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Abstract

We show certain linear relations among Bernoulli numbers by using umbral
calculus. As an application, we prove some congruence relations involving bino-
mial coefficients and harmonic sums which appear in a certain supercongruence
problem.
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1 Introduction
In this short note, we give a simple way to produce linear relations among Bernoulli
numbers by using umbral calculus, and use it to prove some congruence relations
involving binomial coefficients and harmonic sums, which appear in a certain super-
congruence problem [3].

In §2, we first introduce a linear map ψ : R[x] → R which sends each monomial
xk to the Bernoulli number Bk, and describe the very basic properties of it. For any
polynomial f(x) ∈ kerψ, the equation ψ(f(x)) = 0 gives a certain linear relation
among Bernoulli numbers. Thus it is natural to seek a sufficient condition for a
polynomial f(x) to be in the kernel of this umbral map ψ. We give such a simple
sufficient condition. Our calculation in §2 is essentially the same with the one given
by Momiyama [2]. Actually, if we discuss over the p-adic integer ring Zp, then the
umbral map ψ is realized as the Volkenborn integral. As we will see, however, we do
not need to bring the Volkenborn integral to obtain linear relations among Bernoulli
numbers in a similar manner; We only needs the standard properties on Bernoulli
numbers.

In §3, by using the facts given in §2 and the von Staudt-Clausen theorem, we
give several congruence relations modulo p2, where p is an odd prime, among certain
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sums involving binomial coefficients and harmonic sums. Such congruence relations
are used to reduce a certain supercongruence (i.e. a congruence relation modulo a
power of p) to a lower power case.

2 Linear relations for Bernoulli numbers
We denote by Bk and Bk(x) the Bernoulli numbers and Bernoulli polynomials re-
spectively:

∞∑
k=0

Bk
tk

k!
=

t

et − 1
,

∞∑
k=0

Bk(x)
tk

k!
=

tetx

et − 1
.

We recall the standard facts: For any k ∈ Z≥0, we have

Bk(x) =
k∑

j=0

(
k

j

)
Bk−jx

j , (2.1)

Bk(b)−Bk(a) = k
∑

a≤j<b

jk−1 (a, b ∈ Z, a < b), (2.2)

(−1)kBk(1) = Bk. (2.3)

2.1 A lemma for the umbral map
Define a R-linear map ψ : R[x] → R by

ψ : R[x] � f(x) =
n∑

k=0

akx
k �−→ ψ(f(x)) =

n∑
k=0

akBk ∈ R. (2.4)

The following fact is an immediately consequence of the basic properties (2.1), (2.2)
and (2.3).

Proposition 2.1. For any f(x) ∈ R[x], we have

ψ((x+ a)k) = Bk(a) (k ∈ Z≥0, a ∈ R), (2.5)

ψ(f(x+ b)− f(x+ a)) =
∑

a≤j<b

f ′(j) (a, b ∈ Z, a < b), (2.6)

ψ(f(−x− 1)) = ψ(f(x)). (2.7)

Proof. First, by the linearity of ψ and (2.1), we have

ψ((x+ a)k) =

k∑
j=0

(
k

j

)
ajψ(xk−j) =

k∑
j=0

(
k

j

)
ajBk−j = Bk(a),
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which is (2.5). By the linearity of ψ again, it is enough to prove (2.6) and (2.7) when
f(x) = xk, k ∈ Z≥0. By (2.2) and (2.3), we have

ψ(f(x+ b)− f(x+ a))−
∑

a≤j<b

f ′(j) = ψ((x+ b)k)− ψ((x+ a)k)−
∑

a≤j<b

kjk−1

= Bk(b)−Bk(a)− k
∑

a≤j<b

jk−1

= 0

and

ψ(f(−x− 1))− ψ(f(x)) = ψ((−x− 1)k)− ψ(xk)

= (−1)kBk(1)−Bk = 0

as desired.

If f(x) ∈ kerψ, then we get some linear relation ψ(f(x)) = 0 among Bernoulli
numbers. Thus it is convenient if we have a simple sufficient condition for f(x) to be
killed by ψ. One such would be as follows.
Lemma 2.2. Let L be a positive integer. Assume that f(x) ∈ R[x] satisfies the
following conditions:

(A1) f(−x) = −f(x− L),

(A2)
∑L−1

i=1 f ′(−i) = 0.
Then ψ(f(x)) = 0.
Proof. By (2.7) and (A1), we have

ψ(f(x)) = ψ(f(−x− 1)) = −ψ(f(−(−x− 1)− L)) = −ψ(f(x− L+ 1)).

If L = 1, then we have ψ(f(x)) = 0 at this point. When L ≥ 2, by adding ψ(f(x)) to
the both side and using (2.6), we get

2ψ(f(x)) = ψ(f(x)− f(x− L+ 1)) =
∑

−L+1≤j<0

f ′(j) =

L−1∑
i=1

f ′(−i) = 0

by (A2).

