WREATH DETERMINANTS，ZONAL SPHERICAL FUNCTIONS ON SYMMETRIC GROUPS AND THE ALON－TARSI CONJECTURE

メタデータ	言語：en
	出版者：琉球大学理学部数理科学教室
	公開日：2022－02－03
	キーワード（Ja）：
	キーワード（En）：Symmetric groups，zonal spherical
	functions，zonal spherical functions，wreath
	determinants，Latin squares，Latin squares URL成者：Kimoto，Kazufumi メールアドレス： 所属：
http：／／hdl．handle．net／20．500．12000／50094	

WREATH DETERMINANTS, ZONAL SPHERICAL FUNCTIONS ON SYMMETRIC GROUPS

 AND THE ALON-TARSI CONJECTURE*Kazufumi Kimoto

Abstract

In the article, we give several formulas for a certain zonal spherical function on the symmetric group in terms of polynomial functions on matrices called the alpha-determinant and wreath determinant. We also explain the relation between these objects and the Alon-Tarsi conjecture on the enumeration of Latin squares. In particular, we give an alternative proofs of (i) Glynn's result on a special case of the Alon-Tarsi conjecture, and (ii) the result due to Kumar and Landsberg on the equivalence between a special case of Kumar's conjecture on plethysms and the Alon-Tarsi conjecture. Most of the results given here are already announced in the articles [8, 9].

2020 Mathematics Subject Classification. Primary 20C30, 13A50; Secondary 05B15.
Key words and phrases. Symmetric groups, zonal spherical functions, alphadeterminants, wreath determinants, Latin squares, plethysms.

1 Introduction

For a given pair of positive integers n and k, let $\omega_{n, k}$ be the function on the symmetric group $\mathfrak{S}_{k n}$ of degree $k n$ defined by

$$
\omega_{n, k}(g)=\frac{1}{|\mathcal{K}|} \sum_{y \in \mathcal{K}} \chi^{\left(k^{n}\right)}(g y), \quad g \in \mathfrak{S}_{k n},
$$

where $\mathcal{K}=\mathfrak{S}_{\left(k^{n}\right)}$ is a Young subgroup of $\mathfrak{S}_{k n}$ corresponding to the partition $\left(k^{n}\right)=$ $(k, \ldots, k) \vdash k n$, and $\chi^{\left(k^{n}\right)}$ is the irreducible character of $\mathfrak{S}_{k n}$ corresponding to the same partition $\left(k^{n}\right)$. This function is biinvariant with respect to \mathcal{K}, that is,

$$
\omega_{n, k}\left(y g y^{\prime}\right)=\omega_{n, k}(g), \quad \forall g \in \mathfrak{S}_{k n}, \forall y, y^{\prime} \in \mathcal{K} .
$$

We refer to the function $\omega_{n, k}$ as a zonal spherical on $\mathfrak{S}_{k n}$ with respect to \mathcal{K}. Note that in the case where $n=2, \omega_{2, k}$ is indeed a zonal spherical function associated

[^0]to the Gelfand pair $\left(\mathfrak{S}_{2 k}, \mathfrak{S}_{k} \times \mathfrak{S}_{k}\right)$ in the ordinary sense (see, e.g. Macdonald [12, Chapter VII]).

The purpose of the article is to give several formulas for $\omega_{n, k}$ in terms of polynomial functions on matrices called the alpha-determinant $[13,14]$ (Theorem 4.1) and wreath determinant [10] (Theorem 4.6). The alpha-determinant is a parametric deformation of the ordinary determinant, which interpolates the determinant and permanent. The wreath-determinant wrdet_{k} is a polynomial function on the space Mat ${ }_{n, k n}$ consisting of n by $k n$ matrices, which is defined via the alpha-determinant (see (3.1)), and it has a nice characterization in terms of a suitable $\mathrm{GL}_{k n} \times \mathcal{K}$-action (see (W1)-(W3) in §3). When $k=1$, the 1 -wreath determinant wrdet_{1} on Mat $_{n}=\mathrm{Mat}_{n, n}$ agrees with the usual determinant. In this sense, our result provides a 'quasi-determinantal' formula for the zonal spherical function $\omega_{n, k}$.

As an application of our formulas, we show that the values of $\omega_{n, k}$ do not vanish when k is equal to $p-1$ for a certain odd prime number p. In particular, we observe that the Alon-Tarsi conjecture on the Latin squares is true when the size of squares is $p-1$ for an odd prime p. This gives an alternative proof of Glynn's result [5]. We also look at a conjecture on certain plethysms due to Kumar and see that the conjecture in a special case is equivalent to the Alon-Tarsi conjecture, which is originally obtained in [11].

Most of the results given here are already announced in the articles $[8,9]$.

2 Preliminaries

2.1 General conventions

The symmetric group of degree n is denoted by \mathfrak{S}_{n}. For $\sigma \in \mathfrak{S}_{n}, P(\sigma)=\left(\delta_{i \sigma(j)}\right)$ is the permutation matrix of σ. The set of m by n complex matrices is denoted by $\mathrm{Mat}_{m, n}$, and we write Mat ${ }_{n}=\mathrm{Mat}_{n, n}$ for short. The identity matrix of size n is I_{n}, and $\mathbf{1}_{m, n}$ is the m by n matrix all of whose entries are one. We write $\mathbf{1}_{n}$ to indicate $\mathbf{1}_{n, n}$. We denote by $A \otimes B$ the Kronecker product of matrices defined by

$$
A \otimes B=\left(\begin{array}{ccc}
a_{11} B & \ldots & a_{1 n} B \\
\vdots & \ddots & \vdots \\
a_{m 1} B & \ldots & a_{m n} B
\end{array}\right) \in \operatorname{Mat}_{m p, n q}
$$

for $A=\left(a_{i j}\right) \in \operatorname{Mat}_{m, n}$ and $B \in \operatorname{Mat}_{p, q}$. The general linear group of degree n is GL_{n}. We always work on the vector spaces and/or algebras over the complex number field \mathbb{C}. The cardinality of a set S is denoted by $|S|$.

Let $x_{i j}(1 \leq i, j \leq n)$ be independent commuting variables, and put $X=$ $\left(x_{i j}\right)_{1 \leq i, j \leq n}$. For $M=\left(m_{i j}\right) \in \operatorname{Mat}_{n}$ such that $m_{i j} \in \mathbb{Z}_{\geq 0}$, define

$$
x^{M}:=\prod_{i, j} x_{i j}^{m_{i j}} .
$$

By this notation, we have

$$
\operatorname{det} X=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) x^{P(\sigma)}
$$

for instance. When $p=p\left(x_{11}, \ldots, x_{n n}\right)$ is a polynomial in $x_{i j}$'s, we denote by $[p]_{M}$ the coefficient of the monomial x^{M} in p.

