{"created":"2022-01-27T08:05:28.183155+00:00","id":2004448,"links":{},"metadata":{"_buckets":{"deposit":"c19b4fa3-eb40-4a7d-b5ce-747921fea44b"},"_deposit":{"id":"2004448","owners":[1],"pid":{"revision_id":0,"type":"depid","value":"2004448"},"status":"published"},"_oai":{"id":"oai:u-ryukyu.repo.nii.ac.jp:02004448","sets":["1642838403123","1642838403551:1642838406414"]},"author_link":[],"item_1617186331708":{"attribute_name":"Title","attribute_value_mlt":[{"subitem_1551255647225":"\u5bfe\u5408\u540c\u5909\u6b63\u5247\u5199\u50cf\u7a7a\u9593\u306e\u4f4d\u76f8\u5e7e\u4f55","subitem_1551255648112":"ja"},{"subitem_1551255647225":"Topology of spaces of conjugation-equivariant holomorphic maps","subitem_1551255648112":"en"}]},"item_1617186419668":{"attribute_name":"Creator","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"\u795e\u5c71, \u9756\u5f66","creatorNameLang":"ja"}]},{"creatorNames":[{"creatorName":"\u5fd7\u8cc0, \u535a\u96c4","creatorNameLang":"ja"}]},{"creatorNames":[{"creatorName":"\u624b\u585a, \u5eb7\u8aa0","creatorNameLang":"ja"}]},{"creatorNames":[{"creatorName":"Kamiyama, Yasuhiko","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Shiga, Hiroo","creatorNameLang":"en"}]},{"creatorNames":[{"creatorName":"Tezuka, Michishige","creatorNameLang":"en"}]}]},"item_1617186476635":{"attribute_name":"Access Rights","attribute_value_mlt":[{"subitem_1522299639480":"open access","subitem_1600958577026":"http://purl.org/coar/access_right/c_abf2"}]},"item_1617186609386":{"attribute_name":"Subject","attribute_value_mlt":[{"subitem_1522299896455":"ja","subitem_1522300014469":"Other","subitem_1523261968819":"\u6709\u7406\u95a2\u6570"},{"subitem_1522299896455":"ja","subitem_1522300014469":"Other","subitem_1523261968819":"\u8907\u7d20\u5171\u5f79\u5bfe\u5408"},{"subitem_1522299896455":"ja","subitem_1522300014469":"Other","subitem_1523261968819":"\u591a\u9805\u5f0f"},{"subitem_1522299896455":"ja","subitem_1522300014469":"Other","subitem_1523261968819":"\u91cd\u6839"},{"subitem_1522299896455":"ja","subitem_1522300014469":"Other","subitem_1523261968819":"\u914d\u7f6e\u7a7a\u9593"},{"subitem_1522299896455":"ja","subitem_1522300014469":"Other","subitem_1523261968819":"\u30eb\u30fc\u30d7\u7a7a\u9593"},{"subitem_1522299896455":"ja","subitem_1522300014469":"Other","subitem_1523261968819":"\u5b89\u5b9a\u5206\u89e3"},{"subitem_1522299896455":"ja","subitem_1522300014469":"Other","subitem_1523261968819":"\u751f\u6210\u591a\u69d8\u4f53"},{"subitem_1522299896455":"en","subitem_1522300014469":"Other","subitem_1523261968819":"rational function"},{"subitem_1522299896455":"en","subitem_1522300014469":"Other","subitem_1523261968819":"conjugation"},{"subitem_1522299896455":"en","subitem_1522300014469":"Other","subitem_1523261968819":"polynomial"},{"subitem_1522299896455":"en","subitem_1522300014469":"Other","subitem_1523261968819":"multiple