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We propose a theoretical model to evaluate the temporally evolving ball-passing networks whose
number of edges increases with time. The model incorporates a preferential selection of edges
that chooses an edge based on its frequency of selection. Results are in good agreement with the
corresponding ball-passing networks of real football, basketball, and rugby matches, enable the
quantitative comparison of the passing activity among different teams or ball sports.

I. INTRODUCTION

Competitive team sports are recently being studied in physics. Researchers have successfully performed objective
and quantitative research using digital data, such as player-tracking data [1]. For example, scoring events have been
found to follow the Poissonian dynamics [2, 3]. However, anomalous diffusion has been discovered in a set of football
(soccer) [4] and cricket [5] matches. Another example is the scaling laws regarding the fairness and efficiency of leagues
and tournaments [6, 7].

Following are the reasons why sports are interesting in physics. A major question is how dynamics of individual
players and their local interactions affect whole collective behavior and team performance [8]. The connection be-
tween microscopic and macroscopic properties is a common problem in statistical physics [9] and condensed matter
physics [10]. An example of analogy between sports and physics systems is the comparison of the motion of a gas
molecule with that of a soccer ball [11]. Moreover, the ideas and methods of statistical physics have been applied to
the collective behavior of humans, as in econophysics [12] and social physics [13, 14]. Team sports may become the
possible instances of such collective systems. Matches are played under fixed conditions using of standardized equip-
ment, and certain rules restrict the actions of players’. Nevertheless, the flow and outcome of matches are extremely
unpredictable [3, 15].

In ball sports, a series of passes among players forms a ball-passing network with the players acting as nodes.
Complex network analysis of ball-passing networks has been performed intensively in football so far [16–20], and have
also been applied to basketball [21], water polo [22], and rugby [23]. The ball-passing network elucidates statistical
regularity in passing [18, 19], evaluating players’ performance and role [16, 20] as well as team performance [17].
Although passing networks have been deeply investigated for individual sports, less attention has been paid to common
network properties across different sports.

In thes present study, we investigate a dynamical property of ball-passing networks commonly observed in football,
basketball, and rugby. We propose a mathematical model that incorporates the preferential selection of passes,
indicating that a pass (directed edge in the network) is more likely to be selected if it has been selected frequently
in the past. The team’s passing activity can be characterized using a single parameter representing the preferential
selection’s strength. Thereafter, we show that the theoretical result fits real football matches and further compare
with basketball and rugby. Different sports become comparable by introducing a scaling argument; thus, we aim
to quantify ball sports’ strategic differences using the preferential parameter. Previous studies adopted preferential
mechanisms in various modeling systems, including scale-free networks [24] and innovation processes [25]. However,
the preferential mechanism in the present study is different from the existing models and does not intend the power
law.

II. DEFINITION AND ANALYSIS OF THE PROPOSED MODEL

For a team in a match, we let that m(τ) denotes the number of different passes when the number of passes is τ .
The growth of m(τ) against τ slows down when the team tends to rely on a few certain passes. Therefore, m(τ)
measures the variety or evenness of the passes executed by the entire team. For instance, Fig. 1 shows m(τ) for τ ≤ 5
in an NBA game of the Oklahoma City Thunder (game B2 in Table II). At τ = 4, the pass from player 12 to player 0
was distinguished from the pass made by player 0 to 12 at τ = 3, so m(4) = m(3)+ 1. At τ = 5, the pass from player
0 to 12 was already present; therefore, m(τ) did not increase [m(4) = m(5)]. When the number of players in a team
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FIG. 1. Temporal network representation (upper) and the ball-passing network evolution (lower) in a real basketball team
(Oklahoma City Thunder; game B2 in Table II). The arrows indicate the direction of a pass. The label of each node is the
jersey number of the corresponding player.

is N , m(τ) can be defined in the range of 0 ≤ m(τ) ≤ N(N − 1). Here, N(N − 1) represents the total number of
possible different passes and has been assumed as M = N(N − 1) for simplicity in recurrent use. [A similar analysis
is possible for undirected networks by simply replacing N(N − 1) with N(N − 1)/2.] Even for a small number N of
nodes in a ball-passing network (N ∼ 10), the regularity and commonality of passes can be studied through m(τ).
A similar idea—seeking τ at which m(τ) reaches half the number of all possible edges—was introduced in a study
of (undirected) temporal networks for a different purpose [26]. In this paper, the dynamical property of m(τ) for
directed networks is studied.