2.2 Double cosets

We fix a pair of positive integers n and k in what follows. Let $\Omega=\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ be a set partition of $\{1,2, \ldots, k n\}$ given by

$$
\begin{aligned}
\Omega_{i} & :=\left\{m \in \mathbb{Z} \left\lvert\,\left\lceil\frac{m}{k}\right\rceil=i\right.\right\} \\
& =\{(i-1) k+r \mid r=1,2, \ldots, k\} \quad(i=1, \ldots, n)
\end{aligned}
$$

and define

$$
\mathcal{K}:=\left\{g \in \mathfrak{S}_{k n} \mid g \Omega_{i}=\Omega_{i}(i=1, \ldots, n)\right\} .
$$

Notice that \mathcal{K} is isomorphic to the direct product $\mathfrak{S}_{k}^{n}=\overbrace{\mathfrak{S}_{k} \times \cdots \times \mathfrak{S}_{k}}^{n}$ of the n copies of \mathfrak{S}_{k}. Put

$$
m_{i j}(g):=\left|g \Omega_{i} \cap \Omega_{j}\right| \quad(1 \leq i, j \leq n), \quad \mathcal{M}(g):=\left(m_{i j}(g)\right)_{1 \leq i, j \leq n}
$$

for $g \in \mathfrak{S}_{k n}$, that is, $m_{i j}(g)$ counts the number of elements in Ω_{i} which are sent into Ω_{j} by g. For $g, g^{\prime} \in \mathfrak{S}_{k n}$, we see that

$$
\mathcal{K} g \mathcal{K}=\mathcal{K} g^{\prime} \mathcal{K} \Longleftrightarrow M(g)=M\left(g^{\prime}\right)
$$

and

$$
|\mathcal{K} g \mathcal{K}|=\frac{|\mathcal{K}|^{2}}{\mathcal{M}(g)!},
$$

where $\mathcal{M}(g)!=\prod_{i, j=1}^{n} m_{i j}(g)$!. Put

$$
\mathcal{M}_{n, k}:=\left\{M=\left(m_{i j}\right) \in \operatorname{Mat}_{n}\left(\mathbb{Z}_{\geq 0}\right) \mid \sum_{r=1}^{n} m_{i r}=\sum_{s=1}^{n} m_{s j}=k(1 \leq i, j \leq n)\right\} .
$$

The map

$$
\mathcal{K} \backslash \mathfrak{S}_{k n} / \mathcal{K} \ni \mathcal{K} g \mathcal{K} \mapsto \mathcal{M}(g) \in \mathcal{M}_{n, k}
$$

is bijective. Thus $\mathcal{M}_{n, k}$ gives a 'coordinate system' for the set $\mathcal{K} \backslash \mathfrak{S}_{k n} / \mathcal{K}$ of double cosets.

2.3 Immanants and zonal spherical functions

For each $\lambda \vdash k n$, define

$$
\begin{equation*}
\omega_{\mathcal{K}}^{\lambda}(g):=\frac{1}{|\mathcal{K}|} \sum_{y \in \mathcal{K}} \chi^{\lambda}(g y) \quad\left(g \in \mathfrak{S}_{k n}\right) \tag{2.1}
\end{equation*}
$$

where χ^{λ} is the irreducible character of $\mathfrak{S}_{k n}$ corresponding to λ. These are \mathcal{K} biinvariant functions on $\mathfrak{S}_{k n}$, and hence we refer to these as zonal spherical functions.

Since χ^{λ} are \mathbb{Z}-valued, the functions $\omega_{\mathcal{K}}^{\lambda}$ are \mathbb{Q}-valued. Observe that $\omega_{n, k}=\omega_{\mathcal{K}}^{\left(k^{n}\right)}$. The function $\omega_{\mathcal{K}}^{\lambda}$ is identically zero unless $\lambda \geq\left(k^{n}\right)$ with respect to the dominance ordering

$$
\lambda \geq \mu \Longleftrightarrow \lambda_{1}+\cdots+\lambda_{i} \geq \mu_{1}+\cdots+\mu_{i}, \quad \forall i \geq 1
$$

on partitions of the same size.
The immanant of a matrix $A=\left(a_{i j}\right) \in \operatorname{Mat}_{N}$ associated to $\lambda \vdash N \in \mathbb{Z}_{>0}$ is

$$
\begin{equation*}
\operatorname{Imm}^{\lambda} A=\sum_{\sigma \in \mathfrak{G}_{N}} \chi^{\lambda}(\sigma) \prod_{i=1}^{N} a_{i \sigma(i)} \tag{2.2}
\end{equation*}
$$

Notice that $\operatorname{Imm}^{\left(1^{N}\right)} A=\operatorname{det} A$ and $\operatorname{Imm}^{(N)} A=$ per A, where per A is the permanent of A. For later use, we give an expression of the value of $\omega_{\mathcal{K}}^{\lambda}$ in terms of immanants.

Lemma 2.1. For any $A=\left(a_{i j}\right) \in \operatorname{Mat}_{n, k n}$, we have

$$
\begin{equation*}
\operatorname{Imm}^{\lambda}\left(A \otimes \mathbf{1}_{k, 1}\right)=\sum_{\tau \in \mathfrak{S}_{k n}} \omega_{\mathcal{K}}^{\lambda}(\tau) \prod_{j=1}^{k n} a_{j \tau(j)}^{\prime}, \tag{2.3}
\end{equation*}
$$

where $a_{i j}^{\prime}=a_{\lceil i / k\rceil, j}$ is the (i, j)-entry of $A \otimes \mathbf{1}_{k, 1}$.
Proof. Since $a_{y(i) j}^{\prime}=a_{i j}^{\prime}$ for any $y \in \mathcal{K}$, it follows that

$$
\begin{aligned}
\operatorname{Imm}^{\lambda}\left(A \otimes \mathbf{1}_{k, 1}\right) & =\sum_{\sigma \in \mathfrak{S}_{k n}} \chi^{\lambda}(\sigma) \prod_{i=1}^{k n} a_{i \sigma(i)}^{\prime}=\frac{1}{|\mathcal{K}|} \sum_{y \in \mathcal{K}} \sum_{\sigma \in \mathfrak{S}_{k n}} \chi^{\lambda}(\sigma) \prod_{i=1}^{k n} a_{y(i) \sigma(i)}^{\prime} \\
& =\frac{1}{|\mathcal{K}|} \sum_{y \in \mathcal{K}} \sum_{\tau \in \mathfrak{S}_{k n}} \chi^{\lambda}(\tau y) \prod_{j=1}^{k n} a_{j \tau(j)}^{\prime}=\sum_{\tau \in \mathfrak{G}_{k n}} \omega_{\mathcal{K}}^{\lambda}(\tau) \prod_{j=1}^{k n} a_{j \tau(j)}^{\prime}
\end{aligned}
$$

as desired.
Lemma 2.2. Let $\lambda \vdash k n$.
(i) For $g \in \mathfrak{S}_{k n}$,

$$
\omega_{\mathcal{K}}^{\lambda}(g)=\frac{1}{|\mathcal{K}|} \operatorname{Imm}^{\lambda}\left(\left(I_{n} \otimes \mathbf{1}_{k}\right) P(g)\right) .
$$

(ii) It holds that

$$
\operatorname{Imm}^{\lambda}\left(X \otimes \mathbf{1}_{k}\right)=\sum_{\tau \in \mathfrak{G}_{k n}} \omega_{\mathcal{K}}^{\lambda}(\tau) x^{\mathcal{M}(\tau)}
$$

In particular,

$$
\omega_{\mathcal{K}}^{\lambda}(g)=\frac{M(g)!}{|\mathcal{K}|^{2}}\left[\operatorname{Imm}^{\lambda}\left(X \otimes \mathbf{1}_{k}\right)\right]_{M(g)}
$$

for $g \in \mathfrak{S}_{k n}$.

