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Automatic Generation of Mixed Integer Programming for
Scheduling Problems Based on Colored Timed Petri Nets
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SUMMARY This paper proposes a scheme for automatic generation
of mixed-integer programming problems for scheduling with multiple re-
sources based on colored timed Petri nets. Our method reads Petri net
data modeled by users, extracts the precedence and conflict relations among
transitions, information on the available resources, and finally generates a
mixed integer linear programming for exactly solving the target scheduling
problem. Themathematical programing problems generated by our tool can
be easily inputted to well-known optimizers. The results of this research
can extend the usability of optimizers since our tool requires just simple
rules of Petri nets but not deep mathematical knowledge.
key words: scheduling problem, mixed integer programming, Petri nets,
colored timed Petri net, automatic generation

1. Introduction

Petri nets are a well-knownmathematical modeling language
for concurrent systems, where the concurrent systems in-
clude much variety of systems such as parallel/distributed
systems, network systems, production systems, collabora-
tive robots, and many others [1]. Petri nets are mathemati-
cally powerful for analysis of modeled systems and are also
a graphically understandable for the system’s structure and
behavior. Once we know a limited number of simple rules
on Petri nets, we can start system modeling.

Scheduling problems are important research topics in
operations research and computer science, where many re-
searchers investigate algorithms to solve exactly or approx-
imately scheduling problems with considering their NP-
hardness of them [2]–[5]. Scheduling problems are also
valuable in practice since the problems are applicable in a
broad range of fields [6], [7].

Recent advancement of optimization algorithms makes
us solve exactly scheduling problems of practical size even if
the problem is NP-hard. There are very efficient commercial
optimization tools, such as CPLEX [8] and Gurobi Opti-
mizer [9] and also freeware tools. However, limited users
get benefits from this optimization approach. The reason
for limited usage is not only an economic reason but also
usability. Users need to formulate their problems firstly as
mathematical programming problems, which requires deep
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knowledge of mathematics. Therefore, an only limited quan-
tity of users can utilize these tools.

In this paper, we present automatic generation ofmixed-
integer programming for scheduling problems of multiple
resources by making use of Petri nets. Users just need to
model their target system with Petri nets and set necessary
information for operations. Our proposed tool generates the
mathematical programming problem for scheduling of the
system, and then we utilize some optimization tool to solve
the generated problem.

There aremany Petri Net based scheduling studies, such
as [10]–[12]. However, none of them treated automatic gen-
eration of mathematical programming for scheduling prob-
lems.

2. Preliminaries

A Petri net is a 4 tuple PN = (P,T,Pre,Post) where P =
{p1, p2, ..., pn} and T = {t1, t2, ..., tm} are a set of places and
a set of transitions, respectively. Pre(p, t) and Post(p, t)
express the weight on the arc from place p to transition t and
from transition t to place p, respectively.

A marking M tr = (M (p1), M (p2), ..., M (pn)) repre-
sents a token distribution on places, that is, M (pi) is the
number of tokens in place pi . Here tr shows the trans-
pose of the matrix. Token distributions show states of the
system. Therefore, the initial marking M0 shows the ini-
tial state of the corresponding system. We call p an input
place of t when Pre(p, t) > 0 and an output place when
Post(p, t) > 0. Transition t is enabled under some marking
Mi when Mi (p) ≥ Pre(p, t),∀p ∈ •t and transition t can be
fired when it is enabled, where •t shows the set of all the
input places of t. On t’s firing, Pre(p, t) of tokens in each
input place p should be removed and Post(p, t) of tokens are
added to each output place p. A transition corresponds to
an event, and its firing represents an occurrence of the event
in the system. The dynamical behavior of a system can be
represented by changing of token distribution by firing in the
Petri net model.

For quantitative analysis of a dynamical behavior of a
system, many researchers introduced time to Petri nets. We
can categorize the ways of timing into three types, FD (Fir-
ing Duration), HD (Holding Duration), and ED (Enabling
Duration). The FD is to assign time to transitions, where the
firing of transition takes time. The HD is referred as place
time Petri nets, where tokens cannot be used for firing for
a particular period after located in the place. The last one,
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the ED, is such that a transition cannot be fired for a given
period after enabled [10]–[12]. In this paper, we consider
timed Petri nets with FD because of its intuitively easiness.

Timed Petri nets are a six-tuple TPN =

(P,T,Pre,Post,T S, D), where TS is a set of time stamps.
Usually we use the set of positive real numbers, and
D : T → T S is a function to show the duration time of
transition t ∈ T . A time stamp is attached to a token when
the token is generated. In the timed Petri net, transition t is
enabled at time τ when each input place of t has more than or
equal to Pre(p, t) tokens and its time stamp is no more than
τ. By firing of t at time τ, the token distribution should be
changed according to the same rule of the Petri net described
above except that we attach the time stamp τ + D[t] to each
output token.