We give a slightly weaker version of the lemma above. This is the main tool in
our discussion below.
Lemma 2.3. Let L be a positive integer. Assume that F (x) ∈ R[x] satisfies the
following conditions:

(B1) F (−x) = F (x− L),

(B2)
∏L−1

i=1 (x+ i)3 | F (x),
Then ψ(F ′(x)) = 0.
Proof. It is clear that F ′(x) satisfies (A1) when F (x) satisfies (B1). If F (x) satisfies
(B2), then F ′′(−i) = 0 for i = 1, . . . , L−1, which implies that F ′(x) satisfies (A2).
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2.2 Examples
We give a few examples obtained by Lemma 2.3.

Example 2.4. Let s be a non-negative integer. Put

F (x) = xs(x+ 1)s.

It is immediate to see that F (x) satisfies (B1) and (B2) with L = 1. Hence we have
ψ(F ′(x)) = 0 by Lemma 2.3. Since

F ′(x) =
d

dx

s∑
k=0

(
s

k

)
xs+k =

s∑
k=0

(k + s)

(
s

k

)
xk+s−1,

we get the formula
s∑

k=0

(k + s)

(
s

k

)
Bk+s−1 = 0. (2.8)

The formula (2.8) is due to von Ettingshausen [4]. For any r ≥ 0, the 2r-th derivative
F (2r)(x) of F (x) also satisfies (B1) and (B2) with L = 1. Since

F (2r+1)(x)

(2r + 1)!
=

s∑
k=0

(
s

k

)(
k + s

2r + 1

)
xk+s−2r−1,

we also get a slightly general formula
s∑

k=0

(
s

k

)(
k + s

2r + 1

)
Bs−2r−1+k = 0, (2.9)

where we understand that Bi = 0 when i < 0. As a special case, by letting s = 2r+1,
we have

s∑
k=0

(
s

k

)(
k + s

k

)
Bk = 0 (2.10)

if s is odd. This equation does not hold when s is even.

Remark 2.5. By putting s = n+ 1 in (2.8), we get

B̃2n = − 1

n+ 1

n−1∑
i=0

(
n+ 1

i

)
B̃n+i, (2.11)

where B̃k = (k + 1)Bk [1].

Example 2.6. Let m,n be non-negative integers. Put

F (x) = (−1)nxn+1(x+ 1)m+1 + (−1)mxm+1(x+ 1)n+1.

It is immediate to see that F (x) satisfies (B1) and (B2) with L = 1. Hence we have
ψ(F ′(x)) = 0 by Lemma 2.3. Since

F (x) = (−1)n
m+1∑
k=0

(
m+ 1

k

)
xn+k+1 − (−1)m

n+1∑
k=0

(
n+ 1

k

)
xm+k+1,
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we have

(−1)n
m+1∑
k=0

(
m+ 1

k

)
(n+ k + 1)Bn+k + (−1)m

n+1∑
k=0

(
n+ 1

k

)
(m+ k + 1)Bm+k = 0.

We notice that there occurs a cancellation between the last terms in these sums:
((−1)n + (−1)m)Bm+n+1 = 0 when m+ n > 0. Thus we get

(−1)n
m∑

k=0

(
m+ 1

k

)
(n+ k + 1)Bn+k + (−1)m

n∑
k=0

(
n+ 1

k

)
(m+ k + 1)Bm+k = 0.

This is the Momiyama’s identity [2]. By the same argument as in Example 2.4, we
have

(−1)n
m+1∑
k=0

(
m+ 1

k

)(
n+ k + 1

2r + 1

)
Bn−2r+k

+ (−1)m
n+1∑
k=0

(
n+ 1

k

)(
m+ k + 1

2r + 1

)
Bm−2r+k = 0

for r ≥ 0.

Remark 2.7. In general, for any positive integer L and any polynomial p(x) such that∏L−1
i=1 (x− i)3 | p(x),

F (x) = p(−x) + p(x+ L)

satisfies (B1) and (B2). For instance, p(x) = −xn+1(1 − x)m+1 and L = 1 give the
last example.

3 Congruences involving binomial coefficients and
harmonic sums

We first recall the von Staudt-Clausen theorem:

Theorem 3.1. For any positive integer n and any odd prime p,

B2n +
∑

p:prime
p−1|2n

1

p
(3.1)

is an integer.

As a simple consequence of the theorem, for any odd prime p and a positive integer
k, we have

pBk ≡

{
−1 p− 1 | k
0 otherwise

(mod p). (3.2)
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This implies that if

f(x) =
N∑

k=0

akx
k ∈ Q[x]

and the denominator of the coefficient ak is not divisible by p for every k, then

pψ(f(x)) =
N∑

k=0

ak pBk ≡ −

⌊
N

p−1

⌋
∑
i=1

a(p−1)i (mod p). (3.3)

We give a lemma for later use.

