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Abstract: Various de novo assembly methods based on the concept of k-mer have been proposed. Despite the success
of these methods, an alternative approach, referred to as the hybrid approach, has recently been proposed that com-
bines different traditional methods to effectively exploit each of their properties in an integrated manner. However, the
results obtained from the traditional methods used in the hybrid approach depend not only on the specific algorithm
or heuristics but also on the selection of a user-specific k-mer size. Consequently, the results obtained with the hybrid
approach also depend on these factors. Here, we designed a new assembly approach, referred to as the rule-based
assembly. This approach follows a similar strategy to the hybrid approach, but employs specific rules learned from
certain characteristics of draft contigs to remove any erroneous contigs and then merges them. To construct the most
effective rules for this purpose, a learning method based on decision trees, i.e., a complex decision tree, is proposed.
Comparative experiments were also conducted to validate the method. The results showed that proposed method could
outperformed traditional methods in certain cases.
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1. Introduction

Giga-scale sequencers that use a parallel processing technique
provide an output of massive short reads. Various de novo as-
sembly methods have been developed based on the idea of k-mer,
including Velvet [1], ABySS [2], and SSAKE [3]. Despite the ef-
ficacy of giga-sequence technology, the short reads obtained often
contain reading errors, resulting in misassembly. Therefore, vari-
ous methods have also been developed to remove such erroneous
reads, such as Trimmomatic [4], ECHO [5], and Quake [6].

Some comparative studies of traditional assembly algorithms
have been conducted from the perspective of the ability of the
assembly itself [7], [8], [9]. These studies have shown that the
assembly result depends on both the specific algorithm of the as-
sembler and a parameter value such as the k value of the k-mer
(i.e., the sequence length). Moreover, alternative methods based
on a different approach have been developed, which are collec-
tively known as the hybrid approach. In this approach, the re-
sults from different traditional methods are integrated, such as
MAIA [10], GAA [11], and CISA [12]. Furthermore, other meth-
ods exist that integrate the results from different k-values such
as IDBA [13] and IDBA-UD [14]. These approaches have been
applied for analyses of both DNA and mRNA sequences using
Oases assembly [15].

In spite of the success of the hybrid approach, there remains a
major hurdle, which is that traditional hybrid approaches focus on
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the length improvement of overlapped contigs regardless of their
accuracy.

The production of erroneous contigs will inevitably lead to er-
rors in the combined assembly. In other words, even though the
complete hybridization method might be achieved, if the output
contigs contains an error, correct assembly will never be obtained.
To solve this problem, i.e., to identify or detect the misassembly
of contigs, several general characteristics of this problem can be
considered. For example, assembly errors often appear within
a region with low-read coverage, or one that tends to contain
chimeric or recombined reads. Based on the common observa-
tions in misassembly, five traditional measures have been devel-
oped: maximum and minimum lengths of low-read coverage re-
gions, maximum and minimum lengths of low-clone coverage re-
gions, and compression or expansion of paired-end reads. In ad-
dition to these measures, Choi et al. [16] have proposed four more
measures to detect misassemblies. They also applied machine-
learning techniques to improve the accuracy of detection obtained
with a combination of the proposed measures. However, the mea-
sures proposed thus far have focused only on either the length or
number of clones. For example, the measure GMB is calculated
as the difference between the number of good clones and bad
clones, in which goodness or badness is determined by thresh-
olding their deviations from the average length. Given this defi-
nition, this measure does not take into account the frequency of a
k-mer that might contain information about the error. In addition,
in Choi et al. [16], the learning results were not discussed. This
is likely because since they used machine-learning methods it is
difficult to make a discriminant rule explicit, such as a random
forest [17], even though this results in a high ability to learn to
detect misassemblies.
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We previously proposed a double-assembly method that
merges the different results obtained by Velvet and ABySS un-
der different settings of k-mer, and employed discriminant rules
with a characteristic distribution of the k-mer coverage value for
overlapping contigs, named DAwCC (Double Assembly method
with Characteristics of k-mer’s coverage for contig) [18]. In the
process of DAwCC, a decision tree is utilized to construct the
discriminant rule. The derived decision tree is composed of cor-
rect rules for overlapping contigs correctly, and incorrect rules
for overlapping contigs incorrectly. However, evaluation of the
performance of DAwCC revealed that the use of correct binding
rules could not provide completely correct overlapping contigs
and the incorrect binding rules could not remove all of the incor-
rect overlapped contigs completely. Therefore, improvement of
the derivation of discriminant rules remains as an essential task
in the development of DAwCC.

