classical Hall effect is a physical phenomenon first observed in the 19th
century ([129] missing). A thin metal (sheet) sample is now immersed in a
constant uniform strong magnetic field, orthogonal to the surface of the sample.
By forcing a constant current to flow through the sample in a direction, the
flow of charge carriers in the metal is subject to a Lorentz force perpendicular
both to the current and and to the magnetic field. Then the equation for the
equilibrium of forces in the sample is given of the form

NeE +j AB =0,

where E is the electric field, e ancl) N are the charge and numti’er of the charge
carriers in the metal respectively, B is the magnetic field, and j is the current.

The equation above defines a linear relation, so that the ratio of the in-
tensity of the Hall current to the mtenblty of the electric field defines the Hall
conductance as

with B = |§| (as norm) the intensity of the magnetic field and § the sample
(sheet) width. The dimension-less quantity

vy = NB—? =onRy
is called the filling factor, while the quantity Ry = ;",— is the Hall resistance.
The filling factor measures the fraction of Landau level filled by conducting
electrons in the sample. Thus, classically, the Hall conductance, measured in
units of. 7‘—2, equals the filling factor.

In 1980, about a century after the classical Hall effect was observed, it is
shown by the experiment of von Klitzing that lowering the temperature below
1 K, the relation of Hall conductance to filling factor shows plateaux at integer
values ([153]). The integer values of the Hall conductance are observed with
a surprising experimental accuracy-of the order of 10~8. This phenomenon of



quantization of the Hall conductance is known as the integer quantum Hall effect
(igHe, changed).

It is first suggested by Laughlin [161] that the iqHe should be of a geometric
origin. A detailed mathematical model of the iqHe is developed by Bellissrd
and collaborators ([19] and [20] both missing). The model accounts for all
the important features of the experiment such as quantization, localization,
insensitivity to the presence of disorder, vanishing of direct .conductance at
plateaux levels, improving over the earlier Laughlin model.

The Bellissard approach to the iqHe is based on noncommutative geometry.
The quantization of the Hall condunctance at integer values is indeed geometric
in nature in the sense that it resembles another well known quantization phe-
nomenon that happens in the more familiar setting of the geometry of compact
two-dimensional manifolds, namely the Gauss-Bonnet theorem, where the inte-
gral of the curvature is an integer multiple of 27, a property that is stable under
deformations. In the same spirit, the values of the Hall conductance are related
to the evaluation of a certain characteristic class, or in other words, to an index
theorem for a Fredholm operator.

More precisely, in the physical model, made is the simplifying assumption
that the iqHe can be described by non-interacting particles. Then the Hamilto-
nian describes the motion of a single electron subject to the magnetic field and
an additional potential representing the lattice of ions in the conductor.

In a perfect crystal and in the absence of a magnetic field, there is a group
of translational symmetries. This corresponds to a group of unitary operators
u, for a € G, where G is the locally compact group of symmetries. Turning
on the magnetic field breaks this symmetry, in the sense that the translates
H, = uHu ! (a # lg) of the Hamiltonian H no longer commute with H.
‘Since there is no preferred choice of one translate over the others, the algebra
of observables must include all translates of the Hamiltonian, or more better,
their (translated) resolvents, namely the bounded operators

Ra(2) = ua(21 — H) 'u!, z & o(H) the spectrum of H.

For a particle of effective mass m and charge e, confined to the plane, subject
R —_
to a magnetic field of vector potential A and to a bounded potential v, the
Hamiltonian is of the form

1
H = ﬂ Z (pj —eAj)2+'uEHo+v,
i=12

where the unperturbed part Hp is invariant under the magnetic translations,
namely the unitary representation of the translation group R? given by

UgP(z) = exp( w(:v, a))¢¥(z — a),

with w the standard symplectic form in the plane.
The hull of the translated resolvents abave as the strong closure yields a
topological space, whose homeomorphism type is independent of the point z in



the resolvent (complement) set o(H)° of H. This provides a noncommutative
version of the Brillouin zone.

Recall that the Brillouin zones of crystals are fundamental domains for the
reciprocal lattice obtained via the following inductive procedure. The Bragg
hyperplanes of a crystal are the hyperplanes, along which a pattern of diffraction
of maximal intensity is observed, when a beam of radiation such as X-rays is
shone at the crystal. (For instance, for a convex part of a crystal which may not
be convex, such a hyperplane is just a line through on a face of the local convex
part). The n-th Brillouin zone consists of all the points such that the line from
that point to the origin crosses exactly n — 1 Bragg hyperplanes of the crystal
(where the hyperplaces are assumed not to contain the origin. But if they do
contain the origin, then we may choose the other point, not contained, instead.
In fact, the zones correspond to cutting as well as gradation of the crystal.)

More precisely, in the case above, if e; and e; are generators of the periodic
lattice, then there is a commutation relation

Ug, Uey = ez”ioue,ucl,

where 8 is the flux. (or bundle) of the magnetic field through a fundamental
domain for the lattice, in dimension-less units. Hence the noncommutative
Brillouin zone is described by a noncommutative 2-torus.

This can also be seen in a discrete model, where the Hamiltonian is given
by the operator :

(Haf)(m,n) = e~ ™ f(m,n + 1) + €™ f(m,n — 1)
+ e_i“’"f(m +1,n) + 2™ f(m - 1,n)

for f € L*(Z?) (modified). This is a discrete version of the magnetic Laplacian.
Note that the equation above can be written in the (corresponding) form

Ho=u+u"+v+v",
where
(uf)(m,n) = e ™™ f(m,n+1) and (vf)(m,n) =e " f(m + 1,n).
These satisfy the commutation relation of T2 with § = 22-%L (corrected).

Proof. (Added). For f, g € L%(Z?),

(uf.g) = e ™ f(m,n + 1)g(m,n)

= Y. flmkemmglm,k—1)=(f,u'g).
mk=n+1



It then f;)llows that u*u = uu*® = 1. Similarly, the same holds for v and v*.

(vuf)(m,n) = v(uf)(m,n) = e7**"(uf)(m + 1,n)
= e—i“’“e'i“'("'+l)f(m +1,n+1),

(wvf)(m,n) = w(vf)(m,n) = e ™ (vf)(m,n + 1)
= e imeiaz(nt) flon 4 1 0 4 1).

Therefore, obtained is vu = €32~ 81)yy = 2™y, O

In the zero-temperature limit, the Hall conductance satisfies the Kubo for-
mula

O = T(pplélpua 62p}1])’

"~ 2miRy
where p, is the spectral projection of the Hamiltonian on energies smaller than
or equal to the Fermi level (energy) E,, and 7 is the trace on Ap given by

‘r(z an mu"v™) = ag,,

n,m

and §,,d; are the derivations (where 2 should be replaced with 8). Here we
assume that the Fermi level u (or E,) is in a gap in the (possibly discrete)
spectrum of the Hamiltonian.' In this case, the spectral projection p, belong
to the C*-algebra of observables. The Kubo formula above can be derived
from purely physical considerations, such as transport theory and the quantum
adiabatic limit. ‘

The main result is then the fact that the integrality of the conductance
observed in the integer quantum Hall effect is expained topologically in terms
of the integrality of the cyclic cocycle T(a®(8,a'd2a% — d2a'8,a2)) ([59))-

The fractional quantum Hall effect (fqHe) is discovered by Stgrmer and
Tsui in 1982. The setup is as in the integer quantum Hall effect as follows.
In a high quality semi-conductor interface, which is modelled by an infinite
(area), 2-dimensional surface, with low carrier concentration and extremely low
temperatures similar to 10mK, in the presence of a strong magnetic field, the
experiment shows that the graph of ;"gay against the filling factor v exhibits
plateaux (which looks like bottoms) at certain (easy) fractional (or rational)
values.

The independent electron approximation, in the case of the iqHe, that re-
duces the problem to a single electron wave-function, is no longer viable in the
fqHe. So we need to incorporate the Coulomb interaction between the elections
in a many-electron theory. Nonetheless, it is possible to use a crude approxi-
mation, whereby we need to alter the underlying geometry to account for an
average effect of the multi-electron interactions. Can be obtained in this way
a model of the fqHe via noncommutative geometry, where we use hyperbolic
geometry to simulate the interactions (cf. Marcolli-Mathai [179], and [178] and
[180] both missing).



The noncommutative geometry approach to the integer quantum Hall effect
described above is extended to hyperbolic geometry in [40]. The analog of the
operator H, is given by the Harper operator on the Cayley graph of a finitely
generated, discrete subgroup I' of PSL2(R). Given a (normalized) 2-cocycle (or
multiplier) ¢ : I' x T' — U(1) satisfying ¢(vy,1) = o(1,7) =1 for vy € T and

o(n.Y2)e(mr2,13) = o(7, 1213)0(72,73), Y Y2. 13 €L

consider the right o-regular representation on the Hilbert space {?(T") of all
square summable, C-valued functions on T, of the form

5p(Y) = v(YNe(v's ), 1y el

satisfying r975, = o(v, 7' )75,

Proof. (Added). Indeed, for gy, g2, és‘e T,

(rg,7g,¥)(g3) = (rg, 'P)(gsgl)a (g3, 91)
= ¥((9391)92)o(9391, 92)7(g3. 1)
= ¥((93(9192))0(93, 9192)0(91, 92) = (91, 92)(75, 5,¥)(g3). <

O

For {g;}%_, a symmetric set of generators of I' (together with inverses), the
Harper operator is of the form

and the operator k — 7, is the discrete analogue of the magnetic Laplacian (cf.
Sunada (or Sand-Field) [228] missing).

The idea is that by the effect of the strong interaction with the other elec-
trons, a single electron sees the surrounding geometry as a hyperbolic world,
with lattice sites that appear as a multiple image effect, as the points in a
lattice I' in PSLo(R). Thus, consider the general form of such a lattice as
' =T(g;v1,- - ,Va), with generators a;, b;,c; fori=1,---,gand j=1,---,n
and with a presentation of the form

T = ({a:, b}, {¢;}ju1 | B (@i, Biler - - - en = 1,65 = 1),

with [a;, b = aibia] 'b,.' ! the multiplicative commutator and with vy,--- ,v;
torsions and with 2g the number of torsion free generators. The quotient of the
upper half-plane H in C by the action of I' as isometries

2(g,v1,--- ,vn) =MNH

is a hyperbolic orbifold.



Now let pg denote the spectral projection associated to the Fremi level E,
ie., PE = X(~co.E](H) by functional calculus. Then, in the zero temperature
limit, the Hall conductance is given by

on = trx (PE,PE, PE),

where trix denotes the conductance (Kubo) 2-cocycle. It is a cyclin 2-cocycle
on the twiseted group algebra C[T', o] of the form

trg (fo. f1, f2) = 3 tr(fo[85(f1)8549(f2) — 844 (f1)8;(f2)]),

i=1

where 0; are derivations associated to the 1-cocycles associated to a symplectic
basis {a;,b;}9-, of H'(T',R) (cf. [180] missing).

Within this model, obtained are the fractional values of the Hall conductance
as integer multiples of orbifold Euler characteristics

Xob(E(giv1, -+ vn)) =2—2g+v—neQ.

In fact, it is shown by Marcolli-Mathai ([178] and [180] both missing) that
the conductance 2-cocycle is cohomologous to another cocycle, i.e., the area 2-
cocycle, for which can be computed the values on K-theory and hence the value
of oy, by applying a twisted version of the Connes-Moscovici higher index
theorem [38].

While in the case of the integer quantum Hall effect, the noncommutative
geometry model is satisfactory enough to explain all the physical properties of
the system, but in the fractional case, the orbifold model can be considered as
a first rough approximation to the quantum field theory that governs the fqHe.
For instance, the geometry of 2-dimensional hyperbolic orbifolds is related to
the Chern-Simons theory through the moduli spaces of vortex equations. This
remains an interesting open question.

9 Tilings in Euclidean spaces

Recall now a tiling in R? as follows. Let {b,,--- ,bn} be a finite collection of
closed bounded subsets of R?, homeomorphic to the closed unit ball. These b;
are called proto-tiles. Usually assume that the proto-tiles are polytopes (or a
connected union of cubes) in R? with a single d-dimensional cell (fixed) as the
interiors of the proto-tiles. But this assumption can be relaxed. A tiling of R?
is then defined to be a covering ¥ of subsets with mutually disjoint interior, each
of which is a tile, which is defined to be a translate of one of the proto-tiles.
Given a tiling T of R%, can be formed its orbit closure under translations. The
metric on tilings of R? is defined as that two tilings are close if they almost agree
on a large ball centered at the origin in R. Fore more details and equivalent
definitions, may refer to [4] (and [21] missing).
. Tilings can be either periodic or aperiodic. There are many familiar ex-
amples of periodic tilings. The best known examples of aperiodic tilings are



the Penrose tilings ([197] missing). Similar types of aperiodic tilings have been
widely studied in the physics of quasi-crystals (cf. [14], [21], and also [167] triple
missing). '

It is understood early on in the development of noncommutative geometry
(cf. [63] and [66]) that Penrose tilings provide an interesting class of noncom-
mutative spaces. In fact, let £ be the set of tilings T; of R? with given prototiles
{b1," -+ .ba}. Define the equivalence relation on I" given by the action of R? by
translations. Namely, identify tilings that can be obtained from one another by
translations (or vector shifts). In the case of aperiodic tilings, this yields the
type of quotient construction described before, which leads naturally to non-
commutative spaces. An explicit description of the noncommutative space for
the case of Penrose tilings can be found at [66, II. 3].

