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GAUSS DECOMPOSITION AND ¢-DIFFERENCE EQUATIONS
FOR JACKSON INTEGRALS OF SYMMETRIC SELBERG TYPE

MASAHIKO ITO

ABSTRACT. We provide explicit expressions for two types of first order g-difference
systems for the Jackson integral of symmetric Selberg type. One is the g¢-
difference system known to be the ¢-KZ equation and the other is the g-difference
system for parameters different from the ¢-KZ equation. We use a basis of the
systems introduced by Matsuo in his study of the ¢-KZ equation. As a result,
the similarity of these two systems is discussed by concrete calculations. Interme-
diate calculations are made use of the Riemann-Hilbelt method for q-difference
equation from connection matriz established by Aomoto.

0. INTRODUCTION

Let ¢ = e2™V=1I7 Im7 > 0, be the elliptic modulus. Let ®(t) be a g-multiplicative
function on the algebraic torus (C*)™ defined by

B(t) = Dy (1) = 13 - tanHH SUTEOE, § ST Y

=i ¢ (0% [21)o0 1cicjen (@it

where a; = @ —n + j — 2(j — 1)y. In the papers [3, 7], Aomoto and Aomoto—
Kato introduced the notion of the symmetric part H" ((C*)™, ®,V)sym of g-analog of
the twisted de Rham cohomology attached to ®(t), whose dimension is (""" 1) if
parameters &, Sk, x) and v are generic. If we take a basis {¢;(t) };cr, of the cohomology
H"™((C*)™, @, V) sym, we can construct a solution of a system of holonomic ¢-difference
equations on (C*)™ by using the Jackson integrals Jl = [ DY (see (1.2) for the
definition of Jackson integral). When we denote the g-shift 2; — gx; for a value x; by
T; the g-difference system is expressed by a suitable matrix K;(z) of rank (”j‘n’le)
given by T (¢1)ier = (¥1)ier Kj ().

In the papers [21, 22], Matsuo claimed that by taking a suitable basis the Jackson
integrals for it give a solution of the quantized Knizhnik—Zamolodchikov difference
equations for the matrix coefficients of the product of intertwining operators R;;
called R-matrices for the quantum affine group Uq(;\lg) in the sense of Frenkel and
Reshetikhin [16], i.e., the matrix K,(x) is expressed as

Kj(z) = Rjj(55) - Rim(5E) Dy Ria(50) -+ Ry (%) (L<j<m),

Tj41 1

where D, is some diagonal matrix. Varchenko [26] made Matsuo’s work complete.
According to the result of [22, 26], the system of ¢-difference equations for the Jackson

integrals {[;l (t) with respect to the g-shift x; — gz; eventually reduces to that of the
cases m = 2 because R-matrix R;; is decomposed into a direct sum of these of the
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case m = 2. Therefore we consider the problem of finding an explicit expression of
the matrix K; or R;; for m = 2.

On the other hand, this problem has already been studied by Mimachi [23, 24]. He
introduced one of expressions of the matrix K;(x) by using values of certain Schur
polynomials and evaluated it explicitly when n = 1,2 and 3 (see [24]). Aomoto and
Kato [13] also gave another approach to express it in terms of the Gauss matrix
decomposition [17] and evaluated it explicitly in the case where n = 1 and 2, but in
the form K;(0)K,;(z)~" . They used a method which they call the Riemann-Hilbert
problem for g¢-difference equation from connection matrix [5, 6]. It is a surprising
method because, under some assumptions, the matrix which represents ¢-difference
system is exactly determined only from the information of connection matrix between
asymptotic behaviors of its fundamental solutions. However, for evaluating the matrix
K(x), we do not need such method if we can evaluate the R-matrix R;;. Actually,
the explicit form of the R-matrix as the Gauss decomposition is not so difficult to
find out. This is one of the aims of the present paper and will lead us to Theorems
1.6 and 1.7 in Section 1. (However we will confirm in Subsection 4.2 that the explicit
form of the matrix K;(x) is also obtained from Aomoto’s Riemann-Hilbert method.)

When n = 1 the Jackson integral [1] associated with ®,, 5(t) is equivalent to Heine’s
hypergeometric series

> (¢%)u(¢° 1 (¢%)oo(q” ! ) oo (qt) o dyt
« )9 )v o 4" )o(q" )oo q'1)o0(qt) o
NP M N U Ry U O
= ()u(a)y 1—q (@)oo(@oo Jo  (@°D) (@)oo t
where = ¢X. Heine’s hypergeometric series satisfies the following transformation
formula [18, p.13, Eq.(1.4.1)]

)

*)oo(¢°2) oo -
201(0% 4" 2) = Wzsﬁl(%(ﬂ *¢"w3%). (0.2)

One of the reason the transformation (0.2) holds is the equality

) /1 A (ta5 %) o0 (qt) oo dyt —(©) /1 X (tgAB) oo (qt) oo dgt
“Jo (ta¥)oo(tgP)o t = Jo (tg)oo(tq®)e
which changes ¢ and ¢. It seems interesting to treat the g-difference system with
respect to the parameter ¢® as that of z. We state the g-difference system for the
same basis as Matsuo’s case with respect to the parameter shift 75 : & — & + 1 for
m = 2: B B
Ta(Vi)ier = (Wi)ier A(q”), (0.3)
where A(g%) is a suitable rational matrix of rank n + 1. As we see in Theorem
5.2 in Section 5, although we do not know each element of the matrix A(q%), we
have its Gauss decomposition. The Gauss decomposition of the matrix A(q%) is very
similar to that of the matrix K;(x) (see Theorem 5.2 in Section 5 and compare it
with Theorem 1.6). Furthermore, the R-matrix R;; is determined from asymptotic
behaviors of certain special solutions for the g-difference system (0.3) through (3.1),
(3.3), (3.4), (D.16) and (D.17). In particular, the upper and lower triangular matrices
of the Gauss matrix decomposition of R;; are determined from the matrices A(0) or
A(o0) via (2.1), (2.2), (3.6), (3.7) and (D.12) (see Remark D.4 in Appendix D and
Examples in Appendix E).
In Section 2, we review the Riemann—Hilbert problem for g-difference equation



from connection matrix. In order to evaluate A(¢%), we use Aomoto’s Riemann—
Hilbert method for it because A(g®) is determined only from the data of the principal
connection matrix G which has been studied in [4, 8, 9, 10, 11, 12, 14]. The principal
connection matrix G can also be deduced from the hypergeometric pairing studied by
Tarasov and Varchenko [25], which is related to this problem.

Remark. This note was written in 1997 when the author was a graduate student at
Nagoya University. At that time, the Internet was not yet popular enough, and there
were page restrictions on paper publication. Although he compiled it in notebook
form, the intermediate calculations were too long, so he did not publish it and only
gave printed copies to a limited number of people involved. Therefore, there were
several papers [6, 13] in the bibliographic list at that time that had the title of this
note. On the other hand, time has passed, and recently the author has found that the
main results (Theorems 1.6 and 5.2) of this note can be derived relatively simply by a
method different from the method in this note, so he has published another proof of
these theorems in [19]. Furthermore, he heard from Prof. Y. Yamada that there was
an application of these theorems, and the results of [19] were cited in the recent paper
[15], so he decided to publish this note here. Lastly it should also be noted that in
[15] the similarity between the matrices A(¢%) and K;(x) is explained as consequence
of the so-called base-fiber duality of the gauge theory.
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1. QUANTIZED KNIZHNIK—ZAMOLODCHIKOV DIFFERENCE EQUATIONS AND
R-MATRIX.

1.1. Notation. Let ¢ = ¢>™V~17 Im7 > 0, be the elliptic modulus. For an arbitrary
number ¢ € C, 0 < |¢| < 1, we use the notations

oo

($§C)oo = H(l — c”x)’ (x;c)y = %’ r(xQC)s _ L

bt (2¢”; €)oo

If ¢ = ¢, we simply write (2)s := (2;¢)oo and (), := (z;q),. Let 9(x) be the Jacobi
elliptic theta function defined by

V() = (2)00(4/7) 00 (@) 0o

We also use the notations
I(z)y =0(x) - I(xq")---I(xq" V) and ,0(x)s =

which have the relations

; — (e 7 ; — o
(}I_I}%)ﬁ(x)r (z;9")r and (}1_1%7‘19<x)s w(2397)s,

if we fix ¢7 as a single character ¢ such as a number that does not depend on g¢.
Let ®(t) = P, (t) be the same function as (0.1). The function ®(¢) satisfies a
quasi-symmetric property with respect to the symmetric group &,, of nth order such
that

o®(t) =Uy(t) ©(t), o€ 6,, (1.1)
with a g-periodic function U, (t) as
N1 9(qE; N2 9(qt
U, (1) = H (7])7 (q7t;/t:) — sgno H q’Y(i)’y (q"t;/t:)

i M 0(g'=t5/t:) b ti/ gt /t)
o Hi)>o () o D)>0 ()

where {U,(t)},ce, satisfies the one cocycle condition U,y (t) = Uy (t) - oUy ().

Definition 1.1. For an arbitrary point £ = (&1,...,&,) € (C*)™ and a function f(t)
of t = (t1,...,tn) € (C*)™, we define the Jackson integral of f(t) over the lattice (£)
as follows:

d dgty
J e R LD D CE R S R

(V1,00 ) EZ™

where
&) ={(&g¢™,.... &™) e (C)Y v, €Z (i=1,...,n)}.

dyt,,

=+*. For any function ¢(t) we use ¢ for the

We simply write w = dZ—fl ARRRAY
Jackson integral defined as



1.2. Matsuo’s basis and ¢-KZ equation. Let L denote a set of multi-indeces as
L:{(lh...,lm) €EZso; L+ +1p :n}.

For I = (Iy,...,l;m) € L, let ¢;(t) be the rational functions introduced by Matsuo in
[22] as follows:

X1,

Pi(t) = 1/)(51,...,zm)[ﬁ ?::.’Bm} (t1,...,tn)
m [lj+"'+l77L

_ Bi-1 Tiq B
H H 1 f—tktjij] ] H (tiiqvtj)

j=1 1<i<j<n

where ¢% =0 and A is an alternating sum such that

= Z sgno - og(t)

ceS,,

Let T; denote the g-shift operator defined by
TiF(21,...,&m) = F(21,...,q2), ..., Zm).
We can consider a system of linear ordinary g-difference equations for a vector
Y1, o) = @l)zeL
in a tensor coordinate (z;)ecy, as follows:

Tiy(ze,....xm) = Y(@1,. ., 2m) Kj(21, ... 20) (1<j<m),

n+m—1)

where K;(z1,...,2n) is a suitable matrix function of order #L = ( o

Theorem 1.2 (Matsuo [22], Varchenko [26]). The matriz K;(x1,...,xmy) is expressed
as

Ki(x1,...,2m)
= Rjjt1(5 5 Ryj2(55)  Rim(35) Dy Ria ()R (5) - Ryj—1(35)
where Dj is a diagonal matriz defined by

(21)1er Dy = (¢~ =DMy,

and By (2) = @ [8Y) (2] )

v=1

changes the basis {1 }1e1, according to the fol-

lowing rule:

o(1)s -+ La(i)ry Lo(i+1)s -=+s Lo(m) (v) Zo (i)
<¢(la(1)’* Moty lotrnyent a(m))[ﬁn(l aﬂcr(z ﬁa(erl aﬂa(m)](t)> Ra(i)7o(i+1)( 3UU(iJrl))

loiyHlo(it=v

_ Lo(1) s Lo(i+1)s Lo (i ) »Lo(m)
= (7/}(15(1),.4.7la(i+1)7lg(i> -l o('rn))|:ﬁ Y ’6a(l+1 ﬁ ) 760(m }( ))
la(t+1)+la(1) v

foro e G,,.



Remark 1.3. The matrix R( )( ) of rank v + 1 coincides with the matrix R; ;(7* )

for @, 5(t) (see [26, Theorem 3.5. 10]) Therefore, in order to get an explicit expressmn
of g-difference equations for ®,, ,,,(t) it suffices to know the matrix R; ;(* ) in the case

m = 2. From now on we will consider m = 2.

1.3. Gauss decomposition of R-matrix. When m = 2 we have

a1, jen TT _(ti/71) tj/22)o0 /e
CURERURTRRES ) 0 et el e

j= 1
where o = & —n+ j —2(j —1)7. Let 7 be the operation which exchanges 1, 1 for
To, Po respectively. We set

1<i<j<n

L1, T2

R e _ T2, T1
’(/}S (t) = '(/) (s,n—s) |:6 52} (t)a (ps(t) = T’(/}(s,nfs) - w(s,nfs) [527 B1i| (t) (13)
for 0 < s < n. These two bases are connected by the matrix R”(;—;) via

(@ () Pna1(t), - %0 (1) R 2(Th) = (o), 1 (1), -+, (1))
and
(WO(t)7 <,01(t)7 M) Qpn(t))RQ,l(%) = (wn(t)a %4(75)7 ce vwo(t))>
so that
Rio($8)Ron(52) =1 and Rio(3h)=J 7R21(52) J, (1.4)
where I is the identity matrix and J is the matrix (6;n—;)i ;—o. The ¢-KZ equations
are

Tl({/;n, /l:[;n—17 cee 712;0) = (Jnv’[/;n—l? ceey /lf/;O)Kl(‘Tlv'IQ)v (]‘5)
TZ(QZTL; {Z;nfh e 7&0) = (’lva 1anh e 777’[‘;0)K2(x17 x?)' (16)
Theorem 1.4 (Matsuo [22]). The matrices Ki(x1,x2) and Ka(x1,22) are expressed

as

Ki(v1,22) = Ri2(31) D1 and  Ka(z1,22) = DaRo 1 (472),
where Dy = diag[g(@~("=DNM=)]"_ " and Dy = JD,J.
By (1.3), the expression (1.5) is equal to the following:
To(@0, @1s -+ @) = 7T (s Uners - 00) T = T (W, o, -, o) K1 (w1, 32) T
= (0, @1, +»n) JTR12(52)J JD1J
= ($0, 1, -+, D) Ro,1($2) D2 (1.7)

Remark 1.5. The expressions (1.5) and (1.6) are essentially the same because, by
using (1.7), the equation (1.6) is deduced from (1.5).