Moreover, in colored Petri net, another extended Petri
net, each token has values called color. On firing, the val-
ues of the produced tokens for the output places are calcu-
lated based on values of tokens of the input places. Colors
of tokens in the input places can be preconditions for fir-
ing. Therefore, colored Petri nets have very strong modeling
power. More details are explained in the literature [1], [13].

The scheduling problem is to determine the starting
time of each task to optimize the given objective function by
ordering tasks which use the same resource while satisfying
all the precedence relations.

A scheduling problem can be seen as a 6-tuple SP =
(TASK,RS,RR,PRE,RT,PT), where TASK is a set of tasks,
RS is a set of resources, RR : TASK → 2 |RS | is a func-
tion which maps a task to an available resource set, PRE ⊆
TASK × TASK is the precedence relation between two tasks,
RT : TASK → TS is a function to show the release time of a
task, PT : TASK × RS → TS is a function to return the pro-
cessing time of tasks when we assign an available resource,
where TS is the time length, usually the natural number set
or the non-negative real number set.

3. Timed Petri Net Model for Scheduling Problems

3.1 Assumptions for Scheduling Problems

In this paper, we treat scheduling problems under the fol-
lowing assumptions. These are an extension from our previ-
ous work [14] since we can now allow multiple resources
for each resource type. Therefore, this paper can cover
multi-processor scheduling problems, multi-machine job-
shop scheduling.

1. No resource can process more than one task at a time.
2. Multiple resources may be available for each type of

resources, that is, they have the same functionality but
may have difference capabilities.

3. Each task can be processed by a single resource.
4. Each resource is always available for processing, that

is, no breakdown.
5. Operations can not be interrupted until their comple-

tion, that is, no preemption.

6. The processing times are known in advance and they
are deterministic.

For the scheduling problem, we verified the feasibility
of the problem [5], [10].

Proposition 1: A schedule is feasible if and only if the
following conditions are satisfied:

1. All the precedence relations are satisfied.
2. The release time conditions are satisfied.
3. There exist no resource conflicts.

3.2 Modeling

In our approach, we model at first precedence relation be-
tween tasks with Petri net and then add resource information.

Petri net models for the precedence relation can be eas-
ily constructed from TASK and PRE in a given scheduling
problem SP = (TASK, RS, RR, PRE, RT , PT). The net can
be a sound workflow net when we add a single source pi and
a single sink po[15]. Figure 1 shows an example in which
the subnet drawn with black ink represents a sound workflow
net.

The soundness ensures the followings:

1. Only the single source place includes a token at the
initial state and only the single sink place has a token at
the final state.

2. All the state reachable from the initial state can lead to
the final state.

We call the Petri net model with a single source and a single
sink as process net.

Additionally, we overlay the resource net obtained from
TASK, RS and RR. Note that we can decompose the resources
set RS into subsets RSi such that RS = ∪iRSi by their func-
tionality.

For each subset RSi we introduce a place rpi , thus, we
have RP = {rpi |i = 1, 2, ..., r }, where r means the number
of resource types. From the point of the colored Petri net, it
means that we assign a color to each place in RP by a color
function C:

C : RP→ ResourceType (1)
ResourceType = {RS1,RS1, ...RSr } (2)

For each place rpi ∈ RP, we locate initial tokens as
follows:

M0(p) =



{UNIT } (p is source)
{rti,1, rti,2, ..., rti,ri } (p = rpi)
∅ (otherwise)

(3)

where UNIT shows a token without color, that is, a normal
token, and ri means the number of resources of the resource
type i.

By referring to the resource requirement of each task,
RR, we can connect from each transition t ∈ T to rpi , and
vise versa. We denote the set of arcs added here by ˆPre and
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ˆPost to differentiate from Pre and Post in the process net.
Moreover, let each token have a color representing its

capability to calculate the duration time when the corre-
sponding resource is assigned to a transition:

D : Ti × RSi → TS (4)

where Ti is the subset of T such that RR(t) = RSi,∀t ∈ Ti .
The timestamp of all the tokens produced by firing can be
calculated by adding this duration time to the starting time
of the firing.

Finally, we obtain a colored timed Petri net for the
scheduling problem sp,CTPN = (P×RP,T,Pre∪ ˆPre,Post∪

ˆPost, TS,D,C).
Let us consider a job-shop scheduling problem

in which four jobs {J1, J2, J3, J4} and each job has 3
tasks, therefore, TASKS = {ti, |i = 1, 2, ..., 12}, RS =
{ResourceType1,ResourceType2,ResourceType3}, PRE =

{(ti, ti+1), (ti+1, ti+2), (ti+2, ti+3) |i = 0, 1, 2)}, RT (t) = 0,∀t ∈
TASK.