Proof. We get (i) if we set $A=\left(I_{n} \otimes \mathbf{1}_{1, k}\right) P(g)$ with $g \in \mathfrak{S}_{k n}$ in (2.3). If we set $A=X \otimes \mathbf{1}_{1, k}$ in (2.3), then we have (ii) since $a_{i \tau(i)}^{\prime}=x_{p q}$ when $i \in \Omega_{p}$ and $\tau(i) \in \Omega_{q}$ and

$$
\sum_{\tau \in \mathfrak{G}_{k n}} \omega_{\mathcal{K}}^{\lambda}(\tau) x^{\mathcal{M}(\tau)}=\sum_{M \in \mathcal{M}_{n, k}} \sum_{\substack{\tau \in \mathfrak{S}_{k n} \\ M(\tau)=M}} \omega_{\mathcal{K}}^{\lambda}(\tau) x^{M}=\sum_{M \in \mathcal{M}_{n, k}} \frac{|\mathcal{K}|^{2}}{M!} \omega_{\mathcal{K}}^{\lambda}\left(g_{M}\right) x^{M}
$$

where g_{M} is an arbitrarily chosen element in $\mathfrak{S}_{k n}$ such that $M\left(g_{M}\right)=M$.

3 The alpha-determinant and wreath determinant

We recall the definitions and basic facts on the alpha-determinant and wreath determinant. The alpha-determinant is first introduce by Vere-Jones [14] as α-permanent, whose definition is slightly different from ours; here we follow the convention in [13]. For the wreath determinant, see [10] for the detailed information.

First we define a class function $\nu(\cdot)$ on \mathfrak{S}_{N} by

$$
\nu(\sigma):=N-\sum_{i \geq 1} m_{i}(\sigma)=\sum_{i \geq 2}(i-1) m_{i}(\sigma)
$$

for $\sigma \in \mathfrak{S}_{N}$ when the cycle type of σ is $1^{m_{1}(\sigma)} 2^{m_{2}(\sigma)} \ldots N^{m_{N}(\sigma)}$. Notice that $\nu(\sigma \tau)=$ $\nu(\sigma)+\nu(\tau)$ if σ and τ are disjoint.
Remark 3.1. For each $\sigma \in \mathfrak{S}_{N}, \nu(\sigma)$ is equal to the distance between the identity e and σ on the Cayley graph of \mathfrak{S}_{N} whose generating set consists of all transpositions.
Remark 3.2. The value of $\nu(\sigma)$ for $\sigma \in \mathfrak{S}_{N}$ is invariant under the standard embedding $\mathfrak{S}_{N} \hookrightarrow \mathfrak{S}_{N^{\prime}}\left(N^{\prime}>N\right)$ which regards σ as an element in $\mathfrak{S}_{N^{\prime}}$ leaving $N^{\prime}-N$ letters $N+1, \ldots, N^{\prime}$ fixed. Namely, it would be natural to regard the function $\nu(\cdot)$ as a class function on the infinite symmetric group $\mathfrak{S}_{\infty}=\bigcup_{N \geq 1} \mathfrak{S}_{N}$.

The alpha-determinant of an N by N matrix $A=\left(a_{i j}\right) \in \operatorname{Mat}_{N}$ is

$$
\operatorname{det}_{\alpha} A:=\sum_{\sigma \in \mathfrak{G}_{N}} \alpha^{\nu(\sigma)} \prod_{i=1}^{N} a_{i \sigma(i)} .
$$

Note that $\operatorname{det}_{-1} A=\operatorname{det} A$ and $\operatorname{det}_{1} A=$ per A. The alpha-determinant is multilinear in rows and columns, is invariant under the transposition, and has Laplace expansion formula. We see that

$$
\operatorname{det}_{\alpha}(A P(\sigma))=\operatorname{det}_{\alpha}(P(\sigma) A)
$$

for any $A \in \operatorname{Mat}_{N}$ and $\sigma \in \mathfrak{S}_{N}$ because $\nu(\cdot)$ is a class function on \mathfrak{S}_{N}, but the equation $\operatorname{det}_{\alpha}(A B)=\operatorname{det}_{\alpha}(B A)$ does not hold in general. We also note that we have

$$
\operatorname{det}_{\alpha}\left(\begin{array}{ll}
A & B \\
O & C
\end{array}\right)=\operatorname{det}_{\alpha} A \operatorname{det}_{\alpha} C
$$

if A and C are square matrices.

Example 3.3. We have

$$
\operatorname{det}_{\alpha} \mathbf{1}_{N}=\sum_{\sigma \in \mathfrak{G}_{N}} \alpha^{\nu(\sigma)}=\prod_{j=1}^{N-1}(1+j \alpha)
$$

For an n by $k n$ matrix $A=\left(a_{i j}\right) \in \operatorname{Mat}_{n, k n}$, the k-wreath determinant of A is defined by

$$
\begin{equation*}
\operatorname{wrdet}_{k} A:=\operatorname{det}_{-1 / k}\left(A \otimes \mathbf{1}_{k, 1}\right) . \tag{3.1}
\end{equation*}
$$

Note that the 1-wreath determinant wrdet ${ }_{1}$ is the ordinary determinant. The wreathdeterminant wrdet_{k} is characterized as a polynomial function on the space Mat ${ }_{n, k n}$ by the following three conditions up to a scalar multiple (see [10] for the proof):
(W1) wrdet $_{k}$ is multilinear in columns.
(W2) $\operatorname{wrdet}_{k}(Q A)=(\operatorname{det} Q)^{k} \operatorname{wrdet}_{k}(A)$ for $Q \in \operatorname{Mat}_{n}$ and $A \in \operatorname{Mat}_{n, k n}$.
(W3) $\operatorname{wrdet}_{k}(A P(\sigma))=\operatorname{wrdet}_{k}(A)$ for $\sigma \in \mathcal{K}$ and $A \in \operatorname{Mat}_{n, k n}$. In other words, if $A_{i} \in \operatorname{Mat}_{n, k}(i=1,2, \ldots, n)$, then

$$
\operatorname{wrdet}_{k}\left(A_{1} P\left(\sigma_{1}\right) A_{2} P\left(\sigma_{2}\right) \ldots A_{n} P\left(\sigma_{n}\right)\right)=\operatorname{wrdet}_{k}\left(A_{1} A_{2} \ldots A_{n}\right)
$$

for any $\sigma_{1}, \ldots, \sigma_{n} \in \mathfrak{S}_{k}$.
In fact, instead of (W3), the k-wreath determinant satisfies a slightly stronger relative invariance
$\left(\mathrm{W}^{\prime}\right) \operatorname{wrdet}_{k}(A P(g))=\chi_{n, k}(g) \operatorname{wrdet}_{k}(A)$ for $g \in \mathcal{K} \rtimes \mathfrak{S}_{n}=\mathfrak{S}_{n} \imath \mathfrak{S}_{k}<\mathfrak{S}_{k n}$ and $A \in \operatorname{Mat}_{n, k n}$, where $\chi_{n, k}$ is defined by

$$
\begin{equation*}
\chi_{n, k}(g)=(\operatorname{sgn} \tau)^{k}, \quad g=(\sigma, \tau) \in \mathcal{K} \rtimes \mathfrak{S}_{k} . \tag{3.2}
\end{equation*}
$$

(W3') means that if $A_{i} \in \operatorname{Mat}_{n, k}(i=1,2, \ldots, n)$, then

$$
\operatorname{wrdet}_{k}\left(A_{\tau(1)} A_{\tau(2)} \ldots A_{\tau(n)}\right)=(\operatorname{sgn} \tau)^{k} \operatorname{wrdet}_{k}\left(A_{1} A_{2} \ldots A_{n}\right)
$$

for any $\tau \in \mathfrak{S}_{n}$. This readily follows from (W2) by taking $Q=I_{k} \otimes P(\tau)$. Here we regard the wreath product $\mathfrak{S}_{n} \backslash \mathfrak{S}_{k}$ as a subgroup of $\mathfrak{S}_{k n}$ so that we have

$$
P(g)=P(\sigma) \cdot\left(I_{k} \otimes P(\tau)\right), \quad g=(\sigma, \tau) \in \mathfrak{S}_{k} \prec \mathfrak{S}_{n}
$$

Remark 3.4. The definition of the wreath determinant is a bit different from the original one in [10], where the k-wreath determinant is defined for the $k n$ by n rectangular matrices.