root"},{"subitem_1522299896455":"en","subitem_1522300014469":"Other","subitem_1523261968819":"configuration space"},{"subitem_1522299896455":"en","subitem_1522300014469":"Other","subitem_1523261968819":"loop space"},{"subitem_1522299896455":"en","subitem_1522300014469":"Other","subitem_1523261968819":"stable splitting"},{"subitem_1522299896455":"en","subitem_1522300014469":"Other","subitem_1523261968819":"generating variety"}]},"item_1617186626617":{"attribute_name":"Description","attribute_value_mlt":[{"subitem_description":"\u79d1\u7814\u8cbb\u756a\u53f7: 15540087","subitem_description_type":"Other"},{"subitem_description":"\u5e73\u621015\u5e74\u5ea6\uff5e\u5e73\u621017\u5e74\u5ea6\u79d1\u5b66\u7814\u7a76\u8cbb\u88dc\u52a9\u91d1(\u57fa\u76e4\u7814\u7a76(C))\u6210\u679c\u5831\u544a\u66f8","subitem_description_type":"Other"},{"subitem_description":"\uff08\u7814\u7a76\u6982\u8981\uff09Rat_k(CP^n)\u3067S^2\u304b\u3089CP^n\u3078\u306e\u57fa\u70b9\u3092\u4fdd\u3064\u6b63\u5247\u5199\u50cf\u7a7a\u9593\u3092\u8868\u3059.Rat_k(CP^n)\u306e\u5b89\u5b9a\u30db\u30e2\u30c8\u30d4\u30fc\u578b\u306f,\u5bfe\u5fdc\u3059\u308b\u9023\u7d9a\u5199\u50cf\u7a7a\u9593 \u03a9^2S^<2n+1>\u306eSnaith stable summands\u3067\u8a18\u8ff0\u3067\u304d\u308b\u3068\u3044\u3046\u5b9a\u7406\u306f,\u5831\u544a\u8005\u53ca\u3073Cohen-Cohen-Mann-Milgram\u306b\u3088\u308a\u8a3c\u660e\u3055\u308c\u3066\u3044\u305f.\u672c\u7814\u7a76\u306e\u76ee\u7684\u306f,\u3053\u306e\u5b9a\u7406\u3092\u6b21\u306e2\u65b9\u9762\u3067\u4e00\u822c\u5316\u3059\u308b\u3053\u3068\u3067\u3042\u308b.\\n(i)Rat_k(CP^n)\u306e\u4e0a\u306b\u306f,\u8907\u7d20\u5171\u5f79\u306b\u3088\u308b\u5bfe\u5408\u304c\u4f5c\u7528\u3059\u308b.\u3053\u306e\u5bfe\u5408\u3068\u53ef\u63db\u306a\u6b63\u5247\u5199\u50cf\u5168\u4f53\u3092 RRat_k(CP^n)\u3067\u8868\u3059.\u3053\u306eRRat_k(CP^n)\u306e\u30db\u30e2\u30c8\u30d4\u30fc\u578b\u306f,n=1\u306e\u3068\u304d\u306b\u306fBrockett\u53ca\u3073Segal\u306b\u3088\u308a\u6c7a\u5b9a\u3055\u308c\u3066\u3044\u305f.\u3057\u304b\u3057,n\u3010greater than or equal\u30112\u306b\u3068\u304d\u306b\u306f\u672a\u89e3\u6c7a\u3067\u3042\u3063\u305f.\u672c\u7814\u7a76\u306e\u7b2c\u4e00\u306e\u6210\u679c\u306fRRat_k(CP^n)\u306e\u5b89\u5b9a\u30db\u30e2\u30c8\u30d4\u30fc\u578b\u3092\u5b8c\u5168\u306b\u6c7a\u5b9a\u3057\u305f\u3053\u3068\u3067\u3042\u308b.\u3053\u306e\u969b,\u5bfe\u5fdc\u3059\u308b\u5bfe\u5408\u540c\u5909\u9023\u7d9a\u7a7a\u9593\u306f,\u03a9S^n\u00d7\u03a9^2S^<2n+1>\u3067\u3042\u308b.\\n(ii)P^l_\u3067,\u591a\u9805\u5f0f f(z)=z^k+a_1z^+\u3010triple pond\u3011+a_k\u3067,n\u91cd\u6839\u304c\u9ad8\u3005l\u500b\u3067\u3042\u308b\u3082\u306e\u306e\u7a7a\u9593\u3092\u8868\u3059.Arnold\u306f,1970\u5e74\u306bP^l_\u306e\u30db\u30e2\u30ed\u30b8\u30fc\u3092\u6570\u5b66\u7684\u5e30\u7d0d\u6cd5\u306b\u3088\u308a\u6c7a\u5b9a\u3057\u3088\u3046\u3068\u3057\u305f\u304c,\u672a\u89e3\u6c7a\u306a\u90e8\u5206\u304c\u591a\u304b\u3063\u305f.