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by Khalkhali, but only partially as contained in the first chapter.
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1 Introduction

As a back fire to the past, for a return sparkle to the future, we as beginers
would like to review and study the basic noncommutative geometry by Masoud
Khalkhali [41], but not totally, to be partially selected, extended, modified, or
edited by our taste, in a suitable order. For this, as nothing but a running com-
mentary, we made some considerable effort to read and understand the texts and
approximately half the contents thoroughly, to some extent, to be self-contained
or not, at the basic level, within time and space limited for publication. The
rest untouchable at this moment may be considered in the possible next time if
any chance.

This paper is organized as follows. In Section 2, we look at the Space-
C∗-algebra and Geometry-Algebra Tables as Dictionary of a couple of types,
the first of which is the Space-C∗-algebra Table 2 as a part of Dictionary, well
known to C∗-algebra experts. Given in the table 2 are the correspondences of
general properties of spaces and C∗-algebras, and the correspondence in their
homology and cohomology theories as K-theory or KK-theory, and more struc-
tures. We also consider both the geometric part and the algebraic part in the
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Geometry-Algebra Table 3. In Section 3, as given in the Group-Algebra Ta-
ble 4, we consider group ∗-algebras of discrete or locally compact groups with
convolution and involution and their group C∗-algebras, in some details. More-
over, we consider twisted group ∗-algebras and twisted group C∗-algebras as
well, and twisted or not crossed product C∗-algebras, but somewhat limited.
As well, noncommutative tori as motivated typical and important examples in
noncommutative geometry are considered to some limited extent. In Section 4,
we consider Hopf algebras equipped with additional co-algebraic structures to-
beyond usual algebras and also do quantum (classical) groups as in the quantum
Lie theory, also as in the context of noncommutative geometry.

Note that some notations are slightly changed by our taste from the original
ones in [41].

First of all, let us look at the following table of the contents of this paper.

It just looks like drawing a (deformed) portrait of a beauty, as does a kid.

Table 1: Contents �

Section Title
1 Introduction
2 Dictionary looking first

2.1 Space-C∗-algebra and Geometry-Algebra
2.2 Affine varieties and Commutative reduced algebras
2.3 Affine group schemes as functors
2.4 Affine schemes and Commutative rings
2.5 Riemann surfaces and Function fields
2.6 Sets and Boolean algebras
3 Group C∗-algebras around

3.1 Discrete group ∗-algebras
3.2 Twisted discrete group ∗-algebras
3.3 Twisted or not group C∗-algebras
3.4 Twisted or not crossed product C∗-algebras
3.5 Quantum mechanics and Noncommutative tori
3.6 Vector bundles, projective modules, and projections
4 Hopf algebras and Quantum groups hybrid

4,1 Hopf algebras
4.2 Quantum groups
4.3 Symmetry in Noncommutative Geometry

Corner References

Do you like this shape? Yes, we do.
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Items cited in the references of this paper are only a part of those of [41]
related to the contents and some additional items, collected by us. The details
may be checked sometime later, probably, · · · .

2 Dictionary looking first

2.1 Space-C∗-algebra and Geometry-Algebra

First of all, let us look at the following table as a part of Dictionary.

Table 2: An overview on spaces and C∗-algebras �

Space Theory C∗-algebra Theory
Topological spaces as spectrums C∗-algebras
Compact, Hausdorff or T2-spaces Unital commutative, up to Morita equivalence
Non-compact, locally compact T2 Non-unital commutative, up to Morita eq

T1-spaces, as point closedness CCR or Liminary, as compact representations
T0-spaces, as primitive unitary eq classes GCR or Type I, as extending comp rep
Non-T0-spaces, as non-prim unitary eq Non-type I, as non-extending comp

Second countable or not Separable or non-separable
Open or closed subsets, Both Closed ideals or quotients, Direct summands

Connected components Minimal projections
Closure of dense subsets C∗-norm completion of dense ∗-subalgebras

Point or SČ compactifications Unit or multipliers adjointment
Covering dimension, more · · · Real, or stable ranks, more · · ·
Product spaces and topology Tensor products and C∗-norms

, Dynamical systems, Minimality, more · · · Crossed products, Simplicity, more · · ·
Topological K-theory (cohomology) C∗-algebraic K-theory (homology)

Vector bundles, up to stable eq, Projective modules, up to K0-classes,
Winding number, more · · · Unitaries, up to K1-classes, more · · ·

Homology theory Cohomology theory (cyclic or not)
Inclusion, Excision, more · · · Extension or K-homology theory (cohomology)
Continuous maps, Unification ∗-Homomorphisms, KK-theory

Differential structure Derivatives
Smooth structure Dense smooth ∗-subalgebras

Spin structure, more · · · Spectral triples, more · · ·
Integration as probability Positive functionals, states, or traces
Borel or measure spaces W ∗(or vN)-algebras (weakly closed)

Classical objects or operations Some quantum analogues

May recall that a C∗-algebra is defined to an algebra A over the complex
field C, equipped with involution as an anti-linear ∗-algebra map from A to
A denoted as a∗ for a ∈ A, and the submultiplicative norm ‖ · ‖ satisfying

Space Theory C∗-algebra Theory
Topological spaces as spectrums C∗-algebras
Compact, Hausdorff or T2-spaces Unital commutative, up to Morita equivalence
Non-compact, locally compact T2 Non-unital commutative, up to Morita eq

T1-spaces, as point closedness CCR or Liminary, as compact representations
T0-spaces, as primitive unitary eq classes GCR or Type I, as extending comp rep
Non-T0-spaces, as non-prim unitary eq Non-type I, as non-extending comp

Second countable or not Separable or non-separable
Open or closed subsets, Both Closed ideals or quotients, Direct summands

Connected components Minimal projections
Closure of dense subsets C∗-norm completion of dense ∗-subalgebras

Point or SČ compactifications Unit or multipliers adjointment
Covering dimension, more · · · Real, or stable ranks, more · · ·
Product spaces and topology Tensor products and C∗-norms

, Dynamical systems, Minimality, more · · · Crossed products, Simplicity, more · · ·
Topological K-theory (cohomology) C∗-algebraic K-theory (homology)

Vector bundles, up to stable eq, Projective modules, up to K0-classes,
Winding number, more · · · Unitaries, up to K1-classes, more · · ·

Homology theory Cohomology theory (cyclic or not)
Inclusion, Excision, more · · · Extension or K-homology theory (cohomology)
Continuous maps, Unification ∗-Homomorphisms, KK-theory

Differential structure Derivatives
Smooth structure Dense smooth ∗-subalgebras

Spin structure, more · · · Spectral triples, more · · ·
Integration as probability Positive functionals, states, or traces
Borel or measure spaces W ∗(or vN)-algebras (weakly closed)

Classical objects or operations Some quantum analogues
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‖ab‖ ≤ ‖a‖‖b‖ for a, b ∈ A, and the C∗-norm condition as ‖a∗a‖ = ‖a‖2, so
that ‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖ and hence ‖a‖ ≤ ‖a∗‖ ≤ ‖(a∗)∗‖ with (a∗)∗ = a,
such that A is a Banach space with respect to the norm.

Theorem 2.1.1. (Gelfand-Naimark), (cf. [55]). Any C∗-algebra is isomorphic
to a closed ∗-subalgebra of the von Neumann C∗-algebra B(H) of all bounded
operators on a Hilbert space H.

Any unital commutative C∗-algebra is isomorphic to the C∗-algebra C(X)
of all continuous, C-valued functions on a compact Hausdorff space X.

Any commutative C∗-algebra is isomorphic to C0(X) the C∗-algebra of all
continuos, C-valued functions on a locally compact Hausdorff space X vanishing
at infinity.

The spectrum of a C∗-algebra A is the space A∧ of equivalence classes of
irreducible representations of A with the hull-kenel topology. Those class defi-
nitions of C∗-algebras, such as being liminary, and of type I, are given by the
separation axioms for their spectrums (cf. [29], [55], [57]).

In particular, the spectrum of C(X) is identified with X, which is also
the same as the space of maximal ideals of C(X) with the Jacobson topol-
ogy. Namely, a point x of X is identified with the evaluation map πx at x on
C(X) as a character, defined as πx(f) = f(x) for f ∈ C(X), and with the kernel
of πx as a maximal ideal of C(X), under the Gelfand transform (cf. [55]).

The category CH of compact Hausdorff spaces with continuous maps is
equivalent to the category UCC of unital commutative C∗-algebras with uni-
tal ∗-homomorphisms. Namely, the functor C = C(·) is defined by pullback
diagram as

X
ϕ−−−−→ Y

C(·)
⏐⏐� ⏐⏐�C(·)

C(X)
ϕ∗

←−−−− C(Y )

ϕ∗(f) = f ◦ ϕ, f ∈ C(Y ).

As well, the category LCH of locally compact Hausdorff spaces with contin-
uous proper maps is equivalent to the category CC of commutative C∗-algebras
with proper ∗-homomorphisms.

Note that a continuous map ϕ : X → Y of locally compact spaces is defined
to be proper if the inverse image ϕ−1(K) is compact for any compact subset
K of Y .

As well, a ∗-homomorphism ρ : A → B of C∗-algebras is defined to be
proper if the image of any approximate identity for A under ρ is an approximate
identity for B. Equivalently, for any nonzero irreducible representation π of B
as a non-zero class of B∧, the composite π ◦ ρ is not zero as in A∧. Also, ρ is
proper if and only if ρ(A)B is dense in B. Note that an approximate identify
for a C∗-algebra A is a net of elements ej of A such that limj aej = a and
limj eja = a for any a ∈ A (cf. [55], [57]).

Example 2.1.2. Let X be a locally compact Hausdoff space and X+ = X∪{∞}
be the one-point compactfication of X by adding ∞. Then C(X+) is isomorphic
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to the unitization C0(X)+ = C0(X) ⊕ C1 of C0(X), as a C∗-algebra (cf. [74]).
�

Example 2.1.3. Let Cb(X) be the C∗-algebra of all bounded, continuous
functions on a locally compact Hausforff space X. Then Cb(X) is isomor-
phic to C(βX) with βX the Stone-Čech compactification of X, identified with
Cb(X)∧ the spectrum. Also, Cb(X) is isomorphic to the multiplier C∗-algebra
M(C0(X)) as the largest unitization of C0(X) (cf. [74]). �

Example 2.1.4. Let X be a locally compact Hausdorff space and U be an open
subset of X with K the complement of U in X. Then there is the following
short exact sequence of C∗-algebras:

0 → C0(U) i−−−−→ C0(X)
q−−−−→ C0(K) → 0

with C0(U) a closed ideal of C0(X) and C0(K) as a quotient, where the map i
is the canonical inclusion map by defining values on K to be zero, and q is the
restriction map to K. �

Example 2.1.5. Let X ×Y be the product space of locally compact Hausdorff
spaces X and Y . Then C(X⊗Y ) is isomorphic to the tensor product C∗-algebra
C(X)⊗C(Y ). For some details about the C∗-norms for tensor products of C∗-
algebras, may refer to [55] or [68]. �

Table 3: Functorial correspondences between geometry and algebra �

Geometry Algebra
Affine algebraic varieties (or sets) Unital, finitely generated,
over an algebraically closed field, commutative, and reduced algebras

in algebraic geometry (without nilpotent elements)
Affine schemes Commutative rings

Quasi-coherent sheaves of modules Modules
over the spectrum over a commutative ring

of a commutative ring as sections over the sheaves
Compact Riemann surfaces Algebraic function fields

Sets Complete atomic Boolean algebras

The correspondences are considered in the next subsections.

2.2 Affine varieties and Commutative reduced algebras

May refer to [35] and [8].
An affine algebraic variety, also called an (irreducible) algebraic (sub)set

(of F), over an algebraically closed field F (with the induced Z topology) is a
subset V of the affine space F

n as the set of all n-tuples of elements of F, which
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is the set of common zeros of a collection P of polynomials in n variables over
F, that is,

V = V (P) = Z(P) = {z = (z1, · · · , zn) ∈ F
n | p(z) = 0, p ∈ P}.

Without loss of generality, we may assume that P is an ideal of the polynomial
ring F[x1, · · · , xn] in n variables over F.

In fact, any element f = f(x) = f(x1, · · · , xn) ∈ F[x1, · · · , xn] is viewed
as a function from F

n to F, by sending z ∈ F
n to f(z) ∈ F. Then define

V (f) = Z(f) = {z ∈ F
n | f(z) = 0}. For any P ⊂ F[x1, · · · , xn], let I(P) denote

the ideal of F[x1, · · · , xn] generated by P. Then it holds that V (P) = V (I(P)).
Also, since F[x1, · · · , xn] is a Noetherian ring, any its ideal, and in particular
V (P), has a finite set of generators.

The set of all V (P) ⊂ F
n for any P ⊂ F[x1, · · · , xn] is closed under taking

finite unions and arbitrary intersections. As well, the empty set ∅ and F
n are

assumed to be algebraic sets.
For instance, if f(z) = z1 · · · zn−1 and g(z) = z1 · · · zn for z = (z1, · · · , zn) ∈

F
n, then V ({f, g}) = V (f) ∩ V (g) = ∅. As well, if h(z) = f(z)g(z), then

V (h) = V (f) ∪ V (g) which is not irreducible, but algebraic. Also, if f(z) = 0
for z ∈ F

n, then V (f) = F
n.

Therefore, the Zariski (Z) topology for F
n is defined by defining open subsets

of F
n to be the complements of algebraic subsets of F

n.

Example 2.2.1. Let n = 1. The affine line over F is F. Every ideal of F[x] is
principal. Thus, every algebraic subset of F is the set Z(f) of zeros of a single
polynomial f = f(x) ∈ F[x]. Since F is algebraically closed, every nonzero
polynomial f(x) ∈ F[x] can be decomposed as c(x − a1) · · · (x − al) for some
c, a1, · · · , al ∈ F and l ≥ 1. Then Z(f) = {a1, · · · , an}. Thus, the set of
algebraic subsets of F is equal to the set of all finite subsets of F, together with
the empty set and F. In particular, the Zariski (Z) topology is not Hausdorff.
Hence, F can not be finite.

For an affine algebraic variety V (P) ⊂ F
n, an open subset of V (P) with the

induced topology is said to be a quasi-affine variety.
A morphism between affine varieties V ⊂ F

n and W ⊂ F
m is given by a

map f : V → W , which is the restriction of a polynomial map (?) from F
n to

F
m (cf. The definitions below). Then the category Aff-Alg-Var=AAV of affine

varieties with morphisms is formed.

Definition 2.2.2. Let Y be a quasi-affine variety of F
n. A function f : Y → F

is said to be regular at a point y ∈ Y if there is an open subset U of Y , with
y ∈ U , and polynomials g(x), h(x) ∈ F[x1, · · · , xn] such that f(z) = g(z)

h(z) for
z ∈ U , with h nowhere zero on U . Say that f is regular on Y if it is regular at
every point of Y .

Definition 2.2.3. Let X,Y be affine, or quasi-affine varieties over F. A mor-
phism ϕ : X → Y is a Z continuous map such that for every open subset W ⊂ Y
and for every regular function f : W → F, the function f ◦ϕ : V = ϕ−1(W ) → F
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is regular. Namely, for some g, h ∈ F[x1, · · · , xm] and g∼, h∼ ∈ F[x1, · · · , xn]
locally existed,

F
n ⊃ X ⊃ V = ϕ−1(W )

ϕ−−−−→ W ⊂ Y ⊂ F
m

f◦ϕ= g∼
h∼

⏐⏐� ⏐⏐�f= g
h

F F.

A reduced algebra is defined to be an algebra with no nilpotent elements.
Namely, for an element x in such a algebra, if xn = 0 for some n, as nilpotenty,
then x = 0. Consider the category Comm-Red-Alg=CRA of unital, finitely gen-
erated, commutative, and reduced algebras with unital algebra homomorphisms.

There is the opposite equivalence between the two categories

Aff-Alg-Var =AAV ∼=op Comm-Red-Alg =CRA.

The equivalence functor associates to an affine variety V ⊂ F
n its coordinate

ring O[V ] defined by

O[V ] = Reg(V, F) ∼= F[x1, · · · , xn]/I(V ) = F[x1, · · · , xn](V )

(corrected), where O[V ] = Reg(V, F) is the ring of all regular functions on Y ,
and I(V ) is the vanishing ideal of V defined by

I(V ) = {p ∈ F[x1, · · · , xn] | p(V ) = 0}.
Then, O[V ] is unital, finitely generated,commutative, and reduced. Moreover,
given a morphism of varieties f : V → W , its pullback defines a unital algebra
homomorphism f∗ : O[W ] → O[V ]. Namely,

V
f−−−−→ W

ϕ ◦ f ∈ O[V ]

⏐⏐� ⏐⏐�ϕ∈O[W ]

F F

ϕ ∈ Hom(V,W )

f∗
⏐⏐�pullback

f∗(ϕ) = ϕ ◦ f ∈ Hom(O[W ],O[V ]).

Hence, the contravariant functor O : AAV → CRA is defined as V �→ O[V ].
A finitely generated, unital commutative algebra A with n generators can

be written as a quotient F[x1, · · · , xn]/J by some ideal J . Moreover, such an
algebra A is a reduced algebra, so that it has no nilpotent elements, if and only
if the ideal J is a radical ideal in the sense that if xn ∈ J , then x ∈ J . In this
case, as one of the classical forms of the Hilbert Nullstellensatz (HN), A can be
recovered as the coordinate ring O[V ] of an affine variety V

It then follows that the coordinate ring functor O is essentially surjective,
as the main step in the opposite equivalence, and moreover, the functor is full
and faithful, easily deduced.

As in the Gelfand-Naimark (GN) correspondence, under the Hilbert N (HN)
correspondence O, geometric constructions in algebraic geometry can be trans-
lated into algebraic terms and vise-versa. For instance, disjoint union and direct
product of affine varieties V1 and V2 are done

O[V1 � V2] ∼= O[V1] ⊕O[V2], O[V1 × V2] ∼= O[V1] ⊗O[V2],
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and V is irreducible if and only if O[V ] is an integral domain.

Theorem 2.2.4. ([35]). There is the arrow-reversing equivalence functor be-
tween the category AAV of affine algebraic varieties V over F and the category
FID of finitely generated integral domains O[V ] over F.

Theorem 2.2.5. (Hilbert Nullstellensats [35]). Let I ′ be an ideal of A =
F[x1, · · · , xn] and f ∈ A that vanishes on Z(I ′). Then there is a positive integer
r > 0 such that fr ∈ I ′. Namely, f is contained in the radical of I ′ :

f ∈
√

I ′ = {f ∈ A | fr ∈ I ′ for some r > 0} = I(Z(I ′)).

Then there is the 1-1 inclusion reversing, correspondence between algebraic sub-
sets of F

n and radical ideals of A, so I =
√

I, given as

F
n ⊃ V = V (I ′(P)) �→ I(V (I ′(P))) =

√
I ′(P) =

√√
I ′(P) ⊂ A,

F
n ⊃ V2(I ′2) ⊃ V1(I ′1) �→ I(V2(I ′2)) =

√
I ′2 ⊂ I(V1(I ′1)) =

√
I ′1 ⊂ A,

A ⊃ I =
√

I �→ V (I) = Z(I) ⊂ F
n,

A ⊃ I2 ⊃ I1 �→ Z(I2) ⊂ Z(I1) ⊂ F
n,

with Z(I(V )) = V = V and I(V (I ′)) =
√

I ′ = I ′. Furthermore, an algebraic
subset of F

n is irreducible if and only if its radical ideal is a prime ideal.

Note that in general, if f ∈ √
I ′, then f = f1 ∈ √

I ′. Hence,
√

I ′ ⊂
√√

I ′.
Conversely, if g ∈

√√
I ′, then gr ∈ √

I ′ for some r > 0. Thus, (gr)r′ ∈ I ′ for
some r′ > 0. Hence,

√√
I ′ ⊂ √

I ′.

Proof. Given is the proof of only the last part. Suppose that V is irreducible.
If fg ∈ I(V ), then fg(V ) = 0 and Z(fg) = Z(f) ∪ Z(g) ⊂ F

n. Hence V =
(V ∩Z(f))∪ (V ∩Z(g)) as a union of closed subsets of V . Since V is irreducible,
we have either V = V ∩Z(f) or V = V ∩Z(g), and thus V ⊂ Z(f) or V ⊂ Z(g).
Hence either f(V ) = 0 or g(V ) = 0, and thus f ∈ I(V ) or g ∈ I(V ).

Conversely, let P be a prime ideal of A, and suppose that V (P ) = V1∩V2 as
a union of closed subsets. Then P = I(V1 ∩ V2) = I(V1) ∩ I(V2), so that either
P = I(V1) or P = I(V2). Therefore, Z(P ) = V1 or V2.

There are also various equivalent ways of characterizing smooth (or non-
singular) varieties in terms of their coordinate rings.

Unlike the GN correspondence, the HN correspondence does not seem to
indicate what is the notion of a noncommutaive affine variety, or noncommuta-
tive (affine) algebraic geometry, in general. There seems to be a lot to be done
remained in this area. But a possible approach has been pursued at least in the
smooth case.

As a particularly important characterization of non-singularity, that lends
itself to noncommutative generalization, is the following result of Grothendieck
(cf. [48]).
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Theorem 2.2.6. A variety V is smooth if and only if its coordinate ring O[V ]
has the lifting property with respect to nilpotent extensions, in the sense that for
any unital commutative algebra A and a nilpotent ideal I of A, the following
map induced by taking the quotient A/I is surjective:

Hom(O[V ], A) → Hom(O[V ], A/I) → 1.

Motivated by that characterization for smoothness of varieties, an algebra B
over C, not necessarily commutative, is defined to be NC smooth (or quasi-free)
(NCS) if the above lifting property holds by replacing O[V ] with B, for any
algebra A, by Cuntz and Quillen [25].

A free algebra, also known as tensor algebra, or algebra of noncommutative
polynomials, is smooth in that sense. But commutative algebras which are
smooth need not be smooth in that sense. In fact, it is shown that an algebra is
NC smooth if and only if it has Hochschild cohomological dimension 1 ([25]). In
particular, the algebras of polynomials in more than 1 variables and in general,
the coordinate rings of smooth varieties of dimension more than 1 are not NC
smooth. Nevertheless, that notion of NCS has played an important role in the
development of a version of NC algebraic geometry (cf. [44], [47]).

An alternative approach to NC algebraic geometry is proposed by [1]. As
one of the underlying ideas, the projective Nullstellensatz theorem (cf. [35])
characterizes the graded coordinate ring of a projective variety defined as sec-
tions of powers of an ample line bundle over the variety. Thus, in this approach,
a noncommutative variety is represented by some noncommutative graded ring.

Now recall from [35] that the projective n-space P
n = P

n(F) is the set
of equivalence classes of elements of (Fn+1)∗ = F

n+1 \ 0 under the equivalence
relation given that for (zj), (wj) ∈ (Fn+1)∗, (zj) ∼ (wj) if there is λ ∈ F

∗ such
that λ(zj) = (λzj) = (wj).

A graded ring is a ring R with a decomposition R = ⊕d≥0Rd as a direct
sum of abelian groups Rd (of homogeneous elements of degree d) such that
for any d1, d2 ≥ 0, Rd1Rd2 ⊂ Rd1+d2 . An ideal I of R is homogeneous if
I = ⊕d≥0(I∩Rd). An ideal of R is homogeneous if and only if it is generated by
homogeneous elements. The set of homogeneous ideals is stable under taking
direct sum, direct product, intersection, and radical

√·. A homogeneous ideal
I is prime if for homogeneous elements f, g ∈ I, fg ∈ I implies f ∈ I or g ∈ I.

The polynomial ring R = F[x0, x1, · · · , xn] becomes a graded ring by taking
Rd to be the subspace of R generated by monomials of degree d in x0, · · · , xn.
Then note that for f ∈ Rd, f(λz0, · · · , λzn) = λdf(z0, · · · , zn). Hence, the
being zero or not of f depends only on the equivalence class [(zj)] ∈ P

n. Thus,
for f ∈ Rd, there is a function f∼ : P

n → {0, 1} defined as

f∼([(zj)]) =

{
0 if f(z0, · · · , zn) = 0,

1 if f(z0, · · · , zn) �= 0.

For any subset H of some homogeneous elements of R, define the zero set
of H to be

Z(H) = {p ∈ P
n | f∼(p) = 0 for any f ∈ H}.
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If I is a homogeneous ideal of R, then define Z(I) to be Z(H), where H is the
set of all homogeneous elements of I. Since R is a Noetherian ring, for any
subset H of homogeneous elements of R, there is a finite subset F of H such
that Z(H) = Z(F ).

There are more theories that parallel to the unprojective theories, to be
continued.

2.3 Affine group schemes as functors

May refer to [73].
For any unital commutative ring R, there are corresponding the n×n special

or general linear groups SLn(R) or GLn(R) with determinant 1 or non-zero,
respectively. In particular, GL1(R) = R∗ is the multiplicative group of R. Also,
R is the additive group R+ = R. Let μn(R) = {x ∈ R |xn = 1} be the n-th roots
of unity in R, as a group under multiplication. Let αp(R) = {x ∈ R |xp = 0}
as a group under addition.

Let k be a base ring or a field, such as Z and so on.

Theorem 2.3.1. Let F be a functor from k-algebras R to sets. If the elements
of F (R) correspond to solutions in R of some family of equations, then there
is a k-algebra A and a natural correspondence between F (R) and Homk(A,R).
The converse also holds.

Proof. Suppose we have some family of polynomial equations {pl}l∈L over k,
with respect to some {aj}j∈J of R. Then take the polynomial ring P =
k[{xj}j∈J ] over k, with each indeterminate xj as each variable aj in the equa-
tions. Divide it by the ideal I generated by the relations defined as all the
equations, to obtain the quotient algebra A = P/I.

