ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "c0bcbf37-1251-4e75-b74c-42404d34d489"}, "_deposit": {"id": "2004460", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "2004460"}, "status": "published"}, "_oai": {"id": "oai:u-ryukyu.repo.nii.ac.jp:02004460", "sets": ["1642838403123", "1642838405037"]}, "author_link": [], "item_1617186331708": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "球面上のランダム幾何とその応用", "subitem_1551255648112": "ja"}, {"subitem_1551255647225": "Random Geometry on the Sphere and its Applications", "subitem_1551255648112": "en"}]}, "item_1617186419668": {"attribute_name": "Creator", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "前原, 濶", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "Maehara, Hiroshi", "creatorNameLang": "en"}]}]}, "item_1617186476635": {"attribute_name": "Access Rights", "attribute_value_mlt": [{"subitem_1522299639480": "open access", "subitem_1600958577026": "http://purl.org/coar/access_right/c_abf2"}]}, "item_1617186609386": {"attribute_name": "Subject", "attribute_value_mlt": [{"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "漸近分布"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "最小距離の分布"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "ランダム球帽系"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "交グラフ"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "片側球帽"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "見かけの角"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "asymptotic distribution"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "minimum distance"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "random caps"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "intersection graph"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "extremal cap"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "visual angle"}]}, "item_1617186626617": {"attribute_name": "Description", "attribute_value_mlt": [{"subitem_description": "科研費番号: 13640126", "subitem_description_type": "Other"}, {"subitem_description": "科学研究費補助金(基盤研究(C)(2))研究成果報告書", "subitem_description_type": "Other"}, {"subitem_description": "研究概要 : 1.辺数がNの任意のグラフGに対して、その頂点集合をd次元単位球面上にランダムに配置する。Gにおいて辺で結ばれているような頂点対に対応する球面上の点対の間の球面距離の最小値をDとする。N→∞のとき、ND^dの分布は平均がdB(1/2,d/2)の指数分布に収束する。ここでB(p,q)はベータ関数である。2.2次元の単位球面上の有限個の球帽系F={C_1,C_2,...,C_N}に対して、その交グラフをG(F)で表わす。球帽系Fにおいて球帽C_iと交わる球帽の中心がすべてC_iの中心を通るある大円の一方の側にあるとき、C_iは片側球帽という。また、半球面より小さい球帽はプロパーであるという。Fに片側球帽が存在しなければ、交グラフG(F)は連結となる。また、片側球帽が存在せず、さらに、球帽がすべてプロパーなら、G(F)は2連結となる。(3次元以上の球面では、これと類似な結果は成立しない。)これを応用して、ランダム球帽系の交グラフに関する次の漸近的な結果が得られる。こんどは、F={C_1,C_2,...,C_N}を2次元単位球面上のすべて同じ大きさ(4πc/N)log Nのランダムな球帽の系とする。c\u003e1/2なら、N→∞のとき、G(F)が2連結になる確率は1に収束し、c\u003c1/4なら、G(F)が連結になる確率は0に収束する。3.次元空間内の三角形ΔAOBの∠AOBの大きさをωとする。点Pから∠AOBを見るときその見かけの大きさは、 ΔAOBを直線POに垂直な平面に正射影して得られる三角形ΔA\u0027O\u0027B\u0027の∠A\u0027O\u0027B\u0027の大きさに等しい。点PがOを中心とする単位球面上のランダムな点のとき、∠A\u0027O\u0027B\u0027の大きさΘ(ω)を∠AOBのランダムな見かけの角という。東海大の前田陽一氏との共同研究により、確率変数Θ(ω)の平均が ωに等しいことを示し、また、その分散が容易に数値計算できる2重積分の式を得た。", "subitem_description_type": "Other"}, {"subitem_description": "1. For a graph G with N edges, put its vertices on the d-dimensional unit sphere. Let D denote the minimum spherical distance between a pair of points that correspond to a pair of adjacent vertices in G. Then, it was proved that the distribution of ND^d tends to exponential distribution with mean dB(1/2,d/2) as N tends to infinity, where B(p,q) denotes the beta function.2. Let F={C_1,C_2,…,C_N} be a family of caps on the two dimensional unit sphere. A cap C_i is called extremal if the centers of those caps that intersect C_i are all contained in the same