The simplest and most intuitive technique for modeling for ball motion is based on Markov chain hopping on N
nodes [18, 19]. However, the number of successive passes within a team is small in real scenarios [the average numbers
are 3.37 in football (for nine matches in Table I), 2.65 in basketball (for two games in Table II), and 5.11 in rugby (for
two matches in Table II)] owing to mistakes, interception by opponents, or fouls. Therefore, unlike a random walk,
the receiver of the previous pass is not necessarily the initiator of the next pass.

In the present study, we adopted the preferential effect on pass selection instead of assuming the Markov chain.
Although secured passes are preferred in competitive ball sports for maintaining ball possession, new passes need to
be created to outwit the opponents. To simplify this consideration, we assumed that the probability pi→j(τ) at which
the pass from player i to j is selected at τ is proportional to 1 + αµi→j(τ), where µi→j(τ) is the number of i → j
passes from the first τ passes, and α is a non-negative constant. When α > 0, the pass i → j having large µi→j(τ) is
selected preferentially. The parameter α represents the strength of preferential selection. For instance, at τ = 0, any
of the M passes, say i0 → j0, is selected with an equal probability of 1/M . At τ = 1, the pass i0 → j0 has a statistical
weight 1 + α, but the other M − 1 passes each have the weight of 1. Therefore, by normalizing the probabilities, the
pass i0 → j0 is selected again with pi0→j0(1) = (1 + α)/(M + α), and each of the other passes is selected with the
probability of 1/(M + α) at τ = 1.

By definition of µi→j , we can obtain
∑∑

i ̸=j µi→j(τ) = τ , so that pi→j(τ) = (1 + αµi→j(τ))/(M + ατ). m(τ)

increases when one of the unused M −m(τ) passes, each with probability 1/(M + ατ), is selected for the first time.
Thus, the difference equation can be described as follows:

m(τ + 1) = m(τ) +
M −m(τ)

M + ατ
, (1)

where the initial condition is m(0) = 0.

To solve Eq. (1), we subtract both sides from M :

M −m(τ + 1) =
M − 1 + ατ

M + ατ
(M −m(τ)).
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For α = 0,

M −m(τ + 1) =
M − 1

M
(M −m(τ)).

Therefore,

M −m(τ) =

(
M − 1

M

)τ

(M −m(0)),

and the general solution can be expressed as

m(τ) = M −
(
1− 1

M

)τ

(M −m(0)).

Under the initial condition of m(0) = 0, we obtain the solution

m(τ) = M

[
1−

(
1− 1

M

)τ]
. (2)

Thereafter, considering the case of α > 0,

M −m(τ + 1) =
(M − 1)/α+ τ

M/α+ τ
(M −m(τ)).

Applying this equation recursively, we obtain

M −m(τ) =
(M − 1)/α+ τ − 1

M/α+ τ − 1

(M − 1)/α+ τ − 2

M/α+ τ − 2

· · · (M − 1)/α

M/α
(M −m(0)).

The denominator and numerator are expressed by the gamma function as

x(x+ 1) · · · (x+ τ − 1) =
Γ(x+ τ)

Γ(x)
.

Therefore, the general solution can be expressed as

m(τ) = M − Γ(M/α)

Γ((M − 1)/α)

Γ((M − 1)/α+ τ)

Γ(M/α+ τ)
(M −m(0)).

