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Abstract
Managing pests with insecticides is probably the most conventional available control method. However, insecticide overuse 
often results in resistance and subsequent pest resurgence, and often adversely affects the ecosystem. The physical manage-
ment of insect pests by utilizing substrate-borne vibrations, sounds, or both is increasingly attracting attention as an alterna-
tive, as it has modest ecosystem impacts. This method exploits vibroacoustic insect communication used for mating and the 
perception of approaching enemies, provoking behavioral responses in an ingenious manner. We aimed to examine whether 
substrate-borne vibrations effectively drive away tobacco whiteflies [Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae)], 
which are serious agricultural pests. To do so, B. tabaci individuals were artificially introduced into greenhouses where 
tomato (Solanum lycopersicum L.) plants were reared. A substantial reduction in the average density of B. tabaci nymphs 
and adults was achieved by transmitting vibrational stimuli to the plants. At the same time, no obvious reduction was found 
in the number of tomato plant flowers. Although the performance of the vibrational device and transmission procedures 
requires further improvement, the present results shed light on the potential of substrate-borne vibrations as a promising 
alternative for pest management.

Keywords  Pest management · Tobacco whiteflies · Behavioral disruption · Vibrational communication · Mechanical 
control

Introduction

The tobacco whitefly Bemisia tabaci Gennadius (Hemip-
tera: Aleyrodidae) is a significant global agricultural pest 
that causes serious damage to vegetable and ornamental 
crops: directly by consuming phloem tissue and indirectly 
by causing sooty molds due to honeydew secretion (Mound 
and Halsey 1978). Whiteflies act as a vector for disease 
through the transmission of plant pathogenic viruses such 
as those in the genera Begomovirus, Crinivirus, Ipomovirus, 
Carlavirus, and Torradovirus (Jones 2003; Navas-Castillo 
et al. 2011). In particular, B. tabaci serves as a vector for 
the tomato yellow leaf curl virus (TYLCV; Begomovirus 
in Geminiviridae). This virus has a wide host range and 
causes serious symptoms such as leaf curling and yellow-
ing, which subsequently lead to yield reduction (Kil et al. 
2014). Moreover, B. tabaci comprises more than 40 cryptic 
species or “biotypes” among which the most invasive are 
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the Middle East-Asia Minor 1 (MEAM1 or B biotype) and 
Mediterranean (MED or Q biotype) (De Barro et al. 2011; 
Vyskočilová et al. 2018). In addition to the habit of infest-
ing a wide range of plant species (Bradshaw et al. 2019), 
B. tabaci resistance against pesticides is a serious problem 
because it may allow the rapid spread of invasive biotypes 
that express strong resistance to a variety of insecticides 
(Luo et al. 2010; Wang et al. 2020). To overcome the prob-
lem of resistance, it is necessary to combine approaches to 
prevent the spread of potentially harmful B. tabaci biotypes 
(Horowitz et al. 2011; Riley and Srinivasan 2019).

Intra- and interspecific insect communication, mediated 
by mechano-receptive information such as substrate-borne 
vibrations, airborne sounds, or both, has recently attracted 
considerable attention for pest management (Mankin et al. 
2013; Polajnar et al. 2015; Takanashi et al. 2019; Uechi and 
Takanashi in press). Vibrations or sounds similar to those 
produced by insects can be used to provoke disturbances in 
communication between individuals and behaviors in vari-
ous ways, leading to fitness reduction (Eriksson et al. 2012; 
Lee et al. 2012; Lujo et al. 2016; Takanashi et al. 2019). 
Unlike chemical pesticides, the exploitation of vibrations or 
sounds does not release harmful compounds into the envi-
ronment, although a lowered sensitivity to temporary suc-
cessive stimuli, habituation, should be taken into account 
(Kishi and Takanashi 2019; Loxdale 2018; Rohde et al. 
2019; Takanashi et al. 2019).

Here, for the first time, we aimed to test whether sub-
strate-borne vibrations resulted in significant overall distur-
bance to the reproduction and settlement of B. tabaci on 
tomato leaves, using the observed number of individuals as 
an index. We additionally examined whether the reproduc-
tion of tomato plants was affected by vibrational stimuli, 
using the number of flowers as a fitness indicator.