To simplify the picture slightly, we can consider the similar problem dually
with arrangements of points of R? instead of tilings. This is the formulation used
in the theory of aperiodic solids and quasi-crystals (cf. [21] missing). Instead
of those, we consider discrete subsets £; of points of RY. Such an £ is said to
be a Delaunay set if there are radii 7 > 0 and R > 0 such that every open ball
U(z,r) of radius 7 meets £ at at most one point and every closed ball B(z, R)
of radius R meets £ at at least one point.

(Added). Namely, for any z € R?, U(z,7) N £ is either a one point set or
empty, and B(z,r) N £ always contains a point. <«

Define the counting measure associated to the set £ as

pe(f) =D f@), feC(RY)

! zeL

with f any continuous, real-valued function on R? with compact support. Define
the action of R? by translations as

pe > b_apte = peots, a€RY

where ¢, is the translation by a. Then take 2 as the orbit closure of the measures
pg in the space R(R?) of Radon measures, with the weak-* topology. Then
obtained is the (topological) dynamical system (£, t), where ¢ is the action of
R? by translations.

That dynamical system does determine a corresponding noncommutative
space, which is described as the quotient of Q by translations. Namely, the
crossed product C*-algebra

A=C(Q) x, R?
do arise. In fact, also consider the groupoid with set of units the transversal
X = {w € Q| The supp(w) containis 0},
arrows of the form (w,a) € Q x R¢, with source and range maps

s(w, a) = t_qw,T(w,a) =w and (w,a) o (t-qw,b) = (w,a + b)



* (cf. [21] missing). This defines a locally compact groupoid G(£, X).

Then the grouppoid C*-algebra C*(G(£, X)) and C(Q) x; R? are Morita
equivalent.

In the case where £ is a periodic arrangement points with a cocompact
symmetry (or commutative lattice) group I in R, the space (2 is an ordinary
commutative space, which is topologically homeomorphic to a torus, so that
Q = R?%/T'. The C*-algebra 2 in this case is isomorphic to C(I'"") ® K, where K
is the C*-algebra of compact operators on a Hilbert space and ' 2 T is the
Pontrjagin dual of the abelian group I' = Z9, which is obtained by taking the
dual of R? module the reciprocal lattice

I = {k e R? = (RY)*| (k,7) € exp(27Z) C T,y € ['}

(corrected). Thus, in physical language, 4" is identified with the Brillouin zone
B = R%/T* of the periodic crystal corresponding to £. In this periodic case, the
transversal X = £/ is a finite set of points. As well, the groupoid C*-algebra
C*(G(£, X)) is isomorphic to C(I'*) ® M.(C), where k is the cardinality of the
transversal X. Thus, the periodic case falls back into the realm of commutative
spaces, in the noncommutative geometry, while the aperiodic patterns give rive
to truly noncommutative spaces, which are highly non-trivial and interesting.

Two of the richest sources of interesting tilings are the zellijs and the muqar-
nas, widely used in ancient architecture. Also, those patterns, collectively de-
fined as arabesques, not only do exhibit highly nontrivial geometry, but they
reflect the intricate interplay between philosophy, mathematics, and aesthetics
(cf. [9) and [38] both missing). Some of the best studies on the zellijs and the
mugqarnas concentrate on 2-dimensional periodic patterns.

For instance, may find a quoted sentence in [9, p. 43] that:

“As Nature is based on rhythm, so the arabesue is thythmic in concept. It
reflects movement marked by the regular recurrence of features, elements, phe-
nomena,; hence it has periodicity.”

It seems from that viewpoint that only the theory of periodic tilings as
commutative geometry should be relevant in that context. However, more recent
studies (cf. [38], [43], [44], and [193] all missing) suggest that the design of
zellijs and muqgarnas is not limited to two-dimensional crystallo-graphic groups,
but, especially during the Timurid period, it involves also aperiodic patterns
with fivefold symmetry, analogous to those (non included) observed in quasi-
crystals. This is not an accident and is certainly due to the result of a highly
developed geometric theory. Indeed, already in the historic textbook of Abu’l-
Wafa’ al-Buzjani (940-998) on geometric constructions ([235] missing), there
is an explicit mention of meetings and discussions, where mathematicians are
directly involved alongside artisans in the design of arabesque patterns.

The appearance of aperiodic tilings is documented in the anonymous Per-
sian manuscript ([5] missing) titled as “On interlocking similar and congruent
figures”, which dates back to the 11th-13th century. Some of these aperiodic
aspects of zellijs and muqarnas are studied by Bulatov in a book ([38] missing),
which also contains Vil’danova’s Russian translation of the ancient Persian text.



For a more recent study of quasi-periodic tilings in Persian architecture, may
find it.

Remark. (Added). Recall from [237] the following facts. Zellige (zellij in
Arabic) is mosaic tile-work made from individually chiseled geometric tiles set
into a plaster base. This form of Islamic art is one of the main characteristics
of Moroccan architecture. It consists of geometrically patterned mosaics, used
to ornament walls, ceilings, fountains, floors, pools, and tables. Muqarnas is a
form of ornamented vaulting in Islamic architecture, the geometric subdivison
of either a squinch, cupola, or corbel into a large number of miniature squinches,
producing a sort of cellular structure, sometimes also called a honeycomb vault.
It is used for domes, and especially half-domes in entrances, iwans, and apses,
mostly in traditional Persian architecture. <«

10 NC spaces from dynamical systems

Let us look at some examples of noncommutative geometry (NCG) spaces as-
sociated to a dynamical system on a discrete set. For instance, such a discrete
dynamical system is given by a self-mapping of a Cantor set. Such noncommu-
tative spaces have been (first) extensively studied in (a paper of GPS [118] or
{222] (missing) for a survey) a series of papers, where C. Skau and his coworkers
have obtained remarkable results on the classification of minimal actions of Z on
Cantor sets using the K-theory of the associated (crossed product) C*-algebras.

It is found recently (cf. [99], [100] (missing), [174, §8] (missing), and (176,
§4]) that the mapping torus of such systems can be used to model the dual
graph of the fibers at the archimedean primes of arithmetic surfaces, in Arakelov
geometry, as in the particular case in which the dynamical system is given by
a subshift of finite type, encoding the action of a Schottky group I' in SL3(C)
on its limit set Ap in P!(C). In fact, the results of [99] are motivated by earlier
results of Manin [170] that provide a geometric model for such dual graphs in
terms of hyperbolic geometry and Schottky uniformizations.

Remark. Recall from [99] the following definitions. A Fuchsian group is a dis-
crete subgroup of PSLy(R) the group of orientation preserving isometries of the
hyperbolic plane H2. A Kleinian group is a discrete subgroup of PSLy(C) the
group of orientation preserving isometries of the 3-dimensional real hyperbolic
space H® = PSL3(C)/SU(2). For g > 1, a Schottky group of rank g is a
discrete subgroup of PSL,(C), which is purely loxodromic and isomorphic to a
free group of rank g. Schottky groups are Kleinian as particular examples.

Let Qr the domain of discontinuity of I', defined as the complement of Ar
in P(C). Let X = I'\Qr, which is a Riemann surface of genus g. A Schottky
uniformization of X is the covering Qpr — Xp. <«

More generally, given an alphabet with letters {l;,--- ,Ix}, we let S} the
space of a subshift of finite type consist of all right-infinite, admissible sequences

St o> w=la)i2y =aoaiaz---an -



‘in the letters of the alphabet. Namely, each a; is one of the letters {,,--- , Iy,
subject to an admissibility condition specified by an N x N matrix A = (A4;5)
with entries in {0, 1}, so that two letters [; and /; in the list can appear as
consecutive digits as axar41 in a word w if and only if the entry A;; of the
admissibility matrix A is equal to 1.

Similarly, define the space S5 as the set of doubly-infinite admissible se-
quences as

Sadw=[arlkez =" G-m @ 2a_100G102 - Gn -

The sets S} and Sa have a natural choice of topology. The topology on Sx
is generated by the sets as neighbourhoods of x € 5S4

We(x, ko) = {y € Salzi =y, k 2 ko} and
W®(x, ko) = {y € Sa|zk = yr, k < ko}

for kg € Z. This induces the topology on S,_"i by realizing it as a subset of S4, for
instance, by extending each sequence of S} to the left as a constant sequence.
Then consider the action T on Sa by the two-sided shift and that on S¥ by the

one-sided shift, both of which is defined by
(Tw)x = (T{axDk = tx41, w=[ax)r € SA,SI.

(Note that the action T on S} erases the first letter ap of a word w and then
shifts, so that it looks like the adjoint of the unilateral shift on a Hilbert space.)
Typically, the spaces S,"" and S4 are topologically Cantor sets. The one-sided
shift T on SI is a continuous surjective map, while the T on S4 is a home-
omorphism. (Note as well that the only shifting action on S} viewed in Sx
by extending is different from that on elements of S} by erasing, shifting, and
extending.)

Remark. (Added). By definition, if y € W*(x, ko) in S} with ko > 0, then
Tko(y) = T*o(z). If y € W*(x, ko) in Sa, then T*(y) (improperly) converges to
T*(z) as s — 400 (on compact subsets). Such a neighourhood W*(z, kp) of z
may be said to be a stable subset. On the other hand, if y € W*(x, ko) in Sy
(and in 8} C S4), then T~%(y) (improperly) converges to T=%(z) as s — +00
(on compact subsets). Such a neighourhood W*(z, ko) of z may be said to be
an unstable subset. «

Example 10.1. (Added). For instance, let [} = @ and l, = b with N = 2. Let

A= ((1) i) € Ma({0,1}).

Then

As well,

Sa={w=-—-aa---}U{w=---aabb---}U{w=---bb---}.



But these sets are countable. Since
T(abb---)=bb--- =T(bb---).

Hence T on S} is not injective.
If let

1
A= ({ 1) € Ma({0,1}).
Then the space S} consists of the words of the form

w=a---ab---ba---ab---, or

w=b---ba---ab---ba---,

where the last --- of each sequence may continue constantly, or alternatively
(finitely or infinitely). Therefore, S} is uncountable and is homeormorphic to
the Cantor set as the inifinite product space II°{0,1}. =

For example, let ' = Fy; be a free group of g generators {7, - ,7,}. Take

the set
e = (g g}

as an alphabet. Then consider the right-infinite or doubly-inﬁnite words w =
[2k]x in these letters, without cancellations in the sense of being subject to the
admissibility rule that ax4; # a;‘l. This implies a subshift of finite type, where
the admissibility matrix A = (A;;) becomes the symmetric 2¢ x 2¢g matrix with
Ai; =0 for |i — j| = g and A;j = 1 otherwise.

(Added). For instance, and for convenience, let g = 2. Then

0

— O =
O = e
== O

1
1
1
Any word in S;'{ has the form

+ + . _+
w=(yE - BEOE ) E )

where k # &k’ in {1,2} and signs +1 take the same (--- )-wise. <«

Suppose now that I is a Schottky group of genus g, i.e., a finitely generated,
discrete subgroup of SLy(C), isomorphic to the free group Fy of g generators,
where all non-trivial elements are hyperbolic. Then the points in S;'{ defined
as above parameterize points in the limit set Ap in P!(C), that is the set of
accumulation points of orbits of I The points of S4 parametrize geodesics in
the 3-dimensional real hyperbolic space H?* with ends at points on the limit set
Ar.

(Added). Note that the projective line over C is defined to be

PYC) = {z € My(C) |z =z, 2% = z,tr(z) = 1} = (C2\ {0})/ ~,



where for z,w € C?, z ~ w if and only if z = Aw for some nonzero A\ € C. <«

The dynamical system (Sa,T) as a typical example on an interesting class
of DS is said to be a Smale space. It also means that the space S4 can be
locally decomposed as the product of expanding and contracting directions for
T. More precisely, the following properties are satisfied:

(i) For every point x € S4, there exist subsets W*(z) and W*(z) of S4 such
that W*(z) x W*(z) is homeomorphic a neighbourhood of x;

(ii) The map T is contracting on W*(z) and expanding on W*(z), and
W$(T(x)) and T(W*(z)) agree in some neighbourhood of z, and so do W*(T'(z))
and T(W*(x)). .

It follows from a construction of Ruelle [213] that different C*-algebras can
be associated to each of Smale spaces. Refer also to [202] and [203]. For Smale
spaces like (S4, T'), there are four associated C*-algebras as follows. The crossed
product C*-algebra of the dynamical system (S4,7T):

C(Sa)x7Z, and C*(G’)xrZ j=s,ua

the crossed products by the action of the shift 7' on the groupoid C*-algebras
C*(G7) of the groupoid G for j = s, u, a of the stable, unstable, and asymptotic
equivalence relations on (Sa,T) respectively.

The first choice as C(S4) X7 Z is closely related to the continuous dynamical
system given by the mapping torus of the action T, while another as C*(G*)xrZ
is related to the quotient of S} by the action of T. As in the example of the
Schottky group I', this corresponds to the action of I' on its limit set.

