WEKO3
アイテム
{"_buckets": {"deposit": "c0bcbf37-1251-4e75-b74c-42404d34d489"}, "_deposit": {"id": "2004460", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "2004460"}, "status": "published"}, "_oai": {"id": "oai:u-ryukyu.repo.nii.ac.jp:02004460", "sets": ["1642838403123", "1642838405037"]}, "author_link": [], "item_1617186331708": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "球面上のランダム幾何とその応用", "subitem_1551255648112": "ja"}, {"subitem_1551255647225": "Random Geometry on the Sphere and its Applications", "subitem_1551255648112": "en"}]}, "item_1617186419668": {"attribute_name": "Creator", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "前原, 濶", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "Maehara, Hiroshi", "creatorNameLang": "en"}]}]}, "item_1617186476635": {"attribute_name": "Access Rights", "attribute_value_mlt": [{"subitem_1522299639480": "open access", "subitem_1600958577026": "http://purl.org/coar/access_right/c_abf2"}]}, "item_1617186609386": {"attribute_name": "Subject", "attribute_value_mlt": [{"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "漸近分布"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "最小距離の分布"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "ランダム球帽系"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "交グラフ"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "片側球帽"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "見かけの角"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "asymptotic distribution"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "minimum distance"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "random caps"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "intersection graph"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "extremal cap"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "visual angle"}]}, "item_1617186626617": {"attribute_name": "Description", "attribute_value_mlt": [{"subitem_description": "科研費番号: 13640126", "subitem_description_type": "Other"}, {"subitem_description": "科学研究費補助金(基盤研究(C)(2))研究成果報告書", "subitem_description_type": "Other"}, {"subitem_description": "研究概要 : 1.辺数がNの任意のグラフGに対して、その頂点集合をd次元単位球面上にランダムに配置する。Gにおいて辺で結ばれているような頂点対に対応する球面上の点対の間の球面距離の最小値をDとする。N→∞のとき、ND^dの分布は平均がdB(1/2,d/2)の指数分布に収束する。ここでB(p,q)はベータ関数である。2.2次元の単位球面上の有限個の球帽系F={C_1,C_2,...,C_N}に対して、その交グラフをG(F)で表わす。球帽系Fにおいて球帽C_iと交わる球帽の中心がすべてC_iの中心を通るある大円の一方の側にあるとき、C_iは片側球帽という。また、半球面より小さい球帽はプロパーであるという。Fに片側球帽が存在しなければ、交グラフG(F)は連結となる。また、片側球帽が存在せず、さらに、球帽がすべてプロパーなら、G(F)は2連結となる。(3次元以上の球面では、これと類似な結果は成立しない。)これを応用して、ランダム球帽系の交グラフに関する次の漸近的な結果が得られる。こんどは、F={C_1,C_2,...,C_N}を2次元単位球面上のすべて同じ大きさ(4πc/N)log Nのランダムな球帽の系とする。c\u003e1/2なら、N→∞のとき、G(F)が2連結になる確率は1に収束し、c\u003c1/4なら、G(F)が連結になる確率は0に収束する。3.次元空間内の三角形ΔAOBの∠AOBの大きさをωとする。点Pから∠AOBを見るときその見かけの大きさは、 ΔAOBを直線POに垂直な平面に正射影して得られる三角形ΔA\u0027O\u0027B\u0027の∠A\u0027O\u0027B\u0027の大きさに等しい。点PがOを中心とする単位球面上のランダムな点のとき、∠A\u0027O\u0027B\u0027の大きさΘ(ω)を∠AOBのランダムな見かけの角という。東海大の前田陽一氏との共同研究により、確率変数Θ(ω)の平均が ωに等しいことを示し、また、その分散が容易に数値計算できる2重積分の式を得た。", "subitem_description_type": "Other"}, {"subitem_description": "1. For a graph G with N edges, put its vertices on the d-dimensional unit sphere. Let D denote the minimum spherical distance between a pair of points that correspond to a pair of adjacent vertices in G. Then, it was proved that the distribution of ND^d tends to exponential distribution with mean dB(1/2,d/2) as N tends to infinity, where B(p,q) denotes the beta function.2. Let F={C_1,C_2,…,C_N} be a family of caps on the two dimensional unit sphere. A cap C_i is called extremal if the centers of those caps that intersect C_i are all contained in the same side of a great circle passing through the center of C_i. A cap that is smaller than a hemisphere is called proper. It was proved that if F has no extremal cap then the intersection graph G(F) of F is connected. If furthermore, all caps in F are proper then G(F) is 2-connected. For higher dimensional sphere, the similar result never holds. Applying this the following asymptotic result was proved. Now, let F denote a family of N random caps all of the same size (4πc/N)log N. If c\u003e1/2, then the probability that G(F) is 2-connected tends to 1 as N tends to infinity. If