Let F (R) be given by the solutions of the equations pl in R. Any k-algebra
homomorphism ϕ : A → R takes general solutions to a solution of R correspond-
ing to an element of F (R). Since ϕ is determined by sending the indeterminates,
we have an injection from Homk(A, R) into F (R). This is actually bijective by
generality of solutions.

Any k-algebra B arises in this way from some family of equations. Indeed,
let {bj}j∈J be the set of generators of B. There is the ring homomorphism from
P = k[{xj}j∈J ] onto B by sending xj to bj . Choose polynomials generating the
kernel I. Then B ∼= A = P/I.

Such a functor F is said to be representable by A. An affine group scheme
over k is defined to be a representable functor from k-algebras to groups.

Example 2.3.2. Let k = Z and R = R. Let F (R) = GL1(R) = R
∗ = {x ∈

R |x �= 0} as a group. Then A = R[1] ∼= R = R. And Homk(A, R) = R since
any element of which is determined by sending 1 to an element of R. Therefore,
identified with are F (R) and Homk(A,R)−1 of invertible maps.
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Example 2.3.3. The determinant map det : GL2 → GL1 of groups as functors
is natural in the sense that for any algebra homomorphism ρ : R → R′, the
following commutes:

R
GL2−−−−→ GL2(R) det−−−−→ GL1(R)

ρ

⏐⏐� ⏐⏐�(ρ◦(·))ij

⏐⏐�ρ◦(·)

R′ GL2−−−−→ GL2(R′) det−−−−→ GL1(R′).

Theorem 2.3.4. (The Yoneda Lemma). Let F1 and F2 be (set-valued) func-
tors from k-algebras R, represented by k-algebras A1 and A2, as Fj(R) =
Homk(Aj , R) for j = 1, 2. The natural maps Φ from F1 to F2 correspond to
k-algebra homomorphisms ϕ from A2 to A1.

Proof. Let ϕ : A2 → A1 be given. For any ψ ∈ F1(R) = Homk(A1, R), the com-
position ψ ◦ ϕ belongs to F2(R) = Homk(A2, R). Then for any homomorphism
ρ : R → R′, the following diagram commutes:

R
F1−−−−→ F1(R) = Homk(A1, R)

(·)◦ϕ−−−−→ F2(R) = Homk(A2, R)

ρ

⏐⏐� ⏐⏐�ρ◦(·)
⏐⏐�ρ◦(·)

R′ F1−−−−→ F1(R′) = Homk(A1, R
′)

(·)◦ϕ−−−−→ F2(R′) = Homk(A2, R
′)

and let Φ = (·) ◦ ϕ.
Conversely, let Φ : F1 → F2 be a natural map. Since Fj(R) = Homk(Aj , R),

then for any ρ ∈ F1(R) = Homk(A1, R), the diagram

F1(A1) = Homk(A1, A1)
ρ◦(·)−−−−→ F1(R) = Homk(A1, R)

Φ

⏐⏐� ⏐⏐�Φ

F2(A1) = Homk(A2, A1)
ρ◦(·)−−−−→ F2(R) = Homk(A2, R)

commutes. In particular, let ϕ = Φ(idA1) : A2 → A1, where idA1 : A1 → A1 is
the identity map. Then for any ρ ∈ F1(R), we have

Φ(ρ) = Φ(ρ ◦ idA1) = ρ ◦ ϕ

and hence Φ = (·) ◦ ϕ.

Such a natural functor Φ : F1 → F2 is said to be a natural correspondence
if F1(R) → F2(R) is bijective for any R.

Corollary 2.3.5. A natural functor Φ : F1 → F2 represented by A1 and A2 is
a natural correspondence if and only if the corresponding ϕ : A2 → A1 is an
isomorphism.
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2.4 Affine schemes and Commutative rings

Let A be a unital commutative ring. The (prime) spectrum of A is defined
to be a pair (Sp(A),OA), also called a ringed space, where Sp(A) also called
the spectrum of A, as a set consists of all prime ideals of A, with the Zariski
topology, and OA is the sheaf of rings on Sp(A), both defined below.

Note that an ideal I of A is said to be prime if I �= A and for any a, b ∈ A,
ab ∈ I (corrected from A) implies that either a ∈ I or b ∈ I. Given an ideal I of
A, let V (I) denote the set of all prime ideals of A which contain I. The Zariski
topology on Sp(A) is defined by assuming that any V (I) is a closed subset of
Sp(A). Indeed, for ideals I, J , Ij of A, we have V (IJ) = V (I)∪V (J) (corrected
from the intersection) and V (

∑
j Ij) = ∩V (Ij). Note that V ({0}) = Sp(A) and

V (A) = ∅.
Check that if IJ ⊂ K ∈ Sp(A), then I ⊂ K or J ⊂ K. If not so, then IJ is

not contained in K. Conversely, note that IJ ⊂ I and IJ ⊂ J . Check also that
if

∑
j Ij ⊂ K ∈ Sp(A), then Ij ⊂ K for any j. Its converse also holds.

As well, IJ ⊂ I ∩ J , but the equality does not hold in general. However, if
A = I + J , then the equality does hold (cf. [54]).

May check that the space Sp(A) is compact but non-Housdorff in general.
For each prime ideal P of A, denote by AP = A/P c the localization of A at

P , where P c is the complement of P in A, which is a multiplicative closed subset
of A. For an open subset U of Sp(A), let OA(U) be the set of all continuous
sections from U to ∪P∈UAP , where such a section is said to be continuous if
locally around any point P ∈ U , it is of the form f

g with g �∈ P . May check that
OA is a sheaf of commutative rings on Sp(A).

The spectrum functor Sp is defined by sending A to (Sp(A),OA).
An affine scheme is a ringed space (X,O) such that X is homeomorphic

to Sp(A) for a commutative ring A and O is isomorphic to OA.
The spectrum functor Sp defines an equivalence between the category AS

of affine schemes with continuous maps and the category CR of commutative
rings with unital ring homomorphisms, as

Sp : CR → AS, A �→ Sp(A) = X and OA = O,

so that
A

f−−−−→ B

Sp

⏐⏐� ⏐⏐�Sp

Sp(A)
f∗

←−−−− Sp(B)

where f∗(Q) = f−1(Q) for any Q ∈ Sp(B). Note that for a maximal ideal of
B, the inverse image f−1(B) is not necessarily maximal. This is the reason to
consider the prime spectrum for an arbitrary ring, not the maximal spectrum.

The inverse equivalence for Sp above is given by the global section functor
Γ that sends an affine scheme X to the ring ΓX of its global sections.

In the same vein, the categories MR of modules over a ring can be identified
with the categories SMS of sheaves of modules over the spectrum of the ring.
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Let A be a commutative ring and left M be an A-module. Define a sheaf M
of modules over Sp(A) as follows. For each prime ideal P of A, let MP denote
the localization of M at P . For any open subset U of Sp(A), let M(U) denote
the set of continuous sections from U to ∪P MP , where such a section has the
form of a fraction m

f locally for m ∈ M and f ∈ AP . Then M is recovered from
M by showing that M ∼= ΓM the space of global sections of M.

Sheaves of OA-modules on Sp(A) obtained in that way is said to be quasi-
coherent sheaves, which are local models for a more general notion of quasi-
coherent sheaves on arbitrary schemes.

The functors Sh sending M to M and Γ sending M to ΓM define an equiv-
alence of the MR over A and the quasi-coherent SMS of Sp(M). Namely,

Sh : MR → SMS and Γ : SMS → MR.

Based on this correspondence, given an algebra A, not necessarily commu-
tative, the category of A-modules may be replaced with the categrory of quasi-
coherent sheaves over the noncommutative space as Sp(A). This is a nice idea
in the development of the subject of noncommutative algebraic geometry, about
which nothing is considered here (cf. [1], [44], [47]).

Recall from [52] the following. Let X be a topological space. A presheaf
on X is defined to be a system (or functor) F that for any open subset U of
X, there is an abelian group F (U) such that for any inclusion U ⊂ V of open
subsets of X, there is a homomorphism ϕUV : F (V ) → F (U) satisfying that the
following commutes:

∅ ⊂←−−−− U
⊂−−−−→ V

⊂−−−−→ W
⊂−−−−→ X

F

⏐⏐� ⏐⏐�F

⏐⏐�F

⏐⏐�F

⏐⏐�F

F (∅) = {0} ϕ∅U←−−−− F (U)
ϕUV←−−−− F (V )

ϕV W←−−−− F (W )
ϕW X←−−−− F (X)

such as ϕUV ◦ϕV W = ϕUW , with ϕUU : F (U) → F (U) the identity map for any
open U of X. A homomorphism ψ of presheaves F and G on X is defined as
that for any open U ⊂ V of X, there are homomorphisms ϕ(U) : F (U) → G(U)
such that the following commutes:

F (V )
ψ(V )−−−−→ G(V )

ϕUV

⏐⏐� ⏐⏐�ϕUV

F (U)
ψ(U)−−−−→ G(U).

A presheaf F on X is defined to be a sheaf on X if, as the local condition,
for any open U of X and its open covering U ⊂ ∪jUj in X, there is sj ∈ F (Uj)
for each j such that for any i, j, the restricion si on Ui∩Uj , that is ϕUi∩Uj ,Ui(si),
is equal to sj on Ui ∩ Uj , then there is s ∈ F (U) uniquely such that s on Uj is
equal to sj for every j.

By replacing the abelian groups such as F (U) with groups or rings or so,
sheaves of those are obtained.
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Example 2.4.1. Let X be a topological space and G be a group (or ring) with
the discrete topology. Then the direct product X ×G becomes a sheaf. This is
called a constant or trivial sheaf. Note that F (U) = G for any open U ⊂ X.

Example 2.4.2. Let X be a tological space and Y be a topological abelian
group such as R

n or C
n. For any open U ⊂ X, define F (U) to be C(U, Y ) the

set (or additive group, or ring for n = 1) of continuous maps from U to Y . For
open subsets U ⊂ V of X, let ϕV U : C(U, Y ) → C(V, Y ) be the restriction map.
Then the sheaf C(·, Y ) of continuous functions over X is obtained, so that the
diagram commutes

∅ ⊂←−−−− U
⊂−−−−→ V

⊂−−−−→ W
⊂−−−−→ X⏐⏐�C(·,Y )

⏐⏐�C(·,Y )

⏐⏐�C(·,Y )

⏐⏐�C(·,Y ) C(·,Y )

⏐⏐�
C(∅, Y ) = {0} ϕ∅U←−−−− C(U, Y )

ϕUV←−−−− C(V, Y )
ϕV W←−−−− C(W,Y )

ϕW X←−−−− C(X,Y ).

2.5 Riemann surfaces and Function fields

It is shown that the category RSc of compact Riemann surfaces is equivalent
to the category FFa of algebraic function fields. For this correspondence, may
refer to [32].

A Riemann surface is defined to be a complex manifold of complex di-
mension 1. A morphism between Riemann surfaces X and Y is given by a
holomorphic map f : X → Y .

An algebraic function field is defined to be a finite extension of the field
C(x) of rational functions in one variable x. A morphism of function fields is
given by an algebra map.

To a compact Riemann surface X, accociated is the field M(X) of meromor-
phic functions on X. For example, the field M(S2) of meromorphic functions of
the Riemann sphere S2 ≈ C ∪ {∞}, with no holes, is the field C(x) of rational
functions.

To a finite extension of C(x), associated is the compact Riemann surface
of the algebraic function p(z, w) = 0, where w is a generator of the field over
C(x). This correspondence is essentially due to Riemann. Despite its depth
and beauty, this correspondence so far may not be revealed by any way of the
noncommutative analogue of complex geometry.

Another possible approach to the complex structures in noncommutative
geometry may be based on the notion of a positive Hochschild cocycle on an
involutive algebra, as defined in [11]. As an other contribution, noncommutative
complex structures motivated by the Dolbeault complex is introduced in [42],
and as well, a detailed study of holomorphic structures on noncommutative tori
and holomorphic vector bundles on noncommutative 2-tori is carried out in [59].

It is shown in [10] that positive Hochschild cocycles on the algebra of smooth
functions on a compact oriented 2-dimensional manifold encode the information
for defining a holomorphic structure on the surface, which suggests that the p-H
cocycles may be used in a possible framework for holomorphic noncommutative
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structures. The corresponding problem of characterizing holomophic structures
on general dimensional manifolds by using positive Hochschild cocyles may be
still open. In the case of noncommutative 2-tori, a positve Hochschild 2-cocycle
on the non-com 2-torus can be defined as complex structures. As well, a natural
complex structure on the Podlé qunatum 2-sphere is defined in [42]. With this
additional structure, the quantum 2-sphere is said to be the quantum projective
line as CP 1

q , which resembles the classical Riemann sphere in several suitable
ways.

2.6 Sets and Boolean algebras

The set theory can be regarded as the geometrization of logic. There is a
duality or correspondence between the category Set of sets with (set) maps and
the category Boo of complete atomic Boolean algebras (cf. [2]).

A Boolean algebra is defined to be a unital ring B such that any element x of
B satisfies the equation x2 = x. A Boolean algebra is necessarily commutative.

Indeed, for any x, y ∈ B, let c = xy − yx. Then

c = c2 = (xy − yx)2 = xyxy − xy2x − yx2y + yxyx = xy − xyx − yxy + yx,

which implies that xyx = 2yx − yxy and yxy = 2yx − xyx. Therefore, we have

xy = xyxy = (2yx − yxy)y = 2yxy − yxy = yxy,

xy = xyxy = x(2yx − xyx) = 2xyx − xyx = xyx,

so that yx = yxyx = y(2yx − yxy) = yxy = xy.
Define a partial order relation x ≤ y for x, y ∈ B if there is an y′ ∈ B such

that x = yy′.
Check that x ≤ x since x = x1 with 1 ∈ B. If x ≤ y and y ≤ z, then x = yy′

and y = zz′ for some y′, z′ ∈ B. Then x = zz′y′ with z′y′ ∈ B. Hence x ≤ z. If
x ≤ y and y ≤ x, then x = yy′ and y = xx′ for some y′, x′ ∈ B. Then

x = yy′ = y2y′ = yx = xy = x2x′ = xx′ = y.

An atom of a Boolean algebra B is defined to be an element x ∈ B such
that there is no y ∈ B with 0 < y < x. A Boolean algebra B is said to be
atomic if every element x ∈ B is the supremum of all the atoms y ∈ B with
y < x. A Boolean algebra B is said to be complete if every subset of B has
its supremum and infimum in B. A morphism of complete Boolean algebras is
given by a unital ring map which preserves infimums and supremums.

Example 2.6.1. Let S be a set. Let B = BS = 2S = {f : S → {0, 1} = Z2}
the set of all functions from S to the two points set. Then B = 2S is a complete
atomic Boolean algebra.

Indeed, for any f ∈ B, we have f2 = f since f(s)2 = f(s) for any s ∈ S,
because of 02 = 0 and 12 = 1. The constant map 1 = 1(s) = 1 for any s ∈ S
is the unit for B. It is clear that B is commutative. Define a partial order
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relation f ≤ g for f, g ∈ B if f(s) ≤ g(s) for every s ∈ B. If f ≤ g in this
sense, then f = fg. Hence f ≤ g in that sense. Conversely, if f ≤ g in that
sense so that f = gh for some h ∈ B, then f = gh ≤ 1g = g in this sense. An
atom of B is given by a characteristic function χt at an element t ∈ S such that
χt(s) = 0 for s �= t and χt(t) = 1. Also, any f ∈ B is written as the supremum
supn

∑n
j=1 χtj with tj ∈ S with f(tj) = 1 for some n finite or unbounded. As

well, for any subset C of B, sup C is given as supn

∑n
j=1 χtj such that there is

f ∈ C with f(tj) = 1, and inf C is given as supn

∑n
j=1 χtj such that f(tj) = 1

for any f ∈ C. �
Any map ϕ : S → T of sets S and T defines a morphism of the associated

complete atomic Boolean algebras BS , BT by pull-back as

S
ϕ−−−−→ T

2

⏐⏐�B 2

⏐⏐�B

2S = BS � f ◦ ϕ
ϕ∗

←−−−− f ∈ 2T = BT .

This system is a contravariant functor from the category Set to the category
Boo.

As for the opposite direction, given a Boolean algebra B, define its spec-
trum B∧ to be HomBoo(B, {0, 1}) the set of all Boolean algebra homomor-
phisms from B to a two points set as {0, 1}, viewed as the Boolean algebra of
two elements 0 and 1. Any Boolean algebra map ψ : B → C induces a set map
ψ∧ : C∧ → B∧ defined as ψ∧ = ψ∗ the pull-back of ψ, so that ψ∧(f) = f ◦ ψ
for f ∈ C∧. Namely,

B
ψ−−−−→ C

Hom(·,Z2)

⏐⏐� ⏐⏐�Hom(·,Z2)

B∧ ψ∧=ψ∗
←−−−−− C∧

This system is a contravariant functor from the category Boo to he category
Set.

This and that functors give anti-equivalences of the categories, quasi-inverse
to each other. Thus, we have a duality between the category of sets as geometric
objects and the category of commutative algebras as complete atomic Boolean
algebras. This result is a special case of the Stone duality between Boolean
algebras and a certain class of topological spaces (cf. [38]).

Example 2.6.2. Let S = Z2 as a set. Then BS = 2S is generated by the
characteristic functions χ0 and χ1 for 0, 1 ∈ Z2. Hence, BS = {0, χ0, χ1, 1 =
χ0 + χ1}, whichi is isomorphic to Z2 × Z2 as a ring. Therefore,

B∧
Z2

= Hom(BZ2 , Z2) ∼= Hom(Z2 × Z2, Z2)
∼= Hom(Z2, Z2) × Hom(Z2, Z2) ∼= Z2 × Z2. �

There may not be the notion of some kind of noncommutative sets, obtained
as quantizing the set theory by noncommutative Boolean algebras if any or not.
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3 Group C∗-algebras around

Table 4: An overview on group and algebra with structure �

Group First Algebra Next
Groups Group algebras

Topological groups Group (Banach or) C∗-algebras
Space symmetry Hilbert space symmetry

Group semi-direct products Crossed product (C∗-) algebras
G-actions on spaces Bicrossed product algebras
Dynamical systems C∗-dynamical systems
Classical mechanics Quantum mechanics

Groups with 2-cocycles Twisted group (C∗-) algebras
Systems with 2-cocycles Twisted crossed product algebras

Groups with duals Co-algebras, Hopf algebras,
Classical groups Quantum (deformed) groups

Pontryagin duality for Takai duality for
Topo-Abelian Groups C∗-crossed products by TAG

Note that group (C∗-) algebras are not complete invariants of groups up to
isomorphisms in general, even in the commutative case (cf. [29], [62]). But in the
noncommutative case, there are some classification results on the isomorphism
problem of groups and their group (C∗-) algebras, in some cases. This problem
seems to be still somewhat open and interesting. May solve it. As one of the
most important results, it is obtained by Pimsner-Voiculescu [58] that the free
groups with no relations are not isomorphic by computing the K-theory groups
of the (full or reduced) C∗-algebras of the free groups ([3]).

On the other hand, it is known that the representation theory of groups as
the unitary duals of their unitary representations up to unitary equivalences is
identified with the representation theory of group C∗-algebras as the spectrums
of their irreducible representations up to unitary equivalences (cf. [28], [29],
[57]).

3.1 Discrete group ∗-algebras

Let G be a discrete group with e the unit element. Let C[G] denote the group
algebra of G. The group ∗-algebra CG(= C[G] as an algebra) of G is a unital
∗-algebra defined as follows. As a vector space, CG is the complex vector space
generated by the set of all elements of G as the canonical basis {δg | g ∈ G},
so that any element of CG is a finite linear combination

∑n
j=1 αjδgj for some

αj ∈ C, gj ∈ C, and n ∈ N, where each vector δg ∈ CG is identified with each
element g ∈ G. The multiplication and involution for the basis elements of CG
are defined as

δgδh = δgh, δ∗g = δg−1 , g, h ∈ G
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and these operations are extended to all elements of CG by linearity.
Indeed, check that

(δgδh)∗ = (δgh)∗ = δh−1g−1 = δh−1δg−1 = δ∗hδ∗g .

The unit of CG is given by δe.

Lemma 3.1.1. The group ∗-algebra CG is commutative if and only if G is
commutative.

Proof. By definition, element-wise commutativity in CG is equivalent to that
in G, and which extends to that in CG.

Note that each element of CG is identified with a (continuous) function from
G to C with finite (or compact) support, where we assume that a discrete group
G has the discrete topology, so that any function from G to C is continuous. We
denote by Cc(G, C) the unital ∗-algebra of all (continuous) functions from G
to C with finite (or compact) support, with convolution product and involution
defined as

(f1 ∗ f2)(g) =
∑

h,k∈G,hk=g

f1(h)f2(k) =
∑
h∈G

f1(h)f2(h−1g)

and f∗(g) = f(g−1) for f1, f2, f ∈ Cc(G, C). We may call it as a Cc algebra.

Lemma 3.1.2. Endowed with convolution and involution, the Cc algebra Cc(G, C)
is a unital ∗-algebra, where the unit is given by the characteristic function χ1 at
the unit 1 ∈ G defined as χ1(1) = 1 and χ1(g) = 0 for any g �= 1 in G.

Proof. If f1, f2 ∈ Cc(G, C) with finite supports supp(f1), supp(f2) ⊂ G, then

(f1 ∗ f2)(g) =
∑

h∈supp(f1)

f1(h)f2(h−1g).

Moreover, if the intersection supp(f1)−1g ∩ supp(f2) = ∅, then (f1 ∗ f2)(g) = 0,
where supp(f1)−1 = {g−1 ∈ G | g ∈ supp(f1)}. Therefore, if (f1 ∗ f2)(g) �= 0,
then supp(f1)−1g ∩ supp(f2) �= ∅. In this case, if w = h−1g ∈ supp(f2) for
h ∈ supp(f1), then g = hw ∈ supp(f1)supp(f2). Thus, we obtain supp(f1∗f2) ⊂
supp(f1)supp(f2). Hence f1 ∗ f2 ∈ Cc(G, C).
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For f1, f2, f3 ∈ Cc(G, C), we compute

(f1 ∗ (f2 ∗ f3))(g) =
∑
h∈G

f1(h)(f2 ∗ f3)(h−1g)

=
∑
h∈G

f1(h)
∑
k∈G

f2(k)f3(k−1h−1g)

=
∑
h∈G

f1(h)
∑
k∈G

f2(h−1hk)f3((hk)−1g)

=
∑
h∈G

f1(h)
∑

hk=u∈G

f2(h−1u)f3(u−1g)

=
∑
u∈G

(∑
h∈G

f1(h)f2(h−1u)

)
f3(u−1g)

=
∑
u∈G

(f1 ∗ f2)(u)f3(u−1g) = ((f1 ∗ f2) ∗ f3)(g).

As well, check that for f ∈ Cc(G, C),

f∗∗(g) = f∗(g−1) = f(g).

Moreover,

(f1 ∗ f2)∗(g) = (f1 ∗ f2)(g−1)

=
∑

h=g−1k,k∈G

f1(h)f2(h−1g−1)

=
∑
k∈G

f2((k)−1)f1((k−1g)−1)

=
∑
k∈G

f∗
2 (k)f∗

1 (k−1g) = (f∗
2 ∗ f∗

1 )(g).

Furthermore,

(χ1 ∗ f)(g) =
∑
h∈G

χ1(h)f(h−1g) = χ1(1)f(g) = f(g),

(f ∗ χ1)(g) =
∑
h∈G

f(h)χ1(h−1g) = f(g)χ1(1) = f(g).

Proposition 3.1.3. The group ∗-algebra CG is isomorphic to Cc(G, C) as a
∗-algebra, by the Dirac transform, named so by us, so that CG is identified with
Cc(G, C).

Proof. Define the Dirac transform as a ∗-isomorphism Φ from CG to Cc(G, C)
by sending any element δg ∈ CG to χg the characteristic function at g and by
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extending by linearity. Check that for any g1, g2, g3 ∈ G,

Φ(δg1) ∗ Φ(δg2)(g3) = (χg1 ∗ χg2)(g3)

=
∑
h∈g

χg1(h)χg2(h
−1g3) = χg2(g

−1
1 g3)

= χg1g2(g3) = Φ(δg1g2)(g3) = Φ(δg1δg2)(g3).

Also,
Φ(δg1)

∗(g2) = χ∗
g1

(g2) = χg1(g
−1
2 ) = χg−1

1
(g2) = Φ(δ∗g1

)(g2).

Since if g �= h ∈ G, then χg �= χh, the injectivity of Φ holds. If any f ∈ Cc(G, C)
has a finite support {g1, · · · , gn} ⊂ G, then f =

∑n
j=1 f(gj)χgj . Hence f =

Φ(
∑n

j=1 f(gj)δgj ). Thus, the surjectivity of Φ holds.

Since the map Φ is a homomorphism sending the pointwise multiplication
to the convolution, we may define that Φ is the inverse Fourier transform F−1

for a discrete group G without considering its dual, or with G as self-dual, and
that Φ−1 is the Fourier transform F for G in the same sense. Namely,

F = Φ−1 : Cc(G, C) → C[G], F(f1 ∗ f2) = F(f1)F(f2)

where for f =
∑n

j=1 f(gj)χgj ∈ Cc(G, C), we define F(f) =
∑n

j=1 f(gj)δgj .

