{"_buckets": {"deposit": "d8eba980-b8e6-4284-a020-17d6cffd0b3d"}, "_deposit": {"id": "2000912", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "2000912"}, "status": "published"}, "_oai": {"id": "oai:u-ryukyu.repo.nii.ac.jp:02000912", "sets": ["1642838338003", "1642838406845"]}, "author_link": [], "item_1617186331708": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "\u6709\u9650\u8981\u7d20\u591a\u7d50\u6676\u4f53\u30e2\u30c7\u30eb\u3092\u7528\u3044\u305f\u5fdc\u529b\u5897\u5206\u65b9\u5411\u4f9d\u5b58\u5851\u6027\u69cb\u6210\u5f0f\u30d1\u30e9\u30e1\u30fc\u30bf\u306e\u6c7a\u5b9a", "subitem_1551255648112": "ja"}, {"subitem_1551255647225": "Determination of Constitutive Equation Parameter Using Finite Element Polycrystalline Model", "subitem_1551255648112": "en"}]}, "item_1617186419668": {"attribute_name": "Creator", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u672b\u5409, \u654f\u606d", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u5449\u5c4b, \u5b88\u7ae0", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u4f0a\u85e4, \u803f\u4e00", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "\u5bae\u57ce, \u6e05\u5b8f", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "Sueyoshi, Toshiyasu", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Goya, Moriaki", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Ito, Koichi", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Miyagi, Kiyohiro", "creatorNameLang": "en"}]}]}, "item_1617186476635": {"attribute_name": "Access Rights", "attribute_value_mlt": [{"subitem_1522299639480": "open access", "subitem_1600958577026": "http://purl.org/coar/access_right/c_abf2"}]}, "item_1617186499011": {"attribute_name": "Rights", "attribute_value_mlt": [{"subitem_1522650717957": "ja", "subitem_1522651041219": "Copyright (c) 2001 \u65e5\u672c\u6a5f\u68b0\u5b66\u4f1a"}]}, "item_1617186609386": {"attribute_name": "Subject", "attribute_value_mlt": [{"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Plasticity"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Anisotropy"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Constitutive Equation"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Directional Dependence Rule"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Natural Direction"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Finite Element Polycrystalline Model"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Associated Flow Rule"}]}, "item_1617186626617": {"attribute_name": "Description", "attribute_value_mlt": [{"subitem_description": "A plastic constitutive theory incorporating the directional dependence of the plastic strain increment d\u03b5^p on the stress increment d\u03c3\u0027 was proposed by Goya and Ito. The expression was given in terms of two transition parameters \u03bc(\u03b1) and \u03b2(\u03b1) which denote the magnitude and the direction angle of the plastic increment, where \u03b1 denotes the direction angle of the stress increment measured from a particular direction n_N, named \"natural direction\", in which the direction of the stress increment coincide with that of the plastic strain increment. In this report, a computer code for a finite element polycrystalline model is used for the numerical investigation of the variation of the two constitutive parameters \u03bc(\u03b1) and \u03b2(\u03b1) of anisotropic plastic materials. The results show that the approximate functions for the two transition parameters are numerically determined and the direction dependence rule can be naturally extended for anisotropic plastic materials. It is also suggested that several quadratic functions used for classical plastic potential may be introduced for the natural direction potential whose normal is identical to the natural direction.", "subitem_description_type": "Other"}, {"subitem_description": "\u8ad6\u6587", "subitem_description_type": "Other"}]}, "item_1617186643794": {"attribute_name": "Publisher", "attribute_value_mlt": [{"subitem_1522300295150": "ja", "subitem_1522300316516": "\u65e5\u672c\u6a5f\u68b0\u5b66\u4f1a"}]}, "item_1617186702042": {"attribute_name": "Language", "attribute_value_mlt": [{"subitem_1551255818386": "jpn"}]}, "item_1617186783814": {"attribute_name": "Identifier", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/20.500.12000/255"}]}, "item_1617186920753": {"attribute_name": "Source Identifier", "attribute_value_mlt": [{"subitem_1522646500366": "ISSN", "subitem_1522646572813": "03875008"}, {"subitem_1522646500366": "NCID", "subitem_1522646572813": "AN0018742X"}]}, "item_1617186941041": {"attribute_name": "Source Title", "attribute_value_mlt": [{"subitem_1522650068558": "ja", "subitem_1522650091861": "\u65e5\u672c\u6a5f\u68b0\u5b66\u4f1a\u8ad6\u6587\u96c6. A\u7de8"}, {"subitem_1522650068558": "en", "subitem_1522650091861": "Transactions of the Japan Society of Mechanical Engineers. A"}]}, "item_1617187056579": {"attribute_name": "Bibliographic Information", "attribute_value_mlt": [{"bibliographicIssueNumber": "663", "bibliographicPageEnd": "49", "bibliographicPageStart": "44", "bibliographicVolumeNumber": "67"}]}, "item_1617258105262": {"attribute_name": "Resource Type", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_1617265215918": {"attribute_name": "Version Type", "attribute_value_mlt": [{"subitem_1522305645492": "VoR", "subitem_1600292170262": "http://purl.org/coar/version/c_970fb48d4fbd8a85"}]}, "item_1617605131499": {"attribute_name": "File", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "download_preview_message": "", "file_order": 0, "filename": "sueyoshi_t01.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2000912/files/sueyoshi_t01.pdf"}, "version_id": "77cc18b3-4940-4e97-8fc3-ce67882c9442"}]}, "item_title": "\u6709\u9650\u8981\u7d20\u591a\u7d50\u6676\u4f53\u30e2\u30c7\u30eb\u3092\u7528\u3044\u305f\u5fdc\u529b\u5897\u5206\u65b9\u5411\u4f9d\u5b58\u5851\u6027\u69cb\u6210\u5f0f\u30d1\u30e9\u30e1\u30fc\u30bf\u306e\u6c7a\u5b9a", "item_type_id": "15", "owner": "1", "path": ["1642838338003", "1642838406845"], "permalink_uri": "http://hdl.handle.net/20.500.12000/255", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2007-03-04"}, "publish_date": "2007-03-04", "publish_status": "0", "recid": "2000912", "relation": {}, "relation_version_is_last": true, "title": ["\u6709\u9650\u8981\u7d20\u591a\u7d50\u6676\u4f53\u30e2\u30c7\u30eb\u3092\u7528\u3044\u305f\u5fdc\u529b\u5897\u5206\u65b9\u5411\u4f9d\u5b58\u5851\u6027\u69cb\u6210\u5f0f\u30d1\u30e9\u30e1\u30fc\u30bf\u306e\u6c7a\u5b9a"], "weko_shared_id": -1}
有限要素多結晶体モデルを用いた応力増分方向依存塑性構成式パラメータの決定
http://hdl.handle.net/20.500.12000/255
http://hdl.handle.net/20.500.12000/255