Under the initial condition of m(0) = 0, we obtain the solution:

m(τ) = M

[
1− Γ(M/α)

Γ((M − 1)/α)

Γ((M − 1)/α+ τ)

Γ(M/α+ τ)

]
. (3)

Figure 2 shows the graph of m(τ) for M = 90 (corresponding to N = 10) and α = 0, 1, and 2. New passes are less
likely to be selected for large α (strong preferential effect), and the increase in m slows down as α becomes large.

III. DATA ANALYSIS

A. Analysis of football matches

In this subsection, we apply the theoretical result of m(τ) to the real football data, comprising nine matches of the
Japan Professional Football League held in 2016, as shown in Table I. The matches F1-F8 were played on February
27, 2016, and the match F9 was played on February 28, 2016. We used the player-tracking data with information on
ball possession. Both were provided by DataStadium Inc., Japan, and automatically generated the sequence of the
passes.
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FIG. 2. Graph of m(τ) for M = 90 and α = 0 (solid curve), 1 (dashed curve), and 2 (dotted curve). The increase becomes
slow for large α.

TABLE I. List of the nine football matches.

Match ID Home team Away team αhome αaway

F1 Júbilo Iwata Nagoya Grampus Eight 0.75 0.34

F2 Tokyo Verdy Omiya Ardija 0.90 0.58

F3 Sanfrecce Hiroshima Kawasaki Frontale 1.31 1.39

F4 Sagan Tosu Avispa Fukuoka 0.89 0.28

F5 Kashiwa Reysol Urawa Red Diamonds 1.22 0.42

F6 Shonan Bellmare Albirex Niigata 0.63 0.88

F7 Vissel Kobe Ventforet Kofu 0.84 0.95

F8 Yokohama FC Vegalta Sendai 0.69 0.59

F9 Gamba Osaka Kashima Antlers 0.86 0.51

In our analysis, we excluded the goalkeeper, because of its exceptional position. Therefore, the number of nodes in a
team is N = 10 (namely, M = 90). We counted the throw-ins as a pass if a teammate received the ball successfully. In
substituting of players, we regarded the passes made by the new player as those made by the substituted player. That
is, if the player i is substituted for i′, we counted m(τ) by regarding the passes of i′ → j and j → i′ to be identical
with those made by i → j and j → i, respectively. In other words, a node in our network represents a position,
such as center back and left side half in football, rather than a player. Although other treatments are possible, we
considered this to be the simplest.

Figure 3 shows the graphs of m(τ) in the football matches F1–F9 in the first half including its additional time.
Circular and square plots represent the home and away teams, respectively. Solid and dashed curves represent the
fitting curves of Eq. (3) for home and away teams. The points represent only the increase in m(τ) to avoid overlapping.
Therefore, an interval between adjacent points indicates that existing passes were used and no new pass was made.
The real data are in good agreement with the theoretical curves, except for Reysol in match F5, as Reysol might have
changed its passing strategy in the middle of the first half. Table I shows the α values, whose average value is 0.78
and standard deviation is 0.31.
The passing network in the second half can also be expressed well by Eq. (3). However, Fig. 4 shows that we did

not find a correlation or tendency between α in the first and second halves (the correlation coefficient is 0.33). We
surmise that this result reflects randomness in football, and further analysis requires a large data set.

B. Comparison among football, basketball, and rugby

In this subsection, we present additional results for basketball and rugby matches: two for each sport (namely, four
networks), as shown in Table II. The number N of players on the field is N = 5 (basketball) and N = 15 (rugby)
per team. We manually marked the passes for the basketball games by visualizing player-tracking data and referring
event data [27]. For the rugby matches, we manually marked the passes from video footages. We focused only on the
first quarter (basketball) or half (rugby) of the playing match including its additional time. We counted the succeeded
throw-in (basketball) and lineout (rugby) as a pass, as well as football matches. A rebound was not counted as a pass
in basketball because the shooter did not intend to pass the ball. The player substitution was treated similarly in the
football matches.