Example 3.1.4. Let G = Z be the group of integers, where for g, h ∈ G, we
may identify gh = g + h, g−1 = −g ∈ G = Z. Then C[G] is identified with the
algebra C[u, u−1] of Laurent polynomials generated by an invertible element u
with inverse u−1. Namely, for some n ∈ N, nj ∈ Z, αj ∈ C,

n∑
j=1

αjδnj =
n∑

j=1

αju
nj ∈ C[G] = C[u, u−1].

Example 3.1.5. Let G = Zn = Z/nZ be the finite cyclic group of order n. Then
CG can be identified with the quotient algebra C[u]/(un − 1) of the polynomial
algebra C[u] generated by u and the unit 1.

Any element
∑n

j=1 αjδgj ∈ C[G] with αj ∈ C, gj ∈ G is identified with∑n
j=1 αju

gj ∈ C[u] (mod un = 1). It then follows that both C[G] and C[u]
(mod un = 1) have pointwise multiplication of the same type. Where is the
mess?

There is the magical finite Fourier transform from the quotient to the direct
sum of n copies of C with pointwise multiplication:

F : C[u]/(un − 1) → ⊕n
C = C

n

untangling the mess by multiplication in the quotient algebra (which looks like
a mess). The magical F is defined by sending u to (1, ζ, ζ2, · · · , ζn−1) and
extending properly to an algebra isomorphism, where ζ ∈ C denotes a primitive
n-th root of unity.
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Note that F(u)n = (1, · · · , 1) ∈ C
n.

In particular, if n = 2, then CZ2 = C1 + Cu (mod u2 = 1). For α, β ∈ C

and (ρ, γ) ∈ C
n, with ζ primitive with ζ2 = 1, suppose that

α(1, 1) + β(1, ζ) = (α + β, α + βζ) = (ρ, γ) ∈ C
n.

By solving this system of the equations with respect to α, β, we obtain β = ρ−γ
1−ζ ,

α = ρ − ρ−γ
1−ζ ∈ C. Thus the Fourier F in this case is certainly onto C

2.
Similarly, in the general case, the map F is shown to be onto C

n by solving
the system of the algebraic n linear equations, as solved in Linear Algebra.

Moreover, endowed with the supremum or maximum norm on C
n, the ∗-

algebra C
n becomes a C∗-algebra with the C∗-norm condition. As well, the

C∗-norm on CG is induced by the isomorphism F : C[G] → C
n. Namely, for

f ∈ C[G], define ‖f‖ = ‖F(f)‖, so that

‖f∗f‖ = ‖F(f∗f)‖ = ‖F(f)∗F(f)‖ = ‖F(f)‖2 = ‖f‖2.

Furthermore, elements of C
n are identified with diagonal matrices in the complex

n× n matrix algebra Mn(C), and C
n acts on the complex Euclidean or Hilbert

space C
n by matrix multiplication. In this case, the operator norm for C

n ⊂
Mn(C) on the diagonal is the same as the supremum norm for C

n.
Anyhow, in this case, CG becomes a commutative C∗-algebra, so that by

the Gelfand transform, CG is isomorphic the C∗-algebra C((CG)∧) of all con-
tinuous, complex-valued functions on the spectrum (CG)∧, which is identified
with the dual group G∧ of G of all characters χj on G, with G∧ ∼= G, defined as
χj(g) = ζj ∈ T the 1-torus for the generator g ∈ G identified with ζ ∈ T. �

Example 3.1.6. Let G be a finite group. The representation theory of finite
groups implies that as a golden tower,

CG = C[G] ∼= ⊕CMnj (C) over the set C of conjugacy classes of G

for some nj ≥ 1.

3.2 Twisted discrete group ∗-algebras

Definition 3.2.1. Let G be a (discrete) group and T be the one torus group.
Let σ : G × G → T be a 2-cocycle (or multiplier) for G satisfying the cocycle
condition (CC)

σ(g1, g2)σ(g1g2, g3) = σ(g1, g2g3)σ(g2, g3)

for any g1, g2, g3 ∈ G, and moreover (added), for any g ∈ G and the unit 1 ∈ G,

σ(g, 1) = σ(1, g) = 1 ∈ T

(cf. [56]).
If σ ≡ 1, then σ is said to be trivial.
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We denote by C(G, σ) the twisted group ∗-algebra of all complex-valued
(continuous) functions on G with finite support, endowed with σ-twisted con-
volution as multiplication (corrected) and σ-twisted involution as involution,
defined as:

(f1 ∗ f2)(g) =
∑
h∈G

f1(h)f2(h−1g)σ(h, h−1g),

f∗(g) = σ(g, g−1)f(g−1),

for f1, f2, f ∈ (G, σ), where the overline means the complex conjugate.

Note that if σ = 1, then C(G, σ) = Cc(G, C) ∼= CG.
We may call C(G, σ) a σ-Cc algebra.

Lemma 3.2.2. For a 2-cocycle (or multiplier) σ : G × G → T for a (discrete)
group G, it holds that for any g ∈ G, σ(g, g−1) = σ(g−1, g), so that

σ(g, g−1)σ(g−1, g) = 1.

Proof. In the (CC) above, set g1 = g, g2 = g−1, and g3 = g.

Lemma 3.2.3. The twisted group ∗-algebra C(G, σ) of a discrete (G, σ) is a
unital involutive algebra under the σ-twisted convolution and involution, where
the unit is given by the characteristic function χ1 at 1 ∈ G.

Proof. If f1, f2 ∈ C(G, σ) with finite support supp(f1), supp(f2) ⊂ G, then

(f1 ∗ f2)(g) =
∑

h∈supp(f1)

f1(h)f2(h−1g)σ(h, h−1g).

Moreover, if the intersection supp(f1)−1g ∩ supp(f2) = ∅, then (f1 ∗ f2)(g) = 0,
where supp(f1)−1 = {g−1 ∈ G | g ∈ supp(f1)}. Therefore, if (f1 ∗ f2)(g) �= 0,
then supp(f1)−1g ∩ supp(f2) �= ∅. In this case, supp(f1)−1g ⊂ supp(f2). Thus,
we obtain supp(f1 ∗ f2) ⊂ supp(f1)supp(f2). Hence f1 ∗ f2 ∈ C(G, σ).

For f1, f2, f3 ∈ C(G, σ), we compute

(f1 ∗ (f2 ∗ f3))(g) =
∑
h∈G

f1(h)(f2 ∗ f3)(h−1g)σ(h, h−1g),

=
∑
h∈G

f1(h)
∑
k∈G

f2(k)f3(k−1h−1g)σ(k, k−1h−1g)σ(h, h−1g)

=
∑
h∈G

f1(h)
∑
k∈G

f2(h−1hk)f3((hk)−1g)σ(k, (hk)−1g)σ(h, h−1g)

=
∑
h∈G

f1(h)
∑

hk=u∈G

f2(h−1u)f3(u−1g)σ(h−1u, u−1g)σ(h, (h−1u)(u−1g))

=
∑
u∈G

(∑
h∈G

f1(h)f2(h−1u)σ(h, h−1u)

)
f3(u−1g)σ(u, u−1g)

=
∑
u∈G

(f1 ∗ f2)(u)f3(u−1g)σ(u, u−1g) = ((f1 ∗ f2) ∗ f3)(g)
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with, thanks to the cocycle condition,

σ(h−1u, u−1g)σ(h, (h−1u)(u−1g)) = σ(h, (h−1u)(u−1g))σ(h−1u, u−1g)

= σ(h, h−1u)σ(hh−1u, u−1g) = σ(h, h−1u)σ(u, u−1g).

As well, check that for f ∈ C(G, σ),

f∗∗(g) = σ(g, g−1)f∗(g−1)

= σ(g, g−1)σ(g−1, g)f(g) = f(g).

Moreover,

(f1 ∗ f2)∗(g) = σ(g, g−1)(f1 ∗ f2)(g−1)

= σ(g, g−1)
∑

h=g−1k,k∈G

f1(h)f2(h−1g−1)σ(h, h−1g−1)

= σ(g, g−1)
∑
k∈G

f2((k)−1)f1((k−1g)−1)σ(g−1k, k−1)

=
∑
k∈G

σ(k−1, g)f2((k)−1)f1((k−1g)−1)σ(k−1g, g−1)σ(g−1k, k−1)

=
∑
k∈G

σ(k, k−1)f2(k−1)σ(k−1g, (k−1g)−1)f1((k−1g)−1)σ(k, k−1g)

= (f∗
2 ∗ f∗

1 )(g)

where

σ(g, g−1) = σ(k−1, 1)σ(g, g−1) = σ(k−1, g)σ(k−1g, g−1),

σ(k−1g, g−1k) = σ(k−1g, g−1k)σ(1, k−1) = σ(k−1g, g−1)σ(g−1k, k−1),

and
σ(k−1, k) = σ(k−1, k)σ(1, k−1g) = σ(k−1, g)σ(k, k−1g)

with σ(k, k−1)σ(k−1, k) = 1, and hence

σ(k, k−1)σ(k, k−1g) = σ(k−1, g).

Furthermore,

(χ1 ∗ f)(g) =
∑
h∈G

χ1(h)f(h−1g)σ(h, h−1g) = χ1(1)f(g)σ(1, g) = f(g),

(f ∗ χ1)(g) =
∑
h∈G

f(h)χ1(h−1g)σ(h, h−1g) = f(g)χ1(1)σ(g, 1) = f(g).

Example 3.2.4. Let θ ∈ R and let G = Z
2. Define the Khalkhali 2-cocycle

cθ : Z
2 × Z

2 → T on Z
2 as

cθ((m,n), (m′, n′)) = exp(2πiθ(mn′ − nm′)).
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Check that

cθ((m1, n1), (m2, n2))cθ((m1 + m2, n1 + n2), (m3, n3))
= exp(2πiθ(m1n2 − n1m2)) exp(2πiθ((m1 + m2)n3 − (n1 + n2)m3))
= exp(2πiθ(m1(n2 + n3) + m2(−n1 + n3) − m3(n1 + n2))),
cθ((m1, n1), (m2 + m3, n2 + n3))cθ((m2, n2), (m3, n3))
= exp(2πiθ(m1(n2 + n3) − n1(m2 + m3))) exp(2πiθ(m2n3 − n2m3))
= exp(2πiθ(m1(n2 + n3) + m2(−n1 + n3) − m3(n1 + n2)))

coincide. The corresponding twisted group ∗-algebra C(Z2, cθ) (with multipli-
cation corrected) is isomorphic to the (universal) ∗-algebra generated by two
unitaries U and V with the commutation relation V U = e2πiθ(−2)UV (cor-
rected). Indeed, U and V may be identified with the characteristic functions
χ(1,0) and χ(0,1) at the generators (1, 0), (0, 1) ∈ Z

2 respectively. Then compute
that

(χ(1,0) ∗ χ(0,1))((m,n))

=
∑

(k,l)∈Z2

χ(1,0)(k, l)χ(0,1)(m − k, n − l)cθ((k, l), (m − k, n − l))

= χ(0,1)(m − 1, n)cθ((1, 0), (m − 1, n))
= exp(2πiθn)χ(1,1)(m, n) = exp(2πiθ)χ(1,1)(m,n),
(χ(0,1) ∗ χ(1,0))((m,n))

=
∑

(k,l)∈Z2

χ(0,1)(k, l)χ(1,0)(m − k, n − l)cθ((k, l), (m − k, n − l))

= χ(1,0)(m,n − 1)cθ((0, 1), (m,n − 1))
= exp(2πiθ(−m))χ(1,1)(m,n) = exp(2πiθ(−1))χ(1,1)(m, n).

Therefore, it does follow that

χ(0,1) ∗ χ(1,0)((m,n)) = exp(2πiθ(−2))(χ(1,0) ∗ χ(0,1))((m,n)). �

Example 3.2.5. ([56]). Let θ ∈ R and let G = Z
2. Define the Packer 2-cocycle

wθ : Z
2 × Z

2 → T on Z
2 as

wθ((m,n), (m′, n′)) = exp(2πiθnm′).

Check that

wθ((m1, n1), (m2, n2))wθ((m1 + m2, n1 + n2), (m3, n3))
= exp(2πiθn1m2) exp(2πiθ(n1 + n2)m3)
= exp(2πiθ(m2n1 + m3(n1 + n2))),
wθ((m1, n1), (m2 + m3, n2 + n3))wθ((m2, n2), (m3, n3))
= exp(2πiθn1(m2 + m3)) exp(2πiθn2m3)
= exp(2πiθ(m2n1 + m3(n1 + n2)))
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coincide. The corresponding twisted group ∗-algebra C(Z2, wθ) is isomorphic
to the (universal) ∗-algebra generated by two unitaries U and V with the com-
mutation relation V U = e2πiθUV . Indeed, U and V may be identified with
the characteristic functions χ(1,0) and χ(0,1) at the generators (1, 0), (0, 1) ∈ Z

2

respectively. Then compute that

(χ(1,0) ∗ χ(0,1))((m, n))

=
∑

(k,l)∈Z2

χ(1,0)(k, l)χ(0,1)(m − k, n − l)wθ((k, l), (m − k, n − l))

= χ(0,1)(m − 1, n)wθ((1, 0), (m − 1, n)) = χ(1,1)(m,n),
(χ(0,1) ∗ χ(1,0))((m,n))

=
∑

(k,l)∈Z2

χ(0,1)(k, l)χ(1,0)(m − k, n − l)wθ((k, l), (m − k, n − l))

= χ(1,0)(m,n − 1)wθ((0, 1), (m,n − 1))
= exp(2πiθm)χ(1,1)(m,n) = exp(2πiθ)χ(1,1)(m,n).

Therefore, it does follow that

χ(0,1) ∗ χ(1,0)((m, n)) = exp(2πiθ)(χ(1,0) ∗ χ(0,1))((m,n)). �

Example 3.2.6. Let Zq be the cyclic group of order q ≥ 2 and let G = Zq ×Zq.
For a rational number θ = p

q with p, q relatively prime, define the Khalkhali 2-
cocycle cθ in the same manner as in the case of G = Z

2. Then C(G, cθ) is
isomorphic to the (universal) ∗-algebra generated by two unitaries U and V
satisfying Uq = 1, V q = 1, and V U = e2πiθ(−2)UV (corrected in our sense).
It is shown that this algebra is isomorphic to the matrix algebra Mq(C) (if q
is relatively prime with 2). Therefore, Mq(C) is not a group algebra, but is a
twisted group ∗-algebra! It also is a crossed product C∗-algebra C

q
�T Zq with

T the translation action.
Note that

(χ(1,0) ∗ χ(j,0))((m,n))

=
∑

(k,l)∈Z2

χ(1,0)(k, l)χ(j,0)(m − k, n − l)cθ((k, l), (m − k, n − l))

= χ(j,0)(m − 1, n)cθ((1, 0), (m − 1, n))
= exp(2πiθn)χ(j+1,0)(m, n) = χ(j+1,0)(m, n),
(χ(0,1) ∗ χ(0,j))((m,n))

=
∑

(k,l)∈Z2

χ(0,1)(k, l)χ(0,j)(m − k, n − l)cθ((k, l), (m − k, n − l))

= χ(0,j)(m, n − 1)cθ((0, 1), (m,n − 1))
= exp(2πiθ(−m))χ(0,j+1)(m,n) = χ(0,j+1)(m,n).
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As well, in the case of the Packer 2-cocycle wθ on Zq,

(χ(1,0) ∗ χ(j,0))((m,n))

=
∑

(k,l)∈Z2

χ(1,0)(k, l)χ(j,0)(m − k, n − l)wθ((k, l), (m − k, n − l))

= χ(j,0)(m − 1, n)wθ((1, 0), (m − 1, n))
= exp(2πiθ0)χ(j+1,0)(m,n) = χ(j+1,0)(m,n),
(χ(0,1) ∗ χ(0,j))((m,n))

=
∑

(k,l)∈Z2

χ(0,1)(k, l)χ(0,j)(m − k, n − l)wθ((k, l), (m − k, n − l))

= χ(0,j)(m, n − 1)wθ((0, 1), (m,n − 1))
= exp(2πiθm)χ(0,j+1)(m,n) = χ(0,j+1)(m,n).

Moreover, Mq(C) is generated by the two (Voiculescu) unitaries defined as

V =

⎛
⎜⎜⎜⎝

e2πi 1
q = z 0

e2πi 2
q = z2

. . .
0 1 = zq

⎞
⎟⎟⎟⎠ , U =

⎛
⎜⎜⎜⎜⎝

0 1

1
. . .
. . . . . .

1 0

⎞
⎟⎟⎟⎟⎠ .

Then V V ∗ = 1q = V ∗V , UU t = 1q = U tU , Uq = 1q and V q = 1q, where 1q is
the unit matrix of Mq(C). In this case, compute that

V U =

⎛
⎜⎜⎜⎝

0 z
z2 0

. . . . . .
zq 0

⎞
⎟⎟⎟⎠ = z

⎛
⎜⎜⎜⎝

0 1
z 0

. . . . . .
zq−1 0

⎞
⎟⎟⎟⎠ = zUV.

Also, the translation action T with order q (as well on the diagonal C
q) is given

by

UV U t =

⎛
⎜⎜⎜⎝

1 = zq

z
. . .

zq−1

⎞
⎟⎟⎟⎠ ≡ T (U)

Furthermore, the C∗-algebra C∗(V ) generated by V is isomorphic to the
C∗-algebra C(sp(V )) of all continuous, complex-valued functions on the spec-
trum sp(V ) of V , by the Gelfand transform. Since sp(V ) consists of the set
{z, z2, · · · , zq} of distinct q points, so that C∗(V ) is isomorphic to C

q. �
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3.3 Twisted or not group C∗-algebras

Let G be a discrete group and let H = L2(G) denote the Hilbert space of all
square summable, complex-valued functions ξ on G, so that∑

g∈G

|ξ(g)|2 =
∑
g∈G

ξ(g)ξ(g) = 〈ξ, ξ〉 = ‖ξ‖2
2 < ∞.

There is the canonical orthonormal basis for L2(G) consisting of delta functions
as δg at g ∈ G, also in Cc(G, C) = CG. The left regular representation of
G is defined to be the unitary representation λ : G → B(L2(G)) defined by
(λgξ)(h) = ξ(g−1h) for g, h ∈ G, which extends by linearity to an injective ∗-
algebra homomorphism λ : CG → B(H), where B(H) denotes the C∗-algebra of
all bounded operators on the (or a) Hilbert H. Then the reduced group C∗-
algebra of G, denoted as C∗

r (G), is defined to be the C∗-operator norm closure
of λ(CG) in B(H). Since G is a discrete group, it is a unital C∗-algebra. There
is the canonical linear functional τ : C∗

r (G) → C defined as τ(a) = 〈aδe, δe〉 for
a ∈ C∗

r (G), which is a positive and faithful trace, so that τ(a∗a) > 0 if a �= 0,
and τ(ab) = τ(ba) for any a, b ∈ C∗

r (G). May refer to [27] for the faithfulness of
τ on C∗

r (G).
The universal representation of G or CG is defined to be the direct product

representation ⊕ππ : G, CG → B(⊕πHπ), where π runs over all irreducible uni-
tary representations of G, or corresponding irreducible ∗-representations of CG,
and ⊕πHπ = Huv means the direct product Hilbert space of the representation
Hilbert spaces Hπ of π. Then the full group C∗-algebra of G is defined to be
the C∗-algebra completion of ⊕ππ(CG) under the C∗-norm

‖ ⊕π π(f)‖ = sup
π

‖π(f)‖, f ∈ CG,

where the equivalence class [π] of π may run over G∧ or (CG)∧ the respective
spectrums. Note that for any π and any f ∈ CG ⊂ L1(G) the Banach ∗-algebra
of all summable, complex-valued functions on G, with the 1-norm as,

‖π(f)‖ ≤
∑

j

|f(gj)|‖π(gj)‖ =
∑

j

|f(gj)| = ‖f‖1,

so that ‖ ⊕π π(f)‖ ≤ ‖f‖1.
There is the canonical surjective C∗-algebra homomorphism Φ from C∗(G)

to C∗
r (G), induced by the continuous identity map CG to CG with the respective

full and reduced norms. This quotient map Φ is a ∗-isomorphism if and only
if G is amenable (cf. [4] or [57]). For example, either abelian, nilpotent, or
solvable groups, and compact groups are amenable. On the other hand, the
free, non-abelian groups are non-amenable.

Example 3.3.1. Let G be an abelian discrete group. Then C∗(G) = C∗
r (G) is

a unital commutative C∗-algebra. By the Gelfand-Naimark theorem, C∗(G) is
isomorphic to C(G∧) the C∗-algebra of all continuous, complex-valued functions
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on G∧ = Hom(G, T) the group of characters of G, known as the Pontryagin dual
of G. In this case, the canonical trace on C∗(G) is identified with

If G = Z
n, then C∗(G) ∼= C(Tn) where T

n is the real n-dimensional torus.

For a locally compact topological group G, there are associated two C∗-
algebras, in general, denoted as C∗(G) the full group C∗-algebra of G and
C∗

r (G) the reduced group C∗-algebra of G. These C∗-algebras are defined to be
the C∗-algebra completions of the convolution group ∗-algebra Cc(G, C) of all
continuous, complex valued functions on G with compact support, respective,
under the different norms induced by the universal representation and the left
regular representation of G as well as Cc(G, C). As the universal properties,
the space as the unitary dual G∧ of G of equivalence classes of unitary irre-
ducible representations of G corresponds to the spectrum C∗(G)∧ of C∗(G) of
equivalence classes of irreducible ∗-representations of C∗(G), in the sense that
the representation theory of G is identified with that of C∗(G). Also, any uni-
tary representation of G which are equivalent to a sub-representation of the left
regular representation of G is identified with that of C∗

r (G) with the same prop-
erty. By universality, there is an onto quotient ∗-homomorphism from C∗(G)
to C∗

r (G), which is a ∗-isomorphism if and only if G is amenable (cf. [57]).
More precisely, let G be a locally compact topological group with μ a left

Haar measure on G. Denote by L1(G,μ) = L1(G) the Banach ∗-algebra of
all μ-integrable, measure functions on G up to measure zero equivalence, with
convolution product defined as

(f ∗ g)(t) =
∫

G

f(s)g(s−1t)dμ(s), t ∈ G, f, g ∈ L1(G,μ)

and involution defined as

f∗(t) = ΔG(t−1)f(t−1), t ∈ G, f ∈ L1(G,μ)

where ΔG : G → R
∗ is the modular character of G.

The left regular ∗-representation λ of L1(G) on the Hilbert space L2(G) of
all square integrable measurable functions on G is defined by

(λ(f)ξ)(t) =
∫

G

f(s)ξ(s−1t)dμ(s), f ∈ L1(G), t ∈ G, ξ ∈ L2(G).

The reduced group C∗-algebra C∗
r (G) of G is defined to be the C∗-algebra

generated by all λ(f) for f ∈ L1(G) in B(L2(G)).
As in the discrete case, the universal representation ⊕ππ from L1(G) to

B(⊕πHπ) is defined similarly, where the equivalence class [π] of π runs over
L1(G)∧ the spectrum of L1(G), identified with G∧ that of G. As well, the
universal C∗-norm is defined as

‖f‖ = sup
π

‖π(f)‖, f ∈ L1(G).

Then the full group C∗-algebra C∗(G) of G is defined to be the operator norm
closure of (⊕ππ)(L1(G)).
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Note that in these definitions, L1(G) may be replaced by Cc(G, C) of all
continuous functions on G with compact support.

We may check that

Lemma 3.3.2. Endowed with convolution and involution, the Cc algebra Cc(G, C)
of a non-finite, compact or non-compact, locally compact group G is a non-
unital, ∗-algebra, where a suitable unit can be adjoined and may be given by the
point measure δ1 at the unit 1 ∈ G, by assuming that δ1 ∗ f = f = f ∗ δ1 for any
f ∈ Cc(G, C). The same holds for L1(G, C).

Proof. If f1, f2 ∈ Cc(G, C) with compact supports supp(f1), supp(f2) ⊂ G, then

(f1 ∗ f2)(g) =
∫

supp(f1)

f1(h)f2(h−1g)dμ(h).

Moreover, if the intersection supp(f1)−1g ∩ supp(f2) = ∅, then (f1 ∗ f2)(g) = 0,
where supp(f1)−1 = {g−1 ∈ G | g ∈ supp(f1)}. Therefore, if (f1 ∗ f2)(g) �= 0,
then supp(f1)−1g ∩ supp(f2) �= ∅. In this case, if w = h−1g ∈ supp(f2) for
h ∈ supp(f1), then g = hw ∈ supp(f1)supp(f2). Thus, we obtain supp(f1∗f2) ⊂
supp(f1)supp(f2). Hence f1 ∗ f2 ∈ Cc(G, C).

For f1, f2, f3 ∈ Cc(G, C), we compute

(f1 ∗ (f2 ∗ f3))(g) =
∫

G

f1(h)(f2 ∗ f3)(h−1g)dμ(h)

=
∫

G

f1(h)dμ(h)
∫

G

f2(k)f3(k−1h−1g)dμ(k)

=
∫

G

f1(h)dμ(h)
∫

G

f2(h−1hk)f3((hk)−1g)dμ(hk)

=
∫

G

f1(h)dμ(h)
∫

hk=u∈G

f2(h−1u)f3(u−1g)dμ(u)

=
∫

u∈G

(∫
h∈G

f1(h)f2(h−1u)dμ(h)
)

f3(u−1g)dμ(u)

=
∫

u∈G

(f1 ∗ f2)(u)f3(u−1g)dμ(u) = ((f1 ∗ f2) ∗ f3)(g).

As well, check that for f ∈ Cc(G, C),

f∗∗(g) = ΔG(g−1)f∗(g−1) = ΔG(g−1)ΔG(g)f(g) = f(g).