side of a great circle passing through the center of C_i. A cap that is smaller than a hemisphere is called proper. It was proved that if F has no extremal cap then the intersection graph G(F) of F is connected. If furthermore, all caps in F are proper then G(F) is 2-connected. For higher dimensional sphere, the similar result never holds. Applying this the following asymptotic result was proved. Now, let F denote a family of N random caps all of the same size (4πc/N)log N. If c\u003e1/2, then the probability that G(F) is 2-connected tends to 1 as N tends to infinity. If c\u003c1/4, then the probability that G(F) is connected tends to 0 as N tends to infinity.3. Let AOB be a triangle in the 3-space with angle ∠AOB=ω. When we look at this angle from a viewpoint P, this angle looks as though the angle of the orthogonal projection of AOB on a plane perpendicular to the line PO. And its size changes according to the location of the viewpoint P. If P is a random point on a unit sphere centered at O, then the \u0027visual\u0027 size of the angle ∠AOB is called the random visual size and denoted by Θ(ω). By a joint study with Yoich Maeda (Tokai univ.), we proved that the expected value of Θ(ω) is equal to ω, and derived a formula to calculate the variance of Θ(ω).", "subitem_description_type": "Other"}, {"subitem_description": "未公開:P.7~71(論文別刷のため)", "subitem_description_type": "Other"}, {"subitem_description": "研究報告書", "subitem_description_type": "Other"}]}, "item_1617186643794": {"attribute_name": "Publisher", "attribute_value_mlt": [{"subitem_1522300295150": "ja", "subitem_1522300316516": "前原濶"}]}, "item_1617186702042": {"attribute_name": "Language", "attribute_value_mlt": [{"subitem_1551255818386": "jpn"}]}, "item_1617186783814": {"attribute_name": "Identifier", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/20.500.12000/9309"}]}, "item_1617186920753": {"attribute_name": "Source Identifier", "attribute_value_mlt": [{"subitem_1522646500366": "NCID", "subitem_1522646572813": "BA64192299"}]}, "item_1617187056579": {"attribute_name": "Bibliographic Information", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2003-03", "bibliographicIssueDateType": "Issued"}, "bibliographicPageStart": "none"}]}, "item_1617258105262": {"attribute_name": "Resource Type", "attribute_value_mlt": [{"resourcetype": "research report", "resourceuri": "http://purl.org/coar/resource_type/c_18ws"}]}, "item_1617265215918": {"attribute_name": "Version Type", "attribute_value_mlt": [{"subitem_1522305645492": "VoR", "subitem_1600292170262": "http://purl.org/coar/version/c_970fb48d4fbd8a85"}]}, "item_1617605131499": {"attribute_name": "File", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "download_preview_message": "", "file_order": 0, "filename": "13640126-2.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2004460/files/13640126-2.pdf"}, "version_id": "f31f2177-682d-4c06-a91f-537796bb7c1e"}, {"accessrole": "open_access", "download_preview_message": "", "file_order": 1, "filename": "13640126-1.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2004460/files/13640126-1.pdf"}, "version_id": "16aea07e-72f9-4b78-bdc4-79a32818e468"}]}, "item_title": "球面上のランダム幾何とその応用", "item_type_id": "15", "owner": "1", "path": ["1642838403123", "1642838405037"], "permalink_uri": "http://hdl.handle.net/20.500.12000/9309", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2009-03-19"}, "publish_date": "2009-03-19", "publish_status": "0", "recid": "2004460", "relation": {}, "relation_version_is_last": true, "title": ["球面上のランダム幾何とその応用"], "weko_shared_id": -1}
  1. その他
  1. 部局別インデックス
  2. 教育学部