Materials and methods

Bemisia tabaci cultures

Bemisia tabaci (B biotype) individuals were collected from 
green peppers (Capsicum annuum L.) grown in Yaese, 
Okinawa, Japan on June 2, 2017. Prior to the experiment, 
they were reared for six generations on kidney beans 
(Phaseolus vulgaris L.) in an acrylic case [0.3 m (height, 
H) × 0.29 m (width, W) × 0.24 m (length, L)] at 25 ± 2 °C 
with a photoperiod of 14:10 (L:D) h.

Experimental design

This study was conducted in a greenhouse [5 m (H) × 9 m 
(W) × 19 m (L)] at the experimental farm of the University 
of the Ryukyus, Okinawa, Japan. Two vinyl houses [2 m 
(H) × 1.8 m (W) × 8 m (L)] were constructed parallel to each 
other and 2 m apart in the greenhouse. The northernmost 
structure is referred to as ‘house 1′ and the other as ‘house 
2′ (Fig. 1b). A steel rack [1.72 m (H) × 0.96 m (W) × 0.45 m 
(L)] was placed in the center of each house. A control driver 
(SMT-KN-DR-001; Shonan Metaltec, Kanagawa, Japan) 
of a vibrational exciter, made using giant magnetostrictive 
materials (L: 0.203 m, diameter: 46 mm; SIP-100/10-MB-
wp; Shonan Metaltec; Fig. 1a), was placed on the rack. 
The vibrational exciter was controlled by an outlet timer 
(534–02; Sogo Laboratory Glass Work, Kyoto, Japan).

To grow 12 tomato plants in each house, props (L: 2.1 m, 
diameter: 11 mm) were buried at depths of 0.3–0.4 m, 0.5 m 
apart (Fig. 1c). A tomato seedling (Momotaro®; Takii Seed-
lings, Kyoto, Japan) was planted in a pot that was filled with 
mixed soil (depth: 0.26 m, diameter: 260 mm) on October 
30, 2017. The stem of each plant was tied to a prop using 

Fig. 1   Schematic diagram of 
tomato plant positions and asso-
ciated equipment for providing 
vibrations: a vibrational exciter 
(scale bar: 0.10 m), b horizontal 
view of experimental setting, c 
vertical view
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a soft wire (#4907052726697; Takagi Co. Ltd., Niigata, 
Japan). In total, 24 seedlings that had been cultivated in 
liquid fertilizer (Ohtsuka House 1 + 2®, “A” prescription; 
OAT Agrio, Tokyo, Japan) were planted in the 2 houses. 
In the vibration-treatment area, the vibrational exciter was 
fixed between props at a height of 1.5 m above the ground 
(Fig. 1c). Three pieces of plastic rod (L: 1 m, diameter: 
11 mm) that transferred vibrational stimuli to the props were 
connected serially to the exciter and were attached to the 
props using supporting clips (props joint clip, 11 × 11 mm; 
Takagi Co. Ltd., Niigata, Japan; Fig. 1). We did not set the 
vibrational exciter or plastic rods in the non-vibration-treat-
ment area (Fig. 1b).

The vibrational exciter was operated for 1 min (a cycle 
of 1 s pulse and 9 s pause) every 30 min between 7:00 and 
18:00, under the control of the outlet timer described above. 
The output vibrational frequency was 100 Hz. The vibra-
tional frequency was determined based on the findings of our 
previous studies on other insects (Kishi and Takanashi 2019; 
Takanashi et al. 2016) that reported startle responses (see 
“Discussion” for further details) and the number of abdomi-
nal movements of B. tabaci counted in courtship behavior 
(Yanagisawa, unpublished data). The stimulation cycle and 
timing were configured to moderate habituation against con-
tinuous stimuli and were based on preliminary experiments 
and a previous study (Kishi and Takanashi 2019).