Moreover,

(f1 ∗ f2)∗(g) = ΔG(g−1)(f1 ∗ f2)(g−1)

= ΔG(k−1k)ΔG(g−1)
∫

h=g−1k,k∈G

f1(h)f2(h−1g−1)dμ(h)

=
∫

k∈G

ΔG(k−1)f2((k)−1)ΔG((k−1g)−1)f1((k−1g)−1)dμ(k)

=
∫

k∈G

f∗
2 (k)f∗

1 (k−1g)dμ(k) = (f∗
2 ∗ f∗

1 )(g).
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Furthermore, suppose that χ is the unit of Cc(G, C). Note that if so, the
unit extends to that of L1(G, C) by L1-density of Cc(G, C). For convenience, we
show that if L1(G, C) has the unit χ extended, then a contradiction is deduced
in the following. Then, for any f ∈ L1(G, C),

(χ ∗ f)(g) =
∫

G

χ(h)f(h−1g)dμ(h) = f(g),

(f ∗ χ)(g) =
∫

G

f(h)χ(h−1g)dμ(h) = f(g).

Then χ is not the zero function on G, so that there is g0 ∈ G such that χ(g0) �=
0. Since χ ∗ χ = χ, then ‖χ‖1 ≤ ‖χ‖2

1, so that ‖χ‖1 ≤ 1. If we take f ∈
L1(G, C) such that f(g0) = 1 and 0 ≤ f(g) ≤ 1

2 for almost g ∈ U a compact
neighbourhood containging 1 and g0, and f = 0 on the complement U c. It then
follows that

1 = |f(g0)| ≤
∫

G

|χ(h)f(h−1g)|dμ(h) ≤ 1
2

∫
U

|χ(h)|dμ(h) ≤ 1
2
.

Twisted group C∗-algebras
We denote by C∗(G, σ) the twisted full group C∗-algebra of a discrete

(G, σ), that is defined to be the universal C∗-algebra completion of the twisted
group ∗-algebra C(G, σ) of complex-valued functions on G with finite support, or
of the twisted L1 ∗-algebra L1(G, σ) of all summable, complex-valued functions
on G, with σ-twisted convolution as multiplication (corrected) and σ-twisted
involution as involution, as mentioned above. Similarly, the twisted reduced
group C∗-algebra of (G, σ), denoted as C∗

r (G, σ) is defined to be the reduced
C∗-algebra completion of either C(G, σ) or L1(G, σ) under the left regular rep-
resentation.

Definition 3.3.3. Let G be a locally compact group with a left Haar measure
μ. A 2-cocycle or multiplier on G is defined to be a measurable function
σ : G × G → T satisfying the cocycle condition (CC)

σ(g1, g2)σ(g1g2, g3) = σ(g1, g2g3)σ(g2, g3)

for any g1, g2, g3 ∈ G, and moreover (added), for any g ∈ G and the unit 1 ∈ G,

σ(g, 1) = σ(1, g) = 1 ∈ T

(cf. [56]). If σ ≡ 1, then σ is said to be trivial. We denote by Cc(G, σ)
the twisted group ∗-algebra of all complex-valued (continuous) functions on G
with compact support, endowed with σ-twisted convolution as multiplication
(corrected) and σ-twisted involution as involution, defined as:

(f1 ∗ f2)(g) =
∫

G

f1(h)f2(h−1g)σ(h, h−1g)dμ(h)

f∗(g) = ΔG(g−1)σ(g, g−1)f(g−1),
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for f1, f2, f ∈ Cc(G, σ), where the overline means the complex conjugate. The
twisted full group C∗-algebra C∗(G, σ) of a locally compact group (G, σ) is
defined to be the universal C∗-algebra completion of the twisted group ∗-algebra
Cc(G, σ) or L1(G, σ) of all integrable, complex-valued functions on G with the
same operations. Similarly, the twisted reduced group C∗-algebra C∗

r (G, σ) of
(G, σ) is defined to be the reduced C∗-algebra completion of either Cc(G, σ) or
L1(G, σ) under the left regular representation.

3.4 Twisted or not crossed product C∗-algebras

Note that the full group C∗-algebra C∗(G) of either a discrete group or a locally
compact group G is viewed as a crossed product C∗-algebra C �1 G with the
trivial action 1 of G on C. The full crossed product C∗-algebra A �α G of a
C∗-algebra A by an action α of G on A by automorphisms is defined similarly
and extendedly by replacing C of C �1 G with A and 1 with α.

In particular, for f, f1, f2 ∈ Cc(G, A) the Cc algebra as a dense ∗-subalgebra
of A �α G of all Cc-functions on G, define the convolution and involution in-
volving the action α as

(f1 ∗ f2)(g) =
∫

G

f1(h)αh(f2)(h−1g)dμ(h),

f∗(g) = ΔG(g−1)αg(f)(g−1), g ∈ G.

More details may be considered in the next time. May refer to [57].
Note also that the full twisted group C∗-algebra C∗(G, σ) of either a discrete

group or a locally compact group G is viewed as a twisted crossed product C∗-
algebra C �

σ
1 G with the trivial action 1 of G on C. The full twisted crossed

product C∗-algebra A �
σ
α G of a C∗-algebra A by an action α of G on A by

automorphisms is defined similarly and extendedly by replacing C of C �
σ
1 G

with A and 1 with α.
In particular, for f, f1, f2 ∈ Cc(G, σ, A) the Cc algebra as a dense ∗-subalgebra

of A �
σ
α G of all Cc-functions on G, define the convolution and involution in-

volving the action α and the twist by σ as

(f1 ∗ f2)(g) =
∫

G

f1(h)αh(f2)(h−1g)σ(h, h−1g)dμ(h),

f∗(g) = ΔG(g−1)σ(g, g−1)αg(f)(g−1), g ∈ G.

More details may be left to be considered in the future. May refer to [56] and
more.

Briefly consider only the following examples and the beautiful stars.

Example 3.4.1. Let G = Zn = Z/nZ denote the cyclic group of order n.
Define an action α of Zn on X = Zn as a space such that the generator of G
acts as the translation by 1 mod n. The action α on X induces the action on
C(X) by the same symbol α. Moreover, C(X) is isomorphic to the group C∗-
algebra C∗(Zn) generated by a unitary V such that V n = 1. The (full) crossed
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product C∗-algebra C(X)�α G is then generated by the unitary V of C(X) and
the unitary U corresponding to the generator of G such that UV U∗ = λ−1V ,
with λ = e2πi 1

n . It is shown that

C(Zn) �α Zn
∼= Mn(C).

For more details, see the next subsection, it is shown in which that Mn(C) is
generated by two unital matrices u and v satisfying un = 1, vn = 1, and the
same commutation relation, so that the isomorphism is obtained by sending U
to u and V to v respectively. �

Example 3.4.2. Let G be a locally compact abelian group. Then G acts on G
by the left translation as α and as well on C0(G) the C∗-algebra of all continuous,
complex-valued functions on G vanishing at infinity. Then we have

C0(G) �α G ∼= K(L2(G))

where K(L2(G)) denotes the C∗-algebra of all compact operators on the Hilbert
space L2(G) of measurable, square integrable functions on G. �

What’s more. For a crossed product C∗-algebra A �α G of a C∗-algebra
A by an action α of an abelian group G on A by automorphisms, there is
the dual action α∧ of the dual group G∧ of G on A �α G defined as that
α∧

χ(f)(g) = χ(g)f(g) for g ∈ G, χ ∈ G∧ and f ∈ A � G as a function from G to
A, integrable or continuous with compact support.

� The Takai duality theorem [67] states the following isomorphism

(A �α G) �α∧ G∧ ∼= A ⊗ K(L2(G))

(cf. [3], [57]). This theorem also says that the double crossed product of A as
the left hand side is stably isomorphic, or (strongly) Morita equivalent to A.

� The Pontryagin duality theorem (cf. [52]) states that

G ∼= (G∧)∧

for G a topological abelian group and G∧ the dual TAG of all characters of G.
It then looks like that the T-duality above is slightly or essentially different

from the P-duality in a context or sense.

Example 3.4.3. Let G be a locally compact topological group acting contin-
uously on a locally compact Hausdorff space X. Define an action α of G on
C0(X) the C∗-algebra of all continuous complex-valued functions on X vanishing
at infinity by (αgf)(x) = f(g−1x) for g ∈ G, x ∈ X. Then the tansformation
group C∗-algebra is defined to be the corresponding crossed product C∗-algebra
C0(X) �α G (cf. [56]). Note that such an action α of G on X defines a topo-
logical dynamical system (X,G,α). Investigating the corresponding relation
between the dynamical systems (X,G,α) and the transformation group crossed
products C0(X) �α G is still a big industry, developing.
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A particular, important case is considered in the next subsection, where
G = Z of integers, X = T the 1-torus, and the action α is given by the rotation
by angle θ ∈ [0, 2π], the crossed product for which is the noncommutative 2-
torus denoted as T

2
θ (cf. [61], [70]). �

3.5 Quantum mechanics and Noncommutative tori

Quantum mechanics as mathematics
The canonical commutation relation (CCR) in quantum mechanics (QM)

is defined to the equation (with notation changed)

MP − PM =
h

2πi
1,

where M is the momentum operator and P is the position operator, which are
realized by unbounded self-adjoint operators on a Hilbert space as follows.

Let L2(R) be the Hilbert space of all square summable, measurable, complex-
valued functions on the real line R. Let C∞

c,p(R) be the space of all piece-wise
smooth functions on R with compact support. For f ∈ L2(R), define the po-
sition operator P = Mx as the multiplication operator (Pf)(x) = xf(x) =
Mxf(x) for x ∈ R. For f ∈ L2(R) ∩ C∞

c,p(R), define the momentum operator
M = h

2πiD as the differential operator (Mf)(x) = h
2πi

df
dx (x) = h

2πi (Df)(x) for
x ∈ R, which extends to L2(R) by L2-density of C∞

c,p(R) in L2(R), where the
case of one-sided derivatives at jumps in R is omitted. It then follows that for
f ∈ L2(R) ∩ C∞

c,p(R),

(PM−MP )f(x) = x
h

2πi

df

dx
(x) − h

2πi

d

dx
(xf(x)) = − h

2πi
f(x),

which extends to L2(R). As well, for f, g ∈ L2(R), by the definitions of the L2

inner product and the adjoint P ∗ of P ,

〈P ∗f, g〉 = 〈f, Pg〉 =
∫

R

f(x)xg(x)dx =
∫

R

xf(x)g(x)dx = 〈Pf, g〉,

and hence P = P ∗ self-adjoint. Also, for f, g ∈ L2(R) ∩ C∞
c (R),

〈M∗f, g〉 = 〈f,Mg〉 =
∫

R

f(x)
h

2πi

dg

dx
(x)dx =

∫
R

h

2πi

df

dx
(x)g(x)dx = 〈Mf, g〉,

by integration by parts, and hence M = M∗, extended to L2(R).
Moreover, we define a continuous function f on R as, for x ∈ R, f(x) = 1

|x|
with |x| ≥ 1 and f(x) = 1 with |x| < 1. Then f ∈ L2(R) with L2 norm 2,
because

‖f‖2
2 ≡

∫
R

|f(x)|2dx = 2 + 2
∫ ∞

1

1
x2

dx = 2 + 2[− 1
x

]∞x=1 = 4.
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But
‖Pf‖2

2 =
∫

R

|xf(x)|2dx = 1 + 2
∫ ∞

1

1dx = 1 + 2[x]∞x=1 = ∞.

Therefore, the operator P is not bounded, i.e., unbounded.
Furthermore, we define piece-wise smooth functions fn on R as, for 0 �= n ∈

N and x ∈ R, fn(x) = |x|n with |x| ≤ 1 and fn(x) = 0 with |x| > 1. Then

‖fn‖2
2 = 2

∫ 1

0

x2ndx = 2[
1

2n + 1
x2n+1]1x=0 =

2
2n + 1

< 1.

But

‖Mfn‖2
2 = 2

∫ 1

0

n2x2(n−1)dx = 2n2[
1

2n − 1
x2n−1]1x=0 =

2n2

2n − 1
,

which goes to ∞, as n → ∞. Hence, the operator M is unbounded.
Let i =

√−1. Define the one parameter family of unitaries Ut for t ∈ R

generated by M:

Ut =
∫

R

eitλdEλ =
∫

R

∞∑
k=0

(it)k

k!
λkdEλ

=
∞∑

k=0

(it)k

k!

∫
R

λkdEλ =
∞∑

k=0

1
k!

(it)kMk = exp(itM),

with U∗
t =

∫
R

eitλdEλ = U−t, where M =
∫

R

λ dEλ

the spectral resolution for M self-adjoint and unbounded. Similarly, define
Vs = exp(isP ) for s ∈ R. It then follows by using the CCR that

VsUt = exp(isP ) exp(itM) =
∞∑

k=0

(is)k

k!
P k

∞∑
l=0

(it)l

l!
Ml

=
∞∑

k=0

∞∑
l=0

(is)k

k!
(it)l

l!
P kMl

= 1 + isP + itM +
(is)2

2!
P 2 + (is)(it)(MP − h

2πi
1) +

(it)2

2!
M2

+
(is)3

3!
P 3 +

(is)2(it)
2!

(MP 2 − 2
h

2πi
P ) +

(is)(it)2

2!
(M2P − 2

h

2πi
M)

+
(it)3

3!
M3 + · · ·

= e−st h
2π i exp(itM) exp(isP ) = e−st�i exp(itM) exp(isP )

with � = h
2π (corrected).

If we start with M = hi d
dx and P = Mx with [M, P ] = hi1, then the

exponential is given by esthi = e2πi�st. In this case, we may set �st = θ ∈ R and
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define the C∗-algebra Qθ generated by those unitaries exp(isP ) and exp(itM)
with θ = �st in the C∗-algebra B(L2(R)) of all bounded operators on L2(R),
which may be called as the quantum mechanics C∗-algebra.

Note as well (cf. [36]) that for any Borel function f on R, the spectral
integral

∫
R

fdE for f with respect to the spectral measure E = (Et)t∈R on a
Hilbert space H is defined by the strong limit∫

R

fdEξ = lim
n→∞

∫
R

χ[−n,n]fdEξ

for any ξ ∈ H, where χ[−n,n] is the characteristic function on the closed interval
[−n, n] for n ∈ N, and the spectral measure E = (Et)t∈R is defined by a one-
parameter family of projections Et = E((−∞, t]) for t ∈ R on H, such that the
following conditions are satisfied:

Operator Monotonicity Es ≤ Et for s < t;
Right Continuity in the strong sense Esξ = limt→s+0 Etξ for any ξ ∈ H;
Zero 0 = limt→−∞ Etξ; Identity 1 = limt→∞ Etξ, for any ξ ∈ H.
In particular, it then follows that for a finite or infinite partition of R with

(tj) points of partition,

(∫
R

fdE

)2

=
(

lim
n→∞

∫
R

χ[−n,n]fdE

)2

=

⎛
⎝ lim

n→∞ lim
k→∞

k>0∑
j=−k

χ[−n,n](tj)f(tj)(Etj − Etj−1)

⎞
⎠

2

= lim
n→∞ lim

k→∞

k>0∑
j=−k

χ[−n,n](tj)f(tj)2(Etj − Etj−1) =
∫

R

f2dE.

In Fourier Analysis (cf. [72]), the following commutative diagram holds:

L1(R) ∩ D1(R) ∩ D−1(L1(R) ∩ D1(R))
D= d

dt−−−−→ L1(R) ∩ D1(R)

∧
⏐⏐� ⏐⏐�∧

C0(R) −−−−→
Miw

C0(R)

where that Df ∈ L1(R) ∩ D1(R) is assumed for a differentiable and summable
function f ∈ L1(R)∩D1(R) on R, and where the Fourier transform ∧ is defined
to be f∧(w) =

∫
R

f(t)e−iwtdt ∈ C0(R) the C∗-algebra of all bounded continu-
ous functions on R vanishing at infinity, for f ∈ L1(R) the Banach ∗-algebra of
all integrable measurable functions on R with convolution and involution, and
D1(R) is the algebra of all differential functions on R, and D−1(·) means the
inverse image by the differential operator D. Moreover, the commutative dia-
gram may be restricted to L2(R) at four corners and all the restricted corners
are extended to L2(R) at four corners by taking L2 closure. Furthermore, the
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commutative diagram may pass to L2(S1) by taking quotients by R (mod 1).
What’s more. the following commutative diagram holds:

L1(R) ∩ D1(R) ∩ M−1
t (L1(R)) −−−−→

Mt

L1(R)⏐⏐�∧ ∧
⏐⏐�

C0(R) ∩ D1(R)
iD=i d

dw−−−−−→ C0(R)

where M−1
t (·) means the inverse image by the multiplication operator Mt. More-

over, the commutative diagram is restricted and extended to L2(R) at four
corners, passing to L2(S1) as well.

Example 3.5.1. (Noncommutative tori). There is the connection between
quantum mechanics and the noncommutative 2-torus, as defined in the follow-
ing. The noncommutative 2-torus T

2
θ is defined to be the universal unital

C∗-algebra generated by two unitaries U and V subject to the commutation
relation V U = e2πiθUV with e2πiθ = λ ∈ T the 1-torus for θ ∈ R, so that both
the spectrums of U and V become T. The universality in this case means that
for any unital C∗-algebra B generated by two unitaries with the same relation,
there is a unital C∗-algebra homomorphism from T

2
θ onto B. Note that the

spectrum of a unitary operator is a compact (or closed) subset of the 1-torus T.
In particular, if θ = 0 (mod 1), then T

2
0 is isomorphic to the C∗-algebra

C(T2) of all continuous complex-valued functions on the 2-torus, isomorphic to
the C∗-tensor product C(T) ⊗ C(T) of C(T).

Consider the unitary operators Q = Me2πix and Tθ on the Hilbert space
L2(S1) on the real 1-dimensional sphere S1 identified with R (mod 1) homeo-
morphically, defined respectively by the multiplication operator and the trans-
lation operator

(Qf)(x) = e2πixf(x) and (Tθf)(x) = f(x + θ)

for f ∈ L2(S1) and x ∈ R (mod 1). It then follows that for f ∈ L2(S1),

(TθQf)(x) = (Qf)(x + θ) = e2πi(x+θ)f(x + θ)

= e2πiθe2πix(Tθf)(x) = λ(QTθf)(x).

As well, for f, g ∈ L2(S1),

〈Q∗f, g〉 = 〈f,Qg〉 =
∫

R

f(t)e2πixg(x)dx =
∫

R

e−2πixf(x)g(x)dx = 〈Me−2πixf, g〉,

〈T ∗
θ f, g〉 = 〈f, Tθg〉 =

∫
R

f(x)g(x + θ)dx =
∫

R

f(y − θ)g(y)dy = 〈T−θf, g〉,

so that Q∗ = Me−2πix and T ∗
θ = T−θ, and moreover, Q∗Q = QQ∗ = 1 and

T ∗
θ Tθ = TθT

∗
θ = 1 the identity operator. Define the rotation C∗-algebra Aθ

as the C∗-algebra generated by these unitaries Q and Tθ in the C∗-algebra
B(L2(S1)) of all bounded operators on L2(S1). The rotation C∗-algebra Aθ is
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viewed as a faithful representation of the noncommutative 2-torus T
2
θ on L2(S1).

As well, the quantum mechanics C∗-algebra Qθ is another faithful representation
of T

2
θ. Namely, T

2
θ
∼= Aθ and T

2
θ
∼= Qθ as a C∗-algebra. Such isomorphisms are

obtained by knowing the spectrum of each unitary generator equal to the 1-torus
T.

In Fourier Analysis (cf. [72]), the following dual (inner and outer) commu-
tative diagram holds:

L1(R) Ta−−−−→
Meiat

L1(R)

∧
⏐⏐�∧ ∧

⏐⏐�∧

C0(R) Ta−−−−−→
M

e−iaw

C0(R)

which may be restricted to L2(R) at four corners and all the restricted corners
are extended to L2(R). The commutative diagram may pass to L2(S1) by taking
quotients by R (mod 1). �

Denote by O(T2
θ) the unital ∗-algebra C[U, V : ∅]/(V U − λUV ) generated

by unitaries U and V subject to the relation V U = λUV , as the coordinate
ring of an algebraic noncommutative torus, as well as a dense subalgebra of T

2
θ,

where C[U, V : ∅] is the free algebra generated by U and V with no relation and
(V U − λUV ) is the two-sided ideal of C[U, V : ∅] generated by V U − λUV .

Let en(x) = e2πinx for x ∈ R (mod 1) and n ∈ Z. Then {en}n∈Z is an
orthonormal basis for L2(S1). A positive, faithful trace τ : T

2
θ → C is defined as

τ(a) = 〈ae0, e0〉 for a ∈ T
2
θ, such that τ(ab) = τ(ba) for a, b ∈ T

2
θ and τ(a∗a) > 0

if a �= 0 (cf. [60]). By using the relations Uen = en+1 and V en = e2πiθen, check
that for finite sums

∑
m,n am,nUmV n ∈ O(T2

θ) with am,n ∈ C,

τ(
∑
m,n

am,nUmV n) =
∑
m,n

am,nτ(UmV n)

=
∑
m,n

am,n〈em, e0〉 =
∑

n

a0,n

∫
S1

dx =
∑

n

a0,n.

The definition for τ should be corrected as τ(a) = 〈aδ0, δ0〉, where δ0 means
the Dirac point measure at zero (0, 0), with respect to (m,n) ∈ Z

2, so that
τ(

∑
m,n am,nUmV n) = a0,0, with the inner product for l2(Z2).

Since e2πi(θ+n) = e2πiθ for any n ∈ Z, we have T
2
θ+n

∼= T
2
θ.

Since the relation V U = λUV with λ = e2πiθ is converted to UV = λV U ,
exchanging the unitary generators implies that T

2
θ
∼= T

2
−θ

∼= T
2
1−θ. Thus may

restrict the range of θ to the interval [0, 1
2 ]. It is known that the noncommutative

tori T
2
θ for θ ∈ [0, 1

2 ] are mutually non-isomorphic.
• If θ is irrational, T

2
θ is a simple C∗-algebra, i.e., without no proper closed

two-sided ideals, so that it has no finite dimensional representations (cf. [60]).

Proof. (Added). We use the fact later checked that T
2
θ is viewed as the crossed

product C∗-algebra C(T) �αθ
Z of C(T) ∼= C∗(U) the C∗-algebra generated by
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U , by the action αθ of Z, defined as

αθ(U) = V UV ∗ = λU = MλU = e2πiθz = e2πi(x+θ) ∈ C(T),

where U is identified with the coordinate function z = e2πix on T ∼= R (mod 1),
so that αθ ∈ Aut(T2

θ) the automorphism group of T
2
θ.

In general, let X be a compact Hausdorff space and G a discrete group, and
let C(X) �α G be a crossed product C∗-algebra of C(X) by the action α of G.
Then any (non-trivial or not) closed two-sided ideal I of C(X) �α G bijectively
corresponds to a non-tirival α-invariant closed subset of X or C(X) by taking
the corresponding quotient by I.

It then easily follows that if θ is irrational, then the unique αθ-invariant
closed subset of T is just T.

• If θ is a rational number p
q , with p and q relatively prime and q > 0, then

T
2
θ has finite dimensional representations. Indeed,

Proof. (Added). Use the above proof. If θ = p
q , then αq

θ = Me2πip = M1.
Therefore, there is a quotient homomorphism from T

2
θ to C

q
�αθ

Z. Moreover,
the crossed product C

q
�αθ

Z contains C
q
�αθ

Zq as a quotient C∗-algebra, which
is isomorphic to Mq(C) (cf. [3]).

What’s more (cf. [33]).

Proposition 3.5.2. If θ is a rational number p
q , with p and q relatively prime

and q > 0, then T
2
θ is isomorphic to the algebra C(T2, End(E)) of continuous

sections of the endomorphism bundle of a flat rank q complex vector bundle E
on the 2-torus T

2.

Proof. The required bundle E over T
2 is obtained as a quotient of the trivial

bundle T
2 ×C

q by a free action of the direct product group G = Zq ×Zq of the
cyclic group Zq = Z/qZ of order q.

Consider the unitary q × q matrices of Mq(C) with λ = e2πi p
q :

u =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0 λ
. . .

...
...

. . . . . .
...

0 · · · · · · λq−1

⎞
⎟⎟⎟⎟⎠ and v =

⎛
⎜⎜⎜⎝

0 0 · · · 1
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0

⎞
⎟⎟⎟⎠

which satisfy uu∗ = 1q = u∗u and vvt = 1q = vtv and the relations uq = 1,
vq = 1, and

uv =

⎛
⎜⎜⎜⎝

0 0 · · · 1
λ 0 · · · 0
...

. . . . . .
...

0 · · · λq−1 0

⎞
⎟⎟⎟⎠ = λ

⎛
⎜⎜⎜⎝

0 0 · · · λq−1

1 0 · · · 0
...

. . . . . .
...

0 · · · λq−2 0

⎞
⎟⎟⎟⎠ = λvu
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(corrected). Define a pair (β, γ) of commuting automorphisms of order q of the
trivial vector bundle T

2 ×C
q by sending (z1, z2, ξ) ∈ T×T×C

q to (λz1, z2, uξ)
and (z1, λz2, vξ) respectively, and hence define an action of Zq × Zq. Indeed,

βq(z1, z2, ξ) = (λqz1, z2, u
qξ) = (z1, z2, ξ),

γq(z1, z2, ξ) = (z1, λ
qz2, v

qξ) = (z1, z2, ξ),
γβ(z1, z2, ξ) = (λz1, λz2, vuξ)
βγ(z1, z2, ξ) = (λz1, λz2, uvξ) = (λz1, λz2, λvuξ)

(and hence the definition implies a pair of non-commuting automorphisms of
order q).