Indeed, for the first, consider the suspension low G of the dynamical system
(Sa,T). This is the mapping torus of (S4,T), which is defined by

Sr =84 x[0,1]/ ~, where (z,0) ~ (T(x),1).
(Added). Topologically, this space is said to be a solenoid, that is, a fiber bundle
over the circle S! with fiber a Cantor set ([176, §4, 2]). <«

The first cohomology group H'(Gr,Z) of & is the ordered cohomology of
the dynamical system (Sa,T'), in the sense of [32] and [196] (the last missing).
There is an identification of H!(&r,Z) with the even (or zero) K-theory group
of the crossed product C*-algebra as

HY(67,Z) = Ko(C(Sa) xp z).

This can be deduced from the Pimsner-Voiculescu six-term exact sequence for
the K-theory groups of a C*-algebra crossed product by Z ([199]), so that

Ko(C(ST) = C(S1,2) L2005  Ky(C(Sr))  —2— Ko(C(Sa) %1 Z)

aT la:o
Ki(C(Sa) nr2) = K (C(Sa) =0 LT Ky (C(Sa)) 20,

where i : C(S4) — C(Sa) @ Z is the inclusion map and i, and (1 — T), are
respectively induced by the maps i and 1 —T. (Note that (1-T)f = f— foT).



(Added). As in [176, §4, 2.1], since the space S, is totally disconnected,
then K;(C(S4)) =2 0 and Ko(C(Sa)) = C(S4,Z) the group of locally constant,
Z-valued functions on S,. It then follows from the diagram that

Ki(C(Sa) »7Z) =2 im(d) =ker((1-T).) 2 Z, (im(-) as image)
Ko(C(Sa) nr Z) =C(S,Z)/im((1 — T).) = coker((1 - T).). =

That can be also obtained in terms of the Thom isomorphism (for K-theory
groups of a C*-algebra crossed product by R) ([60], [62]).

(Added). As done in [176, §4, 2.1], the Thom isomorphism (as above for
degree changing by +1 (mod 2)) and the g-map (or the assembly map) (via the
Chern character for the isomorphism below) imply that for j =0, 1,

p: KItY(67) 2 HIPY(61,2) — K;(C(Sa) »T Z).
Hence, .
K\(C(Sa) 1 Z) = H'(Sr)=Z and Ko(C(Sa) »r Z) = H'(S7),

the last which can be identified with the Cech cohomology group, given by the
homotopy set [Sr, U(1)], by mapping [f] to the homotopy class [exp(2mit f(x))]
for any class [f] € C(S,Z)/im((1 —T).). =
In fact, as discussed above, one of the fundamental construction of noncom-
mutative geometry is given by that of homotopy quotients (cf. [62]). These are
commutative spaces which provide, up to homotopy, geometric models for the
. corresponding noncommutative spaces. The noncommutative spaces in the case
shown below appear as quotient spaces of foliations on the homotopy quotients
. with contractible leaves.

For the quotient space S4/Z as the noncommutative space as the crossed
product C*-algebra C(S4) x1 Z, with Z acting as powers of the invertible two-
sided shift T, the homotopy quotient is given by the mapping torus Gr =
Sa xz R. The noncommutative space S4/Z can be identified with the quotient
space of the natural foliation on &1 whose generic leaves are contractible as a
copy of R.

Another noncommutative space associated to a subshift of finite type like T,
(which, up to Morita equivalence, corresponds to another choice of the crossed
product C*-algebra of a Smale space, as mentioned above), is the Cuntz-Krieger
C*-algebra O 4, where A is the admissibility matrix of the subshift of finite type
(cf. [104], [103]).

(Detailed). A partial isometry is a bounded linear operator S on a Hilbert
space H such that there is a closed subspace K of H, and S is an isometry on
K, and S is zero on the orthogonal complement K+ of K. Equivalently, either
the adjoint S* is a partial isometry, S*S is a projection, SS* is a projection,
§=588*S,0or §* =5*SS5*. <«

" The Cuntz-Krieger algebra O with A = (a;;) an N x N matrix over {0, 1}, is
defined to be the universal C*-algebra generated by partial isometris sy,--- , sy



satisfying the relations

N

N
* —_— * . — . R *
E 58; =1 and 5585 = E a;;8;85.
=1 j=t

(It says that the range projections s;s} sum to the whole space and the source (or
domain or initial) projections s}s; are decomposed by those range projections).

In the case of a Schottky group I' in PSLy(C) = SLy(C)/{£1} of genus g,
the Cuntz-Krieger algebra O, (with A = Ar associated to I') can be described
in terms of the action of the free group I on its limit set Ar in P*(C) (cf. [210],
[225]). Then 04 can be regarded as a noncommutative space replacing the

classical quotient Ap/T" as
Oy = C(A[‘) x I

The quotient space A xp H® is precisely the homotopy quotient of Ar with
respect to the action of I', with ET = HP® and the classifying space BI' =
H3/T. Moreover, H3/I" is a hyperbolic 3-manifold of infinite volume, which is
topologically a handle-body of genus g. In this case it is also found that the
noncommutative space Ar/I" is the quotient space of a foliation on the above
homotopy quotient with contractible leaves as HI3.

(Added). The real 3-dimensional hyperbolic space H? is defined to be

H® = {(z1,z2,23) € R®| 23 > 0}
the upper-half space with the Riemann metric:
ds? = (dz? + dz? + dz?)(z2) ! = g;jdxidx;

—(i(ii>3 dz1,dza, dz3)t, (dz1, dog, drs)t
= :1:;2, 3:1:,"31',' i'j=l( 1,4Z2,dx3)" ,(a%1,4T2, 3) )

which involves the canonical inner products for the tangent and cotangent spaces
of the tangent and cotangent bundles TH?® and (TH3)* respectively. As well,
we have the following Lie group isomorphism:

PSLy(C) = Iso(H?)

of isometric transformations of H® preserving orientation. There is a bijective
corresponding between the group of linear fractional transformations ¢ on the
Riemann sphere CU {c0}:

az+b
tHz) = — -
(2) =rd a,b,c,de€C,ad—bc#0

with £(c0) = £ and £(—¢) = oo (c # 0), which is isomorphic to PSL,(C), and
that of orientation preserving, isometric transformations on H?, extended from
linear fractional transformations on C U {00}, where C U {co} is viewed as the
boundary of the corresponding compactification of H3. <«



11 NC spaces from string theory

Yang-Mills theory on noncommutative 2-tori /g or Ay is first formulated by
using suitable notions of connections and curvature for noncommutative spaces
(cf. [96]).

In fact, the analogues of connections and curvature of vector bundles are
straightforward to be obtained as follows ([59]). A connection is just given
by the associated covariant differentiation V on the space of smooth sections.
Thus, it is given by a pair of linear operators on the Schwartz space of rapidly

decaying functions
V;:SR)—S[R), j=1,2

such that .
V;(€b) = (V;€)b+£6;(b), €€ S(R),b€ Ap.

As in the usual case, it is checked that the trace of the curvature
Q=VVy-VyV;

is independent of the choice of a connection.
Let us make the following choice for a connection:

2mi d
(Vl€)(s)=—7-9€(s) and (Vzﬁ)(3)=£€(3)-

Note that, up to the correct powers of 2mi, the total curvature of S(R)
becomes an integer. In fact, the curvature Q is constant as equal to % so that
the irrational number @ disappears in the total curvature, equal to §6~! = 1.
This integrality phenomenon, as that the paring of dimension and curvature,
both of which are non-integral, yields an integer:

(dim, Q) ~0x 9" =1¢€Z,

is the basis for the development of a theory of characteristic classes for non-
commutative spaces. In the general case, this requires the development of more
sophisticated tools, since the analogues of the derivations §; used in the case
of the noncommutaive 2-tori are not there in general. The general theory is
obtained through cyclic homology, as developed in [61].

Consider the projective module Py, over 2g described above. Defiine an
Ag-valued inner product (-, )a, on Ppq , as in [208]. which is used to show that
P, , is a projective module. Connections are required to be compatible with the
metric, so that

6j((§7 ﬂ)ms) = (ng, ﬂ)ma + (E’ an)ma‘

It is proved by [59] that such connections always exist. The curvature Q has
values in E = Endg,(Ppq).- An E-valued inner product on P, 4 is given by

(6* W)EC = 5(77- ()Qlo'



Also, a canonical faithful trace 7g is defined as

TE'((E: 77>E) = 7'((77» E)an)!

where 7 is the trace on the C*-algebra 2y, given above.
The Yang-Mills action is then defined as (in [96])

({2, D E).

Sought are the minima of the Yang-Mills action among metric compatible con-
nections V; given above. The main result of [96] is that this recovers the classical
moduli spaces of Yang-Mills connections on the ordinary 2-torus:

Theorem 11.1. For a choice of a pair (p,q) of integers with p + g8 > 0, the
moduli space of Yang-Mills connections on the Ug-module P, 4 is a classical
space given by the symmeltric product

s"(T?) = (T?)* /%,
where %, is the group of permutations in n elements, with n = ged(p, q).

The fact that noncommutativity of space coordinates is relevant for gravity
goes back to the analysis of S. Doplicher, K. Fredenhagen, and John Roberts
[108], which is independent of string theory and produces in a natural manner
the Moyal deformations of space-time, a compact Euclidean version of which
is given by the noncommutative 2-tori. Since then, tremendous progress has
been made in understanding quantum field theory on noncommutative spaces,
thanks mainly to the breakthrough by H. Grosse and R. Wulkenhaar [121].

(Added). May recall the following from GW [122]. The renormalized ¢*-
model corresponds to the classical action

2 2
s= [ s (30ur0%0+ Taporaror sess 2000) @

with 27 = 2(67!),, 2" and x*¢ = ¢*. The appearance of the harmonic oscillator
second term in the action is a result of the renormalization. <«

The main aspects of string and D-brane theory that ivolve noncommutative
geometry are the bound states of configurations of parallel D-branes (by E.
Witten [239]), the matrix models for M-theory (by T. Banks, W. Fischler, S. H.
Shenker, and L. Susskind {15]), and the strong coupling limit of string theory
(by F. Ardalan and collaborators (8] and [6] both missing). It also plays an
important role in the M-theory compactifications (by Connes-Douglas-Schwarz
[75]). All these aspects are not discussed in details. Only mentioned is a couple
of examples of noncommutative spaces arising from string and D-brane theory.

The noncommutative tori and the components of the Yang-Mills connections
do appear in the classification of the BPS states in M-theory (by CDS [75]).

In the matrix formulation of M-theory, the basic equations to obtain two
periodicity of the basic coordinates z; turn out to be

wzul' =z;+ad, i=1,2,



where the u; are unitary gauge transformations. The multiplicative commutator
ulugufluz' ! = [u1,us] is then central, and in the irreducible case its scalar value
A = €2 corresponds to the algebra of coordinates as the noncommutative 2-
torus. The x; are then the components of the Yang-Mills connections. The same
picture is emerged from the other information about M-theory concerning its
relation with eleven dimensional super-gravity and that string theory dualities
can then be interpreted using Morita equivalence, relating the values of 8 on an
orbit of SL2(Z).

It is shown by Nekrasov and Schwarz [194] that Yang-Mills gauge theory on
the noncommutative R? gives a conceptual understanding of the nonzero B-field
desingularization of the moduli space of instantons obtained by perturbing the
ADHM equations.

(Added). May quote the following from [194]: The gauge theory on the
world-volume of N coincident D-branes is a non-abelian gauge theory. In this
theory the scalar fields X; in the adjoint representation are the non-abelian
generalizations of the trasverse coordinates of the branes. The compactification
of Matrix theory on a torus T¢ implies that certain.constraints are imposed on
the matrices X; as that

X+ 27I‘Ri5,'j = UinU;l.

Also, ADHM stands for Atiyah-Drinfeld-Hitchin-Manin. <«

Exhibited by Seiberg and Witten [216] is an unexpected relation between
the standard gauge theory and the noncommutative one, and clarified is the
limit in which the entire string dynamics is described by a gauge theory on a
noncommutative space. )

Techniques from noncommutative differential and Riemannian geometry, in
the sense discussed above are applied to string theory (for instance, as done by
F. Ardalan and collaborators [8] missing).

The role of noncommutative geometry in the context of T-duality is consid-

ered in an interesting recent work of Mathai and collaborators ([30], [31}], and
[182)). ‘ ‘
(Added). May recall from {31] the following. Let # : E — M be a prin-
cipal circle bundle, i.e., a circle bundle with a free circle action, with H-
fAux [H] € H3(E,Z). Such bundles are classified by their first Chern class
c1(E) € H*(M,Z). 1t is shown that the T-duality interchanges the fiberwise
integral of the H-flux with the first Chearn class, so that the pair (E, H) and
its T-dual (E”, H") are related as

cl(E)=/TA H” and CI(EA)=./1"H’

which can be obtained from the Gysin sequence of the bundles E and E”".
In addition, the isomorphisms between the twisted cohomologies and twisted
K-theories of (E, H) and (E®, H") are constructed. <

Recently, in the context of the holographic description of type IIB string
theory on the plane-wave background, obtained by M. M. Sheikh-Jabbari [218]



an interesting class of noncommutative spaces from the quantization of Nambu
d-brackets. The classical Nambu brackets defined as :

iyin ON1 O f
{fi,--- 1fk}=zfl' k(")xil U O

for k real-valued functions with variables z!,-.. ,x* is quantized in the even
case to the expression in 2k operators as

1 1 i
i_k[Fl"" 'FZL‘]:ZWGl wh o Fy,

(The summations above are omitted in the text). This generalizes the quanti-
zation of the Poisson bracket defined as

{flva} L '_EZL[FI, F2] = :";(Flpz - FgFl).