Vibrational intensity was measured using an accelerom-
eter (Type 3052-A-030; Brüel & Kjær, Nærum, Denmark) 
connected to an input module (Type 4519-003; Brüel & 
Kjær), that was controlled by a laptop computer (CF-S9; 
Panasonic, Osaka, Japan) on December 26, 2017. The accel-
erometer was fixed to the target position using plastic tape. 
We measured vibrations at the intersections of props and 
plastic rods, and on plant stems at a height of 0.4 m above 
the ground. Vibrations were recorded using the PULSE Data 
Time Recorder software (Type7708; Brüel & Kjær); zero-to-
peak values were used for acceleration measurements. Meas-
urement of acceleration was conducted five times at each 
position on the same day. The output frequency (100 Hz) 
was detected in the harmonic series of the detected signals 
based on spectral analysis (fast Fourier transform: type Ham-
ming, window size = 512).

Field surveys

Two days before starting the experiment (on November 15, 
2017), 30 adult (1- to 9-day-old) B. tabaci were released on 
each tomato plant. These individuals were not sexed before 
the release. Field surveys started on November 17, 2017, and 
ended on January 1, 2018, and were conducted every 5 days 
(ten surveys were conducted in total). Prior to conducting 
the surveys, we randomly selected three compound leaves 
from each tomato plant. Three leaflets were then randomly 

selected from the compound leaves, and the number of B. 
tabaci adults and nymphs on leaflets was counted by visual 
observation. The number of flowers was also recorded for 
each flower cluster in each tomato plant. Yellow sticky traps 
(New Insect Bang Bang®; Daikyo Giken Kogyo, Kanagawa, 
Japan) were suspended from plastic rods using polyethylene 
strings so that the traps were placed at almost equal intervals 
at a height of 1.5 m (Fig. 1b, c). Each trap was replaced 
every 5 days, and the number of B. tabaci adults trapped 
was recorded.

Statistical analysis

Prior to conducting our statistical analysis for insects and 
plants, we compared the acceleration between the measure-
ment positions. We first used a generalized linear mixed 
model (GLMM) to examine how the acceleration decreased 
in proportion to the increase in the distance from the vibra-
tional exciter. The intensity of the vibration varied depend-
ing on the height of the measurement position and the 
horizontal distance from the vibrational exciter, therefore, 
the effects of these variables were included as explanatory 
(fixed) variables. A Gaussian error distribution with an iden-
tity link function was applied to the error distribution. The 
order of repeated measurements and greenhouses (houses 1 
and 2) were included as random effects.

We then examined whether the periodical vibrational 
stimuli generated by the vibrational exciter effectively 
decreased the population density of B. tabaci adults and 
nymphs on leaves. In the GLMM, the number of B. tabaci 
adults or nymphs was included as the response variable, 
with treatment type being included as an explanatory (fixed) 
effect. Plant location, nested within greenhouses, and the 
date of the survey were included in the models as random 
effects. In both cases, we first postulated Poisson errors, but 
detected greater overdispersion than expected based on the 
dispersion estimator ϕ̂ = D/(n-p) proposed by Wedderburn 
(1974), where D is the deviance of the model, n is sample 
size, and p is the number of parameters for the model (adults: 
ϕ̂ = 2.046, nymphs: ϕ̂ = 14.017). Therefore, we adopted the 
negative binomial GLMM with a log-link function for the 
above comparisons.

Additionally, we compared the average and total num-
ber of tomato plant flowers between the treatment and con-
trol groups. Because we detected overdispersion (average 
number:ϕ̂ = 1.877, total number: ϕ̂ = 8.919), a negative 
binomial GLMM with a log-link was used. The average 
number of flowers was included as the response variable, 
with the treatment type included as an explanatory vari-
able. Plant location, nested within greenhouses, and the 
date of the survey were included in the model as random 
effects. Similarly, the total number of flowers per tomato 
plant was included as the response variable, the treatment 
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type was included as an explanatory variable, and green-
house location was included as a random effect.

Finally, we examined the number of B. tabaci adults 
caught on yellow sticky traps set in the houses (Fig. 1). 
A negative binomial GLMM with a log-link was adopted 
because overdispersion was detected ( ̂ϕ = 6.477). The 
number of B. tabaci was included as the response variable, 
and the vibrational condition (with or without vibrations) 
of the installation site was included as an explanatory vari-
able. Traps, greenhouses, and survey dates were included 
as random effects.