Example 3.5. We have

$$
\begin{gather*}
\operatorname{wrdet}_{k}\left(I_{n} \otimes \mathbf{1}_{1, k}\right)=\operatorname{det}_{-1 / k}\left(I_{n} \otimes \mathbf{1}_{k}\right)=\operatorname{det}_{-1 / k}\left(\begin{array}{cccc}
\mathbf{1}_{k} & & & \\
& \mathbf{1}_{k} & & \\
& & \ddots & \\
& & & \mathbf{1}_{k}
\end{array}\right) \\
=\left(\operatorname{det}_{-1 / k} \mathbf{1}_{k}\right)^{n}=\left(\frac{k!}{k^{k}}\right)^{n} . \tag{3.3}
\end{gather*}
$$

More generally, for $A \in \mathrm{Mat}_{n}$, we have

$$
\operatorname{wrdet}_{k}\left(A \otimes \mathbf{1}_{1, k}\right)=\operatorname{wrdet}_{k}\left(A \cdot\left(I_{n} \otimes \mathbf{1}_{1, k}\right)\right)=\left(\frac{k!}{k^{k}}\right)^{n}(\operatorname{det} A)^{k} .
$$

4 Formulas for zonal spherical functions

The alpha-determinant is written as a linear combination of immanants as

$$
\begin{equation*}
\operatorname{det}_{\alpha} A=\frac{1}{N!} \sum_{\lambda \vdash N} f^{\lambda} f_{\lambda}(\alpha) \operatorname{Imm}^{\lambda} A, \tag{4.1}
\end{equation*}
$$

where $f^{\lambda}=\chi^{\lambda}(e), e$ being the identity permutation, and

$$
f_{\lambda}(\alpha)=\prod_{i=1}^{l(\lambda)} \prod_{j=1}^{\lambda_{i}}(1+(j-i) \alpha)
$$

is the modified content polynomial for λ. This is immediate from the well-known expansion formula

$$
\begin{equation*}
\alpha^{\nu(\cdot)}=\frac{1}{N!} \sum_{\lambda \vdash N} f^{\lambda} f_{\lambda}(\alpha) \chi^{\lambda} . \tag{4.2}
\end{equation*}
$$

Theorem 4.1. For $g \in \mathfrak{S}_{k n}$, we have

$$
\begin{aligned}
\omega_{n, k}(g) & =\frac{k^{k n}}{|\mathcal{K}|} \operatorname{det}_{-1 / k}\left(\left(I_{n} \otimes \mathbf{1}_{k}\right) P(g)\right) \\
& =\left(\frac{k^{k}}{k!}\right)^{n} \sum_{y \in \mathcal{K}}\left(-\frac{1}{k}\right)^{\nu(g y)} .
\end{aligned}
$$

Proof. By (4.1) and Lemma 2.2 (i), we have

$$
\operatorname{det}_{-1 / k}\left(\left(I_{n} \otimes \mathbf{1}_{k}\right) P(g)\right)=\frac{|\mathcal{K}|}{(k n)!} \sum_{\lambda \vdash-k n} f^{\lambda} f_{\lambda}(-1 / k) \omega_{\mathcal{K}}^{\lambda}(g) .
$$

Since $f_{\lambda}(-1 / k)=0$ if $\lambda_{1}>k$ and $\operatorname{Imm}^{\lambda}\left(A \otimes \mathbf{1}_{k, 1}\right)=0$ unless $\lambda \geq\left(k^{n}\right)$, only the term for $\lambda=\left(k^{n}\right)$ survives in the righthand side of the equation above. By the hook formula for f^{λ} and the definition of $f_{\lambda}(\alpha)$, we readily obtain

$$
f^{\left(k^{n}\right)} f_{\left(k^{n}\right)}(-1 / k)=\frac{(k n)!}{k^{k n}} .
$$

This completes the proof of the first equality. The second equality is immediate by the definition of the alpha-determinant.

Using Theorem 4.1, we obtain the stability of $\omega_{n, k}$ with respect to n as well as the non-vanishingness of $\omega_{n, k}$ when $k+1$ is prime as follows.

Corollary 4.2. If $m>n$, then $\omega_{m, k}(g)=\omega_{n, k}(g)$ for any $g \in \mathfrak{S}_{k n}$, where we regard $g \in \mathfrak{S}_{k n}$ as an element in $\mathfrak{S}_{k m}$ by the standard embedding.

Proof. We regard \mathfrak{S}_{k}^{m} as a direct product $\mathfrak{S}_{k}^{n} \times \mathfrak{S}_{k}^{m-n}$. If $g \in \mathfrak{S}_{k n}$ and $\left(y_{1}, y_{2}\right) \in$ $\mathfrak{S}_{k}^{n} \times \mathfrak{S}_{k}^{m-n}$, then $g y_{1}$ and y_{2} are disjoint permutations, and hence it follows that $\nu\left(g y_{1} y_{2}\right)=\nu\left(g y_{1}\right)+\nu\left(y_{2}\right)$. Thus we have

$$
\begin{aligned}
\omega_{m, k}(g) & =\left(\frac{k^{k}}{k!}\right)^{m} \sum_{\left(y_{1}, y_{2}\right) \in \mathfrak{S}_{k}^{n} \times \mathfrak{G}_{k}^{m-n}}\left(-\frac{1}{k}\right)^{\nu\left(g y_{1} y_{2}\right)} \\
& =\left(\frac{k^{k}}{k!}\right)^{m} \sum_{y_{1} \in \mathfrak{S}_{k}^{n}}\left(-\frac{1}{k}\right)^{\nu\left(g y_{1}\right)} \sum_{y_{2} \in \mathfrak{S}_{k}^{m-n}}\left(-\frac{1}{k}\right)^{\nu\left(y_{2}\right)} \\
& =\left(\frac{k^{k}}{k!}\right)^{n} \sum_{y_{1} \in \mathfrak{S}_{k}^{n}}\left(-\frac{1}{k}\right)^{\nu\left(g y_{1}\right)} \\
& =\omega_{n, k}(g)
\end{aligned}
$$

as desired.
Theorem 4.3. Let p be an odd prime. The function $\omega_{n, k}$ does not vanish on $\mathfrak{S}_{k n}$ if $k=p-1$.

