ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "bf47f2e2-bfc1-4716-a1ba-8ca4d14f34c6"}, "_deposit": {"id": "2002163", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "2002163"}, "status": "published"}, "_oai": {"id": "oai:u-ryukyu.repo.nii.ac.jp:02002163", "sets": ["1642837869918", "1642838406845"]}, "author_link": [], "item_1617186331708": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "\u7dda\u5f62\u5206\u6563\u6027\u3068\u6d45\u6d77\u9577\u6ce2\u306e\u975e\u7dda\u5f62\u6027\u3092\u5408\u308f\u305b\u6301\u3064\u30e2\u30c7\u30eb\u65b9\u7a0b\u5f0f", "subitem_1551255648112": "ja"}, {"subitem_1551255647225": "Model Equations Combining Full Linear Dispersion With Long Wave Nonlinearity", "subitem_1551255648112": "en"}]}, "item_1617186419668": {"attribute_name": "Creator", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u7b52\u4e95, \u8302\u660e", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "Tsutsui, Shigeaki", "creatorNameLang": "en"}]}]}, "item_1617186476635": {"attribute_name": "Access Rights", "attribute_value_mlt": [{"subitem_1522299639480": "open access", "subitem_1600958577026": "http://purl.org/coar/access_right/c_abf2"}]}, "item_1617186609386": {"attribute_name": "Subject", "attribute_value_mlt": [{"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Shallow-water waves"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Boussinesq equation"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Kortewag-de Vries equation"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Linear dispersion"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Nonlinearity"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Wave breaking"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "Maximum wave"}]}, "item_1617186626617": {"attribute_name": "Description", "attribute_value_mlt": [{"subitem_description": "The Korteweg-de Vries (KdV) and Boussinesq equations are representatives for shallow-water waves in dispersive systems. Both equations have soliton solutions and play significant roles in many nonlinear wave systems, such as in coastal engineering works and plasma dynamics (e.g., Laitone, 1960; Zabusky and Kruskal, 1965). In coastal engineering, the cnoidal wave (Laitone, 1960), the periodic solution of the KdV equation, is employed to describe properties of shallow-water waves. The Boussinesq-type equation (Peregrine, 1966, 1967), however, is on the recent trend to be used. The main reason is in the difference between their dispersion relations. Though both dispersion relations are the same for long wave approximation, for shorter period waves the dispersion relation of the KdV equation is unbounded, whereas that of the Boussinesq-type equation takes finite values. The Boussinesq-type equation, therefore, has possibility of applying in numerical calculation not only to the original long wave field but to the shorter period wave field. However, these two equations cannot show the cusp that is the limiting form of a wave when breaks on a gentle slope. Whitham (1967) and Benjamin (1967) independently proposed, on this matter, a model equation combining long wave nonlinearity with linear dispersion, for taking account of the effects from shorter period waves. The integro-differential equation suggested by Whitham and Benjamin is effective to describe waves propagating to the specified direction, and then this fact is a limitation in application of the equation. In addition, it is difticult to handle the equation in numerical works because of singularity in the kernel. The present paper, therefore, develops the concept of Whitham to the equations of Peregrine (1967) and offers a model of equations for long waves in three-dimensional, nonlinear dispersive systems, to be used in prediction of wave deformation in the coastal zone.", "subitem_description_type": "Other"}, {"subitem_description": "\u7d00\u8981\u8ad6\u6587", "subitem_description_type": "Other"}]}, "item_1617186643794": {"attribute_name": "Publisher", "attribute_value_mlt": [{"subitem_1522300295150": "ja", "subitem_1522300316516": "\u7409\u7403\u5927\u5b66\u5de5\u5b66\u90e8"}]}, "item_1617186702042": {"attribute_name": "Language", "attribute_value_mlt": [{"subitem_1551255818386": "jpn"}]}, "item_1617186783814": {"attribute_name": "Identifier", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/20.500.12000/2214"}]}, "item_1617186920753": {"attribute_name": "Source Identifier", "attribute_value_mlt": [{"subitem_1522646500366": "ISSN", "subitem_1522646572813": "0389-102X"}, {"subitem_1522646500366": "NCID", "subitem_1522646572813": "AN0025048X"}]}, "item_1617186941041": {"attribute_name": "Source Title", "attribute_value_mlt": [{"subitem_1522650068558": "ja", "subitem_1522650091861": "\u7409\u7403\u5927\u5b66\u5de5\u5b66\u90e8\u7d00\u8981"}]}, "item_1617187056579": {"attribute_name": "Bibliographic Information", "attribute_value_mlt": [{"bibliographicIssueNumber": "48", "bibliographicPageEnd": "50", "bibliographicPageStart": "41"}]}, "item_1617258105262": {"attribute_name": "Resource Type", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_1617265215918": {"attribute_name": "Version Type", "attribute_value_mlt": [{"subitem_1522305645492": "VoR", "subitem_1600292170262": "http://purl.org/coar/version/c_970fb48d4fbd8a85"}]}, "item_1617605131499": {"attribute_name": "File", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "download_preview_message": "", "file_order": 0, "filename": "No48p41.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2002163/files/No48p41.pdf"}, "version_id": "6bd2eee8-e00b-4b67-b11a-7e0272b1b6a9"}]}, "item_title": "\u7dda\u5f62\u5206\u6563\u6027\u3068\u6d45\u6d77\u9577\u6ce2\u306e\u975e\u7dda\u5f62\u6027\u3092\u5408\u308f\u305b\u6301\u3064\u30e2\u30c7\u30eb\u65b9\u7a0b\u5f0f", "item_type_id": "15", "owner": "1", "path": ["1642837869918", "1642838406845"], "permalink_uri": "http://hdl.handle.net/20.500.12000/2214", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2007-10-28"}, "publish_date": "2007-10-28", "publish_status": "0", "recid": "2002163", "relation": {}, "relation_version_is_last": true, "title": ["\u7dda\u5f62\u5206\u6563\u6027\u3068\u6d45\u6d77\u9577\u6ce2\u306e\u975e\u7dda\u5f62\u6027\u3092\u5408\u308f\u305b\u6301\u3064\u30e2\u30c7\u30eb\u65b9\u7a0b\u5f0f"], "weko_shared_id": -1}
  1. 紀要論文
  2. 琉球大学工学部紀要
  3. 48号
  1. 部局別インデックス
  2. 工学部