Therefore we now take a basis {¢s(t);0 < s < n} with

n

o) = A | — 1:[ L=t/ I ti—at) (1.8)

Pl t/2 pel 17 tk/a1 1<i<j<n

and a g¢-difference system
T2(<50; S/Ela D) @n) - (L)ZOa 8’517 ey S’En)K(xl,.TQ). (19)
From (1.7), we have K(z1,72) = R21(5*) D2 and D = diag[q(@—(r=Dn)s]n_,

_6_



Theorem 1.6. The matrix Rg,l(%’) admits the following Gauss decomposition:
R (32)=Ur-Dg - Lg,
where Up = (up,rs), $ > 1, is an upper triangular matriz,

UR,rs = (*1)577‘(%q752)(Sfr)qf(sfr)(s+1"fl)'y/2

(47:47)s I C T
(@507 )s—r - (q75q7)r  (£2gPr—Pet =25ty g7),
1

DR = diag[dR@, - 7dR7n];

7

(2¢75q")nr  (BgPrPtr2rtln ),

dp., = q—(n—r)ﬂz—r(n—r)’v . .
’ (52q=P2=r=Drig7), (2P P27 q7 )

and L = (lp.rs), 7 > s, s a lower triangular matriz,
(_1)7‘75qﬁ2(sfr)qf(rfs)(rJrsfl)'y/Q

_ (¢%:4")n-s ' (@775 47),—s
(@50 )r—s (@759 ) n—r (2P =Pt =2rtD7g7),

We have another Gauss decomposition expression.

lR,rs =

Theorem 1.7. The matriz Rg,l(%) admits the following Gauss decomposition:
Ry1(32) = Ly - D - Ug,
where L'y = (I .5), 7 > s, is a lower triangular matriz,

(@>**75q7)

r—Ss

)

/ _ (_1\r—s,—(r=s)(r+s—1)y/2 (q’*f’ qry)nfs .
lR,rs - ( ]-) q (q'y; q’y)r—s . <q’y; q'y)n—r (%q—(n—Qs—l)’y; q’y)'r'—s

Dl = diag[dg o - - -, di ],

($24"507), (B
(%qfﬁzf(nfrfl)v; @ )n_r (%qf(nfr)v; qQ)r
and Up = (up ), s > 7 is an upper triangular matriz,

—(s=r)ry (€59)s U P
(@507 )s—r - (€7307)r  (L2q"=0 7).,
Proof. See Appendix D. O

Remark 1.8. We can also derive Theorem 1.6 by using the method of the Riemann—
Hilbert problem for g-difference equation (1.9) from a connection matrix (see Subsec-
tion 4.2).

—(n=r)(B2+717) |

b

dp., = q

/ _
U’R,rs =4q

Remark 1.9. From (1.4), we have two kind of expressions
Rio(3L) = JrURJ - JTDRJ - JTLRJ = JTLRJ - JTDRJ - JTURJ. (1.10)
Remark 1.10. From (1.4) and (1.10), we have
Lyt = JrUgrJ, Dzp'=JrDgrJ, Ugx'=JrLgJ,

and
Up ' =JrLliyJ, Dy~ '=JrDyJ, Lyt =JrUxJ



Corollary 1.11. The matriz K(x1,x2) that represents the q-difference system (1.9)
s given by

K(z1,72) = Ug - Dg - L - diag[g®~ ("= 09| (1.11)

= Ly - Dy - Up - diaglg ="V

Corollary 1.12. The determinant of the matrices Ro 1 () and K(x) are given by
the following expressions:
x2 f1.
(32d"597)r

Ta) _ —(n=r)(Bz2+7r7)
det R2’1(~T1) o Hq (%q—[b—(r—l)W;q'}’)T’

=0

det K (21, xp) = ¢@~(=DNn(n4+D/2 qet R, | (22), (1.12)

L2
Proof. By Theorem 1.6 or Theorem 1.7, we have
det Ry1(5%) = det D (or = det Df).

The result now follows from the following identity:

n (B ), (BN e g,

H ml(%qi(nir)v;q’y)nfr _ H

r=0 r r=0

=1.

1
(%q51*52*7”7; q')’)

]

Remark 1.13. Eq. (1.12) was conjectured by Mimachi in [24] and another proof for
it was given by Aomoto and Kato in [13].

2. REVIEW OF RIEMANN—HILBERT PROBLEM FOR ¢-DIFFERENCE EQUATION FROM
CONNECTION MATRICES

We recall the notion of the Riemann-Hilbert problem for ¢-difference equation
following [2, 5, 6, 13].

We consider a linear ordinary g¢-difference equation for a vector function y(z) =
(yo(2),...,uyn(2)), z € C*, satisfying

Y(q2) = y(2)A(2),

where A(z) is a suitable rational matrix function of order n + 1. We now assume the
following conditions for the matrix A(z);

P1) The matrix A(z) is holomorphic at z = 0 and z = oo.
P2) A(0) = 1in%) A(z) and A(c0) = h_}m A(z) are diagonalizable, i.e., there ex-
z—r z oo

ist matrices C*, C~ and diagonal matrices D = diag[uo, ..., pn), D~ =
diag[ug, . . ., pk] such that
A(0) = (Ch) g7 e, (2.1)
Aoo) = (C7) 1" O, (2.2)
where ¢P" = diag[g"0, ..., q"] and ¢P = diag[¢"0, ..., ¢""].

_8_



P3) The diagonal elements of DT and D~ satisfy the following non-resonance
condition:!

q‘ui_p‘j 7& qi17qi27 AR
¢ g g
P4) The matrix A(z) does not depend on gq.
Under the conditions P1), P2) and P3), from the classical theorem due to G. D. Birkhoff
(see [5, 6]), we know that there exists a unique solution Yp(z) of the equation
Y(q2) = Y(2)A(2) 2.3)
such that Yy(z) satisfies the asymptotic behavior
Yo(2) ~ (CT) 1P Ct at z=0,

and we also know that there exists a unique solution Y (z) of the equation (2.3) such
that Y, (2) satisfies the asymptotic behavior

Yool2) ~ (CT) 2P C7 at 2= o0

We call Yjy(z) and Yo (2) the fundamental solutions of (2.3) at z = 0 and z = oo
respectively. The connection matrix P(z) between the fundamental solutions Y(z)
and Y, (z) is defined by

P(z) := Yy(2)Yao (2) 1.
For an arbitrary matrix X (¢) depending on ¢, we denote the limit for ¢ — 0 as

(X)o = lim X(q).

q—0

Theorem 2.1 (Aomoto’s lemma). In addition to P1), P2) and P3), under the con-
dition P4), the following limit formula holds:

(P(2)), = A(0)A(z) . (2.4)

Proof. See [5, 6]. O

This theorem will play a crucial role in calculating A(z) explicitly in the following
sections.

Remark 2.2. In the condition P2), if we can choose the matrices CT = (cJr )n and

" T5/)r,s=0
- = (c;s)r,s:()

and diag[(c;, ) 1|"_,C~ also satisfy P2). Thus we assume that the matrices C* and
C'~ are unipotent if they are triangular.

as triangular matrices, the unipotent matrices diag[(c;,.)~!]"_,C*

L P3) is a condition that should be referred to as H2) in the reference [5], but the symbol H2)
does not appear in [5] due to a typo. It should be noted that equations (2) and (3) in [5] actually
correspond to the condition H2).



3. CHARACTERISTIC CYCLES AND FUNDAMENTAL SOLUTIONS

Let F*~", 0 < r < n, denote the partition of the set {1,...,n} into subsets
{].,...,77,—7"} and {n_r—’_ 17"'7”}' Let gF:"_T = (glvu'agn), nFT"_T = (nla"'vnn)v
Cpn—r = (C1,---,Cn) and dpn—r = (d1,...,6,) be the four points in (C*)" defined by

£ - 51 - 52 - x1q77 ) gn—r = ‘qu(niril)'h
" Enir#’l = T2, €n7r+2 = qu’yv ey gn = qu("'fl)Va
n . { m = xlq_ﬁl, 2 = xlq—ﬂl—v, cevy Mp—p = xlq_ﬂl—(n—’r‘—l)’y7
£ . NMn—r+1 = $2q—62’ Nn—r4+2 = iL'Qq_B?_’Y7 RN Np = xzq—ﬁz—(r—l)y,
¢ JGa= z1q~ "™, G2 = Tg P, L Cn—yr = xlq—l%—(n—r—l)—y7
Fy . CTL—T‘-‘rl = T2, Cn_TJ’_Q = x2q')’7 o Cn _ 5[»'2(]“171)77
O ppn—r 51 =T 52 = xlq’ya ceey 5n—r = ‘qu(nfrfl)"fa
Fy 511,77"{»1 = x2q7ﬁ2’ 5TL7T+2 = x2q7ﬁ2777 e 5n _ l'quﬁzi(ril)'Y.

We call the lattices ({pn—r), (Npn—r), ((pn-r) and (6zn-r), 0 < 7 < n, the charac-
teristic cycles. Since the ordinary Jackson integrals over the cycles <77F:L_r>, ¢ Frn_r>
and (4 F;lfr> diverge, we have to define the reqularized Jackson integrals for them as

follows:
| ewe=
<7/F;z—r>
dt dt
=1-q" > Res  ®(ty,....tn)@(tis. . otn) — Ao A=,
(V1yeesn )EL™ t1:771q b b bn
tn:nné "
| et
(Cpn—r)
= (1 _Q)n Z RGSV q)(th"'atn—raqyn_rgn—Ta"'7qunCn)
(V14 )EZ™ t17C1q) g
tn—r=Cn—rq" """
dty dt,,—
: (P(th e 7tn—7'7qyn7r§7l—7‘7 sy qV"Cn) — A A B Tv
tl tnfr
and
| et
(8 1)
= (]_ — q)n Z . _6R€S ot <I>(q”151, ey quﬂirdn—ra tnfr+17 N 7tn)
S ’
tn=0nq""
dty— dt
(@ 01, @ T O b1y - e ) e 2y R N
tnfrJrl tn
Let ps(t) be the function defined by (1.8) in Section 1. We consider a linear ordinary
g-difference equation for a vector function y(¢*) = (Po, @1, - - ., Pn) satisfying

y(@®) = y(¢*)A(¢").



where A(q%) is a suitable rational matrix function of order n + 1. We define the
following two matrices

v (
<EF7ZL7T>

which are solutions of the matrix equation

Y(¢*) =Y (¢")A(¢). (3.2)

n

B(ten(tm) ’XQZ(Lwa@%@wlyd (3.1)

r,s=0

We set (y)® := yf---yS for y = (y1,...,yn). The solutions Y and Y, have the
following asymptotic behaviors:

Ye~ (@MPACT  at a— +oo, (3.3)
Y, ~(@M)PaCy  at a— —oo (3.4)
where
(¢%)P4 = diag[(§p—)%isg,  (¢%)P0 = diag[(np—)]io,

and Cf = (¢}, )i e—p and Cf = (Cars)t s—o are matrices not depending on ¢* defined

r,5=0
by
(Epp—r)es(Eppr B(t)ps(t) dt dt,,
CZT'S = (1_q)n (§FT >SD (éFT )a C,er = (1—Q)n Res L&();/\' A .
' (é-F:_T) ’ t:"]Flbfr (t) tl tn
(3.5)
Since
i i n—r_ r |r(r— n—r)(n—r— n
qDA = dlag[ml Ty q[ (r—=1)+( )( 1)]7/2]7‘:0’
¢Pr = dingla?"a g~ (BB )= () (e Dly/ 2

the condition P3) is satisfied for generic parameters 1, xa, 81, B2 and 7.

Proposition 3.1. The matrix CX is lower triangular. The nonzero elements of the
matriz (C)o are the following:

(CX,TT)O = ¢ [rr=D+ (=) (n—r-1)ly/2
(L2~ g7), - (22g7 (00 g7,
(@50 n—r - (32¢°:07)r - (@P2507)r - (52475 07),
+ +
(CA,TS) o CA,TS
+ - F
CA,T’I‘ 0 CA,rr
= g~ (r=9)(n-r)y (@754 )n—s (¢ q7)rs for r>s.
(@7:97)r—s(073 47 )n—r (%q(rﬁgin)ﬁ q")r—s B
Proof. See Appendix B. O

Proposition 3.2. The matriz C is upper triangular. The non-zero elements of the
matriz (Cy )o are the following:



W@ D (547 (L2g=P= (=7 g7),
(1—g) (%qﬂl—ﬁz—(r—l)v;qv)T
1
n(%qﬂl_ﬁb_(r_l)’Y; q"/)r . n(%qﬂl_ﬁb_r’}’; q"/)r ’

(€)oo= (=1)

(CA,TS> _ CA,rs
0

CX,TT‘ C,XJ'T
_ (=2 7@47)84 (qﬁﬁ(nfs)v; q")s_r . (q7;:q7)s for r<s
= (2gh—Patn=s=nv;g) s (@7307)r - (@757 )s—r -
Proof. See Appendix C. ]
If we define

Yo:= (CH) 7 Yo, Yaor=(C) 7Y,

B

then the matrices Yy = Y;(q%) and Y, = Yo (¢%) are also solutions of the equation
(3.2) and satisty the following asymptotic behaviors:

Yo(g®) ~ (CH M g®)PACE at & — oo,
Yoo (¢®) ~ (C) Y (¢®)PACy at & — —oc.