In recent years, ensemble machine-learning algorithms have
been proposed for integrating traditional classifiers. Breimen pro-
posed Bagging prediction [19], which divides a training data set
into sub-data sets, generates classifiers for each of them, and
finally generates a classifier based on the majority of multiple
classifiers. In addition, Random Forest is a random explana-
tory variable that is selected for each divided sub-data set, and
a final classifier is ultimately generated based on the majority
from multiple classifiers, as in Bagging. Boosting [20] was also
proposed, which involves updating the explanatory variable by
weighting with respect to each misclassified piece of data. Some
comparative studies for the decision tree algorithms [21] and en-
semble machine-learning algorithms [22] have been performed.
Although these methods show superior learning ability, the con-
figuration of a classifier and its effective explanatory power re-
mains unknown. Therefore, it is necessary to refer to the contents
of the classifier to achieve improvement of the decision tree.

In this paper, we propose a method for construction of a com-
plex decision tree with the use of multiple objective variables and
combinations of positive and negative rules, in order to derive
the discriminant rules of overlapped contigs for DNA double as-
sembly. First, we describe our originally (traditional) proposed
method, DAwCC. Second, we evaluate two aspects of develop-
ment of this method: one is the possibility of using multiple ob-
jective variables based on their distribution, and the other consid-
ers integration of positive and negative rules. Based on these con-
siderations, we propose a double-assembly method with a com-
plex decision tree named DAwCDT. Finally, to confirm the ef-
fectiveness of DAwCDT, comparative verification was conducted
between the new method and the traditional assembly methods
ABySS, Velvet, DAwCC, as well as the traditional hybrid assem-
bly method CISA.

2. Methods

2.1 DAwCC (Double Assembly method with Characteristics
of the k-mer Contig Coverage)

In this section, we provide a brief introduction of our previous
method DAwCC [10], that is necessary for description of new ap-
proach DAwCDT described at Section 2.2. Double assembly in-
volves integrating the results obtained from different assembly

methods with different k-mer settings, and considers all possible
combinations of contigs that have a sufficient overlap, meaning
exact match length. Then, by applying the discriminant rules ob-
tained by the machine-learning algorithm with certain character-
istics, erroneous combinations would be estimated and removed.
Since the frequency of k-mers depends on the coverage of reads,
it becomes difficult to use the frequency information from the re-
sults obtained from another dataset that differs with respect to
read coverage. To normalize the difference in read coverage, we
used a measure that represents the relative order of the frequency.
Suppose that ci denotes the frequency of k-mer ki, and C repre-
sents the set of the whole ki. Then, the relative order pci of ki is
defined as Eq. (1):

pci =
|{c j ∈ C|ci ≤ c j}|

|C| (1)

Where | · | denotes the number of elements in the set. Hereafter,
we call this measure defined in Eq. (1) as the “k-percentile ki”.
Using the k-percentile, we can compare the frequencies obtained
from some read sets that differ in read coverage. We determined
some characteristics related to the waveform of the k-percentile,
which are shown in Tables 1, 2, 3.

In Table 1, the gradient of waveform D and the rate of the in-
creasing value I are defined as follows:

di =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 (pi < pi−1)
0 (pi = pi−1)
1 (pi > pi−1)

(2)

D =
n∑

i=1

di (3)

I =
|{di|di = 1}|
|n| (4)

Where pi denotes the k-percentile of the i-th k-mer of a read, and
n represents the number of k-mers contained in a read. These

Table 1 Designed characteristics representing the fluctuation
of the k-percentile waveform.

Df ,l Gradient of waveform

I f ,l Rate of increasing value

Fluctuation U f ,l
freq High frequency components

W f ,l Powered value in Fourier transform (F.T)

Table 2 Designed characteristics represents the distribution
of k-percentile waveform.

L f ,l
freq Low-frequency components

Distribution Qf ,l k-percentile with null frequency

W f ,l
freq Powered value of frequency distribution in

(F.T)

Table 3 Designed characteristics representing the correlation
of k-percentile waveforms.

