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Simple Summary: Diverse butterfly wing color patterns are evolutionary products in response to
environmental changes in the past. Environmental stress, such as temperature shock, is known to
induce color pattern modifications in various butterfly species, and this phenotypic plasticity plays
an important role in color pattern evolution. However, the potential contributions of phenotypic
plasticity to mimicry evolution have not been evaluated. Here, we focused on the swallowtail
butterfly Papilio polytes, which has nonmimetic and mimetic forms in females, to examine its plastic
phenotypes. Cold shock and heat shock treatments in the nonmimetic form induced color pattern
modifications that were partly similar to those of the mimetic form, and nonmimetic females were
more sensitive than males and mimetic females. These results suggest that phenotypic plasticity
in nonmimetic females might have provided a basis of natural selection for mimetic color patterns
during evolution.

Abstract: Butterfly wing color patterns are sensitive to environmental stress, such as temperature
shock, and this phenotypic plasticity plays an important role in color pattern evolution. However,
the potential contributions of phenotypic plasticity to mimicry evolution have not been evaluated.
Here, we focused on the swallowtail butterfly Papilio polytes, which has nonmimetic and mimetic
forms in females, to examine its plastic phenotypes. In the nonmimetic form, medial white spots and
submarginal reddish spots in the ventral hindwings were enlarged by cold shock but were mostly
reduced in size by heat shock. These temperature-shock-induced color pattern modifications were
partly similar to mimetic color patterns, and nonmimetic females were more sensitive than males and
mimetic females. Unexpectedly, injection of tungstate, a known modification inducer in nymphalid
and lycaenid butterflies, did not induce any modification, but fluorescent brightener 28, another
inducer discovered recently, induced unique modifications. These results suggest that phenotypic
plasticity in nonmimetic females might have provided a basis of natural selection for mimetic color
patterns during evolution.

Keywords: mimicry; the common Mormon butterfly; phenotypic plasticity; color pattern; Papilio polytes;
sodium tungstate; temperature shock

1. Introduction

The phenotypes of organisms are determined by genotypes and environmental factors.
Most, if not all, organisms show phenotypic plasticity in response to environmental stress
during development. The contributions of phenotypic plasticity to natural selection, genetic
assimilation, and speciation have been an active research area in ecology, evolutionary biol-
ogy, and developmental biology [1–8]. There are at least two different types of phenotypic
plasticity, “developmental conversion” and “phenotypic modulation” (sensu Smith-Gill
(1983) [8]), although their distinctions may not always be clear [7,8].
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Representative cases of developmental conversion are found in many insects, such as
social castes in bees, ants, and termites, solitarious and gregarious forms of locusts, large
and small horns with various shapes in beetles, winged and wingless forms in aphids,
and seasonal color pattern polyphenism in butterflies [6,7,9]. In some butterflies, such as
Araschnia levana in Europe and Asia, Precis octavia in Africa, and Junonia almana in South-
east Asia, wing color patterns differ drastically in different seasons [9]. The seasonal
polyphenism in butterflies is controlled by ecdysteroid hormones [9–12]. Developmental
conversion is understood as the expression of genetically determined alternative pathways
in response to environmental cues such as temperature and light conditions. This type of
plasticity is supposed to be adaptive as an evolutionary consequence. Similarly, there are
numerous cases of genetically determined polymorphism of color patterns in butterflies,
among which sexual dimorphism is well-known [13,14]. Furthermore, females often have
two or multiple forms within a species. Such phenotypic variation within a species is sup-
posed to be adaptive and is often controlled by regulatory genes that are not programmed
to respond to environmental cues. A good example is a mimetic swallowtail, the common
Mormon butterfly Papilio polytes, distributed widely in Southeast Asia [15–17].

Butterflies also show phenotypic modulation, which is the topic of the present study.
This phenotypic plasticity is not adaptive at least at first and is likely an expression of a
system failure during development in response to severe environmental conditions. In
other words, this phenotypic plasticity was not built in as alternative genetic pathways.
Nonetheless, this system failure is mild and completely viable. In butterflies, phenotypic
modulation is known to cause two types of color pattern modifications: modifications
induced by temperature shock and those induced via the general stress response [18–20].
Studies of color pattern modifications induced by temperature shock from evolutionary
and developmental viewpoints were pioneered by Shapiro (1980, 1981) [21,22] and Nijhout
(1984) [9,23]. Subsequently, Otaki (1998) [24] discovered that similar, if not identical, color
pattern modifications can be induced by injections of oxyanions (such as sodium tungstate)
into pupae. Other modification inducers, such as acid carboxypeptidase [25] and heparin
and other sulfated polysaccharides [26], were also discovered later. These modification
inducers or temperature shock treatments have been used for many lepidopteran species
to understand developmental physiological aspects of color pattern formation [27–33].
These temperature-shock-type (TS-type) modifications appear to be induced via a systemic
factor (i.e., a cold shock hormone) [24,34] as well as a local factor (i.e., an extracellular
matrix) [24,35,36].

Importantly, color patterns of TS-type modifications of a given species are often similar
to natural color patterns of different but related species in Nymphalidae, as discussed in
Nymphalis [21,22] and Junonia [9,37]. The evolution of Vanessa (sensu stricto) nicely parallels
the degrees of color pattern “modifications”, suggesting that environmental temperature
shock might have played an important role in color pattern evolution and speciation in this
genus [38–40]. Color pattern modifications induced via the general stress response also
appear to have contributed to the evolution of Vanessa (Cynthia) kershawi [41]. Lycaenid
butterflies are also modified [42], and color pattern modifications in the pale grass blue
butterfly in the field may be considered a real-time evolution of color patterns [43] and may
be one of the best cases of genetic assimilation in the field [5]. A similar case is also found
in the pierid butterfly Colias erate [27]. These nymphalid, lycaenid, and pierid cases of
phenotypic plasticity have provided evidence for the contribution of phenotypic plasticity
to the color pattern evolution of butterflies. However, to our knowledge, no papilionid cases
of phenotypic plasticity that might have contributed to color pattern evolution have been
reported, and potential contributions of phenotypic plasticity to the evolution of dimorphic
or multimorphic color patterns within a species, such as mimetic and nonmimetic forms of
P. polytes, have not yet been evaluated.