This implies that the matrix A(q%) satisfies the condition P1) and P2) for the unipo-

tent matrices
+ n — n
c c
A, _ A,
C+ _ (chrs) ’ - = <Crs>
Arr r,5=0 A,rr r,s=0

in (2.1) and (2.2), i.e.,
A(0) = (C) TPl = ()P e, (3.6)
A(o0) = (Cy)HqPaCy = (C7)MgPaCm. (3.7)
Let G = G(&, p1, B2, x1,22) be the connection matrix between Yy and Y, defined
by
G=Y: Y, ", (3.8)

which coincides with what Aomoto—Kato called the principal connection matriz (see
Section 4), and then

Yo(g™)Yao(¢™) T = (CN) T Ye Y Gy = (C) T G Gy (3.9)

Since the conditions P1), P2) and P3) are satisfied, by (3.9) and Aomoto’s lemma
(2.4), we have
AOA) = (e e or),
if the condition Pfl) holds for A(¢%). In Appendix §A, we will see that the condition
P4) holds for A(¢%) . From (3.6), we have

A = (e 67 g ) (3.10)

0



4. PRINCIPAL CONNECTION MATRIX

4.1. Principal connection matrix. The set {({zn--);0 < r < n} makes up a basis

of the dual space of H"(X,®, V), (see the definition in [12]). For an arbitrary
§ € C*, (€) is expressed uniquely as a linear combination of (§zn-r), 0 <7 < n, in
such a way that

§=3 e (Epr) (4.1)
r=0

for some pseudo-constants ¢, in the sense that they do not change under the displace-
ment & — &+ 1, By — B+ 1, v —= v+ 1 and = — gx. We denote the coefficient ¢,
by ((€); (€pn-r)) g Namely, (4.1) means that

n

[, 2000 =3 (@ster-)a- [  H0A0= (4.2
For the other bases {(npn—r);0 < r < n}, {{(n—+);0 <7 < n} and {(0pn—r);0 <

r < n}, we define the coefficients ((£); <77F;L7T>)q>, ((€); <CF;17T>)(I> and ((£); <5F77‘1,77'>)(b
in the same manner as above. By (4.2) and (3.8), the elements of the principal
connection matrix G' = (g,s);" .—o are written as follows:

Ors = (<§F;‘—T> NEr- g Z gF" T CF" ’>)(1> : (<<Fi"_’:>;<77F.?_S>)<I>'
=0

Theorem 4.1 (Gauss decomposition [12]). The principal connection matriz G admits
the following Gauss decomposition:

G = (Hiey) ™" Hcs (4.3)

++

where the matrices H{C;&) = (hm )?5:0 e

and H.y = (hm ):S:O are defined by

+

he o= ({Conr)i (Epn=sV)gs Pre = ({Cn—r)s (Mpn—s)) -

The matrices H ey and H ¢, become an upper triangular matriz and a lower one
respectively.  An arbitrary element of the matrices Hc.ey, Hcipy, (H“;g))’l and
(Hycy) ™t is expressed in a theta product form.

Proof. See Theorem 8.3 in [12]. O

Since we have already known the explicit form of Hcey and H ¢,y (see Theorem
8.1, 8.2 in [12] and Lemma 13 in [13]), in particular, we have

) = (@5 ) - (ﬂq’ﬁ'(ﬂ)nir
(h’j:)o = (_l)n " n—r x1
(1_q’y) '(127(])

(i;q_ﬂl (r=r=1)7: M), - (¢¥ B2 2=y gy,

n—r

.(;;qﬁz Br1—(n—r— 1)7;q7)n7T.(q&+ﬂ2+/81_(7l_7'_1)7;q7)

n(mq—(r—l)v- q")r - n(Zq75 ),
o ’ o )
n(Srq= ==Y, (S (Y ),




hﬁj) _ qfr(sfr)’yn(%q_(”_r_l)’y; Q) - n(%q—(n—r)v; Q) - n(%q—(s—l)w; q")s
hyy /0 n(Frq= =505 7) s - (575975 - (g DY g0),
. (%q—r'y; q’y)n—r ) (qﬁ2+"'7; q’y)s—r
(a0 )n—s  (51gPH (=975 q7),
(%q—&—ﬁz—k(n—l)'y; q’y)s—r : s(q'y; q’y)r
. (q_&_ﬁ2+(2n—r—s—1)fy; q'y) . (%q(r+s—n)'y; q'y)s_r

oer
and

(1—q7)" - (¢ Crmr=ti ),
(@;97)r - (q@2=D7;97), - (4525 97),

(h'rr )0 = (_1)7”

() e ) )
By /0 (qotP2=Cn=r=1)v; g7},

(¢%;q7), - (¢Pr =Pt inmr=enia, g7

(@2507)s - (@PH =32 g7), o "

Let 7 be the operation which exchanges x1, 5 for xa, (5.

(¢7;q")s for r>s. (4.7

Theorem 4.2 (Quasi-symmetry of second kind [12]). Under the action of T, the
principal connection matriz G = G(&, b1, B2, x1,x2) changes as follows:

T7G(&, 1, B2, 71, 22) = G(&, B2, B1, 22, 71)
= S(x2/71) G(& B, Ba, w1, m2) 'S(q7 Pray [as), (4.8)
)?5:0 and

G () 1= 2 (=TT =) A=) =207 (= (Tm0Y) L (2g ),

where we put S(x) := (ar,s(l’) -

Proof. See Theorem 5.2 in [12]. O

Proposition 4.3. The principal connection matricx G admits the following Gauss
decomposition:

G = (H(5;§>)_1 H (5.

where Hs.¢y and H .,y are a lower triangular matriz and an upper one respectively

defined by
Hisey = S'(w2/1) THcey S(w2/1)
Hspy = 8" (x2/21) TH ¢y S(q7 Py /21),
where S'(x) := (ays(vqg P2~ =D7) 5, )"

r,s5=0"
Proof. From (4.8), we have 7G = S(w2/z1) G 'S(¢?~Pray /25). Then,
G =717G = 7S(22 /1) TG TIS(¢% P11 J20) = S(21/32) TG 'S (¢P P2y J 1), (4.9)
On the other hand, by (4.3), we have
(Hisie)) ™" Hisy

-1
= (S’(ﬂcg/xl) TH e tS(:CQ/.’El)) S'(xa/21) TH ey 'S(q™ a0 /21)



= tS(:CQ/Il)71 (TH(C;Q)il S/(IQ/I1)71 S/(l‘g/l‘l) TH<C377> tS(q517ﬁ2I2/1‘1)
= S(Il/l'g) T(H@;{})il TH(C;.,]> tS(qﬁ17ﬁ2l’2/I1)

= S(x1/22) TG 'S(¢P P2y /21). (4.10)
The proposition now follows from (4.9) and (4.10). O
From Proposition 4.3, the elements of the matrices Hs.y = (ks ). _, and Hs,ey =
(h;:)?s:o are written as follows:
h__ Th-:z:r,nfs ' a’S,n*S(qBI 7621’2/1"1) -+ Th—:: rim—s = Usn— 5(1'2/1'1) (4 ].1)
e an—r,r(q_ﬁZ_(r_l)’Y'IZ/ml) T an—r,r(q Pa=(r= 1)’Y'ZEQ/'Il) ’ .

Remark 4.4. In [12], it is proved that the element h,. is equal to (<5F;17r>; <77F;L73>)q>.
Since the elements of the matrix G' = (g,s); ;¢ are expressed as

Grs = (Erp—)i Mpp—)) g = D (Epp—r)i (Fn=)) g - (Bpn—s)s (Mpm—s))

=0
we finally have h,, = ({8 prer)i (Epns)) 5
4.2. A remark on Aomoto—Kato case. In [13], Aomoto and Kato have also stud-
ied the g-difference system (1.9) from the viewpoint of the Riemann—Hilbert method.
In this section we will show how to derive Corollary 1.11 by using it.

Since the functions ®,, »(¢) and ¢, (t) are depending on z; and x2, we denote ®@,, 2(t)
and (t) by ®(z1,x2;t) and ps(z1, 22;t) respectively. By the transformation

/@(Il,zz;t)%(ﬂﬁl’@;ﬂw*x?ﬁ +a"/q)(LIz/ﬂfl;t)@s(Lu/Il;ﬂw

it suffices to consider the g-difference system (1.9) in the case 1 = 1 and xzo = z. For

a vector function y(z) := (@o, @1, - .., Pn) Where
n n—s
1 1— ¢t /z _
ps(t) = AT II [T ti-atpf,
P te/w iei LTtk 1<i<j<n

the g-difference system (1.9) is written as

y(gr) = y(o)K(x).
where K (x) := K(1,z). We define the following two matrices

where (pn—r and 0pn-- is defined in Section 3, and these matrices are solutions of the
matrix equation
Y(gx) =Y (2)K(z). (4.12)
Aomoto and Kato studied in [13] asymptotic behaviors of the solutions Y; and Yj:
Yo ~ Vi(x) xD;C;(' at x*—0,

Vs ~Vo(z) 2Px O at 2 — oco.



where V() and V_(x) are pseudo-constant diagonal matrices evaluated in [12] as
Vi(z) = diagv,(2)]7=o, V- (2) = diag[v; (z)]7_o,

and D; and Dy are diagonal matrices
Dt = diaglra — (n — )8z — r(2n —r — 1)7]7_,,
D,; = diag[ra +rp1 — r(r — 1)7y]—o-

The matrices Cif = (Cg,rs):},S:O and Cy, = (CI;,TS):‘I,S:O are a lower triangular matrix
and an upper one respectively.

Lemma 4.5 (Aomoto-Kato [13]). The matrices (Vi (x))o, (V-(2))o, (Ci)o and
(Cx)o are evaluated as follows:

B1. 47
P A C. G AP
Ur)o =4 ‘
(vr) (2qP=P25 g7 )y

I

(—1)r(n=rgrn=ry . (gg= P2 (=D ),
C (wg P07, (2 P (D ) (g P (0 DY ),

(C};M)O _ (71)nfrq(n7r)ﬁ27(nfr)(nfrfl)'y/er(rf1)7/2

(qv; Q) (q&+/32—(2n—r—1)7; qv)r
(L =g (¢%;¢7), - (¢@2("=D7; q7),

+ +
(CK,rs) _ Krs _ q(n—r)(s—r)fy (q'y§q’y)nfs (qﬁﬁs”;q”)rfs
G’ 0 Gy (@507 )r—s - (@507 (¢3HP2—@r=r=s=D1g7), 7

(@7;q7), - (q@ A= (ntr=17: ¢7)

n—r

(1 =) (@5 ¢ ) n—r - (275 ¢7),,

(sz,m«)o — (_1)r(nfr+1)qfn(n71)'y/2

(L;"“S) _ Krs _ =)= (n-albrir—sh

Cre 0 Crr

K,rr K,rr . (qu; q'y)s (qﬁ1+(n—s)'y;q-y)s_r (4 13)
(@750 )s—r - (@757 ) (qOFTA (=175 g7), ’

If we define
Yo = (G (Val) ™ Yo, YL = ()™t (V@)™ Y,

then the matrices Yy = Y (z) and Y. = Y. (z) are fundamental solutions of the
equation (4.12) and satisfy

Yy(x) ~ (C;)_lxD;gC’;{r at x — 0,
Y (z)~ (Cg) taPxCr  at 2 — oo.
Let P be the connection matrix between Y and Ys defined by
P:=Y: Y,
In [12], Pis expressed in the form of Gauss decomposition as

P Hig (Hisy) ™ (414)



By Aomoto’s lemma (2.4), we have
K(0)K () = (Y (@)Y (2) "), = (G (Vi(z)) ™t P VL(z) Cx),-

From (4.14) and K (0) = (C)~1 DKC'Jr we have

_ _ +
)= (GO (V@)™ Higy Hicly, Vi) 4% GE)

6), (4.7), (4.11), Lemma 4.5 and Lemma 5.7 in Section 5, we can

Hence, by using (4.6)
s (1.11) in Corollary 1.11.

evaluate K (x) a

5. MAIN RESULT FOR ¢-DIFFERENCE EQUATIONS WITH PARAMETER SHIFT
a—a+1
From (3.10) and Proposition 4.3, it follows that
a . _ +
Alg®) = (€)™ (Hism) ™ Hisy 44 CF) (5.1)

Since the matrices C and H s,y are upper triangular and the matrices C’X and H 5,6
are lower triangular, we can decompose the matrix A(¢%) as the product of lower and
upper triangular matrices in the following form:

1 wor wo2 -+ uon do 1
1 w2 - Ul dq l1o 1
1 Un—1,n dnfl lnfl,() e lnfl,nfl 1
1 dn l'n,O e ln,n72 ln,nfl 1

This expression is unique and we denote by Uy and L4 the above left and right
matrices respectively, so that

A(q®) = Uy diag[d, ..., d,) La. (5.2)
Theorem 5.1. The elements of Uy, diag[do, ..., d,] and La are expressed as follows:
(s=r)a—(n—1)7]=(s—r)(s+r—1)7/2
(@7:47)s (@7l )y
(@7597)s—r - (@7597)r (q¥FA =205 g7) 5,

B (qd+,8r2(rfl)v;q7)r (g%~ 2(n—1)7. G )
= (qo+Prtha=(r=1v; g7),. . (¢8+A—(n=14m)i 7)),

Urs = (_1)3_rq

where g = &gl gD e (nr=D]/2,

Ly = (~1)7 (@ a)*~7q =T+ 12
. (q’y, q’y)n_s (q52+5’y; q’y)r_s
(q’77 q’y>’r75 . (q"/7 q'Y)nir (q&+51—2(r—1)7; q,y)r_b

We prove Theorem 5.1 in the following sections. Moreover, separating the matrix
depending on x; and x5, we have

for r>s.