ρ Correlation

ρfreq Correlation between frequency distributions

Φ
f ,l
max Maximum cross-correlation

Correlation H Hamming distance between frequency distri-
butions

Rf ,l Length between the end point of the former
and the start point of the latter contig.
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characteristics are unique from the point of view that traditional
characteristics are focused on the length of reads or clones rather
than on the frequency. In addition, these characteristics are fo-
cused on not only simple frequency information but also on its
features with respect to waveform information.

Next, using these characteristics as explanatory variables, dis-
criminant rules for determining whether or not a contig combi-
nation is correct were constructed. There are various available
methods for the construction of discriminant rules, such as sup-
port vector machine [23] or neural networks [24]. In Ref. [10],
for the convenience of interpreting the results of discrimination,
we selected a decision tree-making algorithm, C4.5 [25]. First,
to simply assess the validity of the application of the C4.5 al-
gorithm for discrimination, preliminary comparison experiments
were conducted. In this experiment, the dataset of E. coli from
NCBI reference data was used, as in the experiment described
above. The steps of the experiments were as follows. First, the
read dataset was generated from the already known sequence.
Second, contigs were derived from the assembly using traditional
methods for multiple k values. Third, all of the correct (consis-
tent with the reference) contigs were collected, and all possible
combinations among them were constructed. The combination
was made only for cases in which contigs overlapped with more
than 5 bases. Next, combined contigs were evaluated with re-
spect to consistency with the reference. Then, the characteristics
described above were calculated for correcting the combined con-
tigs and discriminant rules were constructed using these values as
explanatory variables. Finally, the results from traditional meth-
ods with and without applying discriminant rules were compared.
Since two types of discriminant rules could be obtained for cor-
rect and incorrect contig pairs, we applied these separately for
each rule.

As a comparative result, the the maximum length of correctly
combined contigs, N50 and the ratio of the mapped region were
improved by using a DAwCC approach compared to the tradi-
tional hybrid approach. On the other hand, the maximum length
of incorrectly combined contigs, was drastically increased in
some cases with DAwCC. In addition, there was a large de-
crease in the ratio of correctly combined contigs. Although these
results suggest the effectiveness of DAwCC in view of the ra-
tio of correct combined contigs, neither the correct nor incorrect
discriminant rules could sufficiently distinguish between the cor-
responding combinations. Therefore, these results indicate that
more accurate rules for discriminating between correct and in-
correct combinations are required to improve the accuracy of the
resulted assembly. In particular, since a large number of contigs
that were combined incorrectly was obtained in the experiments,
more precise discriminant rules for incorrect combinations are
particularly needed. Such a large number of incorrectly combined
contigs may occur due to the fact that even though almost all of
the combinations of contigs might be correct, if only one incorrect
combination is obtained, then the whole combination of contigs
would be contaminated. Therefore, although this argument was
not considered in this experiment, the application of both rules
simultaneously might improve the assembly results.

2.2 DAwCDT (Double Assembly Method with a Complex
Decision Tree

It received the problems described in the previous section, we
proposed complex decision tree generating high performance dis-
criminant rules. Whereas traditional decision trees has a single
objective variables and a plurality of explanatory variables, com-
plex decision tree has a plurality of objective variables. In this
section, we describe objective variables of complex decision tree
that is a new approach proposed in this paper.

In the traditional method based on k-mer, common heuristics
were applied such that k-mers with smaller frequencies originate
from reading errors by the sequencer. Moreover, certain heuris-
tics have been used for the length of overlap, called “overlap-
layout census.” ith these heuristics, two reads with long overlap-
ping region are considered as a pair that are correctly combined.
According to these heuristics, information about the k-mer with a
low frequency and long overlapping region among contigs might
provide a way to distinguish the correctness or incorrectness of
combinations. Based on this idea, two more characteristics, the
minimum frequency of the k-mer and the length of the overlap-
ping region between contigs, were added as objective variables
for generating decision tree. For now, these two characteristics
are represented as %min.Cover and L.Overlap, respectively. To
verify the effect of these additional characteristics on the discrim-
inant task, the distributions of each characteristic with both the
correct and incorrect dataset was evaluated. In this evaluation,
2511 overlapped contig pairs derived from ABySS and Velvet
with several k values were used. The plots of the distribution
for each characteristic are shown in Figs. 1 and 2.