The female-limited mimicry not only in P. polytes but also in many butterflies has
been explained by the high cost of expressing mimetic color patterns that can compensate
for predation, which is not affordable for males [44–49]. While this line of explanation is
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reasonable, it does not take phenotypic plasticity into account. Similarly, although genes in-
volved in the mimetic phenotype in P. polytes have been identified as doublesex (dsx) [50–54]
and other genes, such as cortex [55], the question of how mimicry evolved in the first
place requires multiple approaches, including studies on phenotypic plasticity. Here, we
focused on the mimetic swallowtail butterfly, the common Mormon, P. polytes, in Okinawa,
Japan [15–17], to examine its phenotypic plasticity. In Okinawa, this butterfly mimics the un-
palatable swallowtail butterfly Pachliopta aristolochiae, distributed sympatrically (Figure 1).
While males of P. polytes have a single nonmimetic form, females have a mimetic form
(forma polytes) and a nonmimetic form (forma cyrus) (Figure 1). In the present study, we
obtained color pattern modifications in this butterfly induced by cold shock or heat shock.
Additionally, we injected a known modification inducer, sodium tungstate [24], and a re-
cently discovered inducer, fluorescent brightener 28 (FB28) [56]. The induced modifications
were compared to the mimetic color patterns, and we discussed the possible origin of the
mimetic color patterns in this butterfly from the viewpoint of phenotypic plasticity.
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dish) were not examined. The SRSs are often simply called the “red spots” in other studies, 
but their color is closer to reddish brown and is clearly different from that of the “red 
spots” in the model species P. aristolochiae. Indeed, pigments in these two species are 
chemically different [57]. Therefore, these submarginal spots in P. polytes are called the 
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[9]. In mimetic females, seven SRSs are maintained but are larger in size and darker in 
color than those in nonmimetic females. In contrast, the MWSs 1, 5, 6, and 7 are absent in 
mimetic females. MBS1 is also absent. Additionally, two medial reddish spots (MRS1 and 
MRS2) and the central white spot (CWS) are present only in mimetic females. 

Figure 1. Nonmimetic and mimetic color patterns of the common Mormon butterfly Papilio polytes
and its model, the common rose butterfly Pachilopta aristolochiae. The female color patterns of P. polytes
are dimorphic in Okinawa, Japan: the nonmimetic cyrus form and the mimetic polytes form.

2. Materials and Methods
2.1. Nomenclature of Spots and Key Differences between Nonmimetic and Mimetic Forms

We focused on the ventral hindwings of P. polytes in this study because it was in the
ventral hindwings that color pattern modifications were mainly observed. An exception is
the ventral forewings, which showed an increase in sparse yellow scales. The nomenclature
of the spots in the ventral hindwings in the present study is shown in Figure 2a. Seven
submarginal reddish spots (SRS1–SRS7) and seven medial white spots (MWS1–MWS7)
together with one or two medial blue spots (MBS1–MBS2) are the main color patterns of
males and nonmimetic females. Marginal white spots (occasionally slightly reddish) were
not examined. The SRSs are often simply called the “red spots” in other studies, but their
color is closer to reddish brown and is clearly different from that of the “red spots” in
the model species P. aristolochiae. Indeed, pigments in these two species are chemically
different [57]. Therefore, these submarginal spots in P. polytes are called the “reddish spots”
in this paper. The MBSs show structural color and may be sparse patterns [9]. In mimetic
females, seven SRSs are maintained but are larger in size and darker in color than those in
nonmimetic females. In contrast, the MWSs 1, 5, 6, and 7 are absent in mimetic females.
MBS1 is also absent. Additionally, two medial reddish spots (MRS1 and MRS2) and the
central white spot (CWS) are present only in mimetic females.
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Figure 2. Color patterns among males, nonmimetic females, and mimetic females in P. polytes used in
this study. (a) Nomenclature of color pattern spots. Asterisks indicate spots unique to mimetic females.
The red circle indicates SRS7, which was examined for the darkness of reddish color. (b) Three main
differences in color pattern spots between nonmimetic and mimetic females. In addition to SRSs,
MWSs, and MRSs, CWS is unique to the mimetic form (not indicated in this panel). (c) Reddish
spot scores for modifications. The most anterior submarginal reddish spot (SRS7) was used to assign
scores visually in accordance with these images.

Key differences between the nonmimetic and mimetic forms are summarized in
Figure 2b. There are three points. First, the SRSs, especially the most anterior one, are
different in size and darkness: they are smaller in size and lighter in color in the nonmimetic
form than in the mimetic form. Second, the MWSs are different: anterior ones exist in the
nonmimetic form but do not exist in the mimetic form. Third, the MRSs are different: they
do not exist in the nonmimetic form and exist in the mimetic form. The white spots near
the MRSs are compromised in the mimetic form.

In this and many other papilionid butterflies, the background is dark-colored, and
spots are light-colored. This coloration seems to be inconsistent with the binary color
rule [30,31,58]. The binary color rule posits that color pattern elements are expressed in
dark colors, and the background is expressed in light colors. Mechanistically, the induction
model for color pattern determination states that dark (activator) signals always accompany
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light (inhibitor) signals and that light signals may behave independently [58–60]. This issue
can be resolved by introducing a reversible positive–negative relationship, but the detailed
explanations await future studies. Therefore, at present, we did not call these spots in
P. polytes elements.

2.2. Butterflies and the Host Plant Leaves

Nonmimetic and mimetic females of P. polytes were caught in Shiohira (Itoman City),
Maesato (Itoman City), Yamashiro (Itoman City), and Senbaru (Nishihara Town), Okinawa
Prefecture, for egg collection in the laboratory from May 2020 to October 2021. These
localities are all located in the southern region of Okinawa-jima Island. No clear difference
in wing color patterns was observed among these females except for the nonmimetic and
mimetic forms. Only individuals with low levels of wing damage were used to collect
approximately 100 eggs per female individual. Egg collection was started on the same day
as collection in the field.