Proof. By Theorem 4.1, we have

$$
\omega_{n, k}(g)=\left(\frac{(p-1)^{p-1}}{(p-1)!}\right)^{n} \sum_{y \in \mathcal{K}}\left(-\frac{1}{p-1}\right)^{\nu(g y)} \equiv \frac{1}{|\mathcal{K}|} \sum_{y \in \mathcal{K}} 1 \equiv 1 \quad(\bmod p)
$$

for any $g \in \mathfrak{S}_{k n}$, which implies the desired nonvanishingness.
Remark 4.4. In [7], the inverse of Theorem 4.3 is proved. In fact, the authors show that if $n \geq 3$ and $k+1$ is composite, then one can find $M \in \mathcal{M}_{n, k}$ such that $\left[(\operatorname{det} X)^{k}\right]_{M}=$ 0.

We give a formula for the function $\omega_{n, k}$ in terms of the wreath determinant.
Lemma 4.5. For $A \in \operatorname{Mat}_{n, k n}$, we have

$$
\operatorname{wrdet}_{k} A=\frac{1}{k^{k n}} \operatorname{Imm}^{\left(k^{n}\right)}\left(A \otimes \mathbf{1}_{k, 1}\right) .
$$

Proof. By the definition of the wreath determinant and the formula (4.1), we have

$$
\begin{aligned}
\operatorname{wrdet}_{k} A & =\operatorname{det}_{-1 / k}\left(A \otimes \mathbf{1}_{k, 1}\right) \\
& =\frac{1}{(k n)!} \sum_{\lambda \vdash k n} f^{\lambda} f_{\lambda}(-1 / k) \operatorname{Imm}^{\lambda}\left(A \otimes \mathbf{1}_{k, 1}\right) .
\end{aligned}
$$

The conclusion follows from a similar discussion as in the proof of Theorem 4.1.
Theorem 4.6. For $g \in \mathfrak{S}_{k n}$, we have

$$
\begin{aligned}
\omega_{n, k}(g) & =\frac{\mathbf{M}(g)!}{|\mathcal{K}|}\left[(\operatorname{det} X)^{k}\right]_{\mathcal{M}(g)} \\
& =\frac{\operatorname{wrdet}_{k}\left(\left(I_{n} \otimes \mathbf{1}_{1, k}\right) P(g)\right)}{\operatorname{wrdet}_{k}\left(I_{n} \otimes \mathbf{1}_{1, k}\right)} .
\end{aligned}
$$

Proof. By Lemma 4.5, we see that

$$
\operatorname{wrdet}_{k}\left(X \otimes \mathbf{1}_{1, k}\right)=\frac{1}{k^{k n}} \operatorname{Imm}^{\left(k^{n}\right)}\left(X \otimes \mathbf{1}_{k}\right) .
$$

On the other hand, by (W2) and (3.3), we have

$$
\operatorname{wrdet}_{k}\left(X \otimes \mathbf{1}_{1, k}\right)=(\operatorname{det} X)^{k} \operatorname{wrdet}_{k}\left(I_{n} \otimes \mathbf{1}_{1, k}\right)=\left(\frac{k!}{k^{k}}\right)^{n}(\operatorname{det} X)^{k} .
$$

Thus it follows that

$$
(\operatorname{det} X)^{k}=\frac{1}{|\mathcal{K}|} \operatorname{Imm}^{\left(k^{n}\right)}\left(X \otimes \mathbf{1}_{k}\right) .
$$

Hence, by Lemma 2.2 (ii), we have the first equality. The second equality is obtained by Theorem 4.1 and the equation

$$
\operatorname{det}_{-1 / k}\left(\left(I_{n} \otimes \mathbf{1}_{k}\right) P(g)\right)=\operatorname{wrdet}_{k}\left(\left(I_{n} \otimes \mathbf{1}_{1, k}\right) P(g)\right),
$$

which follows from the definition of the wreath determinant.
As a corollary, we see that the relative invariance of the function $\omega_{n, k}$ with respect to the wreath product $\mathfrak{S}_{k} \swarrow \mathfrak{S}_{n}$.

Corollary 4.7. For any $g \in \mathfrak{S}_{k n}$ and $h, h^{\prime} \in \mathfrak{S}_{k} \prec \mathfrak{S}_{n}$, we have

$$
\omega_{n, k}\left(h g h^{\prime}\right)=\chi_{n, k}\left(h h^{\prime}\right) \omega_{n, k}(g) .
$$

Here $\chi_{n, k}$ is the character of $\mathfrak{S}_{k} \swarrow \mathfrak{S}_{n}$ defined by (3.2). In particular, $\omega_{n, k}$ is $\mathfrak{S}_{k} \swarrow \mathfrak{S}_{n}$ biinvariant if k is even.

Proof. Let $h=(\sigma, \tau), h^{\prime}=\left(\sigma^{\prime}, \tau^{\prime}\right) \in \mathcal{K} \rtimes \mathfrak{S}_{n}=\mathfrak{S}_{k} \prec \mathfrak{S}_{n}$. Since

$$
\left(I_{n} \otimes \mathbf{1}_{1, k}\right) P(h)=\left(I_{n} \otimes \mathbf{1}_{1, k}\right) P(\sigma)\left(I_{k} \otimes P(\tau)\right)=P(\tau)\left(I_{n} \otimes \mathbf{1}_{1, k}\right),
$$

we have

$$
\begin{aligned}
\omega_{n, k}\left(h g h^{\prime}\right) & =\frac{\operatorname{wrdet}_{k}\left(\left(I_{n} \otimes \mathbf{1}_{1, k}\right) P\left(h g h^{\prime}\right)\right)}{\operatorname{wrdet}_{k}\left(I_{n} \otimes \mathbf{1}_{1, k}\right)} \\
& =\frac{\operatorname{wrdet}_{k}\left(P(\tau)\left(I_{n} \otimes \mathbf{1}_{1, k}\right) P(g) P\left(h^{\prime}\right)\right)}{\operatorname{wrdet}_{k}\left(I_{n} \otimes \mathbf{1}_{1, k}\right)} \\
& =\operatorname{det} P(\tau)^{k} \chi_{n, k}\left(h^{\prime}\right) \frac{\operatorname{wrdet}_{k}\left(\left(I_{n} \otimes \mathbf{1}_{1, k}\right) P(g)\right)}{\operatorname{wrdet}_{k}\left(I_{n} \otimes \mathbf{1}_{1, k}\right)} \\
& =\chi_{n, k}\left(h h^{\prime}\right) \omega_{n, k}(g)
\end{aligned}
$$

as desired.

5 Applications

5.1 The Alon-Tarsi conjecture on Latin squares

A Latin square of degree n is an n by n matrix whose rows and columns are permutations of $1,2, \ldots, n$. The set of all Latin squares of degree n is denoted by $\operatorname{LS}(n)$.