Figure 1 shows a colored timed Petri net model of a
scheduling problem, where the subnet drawnwith black color
shows the process net and the subnets colored with blue,
green, and red correspond to the resource net. Note that
each resource type may have multiple colored tokens, in
which different colors in a resource place denote different
capability but the same functionality.

Fig. 1 Colored Timed Petri Net Model for a Scheduling Problem.

4. Extraction of Mixed Integer Programming from Col-
ored Timed Petri Nets

In this section, we propose an algorithm to generate a mixed
integer programming problem for MMASPs from TPNs.

4.1 Preparation

Input data for the algorithm is a timed Petri netmodel, TPN =
(P,T,Pre,Post,T S, D).

According to the discussion in Section 3, we gen-
erate the basic input data for scheduling problem, SP =
(TASK,RS,RR,PRE,RT,PT), as follows:

TASK = {1, 2, ..., n} ← T = {t1, t2, ..., tn} (5)
RS = {1, 2, ..., | ∪rp∈RP M[rp]|} (6)

RR( j) = {1, ..., |M[rp]|} ← ˆPre(t j, rp) , 0,
∀t j ∈ T (7)

PRE = {(ti, t j ) |there exists p ∈ P such that
Pre(p, t j ) , 0 ∧ Post(p, ti) , 0} (8)

RT ( j) = RT (t j ),∀ j (9)
PT ( j, k) = D(t j, rtr,k ), k ∈ RR( j), ˆPre(t j, r) , 0,

∀t j ∈ T (10)

Let us define s j and e j to denote the start and end
times of task j,∀ j ∈ T , respectively. Moreover, the binary
variables xkj and yi, j are introduced as follows:

To represent the resource assignment, ∀ j ∈ TASK,∀k ∈
RR( j),

xkj =
{

1 if task j is assigned to resource k
0 otherwise (11)

To denote the order of the resource usage among tasks
which use the same resource, ∀(i, j) ∈ TASK × TASK,

yi, j =



1 if tasks i and j are assigned to the
same resource and i precedes j

0 otherwise
(12)

4.2 Constraints

To enforce the assignment of each task to exactly one re-
source, the following constraint is necessary.∑

k∈RR( j)

xkj = 1,∀ j ∈ TASK (13)

To state the starting and end time, the following con-
straint should be defined.

s j +
∑

k∈RR( j)

(PT ( j, k) · xkj ) − e j = 0,∀ j ∈ TASK (14)

To ensure that processing of task j begins after process-
ing of task i, if yi, j = 1, the following constraint is defined.
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Fig. 2 Colored Timed Petri Net Model for Sugarcane Farming using CPN Tools 4.0.

Table 1 Petri Net Model for Case Study.
(a) Place and Initial Marking

Place Role Initial Marking
Plowing Resource Set Resource Set for Plowing C10, C20, and C80
Planting/Fertilizing Resource Set Resource Set for Planting/Fertilizing C30 and C40
Harvesting Resource Set Resource Set for Harvesting C40, C25, and C40
P i,1 Pre cond. for Plowing in Farm i UNIT
P i,2 Post cond. for Plowing and Pre cond. for Planting in Farm i φ
P i,3 Post cond. for Planting and Pre cond. for Fertilizing in Farm i φ
P i,4 Post cond. for Fertilizing and Pre cond. for Harvesting in Farm i φ
P i,5 Post cond. for Harvesting in Farm i φ

Cx in Initial Marking means an attribution of the corresponding token and shows the specification (capability) of the resource.
(b) Transition

Transition Task Task Size
Plowing i Plowing for Farm i 1,750, 1,200, 3,100, and 1,250 for Farm 1, 2, 3, and 4, respectively
Planting i Planting for Farm i 3,200, 2,200, 3,600, and 3,100 for Farm 1, 2, 3, and 4, respectively
Fertilizingi Fertilizing for Farm i 3,400, 2,100, 4,050, and 2,500 for Farm 1, 2, 3, and 4, respectively
Harvesting i Harvesting for Farm i 2,150, 1,100, 4,300, and 1,400 for Farm 1, 2, 3, and 4, respectively

The average processing time for each task can be determined from the task size and the capacity of the assigned resource, Cx.

ei − s j +U · yi, j ≤ U,∀i, j ∈ {(i, j) |i , j, ri = r j } (15)

where U is defined to represent a sufficiently large number.
To ensure that only one of two tasks i, j is processed

before the other, the following constraint is defined.

yi, j + yj,i ≤ 1,∀i, j ∈ {(i, j) |i , j, ri = r j } (16)

To ensure that if tasks i and j are assigned to resource
k, then one must be processed before the other, the following
constraint is defined.