As shown in Fig. 1, for both correct and incorrect cases, the two
distributions showed large variance. However, the distribution
corresponding to the incorrect case was more strongly skewed.
Furthermore, as shown in Fig. 2, a clear difference between the
two distributions was observed. From these results, we consid-
ered that elimination of contaminated incorrect contigs in the cor-
rect contigs group may be possible with the use of the feature of
incorrect contigs. In other words, the combination of correct rules
and incorrect rules may be possible.

Since %min.Cover and L.Overlap are quantitative variables,
multiple regression analysis was utilized to construct the dis-
criminant rules [26]. As explanatory variables, the characteristics
shown in Tables 1–3 were used. %min.Cover and L.Overlap were

Fig. 1 Distribution of %min.Cover. The density function was estimated with
the kernel density estimation method. The horizontal axis denotes
the minimum ratio of the frequency. Black and red lines represent
the density function for correct and incorrect cases, respectively.
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Fig. 2 Distribution of L.Overlap. The density function was estimated with
the kernel density estimation method. The horizontal axis denotes
the minimum ratio of the frequency. Black and red lines represent
the density function for correct and incorrect cases, respectively.

Table 4 Discriminant function of variables, Coef reg, Multiplecor
coef , and

Coef det for %min and L.Overlap.

variables Coef reg Multiplecor
coef Coef det

%min Φ
f ,l
max −6.230×10−6 0.012 0.009

ρ 5.141 × 10−6

Intercept 1.191 × 101

L.Overlap Φ
f ,l
max 5.558 × 10−8

Dl −4.299 × 103

I f −3.893×10−1

Il −3.242×10−1 0.214 0.203

W f 6.061 × 10−5

Wl 7.211 × 10−5

U f
freq −1.409×10−4

Ul
freq −1.700×10−4

Intercept 4.461 × 10−1

analyzed individually as objective variables. Multiple regression

analysis outputs the discriminant function by parameter selec-
tion with the AIC [27], multiple correlation coefficient, and
determination coefficient, which represents the fit to the discrim-
inant functions. Table 4 shows the selected variables according
to the determination coefficient for a regression function named
variables, partial regression coefficient named Coef reg, multiple

correlation coefficient named Multiplecor
coef , and determination

coefficient named Coef det.
If the Multiplecor

coef and Coef det were closer to 1.0, the fit of the
discriminant function was determined to be higher. Table 4 shows
that the Multiplecor

coef values of %min and L.Overlap were 0.012
and 0.214, and the Coef det values of %min and L.Overlap were
0.009 and 0.203, respectively. Therefore, the adequacy of the dis-
criminant functions for %min.Cover and L.Overlap were not high.
The reason may be the high variance of the objective variable, as
shown in Figs. 1 and 2, and it is difficult to represent the discrim-
inator by a linear classifier. To solve this problem, the decision
tree algorithm was applied. In the application, the characteris-
tics shown in Tables 1–3 were used as explanatory variables, and
decision trees were generated for each variable, %min.Cover and
L.Overlap. Eventually, to include the information contained in
%min.Cover and L.Overlap, the corresponding k-mers and results
obtained from the decision trees (for which these two variables
were used as objectives) were evaluated with respect to whether
or not they were correct. We named this hierarchical and multi-
objective variable-based decision tree as a “complex decision tree

(CDT),” which represents an extension of a traditional decision
tree for a single-objective variable. Furthermore, using discrim-
inant rules that the combination of correct incorrect rules from
CDT, we proposed a new assembly method, named “rule-based
assembly.” The steps of the algorithms are as follows. First,
the contigs are generated using some assembly algorithm with
various parameters. Second, comparing the contigs to the refer-
ence, the incorrect contigs are filtered out and removed. Next, the
all-correct contigs characteristics shown in Tables 1–3 are cal-
culated. Using these characteristic values and additional param-
eters, based on the minimum ratio of the frequency (%min) and
length of overlapping regions (L.Overlap), a CDT composed of
multiple-objective variables is constructed. These steps are used
for the generation of the discriminant rules to distinguish whether
or not the combined contigs are correct. In this step, correct and
incorrect rules are obtained from each of the three decision trees
(about %min, L.Overlap, and traditional). A group of correct rules
and incorrect rules from CDT was labeled as Positive rules and
Negative rules. Finally, using the obtained discriminant rules that
positive and effective negative rules, possible combinations of
contigs with an overlap longer than 5 bases are provided or re-
moved. After the removal, scaffolds would be generated from the
remaining contig combinations.