\u672c\u7814\u7a76\u306e\u7b2c\u4e8c\u306e\u6210\u679c\u306f,P^l_\u306e\u5b89\u5b9a\u30db\u30e2\u30c8\u30d4\u30fc\u578b\u3092\u5b8c\u5168\u306b\u6c7a\u5b9a\u3057,\u305d\u3053\u304b\u3089\u30db\u30e2\u30ed\u30b8\u30fc\u3082\u8aad\u307f\u53d6\u308c\u308b\u3053\u3068\u3092\u793a\u3057\u305f\u3053\u3068\u3067\u3042\u308b.\u5f93\u3063\u3066,Arnold\u306e\u554f\u984c\u306f\u5b8c\u5168\u306b\u89e3\u6c7a\u3055\u308c\u305f\u3053\u3068\u306b\u306a\u308b.\u3053\u306e\u969b,\u4f7f\u7528\u3059\u308bstable summands\u306f,Rat_k(CP^)\u306e\u3042\u308b\u4e00\u822c\u5316\u306estable summands\u3067\u3042\u308b.\u3053\u306e\u4e00\u822c\u5316\u306f,k\u6b21\u591a\u9805\u5f0f\u306en\u7d44\u3067,\u5171\u901a\u6839\u304c\u9ad8\u3005l\u500b\u3068\u3044\u3046\u3082\u306e\u306e\u306a\u3059\u7a7a\u9593\u3067\u3042\u308b.\u3064\u307e\u308a,\u5358\u72ec\u306e\u591a\u9805\u5f0f\u306e\u306a\u3059\u7a7a\u9593\u3068,\u591a\u9805\u5f0f\u306e n\u7d44\u306e\u306a\u3059\u7a7a\u9593\u3068\u306e\u9593\u306e\u95a2\u4fc2\u3092\u89e3\u660e\u3057\u305f\u308f\u3051\u3067\u3042\u308b.\\n\u306a\u304a,(ii)\u306e\u7814\u7a76\u5b9f\u7e3e\u306f\u9ad8\u304f\u8a55\u4fa1\u3055\u308c\u3066\u3044\u308b.\u4e00\u4f8b\u3068\u3057\u3066,\u7814\u7a76\u4ee3\u8868\u8005\u306f,2005\u5e747\u6708\u306b\u6771\u5927\u3067\u958b\u50ac\u3055\u308c\u305fCOE\u56fd\u969b\u4f1a\u8b70\u3067\u4e3b\u8981\u8b1b\u6f14\u3092\u884c\u3063\u305f.","subitem_description_type":"Other"},{"subitem_description":"Let Rat_k(CP^n) be the space of basepoint-preserving holomorphic maps fromS^2 to CP^n. This is a subspace of \u03a9^2_kCP^n. A theorem by me and Cohen-Cohen-Mann-Milgram tells that the stable homotopy type of Rat_k(CP^n) is described in terms of stable summands of \u03a9^2S^<2n+1>. The purpose of this research is to generalize the theorem in two directions.\\n(i)Let RRat_k(CP^n) be the subspace of Rat_k(CP^n) of maps which commute with an involution by complex conjugation. Brockett and Segal determined the homotopy type of RRat_k(CP^1). But the case n\u3010greater than or equal\u30112 was unknown. The first achievement of this research is to determine the stable homotopy type of RRat_k(CP^n) completely. In this case, the corresponding continuous mapping space is \u03a9S^n\u00d7\u03a9^2S^<2n+1>.\\n(ii)Let P_ be the space of polynomials such that the number of n-fold roots is at most l. In 1970, Arnold tried to determine the homology group of P^l_, but most part was left unknown. The second achievement of research is to determine the stable homotopy type of P^l_ completely, and to show that the homology groups of P^l_ are determined from this. As a result, I solved Arnold's problem completely. Roughly, the main result is to prove a relationship between a space of single polynomials and a space of n-tuples of polynomials.