Theorem 5.2. The matriz A(q%) is expressed as follows:
A(¢%) = O D Ly diag| 27725 'y,
where Uy = (i) is an upper triangular matriz given by
lips = (—1)5 Tgls= A= (=Dl =(s=r)(str=1)7/2
(@7547)s (qﬂ1+(n_s)v§ q")s—r
@) sor (@) (@D, =
Dy = diag[do, .., ),

d. = q[r('r‘fl)Jr(nfr)(nfrfl)]'y/Q (qd+5172(r71)y; q,y)?” ) (qd72(n71)'y; qry)n—r

(q+PrtPe=(r=1v; ¢7),. - (qa+A—(n=141)7; g7),,

n—r

La = (I,5) is a lower triangular matriz given by
_ (_1)r—sq—(r—s)(r+s—1)'y/2

lTS -
, (47507 )n—s (g% 75 97)r—s Ll

(q'y; q’y)r—s : (q’y; q‘y)n—r (q&—Hjl_Q(T_l)’y; q’y)r—s a
Remark 5.3. If we compare Theorem 5.2 with Corollary 1.11, we find that the ma-
trices A(q®) and K (x1, ) are very similar to each other, especially the substitution
of ¢ into (z1/29)qg~ 2+~ transforms Uy and Ly into Ur and L respectively.

Remark 5.4. The elements of U; " = (uf,)" _,

of the coefficient matrix Cy; (Compare (4.13) in Lemma 4.5 with (5.4.2) in Theorem
5.12).

coincides with the value ¢z . /cx ..

5.1. Diagonal elements and determinant of A(¢%). In this section, we first eval-
uate the diagonal matrix diag[dy, ..., d,] of A(¢®) in the expression of (5.2).

Theorem 5.5. The elements d,., 0 < r < n, of the diagonal matriz diag[dy, ..., d,)
are evaluated as follows:

(q*tA 2D g0), - (@2 g0 )
(q&+ﬁ1+52—('r—1)7; q'y)T . (q&+61—(n—1+7")'y; q'y) ’

n—r

d, = q"'r 0<r<n.

In particular,

Corollary 5.6. The determinant of the matriz A(q®) is the following:
(¢* 275 q7),
51"1‘/81"!‘62_(7‘_1)’)’; q’)’)

n
det A(q%) = (z120)" "D/ 2g(n=Dn(n+1)7/3 H -

r=0 r
Proof. By Theorem 5.5, we have
T (@) (P )

&Y pottin
det A(¢") = ¢ r[[o (qd+ﬁ1+f3r(rfl)v; qQ )y - (qd‘f’ﬁl*(n*l‘FT)W; q7)

n—r

(q&+ﬁ1—2(r—1)7; ),

n
The result follows from the following identity: H =1 0O

r=0
Proof of Theorem 5.5. From (4.4), (4.6) and (4.11), we have the explicit forms of

(h,, )o and (h,, )o as follows:

(q&+51 - (n—1+7')'7; q’y)nfr



(1 _ q’y)n—r . (q&+ﬁ1—(n+r—1)'y; q’y)

(@0 n—r - (¢* 2= ¢7) 0y - (¢P15q7),
n(%qﬁl—ﬁz—(T—l)"/; q’Y)T . n(%’qﬁl—ﬁz—“/; q'Y)T

(B Jo = (=1)"7"

. n(%q_ﬂQ_(n—Q)'y;q'y)r .n(%q—ﬂg—(n—l)"/;q7>r’ (53)
(0 = (<1)" (@”0") - (24597), - (%’;‘q’ﬁ""(“””' Q) (47;47),
rr )0 — T : z z B _
(32:97) - (32gPr=Pa= (=15 7). (1 - q”)
. (qd+,31—2(7'—1)’7;q7)T . (qu*(nfr 1)y qv)r n( Vg7, 5.4
(qatBrtBa—(r=1)v; g7, (22 2q~ B2=(n=2)7; g7),. - (1 q Bz (=D, q7),."
In Propositions 3.1 and 3.2, we derived the following expressions:
(¢t o= g Irr=D+n=r)(n=—r—1)y/2
’ (ﬂq—(n—r)v. q"), - (qu—(n—r—l)v. q")r
- ZL ’ Z ’ , 5.5
@0 (BP0, (@) (B0, (5:5)
vyl r=D =) —r—1)y/2 (@58 )n—r - (@75 7)r
(CA rr)o - ( 1) q (1 _ q'y)n
(;i g Pe—(r=1)v, ¢y 1 (56)
(i? qﬂl Ba— (7' I)V; q’Y)T n(%qﬂl_[b—(r—l)ﬁ’; q"/)r . n(%qﬂl—[b—r’)’; q’Y)T
Finally, from (5.1) and (5.2), we have
- -1 --, 1 —+
d”' = (CA,’!‘T')O ) (h’r'r )0 : (hr'r )0 ) (CXJ'T‘)O : qHT (57)
and the result follows from (5.3)—(5.7). O

5.2. ¢-Binomial lemmas. In this section, we prepare two g-binomial lemmas that
will be useful in the following sections.

Lemma 5.7. Let z, y and ¢ be arbitrary numbers € C. Then

k ) 1—j. ). . )
Z(—l)jzjcgj(jil)/z (Ca C)k‘ . (yclijvc)] . (ZyCJA,C)k—] = 1. (58)
(c;0)k—j - (e); (27 150); (225 0)

j=0
Remark. When ¢ — 1, the above formula reduces to the following well-known
combinatorial formula:

k

(=9 = (02 = =) = S ()~ -0
Jj=
Proof. Multiply both sides of (5.8) by (z;¢)2r—1. Then we have
k (¢;0)k
(zC)ap_1 = > (=170 0/2__ 20 (el =die) s (2ydd ) pe
jz::O (6 k- (50); ! !

(z0)j1 - (L= 27 - (2t o)y (5.9)



We prove (5.9) instead of (5.8). We denote by g(z) and g¢;(z) the summation and
summand of the right-hand side of (5.9) respectively:

(o) i (1)) 030G -1)/2 (e ) AT R )
g] (Z) ( ) zic (C, C)kfj . (C, C)] (yC 7c)] (ZyC],C)k J
(z0)j-1 - (1= 2771 - (2 0) o,

k
9(2) ==Y _g;(2).
j=0

In order to prove (5.9) by the factor theorem, we show that the polynomial g(z) of
degree 2k — 1 equals 1 at z = 0 and vanishes at 2k — 1 points z = ¢! 7!, 1 <[ < 2k — 1.
Since ¢g(0) = 1 is easy to check, it is enough to show the following:

1

l
Qg(clil) = QZgj(Clil) - Z (gj(clil) + gl—j(clil)) = 07
=0

§=0
k k-1
29(027l7k) _ QZgj(027l7k) _ Z <gl+j(c2fl7k) +gk7j(627l7k)) =0,
j=l j=0
which are confirmed from the following lemma. O

Lemma 5.8. For z=c"' or 271k 1 <1<k, it follows that

gD+ a1 =0 for 0<j<I,
gi(c™H =0  for 1<j<k

and
g () F g (@R =0 for 0<j<k—1,
g;(*71=k) =0 for 0<j<L
Proof. It is straightforward and left to the reader. O
Lemma 5.9. Let z and ¢ be arbitrary numbers € C. Then
1) e—i(Rk=i—1)/2
3 ( )_62(._1) —— = 0. (5.10)
24 (ere); - (@i (e 20 D50), - (ze F i),

Remark. When ¢ — 1, the above formula reduces to the following well-known

combinatorial formula: .
-k
Z(—l)ﬂ(.) _o.

: J
7=0
Proof. By multiplying both sides of (5.10) by (z¢=2¥%2;¢)q5,_1, we have

k 2 —2j+1 —2k+2.
S (cayiesekmgnp ET ) (A2 2 ) (2R iy _ 5y

(€ )r—j - (¢50);

j=0
We prove (5.11) instead of (5.10). We denote by g(z) and g;(z) the summation and
summand of the right-hand side of (5.9) respectively:

eIt (L 2em Y - (2 o)

(c;c)k—j - (c;0);

() = (-1 G

)



k
)= 5(2)

j=0
In order to prove (5.11) by the factor theorem, we show that the polynomial g(z) of
degree k — 1 vanishes at k points z = =1, 1 <1 <k, i.e.,

1 1

2 =23 g™ = (@) + G (@) =0, 1<i<k,

j=0 j=0
which follows from the following lemma. ]

Lemma 5.10. For z = cl_l, 1 <1<k, it follows that
G +a () =0 for 0<j<l,
Ej(clfl):() for 1<j<k.
Proof. It is straightforward and left to the reader. |

5.3. Evaluation of Ly.

Theorem 5.11. The elements of the matriz L are expressed in a product of bino-
mials as follows:

_ (_q\r—s(xz2\s—r ,—(r—s)(r+s—1)vy/2
lrs = (—1) (I?) q 7
. (¢7597)n—s (¢%+7597)r—s
(@507 )r—s - (07597 )n—r (q*+HA1 =20 =71 g7),
Proof. From (4.5) and (4.11), we have
(1), — e GO B,
hy (327507 )r - (F2q= (== D71g7); ($2q~ (07590,
' (;cz q617q7) (q q’y)n—i . (q’Y; q’y)n—i
(Z¢5:0)r (P50 ) (010 s
(g Bty g,

for r>s. (5.12)

. _ : d (5.13)
—Qa—[p1 —1)7. PN -r— L2 . .. . .
(¢ P07 ), - (g7 [ ), (@5 4y
By Proposition 3.1, it follows that
+ s
(CA,is) S S U AL G = (@ q)is (5.14)
CX,ii 0 (q’y;qﬂy)i—s(q'y;q’y)n—i (%q(hLSin)‘y;qv)i—s
c+,,
(%) _ iD= (=) (=i D)t (r =Dt (n—r) (n—r— 1)} /2
CA,TT 0 (n—i —(n—i—1
. (%q (n z)’y;q’v)i.<%q (n—i )w;qv)i
2 —(n—r)y. (T2 o—(n—r—1)7.
(ajq ( )’Y’q'Y)r (qu (n )y q"/)r
(@50 n—r - (26" 07)r - (0%507)r - (32073 07),
o 5 3 - (5.15)
(@750 ) n—i - (324%597)i - (672597)i - (3247547):
(QI‘i) _ (mz)z r [z(z )+(n—i)(n—i—1)—r(r—1)—(n—7r)(n—r— 1)]')//2 (5 16)
g Jo T '



Comparing (5.1) with (5.2), the elements [,.; of the matrix L 4 are expressed as follows:

S~ Lis Aii
s = zz:; <Zﬁ )o(ci’“ )o(ci )0(;1:; )0'

rr CA;n CA,TT

Then, from (5.13)—(5.16), we have

_ (@59 )n- ( Bats. )
rs (q,y q,y) q 34 )r—s
. 1)z )T —(r—i)(r+i—1)y/2—(i—s)(n—1i)y
;( )T (@547 )r—i - (47597 )is

(i?qa—i_ﬂl (n+r—i—2)y. q’Y)

L l _ . (5.17)
(qa+ﬁl_2('r_1)7; q'Y)Tii . (ﬁq@z ”"Fl)"/; q’y>’r7i . (w—?q(l""s_n)')’; q"/)iis

We have to show the following identity to prove that (5.17) coincides with (5.12):

Z(71)r7i(ﬂ)if'rqf(rfi)(r+i71)7/27(i75)(n7i)7

=5

1
(@547 )r—i - (47507 )i-s
(ifqa-l-ﬁl (n4r—i—2)~. q'y>

(AHA 2D g0), - (B2qRImnt D ), (%’q““‘””; q7)i-s

1
_ r—S( Ty \S—T —(7‘ s)(r+s—1)v/2
= (=D () @ e (T ) (5.18)
Dividing (5.18) by the right-hand side of (5.18), (5.18) reads as follows:
- sy —(n—i)yt (s - (@7397)r—
1= _1)is Qq (n—i)y+(i+s—1)v/2\i—s
z::( e ) (@7507)r—i - (@597)i—s
a+Br—(r+i=2)v. 7). (Z2g0tHi—(ntr—i=2)y. o7)
(g 1q7)is (514 q") (5.19)

(52qUFs=m7g7) s (52qZ—ntDr;g7),

Ifweput j =i—s, k=1r—s, z:x"‘ng iy = ¢@tAi2smktl and ¢ = ¢ in
Lemma 5.7, then we see the right-hand side of (5.19) is equal to 1 and this concludes
the proof of the theorem. O

5.4. Evaluation of Uy.

Theorem 5.12. The elements of Uy = (urs)fszo and Ugl = (u;ﬁs)?szo are ex-
pressed in a product of binomials as follows:
Ups = (_1)5#(](5#)[d*(nfl)v]*(S*T)(Sﬂ’*l)v/?
Y-V Brt+(n—s)v. o7
(@7:47)s (¢ 50" )s—r - (5.20)

. — s=r,
(@597 )s—r - (q75q7)p (OB =26=D7: g7)

ur, = g E=(n=Dl4r(r—s)y

(qw; qv)s (qﬁ1+(n—s)~/; q'v)sfr
. A : s> (5.21)
(@7397)s—r - (q7597)r (oA =(rts=Drg7)



Proof. We show (5.21) first. From (4.11) and (4.7), we have

(h;;) _ =iy (5200 (320 g0,
hyy 0 n(32qH=Pe= (=17 q7), - (52¢P1 P25 ),
(qd+,32—(”—1)"//%;q7)

i—r
(q%2+m7 /22507 )i—r o
1
. (qa+,31—(n+r—1)7;q’7)n7i . (qﬂl;q’Y)niT . @ s
(qa‘FBl*(”‘H”*l)'Y;q'Y)nir (q517q7)n_1 n—r\q5 4 Jn—i

Hq O gl Pt gy,

_ q(iir)(iﬂinh n(%qﬂl—ﬁz—(i—l)v; q")i - n(%qﬁl—ﬂa—m; q'*)i

n(%qﬁl_EQ—(T—l)’Y; q'Y)T . n(%qﬁl_ﬁé_r’)’; q')’),,.