3. Experiments

3.1 Experiments for Rule Construction and Evaluation
To confirm the validity of the determined rules, the discrimi-

nant rules were constructed and evaluated. In particular, to con-
firm the performance of our proposed approach, decision trees
for the %min.Cover and L.Overlap were generated. Consequently,
the corresponding k-mers were evaluated in view of consistency
(i.e., correctness) to the reference. After the evaluations, we de-
signed new discriminant rules to distinguish whether or not the
combined contig is correct. Finally, we conducted another evalu-
ation of the designed rules using a benchmark dataset.

The generated decision trees were constructed and generated
three rules. First, if %min.Cover is greater than 0, then the corre-
sponding combination of contigs would be correct with the prob-
ability 99.6%. Second, if the value of L.Overlap in the combined
contigs is greater than 14, the combination would be correct with
the probability 93.3%. Finally, if %min.Cover is less than 0 and
L.Overlap is smaller than 14, then the combination would be in-
correct with the probability 72.8%. Combining these rules, we
designed two discriminant rules as follows:
Rule for Correct Combinings (RfC): %min.Cover is greater

than 0 and L.Overlap is longer than 14.
Rule for Incorrect Combinings (RfI): %min.Cover is less than 0

and L.Overlap is shorter than 14.
As the first step of the evaluation, two rules, RfC and RfI, were

generated for the benchmark dataset using the E. coli genome.
We constructed a read set by artificial samplings. Then, the con-
tigs were obtained by the traditional assembly method. After the
assembly, we filtered out incorrect contigs and compared the re-
sult to the reference dataset. As a result, 647 correct contigs were
obtained as the benchmark dataset.

In Tables 5 and 6, Acc denotes the accuracy rate, which was
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Table 5 The discriminant result obtained by the RfC rule.
����������Response

Answer Correct Incorrect Acc

Correct 394 3 0.937
Incorrect 14 234

Table 6 The discriminant result obtained by the RfI rule.
����������Response

Answer Correct Incorrect Acc

Correct 400 8 0.951
Incorrect 24 215

caculated as follows:

Acc = 1 − FP + FN
N

(5)

Where N denotes the total number of contigs, FP represents the
number of cases in which the rule discriminated incorrect contigs
as correct ones, and FN represents the number of cases opposite
to FP.

As shown in Tables 5 and 6, both rules could effectively distin-
guish the correctness of combined contigs with a high correct an-
swer rate; i.e., greater than 0.9. In addition, applying the rule for
an incorrect combination (RfI) resulted in a higher correct ratio.
From these results, it is expected that employing RfI would yield
more accurate removal of the incorrect combination of contigs.

3.2 Experiments for Rule Application
As the next step, comparison experiments were conducted to

verify the ability of the whole proposed algorithm. As traditional
methods, Velvet, ABySS, and CISA were utilized. In addition,
as hybrid methods, a hybrid method without rules, two methods
with correct and incorrect rules, respectively, and the newly pro-
posed method were compared. As the experimental data, we used
E. coli K-12 MG1655 verified CISA. Because it is difficult to
handle the whole genome for computation time cost, the length
of 30,000 base sequence was cut. The length of each read was
50, i.e., the depth of reads of this dataset was 50. In the double
assembly methods, ABySS and Velvet were used. Since the pur-
pose of new approach is obtainment more discriminant rules than
traditional decision tree, the same training dataset is required in
the process of generating complex decision tree. As the training
dataset, the k value was set to 16 and 18 for ABySS, and to 15
and 17 for Velvet. As the test dataset, read data was resampled at
the same condition.