That action is free. Moreover, the quotient of the base space is again the
torus. In this way, a flat bundle E over T

2 is obtained.
By definition, the space of sections of End(E) is the fixed point algebra of

the induced action of G on C(T2, Mq(C)) ∼= C(T2) ⊗ Mq(C).
Using the matrix units for Mq(C), we can write a section of this bundle as

s =
∑q

i,j=1 fij(z1, z2) ⊗ uivj with fij(z1, z2) ∈ C(T2).
It is shown that such a section is G-invariant if and only if the coefficients

of s have the form fij(z
q
1 , zq

2).
Within T

2
θ with θ = p

q , we have UqV = V U q and V qU = UV q, and hence Uq

and V q belong to the center of T
2
θ Any element of T

2
θ has a unique expression

as S =
∑q

i,j=1 fij(Uq, V q)U iV j with fij ∈ C(T2).
The required isomorphism is defined by sending such S to the corresponding

s such as above.

It follows from the proof above that the closed subalgebra generated by Uq

and V q is in fact the center Z(T2
p
q
) of T

2
p
q
, so that Z(T2

p
q
) ∼= C(T2).

The dense ∗-subalgebra T2
θ of T

2
θ for θ ∈ R, called as the (smooth) algebra

of smooth functions on the noncommutative 2-torus, is defined by a ∈ T2
θ if

a =
∑

(m,n)∈Z2 am,nUmV n, where the complex sequence (am,n) over Z
2 belongs

to the Schwartz space S(Z2) of rapidly decreasing sequences over Z
2, such that

sup
m,n∈Z

(1 + m2 + n2)k|am,n| < ∞, k ∈ N.

Note that in the case of θ = 0, for f ∈ C(T2), the inverse Fourier transform f∨

of f belongs to S(Z2) if and only if f belong to C∞(T2) the algebra of smooth
functions on T

2. May prove it, but no time at this moment.
Note that the (classical) Fourier transform ∧ : L1(Z2) → C(T2) is defined

as
g∧(z1, z2) =

∑
m,n∈Z

g(m, n)zm
1 zn

2

for g ∈ L1(Z2) the Banach ∗-algebra of integrable functions on Z
2 with convo-

lution and involution. The Fourier transform extends to the C∗-algebra isomor-
phism from the group C∗-algebra C∗(Z2) to C(T2). As well, the inverse Fourier
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transform is defined as

f∨(m,n) =
∫

T2
f(z1, z2)zm

1 zn
2 dz1dz2, f ∈ C(T2).

May prove that the function f∨ defined so belongs to C∗(Z2).
There are the following inclusions with settings as

O(T2
θ) = P (T2)θ ⊂ T2

θ = C∞(T2)θ ⊂ T
2
θ = C(T2)θ

resembling those of algebras of algebraic functions or polynomials of coordinates,
of smooth functions, and of continuous functions on T

2, at θ = 0.
It is shown that if θ = p

q a rational, then T2
p
q

is isomorphic to the space

C∞(T2, End(E)) of smooth sections of the bundle End(E) over T
2.

A derivation on a complex algebra A is defined to be a C-linear map δ :
A → A such that δ(ab) = δ(a)b + aδ(b) for all a, b ∈ A as the product formula
of differentiation of functions. A derivation on A is determined by values of
generators of A under δ (and in fact, as well as those of their products assigned
by computation, necessary to define the derivation).

A ∗-derivation on an involutive algebra A over C is a derivation δ on A such
that δ(a∗) = δ(a)∗ for any a ∈ A.

In particular, if δ is a derivation on a unital algebra with the unit 1, then
δ(1) = δ(1)1 + 1δ(1) = 2δ(1). Therefore, δ(1) = 0.

Example 3.5.3. First define (involutive) linear maps δ1, δ2 : T2
θ → T2

θ as ∗-
derivations by δ1(U) = 2πiU and δ1(V ) = 0 and δ2(U) = 0 and δ2(V ) = 2πiV .
Next define as that

δ1(U2) = δ1(U)U + Uδ1(U) = 2(2πi)U2, δ1(V 2) = 0,

δ1(UV ) = δ1(U)V + Uδ1(V ) = (2πiU)V = 2πiUV,

δ1(V U) = δ1(λUV ) = λ2πiUV = 2πiV U,

δ2(U2) = 0, δ2(V 2) = 2(2πi)V 2,

δ2(UV ) = δ2(U)V + Uδ2(V ) = U(2πiV ) = 2πiUV,

δ2(V U) = 2πiV U.

Also define as that

δ1(U3) = δ1(U2)U + U2δ1(U) = 3(2πi)U3, δ1(V 3) = 0,

δ1(U2V ) = δ1(U2)V + Uδ1(V ) = 2(2πi)U2V,

δ1(V U2) = V δ1(U2) = 2(2πi)V U2,

δ1(UV 2) = δ1(U)V 2 + Uδ1(V 2) = 2πiUV 2,

δ1(V 2U) = V 2δ1(U) = 2πiV 2U,

δ2(U3) = 0, δ2(V 3) = 3(2πi)V 3,

δ2(U2V ) = δ2(U2)V + U2δ2(V ) = 2πiU2V,

δ2(UV 2) = δ2(U)V 2 + Uδ2(V 2) = 2(2πi)UV 2,

δ2(V U2) = 2πiV U2, δ2(V 2U) = 2(2πi)V 2U.
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Inductively, assigning the values of the products UmV n for m,n ∈ Z under δ1

and δ2, by that U∗ = U−1, V ∗ = V −1, and δj(a∗) = δj(a)∗ for a ∈ T2
θ, j = 1, 2,

we obtain that with am,n ∈ C for m,n ∈ Z, but finitely many, or not, with
(am,n) ∈ S(Z2),

δ1

⎛
⎝ ∑

m,n∈Z

am,nUmV n

⎞
⎠ = 2πi

∑
m>0,n∈Z

mam,nUmV n − 2πi
∑

m<0,n∈Z

mam,nUmV n,

δ2

⎛
⎝ ∑

m,n∈Z

am,nUmV n

⎞
⎠ = 2πi

∑
m∈Z,n>0

nam,nUmV n − 2πi
∑

m∈Z,n<0

nam,nUmV n

(corrected).

The trace τ on T
2
θ defined as τ(

∑
m,n am,n) = a0,0 has the invariance prop-

erty as a noncommutative analogue of the invariance property of the Haar mea-
sure for the torus, as that τ(δj(a)) = 0 for any a ∈ T2

θ and j = 1, 2.
Indeed, it is shown by computation above that δj(a) has the zero component

a0,0 = 0 at (0, 0) because of killing the constants as δj(1) = 0 as the usual
differentiation for functions.

Those ∗-derivations δj on T2
θ generate commuting one-parameter group of

∗-automorphisms αj(t) of T
2
θ for t ∈ R.

Namely, define αj(t) = exp(tδj) on T2
θ. Check that

δ2(δ1(
∑

m,n∈Z

am,nUmV n))

= −4π2
∑

m>0,n>0

mnam,nUmV n + 4π2
∑

m>0,n<0

mnam,nUmV n

+ 4π2
∑

m<0,n>0

mnam,nUmV n − 4π2
∑

m<0,n<0

mnam,nUmV n,

= δ1(δ2(
∑

m,n∈Z

am,nUmV n)),

and hence δ1 commutes with δ2 on T2
θ, so that α1(t) commutes with α2(t) on

T2
θ, and moreover, since αj(t) are unitaries, they extends to those on T

2
θ by

continuity.
As well, a continuous action α of the 2-torus T

2 on T
2
θ is defined as αz1,z2U =

z1U and αz1,z2V = z2V for (z1, z2) ∈ T
2.

Note that by definition, exp(tδ1)(U) = e2πitU , α1(t)V = 0, and α2(t)U = 0,
exp(tδ2)V = e2πitV .

3.6 Vector bundles, projective modules, and projections

Vector bundles look like buildings or houses on the grounds as spaces,
while their continuous sections do like the roofs!
So, projective modules just like the black shadows, or windows.
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It is shown by Swan [65] that the category V B of complex vector bundles
on a compact Hausdorff space X is equivalent to the category PM of finitely
generated, projective modules over the algebra C(X) of continuous, complex-
valued functions on X. Also, there are similar results for real vector bundles
and quaternionic vector bundles by [65].

More earlier, it is shown by Serre [63] that algebraic vector bundles over an
affine algebraic variety are characterized as finite projective modules over the
coordinate ring of the variety.

Therefore, a finite projective module E over a non-commutative algebra
A may be defined to be assumed as a noncommutative vector bundle over A
represented as a noncommutative space.

Recall that a right module P over a unital algebra A is defined to be pro-
jective if there is a right A-module Q such that P ⊕Q is a free A-module as An

for some finite integer n ≥ 1 or n = ∞. Equivalently, every A-module surjection
from P to R (or R to P corrected) splits as a right A-module map. There is
certainly another definition for projectivity of modules, but omitted. If for some
n ∈ N, there is a surjection from An to P , then P is said to be finite or finitely
generated. Thus, a finite projective A-module is just a direct summand of An

for some n ∈ N.
Given a vector bundle π : E → X as a projection, with fibers as the inverse

images π−1(x) for x ∈ X as vector spaces of ranks as locally constants, let
Γ(E) be the set of all continuous (global) sections s : X → E, so that the
composites π ◦s = idX the identity map on X. Then Γ(E) with fiberwise scalar
multiplication and addition is a C(X)-module.

For a (fiberwise) bundle map ρ : E → F of vector bundles over X, define
a module map Γ(ρ) : Γ(E) → Γ(F ) by Γ(ρ)(s)(x) = ρ(s(x)) for s ∈ Γ(E) and
x ∈ X. Namely,

E = ∪x∈Xπ−1(x)
ρ−−−−→ F = ∪x∈Xπ−1(x)

π

⏐⏐�s↑ π

⏐⏐�ρ◦s↑

X X.

Thus, defined is Γ : E → Γ(E) the global section functor from the category V B
of vector bundles over X with continuous bundle maps to the category Mod of
C(X)-modules with module maps.

It is shown that Γ defines an equivalence between the categories.

Proof. Note that for any π : E → X, there is a vector bundle F over X such that
E⊕F ∼= X ×C

n a trivial bundle for some n. Therefore, Γ(E)⊕Γ(F ) ∼= C(X)n.
Let P be a finite projective C(X)-module, so that there is a C(X)-module

Q such that P ⊕ Q ∼= C(X)n. Then there is a corresponding idempotent p ∈
Mn(C(X)) ∼= C(X,Mn(C)) such that pC(X)n = P . Since C(X)n ∼= X ⊗ C

n,
define a vector bundle E over X as the image of p as an n×n projection-valued
function on X, and as a subbundle of the trivial bundle X × C

n. Namely,

E = ∪x∈Xp(x)Cn π−−−−→← s
X.
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It then follows that Γ(E) ∼= P .

In general, let A be a unital algebra and let Mn(A) denote the algebra of
n × n matrices with entries in A. Then An is regarded as a right (or left)
A-module. Then Mn(A) is identified with End(An) of endomorphisms of An.

Let p ∈ Mn(A) be an idempotent, so that p2 = p. The left multiplication
Mp : An → An by p defined as Mpξ = pξ for ξ ∈ An becomes a right A-module
map. Let P = MpA

n be the image of Mp and Q = (1−Mp)An be the kernel of
Mp with 1 the identity map on An. Then P ⊕ Q ∼= An. Hence P,Q are finite
projective modules.

Conversely, if P is a finite projective right A-module, then there is a module
Q such that P ⊕ Q ∼= An. Let Φ : An → An be the corresponding right A-
module map defined as the projection to P in An, with Φ the identity map on
P and the zero map on Q. Then P = Φ(An) with Φ2 = Φ. Hence Φ is identified
with an idempotent of Mn(A).

Suppose that P⊕Q ∼= An as well as P⊕R ∼= Am for a finite projective module
P , with p ∈ Mn(A) and p′ ∈ Mm(A) respective corresponding idempotents or
projections. Then there are maps u ∈ Hom(An, Am) and v ∈ Hom(Am, A − n)
defined as the compositions in the top and bottom lines of the diagram

u : An ∼= P ⊕ Q −−−−→ P −−−−→ P ⊕ R ∼= Am∥∥∥ ∥∥∥ ∥∥∥
An ∼= P ⊕ Q ←−−−− P ←−−−− P ⊕ R ∼= Am : v

so that v ◦ u = p ∈ Mn(A) and u ◦ v = p′ ∈ Mm(A).
In general, two such projections satisfying the above relations are said to be

Murray-von Neumann equivalent. Conversely, Murray-von Neumann equiv-
alent projections define isomorphic finite projective modules.

Example 3.6.1. (The Hopf line bundle on the 2-sphere S2). It is also known
as the magnetic monopole bundle. It is discovered independently by Hopf and
Dirac in 1931, motivated by the different considerations. Let σ1, σ2, σ3 ∈ M2(C)
such that the respective canonical anti-commutation relations (CaCR) hold as

[σi, σj ]+ ≡ σiσj + σjσi = 2δij12, i, j = 1, 2, 3,

where δij is the Kronecker symbol and 12 is the 2 × 2 identity matrix. As a
canonical choice, we may take the Pauli spin matrices as, with i2 = −1,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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� Indeed, with 02 the 2 × 2 zero matrix, we compute

σ2
1 = 12 = σ2

2 = σ2
3 ,

σ1σ2 + σ2σ1 =
(

i 0
0 −i

)
+

(−i 0
0 i

)
= 02,

σ2σ3 + σ3σ2 =
(

0 i
i 0

)
+

(
0 −i
−i 0

)
= 02,

σ1σ3 + σ3σ1 =
(

0 −1
1 0

)
+

(
0 1
−1 0

)
= 02.

Define a function f : S2 → M2(C) by

f(x) = f(x1, x2, x3) =
3∑

j=1

xjσj , x = (x1, x2, x3) ∈ S2,
3∑

j=1

x2
j = 1.

Then, for any x ∈ S2,

f2(x) = (
3∑

j=1

xjσj)(
3∑

k=1

xkσk)

=
3∑

j=1

x2
jσ

2
j +

∑
1≤j<k≤3

xjxk[σj , σk]+ = 12.

Define

p(x) =
1
2
(1 + f(x)) =

1
2

(
1 + x3 x1 − ix2

x1 + ix2 1 − x3

)
for x ∈ S2, with 1 = 1(x) = 12, so that the function p(x)2 = p(x) is a (self-
adjoint) idempotent of C(S2,M2(C)) the C∗-algebra of all continuous, M2(C)-
valued functions on S2, isomorphic to C(S2)⊗M2(C) ∼= M2(C(S2)), with p(x) =
p∗(x) the transposed complex conjugate. Then defined from the CaCR is the
corresponding complex vector bundle V over S2, where the fiber Vx at x ∈ S2

is the complex 1-dimensional subspace of C
2 given as the image p(x)C2 of p(x).

Since the trace tr(p(x)) = 1, equal to the rank rk(p(x)), for any x ∈ S2, the
bundle is a complex line (or 1-dimensional) bundle over S2.

� Namely,
V = ∪x∈S2Vx ←−−−− C ∼= Vx = p(x)C2⏐⏐� �⏐⏐p

S2 � x S2 � x

Note as well that the trace tr(f(x)) = 0 for any x ∈ S2.
It can be shown that the line bundle V is associated to the Hopf fibration

S3 ≈ S1(C) ←−−−− S1 ≈ S0(C)⏐⏐�
S2 ≈ P

1(C)
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� Recall from [77] that the Hopf mapping hC from S1(C) ≈ S3 to S2 is
defined as

hC(z, w) = (|z|2, zw) ∈ R × C, z, w ∈ C, |z|2 + |w|2 = 1,

with
|z|2(1 − |z|2) = |zw|2 = |zw|2, 0 < |z| ≤ 1.

Hence the fiber as the inverse image by hC at any (t, zw) ∈ (0, 1)×C is homeo-
morphic to S1, given as |z|2 = t. There is a homeomorphism between the image
hC(S3) and the complex projective line P

1(C), defined as

(|z|2, zw) �→
(|z|2 zw

zw 1 − |z|2
)

≡ p(z, w) ∈ M2(C),

which is a projection with trace 1, and as well P
1(C) ≈ S2. In the end, the

complex line bundle V is associated to the Hopf fibration over C, in the sense
that

S3/S1 ≈ S1(C)/S0(C) ≈ S2 ≈ P
1(C).

As well, the complex line bundle V is just the pull back of the canonical line
bundle over P

1(C).
� Namely,

V = ∪x∈S2Vx −−−−→ P
1(C) × C⏐⏐� ⏐⏐�

S2 −−−−→ P
1(C)

Example 3.6.2. The example above can be generalized to the higer even di-
mensional spheres S2n. Construct matrices σ1, · · · , σ2n+1 in M2n(C) satisfying
the Clifford algebra relations (cf. [40])

[σi, σj ]+ = σiσj + σjσi = 2δij12n , 1 ≤ i, j ≤ 2n + 1.

Define the 2n × 2n matrix-valued function f on the 2n-dimensional sphere S2n

by

f(x) = f(x1, · · · , x2n+1) =
2n+1∑
j=1

xjσj , x ∈ S2n,
2n+1∑
j=1

xj = 1.

Similarly as in the example above, it holds that f2(x) = 12n for any x ∈ S2n,
so that p(x) = 1

2 (12n + f(x)) is an idempotent of M2n(C(S2n)), which defines a
vector bundle over S2n.

� Recall from [64] the following. The complex Clifford algebra of R
2n,

denoted as Cl∗(R2n), is generated by the unit 1 and (basis) elements of the R
2n

over C, with the relations x2 = ‖x‖21 = 〈x, x〉1 for x ∈ R
2n. As a C∗-algebra,

Cl∗(R2n) is isomorphic to M2n(C). As a note, Cl∗(R2n+1) is isomorphic to the
direct sum M2n(C) ⊕ M2n(C) ∼= C

2 ⊗ M2n(C) as a C∗-algebra.
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� We now construct the matrices σ∼
j for 1 ≤ j ≤ 2n + 1 by using σ1, σ2, and

σ1 in the case of n = 1 as follows. Consider the case of n = 2. We define

σ∼
j =

(
02 σj

σj 02

)
≡ σj � σj ∈ M4(C), j = 1, 2, 3.

Moreover, define

σ∼
4 =

(
02 i12

−i12 02

)
and σ∼

5 =
(

12 02

02 −12

)
in M4(C).

The direct computation implies that [σ∼
i , σ∼

j ]+ = 2δij14 for 1 ≤ i, j ≤ 5. As
above, construct f∼(x) by using σ∼

j for 1 ≤ j ≤ 5. Then the trace tr(f∼(x)) = 0
for any x ∈ S4. Hence, p2(x) = 1

2 (14 + f∼(x)) is a self-adjoint idempotent of
M4(C) with trace 2. Therefore, there is a complex 2-dimensional vector bundle
over S4 associated to the projection p2(x).

Example 3.6.3. (The Hopf line bundle on the quantum spheres). The Podleś
quantum sphere S2

q is defined to be the C∗-algebra generated by the elements
a, a∗, and b = b∗ subject to the relations

aa∗ + q−4b2 = 1, a∗a + b2 = 1,

ab = q−2ba, a∗b = q2ba∗.

The quantum analogue of the Dirac or Hopf monopole line bundle over S2

is given by the following idempotent in M2(S2
q ):

eq =
1
2

(
1 + q−2b qa
q−1a∗ 1 − b

)

(cf. [34] and also [6]). Check that

e2
q =

1
4

(
(1 + q−2b)2 + aa∗ qa + q−1ba + qa − qab

q−1a∗ + q−3a∗b + q−1a∗ − q−1ba∗ a∗a + (1 − b)2

)

=
1
4

(
2(1 + q−2b) 2qa

2q−1a∗ 2(1 − b)

)
= eq.

Similar to the commutative case of S2, for any n ∈ Z, there is a quantum
line bundle with topological charge n over S2

q . Refer to [34] for its explicit
description in terms of projections.

There is a noncommutative analogue of the Hopf 2-plane bundle over the 4-
sphere S4, associated to the principal SU(2)-bundle S7 → S4 with fiber SU(2).
May refer to the survey [46] as well as references therein for its description.

Example 3.6.4. (Projective modules on noncommutative tori). Suppose that
θ is rational. Then the noncommutative torus T

2
θ
∼= Aθ is isomorphic to the C∗-

algebra of continuous sections of a C∗-algebra bundle of matrix algebras over
the 2-torus T

2.
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� The theorem of Swan implies that finite projective modules on Aθ corre-
sponds to vector bundles on T

2, up to isomorphism.
It follows that if θ �∈ Z rational, then T

2
θ contains non-trivial projections as

matrix projection-valued, continuous sections of some constant ranks. Note that
for θ = n ∈ Z, An

∼= C(T2) has no non-trivial idempotent since T
2 is connected.

Example 3.6.5. For θ �∈ Z irrational, it is shown that there are non-trivial
projections of Aθ named as the Powers-Rieffel projections (cf. [33]). Let
0 < θ ≤ 1

2 . Define by functional calculus,

p = U−1f−1(V ) + f0(V ) + f1(V )U, f−1, f0, f1 ∈ C∞(R/Z)

(or C(R/Z)) with f−1 = f1, such that for t ∈ R mod Z, f1(t)f1(t − θ) = 0,

f1(t)f0(t∓ θ) = (1− f0(t))f1(t), and f0(t)(1− f0(t)) = |f1(t)|2 + |f1(t± θ)|2

to obtain that p = p∗ = p2 (partly corrected), as in [61], [74]. Note that in the
following computation we need to assume − and + in those respective signs ∓
and ± in the equations, but we need to assume + and − to have a concrete
example as given in [74].

Indeed, note that (f1(V )U)∗ = U−1f−1(V ) and f0(V ) = f0(V )∗ by the
positivity f0(t) = |f0(t)|2 + |f1(t)|2 + |f1(t + θ)|2 ≥ 0. Compute that

p2 = U∗f−1(V )U∗f−1(V ) + U∗(f−1f0)(V ) + U∗|f1|2(V )U

+ f0(V )U∗f−1(V ) + f2
0 (V ) + (f0f1)(V )U

+ f1(V )UU∗f−1(V ) + f1(V )Uf0(V ) + f1(V )Uf1(V )U

with

U∗|f1|2(V )U + f2
0 (V ) + f1(V )UU∗f−1(V )

= |f1|2(λV ) + |f0|2(V ) + |f1|2(V ) = f0(V ),

and

f1(V )Uf1(V )U = f1(V )f1(UV U∗)U2 = f1(V )f1(λV )U2 = 0,

U∗f−1(V )U∗f−1(V ) = [f1(V )Uf1(V )U ]∗ = 0,

and moreover,

(f0f1)(V )U + f1(V )Uf0(V ) = (f0f1)(V )U + f1(V )Uf0(V )U∗U

= (f0f1)(V )U + f1(V )f0(λV )U = f1(V )U,

and

U∗(f−1f0)(V ) + f0(V )U∗f−1(V ) = U∗(f0f−1)(V ) + U∗Uf0(V )U∗f−1(V )

= U∗(f0(V ) + f0(λV ))f−1(V ) = U∗(f0(V ) + 1 − f0(V ))f−1(V ) = U∗f−1(V )
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since f1(t)f0(t − θ) = (1 − f0(t))f1(t).
There are certainly some such solutions f0 and f1 satisfying the equations

(cf. [74]). It is shown by [33] that

τ(p) =
∫ 1

0

f0(t)dt =
∫ θ

0

f0(t)dt +
∫ θ

0

(1 − f0(t))dt = θ.

By following [74] we may define as that f0 has support equal to the interval
[0, θ + δ] for some 0 < δ < θ

2 and with values in [0, 1] and 1 on [δ, θ] and with
integral on [0, 1] equal to θ and that f1(t) =

√
f0(t)(1 − f0(t)) but with support

equal to only the interval [0, δ]. In this case, the signs + and − are required as
mentioned above. This failure is in fact corrected as that we do define similarly
f1(t) =

√
f0(t)(1 − f0(t)) with support equal to only the interval [θ, θ + δ],

instead of [0, δ]. May write a picture to check it.
Let E = S(R) be the Schwartz space of rapidly decreasing smooth functions

on R, where a function f ∈ E is rapidly decreasing if for any n, k ∈ N, there is
a constant Cn,k such that |f (n)(x)|(1 + x2)k < Cn,k for all x ∈ R, where f (n) is
the n-th derivative of f .

Define a left T2
θ-module structure on E by

(Uf)(x) = f(x − θ) and (V f)(x) = e2πixf(x), f ∈ E, x ∈ R.

It is shown by [9] that E is finitely generated and projective as such a module.
For j = 1, 2, let Ej be a left T2

θj
-module, on which the generators Uj and Vj

of T2
θj

act as above. Define a left action of T2
θ1+θ2

on E1 ⊗ E2 as

U(ξ1 ⊗ ξ2) = U1ξ1 ⊗ U2ξ2 and V (ξ1 ⊗ ξ2) = V1ξ1 ⊗ V2ξ2.