All statistical analyses were conducted using the R sta-
tistical software ver. 4.0.0 (R Core Team 2020).

Results

Significantly smaller values for vibrational accelerations 
were detected at the lower height (0.4 m) positions com-
pared with higher (1.5 m) positions (GLMM: β = 34.02, 
t = 16.56, p < 0.001). As such, in the comparison, we exam-
ined how the acceleration decreased as the horizontal dis-
tance between the vibrational exciter and measurement 
positions increased (Table 1). At the higher positions, the 
acceleration tended to decrease as the distance increased 
(GLMM: β = − 0.16, t = − 3.33, p = 0.002); however, such a 
relationship was not detected at the lower positions (GLMM: 
β = 0.02, t = 1.00, p = 0.322).

On average, the number of B. tabaci nymphs was sig-
nificantly lower in the vibrational treatment than in the con-
trol treatment (GLMM: β = − 0.62, z = − 2.271, p = 0.023; 
Table 2; Fig. S1, S2). Similarly, the average number of B. 
tabaci adults on the tomato leaves was significantly lower 
in the vibrational treatment than in the control treatment 
(GLMM: β = − 0.33, z = − 2.147, p = 0.032; Table 2).

However, neither the average nor the total number of 
tomato plant flowers differed significantly between the con-
trol and treatment groups (GLMM: β = 0.266, z = 0.551, 
p = 0.582 and β = 0.162, z = 0.357, p = 0.721, respectively; 
Table 2).

The number of B. tabaci adults caught on the yellow 
sticky traps was compared between installation sites (the 
area treated with vibrations versus the area without vibra-
tions), but no significant differences were detected (GLMM: 
β = 0.217, z = 1.038, p = 0.299; Table 2).

Discussion

The present study revealed that the application of vibra-
tions to tomato plants using a vibrational exciter reduced 
the overall number of B. tabaci on these plants. It is notable 
that approximately 40% fewer nymphs were observed on 
the plants that were subjected to vibrational treatment com-
pared to the control. Additionally, we conducted a secondary 

Table 1   Averaged acceleration at measuring positions

Measurements were repeated five times at each position

Horizontal distance (m) from 
vibration actuator

Mean ± SD ( m/s2)

1.5 m High from the 
ground

0.4 m High 
from the 
ground

House 1
 0.5 67.1 ± 0.7 11.9 ± 0.2
 1 48.5 ± 0.3 21.2 ± 0.6
 1.5 48.6 ± 0.8 7.0 ± 0.4
 2 73.2 ± 0.5 18.2 ± 0.8
 2.5 21.3 ± 0.2 13.2 ± 1.5
 3 46.6 ± 0.3 16.8 ± 0.8

House 2
 0.5 76.8 ± 0.3 20.2 ± 0.3
 1 53.9 ± 1.0 23.4 ± 1.0
 1.5 38.8 ± 0.2 13.3 ± 0.2
 2 29.4 ± 0.4 7.2 ± 0.3
 2.5 57.7 ± 0.2 19.8 ± 0.3
 3 53.8 ± 0.3 28.3 ± 0.1

Table 2   Numbers of larval and 
adult whiteflies and flowers on 
plants

Variable Mean ± SD

With excitation Without excitation

Insects
 Nymphs (/observation/plant) 5.9 ± 11.5 10.5 ± 16.9
 Adults (/observation/plant) 0.5 ± 0.9 0.6 ± 1.0
 Adults trapped (/trap) 8.9 ± 6.2 7.6 ± 6.8

Plants
 Flowers (/observation/plant) 0.6 ± 0.9 0.5 ± 0.9
 Accumulated number of flowers (/plant) 5.6 ± 4.9 4.8 ± 5.5
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experiment under different conditions and confirmed a sig-
nificant decrease in the number of B. tabaci nymphs and 
adults on tomato leaves that were subjected to vibration 
(Yanagisawa et al. unpublished data). The significant reduc-
tion in the nymphal density of B. tabaci implies that the 
reproduction and settlement of B. tabaci on the plants is 
disturbed by vibrations.