Lemma 3.2. For any odd prime p,

pk

k!
≡ 0 (mod p2)

holds for k ≥ 3.

Proof. Let us denote by νp(x) the p-adic valuation of x ∈ Q \ {0}, that is,

x = pνp(x)
a

b
, a, b ∈ Z, p � a, p � b.

It is well known that
νp(k!) =

∑
i≥1

⌊
k

pi

⌋
.

Hence we have

νp

(pk
k!

)
= k −

∑
i≥1

⌊
k

pi

⌋
≥ k −

∑
i≥1

k

pi
≥ 3

(
1− p

p− 1

)
≥ 3

2
> 1

as desired.

3.1 Results
In what follows, we fix an odd prime p, and put m = p−1

2 for short. We denote by
Hn the harmonic sum, i.e. Hn =

∑n
k=1

1
k .

Theorem 3.3. If p ≥ 5, then

m∑
k=0

(
m+ k

k

)4
(Hm+k −Hk) ≡ 0 (mod p2), (3.4)

m∑
k=0

(
m+ k

k

)6
(Hm+k −Hk) ≡ 0 (mod p2). (3.5)
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Proof. For a positive integer s, define

Fs(x) :=

(
x+m

m

)s
=

sm∑
i=0

e
(s)
i xi.

Notice that the denominator of the coefficient e
(s)
i ∈ Q is not divisible by p for every

i. Since
F ′
s(x)

Fs(x)
= s

m∑
i=1

1

x+ i
,

we have
m∑

k=0

(
m+ k

k

)s
(Hm+k −Hk) =

1

s

m∑
k=0

F ′
s(k).

Thus it is enough to prove

1

s

m∑
k=0

F ′
s(k) ≡ 0 (mod p2)

for s = 4, 6. Notice that

1

s
F ′
s(x) =

(
x+m

m

)s−1 m∑
i=1

1

m!

∏
1≤j≤m

j �=i

(x+ j),

so that the denominator of every coefficient ie
(m)
i

s of 1
sF

′
s(x) ∈ Q[x] is not divisible by

p regardless of whether s is divisible by p or not.
For a while, we only suppose that s is even, s ≥ 4 and p � s (notice that s = 4, 6

satisfy this condition). Since

1

s
F ′
s(k) =

(
k +m

m

)s−1 m∑
i=1

1

m!

∏
1≤j≤m

j �=i

(k + j) ≡ 0 (mod ps−1)

if m+ 1 ≤ k ≤ p− 1, we have

1

s

m∑
k=0

F ′
s(k) ≡

1

s

p−1∑
k=0

F ′
s(k) (mod p2).

By (2.6) and Lemma 3.2, we have

p−1∑
k=0

F ′
s(k) = ψ(Fs(x+ p)− Fs(x))

=
sm∑
k=1

pk

k!
ψ(F (k)

s (x))

≡ pψ(F ′
s(x)) +

p2

2
ψ(F ′′

s (x)) (mod p2).
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We see that Fs(x) satisfies (B1) and (B2) with L = m+ 1. Indeed,

Fs(x) =

m∏
i=1

(x+ i)s

is

is divisible by
∏m

i=1(x+ i)3 since we assume s ≥ 4, and

Fs(−x) =

(
−x+m

m

)s
=

(
(x−m− 1) +m

m

)s
= Fs(x−m− 1)

by the relation
(−a
m

)
= (−1)m

(
a−m+1

m

)
and the assumption that s is even. Hence we

have
ψ(F ′

s(x)) = 0

by Lemma 2.3. By using (3.3), we get

pψ(F ′′
s (x)) = pψ

(sm−2∑
i=0

(i+ 2)(i+ 1)e
(s)
i+2x

i
)

≡ −

⌊
sm−2
2m

⌋
∑
i=1

(2im+ 2)(2im+ 1)e
(s)
2im+2 (mod p)

≡ −
s
2−1∑
i=1

(i− 1)(i− 2)e
(s)
2im+2 (mod p).

This is congruent to 0 modulo p if s ≤ 6. Thus we have
p−1∑
k=0

F ′
s(k) ≡ pψ(F ′

s(x)) +
p

2
· pψ(F ′′

s (x)) ≡ 0 (mod p2)

for s = 4, 6 as desired.

Remark 3.4. In general, it is not true that
m∑

k=0

(
m+ k

k

)s
(Hm+k −Hk) ≡ 0 (mod p2)

when s is even and s �= 4, 6. When s = 2, we have
m∑

k=0

(
m+ k

k

)2
(Hm+k −Hk) ≡

p

2
ψ(F ′

2(x)) (mod p2).