Figure 5 presents the graphs of m(τ) in the real matches listed in Table II. Circular and square plots represent home
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TABLE II. List of basketball and rugby matches for the analysis.

Sport N M League Date Home team Away team ID αhome αaway

Basketball 5 20 NBA
2016.01.03 Denver Nuggets Portland Trail Blazers B1 0.33 0.26

2016.01.04 Oklahoma City Thunder Sacramento Kings B2 0.56 0.40

Rugby 15 210 Super Rugby
2019.02.16 Sunwolves Sharks R1 2.31 3.60

2019.06.01 Sunwolves ACT Brumbies R2 4.32 3.26

and away teams, respectively. Solid and dashed curves represent the fitting curves of Eq. (3) for home and dashed
away teams, respectively. The empirical basketball graphs show the rough step-like plots caused by the relatively
large fluctuation imparted by the small N and M values. Nevertheless, all empirical data are broadly consistent with
the theoretical results.

From the comparison of the three ball sports, the α value in rugby (α ≈ 3) is the largest and that in basketball
(α ≈ 0.4) is the smallest. This difference in α values implies that the passing event in basketball is relatively close to
random (the preferential effect is weak), whereas the passing in rugby tends to concentrate on a few specific passes. In
rugby, each position’s role is thoroughly separated [28], and it is strategically important to whom each player passes
the ball. On the contrary, a pass made to an unguarded teammate is safe in basketball. The passes in basketball
become closer to random as various teammates can get openings in an instant. The ability of the movement of players
and spatial constraints can also affect the passing strategy. Thus, the α value can reflect such strategic differences
in ball sports. However, another possible hypothesis may attribute this difference in α values to the difference in N ;
the data of basketball, football, and rugby indicate a small α value for a sport having a large N . This hypothesis is
suggested to be incorrect through the following analysis of m(τ).
By taking the continuum limit m(τ+1)−m(τ) ≃ dm/dτ , the difference equation (1) turns into differential equation

dm

dτ
=

M −m

M + ατ
.

Under the initial condition m(0) = 0 as above, the solution becomes

m(τ) =

{
M

[
1−

(
1 + ατ

M

)−1/α
]
, α > 0,

M(1− e−τ/M ), α = 0.

These solutions are obtained by applying Stirling’s approximation to Eqs. (2) and (3). The effect of M can be
eliminated by focusing on m/M and τ/M , instead of m and τ . This simple scaling property emerges as a result of
considering the continuum limit. However, to a certain extent, it holds in the original discrete system when M/α is
large enough to apply Stirling’s approximation to Eq. (3).

As an empirical instance, we compared Denver Nuggets in game B1 (M = 20 and α = 0.33) with Nagoya Grampus
Eight in match F1 (M = 90 and α = 0.34). Although these two teams had different M , and their (τ,m) plots differed
greatly [Fig. 6(a)], these two graphs overlapped well in the (τ/M,m/M) plot [Fig. 6(b)]. Therefore, the effect of
M can be absorbed in the scalable factors of τ/M and m/M , and the strategic differences are more appropriately
reflected by the change in α.

IV. DISCUSSION

In this study, we propose and analyze a stochastic model for the growth of the ball-passing network based on
the preferential selection approach of passes. The solution m(τ) is characterized by a parameter α, representing the
strength of the preferential selection. Although this model does not incorporate the direction of attack or spatial
configuration of the players (passing the ball to distant players is difficult), the theoretical result of m(τ) in Eq. (2) is
consistent with real networks in football, basketball, and rugby. We believe that the preferential selection indirectly
includes these spatial factors. In conclusion, the proposed model is simple but effectively captures the essential features
of passing events in various ball sports.