The odd case is more subtle and it involves an additional operator - related to
the chirality. Set

1 1 iy eerigk
ZTE[F],"”7F2’€—-1’7]=ZW€‘ Fil"'F'izk_|7v
where v is the chirality operator in 2k dimensions. For example, for & = 2,
1
[FltF2’F3?’Y] = '2_4 ({[FI’F2I»[F3?7]} - {[F11F3l$ [F217]} + {[F21 F3]: [Fl:’)']}) ’

where {S,T} =ST +TS. ,
If the ordinary d-dimensional sphere of radius r is described by the equation
S ¢ 1(z4)2 = 72, then the coordinates satisfy the equation

i=1
{xil y zid} = rd-15i1.‘Aid+‘xid+l .

These equations are then replaced by their quantized version, using the quanti-
zation of the Nambu bracket and the introduction of a quantization parameter.
This defines algebras generated by unitaries, subject to the relations given by
the quantization of those equations. Matrix representations of these algebras
correspond to certain fuzzy spheres. It would be interesting to study the general
structure of these noncommutative spaces from the point of view of the steps
introduced above.

(Added). There are five types of 10 dimensional super string theories involv-
ing fermions and bosons and their super symmetries, of type I, type IIA, type
IIB, of normal mixed strings, and of abnormal mixed strings, without gravitons
as gravity. Any (such) super string theory requires that the space-time is 10
dimensional. Any string may have Plank length 10733 [cm)].

The string theory of type I contains both open strings as (low or high di-
mensional) open intervals and closed strings such as circles and closed intervals.
The other theories contain only closed strings. The string theory of type IIA



has a symmetry as a space symmetry, and that of IIB has a chirality as without
such a symmetry.

All the super string theories are unified by E. Witten in the 11 dimensional
space-time. It is shown that both the 10 dimensional super string theory with-
out branes and the 11 dimensional super gravity (SG) theory with branes and
without strings are obtained as a sort of limits of an 11 dimensional theory, and
the five types of super string theories and the 11 dim SG theory are transformed
by the following dualities:

11 dim Super ¢ 22021, pypeqrp  TRUY, pype iR
I Dua.lity].e_' 9..'19 Duality

Normal Mixed «sz‘ﬂ Abnormal M

S D\;a.lit.y Type I
This 11 dimensional super symmetric theory is the M-theory by Witten.

For example, a strength g of force in the typy I theory is transformed by
S-dulity to é in the abnormal mixed string theory. <

12 Groupoids and the index theorem

Since the construction of the C*-algebras of foliations is based on the holonomy
groupoid, groupoids have played a major role in noncommutative geometry. In
fact, the original construction of matrix mechanics by Heisenberg mentioned
above is exactly that of the convolution algebra of the groupoid of transitions
imposed by experimental results. The convolution algebra of groupoids can be
also defined in the context of von Neumann algebras and of C*-algebras (cf.
(58] and [205]). It is particularly simple and canonical in the context of smooth
groupoids (cf. [66; I1.5]). One virtue of the general construction is that it
provides a geometric mental picture of complicated analytical constructions.

The prototype example is given by the tangent groupoid of a manifold (cf.
[66, IL5]). It is obtained by blowing up the diagonal in the square M x M of a
manifold M and is given as a set by

G =M x M x (0,1]UTM,

where TM is the total space of the tangent bundle of M, and a tangent vector
X € Tp(M) appears as the limit of nearby triples (x,,x2,€) provided that in
any chart the ratios (z; — z2)e™! converge to X (possibly as =, — x, T3 — z,
and £ — 0). When € — 0, the Heisenberg matrix law of compositon:

(z1,%2,€) 0 (T2, Z3,€) = (z1,%3,€)

convergés to the addition of tangent vectors, so that Gs becomes a smooth
groupoid. The functoriality of the construction of the convolution groupoid C*-
algebras C*(G) for smooth groupoids G, as a functor G — C*(G), is then enough



to define the Atiyah-Singer analytic index of pseudo-differential operators. It
is simply given by using the six-term diagram of K-theory groups for the short
exact sequence of C*-algebras, associated to the geometric sequence

"M x M x(0,1] » Gp O TM,

where T'M is viewed as a closed subgroupoid of Gps. The corresponding short
exact sequence of C'*-algebras can be written as

0— Co((O, 1]) K- C‘(GM) — Co(T*M) — 0,

which is a geometric form of the extension of pseudo-differential operators. By
construction, the C*-algebra Cp((0, 1]} is contractible and the same holds for
the C*-tensor product Co((0, 1]) ® K by the C*-algebra K of compact operators.
(The being contractible in general implies that its K-theory groups are zero,
namely trivial). It then follows that the *-homomorphism C*(G ;) — Co(T* M)
as a restriction map induces isomorphisms in K-theory:

K;(C*(Gm)) = K;i(Co(T*M)), j=0,1.
The analytic index by the evaluation map C*(Gps) — K (?) is also obtained as
KO(C‘(G[H)) — K()(K) ~Z,

composed with the isomorphism above. (Possibly, may use the evaluation map
as Co(T*M) — C for a point (or a certain fiber), with K(C) = Z.)

As well, using the Thom isomorphism yields a geometric proof (cf. [66]) of
the Atiyah-Singer index theorem, where the analyses by the functor G — C*(G)
need to be done carefully.

This paradigm for a geometric setup of the index theorem has been success-
fully extended to the cases of manifolds with singularities (cf. [188] and [189)
the last missing) and of manifolds with boundary ([1]).

13 Noncommutative Riemannian manifolds

A main property of the homotopy type of a compact oriented manifold is that the
Poincaré duality holds not just in ordinary homology but also in K-homology.
It fact, the Poincaré duality in ordinary homology is not sufficient to describe
the homotopy type of manifolds (cf. {187]). It is proved by Sullivan [227] that
for simply connected PL manifolds of dimension at least 5, ignoring 2-torsion,
the same property in KO-homology does suffice and the Chern character of
the KO-homology fundamental class carries all the rational information on the
Pontrjagin classes.

For ah ordinary manifold, the choice of the fundamental cycle in K-homology
is a refinement of the choice of orientation of the manifold. In its simplest form,
it is a choice of spin structure. The role of a spin structure is to allow for the



construction of the corresponding Dirac operator, which gives a correspond-
ing Fredholm representation of the algebra of smooth functions. The choice
of a square root involed in the Dirac operator corresponds to a choice of K-
orientation. ‘

K-homology theory admits a simple definition in terms of Hilbert spaces and
Fredholm (module) representations of algebras.

Definition 13.1. ([66, Definition 1]). Let A be an involutive algebra over C.
An odd Fredholm module (7, H, F) over A consists of

(1) a *-representation 7 of A as (bounded) operators on a Hilbert space H
and (2) an operator F' with F = F* and F? = 1 the identity map on H (or mod
K(H)) such that [F,n(a)] for any a € A is a compact operator on H.

An even Fredholm module (n, H, F,v) over A is defined to be an odd
Fredholm module (w, H, F) together with a Z,-grading v with v = ¥* and
72 =1o0n H (so vy = v ?!) such that

(a) yw(a) = w(a)y for all a € A and (b) vyF = —F«v. Equivalently,
yr(a)y~! = Ad(y)n(a) = m(a) and yFy~! = Ad(y)F = —F. ]

This definition is derived from the Atiyah definition ([11] missing) of abstruct
elliptic operators, and agrees with the Kasparov definition [144] for the cycles in
K-homology as the KK-theory KK (2, C) as an extension theory of C*-algebras
by K (but it is a cohomology theory for C*-algebras), when 2 is a C*-algebra
(cf. [24)).

Remark. (Added). In (1), if m is assumed to be faithful, we may replace n(e)
with @ € A. In (2), it says that F' and w(a) essentially commute or commute
mod K(H). .

For Zy-graded algebras as A = Ay @ A;, the condition (a) becomes yr(a) =
(—1)%8@x(a)y.

The conditions F = F* and F? = 1 may be replaced with m(a)(F — F*) €
K(H) and w(a)(F? - 1) € K(H). (]

Lemma 13.2. (Added). If (m, H, F,~) is an even Fredholm module over A, then
the Hilbert space H is Zy-graded as H = Hy & H, with Hy = %(1 +v)H and
Hy = 3(1—~)H and v as the grading operator, and the x-algebra B = C[r(A), F]
generated by w(A) and F is Zy-graded as B = By @ By with By = 1(1+Ad(v))B
and By = .l—,(l —Ad(v))B and Ad(y) as the grading operator, so that By contains
7w(A) and 1 and so on, and B, contains F, n(A)F, and so on. <«

Example 13.3. ([66, 288-289]). Let M be a smooth compact manifold (such
as the n-dimensional torus T*) and C(M) the C*-algebra of all continuous
complex-valued functions on M with the supremum norm. Let E¥ be smooth
Hermitian complex vector bundles over M and P : C°(M, E*) — C®°(M,E™)
an elliptic pseudo-differential operator of order 0 on the spaces of smooth sec-
tions over M. There is an extension of P to a bounded operator as P :
L%(M, E*) — L%(M, E™) on the Hilbert spaces of L2-sections over M, because
of being of order 0. There also exists a so-called parametrix Q : L>(M,E~) —
L%*(M,E*) for P such that both PQ — 1 and QP — 1 are compact operators



on L?(M, EF), by being elliptic. It then follows that there is an even Fredholm
module over C(M) defined by

7r(f)=(ﬂ+0(f) ,,-(Ef))' F'=(1(l g) 7=((1) —01)

on the Hilbert space H = L2(M, E¥)®L3(M,E~) = H*@®H~, where 7% (f)€ =
f€ = M€ for any € € L*(M, E*), as multiplication operators. ‘

Proof. (Added). For any f,g € C(M) and £ dn € H, we have
m(f9)(§ @ n) = (fg€) @ (fgn) = m(f)m(g)(§ @)
and 7(f*)E®n) = (f*E) & (f'n) = (@ (f)*€@ (= ())n = n(f) € &),

where
(Mr6,6) = [ 7 = (€M) = (76,6
The condition F = F* is equivalent to P = Q* and @ = P*. We have
F’—(1@1)=(QP - 1)® (PQ - 1) € K(L*(M, E*)) ® K(L*(M, E™)),
a diagonal sum in a 2 x 2 matrix, which is contained in K(H* @ H™). Also,

[Fym()] = Fr(f) = m())F

_ 0 Qr(f) - T (N)Q
= (Pﬂr*(f) - (f)P 0 ) € K(H)

because Prt(f)—n" ()P e K(H*,H )and Qn~(f) —n T (f)Q e K(H~,H)
by M. F. Atiyah ([11] the lacking item). a

Remark. (More details from Atiyah [12]). Let U be an open subset of R™. Let
p(x,y) be a smooth function on U x R™ (called a symbol of order m) such that
for every compact subset K of U and all multi-indices a = (o), 8 = (5;) € Z"
with non-negative components, we assume that for some constant Cq g, K,

|DED2p(z.y)| < Capsc(1+yl)™ 1, zeK,yeR™,

where |a| = Y°7_, a; and D?, DS are the partial derivatives as

=1
a C!lv 3 [« 7%
D% = [ —-i— R .
¥ ( zayl) ( zayn)

To each such p(z,y), an associated linear operator P from C(U) of smooth
functions on U with compact supports to C=(U) of smooth functions on U
(called a pseudo-differential operator on U (as a local chart)) is defined by

(P1)@) = @)™ [ =iz, f)ay,



where {z,y) is the real inner product of R" and f denotes the Fourier transform
of f defined as

fy = [ e o0 s

Moreover, for any smooth manifold M, one can define extendedly a pseudo-
differential operator P : C° (M) — C*°(M) defined locally as above. Further-
more, for any smooth vector bundles E and F over M with dimensions k£ and
l, one can define a pseudo-differential operator P : C°(M,E) — C°(M, F)
defined locally as a ! x k matrix P = (P;;) with entries P;; pseudo-differential
operators on smooth functions with compact supports on local charts of M.
<

Remark. (Added). As one of the fundamental formuae in Fourier analysis in
one real variable in R, we have

Bt = o= [ (o= [ roe i) dy

by the Fourier inverse formula. Therefore, a pseudo-differential operator is
viewed as a natural generalizaion of differential operators written as the ex-
tended Fourier transform with finitely many variables in R™.

