@article{oai:u-ryukyu.repo.nii.ac.jp:02002763, author = {林, 弘也 and 福田, 英昭 and Hayashi, Hiroya and Fukuda, Hideaki}, issue = {43}, journal = {琉球大学農学部学術報告, The Science Bulletin of the Faculty of Agriculture. University of the Ryukyus}, month = {Dec}, note = {高い圧縮応力下にある木材の平衡含水率変化と無応力時の平衡含水率をスギ材とイジュ材について比較検討した。負荷した圧縮応力は破壊応力の40∿85%に設定した。負荷開始から約80時間後に,平衡含水率は両樹種ともに0.1%オーダであるが増加をしめした。応力の大きさに対応して含水率の増加量は増大した。圧縮応力が破壊応力の10%以下の低い応力の場合には平衡含水率はBarkasの式に従うが,高い応力の場合には式とは異なった挙動が認められた。これは,低い応力では,壁構成要素の再配列を発生する細胞壁の形態上の変化を生じないが,高い応力では,細胞壁の形態上の変化がスリッププレーンの形で細胞壁に発生し,セルロースの配列が乱れた領域に水分が吸着したと考えられた。, A equilibrium moisture content of Sugi wood and ljyu wood were examined under compression stress and free stress. The range of applied stress was 40∿85% to the breaking stress. The equilibrium moisture content increased less than 1% after stress was applied about 80 hours. The applied stress increased the equilibrium moisture content in both species. In the case of applied compression stress under 10% of the breaking stress, equilibrium moisture content of wood decrease the equilibrium moisture content by the way of the Barkas's formula but moisture content increase with stress over 40% of the breaking stress in compression. For the reason for this difference, it was recognized the different formula of cell wall deformation. In low stress range, a cell wall was not deformed the outlook of wall. But cell wall was deformed in the way of slip plane formation in high stress range at least over 40% breaking stress. A slip plane caused the rearrangement of cell wall component fibril or microfibril and these rearranged reagion of the cell wall were absorbed more a water., 紀要論文}, pages = {107--112}, title = {圧縮応力下のスギ,イジュ材の含水率(生物資源科学科)}, year = {1996} }