xki +xkj−yi, j−yj,i ≤ 1,∀i, j ∈ {(i, j) |i , j, ri = r j } (17)

To guarantee that the sequencing variables yi, j and yj,i
are zero if tasks i and j are assigned to different resources in
the same resource group, the following constraint is neces-
sary.

xli + xkj + yi, j + yj,i ≤ 2,∀l, k, l , k,∀i, j (18)

To ensure the precedence relation between two tasks,
the following constraint is defined.

s j + (
∑

k∈RR(j)
(PT ( j, k) · xkj )) ≤ si,∀( j, i) ∈ PRE (19)

4.3 Objective Function

The objective function will try to minimize the makespan of
the schedule in this paper even though other objectives are
also available.

min max
j∈TASK

e j (20)

For formulating the objective function as a linear function,
we minimize a new variable emax (21) and add the linear
constraints (22):

min emax (21)
emax ≥ e j,∀ j, ( j, i) < PRE, ∃i ∈ TASK (22)
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We have all the constraints for feasible solutions speci-
fied in Proposition 1.

4.4 Algorithm and Implementation

The above subsections describe the steps of our automatic
generation of mixed integer programming for scheduling
problems and we can summarize the algorithm shown in
Algorithm 1.

Algorithm 1 GenerateSchedulingMIP
1: Read timed Petri net model TPN = (P, T, Pre, Post, TS, D)
2: Convert TPN into SP = (TASK, RS, RR, PRE, RT, PT) by (5)-(10)
3: Define real decision variables sj and e j for each j ∈ TASK
4: Define binary decision variables xkj for each ( j, k), j ∈ TASK and

k ∈ RR(j)
5: Define binary decision variables yi, j for each (i, j) such that i ,

j, (i, j) ∈ TASK × TASK
6: Generate all the constraints (13) - (19), and (22)
7: Generate objective function (21)

We implemented the algorithm with Ruby language (v.
2.2.1), where we utilize well-known CPN Tools [13] as a
Petri net modeling tool. Petri net models drawn with CPN
Tools can be exported to XML documents. The XML docu-
ments include not only their structural data but also attribute
information such as time, arc weights, guard conditions, and
functions. We omit the detail explanation of the implemen-
tation for the limited space.

5. Case Study

This section shows an example of a farm workflow schedul-
ing where we model a sugarcane production process in four
farms. We just model essential parts in the farm produc-
tion process and readers may refer to our previous work for
sugarcane workflow modeling details [6].

The sugarcane production process is composed of four
serial tasks, plowing, planting, fertilizing, and harvesting.

Fig. 3 Gantt Chart for the Obtained Farming Schedule by Gurobi Optimizer.

Each task requires a resource set for the corresponding work,
and there may exist some available resource sets. Each
resource set has its capability. Therefore, the working time
for a task depends on the task size and the assigned resource
set.

Figure 2 depicts a CPN model created by CPN Tools
version 4.0. There are four farms and three resource places
with initial resource sets (initial marking). Tables 1(a), 1(b)
explain the details of the place and the transition sets, respec-
tively. Note that the CPN model is based on the one shown
in Fig. 1 though we omitted the source and the sink places in
this modeling.

CPN Tools can output an XML document for the CPN
model. Our developed program reads the XML file for the
model shown in Fig. 2 and generates the mixed integer linear
programming problem for its scheduling problem. Table 2
shows the number of variables and constraints for this exam-
ple. Finally, gurobi optimizer solves the problem. Figure 3
is the Gantt chart representation of the schedule obtained by
the optimizer.

Table 2 Size of Generated Mixed Integer Programming Problem.
Item Numbers
Variables sj 16
Variables e j 16
Variables xkj (11) 40
Variables yi, j (12) 80
Variable emax (21) 1
Total Number of Variables 153
Constraints (13) 16
Constraints (14) 16
Constraints (15) 80
Constraints (16) 40
Constraints (17) 92
Constraints (18) 128
Constraints (19) 12
Constraints (22) 4
Total Number of Constraints 388

The numbers in the parentheses show the equation numbers.
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6. Concluding Remarks

This paper proposed a scheme for automatic generation of
mixed-integer programming problems for scheduling with
multiple resources based on colored timed Petri nets. Our
developed tool reads Petri net datamodeled by users, extracts
the precedence and conflict relations among transitions, in-
formation on the available resources, and finally generates
a mixed integer linear programming for exactly solving the
target scheduling problem. The mathematical programing
problems generated by our tool can be easily inputted to
well-known optimizers. The results of this research can ex-
tend the usability of optimizers since our tool requires just
simple rules of Petri nets but not deep mathematical knowl-
edge.

As future works, we will relax some assumptions con-
sidered in this paper and treat uncertainty in optimization to
get more practical usability.
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