If P = p(z,D) = 3 0<k 9o(z)Dy as a differential operator of rank (or
order) k with coefficients as C°°-functions g,, then it corresponds to p(z,y) =
Zlal <k 9a (z)y™ with y® =y - - - 9%~ and the homogeneous polynomial px.(z, ¥)
> |aj=k 9a(x)y* is called the principal symbol for P, denoted as o(P). Then P
has order k, because, for instance, there are constants Cp o x and Cq, x such
that

Ip(z,9)| < Coox(1+llyl)* and |Dgp(z,y)l < Cook (L + llyl) 1!

for x € K and y € R". i

Anyhow, if such a P has order 0, then P =3, <4 9a(z)1 = M, the multi-
plication operator with g = Elal <k e (z). If My is a Fredholm operator, then
there is a parametrix for My, also called a pseudo-inverse for My, as in the case
where M or g is invertible (see [192, Theorem 1.4.15]). <«

Example 13.4. ([66, IV. 5]). Let I" be a free group and T be a tree on which I’
acts freely and transitively. By definition, the tree T is a 1-dimensional simplicial
complex which is connected and simply connected. Let 77 be the set of all j-
simlices of T for j = 0, 1. Let p € T? and define a bijection ¢ : T°\ {p} — T by
»(q) = (p, q) the 1-simplex connecting p and g as its end points and contained in
the line segment [p, q] in T for ¢ € T\ {p}. The bijection ¢ is almost invariant
in the sense that for any g € I, one has

v(g99) = (p,99) = 9¢(q) = g(p,q) = (. 99)

(by definition) except for finitely many g. Let H* = [*(T%) and H~ = I*(T") ®
C. The action of ' on T? and T! yields a C?(T')-module structure on {2(T7) for



j =0,1, and hence on H*, where

a(é, A) = (a€,0), £€l¥3(T'),AeC,acC:T).
Define a unitary operator P: H* — H~ by

Ps, =(0,1) and P&, =6by,4, q€T°\{p}

Then an even Fredholm module over 2 = C}(I") as well as A = CI" is defined

as P*
@=("" ) F=(> 7)

on H=H*@& H~, with my(a) = M, the multiplication operator.
Proof. (Added). It holds that F = F* and F2 = 1 and that
[F,n(a)] = Fr(a) — n(a)F
_ 0 P*n_(a) — ny(a)P*
“\Pry(a) —n_(a)P 0 '
In particular, if a =6, = g for g € T, then
[P*m_(a) — m (@) P*|(p(q): A) = P*a(8,(q), A) — a(dq + Adp)
= P*(8p(gq)10) — (8gq + Agp) = 8gq — (6gq + Agp)
= —Adgp
for any g € T°\ {p}, so that the operator P*x_(a) — w4 (a)P* has rank 1 and
hence, is compact. Similarly, if a = 6, = g for g € T', then
[Pry(a) — m=(a) P}(Adp + p8q) = Pa(Adp + pdq) — a(ptdp(qy, A)
= P(Agp + 1dgq) — (0,5(gq): A) = (Adyp(gp) + 10ip(gq)) = (D,p(gq)> A)
= Mdyp(gp)» —1)
for any ¢ € T°\ {p}, so that the operator Pr,(a) — 7w_(a)P has rank 1 and

hence, is compact. < a

Example 13.5. ([66, IV, 3.a]). With §! ~ P}(R) = (R?\{0})/ ~ as directions,
consider the algebra C(P!(R)) of functions f, acting on the Hilbert space L2(R)
as multiplication operators My as (f€)(s) = f(s)&(s) for f € C(P'(R)) and
€ € L*(R), where R* =~ S defined by the Cayley transform

$—1

R> = s,

s+ c(s) o €
where |s — i| = |s +i|. If we assume that c(s) = € with 0 < 8 < 2, then
s = ——L7 (8 # 7). Define the Hilbert transform F as

tan 3

(Fe)s) = L [ £8 4

) s—t



This multiples by +1 the positive Fourier modes and by —1 the negative Fourier
modes. For f € C(P!(R)), we have that [F, f] is of finite rank if and only if
f is a rational function, denoted as 523 a fraction of polynomials. This is
Kronecker’s characterization of rational functions.

(Added). More precisely, any measurable bounded function f € L°°(R)
defines a bounded operator My on L2(R). For the quantized calculus by a
Fredholm module to be translation invariant, the operator F must commute
with translations as T,, and hence be given by a convolution operator. It also
‘requires that F' does commute with dilations Dy as s — As with A > 0. It then
follows that the only nontrivial choice of F with F? = 1 is the Hilbert transform

PO = mhim [ g

T e=0Jjst)>e50 S — t

Note that ~
(FE)s) = (7 *EO)(s) = —2(3.Els ~ 1),

where the * means the convolution with respect to Cauchy principal value, and
the right hand side means the bracket as a functional, so that it exists for £ such
as Schwarz functions as rapidly decreasing smooth functions on R with compact
support and for their L2-extensions. Also,

Tu(FE)(s) = (FE)(s —u) = = hm £(t)

i e—0 js—u—t|>e>0 S — (t + u)

_ 1 §(v— )
- ;;el'l_% |s—v[>e>0 5= EE R F(T 5)(8)

dt (t+u=v)

and hence T, F = FT,, Namely, the range of F is translation invariant. More-
over, similarly, it is invariant under the dilations as

£(6)
Dx(Fg)(s) = (FE)(rs) = — liy NS ver Ll

1 E(/\u) _
= e ls—u|>A=1e>0 S — = F(Ds)e).

On the other hand, we obtain

(FE,n)2 = / (F&)(s)n(5)ds = / (— lim 5()dt) n(s)ds

L E—=0J|s_¢t|>e>0 S

1
/ﬁ(t (;1' cll‘r"}’/|'s t|>e>0 8 —t (s)ds) <

/5 (n’(—z) eh—% Js—t|>e>0 § — 1t n(S)ds) &
- /R &) Fn)(®)dt = (€, Fo)a,




and thus F* = F. Also,

(P, Fija = [ (PO FDEds
R
1 £(2)
N /R (;;Eh—r’% [s=t]>e>0 § — t(#) (Fu)(s)ds -
1 1 n(u)
- [¢0 (7!% o—tier0 3= {73% Jo s“-—u“‘"»} "8) &
1
N A&(t) (F 51"{% fs—u|>e>0 ) {;%[e t|>e>0 (s=t)(s—u) }dU) a

= /Rg(tﬁ(?idt = (£, M2,

(but the last step seems to be nontrivial and is unchecked) and thus F2 =1 on
the Hilbert space L2(R).
Compute the commutator as the quantum differential df of f as

[F, Myl§(s) = F(f€)(s) — f(s)(FE)(s)

_ 1 (t)ﬁ(t) £(¢)
T om Eh"ov/|’s —t|>e>0 S ~ e )7”' ¢—0 /l;—t|>6>0 = tdt
U0 - s “

ML =0 J|s—¢|>e>0 s—t

By the Cayley transform, one can transport the above Fredholm module
(undetermined) to the algebra of (rational or some) functions on S! as follows.
Let H = L?(S'), on which essentially bounded measurable functions of L*°(S?)
act as multiplication operators. Let F = 2P — 1, where 1 = 1y and P is the
orthogonal projection onto the space

H?(S') = {€ € L*(S")|€"(-n) = 0,n € N}

where £" € 12(Z) = L%(S")" is the Fourier transform of £.
Note that F* =2P* — 1 = F and

F?=(2P-1)2=4P*-2P 2P +1=1.
As well,

Fe2p-i=FP-Q-P)=Po-{l-F)= (IP(SH) —1(1?,:)(”))

on the direct sum H = P(H) & (1 — P)(H).

For f € L=(R) or L>(S"), the quantum differential df = [F, f] is of finite
rank if and only if f is equal a.e. to a rational function with no pole on R or
St

= 63 —



For any interval I of S, denote by I(f) the mean ﬁ[ J; f(z)dz of a function
f(z) on I. For a > 0, the mean oscillation of f is defined by

Ma(f) = sup I}—I /I \f(z) - I(f)|dz.

|<e

A function f is said to have bounded mean oscillation (BMO) if M,(f) for all
a > 0 are bounded. This is true for f € L(S!).

Proof. (Added). Because

1 1
m/{lf(x) ~ I(Nldz < (ool 1+ 1| fllool71).= 201 fllo-

O

A function f is said to have vanishing mean oscillation (VMO) if M,(f) — 0
as a — 0. This is true for f € C(S!).

Proof. (Added). Because, since S! is compact, f and f(z) — I(f) are uniformly
continuous on S!. Hence, for any € > 0, there is @ > 0 such that if || < a, then
|f(z) — I(f)| < € for every z € I, and thus, M,(f) < € as well as My (f) < ¢
for0<a’ <a. (]

For f € L>(S!), |F, f] is a compact operator if and only if f has vanishing
mean oscillation (VMO). <«

(Returned). Besides the K-homology class, specified by a Fredholm module,
‘also generalized to the noncommutative setting the infinitesimal line element ds
of a Riemannian manifold. In ordinary Riemannian geometry, we deal with the
ds? given by the usual local expression as g, dr*dz”.

(Added). In the special theory of relativity, for (z°,z!,z?,13) = (ct, z, ¥, 2),

ds? = gapdz®dz® = Adt? — dz® — dy® — dz?
= (10 -1® -1® —1) (cdt, dz, dy, dz)’, (cdt, dz, dy, dz)")

with @,b=0,1,2,3 and ¢ as time and c as light speed, to define the Minkowski
space-time. <« '

However, in order to extend the notion of metric space to the noncommuta-
tive setting, it is more natural to deal with ds.

(Added). Recall from [66, VI] the following detailed facts about geometric
spaces as manifolds with certain matrics.

Define the metric on a manifold M (such as the 2-dimensional torus T? in
R?) as '

d(z,y) = inf{Length [() of paths v between z and y in M}

= mg{gﬁyl(v),



where the length is computed as the integral of the square root of a quadratic
form in the differential of the path v:

i) = [ o= [ Voo 7o

Y Yy
= / V9o (7' (0), Y (1))t = / > guvdzrdzy
T T P

with (guu )y, @ positive definite symmetric matrix.
Let A be an involutive algebra and (H, F) a Fredholm module over A. To
define a unit of length, we consider an operator of the form

1 q
Bg(z,z') = D (d2*)"gu(ds’) = ) ((F.z"))"gu[F,2"]
pr=1 p=l1

= ([F,z*]).G([F.z"]), = [F,z]"G[F.2'] € B(H)
with [F,z] = ([F,z*))l, = (dz*)i_,, [F,2'] = ([F.2"])i=, = (dz*)iy,

where dz = [F, z| for any = € A, z#,z" are elements of A, z = (z"),z’ = (z¥) €
A7, and G = (guv)} -, is a positive matrix of the ¢ x ¢ matrix algebra M,(A)
over A. By construction, each value at (z,z) is a positive infinitesimal, that is,
a positive compact operator on H, to viewed as ds? in Riemannian geometry.
Note as well that Bg : A7 x A7 — K(H) is a sesquilinear form with being
conjuagate linear in the first variable and linear in the second.
Define the unit of length as the positive square root:

ds = vV BG.

We denote by ds the infinitesimal line element of a Riemannian manifold
M. For ds2, the usual local expression is Zn,v guvdztdz”. We may use the
Einstein (reduced) summation as it to be:

Guvdztdr” = ng,dx"dzz:"

BV
= da* Y guuds” = (da*), (de,)) = do*das,
" v

(or z?=z-2=(2,GT) = guTuTy = T,z")

where the metric G = (g,,) is given in the ordinary (and the super-symmetric)
Minkowski space M = R*, (respectively) as the diagonal sum(s):

G=le-1eo-1d-1 (and G=-101d1d1),
so that = -y = Toyo — X123 %;¥; (and 2 -y = —zoyo + > i=1.23%3Y5) (cf.

[214] and [183]).
The following table is added:



Table 2: Classification of vectors in the Minkowski space

(past observed)

(past observable)

T: Timelike L: Lightlike S: Spacelike
Inner product z-z >0 z-z=0 z-x<0
Time zo > 0: future, zo > 0: future, o > 0: future,
' zp < 0: past zo=0: now, 29 <0 | g =0, zop < 0:

(to be done)

where we have the following respective decomposition into cones:
M=TuLuUS, withT=T,UT_ and so on,

and p is used for time coordinate xo and v is used for space coordinates x, z2, z3.
<

The ds equally corresponds to the fermion propagator in physics, and to the
inverse D! on the Dirac operator D.

In other words, a spin or spin® structure makes it possible to extract the
square root of ds?, using the Dirac operator as a differential square root of a
Laplacian.

This prescription recovers the usual geodesic distance on a Riemannian main-
fold as follows.

Lemma 13.6. ([63]). On a Riemannian spin manifold M, the geodesic distance
d(z,y) between two points z,y € M is computed by the formula:

d(z,y) = sup{|f(z) — f@)|| f € A, I[D, Al < 1},

where D is the Dirac operator, defined as D = d(-)(ds)™' = &, and A is the
algebra C° (M) of smooth functions on M.