c\u003c1/4, then the probability that G(F) is connected tends to 0 as N tends to infinity.3. Let AOB be a triangle in the 3-space with angle ∠AOB=ω. When we look at this angle from a viewpoint P, this angle looks as though the angle of the orthogonal projection of AOB on a plane perpendicular to the line PO. And its size changes according to the location of the viewpoint P. If P is a random point on a unit sphere centered at O, then the \u0027visual\u0027 size of the angle ∠AOB is called the random visual size and denoted by Θ(ω). By a joint study with Yoich Maeda (Tokai univ.), we proved that the expected value of Θ(ω) is equal to ω, and derived a formula to calculate the variance of Θ(ω).", "subitem_description_type": "Other"}, {"subitem_description": "未公開:P.7~71(論文別刷のため)", "subitem_description_type": "Other"}, {"subitem_description": "研究報告書", "subitem_description_type": "Other"}]}, "item_1617186643794": {"attribute_name": "Publisher", "attribute_value_mlt": [{"subitem_1522300295150": "ja", "subitem_1522300316516": "前原濶"}]}, "item_1617186702042": {"attribute_name": "Language", "attribute_value_mlt": [{"subitem_1551255818386": "jpn"}]}, "item_1617186783814": {"attribute_name": "Identifier", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/20.500.12000/9309"}]}, "item_1617186920753": {"attribute_name": "Source Identifier", "attribute_value_mlt": [{"subitem_1522646500366": "NCID", "subitem_1522646572813": "BA64192299"}]}, "item_1617187056579": {"attribute_name": "Bibliographic Information", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2003-03", "bibliographicIssueDateType": "Issued"}, "bibliographicPageStart": "none"}]}, "item_1617258105262": {"attribute_name": "Resource Type", "attribute_value_mlt": [{"resourcetype": "research report", "resourceuri": "http://purl.org/coar/resource_type/c_18ws"}]}, "item_1617265215918": {"attribute_name": "Version Type", "attribute_value_mlt": [{"subitem_1522305645492": "VoR", "subitem_1600292170262": "http://purl.org/coar/version/c_970fb48d4fbd8a85"}]}, "item_1617605131499": {"attribute_name": "File", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "download_preview_message": "", "file_order": 0, "filename": "13640126-2.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2004460/files/13640126-2.pdf"}, "version_id": "f31f2177-682d-4c06-a91f-537796bb7c1e"}, {"accessrole": "open_access", "download_preview_message": "", "file_order": 1, "filename": "13640126-1.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2004460/files/13640126-1.pdf"}, "version_id": "16aea07e-72f9-4b78-bdc4-79a32818e468"}]}, "item_title": "球面上のランダム幾何とその応用", "item_type_id": "15", "owner": "1", "path": ["1642838403123", "1642838405037"], "permalink_uri": "http://hdl.handle.net/20.500.12000/9309", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2009-03-19"}, "publish_date": "2009-03-19", "publish_status": "0", "recid": "2004460", "relation": {}, "relation_version_is_last": true, "title": ["球面上のランダム幾何とその応用"], "weko_shared_id": -1}
球面上のランダム幾何とその応用
http://hdl.handle.net/20.500.12000/9309
http://hdl.handle.net/20.500.12000/93094cb7e24a-5f9f-4dfb-9cd7-da088eabeefd
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
|
![]() |
|
Item type | デフォルトアイテムタイプ(フル)(1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2009-03-19 | |||||||||
タイトル | ||||||||||
タイトル | 球面上のランダム幾何とその応用 | |||||||||
言語 | ja | |||||||||
タイトル | ||||||||||
タイトル | Random Geometry on the Sphere and its Applications | |||||||||
言語 | en | |||||||||
作成者 |
前原, 濶
× 前原, 濶
× Maehara, Hiroshi
|
|||||||||
アクセス権 | ||||||||||
アクセス権 | open access | |||||||||
アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||||||
主題 | ||||||||||
言語 | ja | |||||||||
主題Scheme | Other | |||||||||
主題 | 漸近分布 | |||||||||
主題 | ||||||||||
言語 | ja | |||||||||
主題Scheme | Other | |||||||||
主題 | 最小距離の分布 | |||||||||
主題 | ||||||||||
言語 | ja | |||||||||
主題Scheme | Other | |||||||||
主題 | ランダム球帽系 | |||||||||
主題 | ||||||||||
言語 | ja | |||||||||
主題Scheme | Other | |||||||||
主題 | 交グラフ | |||||||||
主題 | ||||||||||
言語 | ja | |||||||||
主題Scheme | Other | |||||||||
主題 | 片側球帽 | |||||||||
主題 | ||||||||||
言語 | ja | |||||||||
主題Scheme | Other | |||||||||
主題 | 見かけの角 | |||||||||