One of the host plants of this butterfly in Okinawa, Toddalia asiatica, was exclusively
used for egg collection and rearing. This plant is a small bush tree often found in the
seacoast. Leaves were collected from various sites in Itoman City and from the Nishihara
Campus of the University of the Ryukyus. When this plant was found in a city park or in a
private land, permissions for leaf collection were obtained from Itoman City or from the
personal owner of the land.

2.3. Sibling Groups

In this study, we set up sibling groups (SGs) based on mother butterflies, SG1 to SG8,
in accordance with the experimental order of time (Appendix A, Table A1). Two groups,
SG2 and SG6, were obtained from mimetic mothers, and other groups were obtained
from nonmimetic mothers. For pilot experiments, a few nonmimetic mothers other than
SG1–SG8 were used for egg collection. Mimetic mothers produced both mimetic and
nonmimetic offspring individuals. Nonmimetic mothers produced either only nonmimetic
offspring individuals or both mimetic and nonmimetic offspring individuals.

2.4. Egg Collection and Larval Rearing

For egg collection, a female was confined in a glass tank (300 mm × 300 mm × 300 mm)
together with a bunch of the host plant collected from the University campus under the
conditions of L16:D8 at 26 ± 2 ◦C in the laboratory. Twofold-diluted POCARI SWEAT
(Otsuka Pharmaceutical, Tokyo, Japan) was administered to adults every day. A plant
bunch was replaced with a new bunch before withering. The plant with deposited eggs
was transferred to a plastic container (168 mm × 168 mm × 57 mm). Depending on the
larval body size, we adjusted the number of larvae per container: 20 larvae or more for
the first and second instar larvae, five to ten individuals for the third and fourth instar
larvae, and just a single individual for the last instar larvae. Larvae were reared under the
conditions of L16:D8 at 26 ± 2 ◦C. The host plant leaves were washed before use, and the
leaves given to larvae were replaced with fresh leaves every day. When pupated, the pupae
were randomly allocated to either the experimental (treatment) or control (no treatment)
group. Each individual was determined to be a male, a nonmimetic female, or a mimetic
female after eclosion.

2.5. Cold Shock and Heat Shock Treatments

For cold shock, within 12 h post-pupation, the pupae were transferred to an incubator
set at −4.0 ◦C or −6.0 ◦C for 24 h or 48 h in a series of pilot experiments. Similarly, for
heat shock, within 12 h post-pupation, the pupae were transferred to an incubator set at
38 ◦C, 39 ◦C, 40 ◦C, 43 ◦C, or 45 ◦C for 48 h in a series of pilot experiments. After the
treatment, the pupae were transferred back to the original laboratory conditions. Soon
after eclosion, adult individuals were frozen to minimize wing damage. The cold shock
and heat shock conditions for subsequent experiments were determined in reference to
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the normality rate (the percentage of individuals that eclosed normally regardless of wing
color pattern modifications) obtained in the pilot experiments.

2.6. Injections of Tungstate and FB28

An aqueous solution (1.0 M) of sodium tungstate (Sigma-Aldrich, St. Louis, MO,
USA) or an aqueous solution (30%) of FB28 (fluorescent brightener 28 disodium salt)
(Sigma-Aldrich, St. Louis, MO, USA) was injected into the abdomen of pupae within 12 h
post-pupation. The injection volume was made variable for sodium tungstate (see Section 3)
but was 2.0 µL for FB28. The pupae were removed from the wall of the container before
injection, and injection was performed using an Ito (Terumo) microsyringe (MS-25) (Fuji,
Shizuoka, Japan). After injection, they were placed back to the original position on the wall
using adhesive tape.

2.7. Evaluation of Modifications

The following points were examined to judge whether a given individual was mod-
ified: (1) white spot size (reduction or enlargement), (2) reddish spot size (reduction or
enlargement), (3) reddish spot elongation, (4) reddish spot darkness, (5) novel spot emer-
gence, (6) increase in the number of blue scales as a sparse pattern, and (7) increase in the
number of yellow scales as a sparse pattern.

To evaluate the reddish spot darkness semiquantitatively, modification scores (Score 1
to Score 4) were assigned to the most anterior spot (SRS7) of treated and nontreated
individuals based on the darkness of the reddish spots by visual inspection (Figure 2c). The
least reddish (beige) one was assigned Score 1, the pale reddish one was assigned Score 2,
the more reddish one was assigned Score 3, and the most reddish one was assigned Score 4.

Individuals that eclosed with wrinkled wings or that could not eclose (confinement
within the pupal case) were not considered cases of normal eclosion. Individuals that died
of parasitic insects were excluded from the number of treated individuals. Individuals
with one or more modifications that were clearly different from nontreated individuals
were counted to determine the number of modified individuals. The modification rate
was obtained according to the following calculation: the number of modified individuals
divided by the number of adult individuals that eclosed successfully. Spot size reduction
was defined as a size smaller than “mean – 2 SD (standard deviation)” of the size of the no-
treatment group, and spot size enlargement was defined as a size larger than “mean + 2 SD”
of the size of the no-treatment group.

2.8. Image Acquisition and Processing

Wings were detached by scissors from the thorax and scanned with an EPSON scanner
GT-F500 (Tokyo, Japan). The right wings were used unless they were damaged. To evaluate
an increase or decrease in the size of the white spots (MWS1–MWS7) and the reddish
spots (SRS1–SRS7), ImageJ (bundled with 64-bit Java 1.8.01_112; https://imagej.nih.gov,
accessed on 10 December 2021) was used. A wing image area was specified manually
using a polygon selections tool. Alternatively, an image was converted to a 16-bit black and
white image, the minimum threshold was set at 0, and the maximum threshold was set at
225 for males and nonmimetic females and at 215 for mimetic females. The size was set at
0.30–infinity (mm2) in “Analyze particles” to measure the whole wing area. To measure the
white and reddish spot areas, the minimum threshold was set at 50. Using the area values
obtained above, we obtained the white spot size and the reddish spot size with respect to
the whole wing area. These values were expressed as percentages. Scale-level images were
obtained using a Keyence Digital Microscope VHX-7000 (Osaka, Japan).