Example 5.1. There are twelve Latin squares of degree 3:

$$
\begin{gathered}
\mathrm{LS}(3)=\left\{\begin{array}{lll}
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right), & \left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2 \\
2 & 3 & 1
\end{array}\right),\left(\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right),\left(\begin{array}{lll}
2 & 3 & 1 \\
3 & 1 & 2 \\
1 & 2 & 3
\end{array}\right), \\
\left(\begin{array}{lll}
3 & 1 & 2 \\
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right),\left(\begin{array}{lll}
3 & 1 & 2 \\
2 & 3 & 1 \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2 \\
2 & 1 & 3 \\
3 & 2 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right), \\
& \left.\left(\begin{array}{lll}
2 & 1 & 3 \\
1 & 3 & 2 \\
3 & 2 & 1
\end{array}\right),\left(\begin{array}{lll}
2 & 1 & 3 \\
3 & 2 & 1 \\
1 & 3 & 2
\end{array}\right),\left(\begin{array}{lll}
3 & 2 & 1 \\
1 & 3 & 2 \\
2 & 1 & 3
\end{array}\right),\left(\begin{array}{lll}
3 & 2 & 1 \\
2 & 1 & 3 \\
1 & 3 & 2
\end{array}\right)\right\} .
\end{array} . . \begin{array}{c}
\\
\hline
\end{array}\right) \\
\hline
\end{gathered}
$$

For $L \in \operatorname{LS}(n)$, we associate $2 n$ permutations $r_{1}, \ldots, r_{n}, c_{1}, \ldots, c_{n} \in \mathfrak{S}_{n}$ to it by

$$
L=\left(\begin{array}{ccc}
r_{1}(1) & \ldots & r_{1}(n) \\
\vdots & \ddots & \vdots \\
r_{n}(1) & \ldots & r_{n}(n)
\end{array}\right)=\left(\begin{array}{ccc}
c_{1}(1) & \ldots & c_{n}(1) \\
\vdots & \ddots & \vdots \\
c_{1}(n) & \ldots & c_{n}(n)
\end{array}\right) .
$$

Then we define

$$
\operatorname{sgn} L:=\prod_{i=1}^{n} \operatorname{sgn} r_{i} \prod_{i=1}^{n} \operatorname{sgn} c_{i},
$$

and we call L even (resp. odd) if $\operatorname{sgn} L=+1$ (resp. -1). We denote by els (n) and ols (n) the numbers of even and odd Latin squares of degree n respectively. Since the $\operatorname{map} \operatorname{LS}(n) \ni L \mapsto P(\sigma) L \in \operatorname{LS}(n)$ for a given $\sigma \in \mathfrak{S}_{n}$ is a bijection and $\operatorname{sgn}(P(\sigma) L)=$ $(\operatorname{sgn} \sigma)^{n} \operatorname{sgn} L$ for $L \in \operatorname{LS}(n)$, we have $\operatorname{els}(n)=\operatorname{ols}(n)$ when n is odd. When n is even, it is conjectured that the numbers of even and odd Latin squares are always different.

Conjecture 5.2 (Alon-Tarsi conjecture). $\operatorname{els}(n) \neq \operatorname{ols}(n)$ if n is even.
This conjecture originally arose from the study of colorings of graphs. Indeed, if the Alon-Tarsi conjecture for even n is true, then we see that the Dinitz conjecture below for n follows [1].

Proposition 5.3 (Dinitz conjecture). The line graph of the biclique (or complete bipartite graph) $K_{n, n}$ is n-choosable.

We remark that the Dinitz conjecture itself is already settled down by Galvin [4]. There are also various statements which are equivalent to or related with the AlonTarsi conjecture (see, e.g. [6, 11]). The Alon-Tarsi conjecture is proved to be true in the case where $n=p+1$ by Drisko [2] and in the case where $n=p-1$ by Glynn [5], where p is an odd prime; We also refer to [3].

We need another statement which is equivalent to the Alon-Tarsi conjecture. Define

$$
\mathrm{L}(n):=\left\{\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \mathfrak{S}_{n}^{n} \mid P\left(\sigma_{1}\right)+\cdots+P\left(\sigma_{n}\right)=\mathbf{1}_{n}\right\}
$$

For $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \mathrm{L}(n)$, the matrix

$$
L(\boldsymbol{\sigma}):=\sum_{i=1}^{n} i P\left(\sigma_{i}\right)
$$

is a Latin square of degree n, and every Latin square is uniquely obtained in this way. A Latin square $L=L(\boldsymbol{\sigma})(\boldsymbol{\sigma} \in \mathrm{L}(n))$ is called symbol even (resp. symbol odd) if

$$
\operatorname{symsgn} L:=\prod_{i=1}^{n} \operatorname{sgn} \sigma_{i}
$$

is +1 (resp. -1). We denote by $\operatorname{sels}(n)$ and $\operatorname{sols}(n)$ the number of symbol even and symbol odd Latin squares of degree n respectively. It is known that

$$
\operatorname{sels}(n)-\operatorname{sols}(n)=(-1)^{n(n-1) / 2}(\operatorname{els}(n)-\operatorname{ols}(n))
$$

for every n (see, e.g. [5]), so Conjecture 5.2 is equivalent to the
Conjecture 5.4. sels $(n) \neq \operatorname{sols}(n)$ if n is even.
Since

$$
\begin{aligned}
{\left[(\operatorname{det} X)^{n}\right]_{\mathbf{1}_{n}} } & =\sum_{\substack{\sigma_{1}, \ldots, \sigma_{n} \in \mathfrak{G}_{n} \\
P\left(\sigma_{1}\right)+\ldots+P\left(\sigma_{n}\right)=\mathbf{1}_{n}}} \prod_{i=1}^{n}\left(\operatorname{sgn} \sigma_{i}\right) \\
& =\sum_{\boldsymbol{\sigma} \in \mathrm{L}(n)} \operatorname{symsgn} L(\boldsymbol{\sigma}) \\
& =\sum_{L \in \mathrm{LS}(n)} \operatorname{symsgn} L=\operatorname{sels}(n)-\operatorname{sols}(n),
\end{aligned}
$$

we obtain the following result by Theorem 4.6.
Theorem 5.5. When n is even, the Alon-Tarsi conjecture on $\operatorname{LS}(n)$ is equivalent to the following assertions.
(1) $\left[(\operatorname{det} X)^{n}\right]_{\mathbf{1}_{n}} \neq 0$.
(2) $\operatorname{wrdet}_{n}\left(\left(I_{n} \otimes \mathbf{1}_{1, n}\right) P\left(g_{n}\right)\right)=\operatorname{wrdet}_{n}(\overbrace{I_{n} \ldots I_{n}}^{n}) \neq 0$.
(3) $\omega_{n, n}\left(g_{n}\right) \neq 0$.

Here the permutation $g_{n} \in \mathfrak{S}_{n^{2}}$ is given by

$$
\begin{equation*}
g_{n}((i-1) n+j)=(j-1) n+i, \quad 1 \leq i, j \leq n, \tag{5.1}
\end{equation*}
$$

which is a product of $n(n-1) / 2$ disjoint transpositions and $M\left(g_{n}\right)=\mathbf{1}_{n}$.
Thus, Theorem 5.5 (3) together with Theorem 4.3 gives another proof of the
Corollary 5.6 (Glynn [5]). The Alon-Tarsi conjecture for Latin squares of degree n is true if $n=p-1$ for an odd prime p.