We see that pψ(F ′
2(x)) ≡ 0 (mod p), but pψ(F ′

2(x)) �≡ 0 (mod p2) in general. When
s > 6, we have

m∑
k=0

(
m+ k

k

)s
(Hm+k −Hk) ≡ −1

s

s
2−1∑
i=3

(
i− 1

2

)
e
(s)
2im+2 (mod p2),

which is not congruent to 0 modulo p2 in general.
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Corollary 3.5. For any positive even integer s, we have
m∑

k=0

(
m+ k

k

)s
(Hm+k −Hk) ≡ 0 (mod p).

Proof. By the same discussion as in the proof above, we have

m∑
k=0

(
m+ k

k

)s
(Hm+k −Hk) =

1

s

m∑
k=0

F ′
s(k) ≡

1

s

p−1∑
k=0

F ′
s(k) ≡ pψ(F ′

s(x)/s) (mod p).

When s ≥ 4, we have ψ(F ′
s(x)/s) = 0. When s = 2, we directly have

pψ(F ′
2(x)) =

2m∑
k=1

ke
(2)
k pBk−1 ≡ 0 (mod p).

3.2 An application
Lemma 3.6.

(
m+ k

k

)
≡ (−1)k

(
m

k

)(
1 + p(Hm+k −Hm)

)
(mod p2).

Proof. We have

(
m+ k

k

)
=

(
m

k

) k−1∏
j=0

m+ j + 1

m− j

= (−1)k
(
m

k

) k−1∏
j=0

1 + p
2 (j +

1
2 )

−1

1− p
2 (j +

1
2 )

−1

≡ (−1)k
(
m

k

)(
1 + p

k−1∑
j=0

1

j + 1
2

)
(mod p2).

Since

Hm+k −Hm =

k−1∑
j=0

1

m+ j + 1
≡

k−1∑
j=0

1

j + 1
2

(mod p),

we have the conclusion.

By the lemma, for any s ≥ 1, we have
(
m+ k

k

)2s
≡

(
m

k

)2s(
1 + 2sp(Hm+k −Hm)

)
(mod p2).
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Hence we have
m∑

k=0

(
m+ k

k

)2s
(Hm+k −Hk)

≡
m∑

k=0

(
m

k

)2s
(Hm+k −Hk) + 2sp

m∑
k=0

(
m

k

)2s
Hm+k(Hm+k −Hk)

− 2spHm

m∑
k=0

(
m

k

)2s
(Hm+k −Hk) (mod p2).

Using Corollary 3.5, this implies that
m∑

k=0

(
m

k

)2s
(Hm+k −Hk) ≡ 0 (mod p), (3.6)

and hence
m∑

k=0

(
m+ k

k

)2s
(Hm+k −Hk)

≡
m∑

k=0

(
m

k

)2s
(Hm+k −Hk) + 2sp

m∑
k=0

(
m

k

)2s
Hm+k(Hm+k −Hk) (mod p2).

Especially, when s = 2, 3, Theorem 3.3 allows us to obtain the following expressions:

Proposition 3.7. We have
m∑

k=0

(
m

k

)4
(Hm+k −Hk) ≡ −4p

m∑
k=0

(
m

k

)4
Hm+k(Hm+k −Hk) (mod p2), (3.7)

m∑
k=0

(
m

k

)6
(Hm+k −Hk) ≡ −6p

m∑
k=0

(
m

k

)6
Hm+k(Hm+k −Hk) (mod p2). (3.8)

These exhibit the p-divisibility of the sums in an explicit manner. These formulas
could be used to reduce the analysis of the mod p2 behavior of the sums in the left-
hand sides to that of the mod p behavior of the corresponding sums in the right-hand
sides.

3.3 Related conjectural congruences
In the final position, we give several conjectures on congruences involving odd powers
of binomial coefficients and harmonic sums which we found by numerical experiments.

Conjecture 3.8. If p ≡ 1 (mod 4) and p > 5, then
m∑

k=0

(
m+ k

k

)3
(Hm+k −Hk) ≡ 0 (mod p2), (3.9)

m∑
k=0

(
m+ k

k

)5
(Hm+k −Hk) ≡ 0 (mod p2). (3.10)
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Conjecture 3.9. If p ≡ 3 (mod 4), then

m∑
k=0

(
m+ k

k

)5
(H

(2)
m+k −H

(2)
k − 5(Hm+k −Hk)

2) ≡ 0 (mod p2), (3.11)

m∑
k=0

(
m+ k

k

)7
(H

(2)
m+k −H

(2)
k − 7(Hm+k −Hk)

2) ≡ 0 (mod p2), (3.12)

where H
(2)
n =

∑n
i=1

1
i2 .
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