2.9. Statistical Analyses

We performed Student’s t-tests using Microsoft Excel (Office 365) for the reddish spot
size (area value) and the white spot size (area value) with respect to the whole wing area
between the treatment and no-treatment groups. Due to multiple comparisons, p-values

https://imagej.nih.gov
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were adjusted by the Bonferroni method. For score distributions, Fisher’s exact test was
performed using Python 3.9.4. Distributions of the numbers of modified and nonmodified
individuals were compared between the treatment and no-treatment groups. In rare cases,
no SRS7 was found, in which case such individuals were excluded from the analysis.
Mimetic females were not subjected to this analysis because of the high variability of the
reddish spots even among a given sibling group.

3. Results
3.1. Pilot Experiments for Cold Shock and Heat Shock Conditions

To determine operational temperatures for experimental treatments that effectively
induce color pattern modifications, we first examined a response profile to cold shock
temperatures as a pilot experiment (Figure 3a). We examined the normality rate (the
number of individuals that eclosed normally regardless of color pattern modifications). The
normality rate of the −6 ◦C treatment was much smaller than that of the −4 ◦C treatment,
indicating that the −6 ◦C treatment was too severe for this butterfly to survive. In contrast,
the cold shock duration was set at either 24 h or 48 h, and these two durations did not differ
much, but the latter was slightly more severe. Therefore, we decided to use the treatment
conditions of −4 ◦C for 48 h for subsequent cold shock experiments.
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Figure 3. Normality rates after temperature shock treatments to determine optimal experimental
temperature conditions. (a) Cold shock for 24 and 48 h at various temperatures. (b) Heat shock for
48 h at various temperatures.

We then examined a response profile to heat shock temperatures as another pilot
experiment (Figure 3b). Temperatures from 26 ◦C to 39 ◦C for 48 h showed high normality
rates, but the treatment temperature at 40 ◦C showed a dramatic decrease in normality
rate. Therefore, we used the treatment conditions of 39 ◦C for 48 h for subsequent heat
shock experiments.

3.2. Modifications Induced by Cold Shock
3.2.1. Modification Patterns

We performed cold shock treatment at −4 ◦C for 48 h (Appendix A, Table A2) as
determined in the pilot experiments. In this case, normality rates for no treatment and
cold shock treatment in all samples were 91.6% (n = 154) and 39.7% (n = 247), respectively,
suggesting that treated pupae experienced a risk of survival. In males, we observed the
following color pattern modifications (Figure 4a, Table 1): enlargement of the white spots
(n = 5), enlargement of the reddish spots (n = 25), darkening of the reddish spots (n = 29),
and increase in the blue scales (n = 2). The modification rate was 87.0% (n = 46) in the
treatment group and 3.3% (n = 61) in the no treatment control group, indicating that the
treatment was successfully performed.
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In nonmimetic females, we observed the following color pattern modifications
(Figure 4b, Table 1): enlargement of the white spots (n = 5), enlargement of the reddish
spots (n = 8), darkening of the reddish spots (n = 28), and increase in the blue scales (n = 4).
In addition, we observed the emergence of medial reddish spots (n = 4) (Figure 4b). This
modification was not observed in males. Medial reddish spots are not present in non-
mimetic females but are present in mimetic females. Furthermore, the submarginal reddish
spots were elongated toward the proximal side (Figure 4b). The modification rate was
96.9% (n = 32) in the treatment group and 17.9% (n = 39) in the no-treatment control group.
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Figure 4. Modifications induced by cold shock in P. polytes. Red arrows indicate modified patterns. In
many individuals, modifications are found wing-wide, but only representative patterns are indicated
by arrows. (a) Male. (b) Nonmimetic Female. Insets are enlargements of SRS7 (circled). The novel
reddish spot is superimposed by the blue scales. (c) Mimetic female. An inset of the nontreated
individual is an enlargement of SRS7. The rightmost panel is an enlargement of the medial portion of
the treated individual.
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Table 1. Summary of wing color pattern modifications induced by experimental treatments.

Treatment Mode White Spot Area Reddish Spot Area Reddish Spot Darkness Novel Spot

Cold shock Enlarged in males Enlarged, Elongated Darkened Emerged only in females

Heat shock Reduced Reduced (+Enlarged),
Elongated Darkened Emerged in both sexes

Sodium tungstate No change No change No change No change

FB28 Not applicable Elongated Not applicable No change

Note: In the FB28 treatment, both white and reddish spots were obscured by the elongated reddish spots, and the
quantification of area values was not performed (not applicable).

In mimetic females, we observed the following color pattern modifications (Figure 4c,
Table 1): enlargement of the white spots (n = 2), enlargement of the submarginal reddish
spots (n = 3), and enlargement of the medial reddish spots (n = 1). This latter individual
also had novel medial reddish spots at the anterior compartments (Figure 4c). The modifi-
cation rate was 37.5% (n = 16) in the treatment group and 0% (n = 21) in the no-treatment
control group.

3.2.2. Quantitative Evaluation

We compared modification rates among males, nonmimetic females, and mimetic
females (Figure 5a). Nonmimetic females showed the largest modification rate in response
to cold shock treatment, although nonmimetic females also had a relatively high “modifica-
tion” rate with no treatment. The modification rate of males was slightly lower than that of
nonmimetic females. Mimetic females showed the lowest modification rate.

The white spot (MWS1–MWS7) size (the white spot area value divided by the whole
wing area value) was compared between the treatment and no-treatment groups (Figure 5b).
In males, the white spot size was significantly larger in the treatment group than in the
no-treatment group (p = 0.010). In nonmimetic females, there was no significant difference
between the treatment group and no-treatment group (p = 0.32), although some individuals
showed enlargement. In mimetic females, there was no significant difference (p = 0.16).

Similarly, the submarginal reddish spot (SRS1–SRS7) size (the reddish spot area value
divided by the whole wing area value) was compared (Figure 5c). The reddish spots were
enlarged significantly in males (p = 1.0 × 10–6), mimetic females (p = 0.0029), and mimetic
females (p = 0.020), although these p-values increased in this order.

