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Depth estimation is an important tool for machines to get spatial information. Human is realizing high-accuracy
depth estimation by dividing problem area, but it is difficult for machine to calculate depth from a single RGB
image. Our goal is to improve the accuracy of monocular depth estimation. From the past research, it has
been found that obtaining the information stepwise in the global and local areas is effective for depth estimation.
Therefore, In this research, we propose a method to utilize the anteroposterior relationship information of the
object. Experimental results showed that the overlap information is useful for depth prediction.
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