{"_buckets": {"deposit": "c0bcbf37-1251-4e75-b74c-42404d34d489"}, "_deposit": {"id": "2004460", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "2004460"}, "status": "published"}, "_oai": {"id": "oai:u-ryukyu.repo.nii.ac.jp:02004460", "sets": ["1642838403123", "1642838405037"]}, "author_link": [], "item_1617186331708": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "\u7403\u9762\u4e0a\u306e\u30e9\u30f3\u30c0\u30e0\u5e7e\u4f55\u3068\u305d\u306e\u5fdc\u7528", "subitem_1551255648112": "ja"}, {"subitem_1551255647225": "Random Geometry on the Sphere and its Applications", "subitem_1551255648112": "en"}]}, "item_1617186419668": {"attribute_name": "Creator", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u524d\u539f, \u6ff6", "creatorNameLang": "ja"}]}, {"creatorNames": [{"creatorName": "Maehara, Hiroshi", "creatorNameLang": "en"}]}]}, "item_1617186476635": {"attribute_name": "Access Rights", "attribute_value_mlt": [{"subitem_1522299639480": "open access", "subitem_1600958577026": "http://purl.org/coar/access_right/c_abf2"}]}, "item_1617186609386": {"attribute_name": "Subject", "attribute_value_mlt": [{"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u6f38\u8fd1\u5206\u5e03"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u6700\u5c0f\u8ddd\u96e2\u306e\u5206\u5e03"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u30e9\u30f3\u30c0\u30e0\u7403\u5e3d\u7cfb"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u4ea4\u30b0\u30e9\u30d5"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u7247\u5074\u7403\u5e3d"}, {"subitem_1522299896455": "ja", "subitem_1522300014469": "Other", "subitem_1523261968819": "\u898b\u304b\u3051\u306e\u89d2"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "asymptotic distribution"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "minimum distance"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "random caps"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "intersection graph"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "extremal cap"}, {"subitem_1522299896455": "en", "subitem_1522300014469": "Other", "subitem_1523261968819": "visual angle"}]}, "item_1617186626617": {"attribute_name": "Description", "attribute_value_mlt": [{"subitem_description": "\u79d1\u7814\u8cbb\u756a\u53f7: 13640126", "subitem_description_type": "Other"}, {"subitem_description": "\u79d1\u5b66\u7814\u7a76\u8cbb\u88dc\u52a9\u91d1(\u57fa\u76e4\u7814\u7a76(C)(2))\u7814\u7a76\u6210\u679c\u5831\u544a\u66f8", "subitem_description_type": "Other"}, {"subitem_description": "\u7814\u7a76\u6982\u8981 : 1.\u8fba\u6570\u304cN\u306e\u4efb\u610f\u306e\u30b0\u30e9\u30d5G\u306b\u5bfe\u3057\u3066\u3001\u305d\u306e\u9802\u70b9\u96c6\u5408\u3092d\u6b21\u5143\u5358\u4f4d\u7403\u9762\u4e0a\u306b\u30e9\u30f3\u30c0\u30e0\u306b\u914d\u7f6e\u3059\u308b\u3002G\u306b\u304a\u3044\u3066\u8fba\u3067\u7d50\u3070\u308c\u3066\u3044\u308b\u3088\u3046\u306a\u9802\u70b9\u5bfe\u306b\u5bfe\u5fdc\u3059\u308b\u7403\u9762\u4e0a\u306e\u70b9\u5bfe\u306e\u9593\u306e\u7403\u9762\u8ddd\u96e2\u306e\u6700\u5c0f\u5024\u3092D\u3068\u3059\u308b\u3002N\u2192\u221e\u306e\u3068\u304d\u3001ND^d\u306e\u5206\u5e03\u306f\u5e73\u5747\u304cdB(1/2,d/2)\u306e\u6307\u6570\u5206\u5e03\u306b\u53ce\u675f\u3059\u308b\u3002\u3053\u3053\u3067B(p,q)\u306f\u30d9\u30fc\u30bf\u95a2\u6570\u3067\u3042\u308b\u30022.2\u6b21\u5143\u306e\u5358\u4f4d\u7403\u9762\u4e0a\u306e\u6709\u9650\u500b\u306e\u7403\u5e3d\u7cfbF={C_1,C_2,...,C_N}\u306b\u5bfe\u3057\u3066\u3001\u305d\u306e\u4ea4\u30b0\u30e9\u30d5\u3092G(F)\u3067\u8868\u308f\u3059\u3002\u7403\u5e3d\u7cfbF\u306b\u304a\u3044\u3066\u7403\u5e3dC_i\u3068\u4ea4\u308f\u308b\u7403\u5e3d\u306e\