The SRS scores were evaluated here (Figure 5d). In males with treatment (n = 46), we
observed Score 1 (n = 8), Score 2 (n = 11), Score 3 (n = 17), and Score 4 (n = 10). In contrast,
without treatment (n = 57), Score 1 was the majority (n = 55), Score 2 was the minority (n = 2),
and Score 3 and Score 4 were not observed. Here, Score 1 was considered not modified
(no change), and other scores were considered modified. The distributions of these two
groups were significantly different (p = 6.9 × 10−18, Fisher’s exact test), suggesting that the
darkening of the reddish spots was induced by the cold shock treatment.

In nonmimetic females with treatment (n = 32), we observed Score 1 (n = 1), Score 2
(n = 3), Score 3 (n = 14), and Score 4 (n = 14). In contrast, without treatment (n = 38), we
observed Score 1 (n = 17), Score 2 (n = 13), Score 3 (n = 5), and Score 4 (n = 3). Here, Score
1 and Score 2 were considered not modified (no change), and Score 3 and Score 4 were
considered modified. The distributions of these two groups were significantly different
(p = 1.8 × 10−8, Fisher’s exact test), suggesting again that the darkening of the reddish
spots was induced by the cold shock treatment.
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Figure 5. Quantitative evaluations of cold-shock-induced modifications in P. polytes. Asterisks
indicate levels of statistical significance; * p < 0.05; ** p < 0.01; *** p < 0.001. (a) Modification rates
among males, nonmimetic females, and mimetic females. (b) White spot area. (c) Reddish spot area.
(d) Distributions of reddish spot scores.

3.3. Modifications Induced by Heat Shock
3.3.1. Modification Patterns

We performed heat shock treatment at 39 ◦C for 48 h (Appendix A, Table A3) as
determined in the pilot experiments. In this case, normality rates for no treatment and heat
shock treatment were 75.5% (n = 110) and 43.1% (n = 195), respectively, suggesting that
treated pupae experienced a risk of survival. In males, we observed the following color
pattern modifications (Figure 6a, Table 1): reduction of white spots (n = 7), reduction of
reddish spots (n = 3), and darkening of reddish spots (n = 15). In addition, an increase
in yellow scales at the basal area (n = 5) was observed. Furthermore, although minor,
an increase in medial blue scales (n = 2) and emergence of novel medial spots (n = 2),
enlargement of white spots (n = 1), and enlargement of reddish spots (n = 2) were also
observed. Both enlargement and reduction were observed after the same heat shock
treatment, and this aspect of the heat shock treatment differed from that of the cold shock
treatment. The modification rate was 70.6% (n = 41) in the treatment group and 0% (n = 34)
in the no-treatment group.
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Figure 6. Modifications induced by heat shock in P. polytes. Red arrows indicate modified patterns. In
many individuals, modifications were found wing-wide, but only representative modified patterns
are indicated by arrows. For the color patterns of the no-treatment groups, see Figure 4. (a) Male.
(b) Nonmimetic female. An inset is an enlargement of SRS7 (circled). (c) Mimetic female.

Similarly, in the nonmimetic females (Figure 6b, Table 1), we observed a reduction
in white spots (n = 9), darkening of reddish spots (n = 15), and an increase in medial blue
scales (n = 5). In addition, although minor, we observed enlargement of the white spot
(n = 1), reduction of reddish spots (n = 2), enlargement of reddish spots (n = 1), and an
increase in yellow scales in the basal area (n = 1). The modification rate was 92.6% (n = 27)
in the treatment group and 40.1% (n = 27) in the no-treatment group.

In the mimetic females (Figure 6c, Table 1), we observed reduction of white spots
(n = 1), enlargement of the white spot (n = 2), reduction of reddish spots (n = 6), enlargement
of reddish spot (n = 4), an increase in medial blue scales (n = 3), and an increase in yellow
scales in the basal area (n = 2). The darkening of reddish spots was not differentiated due
to high natural variations even in the no-treatment group. The modification rate was 55.0%
(n = 20) in the treatment group and 0% (n = 16) in the no-treatment group.
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3.3.2. Quantitative Evaluation

We compared modification rates among males, nonmimetic females, and mimetic
females (Figure 7a). Nonmimetic females showed the largest modification rate in response
to the heat shock treatment, although nonmimetic females also had a relatively high
“modification” rate with no treatment. The modification rate of males was lower than
that of nonmimetic females. Mimetic females showed the lowest modification rate. These
results were consistent with those of the cold shock treatment (Figure 5a).
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Here, we examined white spot (MWS1–MWS7) size (white spot area value divided
by the whole wing area value) and reddish spot (SRS1–SRS7) size (reddish spot area
value divided by the whole wing area value). White spot size was significantly smaller
in the treatment group than in the no-treatment group in males (p = 0.017, t-test) and in
nonmimetic females (p = 0.020, t-test), but this difference was not observed in mimetic
females (Figure 7b). On the other hand, the reduction of reddish spot size was not significant
in males (p = 0.81, t-test), in nonmimetic females (p = 0.69, t-test), and in mimetic females
(p = 0.93, t-test) (Figure 7c).

The SRS scores were evaluated here (Figure 7d). In males, in the no-treatment group
(n = 36), all individuals scored 1 (n = 36). In the treatment group (n = 24), we observed
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scores of 1 (n = 9), 2 (n = 6), 3 (n = 4), and 4 (n = 5). A score of 1 was considered not modified
(no change), and scores of 2, 3, and 4 were considered modified. The distributions of these
two groups were significantly different (p = 2.5 × 10−8, Fisher’s exact test), suggesting that
the darkening of the reddish spots was induced by the heat shock treatment. In nonmimetic
females, we observed scores of 1 (n = 7), 2 (n = 10), 3 (n = 8), and 4 (n = 2) in the no-treatment
group (n = 27), and we observed scores of 1 (n = 1), 2 (n = 6), 3 (n = 2), and 4 (n = 13) in
the treatment group. Scores of 1 and 2 were considered not modified (no change), and
scores of 3 and 4 were considered modified. They were significantly different (p = 0.045,
Fisher’s exact test), suggesting that the darkening of reddish spots was induced in the
nonmimetic females.