R (g Pt 0hign);, (2¢7 207,

(2P 7)., (ZgP—Fet(n-2itD)y; )

=T
(P, (754 )n—r (5.22)
(qotA=0Fr=D7g7)i o (07547 )i—r - (€754 )n—i .

By Proposition 3.2, we have

(CZ,is) — (22g-Baivys=i (=) (@":q7)s (5.23)
ciialo a4 (Z2ghr=Petn=s=D7:g7) i (¢75q7)i- (@759 )s—i’
,i T ’

(@,n) _ (= ir=n)y (@50 )n—i - (@7597);

C,Z,rr 0 (@50 )n—r-(q7597)r
Ty —Bo—(i—1).
(L2g= P21 )

i

(%qﬁl_ﬁ2_(7‘_l)7;q’)’)

r

' (2P == (=D ), ) (Z2q=B==17; ),
n(Z2gh=Pem =1y gy (B2gP =By g,
1 ) 1 ?
. . - . 5.24
n(%qﬁl*ﬁzf(lfl)W;q’Y)i . n(%qﬁl*,Bz*Z’Y;q’Y)i ( )

Comparing (5.1) with (5.2), using (5.22)-(5.24), the elements u?, of the matrix U "
are expressed as follows:

S ~ (I \ (s (i
u¢8=2(4)0=2(h ), (), (22),

i=r h;;CA,rr i=r h;; 0 Cg,ii CA,rr
_ la=(=1=r))(s=r) q759")s (¢t =97 ¢7),
(@597 )s—r - (q7597)r (oA =(rts=Dr g7,

s A _ _
. Z(ﬂ 7&752+(n+r7i71)7)57i (qa+ﬁ1 (r+s 1)’Y§ q’y)sfi
mlq (%q51—52+(n_5_i)7;q7)3_

=7 [

i—r

(z2q= o= )

. . Y. Y .
(Z2¢Pr—Fat (n=2e D)7 ) sr(@7507)s—i-
1

i—r

Thus the statement (5.21) in Theorem 5.12 follows from the following identity:



S v — —
_ 2o —G—fat(ntr—i—1)yys—i (¢ A lrrs=Dy gy,
1= (%4 )
1 (Qqﬁl_xﬁé"t‘(n_s_i)’)"q’)’)
] ’

i=r s—1
(82q= 3P )

=7

. . Y. 4 .
(&g ramn ), (@ )i (5.25)
1

Weputi=r+j,s=r+k y= q*&*51+(2T+k*1)7, v = qﬁ17ﬂ2+(n72r72k+1)7 and
¢ = ¢" in the right-hand side of (5.25). Then, we have

The right-hand side of (5.25)
k

—1. . k=3.c).
_ k—j—1\k—j (Y5 0)k—y ) (zyc™7i0); . Co)
Fo(zyc ) G T Lo, (22 Do), k(c;c);
k —(k—j —j
= 3 (—1)FI A D i1/ (ye! sy (zycsc), k(e 0);
= (zeh=i7Ye)iey (22— ¢); r
k - 1-j. ). i)
=) (—1)72I MU/ (ye =70); (2y¢s Oy k(e ) (5.26)

(zed=Y0);  (2¢¥5¢) K-

<
I
o

By Lemma 5.7, we have already known that (5.26) is equal to 1. Hence (5.21) follows.
Next we show (5.20) of Theorem 5.12. What we want to prove is the following:

Z [(1)j7"q(jr)[5é(n1)7](jr)(j+r1)7/2

FT . (a"347); (g™t g |
(@7397)j—r - (€507)r (@ TP =20 D71 g7) ;| 7
_ 1 (r=ys) (5.27)
0 (r#s) .

The left-hand side of (5.27) is equal to

Z (=1)7rqU=na= (=)= =) (GHr=1)7/2

j=r L _ (¢:9"); (¢ F =97 g7); 0
(@"507)j—r - (@7507)r (@¥TH 20175 g7);5

| gD E= =11 G=)y (a7547)s (7" 7)s s ]

(@7:07)s—j - (@75q7); (q8HPr—Uts=17; ¢7),_;

S
= Z(_1)jfrq<sfr)[df(nfl)w]ﬂ(jfs)vf(jfr)<j+r71.>w/2 (075 07)s
j=r (@59)r - (q7597)j—r - (@597 )s—;
("t
' (q&+51_2(j_1)’)’; q’)’)j_r . (qo_é+51—(j+s—l)’y; q’y)s—j : (528)

If r = s, it is easy to see that (5.28) is equal to 1. We assume r # s and put k := s—r-.
(5.28) is equal to



gHa—(nr=1)1] (@50 ) vtk - (T =75 g7),,
(@797,
k (_l)iqfi(2k7i71)’y/2
; (@707 - (@597 )g—i - (q8FA=20Fr=D7,g7); - (g =(iF2rth=Lyig), |7
B (5.29)

If we put z = ¢®*#172" and ¢ = ¢” in Lemma 5.8, then we see (5.29) is equal to 0.
Therefore the proof is complete. |

APPENDIX A. THE CONDITION P4) oF RIEMANN-HILBERT PROBLEM FOR A(q%)

Proposition A.1. The matriz A(q%) depends only on x, q¢%, ¢°, ¢*2, ¢7 and it
satisfies the condition P4), i.e., it does not depend on q.

This proposition was suggested to me by Prof. K. Aomoto. Before proving Propo-
sition A.1, we prove five lemmas.
For x = (11,...,vy,) € Z™, we denote by TX the shift operator

TXf(t) = f(quth ce 7ql/ntn)
for a function f(t) of ¢t € (C*)™. The function b, (t) called the b-function is defined by
TX®(t)
Let V, be the covariant q-difference operator defined by
V() := @(t) = by (t)- TX¢(1)
for a rational function ¢(t).

(A1)

Lemma A.2. The following equation holds for any x € Z":
/ O(t) - Vyp(t) w=0.
(€3]
Proof. By definition of the Jackson integral, it follows that

/ Dr(t)p(t) w = / (@5 o)(1) .
€3} (&)

Therefore, from (A.1), we have /<£> D(t)p(t) w = /(§> B(t) - (by(t) TXp(t) w. O

The following lemma is easily deduced from Lemma A.2 and its proof is left to the
reader.

Lemma A.3. The following equation holds for any x € Z":
/<§> ®(t) - A(Vye(t)) @w = 0.

We set,

D(t) = H (ti - tj).

1<i<j<n
The following useful lemma was proved by Kadell in [20]:



Lemma A.4 (Kadell’s lemma). Let Q € C be an arbitrary number and J be a subset
of {1,2,...,n}. Then

A{ H tj H (tz _ Q t])} — Qe(J) . (QvQ)|J| . (QaQ)nfLﬂ ) 6|J|(t) D(t), (A2)

jeJ 1<i<j<n 1-Qr

where |J| = #J, e(J) :=#{(,)) |1 <i<j<n,i & J je€ J} and er(t) is the k-th
elementary symmetric polynomial in variables t1, ... t,.
Proof. See [20]. O

We define A; ;(t) by the following:
A j(t) == D(t) - S{Ht3 - t7 - tipitiya--t;), 0<i<j<n
where S is a symmetric sum such that Sg(t) =>_ .5 og(t).
In order to make the notations clear, let us write down some elements of A; ;(t)
explicitly.
Ao r(t) =ep(t) - D(t), 0<r<n, (A.3)

s = =

Ava(t) = (6 +85 + - +1,) - D(1),

s

Apn(t) =132 - D(1),
Arn(t) = en(t) - Aor(t), 07 <n. (A.4)
We define ¢, s(t) by the following:
A, s(t)
TS t) = n : .
Frelt) [Timy (1 = ti/1) (1 = ti/xa)

Lemma A.5. ¢4(t) is expressed as a linear combination of vo.(t), 0 <r < n:

Ps (t) = Z Urs Sﬁo,r(t)7
r=0

where the coefficient u,, does not depend on q and ¢%.
Proof. It is straightforward from Kadell’s lemma (A.2). O

Lemma A.6. ¢, ,(t), 0 <s <mn, is cohomologous to a linear combination of ¢, (t),
0<r<n:

/ St)pant)m =3 oy / B(t) o, (t),
r=0

where the coefficients cs,0 < s <r <mn, do not depend on q.
Proof. Taking x = (1,0,...,0) € Z™, the b-function (A.1) is

n

_ Tléﬁ(t) :qdl —thﬂl/l‘l ) 1 _th’gz/fEQ H tq —q_'ytj
@(t) 1-— tl/l'l 1-— tl/l'g tl — q'yfltj '

b1 (t) :

j=2
We put

_ (t2-..t7,)2.t7. 1ty | .
= [T (1 - tj/fl?1)(+1 —t;/x2) 1<g<n(t’ —q't)).




Then Vi9(t) := (t) — by (t) - Tiep(t) is written as
F(t)
[T (=t /z) (L —t;/22)’

Vi(t) = (A.5)

where

F(t):(t2"'tr)2'tr+1"'ts|:(1_t1/x1)(1_tl/x2) H (ti —q"t;)

1<i<j<n
n
— (1= t1¢" Jz1)(1 = t1¢" /2o) [[ (1 —at) ] (tiq%j)].
j=2 2<i<j<n

We can expand [[,;_;,(ti — Qi;t;) as follows:

H (ti—Qij Z Qo - t;zl)l tn 2, ta(nfl)

1<i<j<n ceS,
like as
[T G-t =D seno-t ;5" t )57 tomory = AWl 8772 b)),
1<i<j<n ceS,

Thus monomials which appear in F(¢) are the following:

B3 17 togr b £t o),
2 2 n—1 4, n—2
Bt5 - 8 byt 8 ),
12t oty ety tg’zl)l ta )2 tono1), 0 E G, (A.6)
We now define a ordering < for I = (Iy,...,1,) and m = (my,...,m,) as follows:

l<m ifandonlyif 1+ -+ <mi+---+m; forall ¢>1.
We set t! ==}t ... #ln and also define #' < " by [ < m. The monomial
212ttt .tI”*1 tQ”*2 st
has maximum order with respect to < in (A.6). And the monomials appearing in
A2 2ttt 82t )
are included in those in A,s. Thus AF(¢) can be expressed as a linear combination
of A, 5(t) and A; ;(t), (i,7) < (r,s) as follows:
1— qd+/31+32 , ,
AF(t) = TAT,S(t) —Cr1,5+1 Ar1,s11(t) — Cr_9 542 Ar g s12(t) + -+
— s Arc1s(t) =g g Aro s (t) -+
— g1 Arc1so1(t) = g g Arasa (t) + -
1— q&+51+[32
- TA,.,S(Q - ‘Z i Aii(t).
(4,3)=(r:s)
F(t) }
[T= (L=t /a1) (1 = t;/x2)

This implies that ¢, s(¢) is cohomologous to a linear combination of ¢; ;(t)’s of lower

From Lemma A.3 and (A.5), A{ is cohomologous to 0.



order:
JEICEE -5 ¢ / B (A7)

The statement of Lemma A.6 follows from a recurrent use of (A.7) and the fact that
all ¢/';’s do not depend on g. O

Proof of Proposition A.1. From (A.4) and Lemma A.6, we have

T&@O,s =/<I>(t)€n(t)%00,s( w (psn ZCTSSDO ) (A8)

where the coefficients ¢,s do not depend on gq. We set
y(q&) = (&07 @17 RN &n)a y/(qd) = (&007 SZOla R &On)
By Lemma A.5, we have
y(¢®) =y'(¢")U, y(@*) =y'(*TU
where U is the matrix (u,s)",_, not depending on ¢. Then we have
Y (") =y (VAU
and, by (A.8), the matrix UA(¢%)U~! does not depend on ¢. Since the matrices
UA(g®)U~! and U do not depend on ¢, the condition P4) holds for A(g%). O

APPENDIX B. PROOF OF PROPOSITION 3.1

We set
/ 5 (gtj/r1)0e (qtj/22)o0 (¢'7t/ti)oo
d = M /oo
i Sy e eyl § v
(1)
= 7 3 B.1
At Tl — G/~ G/72) By
Gs(tr, .. tn) = H(1 — ¢ty /x5) H (1 —tr/z1) (B.2)
k=1 k=n—s+1
and

DZ’V) (t1y. . b)) = H (ti —q~7t;), in particular D?n) (t)=D(t), (B.3)

1<i<j<v

so that ®(t)ps(t) = 7't @' () A{ps(t) D] oy (£ )}. For simplicity we abbreviate
Epn—r by £ = (&1,...,&,) only in this section. By the definition (1.2), we have

‘/< > (I)( )‘pS( )w - 1 - q n Z Z (b V1£17 .o 7an§n) : (aOS(qylglv cee 7qyn§n)7
v1=0 V=0
so that
/< 2P0 ~ (10" #(Een(©) = OEF - £36°), (B.4)



because the factor included in the integrand ®(t)ps(t) with respect to & is only
(t1 -+ tn)®. Let CX’TS be the constant not depending on ¢® defined by (3.5), i.e

e = (1mg) €526 € 20D (702 )10/ (6)- AL, () D], (€))
Then (1 — ¢)"®(£)ps(€) is written as (& -+ &,)% - ef s From (B.4), the asymptotic
behavior of the matrix Y¢ at & — oo is the following:

Yo~ ()it

where (¢%)PF = (6 €)% and Cf = (cf,)"

7,s=0"

Before proving Proposition 3.1, we show four lemmas and two propositions.
Lemma B.1. Let v;, 1 <i < n, be integers satisfying {v1,va,...,vn} ={1,2,...,n},
V) <V < < Upyp and Vp_pil < Vp—pyo < -+ < Up.

