WEKO3
アイテム
{"_buckets": {"deposit": "142d480f-7fa0-4d40-ba4c-419226c8d608"}, "_deposit": {"id": "2012026", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "2012026"}, "status": "published"}, "_oai": {"id": "oai:u-ryukyu.repo.nii.ac.jp:02012026", "sets": ["1670479525511", "1642838404033"]}, "author_link": [], "item_1617186331708": {"attribute_name": "Title", "attribute_value_mlt": [{"subitem_1551255647225": "Forecasting with Vector Autoregressions Using Bayesian Variable Selection Methods: Comparison of Direct and Iterated Methods", "subitem_1551255648112": "en"}]}, "item_1617186419668": {"attribute_name": "Creator", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Sugita, Katsuhiro", "creatorNameLang": "en"}]}]}, "item_1617186476635": {"attribute_name": "Access Rights", "attribute_value_mlt": [{"subitem_1522299639480": "open access", "subitem_1600958577026": "http://purl.org/coar/access_right/c_abf2"}]}, "item_1617186626617": {"attribute_name": "Description", "attribute_value_mlt": [{"subitem_description": "This paper compares multi-period forecasting performances by direct and iterated method using a Bayesian vector autoregressions with the stochastic search variable selection (SSVS) priors. The forecasting performances are evaluated using the artificially generated data with both nonstationary and stationary process. In theory direct forecasts are more efficient asymptotically and more robust to model misspecification than iterated forecasts, and iterated forecasts tend to bias but more efficient if the one-period ahead model is correctly specified. From the results of the Monte Carlo simulations, iterated forecasts tend to outperform direct forecasts, particularly with longer lag model and with longer forecast horizons. Implementing SSVS prior generally improves forecasting performance over unrestricted VAR model for either nonstationary or stationary data. As an illustration, US macroeconomic data sets with three variables are examined to compare iterated and direct forecasts using the unrestricted VAR model and the SSVS VAR model. Overall, iterated forecasts using model with the SSVS generally best outperform, suggesting that the SSVS restrictions on insignificant parameters alleviates over-parameterized problem of VAR in one-step ahead forecast and thus offers an appreciable improvement in forecast performance of iterated forecasts.", "subitem_description_type": "Other"}, {"subitem_description": "プレプリント", "subitem_description_type": "Other"}]}, "item_1617186643794": {"attribute_name": "Publisher", "attribute_value_mlt": [{"subitem_1522300295150": "ja", "subitem_1522300316516": "琉球大学国際地域創造学部経済学プログラム"}, {"subitem_1522300295150": "en", "subitem_1522300316516": "Economics Program, Faculty of Global and Regional Studies, University of the Ryukyus"}]}, "item_1617186702042": {"attribute_name": "Language", "attribute_value_mlt": [{"subitem_1551255818386": "eng"}]}, "item_1617186783814": {"attribute_name": "Identifier", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/20.500.12000/44365"}]}, "item_1617186941041": {"attribute_name": "Source Title", "attribute_value_mlt": [{"subitem_1522650068558": "ja", "subitem_1522650091861": "琉球大学経済学ワーキングペーパーシリーズ"}, {"subitem_1522650068558": "en", "subitem_1522650091861": "Ryukyu Economics Working Paper Series"}]}, "item_1617187056579": {"attribute_name": "Bibliographic Information", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2019-05-14", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "REWP#02", "bibliographicPageEnd": "18", "bibliographicPageStart": "1"}]}, "item_1617258105262": {"attribute_name": "Resource Type", "attribute_value_mlt": [{"resourcetype": "other", "resourceuri": "http://purl.org/coar/resource_type/c_1843"}]}, "item_1617265215918": {"attribute_name": "Version Type", "attribute_value_mlt": [{"subitem_1522305645492": "AO", "subitem_1600292170262": "http://purl.org/coar/version/c_b1a7d7d4d402bcce"}]}, "item_1617605131499": {"attribute_name": "File", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "download_preview_message": "", "file_order": 