3.3.3. Sibling-Dependent Response

For the heat shock treatment above, we used two sibling groups (SG1 and SG5) for
males and nonmimetic females. Here, we examined modification responses within a single
sibling group, SG1 or SG8, and compared their results (Appendix A, Table A4). White
spot size (area value) did not show a significant difference in SG1 and SG5 males or in
SG1 nonmimetic females but showed a significant difference in SG5 nonmimetic females
(Figure 8a). Reddish spot size (area value) did not show any significant difference in SG1
and SG5 (Figure 8b). These results suggest that a sibling dependence (genetic dependence)
of modification induction was present at least in white spot size.
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3.4. Modification Inducers: Tungstate and FB28

We injected a sodium tungstate solution (1.0 M) with various injection volumes
(1.0–5.0 and 25.0 µL). An increase in injection volume simply decreased the normality rate
without modifications (Figure 9a). No modification was observed (Figure 9b, Table 1). We
also injected FB28, a novel modification inducer found in a series of injection experiments,
into the blue pansy butterfly Junonia orithya, where FB28 induced TS-type modifications
similar to those from cold shock and tungstate [56]. In the present study, FB28 induced
distinct inward elongation of reddish spots (Figure 9c, Table 1), which was similar to one of
the modifications induced by the cold shock treatment (Figure 4b) or heat shock treatment
(Figure 6c). In total, normality rates for no treatment and FB28 treatment were 93.6%
(n = 47) and 84.6% (n = 13), respectively.
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Figure 9. Pharmacological treatments of P. polytes. For the color patterns of the no-treatment groups,
see Figure 6. (a) Normality rate in response to injection volume of a sodium tungstate solution
(1.0 M) in P. polytes. (b) Injection of sodium tungstate (1.0 M, 2.0 µL). No modification was observed.
(c) Injection of FB28 (30%, 2 µL). Distinct inward elongation of SRSs was observed.

3.5. Summary of Modifications

The results of the present study are summarized in Table 1. Both white and reddish
spot areas tended to be enlarged by cold shock and reduced by heat shock, but both
treatments made reddish spots darker. Reddish spot darkening and enlargement induced
by cold shock in males and nonmimetic females are reminiscent of the natural color patterns
of mimetic females, suggesting a contribution of phenotypic plasticity to mimetic color
pattern evolution. Interestingly, the inward elongation of the submarginal reddish spots
was induced not only by temperature shock treatments but also by FB28 treatment.

4. Discussion
4.1. Modification Induction in Papilionid Butterflies and P. polytes

In this study, we successfully obtained physiologically induced color pattern modifica-
tions in the common Mormon butterfly P. polytes. Some Papilio butterflies have already been
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subjected to chemical injections [25,27,29,30]. In one study, Papilio xuthus was subjected
to injections of acid carboxypeptidase [25]. Injections of sodium tungstate were made in
two papilionid butterflies, P. xuthus and Graphium sarpedon, but without modifications [27],
which is consistent with the present study and suggests mechanistic differences in develop-
mental color pattern formation from nymphalid and lycaenid butterflies. In contrast, the
high sensitivity of P. polytes to FB28 was unexpected. Cold-shock hormones (CSHs) [34] or
their receptors may be different among families of butterflies.

Despite these pharmacological experiments, to our knowledge, the present study is the
first systematic quantitative report on the successful induction of color pattern modifications
by temperature shock treatments in papilionid butterflies. The use of temperature shock
may not be as robust as chemical inducers but is more relevant in development and
evolution in the real world; temperature differences are likely an important inducer of
phenotypic plasticity in the field. A recent qualitative report on cold shock results using
Pterourus (Papilio) glaucus [61] is interesting, but quantitative analyses are necessary to
accurately evaluate effects of cold shock treatment.

In the heat shock treatment, modifications varied more than those in the cold shock
treatment, as expected from previous studies in J. orithya [37] and Vanessa indica [39]. We
observed modification differences between two sibling groups, SG1 and SG8, indicating
lineage dependence (hence genetic dependence) of modifications. This result suggests
the importance of genetic and/or maternal effects for the evolution of mimetic patterns.
Indeed, the lineage-dependence of lepidopteran wing color patterns is known [14,62].
Nevertheless, overall, the heat-shock response may be considered in an opposite direction
from the cold-shock response based on the reduction of the central white spots and the
reddish submarginal spots in all sexes and forms. Importantly, these modifications in males
and nonmimetic females were similar to the natural color patterns of mimetic females.

In P. polytes, males, nonmimetic females, and mimetic females all showed modifications
but at different rates. Nonmimetic females showed the highest modification rate, and
mimetic females showed the lowest modification rate in both the cold shock and heat
shock treatments, indicating a higher potential for plasticity in nonmimetic females, which
is reasonable if one considers that the mimetic form is a result of genetic assimilation
of modification-sensitive genotypes. Considering that males and nonmimetic females
show similar color patterns but very different modification rates, this sensitivity difference
indicates sex-biased mechanisms of phenotypic plasticity. Moreover, the lowest sensitivity
of the mimetic form strongly suggests that the mimetic form may be an end-product of
plasticity-based evolution. Further studies would be needed to demonstrate this process.

In the fruit fly Drosophila melanogaster, it appears that heat-shock proteins serve as a
reservoir of mutations and that heat shock treatment beyond the function of heat-shock
proteins causes phenotypic expression of various aberrations [63]. Because injection of
geldanamycin, a heat-shock-protein inhibitor, does not cause highly variable phenotypes in
J. orithya, heat-shock proteins may not play a major role in color pattern modifications [18],
but further investigation in this line may be necessary.

4.2. Real-Time Evolution via Phenotypic Plasticity

Most butterfly color patterns are considered evolutionary consequences of “modifica-
tions” of the nymphalid groundplan [9,57,64–67]. In this sense, experimentally induced
modifications are often indicative of evolutionary history and mechanisms. The present
study showed that the color pattern evolution mechanisms postulated in nonmimetic
nymphalid, lycaenid, and pierid butterflies appeared to be applicable to mimicry evolution.
Natural selection by birds [68] and sympatric abundance of model species [69–72] are impor-
tant in mimicry evolution in P. polytes, but a pallet of phenotypes from which some can be
selected for fitness may be provided by phenotypic plasticity in response to environmental
stress not only in nonmimicry color pattern evolution but also in mimicry evolution.