For o € G,,, we assume
{o(1),...,o(Wpn—r)} =1{1,2,...,n— 1},
{o(Wn—rs1),-.so(n)} ={n—r+1,...,n}.

Then we have
n—r=o()>ocr)> >0, =1,
n=0cWprt1) >0Wn_pia) > >0cp)=n—r+1
if and only if

UD?n)(f) # 0.

Proof. We assume that there exist ¢ and j, ¢ < j such that 1 < o(i) < o(j) <n-—r
orn—7r+1<o0(i) < o(j) <n. When the former holds, we define the set E :=
{(i,j);1<i<j<nand 1 <o(i) <o(j) <n-—r} We take (i,j) € E such that
o(j) — (i) is minimum. There exists a number k such that

o(k)=0(i) + 1. (B.5)
Then we have

o) < o(k) < o(j). (B.6)

We now suppose k < i. Then k < j and o(k) < o(j) by (B.6), so that (k,j) € E. By
using (B.5), we have

o(j) —o(k) = (0(j) —o(i)) - 1.

This contradicts the fact o(j) — (i) is minimum.

Thus we have i < k. By using (B.6), we have (i,k) € E. Since o(j) — o(i) is
minimum, it follows that

o(k) — o(i) > o (j) — o (i) (B.7)
From (B.5), (B.6) and (B.7) we have o(j) = o(k) = 0(i) + 1. Then
§otiy — 4 o) = o)) — 4 "Eo(iy41 =0

because of ¢V = &1 for 1 <1 < n — r by definition. Hence O'D(n) (&) = 0. In the

case where n —r +1 < (i) < 0(j) < n, we can prove JD(n)(f) = 0 in the same way
as above.



Conversely we assume UDEYn) (§) = 0. There exist i and j, i < j such that &,;) —
g 7¢5(j) = 0. The case 0(i) = n—r is in contradiction with {, ;) = ¢"¢, ;) = z1q(nY
for generic x; and xo. Thus o(i) # n —r. Since ¢7§ = &1 for | # n —1r by
definition, we have ,(;) = ¢"¢4) = &o(i)+1, 50 that o(j) = o(i) + 1. Therefore

1<o(@)<o(f)<n—rorn—r+1<o(i)<o(j)<n O
Lemma B.2. For o € &, there exists i, n — s + 1 < i, such that o(i) = 1 if and
only if
o¢s(§) = 0.
Proof. By recalling that
00s(6) = [[(1 = ™6y /22) [ (-&e/or) and & =a,
i=1 i=n—s+1
the proof easily follows. O

Lemma B.3. Ifr <s, then A{¢s(§)DV(€)} = 0.

Proof. Suppose that there exists o € &,, such that 0¢s(£)D7(£) # 0. By Lemma B.1,
there exist v;’s, 11 < - < Vp_p such that n—r = o (1) > o(v2) > -+ > o(vp—r) = 1.
By Lemma B.2, we have v,,_,. <n—s. Thus 1 <1y <--- <v,_, <n—s. Therefore
n—r<n-—s. O

Lemma B.4. Forr > s, it follows that

AP (€)= T2 s w6

- w e tns .
(n—s) 1 s n—s ~ )
‘D(nfs)(tl’ ceistn_g) e
where w = w,s € &, is the permutation defined by
7 if 1<i<n-—r,
w(i) = wps(i) = ¢ 148 if n—r+1<i<n-—s,

2n—r+1—1 if n—s+1<i<n.
Proof. We denote by S,,_; the subgroup of &,, defined by
Spnes ={0€6,;00)=1i for n—r+1<i<n—r+s}~6,_,.
By definition, the left-hand side of (B.8) is
A{ds()D], ()} = D seno - 0¢(€) - oDV (E).
0’6671

By Lemmas B.2 and B.3, it is enough to consider the summation when o runs over
theset S,,_sw={0€6,;0()=2n—r+1—1i for n—s<i<n}. Then we have

A{p (D], (O} = > sgn(ow) - owdy(€) - owD], (€)

oESH s

= sgnw - wos(§) Y sgno - owD] (£),
oESh—s



because cwos(§) = whs(§) for o € S,,_s. Since the following also holds for o € S, _:

o D/t tn) . DYt stn)
D?In—s) (tla cee atn—s) D?;L—s) (tl, L. atn—s) ’

it follows that
A{gs(§)D7(8)}

8 Dyt tn)
= sgnw - we, (&) Z sgno - owD{, ) (t1,.  tn—s) o7

o€ES,_s (n_s)(tlv R tn—s)
Dyt tn) }

t=¢

o . Z sgno - awD?n_s)(gl, e bnls).
t=¢ 0€Sn_s

= sgnw - wes(§) - w{ (nfs)(tl’ cotnes)

(B.9)

From Kadell’s lemma (A.2), we have

a0 n—s
Z sgno - J(“’D?nfs)(tlv e tn,s)) = (77547 )ns wD?nfs)(tl, eyt

O'ESn—s (1 - q_v)n_s
(B.10)
The result follows from (B.9) and (B.10). O
Proposition B.5. Ifr < s, then CXM =0. Forr > s, c;;m is expressed as follows:
— — —2(n— n—1¢n— — q—’Y; q_ﬂy n—s
e =66 2T (GG )T () w
D7 ((t1,...,tn)
(n)\'1> s Un,
~sgnw - wee(€) - wiDY (... ta_s)
(n—s) Jsz_ﬂ(tl, Jtnes) e
Proof. Proposition B.5 follows from Lemmas B.3 and B.4. |

Proposition B.6. We have

D7 (t1,...,t,)
(s ) sgnw - w d DY (b ) o .
(n—s) (t17 7tn—s)

D’Y
t.
_ ,—s(2r—s—1)y/2 1—d. 2 B.11
1<i<j<n
where
g7 i 1<i<n—-r, n—r+1<j<n-—r+s,
dij = q” if n—r+1<i<n—r+4s, i<j<n,
1 otherwise.

We denote the right-hand side of (B.11) by D, (¢).

Proof. Since sgnw = (—1)3(r—s-1)/2

of (B.11):

, we have to show the following identity instead

D] (t1,....,tn) ,
w {D?ns)(tla e atn—S)D'y ( ) = (_q—'y)s(27 _8_1)/2 H (tl - d”t_])

ey (1) e

(B.12)



We expand the left-hand side of (B.12) without w:

Dl (ty e tn)
Dy, (- tas)

D(’I’L q)(t17... tn g)

n—s n
= II -t - [T Gi—aty) - I ti-a7t)
1<i<j<n—s i=1 j=n—s+1 n—s+1<i<j<n
n—r n—s
= JI t-t) - I -t II -t
1<i<j<n-—r i=1 j=n—r+1 n—r+1<i<j<n-—s
n—r n n—s n
: H H (ti—q t5) - H H (ti—qt5) - H (ti —q7tj).
i=1 j=n—s+1 i=n—r+1j=n—s+1 n—s+1<i<j<n

Therefore we can express the left-hand side of (B.12) as follows:

D (t, . tn)
DO t “ee tn S (n)
w{ ("_S)( L )DZ" S)(tla "atN*S>

n—r n—s

= H (tw(i) H tw(j)) H (tw(i) = tw(y))

1<i<j<n—r i=1 j=n—r+1 n—r+1<i<j<n-—s
I ¢ ) T T Gt~ 0 )
w(z —q w(g) (i) q w(])
i1=1 j=n—s+1 i=n—r+1j=n—s+1

H (tw(i) - q_vtw(j))

n—s+1<i<j<n

IT —t) - I &-t- JI @G-t

i
!

1<i<j<n—r i=1 j=n—r+s+1 n—r+s+1<i<j<n
n—r mn—r—4+s n—r+s
AT I ¢i—at)- H IT ¢&i—atp) - [ ti—atp)
i=1 j=n—r+1 i=n—r+s+1j=n—r+1 n—r+s>i>j>n—r+1
— n
= II « H I @-t - II @G-t
1<i<j<n—r i=1 j=n—r+s+1 n—r+s+1<i<j<n
n—r mn—r—+s n—r+s
T e T T oo
1=1 j=n—r+1 i=n—r+1 i<j<n
This coincides with the right-hand side of (B.12). O

Proof of Proposition 3.1. From Proposition B.6, it follows that

chs Cer wrs¢s(§) : D;S(f) : (q—'y; q_v)nfs 1
TS _ ) _ . . B.13
. c;f,w)o 0t (&) D€ (30 s (A—g s 1)



Since, by definition of w;s, w,s¢s(§) is

n—r n n—r+s
wesds(€) = [[ (1= aP&/za) [[ (1—d&/z2) ] Q-6&/m),
i=1 i=n—r+s i=n—r+1
we have .
w7»3¢s(§) _ H (1 - qﬁggi/xQ) _ (qﬁ2+s’y. q'y) (B 14)
wrr¢r(£) i=n—rt+st1 (]- - gz/xl) (i? qS'y qry)
From (B.11) we have
D (5) _ 7(7” s)(r—s—1)v/2 H H 1- 5]/52 . H 1 75]/51 )
D;'T(g) 1=1 j=n—r+s+1 1- q_’yfj/fi n—r+s+1<i<j<n 1- qﬂ/gj/gz
(B.15)
We calculate factors in (B.15) as follows:
n—r ﬁ -/ _ ﬁ L—g/a (B¢
ol jemrdetl 1—q&/& imntet 1—q 7 /énr (ﬁ (s4+r— n)“/’q“/)r_s
(B.16)
and
1 _ £ . 1 _ . . 1 Y\
e | I e e L
n—r+s+1<i<j<n 4785/ 6i n—r+s+1<i<n—1 q47Sn/si 479" )r—s
Thus, by using (B.16) and (B.17) for (B.15), we have
D;S(f) _ q—(r—s)(r—s—l)'y/z (i? a7 qu) (1 - qu)v'—s
D;.(§) (Fqlstr=—my ;qv)ps (@7:97)r—s
T2 5’Y7 Y 1—g ) —s
_ @) (g (B.18)

(ii gletr—nh ?qv)rfs (@797 7)r—s
Hence, from (B.13), (B.14) and (B.18), it follows that

+ + . -

CA,TS _ (CA,T‘S) _ (qﬁerS"/; qu)rfs (q ’Y; q ’Y)nfs

81—4"_,7"7" CX,?"T‘ 0 (%Q(S-H’_n)ﬂy; q’y)r—s (q_"’; q_'y)rfs : (q—"/; q_’Y)n7T
= qf(rfs)(nfr)v (qﬁ2+87§ q")r—s (07597 )n—s

(F2qCtr=mr 7)) (07507 )r—s - (@750 )n—r
Next we show the former part of Proposition 3.1. From Propositions B.5 and B.6,
we have

(e 0 = (@), wrr6.(6) Dl (6) e
= (@), wntr© ] (1-diygi/6) q(”({’l_q)
1<i<j<n q7)
:q—r(r—l)'y/Q—(n—r)(n—r Dy/2\4 59 )n—r (q'y7q7)
(1—q)=
(@) wertr () ] (1—d;j£j/sz->, (B.19)
1<i<j<n



where
1 if 1<i<j<n-—r,
d;j: g7 if 1<i<n—-r, n—-r+1<j<n,
q7 if n—r+1<i<j<n.
Since (<I>’(§))O and wyr¢,(€) in (B.19) are calculated as follows:

n

(q,/(@)():(H((q@/xl)w TR m)

-1 gjqﬁl/xl)oo (quﬁ2/z2)oo 1<i<j<n (q'yfj/gz)oo

- 1 1
B H (1 =& /x1)o0 - (1 — 5452 /22) 00 19.1}91 (1=q7&/&) oo
B 1 I 1
(@ (P50 (0 ) (@) i (1= 006

and
n—r n
werdp(§) = [T =a%&/22) [] (1 =&/w1) = (@250 ) (2507),
i=1 i=n—r+1
we have
-+ _ —r(r—1 2—(n—r)(n—r—1 2 (q’Y7 q’y)n*T
(CAM)O =q (r=1)v/2—(n—7)( )/ T
247 )y 1—d&/&

(@3¢ ) n—r - (G24™547)r - (07507)r | i 1= 4785/&

A factor [« ;< % in (B.20) is evaluated as follows:
<i<j< /&

1—dy&/& 1-&/& T oo a4/
1 1-q¢/6 H L—q7&; /& IT 11 1—q7§/&

1<i<j<n 1<i<j<n—r =1 j=n—r+1

gj/gz . 1—q~ ’ng/gz 1_€j/§i
5 I S I e

1<i<j<n—r i=1 j=n—r+1 i=1 j=n—r+1
- (Ba"TThe), (BT, (B21)
(@547 )n—r (22:97)r (220:97)r '
Therefore the proposition follows from (B.20) and (B.21). O

APPENDIX C. PROOF OF PROPOSITION 3.2

In this section, we abbreviate the point ngn—» € (C*)" by n = (n1,...,7,). For
the cycle (n), we have already given the definition of the regularized Jackson integral
as follows:

dt dt

/ )p(t)w:=(1-q" D, Res ®(tr,.. tn)p(ty,.ta) - Ao A

(n) (V14 )EZ™ 17771(1) ’ L n
L =1nq""



" — > dt dt,,
=(1=q" > ) tli‘fi—n ‘I’(f)w(t)tfll N N (C.1)

v1=0 v, =0

We define @'(t), ¢s(t) and D?n) (t) as in (B.1), (B.2) and (B.3) in Appendix B. Since
the factor with respect to & in the function ®(t)p,(t) = t7* - - - t& ' (¢)A{ ¢ (t)D?n) (t)}
is only (t1---t,)%, by (C.1), we have

| #0e0= — (10 Res () = OO g ). (©2)
n
Let ¢, ., be the constant not depending on ¢ defined by (3.5):

s = (L= @) 0y g PO gy )T
“Res (1) - A{os(n) D, (m)}-
Then (1 — )" Resi=, ®(t)ps(t) is written as (1 ---1,)* - ¢ ., From (C.2), the as-
ymptotic behavior of the matrix Y; at & — —oo is the following:
Y, ~ (¢)PaCy,

where (¢%)24 = (i1 ---9,)% and C = (ci,.)"

r,s=0"
Before proving Proposition 3.2, we show four lemmas and a proposition.
Lemma C.1. Letv;, 1 <i < n, ben integers satisfying {v1,va ..., v} ={1,2,...,n},
V<V < < Up—yp and Vp_pi1 < Vp—pio < -+ < Up.
For o € &, we assume
{o(t1),...,0(Wn-r)} ={1,2,...,n— 1},
{o(Wn—rs1),.-soun)}={n—r+1,...,n}
Then we have
o(vi)=1 for 1<i<n
if and only if
UDZn)(U) # 0.