0, "filename": "WP2019-05_REWP02.pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "", "size": 0, "url": {"objectType": "fulltext", "url": "https://u-ryukyu.repo.nii.ac.jp/record/2012026/files/WP2019-05_REWP02.pdf"}, "version_id": "abb3e8ff-2993-4c72-9dfb-e53e2cb95ef3"}]}, "item_title": "Forecasting with Vector Autoregressions Using Bayesian Variable Selection Methods: Comparison of Direct and Iterated Methods", "item_type_id": "15", "owner": "1", "path": ["1670479525511", "1642838404033"], "permalink_uri": "http://hdl.handle.net/20.500.12000/44365", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2019-05-14"}, "publish_date": "2019-05-14", "publish_status": "0", "recid": "2012026", "relation": {}, "relation_version_is_last": true, "title": ["Forecasting with Vector Autoregressions Using Bayesian Variable Selection Methods: Comparison of Direct and Iterated Methods"], "weko_shared_id": -1}
Forecasting with Vector Autoregressions Using Bayesian Variable Selection Methods: Comparison of Direct and Iterated Methods
http://hdl.handle.net/20.500.12000/44365
http://hdl.handle.net/20.500.12000/443656ec48045-3c2c-42d1-bf65-b14056182dd9
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | デフォルトアイテムタイプ(フル)(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2019-05-14 | |||||||
タイトル | ||||||||
タイトル | Forecasting with Vector Autoregressions Using Bayesian Variable Selection Methods: Comparison of Direct and Iterated Methods | |||||||
言語 | en | |||||||
作成者 |
Sugita, Katsuhiro
× Sugita, Katsuhiro
|
|||||||
アクセス権 | ||||||||
アクセス権 | open access | |||||||
アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||||
内容記述 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | This paper compares multi-period forecasting performances by direct and iterated method using a Bayesian vector autoregressions with the stochastic search variable selection (SSVS) priors. The forecasting performances are evaluated using the artificially generated data with both nonstationary and stationary process. In theory direct forecasts are more efficient asymptotically and more robust to model misspecification than iterated forecasts, and iterated forecasts tend to bias but more efficient if the one-period ahead model is correctly specified. From the results of the Monte Carlo simulations, iterated forecasts tend to outperform direct forecasts, particularly with longer lag model and with longer forecast horizons. Implementing SSVS prior generally improves forecasting performance over unrestricted VAR model for either nonstationary or stationary data. As an illustration, US macroeconomic data sets with three variables are examined to compare iterated and direct forecasts using the unrestricted VAR model and the SSVS VAR model. Overall, iterated forecasts using model with the SSVS generally best outperform, suggesting that the SSVS restrictions on insignificant parameters alleviates over-parameterized problem of VAR in one-step ahead forecast and thus offers an appreciable improvement in forecast performance of iterated forecasts. | |||||||
内容記述 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | プレプリント | |||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 琉球大学国際地域創造学部経済学プログラム | |||||||
出版者 | ||||||||
言語 | en | |||||||
出版者 | Economics Program, Faculty of Global and Regional Studies, University of the Ryukyus | |||||||
言語 | ||||||||
言語 | eng | |||||||
資源タイプ | ||||||||
資源タイプ | other | |||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_1843 | |||||||
出版タイプ | ||||||||
出版タイプ | AO | |||||||
出版タイプResource | http://purl.org/coar/version/c_b1a7d7d4d402bcce | |||||||
識別子 | ||||||||
識別子 | http://hdl.handle.net/20.500.12000/44365 | |||||||
識別子タイプ | HDL | |||||||
収録物名 | ||||||||
言語 | ja | |||||||
収録物名 | 琉球大学経済学ワーキングペーパーシリーズ | |||||||
収録物名 | ||||||||
言語 | en | |||||||
収録物名 | Ryukyu Economics Working Paper Series | |||||||
書誌情報 |
号 REWP#02, p. 1-18, 発行日 2019-05-14 |