The results of discriminant rule constructions generated 36
rules for correct combinations. These were composed of 10 rules
from the decision tree that used the length of the overlap region
as the objective, 17 rules from the tree that used the minimum
ratio of the frequency, and 9 rules from the traditional C4.5 deci-
sion tree. Similarly, 32 rules were obtained for incorrect combi-
nations, consisting of 9 rules from the length of overlap, 6 rules
from the minimum ratio, and 17 rules from the ordinary C4.5
algorithm. We labeled the rules obtained from the length of over-
lap as Ovln, where n denotes the index of the corresponding rule.
Similarly, the label MnRn was assigned for the rules obtained
from the minimum ratio of frequency, and the rules generated
from the traditional C4.5 algorithm were labeled as Trdn. The
list of positive and negative rules are shown in Tables 7 and 8.

Table 7 The list of positive rules from the complex decision tree.

Ovl1 Dl ≤ −10, ρ ≤ 2.91

Ovl2 33 < Φfreq,Df ≤ 2, 0.6 < Ul
freq,U

l
freq ≤ 5.1

Ll
freq ≤ −0.10

Ovl3 ρ ≤ 2.91, 1488.1 < Ul
freq,−0.10 < Ll

freq

Ovl4 Df ≤ 2,Qf ≤ 0.2, 0.63 < ρ, ρ ≤ 0.96
−0.10 < Ll

freq

Ovl5 8 < H, 0.96 < ρ, ρ ≤ 2.91, Ll
freq ≤ 0.503

Ovl6 ρ ≤ 0.28,−0.10 < Ll
freq

Ovl7 Df ≤ 2,Qf ≤ 0.2, ρ ≤ 0.96, Il ≤ 0.17, Ll
freq ≤ −0.10

Ovl8 Ql < 0.5,U f
freq ≤ 1.3, 5.1 < Ul

freq, L
l
freq ≤ −0.10

Ovl9 Ql ≤ 0.5, ρ ≤ 2.91, Ll
freq ≤ −0.10

Ovl10 Df ≤ 2, ρ ≤ 0.96,−0.10 < Ll
freq

MnR1 0.1 < Ql, ρ ≤ 5.52, Il ≤ 0.38, 8.003 < W f
F , L

f
freq ≤ 9.5

MnR2 R ≤ 0.1, 643.86 < W f
F >, 708.6 < U f

freq

MnR3 −2 < Df , 0.1 < Ql, ρ ≤ 5.52, Il ≤ 0.384, 8.00 < WF

MnR4 ρfreq ≤ 380631, 2.83 < W f
F , 566.37 < Wl

F , L
l
freq ≤ 1490.2

MnR5 R ≤ 0.3,Df ≤ 1, 0.1 < Ql,Ql ≤ 0.3, 1.12 < ρ, 5.52 < ρ, Il ≤
0.38

MnR6 4.20 < ρfreq,Df ≤ 1, ρ ≤ 1.12, I f ≤ 0.5, Il ≤ 0.5,U f
freq ≤ 401.4

MnR7 1.22 < ρ, Il ≤ 0.38, 9.6 < U f
freq,U

l
freq ≤ 4.2

MnR8 Df ≤ 1,H ≤ 5, ρ ≤ 1.12, I f ≤ 0.5, Il ≤ 0.5

MnR9 0.3 < R,R ≤ 0.6, 0.01 < Ql, Il ≤ 0.38, 2.83 < W f ,W f ≤ 8.00

MnR10 0.1 < Ql, ρ ≤ 5.528.003 < W f , 6.6 < Ul
freq

MnR11 Φfreq < 898574, 566.37 < Wl,U f
freq ≤ 708.6,Ul

freq leq1490.2

MnR12 7 < H, 0.1 < Ql, ρ ≤ 5.52, Il ≤ 0.38, 2.83 < W f

MnR13 0.8 < Ql, 5.52 < ρ,W f ≤ 643.86,Ul
freq ≤ 130

MnR14 Dl ≤ 1, ρ ≤ 6.55, 0.38 < Il, Il ≤ 0.5, 2.83 < W f

MnR15 I f ≤ 0.125, Il ≤ 0.5,W f ≤ 2.83,Wl ≤ 25.3

MnR16 H ≤ 2, 0.38 < Il

MnR17 0.2 < Ql, Il ≤ 0.38, 643.9 < W f

Trd1 R ≤ 0.1, 708.6 < U f
freq

Trd2 ≤ 0.1, 898574 < Φfreq,Ul
freq ≤ 1905.7

Trd3 Df ≤ 1,Dl ≤ 1,Ql ≤ 0.3, ρ ≤ 2.91,U f