u4e2d\u5fc3\u304c\u3059\u3079\u3066C_i\u306e\u4e2d\u5fc3\u3092\u901a\u308b\u3042\u308b\u5927\u5186\u306e\u4e00\u65b9\u306e\u5074\u306b\u3042\u308b\u3068\u304d\u3001C_i\u306f\u7247\u5074\u7403\u5e3d\u3068\u3044\u3046\u3002\u307e\u305f\u3001\u534a\u7403\u9762\u3088\u308a\u5c0f\u3055\u3044\u7403\u5e3d\u306f\u30d7\u30ed\u30d1\u30fc\u3067\u3042\u308b\u3068\u3044\u3046\u3002F\u306b\u7247\u5074\u7403\u5e3d\u304c\u5b58\u5728\u3057\u306a\u3051\u308c\u3070\u3001\u4ea4\u30b0\u30e9\u30d5G(F)\u306f\u9023\u7d50\u3068\u306a\u308b\u3002\u307e\u305f\u3001\u7247\u5074\u7403\u5e3d\u304c\u5b58\u5728\u305b\u305a\u3001\u3055\u3089\u306b\u3001\u7403\u5e3d\u304c\u3059\u3079\u3066\u30d7\u30ed\u30d1\u30fc\u306a\u3089\u3001G(F)\u306f2\u9023\u7d50\u3068\u306a\u308b\u3002(3\u6b21\u5143\u4ee5\u4e0a\u306e\u7403\u9762\u3067\u306f\u3001\u3053\u308c\u3068\u985e\u4f3c\u306a\u7d50\u679c\u306f\u6210\u7acb\u3057\u306a\u3044\u3002)\u3053\u308c\u3092\u5fdc\u7528\u3057\u3066\u3001\u30e9\u30f3\u30c0\u30e0\u7403\u5e3d\u7cfb\u306e\u4ea4\u30b0\u30e9\u30d5\u306b\u95a2\u3059\u308b\u6b21\u306e\u6f38\u8fd1\u7684\u306a\u7d50\u679c\u304c\u5f97\u3089\u308c\u308b\u3002\u3053\u3093\u3069\u306f\u3001F={C_1,C_2,...,C_N}\u30922\u6b21\u5143\u5358\u4f4d\u7403\u9762\u4e0a\u306e\u3059\u3079\u3066\u540c\u3058\u5927\u304d\u3055(4\u03c0c/N)log N\u306e\u30e9\u30f3\u30c0\u30e0\u306a\u7403\u5e3d\u306e\u7cfb\u3068\u3059\u308b\u3002c\u003e1/2\u306a\u3089\u3001N\u2192\u221e\u306e\u3068\u304d\u3001G(F)\u304c2\u9023\u7d50\u306b\u306a\u308b\u78ba\u7387\u306f1\u306b\u53ce\u675f\u3057\u3001c\u003c1/4\u306a\u3089\u3001G(F)\u304c\u9023\u7d50\u306b\u306a\u308b\u78ba\u7387\u306f0\u306b\u53ce\u675f\u3059\u308b\u30023.\u6b21\u5143\u7a7a\u9593\u5185\u306e\u4e09\u89d2\u5f62\u0394AOB\u306e\u2220AOB\u306e\u5927\u304d\u3055\u3092\u03c9\u3068\u3059\u308b\u3002\u70b9P\u304b\u3089\u2220AOB\u3092\u898b\u308b\u3068\u304d\u305d\u306e\u898b\u304b\u3051\u306e\u5927\u304d\u3055\u306f\u3001 \u0394AOB\u3092\u76f4\u7ddaPO\u306b\u5782\u76f4\u306a\u5e73\u9762\u306b\u6b63\u5c04\u5f71\u3057\u3066\u5f97\u3089\u308c\u308b\u4e09\u89d2\u5f62\u0394A\u0027O\u0027B\u0027\u306e\u2220A\u0027O\u0027B\u0027\u306e\u5927\u304d\u3055\u306b\u7b49\u3057\u3044\u3002\u70b9P\u304cO\u3092\u4e2d\u5fc3\u3068\u3059\u308b\u5358\u4f4d\u7403\u9762\u4e0a\u306e\u30e9\u30f3\u30c0\u30e0\u306a\u70b9\u306e\u3068\u304d\u3001\u2220A\u0027O\u0027B\u0027\u306e\u5927\u304d\u3055\u0398(\u03c9)\u3092\u2220AOB\u306e\u30e9\u30f3\u30c0\u30e0\u306a\u898b\u304b\u3051\u306e\u89d2\u3068\u3044\u3046\u3002\u6771\u6d77\u5927\u306e\u524d\u7530\u967d\u4e00\u6c0f\u3068\u306e\u5171\u540c\u7814\u7a76\u306b\u3088\u308a\u3001\u78ba\u7387\u5909\u6570\u0398(\u03c9)\u306e\u5e73\u5747\u304c \u03c9\u306b\u7b49\u3057\u3044\u3053\u3068\u3092\u793a\u3057\u3001\u307e\u305f\u3001\u305d\u306e\u5206\u6563\u304c\u5bb9\u6613\u306b\u6570\u5024\u8a08\u7b97\u3067\u304d\u308b2\u91cd\u7a4d\u5206\u306e\u5f0f\u3092\u5f97\u305f\u3002", "subitem_description_type": "Other"}, {"subitem_description": "1. For a graph G with N edges, put its vertices on the d-dimensional unit sphere. Let D denote the minimum spherical distance between a pair of points that correspond to a pair of adjacent vertices in G. Then, it was proved that the distribution of ND^d tends to exponential distribution with mean dB(1/2,d/2) as N tends to infinity, where B(p,q) denotes the beta function.2. Let F={C_1,C_2,\u2026,C_N} be a family of caps on the two dimensional unit sphere. A cap C_i is called extremal if the centers of those caps that intersect C_i are all contained in the same side of a great circle passing through the center of C_i. A cap that is smaller than a hemisphere is called