5.2 A remark on Kumar's conjecture on plethysms

Let k and n be positive integers as heretofore, and V be a finite dimensional vector space over \mathbb{C} such that $\operatorname{dim} V \geq n$. The symmetric group \mathfrak{S}_{m} acts on $V^{\otimes m}$ from the right by

$$
\left(v_{1} \otimes \cdots \otimes v_{m}\right) \cdot \sigma:=v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(m)} \quad\left(\sigma \in \mathfrak{S}_{m}\right)
$$

This action linearly extends to that of the group algebra $\mathbb{C S}_{m}$. We understand that the symmetric tensor power $S^{m}(V)$ of V is a subspace of $V^{\otimes m}$ spanned by the vectors of the form

$$
\begin{equation*}
v_{1} \cdots v_{m}:=v_{1} \otimes \cdots \otimes v_{m} \cdot \frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_{m}} \sigma=\frac{1}{m!} \sum_{\sigma \in \mathfrak{S}_{m}} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(m)} \tag{5.2}
\end{equation*}
$$

Set

$$
\mathcal{H}=\mathcal{K} \rtimes \mathfrak{S}_{n}=\mathfrak{S}_{k} \imath \mathfrak{S}_{n}, \quad \mathcal{K}^{\prime}=\mathfrak{S}_{n}^{k}, \quad \mathcal{H}^{\prime}=\mathcal{K}^{\prime} \rtimes \mathfrak{S}_{k}=\mathfrak{S}_{n} \imath \mathfrak{S}_{k}
$$

and

$$
e(G)=\frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}_{k n}
$$

for $G<\mathfrak{S}_{k n}$. We have then

$$
S^{n}\left(S^{k} V\right)=V^{\otimes k n} \cdot \boldsymbol{e}(\mathcal{H}), \quad S^{k}\left(S^{n} V\right)=V^{\otimes k n} \cdot \boldsymbol{e}\left(\mathcal{H}^{\prime}\right)
$$

Define a linear transformation $\tau=\tau_{k, n}$ on $V^{\otimes k n}$ by

$$
\begin{aligned}
& \tau: V^{\otimes k n} \ni \overbrace{k}^{\overbrace{v_{1}^{1} \otimes \cdots \otimes v_{k}^{1}}^{v^{\prime}} \otimes \otimes \underbrace{v_{1}^{n} \otimes \cdots \otimes v_{k}^{n}}_{k}} \\
& \longmapsto \overbrace{\underbrace{v_{1}^{1} \otimes \cdots \otimes v_{1}^{n}}_{n} \otimes \cdots \otimes \underbrace{v_{k}^{1} \otimes \cdots \otimes v_{k}^{n}}_{n}}^{n} \in V^{\otimes k n}
\end{aligned}
$$

or equivalently,

$$
\tau\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k n}\right)=\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k n}\right) \cdot g_{n, k}
$$

where the permutation $g_{n, k} \in \mathfrak{S}_{k n}$ is defined by

$$
\begin{equation*}
g_{n, k}((i-1) n+j)=(j-1) k+i, \quad 1 \leq i \leq k, 1 \leq j \leq n \tag{5.3}
\end{equation*}
$$

We notice that $g_{n, n}$ equals g_{n} defined in (5.1). Using this, we define a map $h_{n, k}$ by

$$
h_{n, k}:=p \circ \tau \circ i: S^{n}\left(S^{k} V\right) \stackrel{i}{\longrightarrow} V^{\otimes k n} \xrightarrow{\tau} V^{\otimes k n} \xrightarrow{p} S^{k}\left(S^{n} V\right),
$$

where i is the inclusion and p is the natural projection (i.e. multiplication by $\boldsymbol{e}\left(\mathcal{H}^{\prime}\right)$ from the right as in (5.2)). Notice that $h_{n, k}(v)=v \cdot g_{n, k} \boldsymbol{e}\left(\mathcal{H}^{\prime}\right)$ for $v \in S^{n}\left(S^{k} V\right)$. This map is clearly a GL (V)-intertwiner between two left GL (V)-modules $S^{n}\left(S^{k} V\right)$ and $S^{k}\left(S^{n} V\right)$.

Example 5.7.

$$
\begin{aligned}
h_{2,2}\left(\left(v_{1} v_{2}\right)\left(v_{3} v_{4}\right)\right)= & (p \circ \tau)\left(\frac{v_{1} \otimes v_{2}+v_{2} \otimes v_{1}}{2} \otimes \frac{v_{3} \otimes v_{4}+v_{4} \otimes v_{3}}{2}\right) \\
= & \frac{1}{4} p\left(v_{1} \otimes v_{3} \otimes v_{2} \otimes v_{4}+v_{2} \otimes v_{3} \otimes v_{1} \otimes v_{4}\right. \\
& \left.\quad+v_{1} \otimes v_{4} \otimes v_{2} \otimes v_{3}+v_{2} \otimes v_{4} \otimes v_{1} \otimes v_{3}\right) \\
= & \frac{\left(v_{1} v_{3}\right)\left(v_{2} v_{4}\right)+\left(v_{2} v_{3}\right)\left(v_{1} v_{4}\right)+\left(v_{1} v_{4}\right)\left(v_{2} v_{3}\right)+\left(v_{2} v_{4}\right)\left(v_{1} v_{3}\right)}{4}
\end{aligned}
$$

Motivated by the Hadamard-Howe conjecture on the maximality of $h_{n, k}$, it is conjectured by Kumar that $\operatorname{ker} h_{n, k}$ does not contain $\mathbf{E}_{V}^{\left(k^{n}\right)}$, the irreducible GL (V)-module with highest weight $\left(k^{n}\right)=(k, \ldots, k)$, if $n \leq k$ and k is even (see [11, Conjecture 1.6]). We focus on this problem below.

By the Schur-Weyl duality

$$
V^{\otimes k n}=\bigoplus_{\lambda \vdash k n} \mathbf{E}_{V}^{\lambda} \boxtimes \mathbf{M}_{k n}^{\lambda}
$$

where $\mathbf{M}_{k n}^{\lambda}$ is the irreducible $\mathfrak{S}_{k n}$-module corresponding to λ, the multiplicity of \mathbf{E}_{V}^{λ} in $S^{n}\left(S^{k} V\right)$ as a left $\mathrm{GL}(V)$-module is equal to $\operatorname{dim}\left(\mathbf{M}_{k n}^{\lambda} \cdot \boldsymbol{e}(\mathcal{H})\right)$, which is majorated by $\operatorname{dim}\left(\mathbf{M}_{k n}^{\lambda} \cdot \boldsymbol{e}(\mathcal{K})\right)=K_{\lambda\left(k^{n}\right)}$, the Kostka number.
Remark 5.8. Similarly, we see that the multiplicity of \mathbf{E}_{V}^{λ} in $S^{k}\left(S^{n} V\right)$ is majorated by $K_{\lambda\left(n^{k}\right)}$. Especially, if $n>k$, then $S^{k}\left(S^{n} V\right)$ does not contain $\mathbf{E}_{V}^{\left(k^{n}\right)}$ since $K_{\left(k^{n}\right)\left(n^{k}\right)}=0$.
Lemma 5.9. The multiplicity of $\mathbf{E}_{V}^{\left(k^{n}\right)}$ in $S^{n}\left(S^{k} V\right)$ is exactly one if k is even.
Proof. Since we know that the multiplicity $\operatorname{dim}\left(\mathbf{M}_{k n}^{\left(k^{n}\right)} \cdot \boldsymbol{e}(\mathcal{H})\right)$ of $\mathbf{E}_{V}^{\left(k^{n}\right)}$ in $S^{n}\left(S^{k} V\right)$ is at most one, we should show that it is at least one. Take a nonzero \mathcal{K}-invariant vector $w \in \mathbf{M}_{k n}^{\left(k^{n}\right)} \cdot \boldsymbol{e}(\mathcal{K})$, which is unique up to constant multiple since $\operatorname{dim} \mathbf{M}_{k n}^{\left(k^{n}\right)} \cdot \boldsymbol{e}(\mathcal{K})=$ $K_{\left(k^{n}\right)\left(k^{n}\right)}=1$. We see that