freq ≤ 401.4

Trd4 ρ ≤ 2.91, Ll
freq ≤ −0.10

Trd5 R ≤ 0.1, 182.32 < ρ, I f < 0.23

Trd6 5 < H, 182.32 < ρ

Trd7 0.1 < R, 2908.5 < Φfreq,Φfreq ≤ 6787.5, 2.91 < ρ

Trd8 0.6 < Qf , 0.24 < Il,Wl ≤ 5.33

Trd9 W f ≤ 331.4

Applying the obtained rules, we found some negative rules that
were effective to remove large incorrect combined contigs. The
rules and the length of incorrectly combined contigs are shown in
Table 9. From the effective rules shown in Table 9, we used three
compositions: (1) Ovl2 and Ovl5, (2) Ovl5 and Ovl9.,and then
(3), Ovl5 and MnR1.

Each assembly result was evaluated with respect to seven mea-
sures: the number of output contigs (#.Output), number of cor-
rect contigs (#.Corr), ratio of correct combinations (R.Corr), N50
contig length (N50), ratio of the length of the mapped region
(R.Mapped), maximum length of correctly combined contigs
(ML.Corr), and maximum length of incorrectly combined contigs
(ML.Incorr). Since most of combined contigs obtained by the hy-
brid methods were longer than 1,500, we added two more eval-
uation indices, %.Corr1500 and %.Mapped1500, representing the
ratio of the correct combined contigs longer than 1,500 and the
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ratio of those mapped correctly with a length longer than 1,500,
respectively.

The comparison results are shown in Table 10. As shown in
Table 10, #.Correct was increased in the case when all of the rules
for correct combinations were used (315) compared to the hybrid
method using only the correct rules (234); however, %.Correct
decreased from 0.690 to 0.680. This means that applying all pos-
itive rules could result in more correct combined contigs com-

Table 8 The list of negative rules from the complex decision tree.

Ovl1 H ≤ 8, 0.96 < ρ, ρ ≤ 2.91,Ul
freq ≤ 1488.1,−0.10 < Ll

freq > −0.10

Ovl2 2 < Df , Ll
freq ≤ −0.7

Ovl3 1.3 < U f
freq, 5.1 < Ul

freq,U
l
freq ≤ 14.9, Ll

freq ≤ −0.10

Ovl4 2 < Df ,−0.10 < Ll
freq

Ovl5 2.91 < ρ

Ovl6 2 < Df , 1 < Dl

Ovl7 7 < Df

Ovl8 −10 < Dl, 0.5 < Ql, Ll
freq ≤ 0.10

Ovl9 R ≤ 0.2

MnR1 0.5 < Il

MnR2 116387.2 < Φfreq,Φfreq ≤ 898574

MnR3 0.1 < R,H ≤ 5, 0.6 < Ql, I f ≤ 0.227

MnR4 R ≤ 0.6,Df ≤ −2,Qf ≤ 0.8, 9.5 < U f
freq, 4.2 < Ul

freq

MnR5 Φfreq ≤ 4.2, 5 < H

MnR6 Rl
inc ≤0.5 [0.601]

Trd1 0.1 < R, 6787.5 < Φfreq, 0.291 < ρ, ρ ≤ 0.321, Il ≤ 0.24

Trd2 0.1 < R, 6787.5 < Φfreq, 0.6 < Qf , ρfreq ≤ 0.58, ρ ≤ 0.182, 5.33 <
Wl

Trd3 0.1 < R, 6787.5 < Φfreq, 0.6 < Qf ,−0.031 < ρfreq, ρfreq ≤
0.56, 0.291ρ, ρ ≤ 0.182