Proof. We can prove this lemma in same way as Lemma B.1. 0

Lemma C.2. Foro € &, there exists i, i <n—s, such that o(i) =n—r+1 if and
only if

ops(n) = 0.
Proof. From
U¢s(77) = H(l _qﬁzno(i)/x2) H (1 _na(i)/ml)v
=1 1=n—s+1
the lemma follows because 7, —r41 = a:gq’ﬁ? O

Lemma C.3. Ifr > s, then A{¢s(n)D[, (n)} = 0.



Proof. Suppose that there exists ¢ € &,, such that 0{¢>s(n)D?n) (n)} # 0. By
Lemmas C.1 and C.2, we have

ol n—r+)<otn—r+l)<---<ot(n)<n

and
n—s+1<o 'n—r+1).
Therefore r < s. O

Lemma C.4. Forr < s, it follows that

A{ds(n) D,y ()}
(¢ q7)s DE’n) (t1y. e ytn)
- _Ne ¢s( ) . D

D?s)(tn—s+1a s 7tn)}

(1 —q_'Y)S zs)(tnis+17...,tn) t—n
Proof. We can prove Lemma C.4 in the same way as Lemma B.4. O

Proposition C.5. Ifr > s, then Crps = 0. Forr <s, ¢, is expressed as
_ , 2~y —4 —o(n— _ _ _
Chps = (L= q)" -y Ty o 20D Res (1) - ds(n) - My )

. (g )s . { D(Vn)(tl,...,tn)
D

(1—g7)s

DY\ (tn—si1,. -5t )}
o7 (s)\ln—s+1, ybn
(s) (tn—s-&-ly e atn) t=n

Proof. Proposition C.5 follows from Lemmas C.3 and C.4. U

Proof of Proposition 3.2. We set

pity=1] T] @ —a7t;/t:) I a-tm),
i=1 j=i+1 n—s+1<i<j<n

which is equal to
D/t tn)
D?s) (tn—s-‘rh s 7tn)

(572 ) Dy (b1 s t).

In order to evaluate the constant (cj ,../cy,..)o explicitly, we calculate D7 (n)/Dy(n)
and 4 (n) /() first:

Di(n) A—m/m) 5 & (—ny/m)
Di(n) 11 (1—q n;/m) I 11 (1—q n;/n;)

n—s+1<i<j<n—r i=n—s+1j=n—r+1

n—r n—r

11 (L —nig1/mi) 11 (I = Mp—rs1/mi)
insey L= a7 00 /i) (L =q 7 /ni)
(1—qg ) (%q61—62+(n—s)7; q)s—r

T @ e (BRI ) (C.3)

i=n—s+1

¢s(n) T (1—ni/z) vy —Bvsr  TT (1 —a1/m)
H (1= qP2n;[z2) = (& %) H (1—q Py /m;)

S

1=n—s+1 1=n—s+1



= (ﬂq_62)s_7. . (q61+("_s)7; q’y)s_"‘

T T — n—s)~. . (C4)
1 (ﬁqﬁl B2+( )V,QV)sfr
From Proposition C.5, by using (C.3) and (C.4), it follows that
(CX,TS) _ Cars _ 0s(m) Di(n) (¢75977)s
Chpe’0 Ci O0(n) Di(n)

(@75¢77)r - (1=q ),

_ (z2gfaysr (¢hr+n=7;97),_,
€1

(a77"5977)s
(F2qPr—Petn=s=rvig) o (@507 ) - (0775477 )s—r
. (@ 76277*7)577“ (q51+(nfs)’y; q'y)s_r (q'y; qv)s
=z (%qﬁl_ﬂ2+(n_3_7')7;q7)
1

s—r (q7;q7)r : (qry;q’y)sfr'
Next we show the former part of Proposition 3.2. By Proposition C.5, we have

— _ !/ 3 . * . (q—’)’; q_’y)’r‘
(G0 = (Res®(0) - 60(0) - Di0) 1= =57 (C5)
An explicit form of Res;—, ®'(t) - ¢,(n) is expressed as follows:

Res &' (¢ O (qfh/l“l )oo qm/ffl (771‘/331)00
Res P06 (0 = ) H il | SR vy
(qnn r+1/$2 1:[ (qni/2) o0 ' (qti/T2)c0
77 q1+62/x2 en (thﬁQ/x2)oo
.(ql M- r+1/77n T 00

H q'~ 7771+1/77z)oo H (¢" 7 mj1/m) 00
(q’ynn—r-l-l/nn T [e%s)

i#n—r )oo 1<i<j<n—1 (q777j+1/77i)oo
so that
(Res <I>’(t)¢T(t))
t=n 0
n—r 1 n 1— T]Z/J,‘l n 1
_1)" - I (V0
( ) L:HQ ]_7 qﬁl/.’]ﬂl . H+1 171hq51/1-1 H

— n.aB
i=n— r+21 4 2/1‘2

I1 NI 11 ;
1<i<j<m—r— 1(1 a qvtj—"_l/t i=1 j=n—r+1 (1 o qvtj/ti)n—r-&-lgi<j§n—l (1 - q’Ytj—i_l/ti)
n—r n

:(_1)n,H 1 11 1, 11 1

=2 1- niqﬂl i=n—r+1 1- Thqﬁl i=n—r+2 1- niqﬁQ/x

1 = T 1 1
19<g-1;£_r_1 (1 —=mn;/mi) Hl j:,[[m (L —q™n;/m) n_THSHKan_l (L—mi/ni)

(C.6)
We calculate D (n) as

Dy (n) =

‘ H (I —q "n;/m) 1:[ IT a—=ani/m) 11

1=1 j=n—r+1

(L —=mn;/m:)-

(C.7)

n—r+1<i<j<n



From (C.5), (C.6) and (C.7), we have

n—r n b
B , 1 1—mn 1
(cx,.)o=CED" || ———— T B I I 1—n.aP/z
A 1:1_[2 1 —nigh i:nl;[‘-i-l 1= mig” imnrg2 LT ma* [z

1 n—r

- 1 1
11 (1 —=m;/m) H : 11 (1 —=q"n;/n:) 11 (L —m;/mi)

1<i<j<n—r—1 n—r+1<i<j<n—1

IT a—ga7ni/m) IIT a=g¢mimy) I Q=ni/m)
1<i<j<n—r i=1 j=n—r+1 n—r+1<i<j<n
g
(q 18 )r (C8)
(1—g)
We calculate the factors appearing in (C.8) as follows:
n—r 1 n 1— T]i/l‘1 n 1
z‘:l_[z L= nig” [22 i=n1:|7:“+1 L= nig” [ i=n1;|7:“+2 L= miqP [
1 %q_ﬁb_(r_l)')’; q"/ ” 1
= — — : E’)Ql 1 ) ! — — I (Cg)
(@50 )p—r—1 (32¢HP270=D7¢7), (77547 7)r1
H ﬁ H (L—q "n;/m)
1<i<j<n—r—1 5 /" 1<i<j<n—r
1 n—r—1
= 11 A= /m) IT  G=na/m) TT O=a"nar/m)
1<i<j<n—r—1 "5 /M 1<i<j<n—r—1 i=1
n—r—2 n—r—1
(1 - nn—r/ni) _
= T (1= "nn—r/m)
zl;[1 (1= nig1/m:) E
(qi’y; qi’y)nfrfl —2y. =
= W (@5 -1
N (@754 n—r
= (@0 Dn—r—1" T C.10
ere (€10
1 n—1
H A —n; /) H (L=mni/m) = H (L =1 /m5)
n—r+1<i<j<n—1 N5/ n—r+1<i<j<n i=n—r+1

=(q¢77q " )r1 (C.11)

and

n—r n—r

T A= m) (L= /1) (L = a0 /m:)
11 (X =qni/m) Hl (1 =@ Mn—rg1 /) (L = Qi1 /1)

i=

i=1 j=n—r+1

(%qﬁlfﬂ27(""71)’7;qw) . (%q517ﬁ2*7"7;q7)

n—r
(ﬁfqﬁl‘ﬁQ;qV)n_q~~(§%q51‘ﬁ2+7;q7)n_r
1

= . (C.12)
n(%qﬂl—ﬂz—(r—l)v; Q) - n(%qﬂl—ﬂz—m; qQ")r

n—r




From (C.8)—(C.12), it finally follows that

CR R — (g g,
C . = —_ . — .
Arr/o (@50 nr1 (25 P=0=D7g7), (¢775077)r
L (@5 Dn—r .
(a7 q v)nfrfl'(l_qf,y)s_:'(q 75q7 )1
1 (¢ "5q7),

(BP0, (B R ), (=g
(L2g=Pam (= g7,

_ (71)n(q’7;q’”)n_r ()
(L—=g )" ($2qP=Po=(r=D7q7),
1
' W(E2gP =B (=D g0), o (2P Barys ),

APPENDIX D. PROOF OF THEOREMS 1.6 AND 1.7
In Section 1, we write
(Lo(®), 1), -, n () Ro1(32) = (Yn (), hn-1(t), - .. Yo (1)), (D.1)
so that
(Z0(£), 1(6)s- -+, () R2a () = ($n(€), ¥na (&), %0(&))  (D:2)
for any ¢ € (C)*. We set

Yf;“ = (@s(gpﬁfr))nszoa Yg = (Jn—s(gpﬁfr))zszoa

n

Yn = (as(nFﬁ‘r))r,Fo’ Yn/ = (¢"75(77Frn_r))r,s=0'
By the relation (9.1), we have

Ye Roa(2) = Y, (D.3)
Y, Ron(22) =Y. (D.4)

We set (y)® :=yf -y if y= (y1,...,yn). The matrices V¢, Y{, ¥;, and Y, have the
following asymptotic behaviors:

Ye ~ (qé‘)DXCX7 Y{ ~ (qd)DXC’X at & — +oo, (D.5)
Y, ~ (¢M)PaCy, Y, ~ (¢®)PaC’y at a— —oo, (D.6)

where - i o ~
(¢M)P4 = diag[(Epn—)17g,  (¢)P2 = diag[(ngr—+)*]70,
_ _ + + _ _
and CX = (CX,TS):’L,S:O7 C’A = (CA,rs):},s:W C/ = (C{A,rs):‘l,szo and C/A = (014,7“5);{},5:0

are matrices not depending on ¢* defined by

(& pn—r)ps(Epn—r) D(t)eps(t) dt di
+ o (1_ .\ ! Fy - (1" S R i )
CA,rs = (1 (Z) (SF]}*T)& ’ CA,rs . (1 q) t:I%S;_T (t)& tl A A tn ’
(€Y aEpr) Dt o) dty e
1+ n F, F, / n n—s 1 n
—(1— r Al —(1— AT TRTINT T A AN
im0 SRS 0 B



From (D.3) and (D.4), it follows
Ci Roa(22)=C'4,
Cy Raa(32)=0C",

‘H R‘M

(SR

so that we have

Proposition D.1. The matriz Ro 1(%2) is expressed as

x1
Rpa(22) = (C)g ' (C"4)o, (D.7)
Ro1(22) = (Cy)g H(C'x)o- (D.8)
Lemma D.2. The relations between Ye and Yg' or between Y, and Yn/ are expressed
as
¢s(§F,Z,T,) =T [&s(gpﬁf"‘) -sgnoy - U, (gp,r"*'”)} ) (D.9)
bolnry_ ) =7 |Bu(npnr) - sgno, - Us, (ngn—r)| (D-10)
where o, € &, s
o 1 2 e or+1 r+2 - n
= \n-r+1 n—r+2 -+ n 1 2 - n—r)
Proof. By definition, we have
bs(€pr ) =T [TTZS(TéF;,T)} ; (D.11)
where
Tngf—r = (.132, quvﬁ s 7x2q(r_1)77 X1, x1q77 e 7x1q(n—7“—1)’y) = U’r'_lfF,".LfT'

The right-hand side of (D.11) without 7 is
Ts(r€ry_,) = Bol0y Epnr)  (by (1.3))

= [6)) () = P gr_l . O_T_l -
/<"7'15Fp—r) (t)ps(t) / (o7 ) s (o Mt)

<§F;1—r>

_ / 0, 0(1) - oripy(t)

(€pn—r)
=U,, (gF:,—T) - sgnoy,. / O(t)ps(t)ww  (by (1.1) and (1.8))
(€pn—r)
= Uar (fFT"—T) $Sgnoy - ‘Es(fFT”—T)'
Thus we have (D.9). We also have the relation (D.10) in the same way as above. O

Lemma D.3. The relations between C{ and C”X or between Cy and C'y are ex-
pressed as

+
CIA,nfr,nfs S [cj{ms -sgno,. - Uy, (§F:,_r)} ,

=

CAn—rn—s =T [c;,rs ©Sgnoy - Uﬂr (nFTn’T)] .