線形分散性と浅海長波の非線形性を合わせ持つモデル方程式

http://hdl.handle.net/20.500.12000/2214
http://hdl.handle.net/20.500.12000/2214
ac59b96c-ad84-49cf-886a-789f0d837ccd
名前 / ファイル ライセンス アクション
No48p41.pdf No48p41.pdf
Item type デフォルトアイテムタイプ(フル)(1)
公開日 2007-10-28
タイトル
タイトル 線形分散性と浅海長波の非線形性を合わせ持つモデル方程式
言語 ja
作成者 筒井, 茂明

× 筒井, 茂明

ja 筒井, 茂明

Tsutsui, Shigeaki

× Tsutsui, Shigeaki

en Tsutsui, Shigeaki

アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
主題
言語 en
主題Scheme Other
主題 Shallow-water waves
言語 en
主題Scheme Other
主題 Boussinesq equation
言語 en
主題Scheme Other
主題 Kortewag-de Vries equation
言語 en
主題Scheme Other
主題 Linear dispersion
言語 en
主題Scheme Other
主題 Nonlinearity
言語 en
主題Scheme Other
主題 Wave breaking
言語 en
主題Scheme Other
主題 Maximum wave
内容記述
内容記述タイプ Other
内容記述 The Korteweg-de Vries (KdV) and Boussinesq equations are representatives for shallow-water waves in dispersive systems. Both equations have soliton solutions and play significant roles in many nonlinear wave systems, such as in coastal engineering works and plasma dynamics (e.g., Laitone, 1960; Zabusky and Kruskal, 1965). In coastal engineering, the cnoidal wave (Laitone, 1960), the periodic solution of the KdV equation, is employed to describe properties of shallow-water waves. The Boussinesq-type equation (Peregrine, 1966, 1967), however, is on the recent trend to be used. The main reason is in the difference between their dispersion relations. Though both dispersion relations are the same for long wave approximation, for shorter period waves the dispersion relation of the KdV equation is unbounded, whereas that of the Boussinesq-type equation takes finite values. The Boussinesq-type equation, therefore, has possibility of applying in numerical calculation not only to the original long wave field but to the shorter period wave field. However, these two equations cannot show the cusp that is the limiting form of a wave when breaks on a gentle slope. Whitham (1967) and Benjamin (1967) independently proposed, on this matter, a model equation combining long wave nonlinearity with linear dispersion, for taking account of the effects from shorter period waves. The integro-differential equation suggested by Whitham and Benjamin is effective to describe waves propagating to the specified direction, and then this fact is a limitation in application of the equation. In addition, it is difticult to handle the equation in numerical works because of singularity in the kernel. The present paper, therefore, develops the concept of Whitham to the equations of Peregrine (1967) and offers a model of equations for long waves in three-dimensional, nonlinear dispersive systems, to be used in prediction of wave deformation in the coastal zone.
内容記述タイプ Other
内容記述 紀要論文
出版者
言語 ja
出版者 琉球大学工学部
言語
言語 jpn
資源タイプ
資源タイプ departmental bulletin paper
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
識別子
識別子 http://hdl.handle.net/20.500.12000/2214
識別子タイプ HDL
収録物識別子
収録物識別子タイプ ISSN
収録物識別子 0389-102X
収録物識別子タイプ NCID
収録物識別子 AN0025048X
収録物名
言語 ja
収録物名 琉球大学工学部紀要
書誌情報
号 48, p. 41-50
戻る
0
views
See details
Views

Versions

Ver.1 2022-01-27 02:18:55.467082
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON

確認


Powered by WEKO3


Powered by WEKO3