Male and female whiteflies, including B. tabaci, com-
municate via substrate-borne vibrations (Kanmiya 2006). 
Notably, the male vibrational signals and the subsequent 
female responses vary, even among closely related species 
(Kanmiya 2011). During the courtship stage, males emit 
calling and courtship sounds consisting of a burst separated 
by long irregular intervals. Females subsequently respond 
to males by emitting sounds comprising short and simple 
bursts (Kanmiya 2006). The temporal and spectral domain 
characteristics of male sounds differ even among closely 
related species, and females do not respond to the sounds 
emitted by males of different species (Kanmiya 2011). This 
results in strict premating reproductive isolation (Perring 
et al. 1993). Based on these facts, male vibrational signals 
should be critical for species discrimination by females, and 
for the decisions by females to accept or refuse mating. It 
is therefore possible that the vibrational signals generated 
by the exciter interrupt the courtship sequences between 
the sexes, consequently hindering mating opportunities as 
a disturbance effect. Substrate-borne vibrations could also 
cause “startle responses” in B. tabaci, such as fast jerky 
movements, freezing, and escaping (Bullock 1984; Friedel 
1999). Startle responses are considered to have evolved for 
evasion from predation, and can be found in various insect 
species (e.g., Kishi and Takanashi 2019; Takanashi et al. 
2016; Tsubaki et al. 2014; Uechi and Takanashi in press). 
Marked reduction in nymphs might be due to not only a 
disturbance effect, but also due to startle responses induced 
by the signals irrelevant to courtship sounds. Future studies 
need to be carried out to carefully address how the trans-
mitted vibrational signals manipulate behavior in B. tabaci.

In the adult stage, vibrations reduced the number of 
individuals observed by 26%, which was much smaller 
than the percentage in the nymphal stage. Moreover, the 
number of trapped B. tabaci did not differ between the 
vibration-treatment and non-vibration-treatment areas. 
Unlike the apterous nymphal stages, B. tabaci adults can 
fly for long distances and colonize various plant species 
(Bar et al. 2019). We did not place any shields between 
the experimental areas, which allowed B. tabaci adults to 
move freely between them, and some of the emerged B. 
tabaci migrated due to the vibrational stimuli. It is there-
fore likely that an influx of B. tabaci adults emerged in the 
non-vibration-treatment area simultaneously. Analogous 
to the ‘push–pull’ approach to managing pests (Miller and 
Cowles 1990), vibrations are expected to ‘push’ B. tabaci 

adults out of the infested plants by exploiting their star-
tle response. To enhance the effect of vibrations, future 
studies should develop a method to ‘pull’ escaping and 
migrating B. tabaci adults by utilizing traps attractive to 
this species.

Together with the assessment of pest management effi-
cacy, we also investigated the impact of substrate-borne 
vibrations on plants. However, we did not find an overall 
difference in the blooming of tomato plant flowers between 
the vibration- and non-vibration-treatment areas. This 
might indicate that physiological conditions remained 
almost the same irrespective of the presence or absence 
of vibrational stimuli. However, attention should be paid 
to the indirect effect of B. tabaci, which is likely to nega-
tively affect plant reproduction as well as the direct effect 
of vibration. The positive and negative effects exerted by 
vibration on the plants should be carefully evaluated under 
more targeted experimental designs in the future.

Our results indicate that the vibrational stimuli 
decreased with increasing distance from the exciter. 
The maximum and minimum average accelerations were 
76.75 m/s2 and 6.96 m/s2, respectively, suggesting more 
than a tenfold difference between them (Table 1). Such 
a spatially heterogeneous vibrational transmission might 
drive whiteflies into areas in a greenhouse with lower 
accelerations, resulting in an unintended concentration of 
crop damage. As the size of farming fields managed by 
the use of vibrations increases, more exciters are required, 
which consequently increases costs. To optimize the effi-
ciency of exciters, it is necessary to use assembling mate-
rials that are suitable for transmitting vibrations while 
suppressing vibrational attenuation and increasing the 
accelerations from the exciter.
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