主題 | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | asymptotic distribution | |||||||||
主題 | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | minimum distance | |||||||||
主題 | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | random caps | |||||||||
主題 | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | intersection graph | |||||||||
主題 | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | extremal cap | |||||||||
主題 | ||||||||||
言語 | en | |||||||||
主題Scheme | Other | |||||||||
主題 | visual angle | |||||||||
内容記述 | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | 科研費番号: 13640126 | |||||||||
内容記述 | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | 科学研究費補助金(基盤研究(C)(2))研究成果報告書 | |||||||||
内容記述 | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | 研究概要 : 1.辺数がNの任意のグラフGに対して、その頂点集合をd次元単位球面上にランダムに配置する。Gにおいて辺で結ばれているような頂点対に対応する球面上の点対の間の球面距離の最小値をDとする。N→∞のとき、ND^dの分布は平均がdB(1/2,d/2)の指数分布に収束する。ここでB(p,q)はベータ関数である。2.2次元の単位球面上の有限個の球帽系F={C_1,C_2,...,C_N}に対して、その交グラフをG(F)で表わす。球帽系Fにおいて球帽C_iと交わる球帽の中心がすべてC_iの中心を通るある大円の一方の側にあるとき、C_iは片側球帽という。また、半球面より小さい球帽はプロパーであるという。Fに片側球帽が存在しなければ、交グラフG(F)は連結となる。また、片側球帽が存在せず、さらに、球帽がすべてプロパーなら、G(F)は2連結となる。(3次元以上の球面では、これと類似な結果は成立しない。)これを応用して、ランダム球帽系の交グラフに関する次の漸近的な結果が得られる。こんどは、F={C_1,C_2,...,C_N}を2次元単位球面上のすべて同じ大きさ(4πc/N)log Nのランダムな球帽の系とする。c>1/2なら、N→∞のとき、G(F)が2連結になる確率は1に収束し、c<1/4なら、G(F)が連結になる確率は0に収束する。3.次元空間内の三角形ΔAOBの∠AOBの大きさをωとする。点Pから∠AOBを見るときその見かけの大きさは、 ΔAOBを直線POに垂直な平面に正射影して得られる三角形ΔA'O'B'の∠A'O'B'の大きさに等しい。点PがOを中心とする単位球面上のランダムな点のとき、∠A'O'B'の大きさΘ(ω)を∠AOBのランダムな見かけの角という。東海大の前田陽一氏との共同研究により、確率変数Θ(ω)の平均が ωに等しいことを示し、また、その分散が容易に数値計算できる2重積分の式を得た。 | |||||||||
内容記述 | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | 1. For a graph G with N edges, put its vertices on the d-dimensional unit sphere. Let D denote the minimum spherical distance between a pair of points that correspond to a pair of adjacent vertices in G. Then, it was proved that the distribution of ND^d tends to exponential distribution with mean dB(1/2,d/2) as N tends to infinity, where B(p,q) denotes the beta function.2. Let F={C_1,C_2,…,C_N} be a family of caps on the two dimensional unit sphere. A cap C_i is called extremal if the centers of those caps that intersect C_i are all contained in the same side of a great circle passing through the center of C_i. A cap that is smaller than a hemisphere is called proper. It was proved that if F has no extremal cap then the intersection graph G(F) of F is connected. If furthermore, all caps in F are proper then G(F) is 2-connected. For higher dimensional sphere, the similar result never holds. Applying this the following asymptotic result was proved. Now, let F denote a family of N random caps all of the same size (4πc/N)log N. If c>1/2, then the probability that G(F) is 2-connected tends to 1 as N tends to infinity. If c<1/4, then the probability that G(F) is connected tends to 0 as N tends to infinity.3. Let AOB be a triangle in the 3-space with angle ∠AOB=ω. When we look at this angle from a viewpoint P, this angle looks as though the angle of the orthogonal projection of AOB on a plane perpendicular to the line PO. And its size changes according to the location of the viewpoint P. If P is a random point on a unit sphere centered at O, then the 'visual' size of the angle ∠AOB is called the random visual size and denoted by Θ(ω). By a joint study with Yoich Maeda (Tokai univ.), we proved that the expected value of Θ(ω) is equal to ω, and derived a formula to calculate the variance of Θ(ω). | |||||||||
内容記述 | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | 未公開:P.7~71(論文別刷のため) | |||||||||
内容記述 | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | 研究報告書 | |||||||||
出版者 | ||||||||||
言語 | ja | |||||||||
出版者 | 前原濶 | |||||||||
言語 | ||||||||||
言語 | jpn | |||||||||
資源タイプ | ||||||||||
資源タイプ | research report | |||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_18ws | |||||||||
出版タイプ | ||||||||||
出版タイプ | VoR | |||||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||||||
識別子 | ||||||||||
識別子 | http://hdl.handle.net/20.500.12000/9309 | |||||||||
識別子タイプ | HDL | |||||||||
収録物識別子 | ||||||||||
収録物識別子タイプ | NCID | |||||||||
収録物識別子 | BA64192299 | |||||||||
書誌情報 |
p. none, 発行日 2003-03 |