For modified color patterns to be assimilated in a population, modifications should be
functionally relevant. A gene responsible for a given plastic phenotype may be epistatically
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linked with different genes that have a survival advantage, as suggested in the case of
Vanessa butterflies [38–41] and Zizeeria maha [43]. In the case of P. polytes, modifications
can be readily functional if they are similar to the color patterns of unpalatable species. It
is reasonable to conclude that the present study added a potential example of real-time
evolution (genetic assimilation) of color patterns based on phenotypic plasticity.

However, in the case of P. polytes, not all differences between nonmimetic and mimetic
color patterns were induced by physiological treatments. The central white spot (CWS)
was not induced in this study. Likewise, enlargement of medial white spots in middle
compartments together with reduction in other compartments were not achieved. These
results demonstrate that the mimetic color pattern evolution of P. polytes may be more
complex than the color pattern evolution of nonmimetic species such as Z. maha and the
genus Vanessa.

The Ryukyu Archipelago (Okinawa) is the northern range margin of P. polytes, a local
population that may be relatively easily affected by evolutionary pressure. Highly variable
field-caught specimens of P. polytes collected in Okinawa during the period of 2019–2021
(Figure 10) suggest that P. polytes color patterns are potentially responding to environmental
stress in the field even now. In other words, the color pattern evolution of P. polytes may be
ongoing in Okinawa, and the process of genetic assimilation has not yet been completed.
Sympatric dimorphism of P. polytes in Okinawa may be an indication of real-time color-
pattern evolution and incomplete genetic assimilation, an equilibrium of which could shift
in response to the abundance of the model individuals and predation pressure from birds.
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Figure 10. Various color patterns of field-caught female individuals of P. polytes on Okinwa-jima
Island in 2019–2021. Red arrows indicate naturally modified patterns. (a) Nonmimetic female.
Novel spots, which may correspond to MRS1 and MRS2 in the mimetic female, are present in these
individuals. (b) Mimetic female. Enlargement and elongation of the reddish spots and novel spot
emergence are observed.
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The above interpretation is reasonable based on the following studies. Historically,
on Okinawa-jima Island, the model species P. aristolochiae was found in 1993 [69]. Until
that time, the medial white spots in the mimetic females of P. polytes were relatively small,
but after the arrival of the model species, the medial white spots increased in size [70],
suggesting that predation pressure by birds drives natural selection for the mimetic color
patterns. The mimicry rates of P. polytes on islands are determined by the density of
individuals of the model species [69–72], which has been supported by genetic analyses [73]
and population dynamics’ models [74].

It has been reported that reddish spots change in size during the summer from May to
August in Okinawa [75]. This change has been attributed to ultraviolet (UV) radiation [75]
but may also be induced by natural heat stress. It has been reported that when field-caught
females were irradiated with UV, their offspring showed color pattern modifications,
although regrettably, such wing images have not been presented [75]. At present, it is
reasonable to conclude that temperature shock is an important environmental stressor that
could drive evolution in butterflies, including P. polytes, based on the present study, but a
potential contribution of UV stress should also be investigated in the future.

In the same study [75], UV-induced melaninization was interpreted as a trade-off
between two adaptive states: a mimetic phenotype for protection against predators and
a melaninization phenotype for wing protection against UV irradiation. This trade-off
hypothesis is interesting but needs further thought because melaninization (i.e., reduction
of the white or reddish spots in size or general darkening) can be induced nonspecifically
by cold shock, heat shock, modification inducers, and general-stress inducers in a variety
of butterflies and moths, which are nonadaptive phenotypic modulation. Melaninization
is, therefore, unlikely to be adaptive because it is not specific to UV irradiation or this
species. However, there is a possibility that this nonadaptive plasticity may be evolving to
be adaptive in Okinawa.

Experimental treatments of butterflies for revealing their phenotypic plasticity do not
have to be similar to the environmental stress that their ancestors might have possibly
experienced. In this sense, the results of pharmacological treatments are relevant as long as
information on phenotypic plasticity can be obtained, assuming that the present species
retain phenotypic plasticity of their ancestors at least to some extent. Nonetheless, it
is tempting to ask what kind of environmental stress the ancestors might have received.
Butterfly species that naturally show a resemblance of TS-type modifications of other related
species are often distributed in high-altitude or high-latitude areas where the temperature
difference within a day may be high [27,38–43]. These cases suggest that natural cold shock
might have played a role in color pattern evolution.

Populations in the Ryukyu Archipelago (Okinawa) are considered the northern range
margin populations of P. polytes, but there is no high-altitude area in these subtropical
islands. Indeed, air temperatures in Okinawa cannot reach the cold shock and heat shock
conditions used in this study (−4 and 39 ◦C, respectively). However, we believe that there
are reasonable occasions in the field where pupae are subjected to serious temperature stress
or “natural temperature shock”, even in temperate and subtropical regions. Temperature
stress may be more serious when pupae receive direct sunshine that raises pupal body
temperatures quickly even in winter. In an opposite manner, pupae may be soaked in
water after a local flood, which chills pupae effectively in winter. In these cases, pupae
should be accidentally moved to a life-threatening microenvironment by natural or artificial
disasters. We speculate that such temperature shocks to individual pupae above or below
air temperatures are not very rare in the field, even in subtropical regions such as Okinawa.
To generalize, a natural temperature shock to pupae may be a driving factor for butterfly
and other insect diversity via phenotypic plasticity. This hypothesis should be tested
through various field and laboratory experiments in the future.
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4.3. Evolution of Mimetic and Nonmimetic Female-Limited Dimorphism

In many butterflies, only females show mimicry, as seen in P. polytes. The evolution of
female-limited mimetic color patterns in papilionid butterflies has been enigmatic since
Darwin and Wallace. Genes responsible for this color pattern diversity in P. polytes have
been identified [50–55], but identifying genes for color patterns may not be sufficient to
explain the sex dependence.

It is important to consider that female-limited dimorphism or polymorphism is not
rare in nonmimetic butterflies. Examples from Japanese butterflies are as follows [17].
The pierid butterfly C. erate shows white and yellow forms in females, but there is only a
yellow form in males. The lycaenid butterfly, Chrysozephyrus brillantinus, has four forms
(A, B, AB, and O types) in females, but there is only a single form in males that is different
from any other female form. In the nymphalid butterfly J. orithya, females show various
color patterns, including orange and blue forms, but males show only a single blue form.
Dimorphic mimetic color patterns in P. polytes may be considered a case of female-limited
color pattern diversity that is widely seen in butterflies.