Trd4 R ≤ 0.1, 489 < Φfreq,−1 < Df , 0.3 < I f ,Wl ≤ 5464.053

Trd5 56.78 < Φfreq,Dl ≤ 1,Ql ≤ 0.1, 0.291 < ρ

Trd6 R ≤ 0.1,Wl ≤ 5464.053,U f
freq ≤ 708.6, 1905.7 < Ul

freq

Trd7 R ≤ 0.1,H ≤ 5, 0.182 < ρ, I f < 0.23

Trd8 R ≤ 0.1,Φfreq ≤ 898574, 331.414 < W f ,l,U f
freq ≤ 708.6

Trd9 −5 < Dl, 3 < H, 0.291 < ρ, 10.1 < U f
freq,U

f
freq ≤ 18.2

Trd10 1 < Df , ρ ≤ 0.291, 4.21 < W f , Il
freq ≤ 7.6,−0.10 < Ll

freq

Trd11 1 < Df , 3 < H, 0.1 < Ql, 0.291 < ρ,U f
freq ≤ 18.2

Trd12 0.1 < R,Φfreq ≤ 2908.5, 0.291 < ρ, 19.155 < Wl

Trd13 0.1 < R,Φfreq ≤ 2908.5, 1 < Dl, 0.291 < ρ

Trd14 Dl ≤ 1, 5 < H,Ql ≤ 0.3, 401.4 < U f
freq,−0.10 < Ll

freq

Trd15 1 < Dl,Qf ≤ 0.1, ρ ≤ 0.291, 4.21 < W f

Trd16 0.3 < Ql, ρ ≤ 0.291, 4.214 < W f

Trd17 1 < Dl, ρfreq ≤ −0.17, 4.21 < W f ,−0.101 < Ll
freq

Table 10 Results of performance comparisons between traditionals and hybrid methods.

pared to applying a method that uses correct rules only. In other
words, although the ability of the rules established for detecting
correct contigs was improved, its application also led to increas-
ing the number of incorrect combined contigs. By additionally
applying effective negative rules with all of the rules for correct
combinations, %.Correct was improved. In particular, in the case
of All + Ovl5 + Ovl2, the %.Correct value increased from 0.680
to 0.827. This means that a CDT could remove incorrect contigs
more accurately than the C4.5 algorithm. This also means that
the ability of classification was improved compared to use of a
traditional decision tree that relies on single-objective variables.
Furthermore, ML.Incorr of the method with ALL + Ovl5 + Ovl9
and that with ALL + Ovl5 + MnR1 were decreased compared
to those obtained with traditional hybrid assembly. This result
suggests that the CDT could remove large incorrect contigs. The
ML.Corr value of the hybrid methods increased to 18729. From
these results, we can conclude that hybrid methods could derive
longer correctly combined contigs compared to traditional assem-
bly. In addition, the methods ALL + Ovl5 + Ovl9 and All + Ovl5
+ MnR1 resulted in a high value of %.Correct1500, 1.000. These
results also suggest that the CDT could generate correct combi-
nations of contigs perfectly.

The comparative results showed that the ability of the hybrid
assembly method can generate longer correct overlapped contigs
than traditional assembly methods. Furthermore, these results
suggest that the application of discriminant rules generated by
a CDT to the task of combining obtained contigs has good poten-
tial to generate a higher number of correct contigs and improve
the accuracy of the resulting combinations of contigs compared
to a traditional decision tree.

4. Conclusion

In order to improve the accuracy of the combination of over-

Table 9 The list of negative rules that could remove a large incorrect com-
bined contigs.

Length of Removed Contigs Rule ID

15767 Ovl5, Ovl9, MnR6

15767 Ovl4, Ovl5, Ovl6, Ovl7, Ovl9,
MnR6

12695 Ovl4, Ovl5, Ovl6, Ovl7, Ovl8, Ovl9,
MnR6

10872 Ovl2, Ovl4, Ovl5, Ovl7, Ovl9,
MnR6

10860 Ovl2, Ovl7, Ovl9, MnR1

10859 Ovl9, MnR1
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lapping contigs for double assembly, we proposed a complex de-
cision tree with multiple objective variables. In the process of
generating the complex decision tree, the combination of dis-
criminant rules for both correct and incorrect combinations was
utilized. Comparisons with traditional assembly methods showed
improvements of the quality indices, length of correct overlap-
ping contigs, correct ratio, and coverage ratio of the large correct
contig group. Furthermore, the ability of discriminant rules was
improved compared to those simply generated with the traditional
method. Thus, these results indicate that to achieve an error-free
read dataset generated artificially, our proposed CDT approach
could generate more adequate discriminant rules than a tradi-
tional decision tree algorithm. Consequently, the application of
discriminant rules obtained with our proposed method to a double
assembly could achieve more accurate combinations of contigs.
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