proper. It was proved that if F has no extremal cap then the intersection graph G(F) of F is connected. If furthermore, all caps in F are proper then G(F) is 2-connected. For higher dimensional sphere, the similar result never holds. Applying this the following asymptotic result was proved. Now, let F denote a family of N random caps all of the same size (4\u03c0c/N)log N. If c\u003e1/2, then the probability that G(F) is 2-connected tends to 1 as N tends to infinity. If c\u003c1/4, then the probability that G(F) is connected tends to 0 as N tends to infinity.3. Let AOB be a triangle in the 3-space with angle \u2220AOB=\u03c9. When we look at this angle from a viewpoint P, this angle looks as though the angle of the orthogonal projection of AOB on a plane perpendicular to the line PO. And its size changes according to the location of the viewpoint P. If P is a random point on a unit sphere centered at O, then the \u0027visual\u0027 size of the angle \u2220AOB is called the random visual size and denoted by \u0398(\u03c9). By a joint study with Yoich Maeda (Tokai univ.), we proved that the expected value of \u0398(\u03c9) is equal to \u03c9, and derived a formula to calculate the variance of \u0398(\u03c9).", "subitem_description_type": "Other"}, {"subitem_description": "\u672a\u516c\u958b\uff1aP.7\uff5e71\uff08\u8ad6\u6587\u5225\u5237\u306e\u305f\u3081\uff09", "subitem_description_type": "Other"}, {"subitem_description": "\u7814\u7a76\u5831\u544a\u66f8", "subitem_description_type": "Other"}]}, "item_1617186643794": {"attribute_name": "Publisher", "attribute_value_mlt": [{"subitem_1522300295150": "ja", "subitem_1522300316516": "\u524d\u539f\u6ff6"}]}, "item_1617186702042": {"attribute_name": "Language", "attribute_value_mlt": [{"subitem_1551255818386": "jpn"}]}, "item_1617186783814": {"attribute_name": "Identifier", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/20.500.12000/9309"}]}, "item_1617186920753": {"attribute_name": "Source Identifier", "attribute_value_mlt": [{"subitem_1522646500366": "NCID", "subitem_1522646572813": "BA64192299"}]}, "item_1617258105262": {"attribute_name": "Resource Type", "attribute_value_mlt": [{"resourcetype": "research report", "resourceuri": "http://purl.org/coar/resource_type/c_18ws"}]}, "item_1617265215918": {"attribute_name": "Version Type", "attribute_value_mlt": [{"subitem_1522305645492": "VoR", "subitem_1600292170262": "http://purl.org/coar/version/c_970fb48d4fbd8a85"}]}, "item_1617605131499": {"attribute_name": "File", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "download_preview_message": "", "file_order": 0, "filename": "13640126-2.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2004460/files/13640126-2.pdf"}, "version_id": "f31f2177-682d-4c06-a91f-537796bb7c1e"}, {"accessrole": "open_access", "download_preview_message": "", "file_order": 1, "filename": "13640126-1.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2004460/files/13640126-1.pdf"}, "version_id": "16aea07e-72f9-4b78-bdc4-79a32818e468"}]}, "item_title": "\u7403\u9762\u4e0a\u306e\u30e9\u30f3\u30c0\u30e0\u5e7e\u4f55\u3068\u305d\u306e\u5fdc\u7528", "item_type_id": "15", "owner": "1", "path": ["1642838403123", "1642838405037"], "permalink_uri": "http://hdl.handle.net/20.500.12000/9309", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2009-03-19"}, "publish_date": "2009-03-19", "publish_status": "0", "recid": "2004460", "relation": {}, "relation_version_is_last": true, "title": ["\u7403\u9762\u4e0a\u306e\u30e9\u30f3\u30c0\u30e0\u5e7e\u4f55\u3068\u305d\u306e\u5fdc\u7528"], "weko_shared_id": -1}
http://hdl.handle.net/20.500.12000/9309
http://hdl.handle.net/20.500.12000/9309