Explanations for female-limited mimicry are multiple. Females are often under higher
predation pressure than males due to their higher nutritious quality of eggs in the ab-
domen [44,45]. The mimetic form has some disadvantages; it is less active [47,48] and has
shorter life expectancy [49]. The mimetic forms are not always effective; their effectiveness
depends on the number of sympatric individuals of the model species [69–74].

The present study adds a new important perspective that is not mutually exclusive
to the explanations above. Phenotypic plasticity that provides a pallet of phenotypes for
natural selection is larger in females than in males. This possibility is supported by the fact
that the lycaenid butterfly Z. maha shows female-biased modifications [43], although this
species is not related to mimicry at all. Similarly, the wing color of females is more variable
than that of males in Pieris napi, a nonmimetic species [76].

5. Conclusions

The common Mormon butterfly P. polytes exhibited unique wing color pattern modifi-
cations as phenotypic plasticity (phenotypic modulation) in response to cold shock and
heat shock treatments and to FB28 injections but not to tungstate injections, suggesting sim-
ilarities to and differences from lycaenid and nymphalid butterflies. Modifications induced
in males and nonmimetic females at least partly resembled the natural color patterns of
the mimetic females, suggesting that the mimetic color patterns in P. polytes might have
evolved from plastic nonmimetic phenotypes in response to environmental stress through
a genetic assimilation process. Nonmimetic females had a higher modification rate than
males and mimetic females did, similar to the case of the nonmimetic lycaenid species
Zizeeria maha. Female-limited color patterns that are widely seen in butterflies (including
nonmimetic ones) may be related to sex-biased modification rates in butterflies. The present
study sheds light on the development and evolution of female-limited mimetic wing color
patterns not only in P. polytes but also in other butterflies.
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Appendix A

Here, we present tables regarding sibling groups used in this study (Table A1) and the
number of individuals that had modifications after a treatment (Tables A2–A4).

Table A1. Sibling groups (SGs) used in this study.

Sibling Group Mother Treatment

SG1 Nonmimetic Heat shock and cold shock

SG2 Mimetic Cold shock

SG3 Nonmimetic Cold shock

SG4 Nonmimetic Cold shock

SG5 Nonmimetic Heat shock

SG6 Mimetic Tungstate injection (1 M, 5 or 25 µL)

SG7 Nonmimetic Tungstate injection (1 M, 1–4 µL)

SG8 Nonmimetic FB28 injection (30%, 2 µL)
Note: Groups used for pilot studies and other trials without success are not included in this table. The heat shock
and cold shock conditions were performed at 39 ◦C for 48 h and at −4 ◦C for 48 h, respectively.

Table A2. Number of modified individuals after the cold shock treatment.

Modifications
Male Nonmimetic Female Mimetic Female

NT CS NT CS NT CS

Total number of individuals 61 46 39 32 21 16

White spot reduction 0 0 0 0 0 0

White spot enlargement 0 5 0 5 0 2

Reddish spot reduction 0 0 0 0 0 0

Reddish spot enlargement 0 25 0 8 0 3

Reddish spot darkening 2 29 7 28 0 0

Reddish spot elongation 0 0 0 1 0 0

Novel spot emergence 0 0 0 4 0 1

Increase in blue scales 0 2 0 4 0 0

Increase in yellow scales (forewing) 0 0 0 0 0 0

Increase in yellow scales (hindwing) 0 0 0 0 0 0

Number of modified individuals 2 40 7 31 0 6

Modification rate (%) 3.3% 87.0% 17.9% 96.9% 0% 37.5%

Note: NT and CS indicate no treatment and cold shock treatment, respectively.

Table A3. Number of modified individuals after the heat shock treatment.

Modifications
Male Nonmimetic Female Mimetic Female

NT HS NT HS NT HS

Total number of individuals 41 34 27 27 16 20

White spot reduction 0 7 0 6 0 1
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Table A3. Cont.

Modifications
Male Nonmimetic Female Mimetic Female

NT HS NT HS NT HS

White spot enlargement 0 1 0 1 0 2

Reddish spot reduction 0 3 0 1 0 6

Reddish spot enlargement 0 2 0 1 0 4

Reddish spot darkening 0 15 10 15 0 0

Reddish spot elongation 0 0 0 0 0 0

Novel spot emergence 0 2 1 11 0 0

Increase in blue scales 0 2 0 5 0 3

Increase in yellow scales (forewing) 0 3 0 4 0 0

Increase in yellow scales (hindwing) 0 5 0 1 0 2

Number of modified individuals 0 24 11 25 0 11

Modification rate (%) 0% 70.6% 40.1% 92.6% 0% 55.0%

Note: NT and HS indicate no treatment and heat shock treatment, respectively.

Table A4. Number of modified individuals in sibling groups after the heat shock treatment.

Modifications

Male Nonmimetic Female

SG1 SG5 SG1 SG5

NT HS NT HS NT HS NT HS

Total number of individuals 10 10 31 24 12 12 15 15

White spot reduction 0 4 0 3 0 3 0 3

White spot enlargement 0 1 0 0 0 1 0 0

Reddish spot reduction 0 3 0 0 0 0 0 1

Reddish spot enlargement 0 2 0 0 0 0 0 1

Reddish spot darkening 0 3 0 12 3 0 7 7

Reddish spot elongation 0 0 0 0 0 8 0 0

Novel spot emergence 0 0 0 2 0 3 1 8

Increase in blue scales 0 1 0 1 0 3 0 2

Increase in yellow scales (forewing) 0 0 0 3 0 1 0 3

Increase in yellow scales (hindwing) 0 1 0 4 0 0 0 1

Number of modified individuals 0 8 0 16 3 11 8 14

Modification rate (%) 0% 80.0% 0% 66.7% 25.0% 91.7% 53.3% 93.3%

Note: NT and HS indicate no treatment and heat shock treatment, respectively.
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