球面上のランダム幾何とその応用

http://hdl.handle.net/20.500.12000/9309
http://hdl.handle.net/20.500.12000/9309
4cb7e24a-5f9f-4dfb-9cd7-da088eabeefd
名前 / ファイル ライセンス アクション
13640126-2.pdf 13640126-2.pdf
13640126-1.pdf 13640126-1.pdf
Item type デフォルトアイテムタイプ(フル)(1)
公開日 2009-03-19
タイトル
タイトル 球面上のランダム幾何とその応用
言語 ja
タイトル
タイトル Random Geometry on the Sphere and its Applications
言語 en
作成者 前原, 濶

× 前原, 濶

ja 前原, 濶

Search repository
Maehara, Hiroshi

× Maehara, Hiroshi

en Maehara, Hiroshi

Search repository
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
主題
言語 ja
主題Scheme Other
主題 漸近分布
主題
言語 ja
主題Scheme Other
主題 最小距離の分布
主題
言語 ja
主題Scheme Other
主題 ランダム球帽系
主題
言語 ja
主題Scheme Other
主題 交グラフ
主題
言語 ja
主題Scheme Other
主題 片側球帽
主題
言語 ja
主題Scheme Other
主題 見かけの角
主題
言語 en
主題Scheme Other
主題 asymptotic distribution
主題
言語 en
主題Scheme Other
主題 minimum distance
主題
言語 en
主題Scheme Other
主題 random caps
主題
言語 en
主題Scheme Other
主題 intersection graph
主題
言語 en
主題Scheme Other
主題 extremal cap
主題
言語 en
主題Scheme Other
主題 visual angle
内容記述
内容記述タイプ Other
内容記述 科研費番号: 13640126
内容記述
内容記述タイプ Other
内容記述 科学研究費補助金(基盤研究(C)(2))研究成果報告書
内容記述
内容記述タイプ Other
内容記述 研究概要 : 1.辺数がNの任意のグラフGに対して、その頂点集合をd次元単位球面上にランダムに配置する。Gにおいて辺で結ばれているような頂点対に対応する球面上の点対の間の球面距離の最小値をDとする。N→∞のとき、ND^dの分布は平均がdB(1/2,d/2)の指数分布に収束する。ここでB(p,q)はベータ関数である。2.2次元の単位球面上の有限個の球帽系F={C_1,C_2,...,C_N}に対して、その交グラフをG(F)で表わす。球帽系Fにおいて球帽C_iと交わる球帽の中心がすべてC_iの中心を通るある大円の一方の側にあるとき、C_iは片側球帽という。また、半球面より小さい球帽はプロパーであるという。Fに片側球帽が存在しなければ、交グラフG(F)は連結となる。また、片側球帽が存在せず、さらに、球帽がすべてプロパーなら、G(F)は2連結となる。(3次元以上の球面では、これと類似な結果は成立しない。)これを応用して、ランダム球帽系の交グラフに関する次の漸近的な結果が得られる。こんどは、F={C_1,C_2,...,C_N}を2次元単位球面上のすべて同じ大きさ(4πc/N)log Nのランダムな球帽の系とする。c>1/2なら、N→∞のとき、G(F)が2連結になる確率は1に収束し、c<1/4なら、G(F)が連結になる確率は0に収束する。3.次元空間内の三角形ΔAOBの∠AOBの大きさをωとする。点Pから∠AOBを見るときその見かけの大きさは、 ΔAOBを直線POに垂直な平面に正射影して得られる三角形ΔA'O'B'の∠A'O'B'の大きさに等しい。点PがOを中心とする単位球面上のランダムな点のとき、∠A'O'B'の大きさΘ(ω)を∠AOBのランダムな見かけの角という。東海大の前田陽一氏との共同研究により、確率変数Θ(ω)の平均が ωに等しいことを示し、また、その分散が容易に数値計算できる2重積分の式を得た。
内容記述
内容記述タイプ Other
内容記述 1. For a graph G with N edges, put its vertices on the d-dimensional unit sphere. Let D denote the minimum spherical distance between a pair of points that correspond to a pair of adjacent vertices in G. Then, it was proved that the distribution of ND^d tends to exponential distribution with mean dB(1/2,d/2) as N tends to infinity, where B(p,q) denotes the beta function.2. Let F={C_1,C_2,…,C_N} be a family of caps on the two dimensional unit sphere. A cap C_i is called extremal if the centers of those caps that intersect C_i are all contained in the same side of a great circle passing through the center of C_i. A cap that is smaller than a hemisphere is called proper. It was proved that if F has no extremal cap then the intersection graph G(F) of F is connected. If furthermore, all caps in F are proper then G(F) is 2-connected. For higher dimensional sphere, the similar result never holds. Applying this the following asymptotic result was proved. Now, let F denote a family of N random caps all of the same size (4πc/N)log N. If c>1/2, then the probability that G(F) is 2-connected tends to 1 as N tends to infinity. If c<1/4, then the probability that G(F) is connected tends to 0 as N tends to infinity.3. Let AOB be a triangle in the 3-space with angle ∠AOB=ω. When we look at this angle from a viewpoint P, this angle looks as though the angle of the orthogonal projection of AOB on a plane perpendicular to the line PO. And its size changes according to the location of the viewpoint P. If P is a random point on a unit sphere centered at O, then the 'visual' size of the angle ∠AOB is called the random visual size and denoted by Θ(ω). By a joint study with Yoich Maeda (Tokai univ.), we proved that the expected value of Θ(ω) is equal to ω, and derived a formula to calculate the variance of Θ(ω).
内容記述
内容記述タイプ Other
内容記述 未公開:P.7~71(論文別刷のため)
内容記述
内容記述タイプ Other
内容記述 研究報告書
出版者
言語 ja
出版者 前原濶
言語
言語 jpn
資源タイプ
資源タイプ research report
資源タイプ識別子 http://purl.org/coar/resource_type/c_18ws
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
識別子
識別子 http://hdl.handle.net/20.500.12000/9309
識別子タイプ HDL
収録物識別子
収録物識別子タイプ NCID
収録物識別子 BA64192299
書誌情報
p. none, 発行日 2003-03
戻る
0
views
See details
Views

Versions

Ver.1 2022-01-27 08:05:54.845196
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3