Proof. This essentially follows from the fact that the quantity |{[D, f]|| can be
identified with the Lipschitz norm of the function f as

1f () = f(w)|
Cd(z,y)

(where [D, f] could be identified with Df = Mps in this commutative case). O

I[D, ]I} = esssupepl(Vf)zll = sup
’ zEYEM

Note that points z,y € M (or a noncommutative space X) are replaced with
corresponding pure states ¢, and ¢, on the C*-algebra closure of an algebra A
such that f(z) = p-(f) and f(y) = py(f) for any f € A. It then follows that

diz.v) = sup{lf() - S@)IT € AN < 1),

with % = df(ds)~! = [F, fl(ds)~! (or = (ds)~'df), where we assume that
dBg = [F,Bg] = 0, that is, B¢ commutes with F, similar to the Kahler



condition. Define a self-adjoint operator D = FBC_,.% = F(ds)~! = (ds)”'F
(and as well = F(-)}(ds)~! = (ds)~'(:)F), where we assume that B¢ is non-
singular, i.e., the kernel of B¢ is zero. Then

Y (Ff(ds)™ = (Ff ~ [F)(ds)™ = Ff(ds)™" —
— (d5)"\[F. f} = Df - (ds) 'S,

which should be equal to [D, f] (in the sense as above).

Note that if ds has dimension of a length I, then D had dimension -}- and
d(z,y) also has dimension of a length.

On a Riemannian spin manifold M, the condition ||[D, f]|| <1 is equivalent
to the condition that f is a Lipschitz function with Lipschitz constant no more
than 1.

Example 13.7. (Added). Consider the case of M = [0,1] the closed interval
(or any [a, b] in the real line R). If f(z) = x € C(M), then |f(z)— f(¥)| = |z -]
and f'(z) =1 with || f'|| = 1.

If f € C*(M) the algebra of all continuously differentiable functions on M,
which is a dense subalgebra of C(M), and if |f(z) — f(y)| < 1|z — y| for any
z,y € M with Lipschitz constant 1, then |f'(z)| < 1 for any x € M. Hence
I/l < 1. Conversely, suppose to the contrary that there are s,t € M withs <
such that |f(s) — f(¢)] > |s—¢t|. Then the mean value theorem for differentiable
functions with one variable in Calculus tells us that there is some ¢ € M with
s < ¢ < t such that | f'(c)| > 1, a contradiction to || f'|| < 1.

Hence we obtain that for z,y € M = [0,1],

lx - yI = sup{|f(z) - F@)|f € C(M), If']l < 1}

with Df = f’
Since £ = g) g + f for f,g € C'(M) of continuously differentiable
functions on M, we have

d df
—,M/lg = =g = Mpyg.

(55> Mrla = -9 = Mpsg

Hence [D, f} = Mp; may be identified with Df = & Note as s well that C (M)
as well as C°(M) are dense in L2(M) with 1ebpect to the 2-norm. <

(D, flo = (5=, flg =

The advantage of the above definition of the line element ds is that it is of a
spectral, operator theoretic nature, and hence it extends to the noncommutative
setting. The structure of combining the K-homology fundamental cycle with the
spectral definition of the line element is the notion of spectral triple, given as

Definition 13.8. (cf. [68] and [89]). A (compact, initial) noncommutative
geometry is a spectral triple (A, H, D), where A is a unital algebra represented
as an algebra of bounded operators on a Hilbert space H, and D ib an unbounded
Dirac operator defined as the inverse of the line element as D = — s ords = Dt
and with the following properties required:



(1) The additive commutator [D, a] is bounded for any a € %4, where %>
is a dense subalgebra of the C*-algebra 2 as the completion from A.

(2) Self-adjointness D = D*, and the compact resolventness that (D —A1)~!
is a compact operator for all A € C\ R.

A spectral triple (A, H, D) is even if the Hilbert space H has a Z,-grading
by an operator 7 such that vy = v*, 42 = 1 with y~! = v, and that yD = —D~,
and ya = a7y for any a € A, equivalently, Ad(y)D = —D and Ad(v)a =d as

H=H0®H1—D—>H1®Ho H=H0®H1;H0®H1
I L
H —2. HieH, H ~—- H

Hence, on H = Hy & H,, for some D)3, Do, and a;i, ass,

0 Dm al 0
D= (021 0 ) and a= ( 0 aﬂ).

This definition is entirely spectral. The elements of the algebra are operators
and the line element is also an operator.

The polar decomposition D = F|D| gives rise the operator F as in an even
Fredholm module (H, F') over A, defining the fundamental class in K-homology.

(Added). Note that for a densely-defined, closable operator. T on a Hilbert
space H has the polar decomposition as T = W|T| with W € B(H) a unique
partial isometry with ker(T') = ker(W). <

The above formula for the geodedic distance is extended to the following
context:

Definition 13.9. A state on a unital *-algebra A is a positive linear functional
¢ : A — C such that (1) = 1 and ¢(a*a) > 0 for any a € A.
The distance between two states ¢, @2 on A is given by the formula

d(p1,p2) = sup{|p1(a) — w2(a)l|a € A, ||[D, ]|l < 1}
(Added). For a positive operator A € B(H), the trace of A is defined to be

tr(A) = Z(Ae,., en),

where {e,} is any complete orthonomal basis for H. .

(Added). Let 1 < p < co. Let LP(H) denote the Schatten-von Neumann
ideal of B(H) of compact operators T with the p-norm ||T||, such that the
trace tr(|T|?) = [|IT}|5 < oo or the p-summablility of the decreasing sequence
{1n(T)}2.o of countable, non-negative eigenvalues of |T| = (T*T)* with finite
multiplicities (counted repeatedly and respectively) vanishing at infinity, i.e.,
Zﬁo:o un(T)P < oo with F'n(T) > pay1(T) > 0 and lim, .o 4 (T) = 0, and
that

ITIE = tr(IT1?) = Y (ITIPen,en) = > pn(T)?

n n=0



for T € K(H), because |T|P = 3", px(T)Pe}, ® e}, for some CONB {e}}.

Lemma 13.10. (Added, [133, Propositon 4.2.5]). Let 1 < p < p' < o0 and
A,B e B(H). Then

Al < Al < |Allps  LP(H) € L7 (H) < K(H),
A1, = 1Al NABll, < IBIIIAll, 1 BAll, < I BINIAll,.

Let 1 < p < c0. A Fredholm module (x, H, ') over a x-algebra A is said to
be p-summable if [F,n(a)] € LP(H) for any a € A, or if the *-subalgebra of
a € Awith [F,n(a)] € LP(H) is dense in A, or if the *-subalgebra of w(a) € 7(A)
with [F, w(a)] € LP(H) is dense in w(A) (under the operator norm).

Proof. (Added). Note that if [F, w(a)}, [F, n(b)] € LP(H) with a,b € A, then

[F,m(a + b)] = [F,n(a)] + [F,w(b)] € LP(H),
[F, w(ab)] = [F,n(a)]w(b) + =(a)[F, =(b)] € LP(H),
[F,m(a™)] = —[F,m(a)]* € LP(H). <

O

Let p be a positive real number. A spectral triple (A, H, D) is of metric
dimension p, or p-summable, if [D|~! is an infinitesimal of order p (of LP)
(corrected), i.e., |D|~? is an infinitesimal of order 1 (of £!). Namely, |D|~! €
LP(H) (and thus p > 1). ,

(Added). Equivalently, |D|~? € L!(H), so that

tr(ID|=7) = u((1D|")?) < oo.

(For this, we need to assume that the spectrum of |D| is discrete and countable
because |D]~! and |D|~P are compact operators).
(Added). By the min-max principle,

n(T) = min{||T|g: ||| E C H,dim E = n},

where E is an n-dimensional subspace of H and E1 is the orthogonal comple-
ment of E in H and T|g. is the restriction of T to EL. In fact, this minimum
is attained by taking F to be the eigen-space corresponding to the first n eigen-
values po(7T), - , a1 (T) of |T}.

Example 13.11. (Added). If T = (4;){5., is a diagonal 0o x oo matrix
- operator on [2(N) with diagonal entries (¢;) bounded, decreasing and vanishing
at infinity, then T is bounded and compact, with pn(T) = tn4t,n+1 for n > 0.
Let (en)3; be the canonical orthonormal basis for {2(N) and let E, be the
subspace generated by ey, - ,en. Then |T|gi|| = ltns1,n41] = pa(T). The
principle says that the left hand side must be the minimum among ||T|g|| for
subspaces E C [2(N) with dim E = n.



Let R,(H) denote the set of finite rank operators on H with rank < n. Then
1n(T) is equal to the distance:

pin(T) = d(T, Rp) = inf{[|T - X||| X € Ra(H)}.

Proof. (Added). Note that if X = T|g for E a subspace of H with dimF < n,
thenT—T|E=T]E;. a

It then follows that for any Ty, T2 € K(H),
ln(T1) — pa(T2)| < |T1 = T2
Proof. (Added). Because for X € R,,, we have
#n(Ti) = |T; - X < |Ti - X|| = T — X < |Th — T2l

for (3,7) = (1,2) or (2,1), which imblies the inequality above. a

The inclusion R,(H) + Rm(H) C Ruym(H) implies

pngem(T1 + T2) < po(T1) + pm (T2).
Proof. (Added). Because for X € R,(H) and X’ € R, (X), we have
Bnim(Ti +T2) < |Th + T2 — Xy — Xof) < |ITy — Xa|| + | T2 — Xall,

which impﬁes the inequality above. O

Similarly,
Entm(TiT2) < pa(T1)pm (T2)-

Proof. (Added). Because for X, € R,(H) and X; € Rn(H), we have
IT1 + XillIT2 + Xa|l 2 IThiT2 + Th X2 + X2 (T2 + Xo)l| 2 pasm(TiT2).

In particular, since uo(73) = [|T5|l, then
un(T1T2) < pa(T)IT2ll and  pa(TiT2) < |Ti|lun(T2)-

Definition 13.12. (Added, [159, Definition 6.1.1]). A compact operator T €
K(H) is said to be an infinitesimal-of order & € R* if u,(T) = O() (n — ),
ie, ua(T) < Cn%, for some constant C and for any n > ng for some g > 1
(corrected). ‘

It follows from the estimates above the definition above that

Lemma 13.13. (Edited and added). If Ty and T are infinitesimals of order
a1 and asa, then T\ T3 is an infinitesimal of order a; + as.

The set of all infinitesimals of order a becomes a two-sided ideal of B(H)
(but not closed). :



Remark. An infinitesimal of order 1 may not be in £L!(H). Any infinitesimal
T of order o higher than 1 is contained in L'(H), because 3 _07  pn(T) <
CY o, s <oowitha>1. =

Let J# denote the (two-sided) ideal of K(H) of compact operators T on H
such that pun(T) = O((logn)~%) (n — 00). Namely, if n large enough, then
s ()] < % for some positive M. Equivalently, n < ell‘n('”’)". Note as well
that T € J*? if and only if the sequence {logn - . (T)}2, is bounded.

- Proof. (Added). Note that for 71, T» € J*?,
log(n +m) - pnm (Tt + T2) < Vlog(n + m)(pna(T1) + pm(T2))

= \/logn + log(1 + %) pn(Th) + \/logm + log(l + %) - ptm (T2).

Ifn=m > 2, then

V ]03(271) . I‘2n(Tl + TZ) < \/Q(\/ logn - ;Ln(Tl) + y/logn - Iln(Tz))-

Ifm=n-—12>3, then

V10g@n = 1) - pzn1 (T + T) < VEV/I0g - pn(T1) + v/Iog(m = D) - pin1 (T2)).
d

(Added). A Fredholm module (7, H, F) over a *-algebra A is said to be
6-summable if [F,7(a)] € J* for any a € A. It then follows that A is stable
under holomorphic functional calculus, so that .4 and its C*-algebra completion
have the same K-theory ([66, 8., Lemma 3]). Moreover, there is a self-adjoint
unbounded operator D on H such that Sign(D) = D|D|~! = F (and thus
D = F|D|), [D, w(a)] is bounded for any a € A, and Tr(e~P?") < oo ([66, 8.c,
Theorem 4}).

(Returned). A spectral triple (A, H, D) is f-summable if tr(e~tP*) < oo
for all ¢ > 0, or if tr(e~2") < o0.

(Added). Define the partial sums of the sequence {¢.(T)} as

n—-1
0a(T) = ) m(T) 2 0.
k=0
We have
on(T) = sup{tr(|TE|) = [TE|\ | E C H,dimE = n},

where E is an n-dimensional subspace of H. The supremum is attained if we
take E to be the eigen-space corresponding to the first n eigenvalues of |T|. It
then follows that

(T +T3) < Ou(T1) + 0n(T2).



Proof. (Added). Note that
| Ty + T2)Elly < ITiEll + |TElh € 0n(T1) + 0 (T2),
which implies the inequality above. |
As well,
on(TiT2) < on(T)IT2ll and o (TN T2) < ||Thlon(T2).

Let
LY°(H) = {T € K(H) |o(T) = O(logn)(n — 0)}.