For each p, q ∈ N, relatively prime, using the q × q matrices u and v defined
before, define a finite dimensional representation of T2

p
q

on the vector space

C
q = E′

p,q (corrected). Now take θ1 = θ− p
q and θ2 = p

q to obtain a sequence of
T2

θ-modules as Eθ,p,q = Eθ1 ⊗ E′
p,q with Eθ2 = E′

p,q.
There is also an equivalent definition for Ep,q ([9], [24]). Let Ep,q = S(R ×

Zq), where Zq is the cyclic group of order q. Define an T2
θ-module structure on

Ep,q by

(Uf)(x, j) = f(x + θ − p

q
, j − 1) and (V f)(x, j) = e2πi(x−i p

q )f(x, j)

for f = f(x, j) ∈ S(R × Zq). It is shown that if p − qθ �= 0, then the module
Ep,q is finitely generated and projective. In particular, if θ is irrational, then
the same holds. �

For more examples of noncommutative vector bundles, may refer to [12],
[33], [46].

4 Hopf algebras and Quantum groups hybrid

What is Hopf? It’s a motivated question. Solved as below.
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4.1 Hopf algebras

Example 4.1.1. Let G be a finite group and H = C(G) denote the commutative
algebra of all (bounded and continuous) complex-valued functions on G. The
group structure on G is defined by the multiplication, inversion, and unit or
elements maps as

p : G × G → G, p(g, h) = gh,

i : G → G, i(g) = g−1,

u : {g} → G, u(g) = g ∈ G.

These maps are assumed to satisfy the compatible axioms such as associativity
(gh)k = g(hk) ∈ G, inverse g−1g = gg−1 = 1 ∈ G, and so on:

G × G × G
p×id−−−−→ G × G

id×p

⏐⏐� ⏐⏐�p

G × G
p−−−−→ G

G
(i,id)−−−−→ G × G

(id,i)

⏐⏐� ⏐⏐�p

G × G
p−−−−→ G

These group maps are dualized into the algebra homomorphisms as

Δ = p∗ : H → H ⊗ H, p∗(f) = f ◦ p,

S = i∗ : H → H, i∗(f) = f ◦ i,

ε = u∗ : H → C, u∗(f) = f ◦ u, u = 1

called respectively, the co-multiplication, antipode, and co-unit for H. Note
that the algebraic tensor product C(G) ⊗ C(G) is identified with C(G × G),
since G is finite. Indeed, f1 ⊗ f2 is mapped to (f1 × f2)(g1, g2) = f1(g1)f2(g2)
injectively, and surjectively but only when G is finite.

Define the multiplication and the unit or constant map for C(G) as

m : C(G) ⊗ C(G) → C(G), m(f1 ⊗ f2)(g) = f1(g)f2(g), g ∈ G

η : C → C(G), η(1) = χG = 1G

where χG(g) = 1G(g) = 1 ∈ C for g ∈ G. Then the group associativity, group
inverse, and unit or elements maps for groups are dualized into the following
algebra co-associativity, antipode, and counit axioms for H as commutaive dia-
grams:

H
Δ−−−−→ H ⊗ H

Δ

⏐⏐� ⏐⏐�Δ⊗id

H ⊗ H
id⊗Δ−−−−→ ⊗3H

where (Δ⊗id)Δf = (Δ⊗ id)(f ◦p) = f ◦p◦(p, id) and (id⊗Δ)Δf = (id⊗Δ)(f ◦
p) = f ◦ p ◦ (id, p) are identified in ⊗3H, because (f ◦ p ◦ (p, id))(g1, g2, g3) =
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(f◦p)(g1g2, g3) = f((g1g2)g3) and (f◦p◦(id, p))(g1, g2, g3) = (f ◦p)(g1, (g2g3)) =
f(g1(g2g3)) for g1, g2, g3 ∈ G, and the next (corrected, as added with Δ)

H
Δ−−−−→ H ⊗ H

S⊗id−−−−→ H ⊗ H

Δ

⏐⏐� ⏐⏐�m

H ⊗ H
id⊗S−−−−→ H ⊗ H

m−−−−→ H

where m(S ⊗ id)Δf = m(f ◦ p ◦ (i, id)) and m(id ⊗ S)Δf = m(f ◦ p ◦ (id, i))
are identified, because (f ◦ p ◦ (i, id))(g1, g2) = (f ◦ p)(g−1

1 , g2) = f(g−1
1 g2) and

(f ◦ p ◦ (id, i))(g1, g2) = f(g1g
−1
2 ), so that for g ∈ G,

m(S ⊗ id)Δf(g) = f(g−1g) = f(1) = f(gg−1) = m(id ⊗ S)Δf(g)

with (η ◦ ε)(f) = η(f(1)) = f(1)χG = f(1)1G = f(1) ∈ H, and moreover,

H
Δ−−−−→ H ⊗ H

Δ

⏐⏐� ⏐⏐�ε⊗id

H ⊗ H
id⊗ε−−−−→ H

where (ε ⊗ id)Δf = f ◦ p ◦ (1, id) and (id ⊗ ε)Δf = f ◦ p ◦ (id, 1), so that

(ε ⊗ id)Δf(g) = f(1g) = f(g) = f(g1) = (id ⊗ ε)Δf(g), g ∈ G

with id(f) = f ∈ H. It follows from these commutative diagrams above that the
unital commutative algebra H = C(G), equipped with the comultiplication Δ,
antipode S, and counit ε, becomes a unital commutative Hopf algebra. �
Definition 4.1.2. A unital algebra H with the usual multiplication m : H⊗H →
H, defined as m(f1⊗f2) = f1f2 ∈ H, and the constant inclusion map η : C → H,
defined as η(λ) = λ1 ∈ H, is said to be a Hopf algebra if there are unital algebra
homomorphisms Δ : H → H ⊗ H and ε : H → C, and a linear map S : H → H,
called respectively the comultiplication, the counit, and the antipode of H,
such that the following axioms as above are satisfied

(Δ ⊗ id)Δ = (id ⊗ Δ)Δ : H → ⊗3H,

m(S ⊗ id)Δ = m(id ⊗ S)Δ = η ◦ ε : H → H,

(ε ⊗ id)Δ = (id ⊗ ε)Δ = id : H → H.

If the existence of an antipode as S is not assumed, then H is said to be a
bialgebra. A Hopf algebra is said to be commutative if it is commutative
as an algebra. A Hopf algebra H is called cocommutative if σΔ = Δ, where
σ : H ⊗ H → ⊗2H is the flip map defined as σ(f1 ⊗ f2) = f2 ⊗ f1.

Remark. Such a vector space H together with Δ linear and ε is said to be a
coalgebra (cf. [52]).
Remark. If G is only a finite monoid, then C(G) is a bialgebra. Also, H = C(G)
is cocommutative if and only if G is a commutative group.
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Proof. If G is finite and has a multiplication p without inverse, but with the unit
1, or is a finite, unital semi-group, then C(G) is a unital algebra by the usual
operations, with the multiplication m and η, as well as Δ = p∗ and ε = 1∗, as
the bialgebra structure. For instance, G = {0, 1}, with 0+0 = 0 = 1G, 0+1 = 1
but 1 + 1 = 1, so that there is no inverse for 1. Then C(G) = C

2 as an algebra.
Suppose now that G is a commutative group. Then, for f ∈ C(G),

σΔf(g1, g2) = Δf(g2, g1) = f(g2g1) = f(g1g2) = Δf(g1, g2), g1, g2 ∈ G.

Hence σΔ = Δ. Conversely, if G is non-commutative, then there are g1, g2 ∈ G
such that g1g2 �= g2g1. Let χg1g2 ∈ C(G) be the characteristic function at g1g2.
It then follows from the same computation as above that σΔχg1g2(g1, g2) = 0
but Δχg1g2(g1, g2) = 1. Thus, σΔχg1g2 �= Δχg1g2 , so that σΔ �= Δ.

Example 4.1.3. Let G be a discrete group and let H = C[G] the group algebra
of G, consisting of finite formal linear combinations as

∑n
j=1 ajgj with gj ∈ G,

aj ∈ C. Then H becomes a linear space over C and a unital algebra under the
multiplication induced by the multiplication of G as

n∑
j=1

ajgj

n∑
k=1

bkhk =
n∑

j,k=1

ajbkgjhk, aj , bk ∈ C, gj , hk ∈ G

and with the same unit as the unit 1 of G. For g ∈ G, define

Δ(g) = g ⊗ g ∈ H ⊗ H, S(g) = g−1 ∈ H, ε(g) = 1 ∈ C

and extend which by linearity to H. Note that for g1, g2 ∈ G,

Δ(g1g2) = g1g2 ⊗ g1g2 = (g1 ⊗ g1)(g2 ⊗ g2) = Δ(g1)Δ(g2)

and as well ε(g1g2) = 1 = ε(g1)ε(g2). Then H equipped with (Δ, S, ε) as before
is a cocommutative Hopf algebra, and which is commutative if and only if G is
commutative.

Indeed, for g ∈ G,

(Δ ⊗ id)Δ(g) = g ⊗ g ⊗ g = (id ⊗ Δ)Δg,

m(S ⊗ id)Δ(g) = m(g−1 ⊗ g) = g−1g = 1,

m(id ⊗ S)Δ(g) = m(g ⊗ g−1) = gg−1 = 1,

(ε ⊗ id)Δ(g) = 1g = g = g1 = (id ⊗ ε)Δ(g).

Check the cocommutativity now.

σΔ(g) = σ(g ⊗ g) = g ⊗ g = Δ(g), g ∈ G,

which implies that σΔ = Δ on H.
Note that the group G can be recovered from the algebra H as a subset of

the set of group-like, non-zero elements h of H defined as Δ(h) = h ⊗ h. For
instance, Δ(αg) = αg ⊗ αg for α ∈ C, g ∈ G, but for g1 �= g2 ∈ G and αβ �= 0,

Δ(αg1 + βg2) = αg1 ⊗ αg1 + βg2 ⊗ βg2 �= (αg1 + βg2) ⊗ (αg1 + βg2)
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Note also that if G is finite, there are two associated Hopf algebras C(G) and
H = C[G]. These algebras are dual to each other in some deep sense. In fact,
by the Fourier transform or the Gelfand transform, C[G] = CG ∼= Cc(G, C) but
with convolution as product, checked above, is isomorphic to C(G∧), where G∧

is the dual group of G, which is identified with G in this case. �

Example 4.1.4. Let g be a Lie algebra with Lie bracket product [·, ·] and let
H = U(g) be the universal enveloping algebra of g, which is defined to be the
quotient T (g)/I(g) of the tensor algebra

T (g) = ⊕n≥0 ⊗n g, ⊗ng = g ⊗ · · · ⊗ g (n fold), ⊗1g = g, ⊗0g = C1

of g by the two-sided ideal I(g) generated by elements x⊗ y − y ⊗ x− [x, y] for
all x, y ∈ g, so that x⊗ y− y⊗x may be identified with xy− yx in the quotient
in some case of g an algebra with [x, y] = xy − yx. Then H = U(g) is a unital
associative algebra. Indeed, for f1, f2 ∈ T (g),

(f1 + I(g)) ⊗ (f2 + I(g)) = f1 ⊗ f2 + f1 ⊗ I(g) + I(g) ⊗ f2 + I(g) ⊗ I(g)
= f1 ⊗ f2 + I(g).

The canonical map i : g → U(g) is universal in the sense that for any other as-
sociative algebra A, any linear map ϕ : g → A satisfying ϕ([x, y]) = ϕ(x)ϕ(y)−
ϕ(y)ϕ(x) for any x, y ∈ g uniquely factorises through the map i, with ϕ∼ defined
as

g
i−−−−→ U(g)∥∥∥ ⏐⏐�ϕ∼

g
ϕ−−−−→ A

ϕ∼([[x, y]]) = ϕ∼([x ⊗ y − y ⊗ x]) = ϕ([x, y])

and then ϕ∼(x + I(g)) = ϕ(x) for x ∈ g, which extends to H. By using the
universal property of U(g) as well as the pair U(g), i), there are uniquely deter-
mined algebra homomorphisms Δ : U(g) → U(g) ⊗ U(g), ε : U(g) → C and an
anti-algebra map S : U(g) → U(g), defined as

Δ(x) = x⊗ 1 + 1⊗ x, ε(x) = 0, ε(1) = 1 ∈ C, S(x) = −x, S(1) = 1 ∈ H

for any x ∈ g, viewed in U(g).
Note that when g is an algebra, for x, y ∈ g,

Δ(xy) = xy ⊗ 1 + 1 ⊗ xy,

ΔxΔy = (x ⊗ 1 + 1 ⊗ x)(y ⊗ 1 + 1 ⊗ y)

and subtracting the lower side from the upper implies −(x ⊗ y + y ⊗ x), and
hence Δ is not an algebra homomorphism mod I(g) in general, but a Lie algebra
homomorphism mod I(g). Indeed, for x, y ∈ g, mod I(g),

Δ[x, y] = Δ(x ⊗ y − y ⊗ x)

= Δx ⊗ Δy − Δy ⊗ Δx = [Δx,Δy] ∈ ⊗4g
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if defined so, as extending Δ. As another definition extending Δ,

Δ(x ⊗ y) − Δ(y ⊗ x)
= x ⊗ y ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ x ⊗ y − y ⊗ x ⊗ 1 ⊗ 1 − 1 ⊗ 1 ⊗ y ⊗ x

= (x ⊗ y − y ⊗ x) ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ (x ⊗ y − y ⊗ x) = Δ[x, y] ∈ ⊗4g

mod I(g), but which is not equal to

Δx ⊗ Δy − Δy ⊗ Δx

= (x ⊗ 1 + 1 ⊗ x) ⊗ (y ⊗ 1 + 1 ⊗ y) − (y ⊗ 1 + 1 ⊗ y) ⊗ (x ⊗ 1 + 1 ⊗ x)
= x ⊗ 1 ⊗ y ⊗ 1 + x ⊗ 1 ⊗ 1 ⊗ y + 1 ⊗ x ⊗ y ⊗ 1 − 1 ⊗ x ⊗ 1 ⊗ y

− y ⊗ 1 ⊗ x ⊗ 1 − y ⊗ 1 ⊗ 1 ⊗ x − 1 ⊗ y ⊗ x ⊗ 1 − 1 ⊗ y ⊗ 1 ⊗ x.

It is checked that (U(g), Δ, ε, S) is a cocommutative Hopf algebra. The h is
commutative if and only if g is an abelian Lie algebra. In this case, U(g) is the
symmetric algebra S(g) of g.

Indeed, for x ∈ g,

(Δ ⊗ id)Δx = (Δ ⊗ id)(x ⊗ 1 + 1 ⊗ x)
= x ⊗ 1 ⊗ 1 + 1 ⊗ x ⊗ 1 + 2 ⊗ 1 ⊗ x,

(id ⊗ Δ)Δx = (id ⊗ Δ)(x ⊗ 1 + 1 ⊗ x)
= 2x ⊗ 1 ⊗ 1 + 1 ⊗ x ⊗ 1 + 1 ⊗ 1 ⊗ x,

and subtracting the lower side from the upper yields −x⊗1⊗1+1⊗1⊗x, and
note that

x ⊗ (1 ⊗ 1) − (1 ⊗ 1) ⊗ x − [x, 1 ⊗ 1] ∈ I(g)

with [x, 1⊗1] = [x⊗1, 1⊗1] = 0, so that the upper side and the lower side above
are identified mod I(g). In fact, note as well that the Lie algebra generated by
x ⊗ 1 and 1 ⊗ 1 is abelian, so that [x ⊗ 1, 1 ⊗ 1] = 0.

The second holds even for T (g) that for x ∈ g,

m(S ⊗ id)Δx = m(S ⊗ id)(x ⊗ 1 + 1 ⊗ x)
= m(−x ⊗ 1 + 1 ⊗ x) = −x1 + 1x = −x + x = 0,

m(id ⊗ S)Δx = m(id ⊗ S)(x ⊗ 1 + 1 ⊗ x)
= m(x ⊗ 1 + 1 ⊗ (−x)) = x1 + 1(−x) = x − x = 0,

as well as (η ◦ ε)(x) = η(0) = 0. The third also holds that for x ∈ g,

(ε ⊗ id)Δx = (ε ⊗ id)(x ⊗ 1 + 1 ⊗ x) = 0 · 1 + 1x = x,

(id ⊗ ε)Δx = (id ⊗ ε)(x ⊗ 1 + 1 ⊗ x) = x1 + 1 · 0 = x.

But the third notion may be replaced with

m((ε∼ ⊗ id)Δ − (id ⊗ ε∼)Δ) = 0 : H → H,
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where assumed is ε∼ : H → C1 as in C1 ⊂ H. In fact, ε⊗ id is used in the sense
of m ◦ (ε∼ ⊗ id).

Finally, check the cocommutativity as

σΔx = σ(x ⊗ 1 + 1 ⊗ x) = 1 ⊗ x + x ⊗ 1 = Δx, x ∈ g. �

Let H be a Hopf algebra. A group-like element of H is defined to be a
nonzero element h ∈ H such that Δh = h ⊗ h. For such h ∈ H,

hS(h) = m(id ⊗ S)Δh = m(S ⊗ id)Δh = S(h)h
= (η ◦ ε)(h) = ε(h)1H ∈ H

(corrected). Thus, if ε(h) �= 0, as in the case of ε(h) = 1, then a group-
like element h is invertible with inverse ε(h)−1S(h). It then follows that the
set GLΔ(H) of all (invertible) group-like elements of H forms a subgroup of
the multiplicative group GL(H) of invertible elements of H. For example, if
H = CG, then GLΔ(H) = G (up to multiplication by C

∗ = C \ {0}). A
primitive element of a Hopf algebra H is defined to be an element h ∈ H such
that Δh = 1⊗ h + h⊗ 1. Define the bracket [x, y] = xy − yx for x, y ∈ H. Then
the bracket of two primitive elements of H is again a primitive element.

Indeed, check that

Δ[x, y] = Δ(xy − yx) = ΔxΔy − ΔyΔx

= (1 ⊗ x + x ⊗ 1)(1 ⊗ y + y ⊗ 1) − (1 ⊗ y + y ⊗ 1)(1 ⊗ x + x ⊗ 1)
= 1 ⊗ xy + y ⊗ x + x ⊗ y + xy ⊗ 1 − 1 ⊗ yx − x ⊗ y − y ⊗ x − yx ⊗ 1
= 1 ⊗ (xy − yx) + (xy − yx) ⊗ 1 = 1 ⊗ [x, y] + [x, y] ⊗ 1.

It follows that the set of primitive elements of H forms a Lie algebra p(H). If
H = U(g), then g is contained in p(H), and it is shown by using the Poincaré-
Birkhoff-Witt (PBW) theorem that g = p(U(g)) (cf. [43]). It says that U(g) is
viewed as a linear space generated by monomials xn1

1 ⊗· · ·⊗xnk

k for n1, · · · , nk ≥
0, where {x1, · · · , xk} is a basis for g as a linear space, and 1 = x0

1 ⊗ · · · ⊗ x0
k

(cf. [52]). For instance,

Δ(x1 ⊗ x2) = Δx1 ⊗ Δx2 = (1 ⊗ x1 + x1 ⊗ 1) ⊗ (1 ⊗ x2 + x2 ⊗ 1)
= 1 ⊗ x1 ⊗ 1 ⊗ x2 + 1 ⊗ x1 ⊗ x2 ⊗ 1 + x1 ⊗ 1 ⊗ 1 ⊗ x2 + x1 ⊗ 1 ⊗ x2 ⊗ 1
�= x1 ⊗ x2 ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ x1 ⊗ x2.

Example 4.1.5. Let G be a compact topological group and let C(G) denote
the algebra of continuous, complex-valued functions on G. If G is not finite,
C(G) can not become a Hopf algebra. The problem is in defining the coproduct
Δ as the dual of the multiplication of G, caused by the fact that the algebraic
tensor product C(G)⊗C(G) is only dense in C(G×G) with the uniform norm,
and these are different if G is infinite. Basically, there are two methods to
deal with this problem. Either restrict to an appropriate dense subalgebra of
C(G), to define the coproduct on that subalgebra, or broaden the notion of
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Hopf algebras by allowing completed topological (such as C∗ or W ∗) tensor
products, as apposed to algebraic ones. In general, some algebraic difficulties
or information disappear in C∗ or W ∗-completions, considerably. Those two
approaches are essentially equivalent, in the sense of making the similar theory.
Eventually, it is led to the Woronowicz theory of compact quantum groups [75].

A continuous function f : G → C is said to be representative if the set of
all left translations of f by elements of G forms a finite dimensional subspace
of C(G). It is shown that f is representative if and only it appears as a matrix
entry of a finite dimensional complex representation of G.

In fact, if π : G → GLn(C) is a representation of G, then since π(gh) =
π(g)π(h) with π(g) = (π(g)ij)n

i,j=1, we have π(g−1h)ij =
∑n

k=1 π(g−1)ikπ(h)kj ∈
C. It follows that the matrix entries π(h)ij as functions for h ∈ G are repre-
sentative. Namely, the corresponding subspace is generated by the functions
πkj(h), 1 ≤ k ≤ n. Conversely, for a representative function f on G, its finite
dimensional subspace Sf of C(G) is invariant under the left regular represen-
tation λ of G on C(G). Thus, restricting λ to the subspace Sf yields a finite
dimensional representation of G.

Indeed, assume that Sf is generated by f = f1, · · · , fk with k = dim Sf ,
and that for any g ∈ G, λgfj = α1jf1 + · · ·+αkjfk ∈ Sf with α1j , · · · , αkj ∈ C,
1 ≤ j ≤ k, where the coefficients are dependent upon g. Then obtained is a
k-dimensional representation of G, defined as

G � h �→

⎛
⎜⎝

α11f1(h) · · · α1kf1(h)
...

. . .
...

αk1fk(h) · · · αkkfk(h)

⎞
⎟⎠ ∈ GLk(C).

Let H = RF (G) denote the linear space generated by representative func-
tions on G. Then H is a subalgebra of C(G), which is closed under complex
conjugation. Moreover, the Peter-Weyl theorem implies that RF (G) is a dense
∗-subalgebra of C(G) with respect to the supremum norm (cf. [5]).

Indeed, if f1, f2 ∈ H, and Sfj for j = 1, 2 is generated by fj1, · · · , fjkj , with
dimSfj = kj , then Sf1f2 is generated by f1s1f2s2 for 1 ≤ sj ≤ kj , j = 1, 2.

� The theorem of Peter and Weyl states that RF (G) is dense in C(G) as
well as in L2(G), and that irreducible characters trπ ◦ π of G for π irreducible
representations of G, with trπ the canonical trace on the representation space
of π, generate a dense subspace of the space of continuous class functions of G,
such as ϕ ∈ C(G) satisfying ϕ(gxg−1) = ϕ(x) for any g, x ∈ G.

Now let p : G × G → G denote the product as multiplication of G and
let p∗ : C(G) → C(G × G) denote the dual map of p, defined as p∗f(x, y) =
(f ◦ p)(x, y) = f(xy) for x, y ∈ G. It is checked that if f is a representative
function on G, then p∗f ∈ RF (G) ⊗ RF (G) ⊂ C(G × G) (cf. [5] and [33]).

Indeed, suppose that f(x) = π(x)ij for x ∈ G and for some k-dimensional
representation π of G and some 1 ≤ i, j ≤ k. Since π(xy) = π(x)π(y) ∈ GLk(C)
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for x, y ∈ G, we obtain that

f(xy) = π(xy)ij =
k∑

l=1

π(x)ilπ(y)lj =
k∑

l=1

π(x)il ⊗ π(y)lj ∈ RF (G) ⊗ RF (G).

The Hopf algebra structure for H = RF (G) is defined by the formulas

Δf = p∗f, ε(f) = f(1), (Sf)(g) = f(g−1)

Alternatively, may describe RF (G) as the linear space generated by matrix
coefficients such as π(x)ij , of isomorphism classes of irreducible, finite dimen-
sional, complex representations π of G. In this case, the coproduct is defined
as

Δ(πij) =
k∑

l=1

πil ⊗ πlj , dimπ = k.

As well, ε(πij) = π(1)ij = δij1, and (Sπij)(g) = π(g−1)ij .
The algebra H is finitely generated as an algebra if and only if G is a compact

Lie group. �

Example 4.1.6. Let G = U(1) = T be the group of complex numbers of
absolute value 1. Irreducible representations of G are all 1-dimensional, and G∧

of which is identified with Z, given as ϕn(z) = zn for n ∈ Z and z ∈ T. It is
shown that H = RF (G) is the Laurent polynomial algebra C[u, u−1] ⊂ C(G),
with u a unitary so that uu∗ = u∗u = 1, and with comultiplication, counit, and
antipode, given as Δ(un) = un ⊗ un, ε(un) = 1, and S(un) = u−n, for n ∈ Z.

Indeed, for any n ∈ Z and z, w ∈ T, ϕn(wz) = wnzn, as a function for z ∈ T

in Cϕn.

Example 4.1.7. Let G = SU(2) be the group of unitary 2 by 2 complex
matrices with determinant 1, which is identified with the real 3-dimensional
sphere S3, but defined as S3 = {(z1, z2) ∈ C

2 | |z1|2 + |z2|2 = 1} by complex
coordinates. Let α and β denote the coordinate functions on C

2 defined as
α(z1, z2) = z1 and β(z1, z2) = z2, which satisfy the relation αα∗ + ββ∗ = 1 on
S3 ⊂ C

2. It is shown that the algebra C(SU(2)) = C(S3) is the universal unital
commutative C∗-algebra A generated by two generators α and β by the same
notation, with the same relation αα∗ + ββ∗ = 1. This relation is equivalent to
say that

U =
(

α β
−β∗ α∗

)
is a unitary matrix over A.

Indeed,

UU∗ =
(

α β
−β∗ α∗

)(
α∗ −β
β∗ α

)
=

(
αα∗ + ββ∗ −αβ + βα

−β∗α∗ + α∗β∗ β∗β + α∗α

)

U∗U =
(

α∗ −β
β∗ α

)(
α β

−β∗ α∗

)
=

(
α∗α + ββ∗ α∗β − βα∗

β∗α − αβ∗ β∗β + αα∗

)
.
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For those to become the identity 2×2 matrix, it is required that α, β are normal,
α, α∗ commute with β, β∗, and αα∗ + ββ∗ = 1.