\\nThe achievement in (ii) was highly evaluated. For example, I gave a plenary talk at the COE International Conference held at the University of Tokyo in July 2005.","subitem_description_type":"Other"},{"subitem_description":"(p.154-)Configuration spaces and rational functions / Yasuhiko Kamiyama","subitem_description_type":"Other"},{"subitem_description":"\u672a\u516c\u958b\uff1aP.15\uff5e154\uff08\u8ad6\u6587\u5225\u5237\u306e\u305f\u3081\uff09","subitem_description_type":"Other"},{"subitem_description":"\u7814\u7a76\u5831\u544a\u66f8","subitem_description_type":"Other"}]},"item_1617186643794":{"attribute_name":"Publisher","attribute_value_mlt":[{"subitem_1522300295150":"ja","subitem_1522300316516":"\u795e\u5c71\u9756\u5f66"}]},"item_1617186702042":{"attribute_name":"Language","attribute_value_mlt":[{"subitem_1551255818386":"jpn"}]},"item_1617186783814":{"attribute_name":"Identifier","attribute_value_mlt":[{"subitem_identifier_type":"HDL","subitem_identifier_uri":"http://hdl.handle.net/20.500.12000/9229"}]},"item_1617186920753":{"attribute_name":"Source Identifier","attribute_value_mlt":[{"subitem_1522646500366":"NCID","subitem_1522646572813":"BA79181376"}]},"item_1617187056579":{"attribute_name":"Bibliographic Information","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2006-03","bibliographicIssueDateType":"Issued"},"bibliographicPageStart":"none"}]},"item_1617258105262":{"attribute_name":"Resource Type","attribute_value_mlt":[{"resourcetype":"research report","resourceuri":"http://purl.org/coar/resource_type/c_18ws"}]},"item_1617265215918":{"attribute_name":"Version Type","attribute_value_mlt":[{"subitem_1522305645492":"VoR","subitem_1600292170262":"http://purl.org/coar/version/c_970fb48d4fbd8a85"}]},"item_1617605131499":{"attribute_name":"File","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","filename":"15540087-2.pdf","mimetype":"application/pdf","url":{"objectType":"fulltext","url":"https://u-ryukyu.repo.nii.ac.jp/record/2004448/files/15540087-2.pdf"},"version_id":"c2f72a3d-1e8b-4d50-ae5b-63b802d9de20"},{"accessrole":"open_access","filename":"15540087-1.pdf","mimetype":"application/pdf","url":{"objectType":"fulltext","url":"https://u-ryukyu.repo.nii.ac.jp/record/2004448/files/15540087-1.pdf"},"version_id":"c6808121-71cd-4442-83f1-b0a5c74356e6"}]},"item_title":"\u5bfe\u5408\u540c\u5909\u6b63\u5247\u5199\u50cf\u7a7a\u9593\u306e\u4f4d\u76f8\u5e7e\u4f55","item_type_id":"15","owner":"1","path":["1642838403123","1642838406414"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2009-03-17"},"publish_date":"2009-03-17","publish_status":"0","recid":"2004448","relation_version_is_last":true,"title":["\u5bfe\u5408\u540c\u5909\u6b63\u5247\u5199\u50cf\u7a7a\u9593\u306e\u4f4d\u76f8\u5e7e\u4f55"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2022-10-31T01:57:53.172693+00:00"}