By definition, this set consists of T € K(H) such that the sequence
{(logn)~ ' on(T)}32,

is bounded.
The natural norm on £1°°(H) is given by

oa(T) = ”{(loé‘n)_lo'n(T)}"co'

T =su
Tl 0 = s0p o

The normed space £1*°(H) is a two-sided ideal of B(H).
Proof. (Added). Note that

an(Tl + T2) <

1
T — <
o a0+ () < ITillioo + I Tall oo

and that for T} € £1°(H) and Tz € B(H),

on(T2Th) < | T2l Thl}1,0-

on(T1T2) < T, lIT2ll  and

logn logn

a

Lemma 13.14. (Added). The ideal L}(H) of B(H) is contained in the ideal
Lo (H).
For T € B(H), we have the norm estimate ||Tl| 1,00 < 1555/ Tlh1-

Proof. If T € LY(H), then |T|ly = Y g #a(T) converges. Then for n > 2,

oa(D) _ Tl _ 1Tl
logn ~ logn ~ log2’

Thus, |Tl1.c0 < w5 T . O

Lemma 13.15. (Added). The ideal of all infinitesimals of order 1 is contained
in the ideal L1>°(H). )



Proof. Note that if u,(T) < C';tl- for some C > 0 and any n > ng for some
ng > 1, then for any n — 1 > ny,

7!0-1

onll) = S (1) < > el +C 1
k=0 k=nq
n"— n—-1 1
< 3w+ Clt [ 1aw)
n.,—l
< Z wi(T) + C(— — logng + logn)
k=0
and hence 13;? is bounded by C + € as n — o0, for any £ > 0. 0O

Remark. As in {159, Section 6.2], one may define L!**°(H) to be the ideal of
all infinitesimals of order 1. The converse of the statement above does not hold
? Probably, it does not, but we could not find a suitable proof for that it does
hold.

(Added). The Macaev [Matsaev] ideal £} (H) of B(H) is defined to be

£ (H) = {T € K(H)| I, Zpua(T) < o0},

n>1
The predual of the ideal £!(H) is the ideal £)*°(H) of B(H):
C(H) ={T € K(H)| 04(T) = o(log n)(n — o)}
under the pairing given as (A, B) = tr(AB).
For any bounded sequence a = (a,)52,, the associated bounded function
fa on RY = (0,00) is defined by

falz) =a, forx € (n — 1,n} for n € N.

(Added). The Cesaro mean for f a bounded function on R} is defined by

me()) = o= [ 1@,

Note that the function m¢(f) is bounded and continuous on RY..
The Cesaro mean satisfies the following scale invariance that for any bounded

function f,
Jim [mc(8.(N)X) = ma(HA)I =0,

where p > 0 and
0,.(f)(A) = f(Mp) for A € RY.



Proof. (Added but not completed). We then have
[me(6u(£))(A) - mc(f)(/\)l

1 A dzx
logA/ S ) log/\/ S

10"‘/\ / f(s ) log,\/ ”f""— (with s = ux)
“f" (108(#)\) log 11 + log A) = 2| f]|.

(Possibly, the other estimate is needed. Or it may involve the limit with respect
to u.) Indeed, we also have

A
mo@uNW) ~meNW =l [ @uN@ - 1@ T
< 18.() - 11,

which may go to zero as 4 — 1 in a possible sense. O
Then
z
0% (fo)(z) = fa(T)') = f(al-ai.az,az.“' )(.’l:) = f(a,,,a,.)(x)-

If @ is any positive linear form on C(R%) such that o(f) = limz—.co f(z)
for any f € C"(]R ) convergent at infinity, then the composition w = g ome is
a positive linear form on I*°(R}.) such that (pomc)(f) = limz—o f(z) for any
f € I°(R}) convergent at infinity and that w(f(a,)) = W(fia1,a1,02.02,)) =
w(f(an,an)). Moreover, we may assume that ¢(1) = 1 and ¢ is zero on the
subspace Co(RR%.) of continuous functions on RZ vanishing at infinity.

Let T € £*°(H) and T > 0. The Dixmier trace of T is defined to be

1 &K
try(T) = lim logn kz=0 pi(T)

= gzemyz,)
which may as well be written as § T for short as before.

Proposition 13.16. ([66, Proposition 3, Page 306]). (Added and edited).

(1) The Dizmier trace extends by linearity to the ideal LY (H) of K(H) as
a positive functional.

(2) If S € B(H) and T € L}*°(H), then tr,(ST) = tr,(T'S).

(3) The Dizmier trace is independent of the choice of an inner product on
H and it depends only of the Hilbert space H as a topological vector space.

(4) The Dizmier trace vanishes on the ideal £5'°(H), which is the || - ||1,00-
norm closure of the ideal of finile rank operators, and so does on the ideal L' (H),
contained in L5 (H). :



Proof. (Edited). For (1). If T}, T € £"°°(H) are positive, then
tr, (T1 + T2) = tr (T1) + tro (T2)-
Because
tro(Ty + T2) = w(f st (ryem))
Swlf{ s szt man)) TVt ozt ) = to(Th) + tro(T2).
On the other hand, we have
on(Th) + on(T2) £ 02n(Ty + Ta).

m

Hence
1 1 log(2n) 1
T+ T
logn on(Ti) + gnan( ) < ey log(n) log(2n )62"( 1+ To)
with log(2n) 5
og(2n . _
nLngO log(n) nllonclao ‘)nn L
Therefore,

tro(Th) + tro(T2) = w(fy g, () + W o))

< w(f{;sﬁmaznmﬂz)})

= wU{ (- mmon ) U (i)
=0+ w(f{ #ﬁ,,"(nﬂ‘z)})

= W o oan (4T, i 02 (T14T2) })

= w(f{l,,—u‘,:ﬂn(ﬂ +T2) = gy o2a—t (Th +T2).0}) +tro(T1 + T3)

=0+ t[‘w(Tl + Tz),

1
log 2n

where note that

———02,(T1 + T2) — o1 (T + T2)

1
og(2n — 1)
(log(2n)o2. (T} + T3) — log(2n)oan—1(Ti + T3))

]oo‘ on

~ log2nlog(2n — 1)

" log(2n —1)

For (2). Note that for S € B(H) and T € L£!(H) (such as finite rank
operators),

| on(ST) = =

I‘Zn—l(Tl +T2) —0 (n — 00)

—on(TS)| < @lon(sz’) — oa(TS)|

lo g

< l—og—2(|an(ST) - tr(ST)I +[6e(TS) = 04(ST)) = 0 (n — o0).



Hence tr,,(ST — TS) = 0. For T € L}*°(H), we may use the density of L!(H)
in £1°°(H) under the norm || - ||;,00 (if 50 ?).
For (3). If S € B(H) is invertible (or unitary), then for any T € LV (H),

tr, (STS™Y) = tr, (S~ ST) = tr.(T).

For (4). Note that if T € Ly°(H), then the sequence (pizon(T))n>2
belongs to co(N + 2). :
Also, if T € L'(H), then

1 1
logna"(T) = logn"T"l —0

as n — 00. a

Remark. - 1t is known that for A € LP(H) and B € LI(H) where 1 < p,q < 00
with % + -;- =1, we have tr(AB) = tr(BA). For A € L!(H) and B € B(H), the
same formula holds. See [133, Proposition 4.2.12]. =

(Returned). Spectral triples also provide a more refined notion of dimen-
sion besides the metric dimension summability. It is given by the dimension
spectrum, which is not a number but a subset of the complex plane, defined
below.

Assume that a spectral triple (A, H, D) satisfies the regularity condition
as that for any @ € A® C A, we have o,[D,a] € Ngdom(6*), where § is
the derivation defined by é(z) = [|D|,z] for z € dom(d) the domain. Let B
denote the algebra generated by 6*(a) and §*([D, a]) for any @ € A*°. Then
the dimension spectrum of the triple (A, H.D) is defined to be the subset
o C C consisting of all the singularites of the analytic functions ¢,(z) obtained
by continuation of

Co(z) = tr(b|D|7%), Re(z)>p,beB.

Example 13.17. Let M be a smooth compact Riemannian spin manifold. The
corresponding spectral triple (A, H, D) is defined by A = C°°(M) the algebra
of all smooth functions on M, H the Hilbert space of spinors:
H = L*(M, S) = L*(M,C¥)
~ [2(M,CH e L*(M,C )=HY®H™,
with C* 2 C @ C as spins +, and D the Dirac operator:
D= (g g) on H = H* @ H™ with P= Q"

as an unbounded differentiable operator. Then the spectral triple has the metric
dimension equal to the dimension dim M and has the dimension spectrum equal
to the set {0,1,--- ,dim M}.



In the case of an ordinary Riemannian manifold M, it is interesting to check
the meaning of the points in the dimension spectrum that are smaller than

= dim M. These are dimensions in which the space manifests itself non-
trivially with some interesting geometry.

At n = dim M of the dimension spectrum of the spectral triple, the vol-
ume form of the Riemannian metric is recovered by the equality (valid up to a
normalization constant) (cf. {66])

§ riasi” = /A s,

where the integral in the left hand side is given by the Dixmier trace (cf. [107]),
generalizing the Wodzicki residue of pseudo-differential operators (cf. [240]).

(Added). Recall from [66, IV 2.6 Proposition 5] that the Wodzicki residue
Res(T') for a pseudo-differential operator T' of order —n acting on the space of
sections of a complex vector bundle E on an n-dimensional compact manifold
M is defined to be

1

Res(T) = W

/ try (o(T))ds,
S*M
where ¢(T) = 0_,(T) means the principal symbol for T, which is a homogeneous
function of degree —n on the cotangent bundle 7*M of M, and the integral
above is independent of the choice using a metric on M, of the unit sphere
bundle $*M in T* M with its induced volume element. Then

(1) The operator T on H = L?(M, E) of sections of E over M belongs to
the ideal L1 °(H).

(2) The Dixmier trace tr,(T') is independent of w, and that

f T = tro(T) = Res(T). <

One can also has the integration [ ds* in any other dimension in the dimen-
sion spectrum (dim-sp), with ds = D! the line element.

In the case of a Riemannian manifold, found are other important curvature
expressions. For instance, if M is a manifold of dimension 4, by considering
integration in dimension 2, found is the Einstein-Hilbert action. In fact, a
direct computation implies the following (cf. [145}, [143]):

Proposition 13.18. Let M be a manifold of dimension dim M = 4. Let dv =
Vgd*z denote the volume form, ds = D™} the length element as the inverse of
the Dirac operator D, and r the scalar curvature. Then

In general, the scalar curvature of an n-dimensional manifold is obtained
from the integral § ds"~2.



More refined properties of manifolds carry over to the noncommutative case,
such as the presense of a real structure, which makes it possible to distinguish
between K-homology and KO-homology and the order one condition for the
Dirac operator, as follows (cf. [69] (and [67] missing)). May refer to [120] as
well.

Definition 13.19. A real structure on an n-dimensional spectral triple (A, H, D)
is defined to be an anti-linear isometry J : H — H such that

J? =¢(n)l,
JD=¢nm)DJ (or [J,+D]=¢(n)1),
and Jy=¢"(n)yJ (or [J, 7] =€"(n)1) (even case),

where the signature functions (n),e’(n), and €”(n) are defined as in the table
(corrected) below:

Table 3: Values of the signature functions

nmod8 |0 1 2 3 4 5 6 7
=em) |1 1 -1 -1 -1 -1 1 1
g=¢mr (1 -1 1 1 1 -1 1 1
e”"=¢"n) {1 No -1 No 1 No -1 No

Moreover, the action 7 of A satisfies the commutation rule that [a,°] = 0
for any a,b € A with a = n(a), where b° = Jb*J~! = 7°(b) for any b € A, and
the operator D satisfies that [[D, a],b°] = 0 for any a,b € A.

The condition [A, A°] = {0} says that the action of A commutes with that
° of A°.

Note that the element b° = #°(b) is viewed as a representation of the opposite
algebra A° of A with multiplication as its elements exchanged.

Proof. Note that for any a,b € A and A° with ba € A equal to ab € A°,
7°(ab) = Jr(ba)*J ' = Jn(a)* 7 (b)*J ! = 7°(a)7°(b).
O

In ordinary Riemannian geometry, the anti-linear isometry as J is given by
the charge conjugation operator acting on spinors. In the noncommutative case,
this is replaced with the Tomita-Takesaki (TT) anti-linear conjugation operator
(cf. [229]).

There are necessary and sufficient conditions known as that a spectral triple
has the following items in order to come from an ordinary compact Riemannian
spin manifold ([65] and [120]):



1
(1) An infinitesimal ds = D~! of order n of L*(H), or of order — in the sense

that D™™ € L1(H) or € LY°(H) but & LL'°(H). (Classical dimension).
(2) A real structure as J above.
(3) The commutation relation: [[D,a],°] = 0 for any a,b € A,
which is [[D, a],b] = 0 for any a,b € A commutative.
(4) The regularity hypothesis: a,[D,a] € Nxdom(é*) for all a € A>.
(5) A Hochschild cycle ¢ € Z,(A>, A ® A°) such that
m(c) = - in the even case and 7(c) = 1 in the odd case,
where 7(a° ® --- ® a™) = a°[D,a'|---[D,a"] on H. (Orientation).
(6) The space H™ = nidom(D¥) of smooth vectors a finitely generated,
projective A-module, endowed with an A-valued inner product (£, ),

with {(a€,n) = f a{€,n)ds™. (Finiteness).

(7) The intersection form K,(A) x K,(A) — Z obtained from
the Fredholm index of D with coefficients in K.(A ® A°) invertible,
or nondefenerate. (Poincaré dualiry).