All irreducible unitary representations of SU(2) are given by tensor products
of the fundamental representation whose matrix is U ([5]).

Recall from [5] the following. There is the standard linear isomorphism of
C

2 and H the quaternion algebra, given by

(z1, z2) ∈ C
2 �→ z1+z2j =

(
z1 0
0 z∗1

)
+

(
z2 0
0 z∗2

)(
0 1
−1 0

)
=

(
z1 z2

−z∗2 z∗1

)
∈ H.

The quaternion group Sp(1) of H is the group of unit quaternions, identified
with SU(2). Thus, the unitary matrix U over A is viewed as a SU(2)-valued,
continuous function U = U(z1, z2) on SU(2) = S3. As well, the standard
or fundamental representation M of SU(2) is defined to be the (left) matrix
multiplication on C

2, as Mgξ = gξ for g ∈ SU(2), ξ ∈ C
2. This representation

M is irreducible. Because if not, there is a complex 1-dimensional subspace of C
2

invariant under the corresponding action, but which is impossible, since SU(2)
involves the rotation matrices. Irreducible unitary representations of SU(2)
are given by the trivial representation, the fundamental M , and the symmetric
sub-representations ⊗n

s M of tensor products ⊗nM of M with the representation
space Vn with dimension n+1, contained in ⊗n

C
2, and identified with the space

of homogeneous polynomials of degree n in two variables z1 and z2, contained
in C[z1, z2]. For instance, V1 = C

2 ∼= Cz1 ⊕ Zz2 and

V2 = C(z1 ⊗ z1) ⊕ C(z1 ⊗ z2 − z2 ⊗ z1) ⊕ C(z2 ⊗ z2)
∼= Cz2

1 ⊕ Cz1z2 ⊕ Cz2
2
∼= C

3.

As well, the exterior 2-power Λ2
C

2 = C(z1 ⊗ z2), so that C
2 ⊗C

2 ∼= V2 ⊕Λ2
C

2.
It is then shown that H = RF (SU(2)) is the ∗-subalgebra of C(SU(2))

generated by α and β. The coproduct, counit, and antipode for H are uniquely
induced from those on the equivalent generator U as

ΔU = U ⊗∼ U, and ε(U) = 1, S(U) = U∗

in SU(2,H) the SU(2) over H, so that S(α) = α∗, S(β) = −β, S(β∗) = −β∗,
and S(α∗) = α, where

U ⊗∼ U =
(

α ⊗ α + β ⊗ (−β∗) α ⊗ β + β ⊗ (α∗)
(−β∗) ⊗ α + α∗ ⊗ (−β∗) (−β∗) ⊗ β + α∗ ⊗ α∗

)

=
(

Δ(α) Δ(β)
Δ(−β∗) Δ(α∗)

)
= Δ(U),

so that Δ(α∗) = Δ(α)∗ and Δ(β∗) = Δ(β)∗ in H ⊗ H.

Example 4.1.8. An affine algebraic group, say over C, is an affine algebraic
variety G such that G is a group, and the multiplication map p : G × G → G
and the inversion map i : G → G are morphisms of varieties. The coordinate
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ring H = O[G] of an affine algebraic group G is a commutative Hopf algebra,
involving the maps Δ, ε, and S, defined as the duals of the multiplication, the
unit, and the inversion of G, similar to the case of finite or compact groups.

Example 4.1.9. Let G = GLn(C) be the general linear group of all invertible
n× n matrices over C. As an algebra, H = O[GLn(C)] is generated by pairwise
commuting elements xij and D for i, j = 1, · · · , n, with the relation det(xij)D =
1. The coproduct, counit, and antipode of H are given by

Δ(xij) =
n∑

k=1

xik ⊗ xkj , Δ(D) = D ⊗ D, ε(xij) = δij ,

ε(D) = 1, S(xij) = DAdj(xij), S(D) = D−1.

These formulas are obtained by dualizing the usual linear algebra formulas for
the matrix multiplication, the identity matrix, and the adjoint formula for the
inverse.

Example 4.1.10. More generally, an affine group scheme over a commutative
ring R is a commutative Hopf algebra over R.

The language of representable functors à la Grothendieck is cast to the above
case as follows (cf. [73]).

Given such a Hopf algebra H, for any (unital) commutative algebra A over
R, the set G = Hom(H, A) of algebra maps from H to A is a group under the
convolution product. The convolution product f1 ∗ f2 of any two linear maps
f1, f2 : H → A is defined as the composition

H
Δ−−−−−−→

coproduct
H ⊗ H

f1⊗f2−−−−→ A ⊗ A
m−−−−−→

product
A,

or equivalently, by

(f1 ∗ f2)(h) =
∑

Δ(h)=
P

j h1j⊗h2j

f1(h1j)f2(h2j)

=
∑

Δ(h)=
P

j h1j⊗h2j

m(f1 ⊗ f2)(h1j ⊗ h2j) = m(f1 ⊗ f2)Δh.

Check that for h, h′ ∈ H and f1, f2 ∈ G,

(f1 ∗ f2)(hh′) = m(f1 ⊗ f2)Δ(hh′) = m(f1 ⊗ f2)(Δ(h)Δ(h′))

=
∑
j,k

m(f1 ⊗ f2)(h1jh
′
1k ⊗ h2jh

′
2k) =

∑
j,k

f1(h1j)f1(h′
1k)f2(h2j)f2(h′

2k)

=
∑
j,k

f1(h1j)f2(h2j)f1(h′
1k)f2(h′

2k) (because of A commutative)

=
∑
j,k

m(f1 ⊗ f2)(h1j ⊗ h2j)m(f1 ⊗ f2)(h′
1k ⊗ h′

2k)

= [m(f1 ⊗ f2)Δh][m(f1 ⊗ f2)(Δh′)] = (f1 ∗ f2)(h)(f1 ∗ f2)(h′),
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where Δ(h) =
∑

j h1j ⊗ h2j and Δ(h′) =
∑

k h′
1k ⊗ h′

2k. This formula seems to
be not extended to the noncommutative case in general.

By the way, what is the unit for G ? If A is unital, then G contains 1H

as the unit function on H. If Δh = h ⊗ h, then (f ∗ 1)(h) = m(f(h) ⊗ 1) =
f(h). Thus, 1H is the unit for G. As for the inverse for f ∈ G, any f ∈ G
is invertible? Possibly, the right definition as G in this case of Δ should be
G−1 = Hom(H, A)−1, which denotes the group of all invertible elements of G.
Then, for f, f−1 ∈ G−1 with f−1(h) = (f(h))−1 ∈ A−1 for any h ∈ H, where
A−1 denotes the group of all invertible elements of A, we have (f ∗ f−1)(h) =
m(f(h) ⊗ f−1(h)) = 1 ∈ A−1.

Then define a functor F from the category of commutative algebras over R
to the category of groups, as

F : Comm-AlgR → Grp, A �→ F (A) = G−1 = Hom(H, A)−1.

This functor F is representable, in the sense of being represented by H.
Conversely, let F ′ : Comm-AlgR → Grp be a representatible functor rep-

resented by a unital commutative algebra K, as F ′(A) = Hom(K, A)−1. Then
K ⊗ K represents F ′ ⊗ F ′.

Indeed, Hom(K⊗K, A) ∼= Hom(K, A)⊗Hom(K, A). For f1, f2 ∈ Hom(K, A),
defined is f1 ⊗ f2 ∈ Hom(⊗2K, A). Conversely, any element of Hom(⊗2K, A)
is determined by values of simple tensors, which corresponds to some element
of ⊗2Hom(K, A). But Hom(K ⊗ K, A)−1 may not be equal to Hom(K, A)−1 ⊗
Hom(K, A)−1. However, that contains it, so represented by K⊗ K in this sense.

Applying the Yoneda lemma we obtain maps Δ : K → K ⊗ K, ε : K → C,
and S : K → K satisfying the axioms, so that K becomes a Hopf algebra. Thus,
the equivalence between Comm-AlgR and Grp is obtained.

Example 4.1.11. Consider the functor μn from the category of commutative
algebras A over R to the category of groups, by sending A to the group of its
n-th roots of unity. This functor is representable by the Hopf algebra H =
R[x]/(xn − 1) as the quotient of the polynomial algebra R[x] by the relation
xn = 1. Its coproduct, counit, and antipode are given respectively by Δ(x) =
x ⊗ x, ε(x) = 1, and S(x) = xn−1.

Note that xn = xn−1x = 1. Thus, x−1 = xn−1.

In general, an algebraic group, such as GLn or SLn, is an affine group
scheme, represented by its coordinate ring. Refer to [73].

Example 4.1.12. Let H be a finite dimensional Hopf algebra and let H∗ =
Hom(H, C) denote the linear dual of H. By dualizing the algebra and co-
operations of H, the following maps are obtained (with Δ∗ corrected):

m∗ = Δ′ : H∗ → H∗ ⊗ H∗, ϕ �→ ϕ ◦ m,

η∗ = ε′ : H∗ → C, ϕ �→ ϕ ◦ η(1) = ϕ(1),
Δ∗ = m′ : H∗ ⊗ H∗ → H∗, ϕ1 ⊗ ϕ2 �→ m ◦ (ϕ1 ⊗ ϕ2) ◦ Δ = (ϕ1 ⊗ ϕ2) ◦ Δ,

ε∗ = η′ : C → H∗, 1 �→ ε,

S∗ = S′ : H∗ → H∗, ϕ �→ ϕ ◦ S.
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With these dashed operations as undashed, H∗ becomes a Hopf algebra, called
the dual of H. Namely,

(Δ′ ⊗ id)Δ′ = (id ⊗ Δ′)Δ′ : H∗ → ⊗3H∗,
m′(S′ ⊗ id)Δ′ = m′(id ⊗ S′)Δ′ = η′ ◦ ε′ : H∗ → H∗,

(ε′ ⊗ id)Δ′ = (id ⊗ ε′)Δ′ = id : H∗ → H∗.

Indeed, check that for ϕ ∈ H∗ and x, y, z ∈ H,

(Δ′ ⊗ id)Δ′ϕ(x, y, z) = ϕ ◦ m ◦ (m ⊗ id)(x, y, z) = ϕ((xy)z),
(id ⊗ Δ′)Δ′ϕ(x, y, z) = ϕ ◦ m ◦ (id ⊗ m)(x, y, z) = ϕ(x(yz)),

both certainly equal, and

m′(S′ ⊗ id)Δ′ϕ(x) = ϕ ◦ m ◦ (S ⊗ id) ◦ Δ(x),
m′(id ⊗ S′)Δ′ϕ(x) = ϕ ◦ m ◦ (id ⊗ S) ◦ Δ(x),

which seems to be different in general, and

(η′ ◦ ε′)ϕ = η′(ϕ(1)) = ϕ(1)ε ∈ H∗,

so that it is necessary to have that for any x ∈ H,

m ◦ (S ⊗ id) ◦ Δ(x) = 1 = m ◦ (id ⊗ S) ◦ Δ(x) ∈ H,

and moreover,

(ε′ ⊗ id)Δ′ϕ(x) = ϕ ◦ m(1, x) = ϕ(x),
(id ⊗ ε′)Δ′ϕ(x) = ϕ ◦ m(x, 1) = ϕ(x) = id(ϕ)(x),

with x = 1x = x1 identified.
Note that H is commutative if and only if H∗ is cocommutative, and that H

is cocommutative if and only if H∗ is commutative.
Indeed, if H is commutative, then for any x, y ∈ H and ϕ ∈ H∗,

τ ′Δ′ϕ(x, y) = ϕ ◦ m ◦ τ(x, y) = ϕ(yx) = ϕ(xy) = Δ′ϕ(x, y)

with τ ′ = τ∗ : ⊗2H∗ → ⊗2H∗ defined as τ∗(ϕ1 ⊗ϕ2) = (ϕ1 ⊗ϕ2) ◦ τ , and hence
τ ′Δ′ = Δ′ : H∗ → H∗ ⊗ H∗. Conversely, if H∗ is cocommutative, then for any
x, y ∈ H, the equation ϕ(yx) = ϕ(xy) holds for any ϕ ∈ H∗. It then implies
that yx = xy ∈ H.

Also, if H is cocommutative, then

m′(ϕ1 ⊗ ϕ2)(x) = m ◦ (ϕ1 ⊗ ϕ2) ◦ Δ(x) = m ◦ (ϕ1 ⊗ ϕ2) ◦ τΔ(x)
= m ◦ (ϕ2 ⊗ ϕ1) ◦ Δ(x) = m′(ϕ2 ⊗ ϕ1)(x).

Note that the multiplication of ϕ1, ϕ2 ∈ H∗ is defined to be m′(ϕ1 ⊗ ϕ2) ∈ H∗

(cf. [52]). �
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Example 4.1.13. The second dual H∗∗ = (H∗)∗ of a finite dimensional Hopf
algebra H∗ is identified with H as a Hopf algebra, where any element of H∗∗ is
identified with the evaluation map at some element of H on H∗. By dualizing
the algebra H∗ and co-operations of H∗, the following maps are obtained

(m′)∗ = Δ′′ : H∗∗ → H∗∗ ⊗ H∗∗, ψ �→ ψ ◦ m′,
(η′)∗ = ε′′ : H∗∗ → C, ψ �→ ψ ◦ η′(1) = ψ(ε),
(Δ′)∗ = m′′ : H∗∗ ⊗ H∗∗ → H∗∗, ψ1 ⊗ ψ2 �→ m′ ◦ (ψ1 ⊗ ψ2) ◦ Δ′ = (ψ1 ⊗ ψ2) ◦ Δ′,
(ε′)∗ = η′′ : C → H∗∗, 1 �→ ε′,
(S′)∗ = S′′ : H∗∗ → H∗∗, ψ �→ ψ ◦ S′.

Let p, p1, p2 ∈ H be corresponding to ψ,ψ1, ψ2 ∈ H∗∗ respectively. Then for
ϕ,ϕ1, ϕ2 ∈ H∗,

Δ′′p(ϕ1 ⊗ ϕ2) = p ◦ m′(ϕ1 ⊗ ϕ2) = m(ϕ1 ⊗ ϕ2)Δ(p),

with Δ′′p identified with Δ(p), and

ε′′(p) = p(ε) = ε(p) = 1,

and

m′′(p1 ⊗ p2)(ϕ) = (p1 ⊗ p2) ◦ Δ′ϕ = (p1 ⊗ p2) ◦ (ϕ ◦ m) = ϕ(p1p2)

with m′′(p1 ⊗ p2) identified with p1p2 ∈ H, and

η′′(1)ϕ = ε′(ϕ) = ϕ(1)

with η′′(1) identified with 1 ∈ H, and

S′′(p)(ϕ) = (p ◦ S′)(ϕ) = p(ϕ ◦ S) = ϕ(S(p))

with S′′(p) identified with S(p) ∈ H. �

Example 4.1.14. For a finite group G, we have (CG)∗ ∼= C(G) with H = CG.
Indeed, for any g ∈ G, the characteristice function δg at g in C(G) is identified
with the element δ∗g of H∗ defined as δ∗g(

∑
j αjgj) = α0 ∈ C with g0 = g ∈ G,

since

δg(
∑

j

αjgj +
∑

k

βkgk) = α0 + β0 = δg(
∑

αjgj) + δg(
∑

k

βkgk). �

Note that the linear dual of an infinite dimensional, Hopf algebra H may is
not a Hopf algebra. The main problem is that we obtain the dualized product
as a coproduct m∗ = Δ′ : H∗ → (H⊗H)∗ defined as m∗(ϕ) = ϕ◦m, but H∗⊗H∗

is only a proper subspace of (H ⊗ H)∗.
Note that

Proposition 4.1.15. The dual H∗ of a coalgebra H as a linear space with Δ
linear and ε is always an algebra by m′ = Δ∗.
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Proof. Check that for ϕ1, ϕ2, ϕ3 ∈ H∗

m′(m′(ϕ1 ⊗ ϕ2) ⊗ ϕ3) = m ◦ (m′(ϕ1 ⊗ ϕ2) ⊗ ϕ3) ◦ Δ
= m ◦ ([m ◦ (ϕ1 ⊗ ϕ2) ◦ Δ] ⊗ ϕ3) ◦ Δ = m ◦ ([m ◦ (ϕ1 ⊗ ϕ2)] ⊗ ϕ3)(Δ ⊗ id) ◦ Δ
= m ◦ (ϕ1 ⊗ [m ◦ (ϕ2 ⊗ ϕ3)])(id ⊗ Δ) ◦ Δ = m′(ϕ1 ⊗ m′(ϕ2 ⊗ ϕ3)),

which shows the associativity for m′ = Δ∗.

Remark. This seems to be the very reason as the role of Δ on H, in a sense.
To avoid the problem in the case of dimension ∞, as one way, we may con-

sider the restricted duals H◦ of Hopf algebras H, which are always Hopf algebras
([26] and [66]). The main idea is to consider continuous linear functionals on H
with respect to the linearly compact topology on H, instead of all linear func-
tionals on H. But the dual restricted may be too small to deal with, though.
Remark. The finite dual A◦ of an algebra A is defined to be the subspace of
the dual A∗ of all ϕ, for which the kernel of ϕ contains an ideal I of A such
that A/I is finite dimensional. Then A◦ is a coalgebra as in A∗. There is a 1-1
correspondence between algebra homomorphisms from an algebra A to the dual
algebra H∗ of a coalgebra H and coalgebra homomorphisms from H to A◦ (cf.
[52]). Namely, Hom(A,H∗) ∼= Hom(H, A◦).

A better way to have the Hopf duality to cover the infinite dimensional case
is given by the Hopf pairing. A Hopf pairing between two Hopf algebras H1

and H2 is given by a bilinear map

〈·, ·〉 : H1 ⊗ H2 → C, h1 ⊗ h2 �→ 〈h1, h2〉

satisfying the following relations that for h, h1, h2 ∈ H1 and g, g1, g2 ∈ H2,

〈h1h2, g〉 =
∑

k

〈h1, g1k〉〈h2, g2k〉, with Δ(g) =
∑

k

g1k ⊗ g2k,

〈h, g1g2〉 =
∑

j

〈h1j , g1〉〈h2j , g2〉, with Δ(h) =
∑

j

h1j ⊗ h2j ,

and 〈h, 1〉 = ε(h) and 〈1, g〉 = ε(g).

Example 4.1.16. Let H = U(g) be the enveloping Hopf algebra of the Lie alge-
bra g of a Lie group G and let K = RF (G) be the Hopf algebra of representable
functions on G. There is a canonical non-degenerate pairing from H ⊗ K to C

defined by

〈X1 ⊗ · · · ⊗ Xn, f〉 = X1(· · · (Xn([Δ ⊗ (⊗n−2id)] · · · (Δ ⊗ id)(Δf) · · · )) · · · )

(corrected), where X(f) = d
dtf(exp(tX))|t=0 for X ∈ g and f ∈ K (cf. [33]).
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Indeed, check that for f, g ∈ K and f identified with fij an n × n matrix
component of a finite dimensional representation of G,

〈X1 ⊗ X2, f〉 = X1(X2(Δ(f))) = X1(X2(f ◦ p))

= X1(X2(
n∑

l=1

fil ⊗ flj)) =
n∑

l=1

〈X1, fil〉〈X2, flj〉,

〈X, fg〉 = 〈X, f〉g(1) + f(1)〈X, g〉
= (X ⊗ 1 + 1 ⊗ X)(f ⊗ g) = (ΔX)(f ⊗ g).

Also, 〈X, 1〉 = 0 = ε(X) and 〈1, f〉 = 1 = f(1) = ε(f), possibly when f = fjj .
�

We shall see that there is an analogous pairing between compact quantum
groups of classical Lie groups and their associated enveloping algebras, soon
later below.

As a question, is every cocommutative Hopf algebra (CHA) a universal en-
veloping algebra (UEA)? The answer is negative because, for example, group
algebras (GA) are also cocommutative, as seen above. There are two major
structure theorems which settle this equestion over an algebraically closed field
of characteristic zero.

Theorem 4.1.17. (Kostant and, independently, Cartier [66], [7]). Any cocom-
mutative Hopf algebra H over an algebraically closed field F of characteris-
tic zero is isomorphic as a Hopf algebra to a crossed product algebra K =
U(P (H)) � G(H), where P (H) is the Lie algebra of primitive elements of H,
and G(H) is the group of all group-like elements of H, and G(H) acts on P (H)
by inner automorphisms Ad(g) = g · g−1, and the coalgebra structure of K is
given simply by the tensor product of two two coalgebras UEA U(P (H)) and GA
FG(H). Namely, CHA =UEA�AdGA.

To state the next theorem, let H be a Hopf algebra over a not necessarily
algebraically closed, field k of characteristic zero, and let I denote the kernel of
the counit map ε on H. Let Δr : I → I⊗ I denote the reduced coproduct. By
definition, Δr(h) = Δ(h) − 1 ⊗ h − h ⊗ 1.

Note that Δr(h) = 0 if and only if h is a primitive element of H.
Let In ⊂ I = I0 denote the kernel of the iterated coproduct Δn+1

r : I →
⊗n+1I. Then the increasing sequence (In)n∈N of subspaces of H is obtained
and said to be the coradical filtration of H. It is a Hopf algebra filtration in
the sense that IiIj ⊂ Ii+j and Δr(In) ⊂ ∑

i,j∈N,i+j=n Ii ⊗ Ij . A Hopf algebra
H is said to be connected or conilpotent if its coradical filtration (Ij)j∈N is
exhaustive as ∪j∈NIj = I0. Equivalently, for any h ∈ I, it holds that Δn

r (h) = 0
for some n.

Theorem 4.1.18. (Cartier-Milnor-Moore). A cocommutative Hopf algebra over
a field of characteristic zero is isomorphic as a Hopf algebra to the envelipoing
algebra of a Lie algebra if and only if the CHA is connected.
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The Lie algebra g in question is the Lie algebra of primitive elements h of
H, so that Δ(h) = h ⊗ 1 + 1 ⊗ h.

As a typical application, let H = ⊗j≥0Hj be a graded cocommutative Hopf
algebra. Then H is connected if and only if H0 = F. It then implies that if H is
connected, then H = U(g) an EA.

4.2 Quantum groups

Example 4.2.1. As a prototypical example of a compact quantum group, the
Woronowicz quantum group (WQG) SUq(2) for 0 < q ≤ 1 is defined to the unital
(universal) C∗-algebra, denoted as C(SUq(2)), generated by two elements α and
β subject to the relations ββ∗ = β∗β, αβ = qβα, αβ∗ = qβ∗α, and

αα∗ + q2β∗β = α∗α + β∗β = 1 ∈ C(SUq(2)).

Note that these relations are equivalent to say that

Uq =
(

α qβ
−β∗ α∗

)
∈ M2(C(SUq(2))) is unitary, so that

UqU
∗
q =

(
αα∗ + q2ββ∗ −αβ + qβα

−β∗α∗ + qα∗β∗ β∗β + α∗α

)
=

(
1 0
0 1

)
,

U∗
q Uq =

(
α∗α + ββ∗ qα∗β − βα∗

qβ∗α − αβ∗ q2β∗β + αα∗

)
=

(
1 0
0 1

)
,

which imply ββ∗ = β∗β.
This Woronowicz C∗-algebra is not a Hopf algebra in the sense given above,

but as with compact topological groups, it has a dense subalgebra to become
Hopf. Let O(SUq(2)) denote the dense ∗-subalgebra of C(SUq(2)) generated
by α and β. This is the analogue of the algebra LRF (SU(2)) of representative
functions of SU(2). It follows that O(SUq(2)) is a Hopf algebra with coproduct,
counit, and antipode defined by

ΔUq = Uq ⊗∼ Uq, and ε(Uq) = 1, S(Uq) = U∗
q

so that S(α) = α∗, S(qβ) = −β, S(β∗) = −qβ∗, and S(α∗) = α, where

Uq ⊗∼ Uq =
(

α ⊗ α + qβ ⊗ (−β∗) α ⊗ qβ + qβ ⊗ (α∗)
(−β∗) ⊗ α + α∗ ⊗ (−β∗) (−β∗) ⊗ qβ + α∗ ⊗ α∗

)

=
(

Δ(α) Δ(qβ)
Δ(−β∗) Δ(α∗)

)
= Δ(Uq)

(corrected), so that Δ(α∗) = Δ(α)∗ and Δ(β∗) = Δ(β)∗. Note that the coprod-
uct Δ is only defined in the dense O(SUq(2)) of matrix elements of the quantum
group, and its extension to C(SUq(2)) is the completed tensor product

Δ : C(SUq(2)) → C(SUq(2)) ⊗ C(SUq(2)),

with unvisible part, because of completion.
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In particular, at q = 1, it holds that C(SU1(2)) = C(SU(2)) the commuta-
tive C∗-algebra of continuous functions on SU(2).

May refer to [45] for a survey of compact and locally compact quantum
groups. �

Example 4.2.2. The quantum enveloping algebra Uq(su(2)) is defined to be
an algebra over C generated by elements e, f , and k, subject to the relations
kk−1 = k−1k = 1 and kek−1 = qe, kfk−1 = 1

q f , and [f, e] = 1
q−q−1 (k2 − k−2)

(cf. [43]). Define the coproduct, the antipode, and the counit of Uq(su(2)) by

Δ(k) = k ⊗ k, S(k) = k−1, ε(k) = 1,

Δ(e) = e ⊗ k + k−1 ⊗ e, S(e) = −qe, ε(e) = 0,

Δ(f) = f ⊗ k + k−1 ⊗ f, S(f) = −q−1f, ε(f) = 0.