Proof. It is easily deduced from (D.5), (D.6) and Lemma D.2. O



D.1. Proof of Theorems 1.6 and 1.7. From Proposition 3.1, we have that the
matrix C; is upper triangular. By Lemma D.3 the matrix C’, is lower triangular.
Therefore, from the expression (D.8) and Lemma D.3, we have the Gauss decompo-
sition of the matrix Ry 1(%2) as follows:

1
R (32)=Ur-Dg - Lg,

-1 .
where Up," = (Uﬁ,rs):«is:m Dr = diag[dro,...,drn] and Lr = (Irrs)} c—o are the
matrices such that

_ - _

c c c

‘A,rs A,rs An—rn—s

u]z,rs = ( — ) 3 lR,rs = < = ) = T<77 ) s (D12)
CA,TT 0 CA,’I"I" 0 cA,nfr,nfr 0

dRﬂ" = (cg,rr)al(c/;,rr)o = (cg,rr)alT {(Cg,nfr,nfr)o P SgNOp—r - (UUn—r(nF:;_T))Q} .
Hence Theorem 1.6 follows from above Gauss decomposition, Proposition 3.2 and
— (—g—\(n=r) (xp Pr1—Ba—(r—1)7. . (22 B1—B2—T.
(Um-(nFT"’T))O - ( q 'y)'r e n(ziq 2o ’y’q'y)r n(xiq ? ’y’q'y)r’ (D13)
sgno, = (—1)7"="), (D.14)
By using Proposition 3.1 and
(Us, (Epp-r))g = (=a )"0 (2q™ " 0%07) (3247 77507),,  (D.15)

we can prove Theorem 1.7 in the same way as Theorem 1.6. |

Remark D.4. From (D.13), (D.14), (D.15) and Lemma D.3, the matrices (C’)o
and (C’} ) are written by

(C'4)o = Jrdiaglgd, g7 .- .., gl 17(C)od = Jrdiaglgd . g7 .- .., 9,71 JIT(C )]
and
(C'y)o = Jrdiaglgy , 91 s - -9, 1T(CY )od = Jrdiaglgg s g1 »-- -+ 9n | JIT(CY o
where
gh = q T (B2gm Y g (227 (Y ),

gy = q "I, (22gP P g (2200 ),

b

Thus, from Proposition D.1, the R-matrix R2,1(%) are given by
Ron(22) = (C)g " diaglrg,t, 79,1, 7g5] JT(CY o, (D.16)
Ry1(22) = (Cy)o ' diaglrgy , 7, 1,790 ) J7(Cy )o . (D.17)

APPENDIX E. EXAMPLES.

E.1. The case when m = 2, n = 1. we explain the simplest case when n = 1. In
Theorem 1.6, the R-matrix R2,1(%) is written by

T T
w1 (1-¢"2) %
&—q% &_qﬁ2
T\ r1 1 _ _ 7/ l /
R2’1<$1) - 1 of2 quﬁ,qﬂg - UR DR LR - LR DR UR’
—q x1
L2 g8 L2 B
Ty q 2 1 q 2



where

— €T
1 q7ﬁ2(1—qﬁl)% q ﬁ2(1_ﬁqﬁl) 0
_ 71_211,61—/32 1_%q31—ﬁ2
UR = T ) DR = 1_ﬂqﬁ1*ﬁ2 ’
0 —
0 1 1_%(1—32
1 0
LR = (17qﬁ2)q—ﬁ2 5
1 %qlﬁ*@
and
—B2(1_%2
1 0 ¢ =05 0 1 1—¢"
/ / 1—q= P22 / 1- %
_ _ x _
R= _ P2 ; Dr = ! oz |, Up= 2
_1—¢q 1 1—q 1
1-22 0 2 0 1
Ty *ml

In Theorem 5.1, the Gauss decomposition of the matrix A(g®) is given by

1 7q5(1qu51) (1_(1_&)131 0 1 0
A(g®) = 1—¢%FF1 1—¢%FF1 i
1 0 U=gtPm N P

O 1 17q5<+51+52 (1—q5‘+51)12
(1—q**P2)z, a*(1=¢" 1)y
17q5¢+31+62 - 17q5<+51+52

B (1-¢")z  (1-¢*)ay |’
- 17q6‘+ﬁl+[32 17q&+[31+ﬁ2

so that we have

A(0)=< ( ” ! ) A(oo) = ( mg % (=g )

1— ¢ 2 0 Toq P2

From (3.6) and (3.7), taking the unipotent matrices C* and C~ such that

— T
1 0 ¢ 2(1-¢") 2
_ — 5T
ct = 1—¢°2 1 , C7 = 17qﬁ1—ﬁzm—f ,
T3
= 0 1

we can diagonalize A(0) and A(oco) as follows:

A(0)=(C+)‘1<UE1 ’ >C+, A(oo):(c—)_1<x1q“’1 0 )c-
T2

0 0 xgq*BZ

From Propositions 3.1 and 3.2, the matrices (C} )o and (C} )o are written as a product
of diagonal and unipotent matrices as follows:

(CX)O = diag[(CX,oo)Oa (CZ{,H)O] c, (Cy)o= diag[(c&oo)o, (02,11)0] ¢,

where
1
+ + =g Oac
dlag[(CA,oo)Oy (CA,H)O] = -2
(1-q°1 %) (1-qP2)



and
-1 0

diag[(c&oo)o,(c;ll)o] = 0o - 17‘1_32%
1,qﬁ1—ﬁzm—?

From (D.16) and (D.17), the R-matrix Rp:(%?) is determined from the matrices
(C)o or (Cy)o as follows:
R2(32) = (C)o ' I7(Cl o = (Ci)g " IT(Ci )o,
and it follows that
Dy = diag[(CX,oo)alT(CXm)Oa (CX,u)alT(CX,oo)O]
and

Dp = diag[(@,oo)alT(CX,lﬁOy (02,11)517(02,00)0}

Thus, in particular, the upper and lower triangular matrices as factors of the Gauss

matrix decomposition of Rz 1(3?) are determined from the matrices C* and C~ as
follows:

L= (C*)', Up=JrCtJ,
and

Ur=(C7)"Y, Lr=JrC"J

E.2. The case when m = 2, n = 2. In Theorem 5.1, the Gauss decomposition of
the matrix A(¢®) is given by

1 qti*“/(l_qﬁ1+"r) q2&737(1—qﬂ1)(1—q51+7)
T 1—¢%FA (1—qoFP1—27)(1—qoFP1—7)
A(gY) = TP (1-¢*)(1-¢")
(4) 0 1 R ey
0 0 1
23g"(1—q* 2 (1—¢* "
(1q,q(&+g1*’v)()1(,q(g+51)) 0 O
0 371372(1_(1&4431)(1_‘1&727) 0
(1—g5FF1HP2)(1—q+F1=27)
w3q" (1—¢* P12y (1—g*HF1 )
0 0 (1_q&+[31+[32—7)(1_q&+[31+[32)
1 0 0
(1-¢*)H(1—-¢"?)x
_(l—qg)(l—q&q“*l);z 1 0 )
q*“/(l_qﬂz)(l_qﬁbJr‘r)mf q*"/(l_qﬁQ‘F’Y)wl
(1—q3FP1=27)(1—¢%FF1=7)a3  ~ (1—¢5TF1-27)a,
so that we have
rig7 0 0 1 0 0
(1=¢*")(1-¢"2)a
A(0) = 0 zx3 0 — g 1 0
0 0 a2q q*”(lfq%)(é}*q‘az*”)w? _q’”(lqu"‘“)ml 1
(1?2 xr
q'x? 0 0
= —(14¢")(1 = ¢™)a} T1T2 0

(1 _ qﬁQ)(l _ q52+7)x% _(1 _ q52+7)x1x2 q"m%



1 q*ﬂ1*7(1 _ qﬂ1+7) q*Qﬁl(l _ qu)(]_ _ q51+7)

Aoo) = 0 1 ¢ (1+q)(1—¢™)
0 0 1
x%q_wl_” 0 0
0 xlqu*BI*BZ 0
0 0 x%q*w?*W
x%q—Qﬁl - —$1x2q_’81_’82(1 — q—ﬁl—’Y) x%q_Qﬁz(l — q—ﬁl)(l _ q—ﬂl =)
= 0 ya0q =10 —23¢7 22 (L + ¢ ) (1 - g ™)
0 0 m%q725277

From (3.6) and (3.7), taking the unipotent matrices C* and C~ such that

1 0 0
ct = (1*q”)(1*%q*”) ! 0 )
(1-¢”2)(1—¢72%7)  (1-¢"217)
1-290-32a) -2
| me0-atTy o GraP)-a?ha-—gn )
1_%qsl—ﬁz+w (1_%(1%%2)(1_%,11%1%2“)
- _ L2 =Ba=Y(1_g27)(1—gP1
C 0 1 o’ (xzq )E 11 ) ,
(1=g)(1=Fgh=r277)
0 0 1

we can diagonalize A(0) and A(oco) as follows:

3¢ 0 0
A(0) = (CT)™! 0 zzy O cT,

0 0 2%
qufwrv 0 0
A(o0) = (C7)7! 0 wywoq P12 0 c.
0 0 x3q 2P~

From Propositions 3.1 and 3.2, the matrices (C )o and (Cj )y are written as a
product of diagonal and unipotent matrices as follows:

(OX)O = diag[(c;too)o, (02,11)07 (CX,QQ)O] cT,

(Cy)o = diag[(c&oo)o, (32,11)07 (02,22)0] O
where

diag[(czoo)o, (CX,ll)Ov (CZ_,22)0]
Y
==y 0 !
(-2 )(-73)
= 0 (1-a"1)(1-FZqP)(1-aP2)(1- T2 q)

0 0

0

Y(1—Z2y_Z2 v
q' (1= (1=3%a7)

(1_ﬁq51)(1_w—fql31+'v)(1_q62)(1_ql32+7)




diag[(c,l,oo)m (02,11)& (02,22)0]

1—q~
—— ) 0 0
_ X2 —Bay1_L2 B1—-B2—Y
(1-57a ") (1-T4q )
= _ T2 3,8 _Z2 B —Bot~
(1=57a7172) (1= T g1 P21

0

o2y (1 %2 ,—B2—vy(1_ L2 B2
(1-¢7"")(1-7%q YA—77a"2)

X X
(1=q=M) (A= qP1=F2m7) (1= T2 qP1-P2)

0 0

From (D.16) and (D.17), the R-matrix Ro 1(%2) is determined from the matrices

x
(C)o or (C7)o as follows:
1 0 0
Roa(£2)=(CH)g" | 0 7o 0 | JT(CY)od
0 0 1
1 0 0
= (@) | 0 Tor 0 | IT(Cy)oY
0 0 1
where
g (1 - Lq) g (1 - Qq52—[31+7)
Tgii_ = T =, T9, = z2{3 -
1—2q7 1— Zghe=fi—y
T T2

If we express the Gauss decomposition of RQ,l(%) by
R21(32) =Ur Dr Lg = Ly Dy Ug,
then we have
R= diag[(CX,oo)a1T(CX,22)()a (CX,u)ang;rT(CX,n)O» (CX,Qz)alT(CX,OO)O]
and
Dp = diag[(cg,oo)alT(CX,Qz)Oa (02,11)51791_7(0;11)& (02,22)517'(0;00)0]~

In particular, the upper and lower triangular matrices as factors of the Gauss matrix
decomposition of Ry 1(%2) are determined from the matrices C* and C~ as follows:

1

= (CH™, Ugp=JrCtJ,

and
Ugp=(C7)"Y, Lr=JrC"J
Therefore the Gauss decomposition of R271(%) is given by



ﬂq—lfz(lfqﬁﬁ—"r) (%q—ﬁz)?q—"fu,q[ﬁ)(1,q/31+'v)

1 —m
17%q31*ﬁ2+"{ (17%(151*32*7)(17%(151*52)
Ty 5o
o 1 Pq 201" (1)
(1-gM)(1-32gP1=P2=7)
0 0 1
—2Bo9(q1_ %2 By _Z2 _B1+~
q "P2(1=") (1= 05a"TT) 0 0
(1-F2qP1=P2)(1-T2qP1—F2+7)
1 1
B T T _
0 q 27172 (1= g2 0
(1_%q7ﬂ2)(1_i—2q51*5277)
1 1
T o T _
; . (1= B2 gh1 -5 B gt
_ T2 —By— _I2 -8
(I=5ra 27 M(A=379772)
1 0 0
_ qiﬁz(l_qz—y)(l_q%) 1 0
(1—q7)(1-FEgh1—F247)
q—2/32—’v(17q/32)(17q/32+'v) q_/32_’y(17q’[32+’y):1?1 1
T Ty T - - T -
(1_ﬁqﬁ1 B2 v)(l_ﬁqlﬁ B2) 1_ﬁq31 Ba—v
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