$$
\begin{equation*}
w \cdot g=\omega_{n, k}(g) w+w^{\perp}(g) \tag{5.4}
\end{equation*}
$$

for $g \in \mathfrak{S}_{k n}$ where $w^{\perp}(g)$ is a certain vector in the orthocomplement of $\mathbf{M}_{k n}^{\left(k^{n}\right)} \cdot \boldsymbol{e}(\mathcal{K})$ in $\mathbf{M}_{k n}^{\left(k^{n}\right)}$ with respect to the invariant inner product on $\mathbf{M}_{k n}^{\left(k^{n}\right)}$. Since k is even, we see that $\omega_{n, k}(g)=1$ for $g \in \mathcal{H}$ by Corollary 4.7. Hence it follows that

$$
w \cdot \boldsymbol{e}(\mathcal{H})=w \cdot \boldsymbol{e}(\mathcal{H}) \boldsymbol{e}(\mathcal{K})=\frac{1}{|\mathcal{H}|} \sum_{g \in \mathcal{H}}(w \cdot g) \cdot \boldsymbol{e}(\mathcal{K})=w+\frac{1}{|\mathcal{H}|} \sum_{g \in \mathcal{H}} w^{\perp}(g) \cdot \boldsymbol{e}(\mathcal{K})=w
$$

Namely, we have $\mathbf{M}_{k n}^{\left(k^{n}\right)} \cdot \boldsymbol{e}(\mathcal{K}) \subset \mathbf{M}_{k n}^{\left(k^{n}\right)} \cdot \boldsymbol{e}(\mathcal{H})$. Thus we see that

$$
\operatorname{dim}\left(\mathbf{M}_{k n}^{\left(k^{n}\right)} \cdot \boldsymbol{e}(\mathcal{H})\right) \geq \operatorname{dim}\left(\mathbf{M}_{k n}^{\left(k^{n}\right)} \cdot \boldsymbol{e}(\mathcal{K})\right)=K_{\left(k^{n}\right)\left(k^{n}\right)}=1
$$

as desired.

Remark 5.10. If k is odd, then $w \cdot g=(\operatorname{sgn} \tau) w$ for $w \in \mathbf{M}_{k n}^{\left(k^{n}\right)}$ and $g=(\sigma, \tau) \in \mathcal{H}$. Thus, in this case, we have $\mathbf{M}_{k n}^{\left(k^{n}\right)} \cdot \boldsymbol{e}(\mathcal{H})=0$, and hence $S^{n}\left(S^{k} V\right)$ does not contain $\mathbf{E}_{V}^{\left(k^{n}\right)}$.

We restrict our attention on the special case where $k=n$ and n is even. We have $\mathcal{K}=\mathcal{K}^{\prime}$ and $\mathcal{H}=\mathcal{H}^{\prime}$ in this case. The map $h_{n, n}$ is then a GL(V)-intertwiner from $S^{n}\left(S^{n} V\right)$ onto itself. Since the multiplicity of $\mathbf{E}_{V}^{\left(n^{n}\right)}$ in $S^{n}\left(S^{n} V\right)$ is one, the restriction of $h_{n, n}$ on $\mathbf{E}_{V}^{\left(n^{n}\right)}$ must be a scalar by Schur's lemma, and the scalar is given by $\omega_{n, n}\left(g_{n}\right)$ by (5.4) since $h_{n, n}(v)=v \cdot g_{n} \boldsymbol{e}(\mathcal{H})$. Therefore we obtain the

Theorem 5.11. When n is even, we have

$$
h_{n, n}(v)=\omega_{n, n}\left(g_{n}\right) v
$$

if $v \in S^{n}\left(S^{n} V\right)$ belongs to the $\left(n^{n}\right)$-isotypic component. In particular, $\operatorname{ker} h_{n, n} \supset$ $\mathbf{E}_{V}^{\left(n^{n}\right)}$ if and only if $\omega_{n, n}\left(g_{n}\right)=0$.

As a corollary, we obtain the
Corollary 5.12 ([11, Theorem 1.9 (b)]). The Alon-Tarsi conjecture on $\mathrm{LS}(n)$ is equivalent to the assertion that $\operatorname{ker} h_{n, n}$ does not contain $\mathbf{E}_{V}^{\left(n^{n}\right)}$.

Acknowledgements

This work was supported by JST CREST Grant Number JPMJCR14D6 and JSPS KAKENHI Grant Number JP18K03248.

References

[1] N. Alon and M. Tarsi, Colorings and orientations of graphs. Combinatorica 12 (1992), 125-134.
[2] A. A. Drisko, On the number of even and odd Latin squares of order $p+1$. Adv. Math. 128 (1997), 20-35.
[3] B. Friedman and S. McGuinness, The Alon-Tarsi conjecture: a perspective on the main results. Discrete Math. 342 (2019), no. 8, 2234-2253.
[4] F. Galvin, The list chromatic index of a bipartite multigraph. J. Combin. Theory Ser. B 63 (1995), 153-158.
[5] D. G. Glynn, The conjectures of Alon-Tarsi and Rota in dimension prime minus one. SIAM J. Discrete Math. 24 (2010), no.2, 394-399.
[6] R. Huang and G.-C. Rota, On the relations of various conjectures on Latin squares and straightening coefficients. Discrete Math. 128 (1994), 225-236.
[7] M. Itoh and J. Shimoyoshi, A condition for the existence of zero coefficients in the powers of the determinant polynomial. J. Algebra 579 (2021), 231-236.
[8] K. Kimoto, Zonal spherical functions on symmetric groups and the wreath determinant (in Japanese). RIMS Kôkyûroku, No. 2031 (2017), 218-234.
[9] K. Kimoto, The Alon-Tarsi conjecture on Latin squares and zonal spherical functions on symmetric groups (in Japanese). RIMS Kôkyûroku, No. 2039 (2017), 193-210.
[10] K. Kimoto and M. Wakayama, Invariant theory for singular α-determinants. J. Combin. Theory Ser. A 115 (2008), no. 1, 1-31.
[11] S. Kumar and J. M. Landsberg, Connections between conjectures of Alon-Tarsi, Hadamard-Howe, and integrals over the special unitary group. Discrete Math. 338 (2015), 1232-1238.
[12] I. G. Macdonald, Symmetric Functions and Hall Polynomials (2nd ed.), Oxford University Press, 1995.
[13] T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes. J. Funct. Anal. 205 (2003), no. 2, 414-463.
[14] D. Vere-Jones, A generalization of permanents and determinants. Linear Algebra Appl. 63 (1988), 267-270.
[15] A. Okounkov and A. Vershik, A new approach to representation theory of symmetric groups. Selecta Math. New Ser. 2 (1996), no.4, 581-605.

Department of Mathematical Sciences
Faculty of Science
University of the Ryukyus
Nishihara-cho, Okinawa 903-0213
JAPAN

[^0]: *Received November 30, 2021.