A noncommutative spin geometry is defined to be such a real spectral
triple satisfying the conditions (1) to (7) above.

When A = C™(M), the above conditions characterize the Dirac operator
associated to both of a Riemannian structure and a spin structure on M (cf.
[120]).

(Added). That the number n of order is even corresponds to that the spectral
triple is even. If the algebra A and the Hilbert space H are finite dimensional,
then the classical dimension of the geometry is zero. <«

As formulated in [69)], in the commutative case, we could drop the hypothesis
that A = C*(M) and use the orientation condition to construct an embedding
of the spectrum of the algebra A as a submanifold of R*. There is a recent work
by Lord, Rennie and Varilly ([206] and cf. [166] with the title changed), which
gives promising results in this direction. Moreover, the conditions can be stated
without any commutativity assumption on A. For instance, they are satisfied
by the isospectral deformations of {79], discussed later. Another significant
noncommutative example is given by the standard model of elementary particles
(cf. [69]), also discussed later.

Another example of spectral triple associated to a classical space, which is
not classically a smooth manifold, is in the case of manifolds with singularities.
In particular, consider the case of an isolated conical singularity as follows.

Example 13.20. (Edited). ([164] and also, cf. [163] missing). Let M be a
manifold with an isolated conical singularity. The cone point ¢ € M has the



property that there is a neighbourhood U of ¢ in M such that U\{c} has the form
(0, 1] x N with N a smooth compact manifold and with metric g|ly = dr?+r2gy,
where gy is the metric on N.

Note that M looks like an attached disjoint union as:

M = {c} U, ([0,1] x N) Uy My,

where the point c is identified with {0} x N and 1 x N identified with N is
attached to the boundary My of a submanifold My of M.

A class of differentiable operators on manifolds M with isolated conical sin-
gularities is given by the elliptic operators of Fuchs type, action on sections of a
bundle E over M. The restriction of such operators to (0, 1] x N has the form

d .
™Y ak(r)(—18,)*, for v € R,ar € C([0,1).Dif*"*(N, Elw),
k=0

which are elliptic with symbol oa(D) = Zﬁ:o ax(0)2* that is an elliptic family
parameterized by the imaginary part of z. In particular, operators of Dirac
type are elliptic of Fuchs type. For such an operator D being of first order
and symmetric, it is shown that its self-adjoint extension has discrete spectrum,
with (n + 1)-summable resolvent, where n = dim M ({52], [36], [164]).

Let A = C2(M \ {c}) ® C the unitization of the algebra of all smooth
functions on M \ {¢} with compact support, which is identified with the algebra
of all functions that are smooth on M \ {c} and constant near the singularity.

The Hilbert space H on which D acts is chosen from a family of weighted
Sobolev spaces. A weighted Sobolev space is roughly defined as that its smooth
part is the standard Sobolev space and its cone part is defined locally by norms

A2, = / (1+ (logt)? + Ez)sl(r"’*%f)"(t,g)ﬁﬂdg,
R xR™-1 t

where f" denotes the Fourier transform on the group R} x R™ 1, <

Remark. (Added). Recall from [183] that the Sobolev Hilbert space W(X) on
a space X for I € Z non-negative is defined to be of functions f(x) on X such
that differentials D*f € L2(X) in the weak sense for any |a| < I, with

(f,9)2 = /X Y D*f(e)Dog@)dz

0<e<t

as the inner product. Note that a partial derivative is converted to the corre-
sponding multication by the Fourier transform, preserving the inner product.
‘

Theorem 13.21. ([164]). The (A, H, D) chosen above is a spectral triple.

In particular, the zeta functions tr(a|D|™%) admit analytic continuation to
the complement of the dimension spectrum in C, where the dimension spectrum
is of the form {dim M — k| k € N} with multiplicities < 2.

— 80 —



The zeta functions are related to the heat kernel as
te(| D)%) = L /oo £ lgr(e~ 2yt
I'(3) Jo

which relys on the results of [52] and [164].

The case of tr(a|D|~%) is treated by splitting a|D|™% as a sum of a contri-
bution from the smooth part and the other from the singularity.

The Chern character from the K-(cohomology) theory for the space M to
the cohomology theory for M is applied to the spectral triple as

Ch : K*(M) = K,(A) — H.(M,C) = PHC*(A)

as the transformation from the K-(homology) theory for the algebra A to the
periodict cyclic homology for A. (Note that homology is assigned to homology,
and that cohomology to cohomology.)

The cocycles ¢, in the (b, B)-bicomplex for the algebra A have been com-
puted explicitly as ([164, Théoréme 5.1])

wpola + A1) = / aA™(M) ACh(E) + Aind(D4), A€ C,a€ CX (M)
M
wnlap, - ,an) = V,./ apday A---Ada, A ANM)ACh(E), n>1.
M ;

(Added). May recall the construction of the fundamental (b, B) bicomplex
of entire cyclic cohomology for a unital Banach algebra A over C, following (66,
IV 7.a). For any n € N, let C* = C™(A, A*) denote the space of continuous
(n + 1)-linear forms ¢ on A. For n < 0, set C® = {0}. Define two differentials
b:C*" > C™ and B=CproBy:C"—C" ! - C" ! as

(bp)(a®, - a™*) =

Z(—l)jcp(ao,--- ,aldd o et 4 (1) (e a0, el - - -, a™),
=0

(Bop)(@®,---,a*" ") =

o(1,a% - ,a™ ) = (-1)"p(a’,--- ,a"" 1, 1), peCm,

(pr)(aov T ’an—l) =

n—1

Z(—l)("—l)j1/)(aj,aj+l, . ,aj—l), ve Cm_l.

j=0

It then follows that b2 = B2 = 0 and bo B = —B o b, so that obtained is the
bicomplex (C™*™,d,,ds), where C*™ = C™*™ for any n,m € Z, and

1
n—m

di=(n-—m+1)b:C™ - C™*'™ and dy= B:C™™ L,




Namely, the (b, B) bicomplex diagram with degree n 1 is given by

cr b, o+t b cn+?

8| [E G

o+l b, o2 b, on+3

o] o a
crt2 b, onts b on+de

where the diagram above does not commute, but the diagram can be changed
into the (di,d2) bicomplex with bidegree (n, m) + (1,0), (0, 1) as:

cnrm G} ¢n+lm dy Cn+2m
{(n—m+1)b (n—-m+2)b
d; I =2 d2 T =2 dy T T
Cn,m—l ol Cn+l.m—1 d, , n+2,m—1
(n—-m+2)b (n—-m+3)b
da I T da T TS da T T
Ccnm—2 d crim-2 d Cnt+2m-2
’ (n—m+3)b (n-m+4)b

where the above diagram still does not commute.

Note from [66, III 1.a] that the complex (C™(A, A*),b) is the Hochschild
complex of A (with coefficients in A*). There is the linear map from C"(A4, A*)
to C™(A, A*) defined by »

Cop= Y e(npoy, peC™

YET w41

where [ is the group of cyclic permutations of the set {0,1,2,---,n}. Define
C7(A) to be the range of the map C, as the subspace of C*(A). Then (C}(A),b)
is a subcomplex of the Hochschild complex. In particular, HC®(A) = ZY(A) is
the linear space of traces on A.

The cyclic cohomology groups HC™(A) of an algebra A are defined to be
the cohomology groups of the complex (C3(A), b).

As example, if A = C, then HC?"(C) = C and HC™~}(C) =0 for n > 1,
while H*(C) =0 for any n > 1.

Moreover, HC*(C) = ®,50HC™(C) is a polynomial ring with one generator
of degree two. Any HC*(A) = @n>0HC"™(A) is a module over the ring HC*(C).

Furthermore, the periodic cyclic cohomology for A is defined to be

PHC‘(.A) = HC.(A) ®HC‘(C) C.
Now define

C® = C*(A) = MpenC?™ and C° = C°4(A) = ,enC* .



The boundary operator & = d; + da maps C® to C°? and C°¢ to C*°" respec-
tively.

An even cochain (p2,)aen € C® and an odd cochain (p2,41)nen € C°d are
said to be entire if infinity is the raduis of convergence of respectively

o0

1
E:;"Wn"z" and E :—|Y¢2n+1||z ,
neN neN

where for ¢ € C™ for any m > 0, the norm of ¢ is given by the Banach space
norm: : .
llell = sup{l(a®,- - ,a™)|la?]] £ 1,0 < j < m}.

It follows in particular that any entire even (or odd) cochain (p2,) € C defines
an entire function f,,.) on the Banach space A by

fior @ =D (—nl!)n Pan(@,000,3), TEA

n=0

(Note that (—1)™ may be replaced with 1).
Define
Cen = Cax(A) and C3f = Co(4)

to be the sets of entire even and odd cochains in C®¥ and C°¢, respectively. .
The entire cyclic cohomology of a Banach algebra A is defined to be the
cohomology of the short complex of entire evne and odd cochains on A:

Can(A) 7= Ca(A) o= CR(4) .~ C'E.‘.’ (A)-

Then define the entire cyclic cohomology gro‘ups HS(A) and H24(A) to be the
quotients ker(8)/im(d) at CS¥(A) and CS3(A), respectively.

As example, if A = C, then H{'(C) = C and H2¢(C) = 0 [66, IV 7.c], where
an isomorphism is induced by sending

C2(©) 3 () 30

n=0

wan(l, -, 1).

There is an obvious map
PHC*(A) — H.(A) = H>(A) ® H(A).
As another example, if A = C[z,271] the algebra of Laurent polynomials,

then HSV(A) = C = H24(C), where generatos are given by the cyclic cocycles
7; (66, IV T.¢]:

To(f)=/f(z)dz and Tl(fo,f1)=/f°df‘. <



14 Spectral triples from Cantor sets

As an important class of C*-algebras, consider direct limits of a sequence of
finite dimensional C*-algebras and embeddings. These C*-algebras are said to
be approximately finite dimensional (AFD) or simply AF-algebras.

For an AF C*-algebra, its isomorphism class is determined by a diagram
corresponding to its direct limit system, so called the Bratteli diagram [33] (cf.
[39]). From the Bratteli diagram, it is possible to obtain the structure of the
algebra, for instance, its ideal structure.

Example 14.1. (Edited). Let X be a Cantor set and C(X) be the C*-algebra
of all continuous, complex-valued functions on X compact. Then C(X) is a
unital commutative AF-algebra.

(Added). Note that the Cantor set Y in the closed interval [0,1] = I is
defined to be the intersection N, I, of decreasing unions I, of closed intervals,
obtained inductively by removing the middle open interval for each closed inter-
val in I, divided into 3 intervals with the same length such as I = Ip\ (3, %).
Viewing each closed interval of I, as C we obtain the injective Bratteli diagram

for C(Y) as

I=C 25 n=CeC 2 L=0¥C —2— ... » C(Y)

where each homomorphism is injective with multiplicity two at each direct sum-
mand.

Recall that a topological space X is said to be totally disconnected if every
connected component of X consists of a single point of X. The Cantor set Y in
R is homeomorphic to the product space I1{0, 1} with the product topology. In
particular, for every point of Y, its open or closed neighbourhoods with more
than the point are disconnected, so that its connected component is the point.

A Cantor set X is a totally disconnected, compact Hausdorff (metric) space.
A Cantor set X is also the intersection of a family of decreasing coverings of
disjoint closed sets. This family provides the injective Bratteli diagram for C(X)
as well. '

Conversely, a unital commutative AF C*-algebra A is spanned by its projec-
tions, since any finite dimensional commutative C*-algebras are generated by
mutually orthogonal projections. It then follows that the spectrum for A unital
is a compact Cantor set. <

Example 14.2. Let E be a real Hilbert space and T : E — B(H) a linear map
sending f to Ty such that

{Tf’Tg} =TTy +TyTy =0 and {T;aTy} = (g, f)1.
Define the algebra A to be generated by all the operators Ty for f € E. <

May refer to [106] as well.
As described in [66, IV 3.¢}, one can construct the Hilbert space for a Cantor
set X in R as follows. We may assume that X has no isolated points and



is contained in the closed interval [0,1] and 0,1 € X. Let O = X be the
complement of X in [0,1]. Then the open set O in [0,1] is the disjoint union
of a sequence of bounded intervals I; (notation changed). Denote by I; = |I;|
the length of each interval I;. We may assume that the lengths are ordered as
h2l>-->0 WeletI; = (x;,z}*) for every j with xJ* as the boundary
points of I;. Denote by V = V+ UV~ the set of the boundary points .E;t as a
disjoint union respectively.
Define the Hilbert space for a Cantor set X as

H=PFV)=L2VHelB(V").
Since V C X as a set, there is an action of C(X) on H given by
(f - €)(z) = f(x)é(x), for fe C(X),Ec HzeV CX.

Note that V is countable but X is not. '
Define the closed subspace of the piecewise constant functions of H with
respect to V' as

K ={¢ € H|&(z]) = &(z]) forany z5 € V},

and let p be the orthogonal projection from H to K. Define F = 2p—1 =
p®—(1—p) = lk®—1xr on K@ KL = H with K+ the orthogonal complement
of K in H (cf. [66]). Hence the 