However, nine matches for football and two matches for basketball and rugby are insufficient to assess the validity
and reliability of the model. Moreover, applying the proposed model to various sports other than football, basketball,
and rugby can confirm its generality and applicability. These studies will require large-scale empirical data sets.
Future studies in this field depend highly on the quantity and quality of accessible empirical data.
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FIG. 3. Plots of m(τ) for the first half of the football matches F1–F9. Circular and square points represent home and away
teams, respectively. The points are drawn only where m(τ) increases. Solid and dashed curves represent the fitting curves of
Eq. (2) for home and away teams, respectively The team names and their corresponding α values are written on the right of
each graph.
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FIG. 5. Graphs of m(τ) in basketball (upper row) and rugby (lower row). Circular and square points represent home and away
teams, respectively. Solid and dashed curves represent the fitting curves of Eq. (3) for home and away teams, respectively. The
corresponding α values are shown in the graphs. The ratio m(τ)/M is shown on the right vertical axis. In the graphs for rugby,
the points are drawn only where m(τ) increases.

In this study, a node in the network is a player. The pitch network [29], another type of passing network, is possible.
The pitch is partitioned into areas, and the nodes of the pitch network are these areas. When a player in area 1 passes
the ball to a player in area 2, an edge is drawn from node 1 to 2. Moreover, a network whose node is identified by
both player and area has been studied [18]. The investigation and comparison of m(τ) on these networks are the
natural and interesting extensions of the present study.

Lastly, we see a brief application of the proposed model on a social system other than sports. Previously, Duch,
Waitzman, and Amaral [16] applied their analysis method for ball-passing networks to the patterns of email exchanges
among laboratory members. An email exchange is a mode of communication between people, and the set of emails
among the members of a certain project corresponds to the set of passes in a game of ball sports. We use the “Enron
email dataset” [30] as an empirical dataset for the analysis. This dataset is an email log of 150 employees of the
Enron Corporation. We can create a network by representing an email address as a node and an email as a directed
edge (from the sender to the receiver). For simplicity, we ignore the “cc” and “bcc” fields. We focus on what we term
as a bidirectional clique defined as a subgraph where edges exist in both directions between any pair of nodes. The
largest bidirectional clique uniquely existed at the size of N = 11 (M = 110). For a series of email exchanges within
this clique in a given month, we can define m(τ) as the count of emails representing the various directed edges from
the first τ emails, as compared with the number of passes in ball sports. Figure 7 shows m(τ) plots for August 2000
(upright triangles), October 2001 (inverted triangles), and September 1999 (rhombus), including 288 (maximum),
196, and 117 emails, respectively; the theoretical expression (3) fits with α = 2.38, 2.82, and 4.13, respectively.

This result needs more consideration because it is not clear to what extent emails are similar to passes. Social
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interactions generally possess heterogeneous and multi-layered structures, and the proposed model possibly requires
certain extensions or modifications for improved accuracy. Furthermore, the interevent time is bursty in many modes
of communication, and the effect of burstiness on the dynamics of the system has been verified [31–33]. (The burstiness
is not exhibited in ball-passing networks because opponents continuously attempt to steal the ball. Holding the ball for
a long time and executing passes in bursts is highly difficult for the players.) However, we believe that the preferential
selection approach provides a good starting point to a mature and realistic or precise modeling.

ACKNOWLEDGMENTS

The authors are very grateful to DataStadium Inc., Japan for providing the player-tracking data of football. KY was
partially supported by a Grant-in-Aid for Scientific Research (C) (19K03656 and 18K06406), and TN was partially
supported by a Grant-in-Aid for Early-Career Scientists (18K18013).

[1] R. Rein, SpringerPlus 5, 1410 (2016).
[2] A. Heuer, C. Müller, and O. Rubner, Europhys. Lett. 80, 38007 (2010).
[3] S. Merritt and A. Clauset, EPJ Data Sci. 3, 4 (2014).
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