ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "bf4bb00e-72db-484f-a3f3-4a65da9c90a3"}, "_deposit": {"id": "2002451", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "2002451"}, "status": "published"}, "_oai": {"id": "oai:u-ryukyu.repo.nii.ac.jp:02002451", "sets": ["1642838338003", "1642838406414"]}, "author_link": [], "item_1617186331708": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "\u975e\u5e73\u884c\u65ad\u9762\u4e0a\u306e\u6b6a\u6955\u5186\u3092\u7528\u3044\u305f\uff13\u6b21\u5143\u6b6a\u89e3\u6790\u6cd5", "subitem_1551255648112": "ja"}, {"subitem_1551255647225": "Three dimensional finite strain analysis techniques from strain ellipses on non-parallel sections", "subitem_1551255648112": "en"}]}, "item_1617186419668": {"attribute_name": "Creator", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u6797, \u5927\u4e94\u90ce", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "Hayashi, Daigoro", "creatorNameLang": "en"}]}]}, "item_1617186476635": {"attribute_name": "Access Rights", "attribute_value_mlt": [{"subitem_1522299639480": "open access", "subitem_1600958577026": "http://purl.org/coar/access_right/c_abf2"}]}, "item_1617186609386": {"attribute_name": "Subject", "attribute_value_mlt": [{"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "three dimensional finite strain analysis"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "strain ellipse"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "strain ellipsoid"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "non-orthogonal section"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "non-parallel section"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "least square method"}]}, "item_1617186626617": {"attribute_name": "Description", "attribute_value_mlt": [{"subitem_description": "We can write relative axial lengths of strain ellipses on mutually non-parallel sections A, B and C as, for example, the ratio of the axial length of the short axis of strain ellipse on the section A by using the method of Gendzwill and Stauffer (1981). If projections of a strain ellipsoid on to the sections A, B and C are strain ellipses, the points which lie on the arc of the strain ellipses should be satisfied to lie on a surface of the ellipsoid ax^2+2bxy+2czx+dy^2+2eyz+hz^2=1. The best fit strain ellipsoid for these points can be computed using the method of least square. The method is simple and clear in theory and need less input data than the method using strain ellipses on three mutually perpendicular sections developed by Shimamoto and Ikeda (1976).", "subitem_description_type": "Other"}, {"subitem_description": "Gendzwill and Stauffer\uff081981\uff09\u306e\u65b9\u6cd5\u3092\u7528\u3044\u308b\u3068\uff0c\u4e92\u3044\u306b\u5e73\u884c\u3057\u306a\u3044\u65ad\u9762\uff21\uff0c\uff22\uff0c\uff23\u4e0a\u3067\u306e\u6b6a\u6955\u5186\u306e\u8ef8\u9577\u306e\u76f8\u5bfe\u9577\u3092\uff0c\u4f8b\u3048\u3070\uff0c\uff21\u9762\u306e\u6b6a\u6955\u5186\u306e\u77ed\u8ef8\u306e\u8ef8\u9577\u3092\uff11\u3068\u3057\u3066\u8868\u3059\u3053\u3068\u304c\u3067\u304d\u308b\uff0e\u6b6a\u6955\u5186\u4f53\u306e\u5404\u65ad\u9762\u4e0a\u3078\u306e\u6295\u5f71\u304c\u6b6a\u6955\u5186\u3067\u3042\u308b\u306a\u3089\u3070\uff0c\u3053\u3046\u3057\u3066\u5f97\u3089\u308c\u305f\u6b6a\u6955\u5186\u4e0a\u306e\u3044\u304f\u3064\u304b\u306e\u70b9\u306f\u6955\u5186\u4f53\u03b1x^2\uff0b\uff12bxy\uff0b2czx\uff0bdy^2\uff0b2eyz\uff0bhz^2\uff1d\uff11\u3092\u6e80\u8db3\u3059\u308b\u306f\u305a\u3067\u3042\u308b\uff0e\u3053\u308c\u3089\u306e\u70b9\u306b\u6700\u3082\u826f\u304f\u5408\u81f4\u3059\u308b\u6b6a\u6955\u5186\u4f53\u3092\u6700\u5c0f\uff12\u4e57\u6cd5\u3067\u6c42\u3081\u308b\u3053\u3068\u304c\u3067\u304d\u308b\uff0e\u3053\u306e\u65b9\u6cd5\u306f\u7406\u8ad6\u7684\u306b\u5358\u7d14\u660e\u89e3\u3067\uff0c\u76f4\u4ea4\u3059\u308b\uff13\u65ad\u9762\u4e0a\u306e\u6b6a\u6955\u5186\u3092\u7528\u3044\u308bShimamoto and Ikeda \uff081976\uff09\u306e\u65b9\u6cd5\u3088\u308a\u3082\u5165\u529b\u30c7\u30fc\u30bf\u3092\u5fc5\u8981\u3068\u3057\u306a\u3044\uff0e", "subitem_description_type": "Other"}, {"subitem_description": "\u8ad6\u6587", "subitem_description_type": "Other"}]}, "item_1617186643794": {"attribute_name": "Publisher", "attribute_value_mlt": [{"subitem_1522300295150": "ja", "subitem_1522300316516": "\u65e5\u672c\u5730\u8cea\u5b66\u4f1a"}]}, "item_1617186702042": {"attribute_name": "Language", "attribute_value_mlt": [{"subitem_1551255818386": "jpn"}]}, "item_1617186783814": {"attribute_name": "Identifier", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/20.500.12000/3007"}]}, "item_1617186920753": {"attribute_name": "Source Identifier", "attribute_value_mlt": [{"subitem_1522646500366": "ISSN", "subitem_1522646572813": "0016-7630"}, {"subitem_1522646500366": "NCID", "subitem_1522646572813": "AN00141768"}]}, "item_1617186941041": {"attribute_name": "Source Title", "attribute_value_mlt": [{"subitem_1522650068558": "ja", "subitem_1522650091861": "\u5730\u8cea\u5b66\u96d1\u8a8c"}]}, "item_1617187056579": {"attribute_name": "Bibliographic Information", "attribute_value_mlt": [{"bibliographicIssueNumber": "2", "bibliographicPageEnd": "161", "bibliographicPageStart": "150", "bibliographicVolumeNumber": "100"}]}, "item_1617258105262": {"attribute_name": "Resource Type", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_1617265215918": {"attribute_name": "Version Type", "attribute_value_mlt": [{"subitem_1522305645492": "VoR", "subitem_1600292170262": "http://purl.org/coar/version/c_970fb48d4fbd8a85"}]}, "item_1617605131499": {"attribute_name": "File", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "download_preview_message": "", "file_order": 0, "filename": "Hayashi_d-12.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2002451/files/Hayashi_d-12.pdf"}, "version_id": "263dd233-0679-4517-a56f-f7cdd4fd295f"}]}, "item_title": "\u975e\u5e73\u884c\u65ad\u9762\u4e0a\u306e\u6b6a\u6955\u5186\u3092\u7528\u3044\u305f\uff13\u6b21\u5143\u6b6a\u89e3\u6790\u6cd5", "item_type_id": "15", "owner": "1", "path": ["1642838338003", "1642838406414"], "permalink_uri": "http://hdl.handle.net/20.500.12000/3007", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2008-01-18"}, "publish_date": "2008-01-18", "publish_status": "0", "recid": "2002451", "relation": {}, "relation_version_is_last": true, "title": ["\u975e\u5e73\u884c\u65ad\u9762\u4e0a\u306e\u6b6a\u6955\u5186\u3092\u7528\u3044\u305f\uff13\u6b21\u5143\u6b6a\u89e3\u6790\u6cd5"], "weko_shared_id": -1}
  1. 学術雑誌論文
  2. その他
  1. 部局別インデックス
  2. 理学部