Recall from [5] that the Lie algebra su(2) of SU(2) consists of skew-Hermitian
2 × 2 matrices over C with trace zero. A basis of su(2) over R is given by

iH = i

(
1 0
0 −1

)
, Y =

(
0 i
i 0

)
, Z =

(
0 1
−1 0

)

with (iH)∗ = −iH, Y ∗ = −Y , and Z∗ = −Z, and with trace zero, and with
det 1, satisfying the relations Y (iH) = −(iH)Y = Z, (iH)Z = −Z(iH) = Y ,
ZY = −Y Z = iH, so that [iH, Y ] = −2Z, [iH,Z] = 2Y , and [Y,Z] = −2iH.
Then (iH)Y (iH)−1 = −Y , (iH)Z(iH)−1 = −Z, and (iH)2 − (iH)−2 = 0.

There is a Hopf pairing 〈·, ·〉 : Uq(su(2))⊗O(SUq(2)) → C given by 〈k, α〉 =
1√
q = 〈k−1, α∗〉, 〈k−1, α〉 =

√
q = 〈k, α∗〉, 〈e, β∗〉 = −1, 〈f, β〉 = 1

q , and with the
pairing for all other couples of generators zero. �

4.3 Symmetry in Noncommutative Geometry

Let H be a Hopf algebra with Δ, ε, and S. A unital algebra A is said to be a
left H-module algebra if A is a left H-module by a map ρ : H ⊗ A → A, and if
the multiplication and the unit map of A are morphisms of H-modules. Namely,

h(ab) =
∑

j

h1j(a)h2j(b), Δh =
∑

j

h1j ⊗ h2j , h ∈ H, a, b ∈ A,

and h1 = ε(h)1 ∈ A, and 1(a) = a (added). Namely, it looks like that

H ⊗ A ⊗ A
idH⊗m−−−−−→ H ⊗ A

Δ

⏐⏐� ⏐⏐�ρ

H ⊗ A ⊗ H ⊗ A
ρ⊗ρ−−−−→ A

and

H ⊗ A
ρ−−−−→ A

ε⊗id

⏐⏐� ⏐⏐�idA

C ⊗ A A

(which are correct?)
Group-like elements h ∈ H as Δh = h ⊗ h act as unit preserving algebra

automorphisms of an H-module algebra A.
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Indeed, h(ab) = h(a)h(b). Thus, h(·) is an algebra homomorphism of A. In
particular, h(a) = h(a1) = h(a)h(1). Note that h is invertible in H with inverse
S(h).

Primitive elements h ∈ H as Δh = 1 ⊗ h + h ⊗ 1 act as derivations of A.
Indeed, h(ab) = ah(b) + h(a)b.

Example 4.3.1. For H = CG the group Hopf algebra of a discrete group G,
with Δ, ε, and S, an H-module algebra structure on a unital algebra A is given
by an action of G by unit preserving algebra automorphisms of A.

Indeed, for any g ∈ G and a ∈ A, we have g(ab) = g(a)g(b) since Δg = g⊗g.
Thus, g(·) is an algebra homomorphism of A. In particular, g(a) = g(a1) =
g(a)g(1). Moreover, g−1(g(a)) = (g−1g)(a) = 1G(a) = a.

Similarly, there is a 1-1 correspondence between U(g)-module algebra struc-
tures on A and Lie actions of the Lie algebra g on A by derivations.

Indeed, for any X ∈ g, with ΔX = X ⊗ 1 + 1 ⊗ X ∈ U(g), we have
X(ab) = X(a)b + aX(b). �

Example 4.3.2. Recall that the Podleś quantum sphere S2
q is the ∗- or C∗-

algebra generated by elements a, a∗ and b = b∗ subject to the relations aa∗ +
q−4b2 = 1, a∗a + b2 = 1, ab = q−2ba, and a∗b = q2ba∗.

Define a Uq(su(2))-module algebra structure on S2
q as

ka = qa, ka∗ = q−1a∗, kb = b,

ea = 0, ea∗ = −q
3
2 (1 + q−2)b, eb = q

5
2 a,

fa = q−
7
2 (1 + q2)b, fa∗ = 0, fb = −q−

1
2 a∗

for the generators k, e, f ∈ Uq(su(2)) with Δk = k ⊗ k, Δe = e ⊗ k + k−1 ⊗ e,
and Δf = f ⊗ k + k−1 ⊗ f .

Recall also that the quantum analogue of the Dirac or Hopf monopole line
bundle over S2 is given by the idempotent eq ∈ M2(S2

q ) defined as

eq =
1
2

(
1 + q−2b qa
q−1a∗ 1 − b

)
.

This noncommutative line bundle is equivariant with respect to the Uq(su(2))-
module action, as follows. Consider the 2-dimensional standard representation
of Uq(su(2)) on C

2 by sending the generators k, e, f respectively to(√
q−1 0
0

√
q

)
,

(
0 0
1 0

)
,

(
0 1
0 0

)

as identified. We then obtain an action of Uq(su(2)) on M2(S2
q ) ∼= M2(C) ⊗ S2

q

as the tensor product of modules by the formula: for m ∈ M2(C) and a ∈ S2
q ,

h(m ⊗ a) =
∑

j

h1j(m)h2j(a), h, Δh =
∑

j

h1j ⊗ h2j ∈ Uq(su(2)).
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It holds that h(eq) = ε(h)eq for any h ∈ Uq(su(2)).
For instance, with Δk = k ⊗ k,

k(eq) =
(√

q−1 0
0

√
q

)
1
2

(
1 0
0 0

)
⊗ k(1 + q−2b) + k

(
0 1

2
0 0

)
⊗ k(qa)

+ k

(
0 0
1
2 0

)
⊗ k(q−1a∗) + k

(
0 0
0 1

2

)
⊗ k(1 − b)

=
1
2

(√
q−1 0
0 0

)
⊗ (k + q−2b) +

(
0

√
q−1

2
0 0

)
⊗ q2a

+
(

0 0√
q

2 0

)
⊗ q−2a∗ +

(
0 0
0

√
q

2

)
⊗ (k − b),

which should be equal to ε(k)eq = eq? It seems that to have the above equation
claimed, we may take Δk = k−1 ⊗ k instead, in a way. �

Let H be a Hopf algebra. A left either corepresentation, comodule,
or coaction of H is a vector space M with a map ρ : M → H ⊗ M such that
(Δ⊗idM )ρ = (idH⊗ρ)ρ and (ε⊗idM )ρ = idM . Namely, the diagrams commute:

M
ρ−−−−→ H ⊗ M

ρ

⏐⏐� ⏐⏐�Δ⊗idM

H ⊗ M
idH⊗ρ−−−−→ H ⊗ H ⊗ M

and

M
ρ−−−−→ H ⊗ M⏐⏐�idM

⏐⏐�ε⊗idM

M C ⊗ M.

These conditions are dual to the axioms for a module over an algebra. An
algebra A is said to be a left H-comodule algebra if A is a left H-comodule by
such a map ρ : A → H ⊗ A as M = A, to be a morphism of algebras.

Example 4.3.3. A Hopf algebra H becomes a left H-comodule algebra by the
coproduct Δ : H → H⊗H as ρ. This is the analogue of the left action of a group
G on G as left translations.

For compact quantum groups such as SUq(2) and their algebraic analogues
like SLq(2), coactions are defined more naturally. Formally, they are obtained
by dualizing and and quantizing group actions as maps G×X → X for classical
groups G and spaces X. �

Example 4.3.4. For q a nonzero element of C, the algebra A = Cq[x, y : ∅]
of coordinates on the quantum q-plane is defined to be the quotient algebra
C[x, y : ∅]/(yx − qxy), where C[x, y : ∅] is the free algebra with two generators
x and y, and (yx− qxy) is the two-sided ideal generated by yx− qxy. If q �= 1,
then A = Cq[x, y : ∅] is noncommutative.

There is the unique SLq(2)-comodule algebra structure ρ : A → SLq(2)⊗A
on the quantum q-plane A defined as

ρ

(
x
y

)
=

(
a b
c d

)
⊗

(
x
y

)
,
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so that ρ(x) = a⊗ x + b⊗ y and ρ(y) = c⊗ x + d⊗ y, and the defininig relation
ρ(y)ρ(x) = qρ(x)ρ(y) holds.

Check that

qρ(y)ρ(x) = q(c ⊗ x + d ⊗ y)(a ⊗ x + b ⊗ y)

= qca ⊗ x2 + qcb ⊗ xy + qda ⊗ yx + qdb ⊗ y2,

ρ(x)ρ(y) = (a ⊗ x + b ⊗ y)(c ⊗ x + d ⊗ y)

= ac ⊗ x2 + ad ⊗ xy + bc ⊗ yx + bd ⊗ y2,

with, by definition, (ab = qba), ac = qca, bd = qdb, (cd = qdc), bc = cb and
yx = qxy, ad = 1 + qbc and da = 1 + q−1bc so that

qda ⊗ yx = (q1 + bc) ⊗ qxy = (q21 + (ad − 1)) ⊗ xy

(cf. [76]). It then follows that q2 = 1, to have ρ(y)ρ(x) = q−1ρ(x)ρ(y) =
qρ(x)ρ(y) consequently.

Similarly, with 0 < q ≤ 1, if we suppose that the same holds in the case of
SUq(2), defined as

ρ

(
x
y

)
=

(
α qβ

−β∗ α∗

)
⊗

(
x
y

)
,

so that ρ(x) = α ⊗ x + qβ ⊗ y and ρ(y) = −β∗ ⊗ x + α∗ ⊗ y, and then

qρ(y)ρ(x) = q(−β∗ ⊗ x + α∗ ⊗ y)(α ⊗ x + qβ ⊗ y)

= −qβ∗α ⊗ x2 − q2β∗β ⊗ xy + qα∗α ⊗ yx + q2α∗β ⊗ y2,

ρ(x)ρ(y) = (α ⊗ x + qβ ⊗ y)(−β∗ ⊗ x + α∗ ⊗ y)

= −αβ∗ ⊗ x2 + αα∗ ⊗ xy − qββ∗ ⊗ yx + qβα∗ ⊗ y2,

with, by definition, αβ∗ = qβ∗α, qxy = yx and ββ∗ = β∗β, qα∗β = βα∗,

qα∗α ⊗ yx = q(1 − β∗β) ⊗ qxy = (q21 − (1 − αα∗)) ⊗ xy.

It then follows q = 1, to have ρ(y)ρ(x) = q−1ρ(x)ρ(y) = qρ(x)ρ(y) consequently.
�

Example 4.3.5. As a non-significant example of a noncommutative (NC) and
non-cocommutative (NcC) Hopf algebra, we may start with a noncommutative
Hopf algebra U such as the universal enveloping algebras of Lie algebra, and
with a non-cocommutative Hopf algebra F such as the algebra of representative
functions on a compact group, and make the tensor product Hopf algebra H =
F ⊗ U , which is neither commutative nor cocommutative. But a variation of
this method provides interesting examples explained below. Another source of
interesting examples of NC and NcC Hopf algebras is given by the theory of
quantum groups. �

The idea is to deform the algebra and coalgebra structures in such a tensor
product F ⊗ U via an action of U on F and a coaction of F on U , through
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the crossed product construction. Describe the crossed product construction as
below, which is of independent interest as well.

Let H be a Hopf algebra and A be a left H-module algebra. The underlying
vector space of the crossed product algebra A � H is A ⊗ H, and its product
is defined by

(a ⊗ g)(b ⊗ h) =
∑

j

a(g1jb) ⊗ g2jh, a, b ∈ A, g, h ∈ H,

with Δg =
∑

j g1j ⊗ g2j ∈ H ⊗ H.
May check that 1⊗1 ∈ A⊗H is the unit of A�H. We have, with Δ1 = 1⊗1,

(1 ⊗ 1)(b ⊗ h) = 1(1b) ⊗ 1h = b ⊗ h, and

(a ⊗ g)(1 ⊗ 1) =
∑

j

a(g1j1) ⊗ g2j1 = (a ⊗ 1)
∑

j

g1j1 ⊗ g2j1,

which may be identified with a⊗g (in general?), as just in the case of Δg = g⊗g
with g1 = 1 ∈ A and g1 = g ∈ H.

Also, A � H is an associative unital algebra. In fact,

((a ⊗ g)(b ⊗ h))(c ⊗ l) =
∑

j

(a(g1jb) ⊗ g2jh)(c ⊗ l)

=
∑

j

∑
k

a(g1jb)(g2jh)1k(c) ⊗ (g2jh)2kl Δ(g2jh) =
∑

k

(g2jh)1k ⊗ (g2jh)2k,

(a ⊗ g)((b ⊗ h)(c ⊗ l)) = (a ⊗ g)
∑

k

b(h1kc) ⊗ h2kl Δh =
∑

k

h1k ⊗ h2k

=
∑

j

∑
k

a(g1jb(h1kc)) ⊗ g2jh2kl,

both of which should be equal. As a possible case, (g2jh)1k may be identified
with h1k, and (g2jh)2k with g2jh2k.

The above construction deforms multiplication of algebras.

Example 4.3.6. Let H = CG be the group Hopf algebra of a discrete group
and let H act on an algebra A by automoprhisms of A. Then the algebra A � H
is isomorphic to the crossed product algebra A � G.

Indeed, with Δg = g ⊗ g for g ∈ G,

(a ⊗ g)(b ⊗ h) = ag(b) ⊗ gh.

In particular, with g(·) ∈ Aut(A),

(1 ⊗ g)(b ⊗ 1)(1 ⊗ g−1) = (g(b) ⊗ g)(1 ⊗ g−1) = g(b)g(1) ⊗ gg−1 = g(b) ⊗ 1,

which corresponds to gbg−1 = Adg(b) = g(b) as a covariance condition. Note
also that A � G contains H = CG as a subalgebra and is generated by A and H.
�
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Example 4.3.7. Let a Lie algebra g act by derivations on a commutative alge-
bra A. Then the crossed product algebra A � U(g) is viewed as a subalgebra of
the algebra of differential operators on A generated by elements of g as deriva-
tions on A and those of A as multiplication operators on A as coefficients. For
instance, if A = C[x] as the algebra of polynomials with real variable x, and if
g = C acts by the differential operator d

dx on A. Then A � U(g) is the Weyl
algebra of differential operators on the line R with polynomial coefficients. �

Let D be a right H-comodule coalgebra with coaction D → D⊗H by sending
d ∈ D to

∑
k d′

0k ⊗ d′1k ∈ D ⊗ H. The underlying linear space of the crossed
product coalgebra H � D is H⊗D, and its coproduct Δ : H � D → ⊗2(H � D)
is defined by, with Δh =

∑
j h1j ⊗ h2j ∈ ⊗2H and Δd =

∑
k d1k ⊗ d2k ∈ ⊗2D

and D � d1k �→ ∑
l(d1k)′0l ⊗ (d1k)′1l ∈ D ⊗ H,

Δ(h ⊗ d) =
∑

j

∑
k

∑
l

h1j ⊗ (d1k)′0l ⊗ h2j(d1k)′1l ⊗ d2k ∈ H ⊗ D ⊗ H ⊗ D

(modified), and the counit is defined by ε(h ⊗ d) = ε(d)ε(h).
The above construction deforms comultiplication of coalgebras.

Example 4.3.8. If Δh = h ⊗ h for h ∈ H and Δd = d ⊗ d for d ∈ D, then

Δ(h ⊗ d) =
∑

l

h ⊗ d′0l ⊗ hd′1l ⊗ d, d �→
∑

l

d′0l ⊗ d′1l ∈ D ⊗ H.

In addition, if d is mapped to d⊗ 1 ∈ D⊗H, then Δ(h⊗ d) = (h⊗ d)⊗ (h⊗ d).
�

The idea of obtaining a simultaneous deformation of multiplication and co-
multiplication of a Hopf algebra by applying both the above constructions si-
multaneously, going back to G. I. Kac in the 1960s in the context of Kac-von
Neumann Hopf algebras, is now generalized to the notion of bicrossed product of
matched pairs of Hopf algebras, due to Shahn Majid [49] for more extensive dis-
cussions and references. There are several variations of this construction, one of
which is the most relevant following for the structure of the Connes-Moscovici
Hopf algebra, and as another special case of which, the Drinfeld double of a
finite dimensional Hopf algebra ([49], [39]).

Let U and F be two Hopf algebras. Assume that F is a left U -module algebra
and U is a right F -comodule coalgebra via ρ : U → U⊗F . We say that (U,F ) is
a matched pair if the action and coaction satisfy the compatibility conditions:
for u, v ∈ U and f ∈ F , with Δf =

∑
j f1j ⊗ f2j , Δu =

∑
k u1k ⊗ u2k,

Δ(u(f)) =
∑

j

∑
k

∑
l

(u1k)′0lf1j ⊗ (u1k)′1l(u2k(f2j)),

ρ(uv) =
∑

k

∑
l

∑
s

(u1k)′0lv
′
0s ⊗ (u1k)′01(u2k(v′1l)), ρ(1) = 1 ⊗ 1,

∑
k

∑
l

(u2k)′0l ⊗ (u1k(f))(u2k)1l =
∑

k

∑
l

(u1k)′0l ⊗ (u1k)′1l(u2k(f))
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(transformed in our sense), and ε(u(f)) = ε(u)ε(f). Given a matched pair
(U,F ), define its bicrossed product Hopf algebra F �

2 U to be F ⊗ U with
both the crossed product algebra structure and the crossed coproduct coalgebra
structure, and with its antipode S defined as

S(f ⊗ u) =
∑

l

(1 ⊗ S(u′
0l))(S(fu′

1l) ⊗ 1).

As a remarkable fact, the bicrossed product F �
2 U becomes a Hopf algebra,

thanks to the above compatibility conditions. May check it, but not now.

Example 4.3.9. The first and simplest example of the bicrossed product con-
struction is given as follows. Let G be a finite group, with a factorization
G = G1G2 in the sense that G1, G2 are subgroups of G such that G1∩G2 = {1}
and G1G2 = G. For g ∈ G, denote by g = g1g2 the factorization of g with
g1 ∈ G1 and g2 ∈ G2. Define a left action of G1 on G2 by g : G2 � h �→
(gh)2 ∈ G2 for g ∈ G1 and h ∈ G2. Define also a right action of G2 on G1 by
h : G1 � g �→ (gh)1 ∈ G1. Then F = F (G2) as CG2 is a left U = CG1-module
algebra by the left action of G1 on G2, and U = CG1 is a right F -comodule
coalgebra, with the coaction as the dual of the map F (G1) ⊗ CG2 → F (G1)
induced by the right action of G2 on G1. May find the details of this example
in [49] and [20].

Example 4.3.10. An important example in noncommutative geometry and its
applications to transverse geometry and number theory is the family of Connes-
Moscovici Hopf algebras Hn for n ≥ 1 ([20], [21], [22]). The CM Hopf algebras
are defined as deformations of the group G = Dif(Rn) of diffeomorphisms of
R

n and also viewed as deformations of the Lie algebra an of formal vector fields
over R

n. These algebra Hn appear as quantum symmetries of transverse frame
bundles of codimension n foliations, for the first time. Briefly consider the
case of n = 1 in the following. The main feature of H1 stem from the fact
that the group G has a factorization of the form G = G1G2, where G1 is the
subgroup of G of diffeomorphisms ϕ such that ϕ(0) = 0 and ϕ′(0) = 1, and G2

is the ax + b group of affine diffeomorphisms. Let F denote the Hopf algebra of
polynomial functions on the pro-unipotent group G1, which can be also defined
as the continuous dual of the enveloping algebra of the Lie algebra of G1. The
algebra F is a commutative Hopf algebra generated by the Connes-Moscovici
coordinate functions δn defined by

δn(ϕ) =
dn

dtn
log(ϕ′(t))|t=0, n = 1, 2, · · · , .

Let U be the universal enveloping Hopf algebra of the Lie algebra g2 of the
ax + b group G2, with generators X and Y with relation [X,Y ] = X.

The factorization G = G1G2 defines a matched pair (U,F ) of Hopf algebras.
More precisely, the Hopf algebra F has a right U -module algebra structure
defined as δn(X) = −δn+1 and δn(Y ) = −nδn. On the other hand, the Hopf
algebra U has a left F -comodule coalgebra structure by sending X to 1 ⊗ X +
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δ1 ⊗ X and Y �→ 1 ⊗ Y . May check that (U,F ) is a matched pair of Hopf
algebras to obtain the resulting bicrossed product Hopf algebra F �

2 U . This
is the Connes-Moscovici Hopf algebra H1 (cf. [20]).

Therefore, H1 is also defined to be the universal Hopf algebra with Δ and S,
generated by the generators X, Y , and δn (n ≥ 1) with relations [X,Y ] = X,
[X, δn] = δn+1, [Y, δn] = nδn, and [δk, δl] = 0 for integers n, k, j ≥ 1, where

ΔX = X ⊗ 1 + 1 ⊗ X + δ1 ⊗ Y, S(X) = −X + δ1Y,

ΔY = Y ⊗ 1 + 1 ⊗ Y, S(Y ) = −Y,

Δδ1 = δ1 ⊗ 1 + 1 ⊗ δ1, S(δ1) = −δ1. �

Another interesting interaction between Hopf algebras and noncommuta-
tive geometry is given by the work of Connes and Kreimer in renormalization
schemes of quantum field theory. May refer to [13], [14], [15], [16], [17], and [18].

An important feature of H1 as the reason of being is that it acts as quantum
symmetries of various objects of interest in noncommutative geometry, such
as the noncommutative spaces of leaves of codimension 1 foliations and the
noncommutative spaces of modular forms modulo the actions of Hecke corre-
spondences.

Example 4.3.11. Let M be a 1-dimensional manifold and A = C∞
0 (F+M)

denote the algebra of smooth functions with compact support on the bundle
F+M of positively oriented frames on M . Given a discrete subgroup Γ of
Dif+(M) of orientation preserving diffeomorphisms of M , there is a natural
prolongation of the action of Γ to F+M by

γ(y, y1) = (γy, γ′(y)y1), γ ∈ Γ, y ∈ M, (y, y1) ∈ F+M.

Let A�Γ denote the corresponding crossed product algebra. Then the elements
of A�Γ consist of finite linear combinations over C of terms fu∗

γ for f ∈ A and
uγ the unitary corresponding to γ ∈ Γ. The product (fu∗

γ)(gu∗
γ′) is defined by

f(γg)u∗
γ′γ .

Indeed, if u∗
γguγ = γg (if correct, but usually uγgu∗

γ = γg used), we have

(fu∗
γ)(gu∗

γ′) = f(γg)u∗
γu∗

γ′ = f(γg)u∗
γ′γ .

There is an action of H1 on A � Γ defined as

X(fu∗
γ) = y

∂f

∂y
u∗

γ , Y (fu∗
γ) = y1

∂f

∂y1
u∗

γ ,

δn(fu∗
γ) = yn dn

dyn

(
log

dγ

dy

)
fu∗

γ

(partially corrected in the sense that y as a scalar, y1 as a row vector and ∂f
∂y1

as a column vector), (cf. [20]).
Once given those formulas, it can be checked that by a somewhat compu-

tation that A � Γ becomes an H1-module algebra. In the original application,
M is given as a transversal for a codimension 1 foliation and thus H1 acts via
transverse differential operators (cf. [20]). �
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Remark. The theory of Hopf algebras and Hopf spaces in algebraic topology
is invented by H. Hopf by computing the rational cohomology of compact con-
nected Lie groups [37]. The cohomology ring of such a Lie group is a Hopf
algebra, which is isomorphic to an exterior algebra with odd generators. The
Cartier-Milnor-Moore theorem characterizes connected cocommutative Hopf al-
gebras as enveloping algebras of Lie algebras ([7], [53]). A purely algebraic
theory on Hopf algebras is created as the first book by Sweedler [66]. All classi-
cal Lie groups and Lie algebras are quantized as the quantum group by Drinfled
[30], with the work of Faddeev-Reshetikhin-Takhtajan and Jimbo. The theory of
quantum integral systems and quantum inverse scattering methods is developed
by the Leningrad and Japanese school in the early 1980s.

After the Pontryagin duality theorem for locally compact abelian groups, it
is extended to the case of noncommutative groups, such as the Tannaka-Krein
duality theorem as an important first step. It is sharpened by Grothendieck,
Deligne, and independently Doplicher and Roberts. Note that the dual of a
noncommutative group, in any sense, can not be a group, so that the category
of groups is naturally extended and considered to a larger category which is
closed under duality and is equivalent to the second dual, as the case of locally
compact abelian groups.

The Hopf von Neumann algebras of G. I. Kac and Vainerman are considered
in the noncommutatvie measure theory of von Neumann algebras [31]. The
theory of compact quantum groups is initiated as an important step by S. L.
Woronowicz (cf. [75]). The theory of locally compact quantum groups is devel-
oped by Kustermans and Vaes in the category of C∗-algebras [45]. May refer
to [7], [39], [43], [49], [50], [51], [66], and [69] for the general theory of Hopf
algebras and quantum groups.

Hopf algebras and noncommutative geometry interact in the paper of Connes
and Moscovici on transverse index theory [19], and for further developments,
see [20], [21], and [22]. The noncommutative and non-cocommutative Hopf al-
gebra in that paper has the quantum symmetries of the noncommutative space
of codimension 1 foliations. The same Hopf algebra acts on the noncommu-
tative space of modular Hecke algebras [23]. For a survey of Hopf algebras in
noncommutative geometry, may consult [33], [71].
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Sci. Publ. Math. 62 (1985), 41-144.

[11] A. Connes and J. Cuntz, Quasi homomorphisms, cohomologie cy-
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