非平行断面上の歪楕円を用いた3次元歪解析法

http://hdl.handle.net/20.500.12000/3007
http://hdl.handle.net/20.500.12000/3007
5e61a546-9a0e-4a41-bb7d-89f51c8f8c0a
名前 / ファイル ライセンス アクション
Hayashi_d-12.pdf Hayashi_d-12.pdf
Item type デフォルトアイテムタイプ(フル)(1)
公開日 2008-01-18
タイトル
タイトル 非平行断面上の歪楕円を用いた3次元歪解析法
言語 ja
作成者 林, 大五郎

× 林, 大五郎

ja 林, 大五郎

Hayashi, Daigoro

× Hayashi, Daigoro

en Hayashi, Daigoro

アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
主題
言語 en
主題Scheme Other
主題 three dimensional finite strain analysis
言語 en
主題Scheme Other
主題 strain ellipse
言語 en
主題Scheme Other
主題 strain ellipsoid
言語 en
主題Scheme Other
主題 non-orthogonal section
言語 en
主題Scheme Other
主題 non-parallel section
言語 en
主題Scheme Other
主題 least square method
内容記述
内容記述タイプ Other
内容記述 We can write relative axial lengths of strain ellipses on mutually non-parallel sections A, B and C as, for example, the ratio of the axial length of the short axis of strain ellipse on the section A by using the method of Gendzwill and Stauffer (1981). If projections of a strain ellipsoid on to the sections A, B and C are strain ellipses, the points which lie on the arc of the strain ellipses should be satisfied to lie on a surface of the ellipsoid ax^2+2bxy+2czx+dy^2+2eyz+hz^2=1. The best fit strain ellipsoid for these points can be computed using the method of least square. The method is simple and clear in theory and need less input data than the method using strain ellipses on three mutually perpendicular sections developed by Shimamoto and Ikeda (1976).
内容記述タイプ Other
内容記述 Gendzwill and Stauffer(1981)の方法を用いると,互いに平行しない断面A,B,C上での歪楕円の軸長の相対長を,例えば,A面の歪楕円の短軸の軸長を1として表すことができる.歪楕円体の各断面上への投影が歪楕円であるならば,こうして得られた歪楕円上のいくつかの点は楕円体αx^2+2bxy+2czx+dy^2+2eyz+hz^2=1を満足するはずである.これらの点に最も良く合致する歪楕円体を最小2乗法で求めることができる.この方法は理論的に単純明解で,直交する3断面上の歪楕円を用いるShimamoto and Ikeda (1976)の方法よりも入力データを必要としない.
内容記述タイプ Other
内容記述 論文
出版者
言語 ja
出版者 日本地質学会
言語
言語 jpn
資源タイプ
資源タイプ journal article
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
識別子
識別子 http://hdl.handle.net/20.500.12000/3007
識別子タイプ HDL
収録物識別子
収録物識別子タイプ ISSN
収録物識別子 0016-7630
収録物識別子タイプ NCID
収録物識別子 AN00141768
収録物名
言語 ja
収録物名 地質学雑誌
書誌情報
巻 100, 号 2, p. 150-161
戻る
0
views
See details
Views

Versions

Ver.1 2022-01-27 02:28:38.628264
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON

確認


Powered by WEKO3


Powered by WEKO3